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Abstract. This paper concerns essential, practical problem in automatic anima-
tion human-like figures with the support of informatics technologies connected with
motion capture domain. The main problem we want to solve is partition set of prim-
itive motions into appropriate groups according to similarity between motions. Up
to now, experiments in systems of this kind, appeared be not too adequate to needs.
In this situation, we had been faced with the necessity of creating new methods
for supporting process of managing motion data. We construct motion models to
easier extract features of given motions. Using these models we propose measure of
discrepancy between motions. It shows how two motions are similar to each other,
normalizes length of motions and decreases high dimension of considered motion
data, so clustering may take place in dimensionally reduced space.

Keywords: dynamic time warping, motion capture, computer animation, motion
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1 Introduction

Currently a motion capture technique [7] is very willingly used for creation of
realistic human-like figures animations. There are two most often used types
of this technique. In the first case reflective markers are fixed on joints of
alive actor and the motion of markers is tracked. In the latter case magnetic
sensors are fixed on actor joints. These sensors are tracking disturbances of
magnetic field during motion. In order to achieve realistic animation there
is recorded motion of each human joint. This causes that it is necessary to
describe motion with a large set of data. Such data are hard to process in some
fields of applications. This problem is especially visible in use of multimedia
databases. Managing the tremendous amounts of data is often supported by
clustering and classification methods. It is not easy to find such methods for
motion sequences.

In our approach we try to solve this problem. In consecutive sections we
describe problems and propose solutions that make up the method of mo-
tions clustering and classification. At the beginning of article, we describe
motion representation that is most appropriate to methods used by us. Next
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we show the method of motions standardization and definition of distance
measure. We base on classic DTW and extend DDTW [2] method with spe-
cific for our purposes discrepancy measure. Using distance measure and mo-
tion standardization, we describe clustering based on classical Agglomerative
Clustering algorithm [4,6,5]. We also describe motion classification relying
on probabilistic generic motion models defined by us. At the end we indicate
proposed application of our solutions.

2 Motion Representations

We utilize several motion representations, for different levels of abstraction. A
motion is a time-varying function which provides the configuration of an ar-
ticulated figure at a time. Input representation is an original motion capture
sequence; it is represented as Raw Data Model (RDM). We denote a RDM
by m(t) = (po(t), do(t)s 1 (1), - ., 4z ()T, where p(t) € R® and qu(t) € B?
describe the translational and rotational motion of the root segment!, and
¢:(t) € R3 gives the rotational motion of the i** joint for 1 < i < L.
From RDM we extract shorter Primitive Motions (PM). Their main fea-
ture is that they are uniform. For each Primitive Motion, we generate Spe-
cific Model (SM) as a Timmer splines parameters calculated according to
RDM data. We denote SM as s(m) = (si1(m), sa(m),...,su(m))T, where
M is a number of SM parameters, and s; € R3. Specific Model is used by
clustering algorithm. For every motion group a probabilistic Generic Model
(GM) is evaluated. GM is a set of parameters described by Gaussian distri-
butions over parameters of Specific Models of particular group. From these
distributions new PM’s can be generated (which haven’t been provided as
motion capture files). Fig. 1 shows the process of determining various motion
representations. More detailed description of each model is described in [13].

/SM .
srs L e Lmnd

Raw Data Spline Curves Gaussian

distributions
g o

Fig. 1. Motion representations transformation process

! root segment - the most important joint in the human skeleton (base joint)
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3 Motion Comparison and Standardization

Our motion sequences are represented as sets of time series. Several pattern
matching techniques, able to deal with time sequential data, have been ap-
plied to match movement patterns: Dynamic Time Warping [3,8], Hidden
Markov Models [9,12], Artificial Neural Networks [10].

We have chosen classic DTW approach as a tool to match motion se-
quences; it is conceptually simple and effective, allowing sufficient flexibility
in time-alignment between test and reference motion sequence. Articulated
objects such as human figures are usually represented as rotation hierarchies
parameterized by a whole-body translation, a whole-body rotation, and a
set of joint angles. Here motion is described by a set of motion curves, each
giving the values of one of the model parameters as function of time. Using
DTW we are able to solve two problems:

— find measure of discrepancy between two motion sequences,
— normalize motion sequences in the number of frames regarded.

In our case, time warping is applied in the discrete time domain to register the
corresponding motion parameter signals such as joint angles. We warp each
motion curve independently, so we can consider just a single curve Q 4(t).2
It represents movement of one joint for specified degree of freedom. Hereafter
we call it time series. This definition goes for our motion sequences, because
each of them is a set of motion curves at the specified period of time. The
number of frames constraints include a set of (Q; 4[¢], t[i]) pairs each giving
the value @ 4 at the specified time ¢. Thanks to it each motion curve may
be represented as an identical length time series. For two motion sequences
comparison we must warp independently each corresponding time series Q1
and C 5.

In the description concerning DTW we use some text and definitions
from Keogh and Pazzani [1,2] whom we gratefully acknowledge. To match
two motion sequences we use an n-by-m matrix, where the element (4, j) of
the matrix contains the distance d(q q[i], c1,a[j]) between two points g 4[7]
and ¢; 4[7]. Each warping path W is given by mapping between Q; 4 and Cy 4:

W =wi,wa,...,wk max(m,n) <K <m+n-—1 (1)

Optimal solution is specified by :

DTW(Qu,4,Cra) = mm{ EK: d(ql}d[im],cl}d[jm])} = mz’n{ zK:wk} (2)

m=0 k=1

? where: [ € {1...L}, L - number of joints, d € {x,y, 2} - degree of freedom
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3.1 Improved Distance Measurement

Each joint in motion sequence is defined as a set of time functions for specified
degrees of freedom. To determine number of elements of all functions to be
equal, we carry out normalization to the number of considered motion frames.
Discrete value sequences obtained in that way, are useful as elements to com-
pare motion sequences together. Moreover there are computed derivatives for
each frame.

From previous sections we know that motion recognition is based upon
the comparison of corresponding joints in two motion sequences. To do it
well we have to find specified distance measure, making use of this in motion
sequences comparison process. We use d(qm[i], cl,d[j]) to denote the distance
between i** and j* frame of two corresponding joints to be compared. Any
function that meets the above properties is a legitimate metric on the el-
ements space. Standard Euclidean metric is good to compare single points
but not appropriate here, where time series are compared. To find measure,
that gives consideration to adjacent values of time series, and is sensitive on
the local changes among time series elements, we have extended Keogh and
Pazzani’s [2] measure. It is now composed of two components:

1. Euclidean distance between two points ¢ 4[¢] and ¢; 4[4],
2. square of the difference of the estimated derivatives of g 4[] and ¢; 4[7].

The first part gives information about offset between points to be compared.
The second part adds the “intelligence” to the entire measure. Thanks to
this we are able to deal with situations where examinated sequences are not
different enough. We use the following method for estimating derivative from
joint data:

_ @il — q@ali — 1]
t[i] — tli — 1]

=qalt] —qali—1], 1<i<n

(3)
This estimate is the slope of the line through the point ¢ 4[i] and its left
neighbor. Note the estimate is not defined for the first element of the sequence.
Instead we use the estimate of the second element.
On the basis of above equations we have created new measure. The full
definition of this measure is

b = e (0 e - Dufaatt]) 0

This equation doesn’t meet all conditions concerning distance measure, so we
called it measure of discrepancy between elements g 4[i] and ¢; 4[j].

The weak point of standard DTW is that it only considers data points on
Y-axis value. Keogh and Pazzani’s DDTW algorithm [2] takes into consider-
ation a derivative of the signal. We base on it and propose two components

D, [QI,d[i]}

tli]—t[i—1]=1
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extension naming it Value-Derivative Dynamic Time Warping (VDDTW).
VDDTW’s computational cost is similar to DTW, just as is the case with
DDTW: ?"DDTW’s time complexity is O(mn), which is the same as standard
DTW” [2].

(@ (b)

Fig. 2. Examples of some experimental datasets: a) the alignment produced by
classic DTW b) the alignment produced by VDDTW

3.2 Extention VDDTW to Entire Motion Sequence

As we know the previous discussion referred to the single joint comparison for
specified degree of freedom. This is only a small element of the whole motion
sequence. Our skeleton is made up of eighteen joints, so this comparison
operation must be applied to each joint separately, taking into consideration
existing degrees of freedom. The full motion warping algorithm is shown
below:
REQUIRE motion sequence A, motion sequence B
ENSURE All warping cost, Warped Sequence
for each existing joint

for each existing degree of freedom

TmpCost < Least Warping Cost; TmpMotion < Reverse Warped Path

end for

AllCost <= AllCost+TmpCost; update NewMotion using TmpMotion
end for
As an output we get whole cost used to warp motion sequence B into motion
sequence A. Additionally this algorithm produces Warped Sequence of motion
B (Bw ) which have a length of motion A. This case requires explanation. The
question is, how to get Warped Sequence of motion B? During the warping
motion B into motion A three cases are distinguished:

1. substitution - 1:1 correspondence of successive samples;
2. deletion - multiple samples of B map to a sample of A;
3. insertion - a sample of B maps to multiple samples of A.

Of course cases discussed above concern process of single joint warping in
the range of the whole motion sequences. For the following explanations,
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we assume that signal @) represents joint from motion B and signal C' rep-
resents joint from motion A. We can say that signal Q is warped into C,
and the warped signal is denoted by Qw. Then if ¢ q[i] and ¢ q4[j] are

related by substitution it follows that g, qw[j] = @ .q[i]- In case of a dele-
tion, where multiple samples of Q, (qiali], q.ali + 1],...,q.ali + k]), corre-
spond to one ¢ 4[j], qrawli] = mean(q.qafi], qr,ali + 1], ..., q q[¢ + k]). Fi-
nally, an insertion implies that one sample of @, ¢ q[i], maps to multiple
samples of C, (¢;,q[j],cralf + 1, .., cralj + k]). In this case, the values for
qi.aw 3], @.aw[j +1], - .., @ aw [j + k] are determined by calculating a Timmer

cubic B-spline distribution around the original value g 4[i].

Presented algorithm is applied in this work to normalize length of motions
(Warped motion) and as a measure of discrepancy (All warping cost) used for
motion clustering. Measure of discrepancy between motion m; and mgy (using
specific models of these motions) we denote as d(s(ml), s(m2)). Total time
complexity is strictly dependent on joint number (L) and length of motion
sequences A and B(respectively m and n). It is about O(|L|-|m|-|n|) or after
reduction of the searching space O(|L| - |n| - |K|), where delimiter K < 7.

4  Clustering and Classification

Clustering of motions capture sequences is not simple unless the distance
measures and standardization of motions are well defined. Since when we
have these mechanisms based on VDDTW the clustering algorithm itself
is similar to other domains clustering methods. However we define a few
specific elements that are necessary for the next classification and future use
of clustered motions set. It concerns especially the clustering representation
relied on probabilistic generic models.

The main goal of clustering is partition of primitive motions into appro-
priate clusters. It should be done according to similarity between motions.
This similarity is identified with distance between motions® defined in pre-
vious section. The less distance between two motions the more similar these
motions are. We have to require clustering process to divide motions set in
proper way. Motions of one cluster should be similar and motions of different
clusters should be dissimilar to each other. Beside the motions partition, we
also need certain description of each cluster. The set of all clusters descrip-
tions is called clustering representation. Division of motions set into clusters
and clustering representation we treat as main tasks of clustering process.

4.1 Cluster Finding

The method we use to partition set of motions is classical Agglomerative
Clustering algorithm. Disadvantage of this method is high time complexity.

3 in a sense of measure of discrepancy
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It has an impact on the fact that in every step we have to check all possi-
ble partition spaces. Solution like this is not always acceptable, especially in
real time animation domain. The advantage is certainty that we find global
optimal solution in respect of criterion of acceptance. Suppose we have mo-
tions set - R, that contains N primitive motions (mg, ..., my). Actual set of
groups from R set we denote as X. The number of motions in any group G;
is denoted as N;. In the first step we set number of groups equal to number
of motions. Initially every motion m,, from set R belongs to separate group
G; in set X, where n,i € [1..N], N; = 1. In the consecutive steps of cluster-
ing algorithm, adjacent groups are merged into new larger group. We break
algorithm when stop condition is satisfied. In a single step two most adjacent
groups are merged so we have to define distance between these groups. It
is based on internal average discrepancy between primitive motions in the
group. This is not pure distance measure but hereafter we call it distance for
clarity. Average internal discrepancy in a group G; is equal to average from
all possible discrepancies § as we can compute between all primitive motions
in this group:

0; = average({(s(ma), s(ms)) | ma,my, € Gi, a # b}) (5)

Distance D12 between two groups G and Gs is defined as discrepancy 019
between all primitive motions in new merged group G; UG2. We compute dis-
tance matrix M that contains distances between all currently existing groups.
Matrix M is symmetrical (D13 = Da1), so we have to calculate distance only
K 22’ K times®. On the base of matrix M we can choose two most adjacent
groups for merge. These are groups G; and G for which the distance D;; is
the least. We break algorithm when in the given step distance D;; is greater
than maximal acceptable distance of merge D, qz:

Dij>Dmam Vi,jG(l,...,K) (6)

4.2 Generic Model for Group of Primitive Motions

Clustering algorithm gives partitioning, of motion set R into groups. To ef-
fective utilize the partition it is important to define appropriate clustering
representation. These are appropriate descriptions of groups. In this case for
every group G; from set X we calculate exactly one probabilistic description.
It is formulated as a set of gaussian distributions. These distributions are cal-
culated over each parameter of specific model among all primitive motions in
given group. All probabilistic distributions for given group are encapsulated
in parametric model of this group named generic model. In the Fig. 3 we can
see dependencies between specific motions models in the given group and
generic model for this group. Parameters s;, are description for consecutive

4 K - actual number of groups in the set X
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frames, where [l € (1,..., M) and M is the number of parameters of specific
models s,,,. For each of parameter s; we evaluate Gaussian distribution over
values of these parameters for all primitive motions in the given group. This
distribution is denoted in generic model as two parameters: average av; and
variance vy:

av; = NL > osi(mn), w= Nil— 1 > [simn) —av]  (7)

" mn€G; m, €G;

For given specific motion model s can be evaluated function of probability

s(m1) s(mz2) B s(mni) B g(mi)
s1(my1) s1(mz2) S1(MNi) —p —_ | avi v
S2(m1) s2(mz) S2(MNi) —— / \ —> | av2 V2
si(m1) ®e s(mz) ®ee® s5(Mn) —> —> avi v
sm(my) sm(mz2) sm(mni) —» —> | avy wm

\/\/\/

Group of motions Gi Gaussian Generic model
(specific models) distributions of group Gi

Fig. 3. Evaluation of probabilistic generic models

density for known parameter s; according to distribution of generic model

GMl )
1 [si1(m) — av]
gia(s1(m)) = \/mexp{ _ #} (8)

So far we did not say about problem of different primitive motions length.
In effect number of parameters M in specific models may differ between par-
ticular motions. In that case, it is difficult to compute the number of generic
model parameters. We need the method of normalization all specific motions
in a given group into the same number of parameters. We are finding pro-
totypes for every group. It is similar to Oates method [6]. Prototype T; is
the most typical motion in the given group. This motion minimizes average
of discrepancy with all the rest members of group G;. In consecutive step,
we normalize all specific motions from the group using VDDTW algorithm.
Specific model of typical motion in the group is used as template signal in
VDDTW algorithm. As a result of this operation, we get a set of specific
motions in the same number of parameters. Thanks to this, it is possible to
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compute Gaussian distributions over values of primitive motions parameters.
Generic model for the group is evaluated on the base of set of normalized spe-
cific motions. Specific models of the rest motions in the group are normalized
into the lengths of specific model of typical motion.

4.3 Motion Classification

We can treat the generic model as the probabilistic generator of specific mod-
els (specific models of primitive motions that haven’t been delivered in input
motions set). We assume that all primitive motions that belong to one group
are generated by the same generic model. We can also assume that every mo-
tion in primitive motions domain is generated by exactly one generic model.
The main application of generic model is classification of motions that are
outside the input motions set, into appropriate groups. To perform classi-
fication we have to choose GM that probably generates considered motion.
Likelihood that given generic model GM; generates motion m may be treated
like similarity of motion m to the group connected with GM;:

M
0i(s(m)) = P(Gi) [ [ wigi(s:(m)) 9)
=1

The argument of above similarity function is specific model of motion m.
Weight w; is related with the joint that is described by parameter s; of specific
model for motion m. Component g; ; is probability density for parameter s;
in the group G;. Component P(G;) describes likelihood of situation that
any primitive motion belongs to the group G; (it has been generated by
GM;). This likelihood can be given apriori or can take into consideration
relative probability of this group in motions set. Because of limited set R in
regards to all primitive motions space, in this classification algorithm each
group has the same likelihood P(G;) = % Before we compute measure 6 we
must normalize given primitive motion m according to the specific motion of
typical motion 7;. To do it we utilize VDDTW algorithm. Finally primitive
motion is classified into the group G; for which similarity measure Gl(s(m))
reaches maximal value. Classification equation is given as follows:

h(s(m)) = Jnemax [0:(s(m))] (10)

4.4 Conclusions

This paper presented preliminary results of an experimental study of algo-
rithm for human motions organization. In particular our method comprise
full motion models definitions [13], algorithms of comparison and clustering
of primitive motions. We did not say about problem of motions segmentation
(extraction uniform motions in any motions sequences). This is very impor-
tant, because it has an influence of the accuracy of our clustering algorithm.
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Our main goal is to expand this ideas onto automatic animation domain. The
main application of presented methods is automatic motion synthesis in tools
for creation realistic animations of human like figures. We were testing these
algorithms on a small training set of motions. It is hard to prove efficiency of
this method because it is still developed.
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