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Abstract 
In this paper, a novel approach for implementing Arabic 
isolated speech recognition is described. While most of 
the literature on speech recognition (SR) is based on 
hidden Markov models (HMM), the present system is 
implemented by modular recurrent Elman neural net-
works (MRENN). 
The promising results obtained through this design show 
that this new neural networks approach can compete 
with the traditional HMM-based speech recognition ap-
proaches.  
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1 INTRODUCTION 
The speech recognition problem may be interpreted as a 
speech-to-text conversion problem. A speaker wants 
his/her voice to be transcribed into text by a computer.  
Automatic speech recognition has been an active re-
search topic for more than four decades. With the advent 
of digital computing and signal processing, the problem 
of speech recognition was clearly posed and thoroughly 
studied. These developments were complemented with an 
increased awareness of the advantages of conversational 
systems. The range of the possible applications is wide 
and includes: voice-controlled appliances, fully featured 
speech-to-text software, automation of operator-assisted 
services, and voice recognition aids for the handi-
capped….  
Different approaches in speech recognition have been 
adopted. They can be divided mainly into two trends: 
hidden Markov model (HMM) and neural networks 
(NN). HMMs have been the most popular and most 
commonly used approaches while NN haven’t been used 
for SR until recently.  
The NN approach for SR can be divided into two main 
categories: conventional neural networks (MLP, RBF, 
SOM/LVQ, etc.) and recurrent neural networks (RNN). 
Conventional neural networks have proven to be good 
pattern classifiers but they haven’t been able to compete 
with the results obtained by HMM. RNNs have been 
widely used in various sequence processing tasks such as 
time-series prediction, grammatical inference, dynamic 
system identification, etc. However, they have not at-
tained the same level of success in speech recognition as 
in other applications. 

The novelty in our approach is the use of a small RNN 
for each word in the vocabulary set instead of a unique 
large RNN for the entire set. 
There are many distinctive features in our speech recog-
nition system. The system:  
• is implemented using neural networks 

• is designed for Arabic language recognition 

• recognizes a limited set of isolated words 

• is female speaker-independent and performs favora-
bly for male speakers. 

• is tolerant to moderate noise 

In the following sections, we present the implementation 
stages of our system. In the first stage of the design, the 
speech is appropriately processed to be input to the neu-
ral networks. By this we imply feature extraction 
achieved through modeling the human vocal tract using 
linear predictive coding which is then converted to the 
more robust cepstral coefficients. To compress those fea-
tures, vector quantization is used, and a codebook is cre-
ated using the K-means algorithm. This is discussed in 
Section 2. 
The second stage of the design is to train the system for 
different utterances of the words in the vocabulary set. 
These utterances should constitute a good sample set of 
the various conditions and situations in which the word 
may be pronounced.  
This training was implemented on Elman neural net-
works using the back propagation algorithm with mo-
mentum and variable learning rate. This is discussed in 
Section 3. 
The last stage of our project is testing. The system was 
tested under different conditions: noisy and clean envi-
ronments, speakers who trained the system and new 
speakers. The results are presented in Section 4.  

2 FEATURE EXTRACTION 
Speech acquisition begins with a person speaking into a 
microphone or telephone. This act of speaking produces 
a sound pressure wave that forms an acoustic signal. The 
microphone or telephone receives the acoustic signal and 
converts it to an analog signal that can be understood by 
an electronic device. Finally, in order to store the analog 
signal on a computer, it must be converted to a digital 
signal. 



2.1 Pre-emphasis 
In general, the digitized speech waveform has a high 
dynamic range and suffers from additive noise. An ex-
ample of such a waveform is shown in the upper part of 
Figure 1. 
In order to reduce this range pre-emphasis is applied. By 
pre-emphasis [5], we imply the application of a high pass 
filter, which is usually a first-order FIR of the form:  
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The pre-emphasizer is implemented as a fixed-coefficient 
filter or as an adaptive one, where the coefficient a is 
adjusted with time according to the autocorrelation val-
ues of the speech. The pre-emphasizer has the effect of 
spectral flattening which renders the signal less suscepti-
ble to finite precision effects (such as overflow and un-
derflow) in any subsequent processing of the signal. The 
selected value for a in our work was 0.9375. 

 
 

 
2.2 Endpoints detection 
The goal of endpoint detection is to isolate the word to be 
detected from the background noise. It is necessary to 
trim the word utterance to its tightest limits, in order to 
avoid errors in the modeling of subsequent utterances of 
the same word. As we can see from the upper part of 
figure 1, a threshold has been applied at both ends of the 
waveform. The front threshold is of value 0.12 whereas 
the end threshold value is 0.1. These values have been 
obtained after observing the behavior of the waveform 
and noise in a particular environment.   

2.3 Frame blocking 
Since the vocal tract moves mechanically slowly, speech 
can be assumed to be a random process with slowly vary-
ing properties [5]. Hence, the speech is divided into over-
lapping frames of 20ms every 10ms. The speech signal is 
assumed to be stationary over each frame and this prop-
erty will prove useful in the following steps. 

2.4 Windowing 
To minimize the discontinuity of a signal at the begin-
ning and end of each frame, we window each frame to 
increase the correlation of the linear predictive coding 
(LPC) spectral estimates between consecutive frames [5]. 
The windowing tapers the signal to zero at the beginning 

and end of each frame. A typical LPC window is the 
Hamming window of the form: 
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2.5  LPC analysis 
A speech recognizer is a system that tries to understand 
or "decode" a digitized speech signal. This signal, as first 
captured by the microphone, contains information in a 
form not suitable for pattern recognition. However, it can 
be represented by a limited set of features relevant for the 
task. These features more closely describe the variability 
of the phonemes (such as vowels and consonants) that 
constitute each word.  
The feature measurements of speech signals are typically 
extracted using one of the following spectral analysis 
techniques: filter bank analyzer, LPC analysis or discrete 
Fourier transform analysis. Since LPC is one of the most 
powerful speech analysis techniques for extracting good 
quality features and hence encoding the speech signal at 
a low bit rate, we selected it to extract the features of the 
speech signal [5]. 
The LPC coefficients ai are the coefficients of the all-
pass transfer function H(z) modeling the vocal tract, and 
the order of the LPC, p, is also the order of H(z)  defined 
as follows: 
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 LPC was implemented using the autocorrelation method. 
A drawback of LPC estimates is their high sensitivity to 
quantization noise; cepstral coefficients, which can be 
derived from the LPC coefficients, have lower suscepti-
bility to noise, and were adopted instead as explained 
below.  

2.6 LPC conversion to Cepstral coefficients 
The features used in this system are the weighted LPC-
based cepstral coefficients, which are the coefficients of 
the Fourier transform representation of the log magnitude 
spectrum.  

Table 1. Cepstral coefficients determination 

 
Table 1 shows an iterative algorithm for the determina-
tion of the cepstral coefficients from the LPC coeffi-
cients.  The cepstral order q is generally chosen to be 
greater than the LPC order p. A rule of thumb is to set q 
to 3/2 of the LPC order p. In our system, we have chosen 
p to be 8, therefore q was set to 12 accordingly [5]. 
To decrease the sensitivity of high-order and low-order 
cepstral coefficients to noise, the obtained cepstral coef-
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Figure 1. Speech Waveform of the word “Manzel” 
before and after pre-emphasis and endpoint detec-
tion 



ficients are multiplied by an appropriate weighting which 
is a window with the following equation: 
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This results in what is known as the weighted cepstral 
coefficients [5].  
Figure 2 illustrates clearly the advantage of weighted 
cepstral representation, i.e. its superior tolerance to noise 
when compared to LPC. The plots represent the weighted 
cepstral coefficients generated from seven distinct utter-
ances of the sound “aa”.  
It is obvious from the figure that there is little variation 
between the extracted cepstral coefficients for the seven 
utterances. Hence, this demonstrates the reliability and 
consistency of these coefficients. 

 
 

 
2.7 Vector quantization 
Optimization of the system is achieved by using vector 
quantization in order to compress and subsequently re-
duce the variability among the feature vectors derived 
from the frames. In vector quantization, a reproduction 
vector (codevector) in a pre-designed set of K vectors 
(codebook) approximates each feature vector of the input 
signal: the feature vector space is divided into K regions 
and all subsequent feature vectors are classified into one 
of the corresponding codebook-elements (i.e.: the cen-
troids of the K regions) according to the least distance 
criterion (Euclidian distance).  
The best results were obtained using an 80-element 
codebook, generated by Lloyd’s K-means algorithm ap-
plied on a long speech sample consisting of the words in 
the vocabulary set [5]. The output of this last stage is the 
final feature used throughout.  

3 NEURAL NETWORKS IMPLEMENTATION 
The training and classification of the extracted features 
can be implemented in several ways: using HMM, NN or 
a hybrid HMM-NN. One of the most successful and 
popular speech models discussed in the literature is the 
first order HMM, a simplified stochastic process model 
based upon the Markov chain. Despite the scarcity of the 

literature available on the implementation of SR using 
NN, we have adopted a MRENN model and we have 
found that it can achieve results as good as the HMM 
model.  
Neural networks [2,3,4] attempt to mimic some or all of 
the characteristics of biological neurons that form the 
structural constituents of the brain.  
A neural network can:  
• Learn by adapting its synaptic weights to changes in 

the surrounding environments;  

• Handle imprecise, fuzzy, noisy, and probabilistic 
information;  

• Generalize from known tasks or examples to un-
known ones.  

3.1 Feedforward vs. recurrent networks 
Neural network architecture can be divided into two 
principal types: recurrent and non-recurrent networks. An 
important sub-class of non-recurrent NN consists of ar-
chitectures in which cells are organized into layers, and 
only unidirectional connections are permitted between 
adjacent layers. This is known as a feedforward multi-
layer perceptron (MLP) architecture. This architecture is 
shown in Figure 3. 

 
 
 
On the other hand, recurrent neural networks are charac-
terized by both feedforward and feedback paths between 
the layers. The feedback paths enable the activation at 
any layer to either be used as an input to a previous layer 
or be returned to that layer after one or more time steps.  
It was believed that multilayered perceptrons are useful 
for SR because they can approximate the relationship 
between the inputs and outputs of a system. In a linear 
system, this would be described as the transfer function 
of the system. However, training a feedforward MLP 
consists of showing the network a set of input and output 
pairs of data, with no consideration given to their tempo-
ral relationship. Thus the data, and the resultant model, 
represent only the static model of the system. Of more 
use to a SR application is the dynamic model of the sys-

Figure 2.  Weighted cepstral coefficients gener-
ated from seven distinct utterances of the sound 

“aa”.  

Figure 3.  A possible architecture of a Neural Net-
work (feedforward MLP) 
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tem, which takes into account the way in which the sys-
tem changes from one state to the next. While feedfor-
ward networks are useful for static data, the importance 
of recurrent networks lies within their ability to deal with 
dynamic and time-changing data. 

3.2 Elman networks 
In this paper, we used the Elman network [2,3,4], which 
is a special kind of a recurrent network. The Elman net-
work, originally developed for speech recognition, is a 
two-layer network in which the hidden layer is recurrent. 
The inputs to the hidden layer are the present inputs and 
the outputs of the hidden layer which are saved from the 
previous time-step in buffers called context units. 
Hence, the outputs of the Elman network are functions of 
the present state, the previous state (as supplied by the 
context units) and the present inputs. This means that 
when the network is shown a set of inputs, it can learn to 
give the appropriate outputs in the context of the previ-
ous states of the network.  
The advantage of Elman networks over fully recurrent 
networks is that back propagation is used to train the 
network while this is not possible with other recurrent 
networks where the training algorithms are more com-
plex and therefore slower. 
In our SR system, we used a 24-10-1 Elman network. 
This network can be seen in Figure 4. 

 
 
3.3 System architecture and training ap-

proach 
Our SR system is modular, i.e. for each word in the vo-
cabulary set, there is a separate Elman network. Modular-
ity adopts a “divide-and-conquer” approach by dividing 
the complex problem at hand into many smaller and sim-
pler problems [6]. 
The vocabulary set used is composed of 6 Arabic words: 
“manzel” (house), “hirra” (cat), “chajara” (tree), “tariq” 
(road), “ghinaa” (singing), “zeina” (zeina). 
The function of each network is to recognize its dedi-
cated word only and to reject other words. This is why 

the training is divided into two steps: consistent training 
and discriminative training. 
Consistent training is exposing the network to different 
utterances of the dedicated word, associated with linear 
targets with positive slope (as seen in Figure 5). Twelve 
utterances were obtained from each of four female 
speakers in a relatively clean environment. 

 
 
 
On the other hand, discriminative training is exposing the 
network to utterances other than that of the dedicated 
word, associated with linear targets with negative slopes 
(as seen in Figure 6). One utterance per word was ob-
tained from each of four female speakers in a relatively 
clean environment. 

 
 
 
Hence, the training set of each network is composed of 
48 consistent training utterances and 20 discriminative 
training utterances.  
The training algorithm used is back-propagation with 
momentum and variable learning rate. Consistent training 
was performed after discriminative training because re-
current networks inherently “remember” the most recent 
training utterance applied to it. 

Figure 4.  Architecture of an Elman Network 
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Figure 5.  Outputs and target for the dedicated 
word “manzel” on its network 

Figure 6.  Outputs and target for the word “zeina” 
on the network dedicated to “manzel”



After each training pass (100 epochs), the network is 
simulated on a validation set composed of 40 new utter-
ances of the dedicated word and 80 new utterances from 
the remaining 5 words. The output obtained from the 
simulation of the network for an utterance is a non-linear 
curve. The decision-making criterion is the slope of the 
line obtained from the linear fitting of this curve.  
The classification of an utterance, other than the dedi-
cated word, is based on the comparison of its resulting 
slope s with the minimum slope sm among the slopes ob-
tained from all the utterances of the dedicated word.  
• If s > sm, then a classification error results because 

the network confused the tested utterance with the 
dedicated word. 

•  If s < sm, no classification error occurred. 
If the number of classification errors, i.e. the misclassi-
fied utterances of a word, is greater than a given thresh-
old (taken to be 5), the network is retrained for the 
“worst-offender” (i.e. the utterance that resulted in the 
greatest slope) and for two consistent utterances selected 
randomly. 
This iterative procedure is a variation of the “cloning” 
approach introduced by Al-Alaoui et al. in [1]. It con-
verges to a network with a minimal number of classifica-
tion errors. 
After obtaining the six optimal networks, they are inte-
grated into the final SR system. 
When the SR system is exposed to any utterance of the 
vocabulary set, each network is simulated with this utter-
ance. The network that results in the maximum slope is 
elected as the network of the resulting word. 

4 RESULTS 
The speech recognizer described in this paper was fully 
implemented in MATLAB, and was subjected to several 
test inputs. The obtained results are summarized in Table 
2. 
Sp.1, Sp.2, Sp.3 and Sp.4 are female speakers who pro-
vided the utterances for the training phase. They tested 
the system in moderate background noise. 
Sp.5 is a female speaker whose utterances weren’t used 
in the training phase. She tested the system in a relatively 
clean environment. 
Sp.6 is a male speaker who tested the system in a rela-
tively clean environment. 
 
 
 
 
 
 
 
 

Table 2. Recognition rate for different speakers in 
different environments 

 Manzel Hirra Chajara Tariq Ghinaa Zeina 
Sp.1 100% 90% 97% 99% 97% 95% 
Sp.2 97% 97% 99% 99% 98% 98% 
Sp.3 100% 90% 98% 99% 92% 98% 
Sp.4 100% 95% 98% 99% 95% 97% 
Sp.5 100% 95% 98% 98% 96% 97% 
Sp.6 92% 85% 89% 91% 86% 87% 

 
As can be seen from these results, the approach that we 
adopted gave promising recognition rates that can match, 
if not compete, with the ones usually obtained by HMM-
based approaches. 

ACKNOWLEGMENTS 
We would like to thank Mr. Rony Ferzli and Mr. Mesrob 
Ohannessian for their constant help and support. 
Our work would have been very difficult if it were not 
for the facilities provided to us by the American Univer-
sity of Beirut. 

REFERENCES 
[1] Al-Alaoui, M.A., Mouci, R., Mansour M.M., Ferzli, 

R., A Cloning Approach to Classifier Training, IEEE 
Transactions on Systems, Man and Cybernetics – 
Part A: Systems and Humans, vol.32, no.6, pp.746-
752, (2002) 

[2] Gurney, K., An Introduction to Neural Networks, 
UCL Press, University of Sheffield (1997). 

[3] Morgan, D. and Scolfield, C., Neural Networks and 
Speech Processing,  Kluwer Academic Publishers 
(1991). 

[4] Picton, P. Neural Networks, Palgrave, NY (2000) 
[5] Rabiner, L. and Juang, B. -H., Fundamentals of 

Speech Recognition, PTR Prentice Hall, San Fran-
cisco, NJ (1993). 

[6] Tan Lee, P. C. Ching, L.W. Chan, Isolated Word 
Recognition Using Modular Recurrent Neural Net-
works, Pattern Recognition, vol. 31, no. 6, pp. 751-
760 (1998) 

 
 
 

 

 


