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1 Introduction

This report contains a summary of several strategies used in building an
isolated-word speech recognition system. The acoustics of each word is
modeled as a Gaussian mixture, continuous density hidden Markov model
(CDHMM). The speech database used, called ISOLET [1], consists of 7800
spoken English letters, two productions of each letter by 150 speakers. The
database is organized into five equal subsets, (ISOLET-1, ISOLET-2, ISOLET-
3, ISOLET-/ and ISOLET-5). For the purposes of training only the first
production of each letter from ISOLET 1-4 was used and for evaluating the
strategies all data in ISOLET-5 was used. To instantiate the strategies the
HTK HMM toolkit [3] was used.

This report is organized as follows: Section 2 describes the grammar
used in all experiments, Section 3 considers modeling whole word HMMs
(i.e., one HMM per word), Section 4 considers modeling the language as the
concatenation of sub-word models, where the basic units are the individual
sounds of the language called phones and Section 5 provides a discussion of
the results of each of the experiments.

2 Grammar

The goal of the system was to build an isolated English letter speech recog-
nition system. The grammar used for all experiments consisted of 26 paths
between start and end nodes, where each path contained a letter from the
English alphabet see (Fig. 1). In addition, for each of the experiments (ex-
cept for the experiment detailed in section 3.1) a silence state was added to
the beginning and the end of each path. This was done to explicitly model
the silence portions present in the ISOLET speech signals (see [1] for details).

3 Word-based modeling

In the following subsections a summary of two approaches for word-based
HMM modeling will be given. The first approach considered in subsection
3.1 considers the entire speech signal as the pronunciation of the letter (i.e.,
silence included). The second approach detailed in subsection 3.2 considers
each speech signal as consisting of a letter preceded and proceeded by an
approximately equal silence interval (roughly 80 milliseconds [1]).
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Figure 1: Grammar. Depicted is the general grammar used in all experi-

ments. Note that the experiment detailed in subsection 3.1 omits the usage
of sil (i.e., silence node).

3.1 Non-silence model

The first experiment consisted of modeling each of the speech signals (i.e.,
letter pronunciations) as an HMM. The grammar for this experiment is de-
picted in Fig. 1, where the sil nodes are omitted. By not explicitly modeling
the silence transitions results in considering the silence portions as part the
pronunciation of the speech signals. One would expect that more states
would be required to successfully model each letter compared to the situa-
tion where the silence was modeled separately as done in subsection 3.2; the
experimental results affirm this hypothesis, see Table 2. The rest of this sub-
section summarizes the training, evaluation and the formatting of the output
results for this experiment; see Fig. 2 for a summary of the HTK processing
stages.



Hinit —» HRest —® HVite —®{ HResults

Figure 2: Depicted is a summary of the HTK processing stages for isolated
word training (i.e., HInit and HRest), recognizer evaluation (i.e., HVite) and
formatted result output (i.e., HResults).

To initialize the parameters of the HMM models HInit was first used. The
basic principle behind HInit considers the HMM as a generator of speech
observations. If the states that generated each of the observations in the
training data were known, then the means and variances of the observation
distributions for each state could be estimated. The realization of this prin-
ciple (i.e., HInit) is done by first uniformly segmenting the training data and
associating each successive segment with each successive state. Next, Viterbi
segmentation is used to find the most probable sequence of states for all the
data. Following the segmentation, the HMM parameters are re-estimated.
The Viterbi segmentation and parameter re-estimation steps are iterated un-
til the parameters have converged (for more details see section 8.2 in [3]).
For the problem at hand, each HMM model was initialized by considering
only its corresponding training data (e.g., using only training data for speech
signal A for HMM model A).

To complete the estimation of the HMM models, the tool HRest was
used. HRest takes the initialized models of HInit as input and outputs the
final estimates of each model. The principles and operations behind the two
tools are very similar in that they try to find an assignment of the data to the
HMM states in an iterative fashion. The main difference is that through the
use of Viterbi training HInit makes a hard decision in the state assignment of
each observation, whereas HRest uses Baum-Welch to make a soft decision for
the assignment (for the mathematical details see [3] section 8.2 and [2]). As
with HInit, the estimation of each of models are done using its corresponding
data.

Following the estimation step is the recognition step. For the recognition
step the HVite utility was used. HVite takes as input a recognition network
and a set of transcribed testing data! and outputs classifications for the
respective data. The recognition network consists of a word-level network
(see Fig. 1), a dictionary, and a set of trained HMMs. To arrive at the

'For this project the transcriptions were taken directly from the filenames of the data.



classification HVite uses the Viterbi algorithm to find the path (i.e., letter in
the current context) in the recognition network with the largest probability.

The final step consisted of formatting the output of HVite using the
HResults tool. For the purposes of this project the evaluation of each system’s
performance was based on the global percentage correct (% Correct), defined
as,

H
% Correct = v X 100 (1)

where H is the number of correctly classified test cases and N is the total
number of test cases. In addition, HResults has the ability to output a
confusion matrix?. This feature proved helpful in isolating problematic cases
(see section 4 for more details).

3.2 Silence model

In the previous subsection the silence present in the speech signal was im-
plicitly modeled by the HMM representing each letter. The next experiment
consisted of extending the previous strategy by adding silence nodes before
and after the pronunciation of each letter (see Fig. 1). The silence node
was treated as a separate word in the dictionary and thus modeled by an
HMM. A consequence of the extension is that the training phase introduced
in subsection 3.1 was replaced by embedded training. This subsection sum-
marizes the training step. For a pictorial summary of the all the steps for
this experiment see Fig. 3.

To initialize the parameters HCompV was first used. The basic strategy
implemented by HCompV is to make all models equal initially and move
straight to embedded training. This is accomplished by equating the local
mean and variance parameters of the Gaussians of each state to the global
mean and variance. Unlike HInit this approach does not require labeled
training data.

To complete the estimation of the HMM models, the HERest tool was
used. In short, HERest performs a single iteration of Baum-Welch re-estimation
of the whole set of HMM models simultaneously. For each piece of training

2A confusion matrix is a matrix containing information about the actual and predicted
classes. Each cell in the matrix represents the number of elements classified as class m
when the actual class was n. The diagonal of the matrix represents the correctly classified
elements.



¥

HCompV |—®| HERest —® HVite —® HResults

Figure 3: Depicted is a summary of the HTK processing stages for embedded
training (i.e., HCompV and iterated HERest), recognizer evaluation (i.e.,
HVite) and formatted result output (i.e., HResults).

data, the corresponding phone models are concatenated and the forward-
backward algorithm is used to collect state occupancy statistics, mean and
variance statistics. When all the training data has been processed, the sta-
tistics are collected and the model parameters are re-estimated. This process
was iterated five times (as suggested in class) to avoid over fitting to the
training data.

4 Phoneme-based modeling

In this section a brief summary of two experiments using phoneme-based
word models will be given. The motivation for the phonemic representations
was the observation that a subset of the letters that shared an elemental
sound were being confused (i.e., prominent when viewing results using a
confusion matrix), for example the letters B and V. With the phonemic
models the hope was that the elemental sounds (i.e., phones) would be better
modeled due to the data sharing in the embedded training phase and thus
improve overall classification.

The steps used for the phonemic-modeling approach are almost exactly as
those detailed in subsection 3.2 and summarized in Fig. 3. The exception is
that the dictionary of the language contained the phonemic transcriptions of
each of the letters as given in Table 1. The transcriptions for all letters were
arrived at by using the British English BEEP pronouncing dictionary?®; with
the exception of the letter Z since ISOLET follows the American pronun-
ciation. The results of this experiment (see discussion in section 5) looked
promising except for the letters A and E. These letters only contain one
phoneme and were being confused in cases where their respective phoneme
was a constituent of another word. The confusion may be a result of impre-

3 Available by anonymous ftp from:
svr-ftp.eng.cam.ac.uk /pub/comp.speech /dictionaries/beep.tar.gz.



’ Letter ‘ Phones H Letter ‘ Phones

A ey O ow
B b iy P p iy
C s iy Q ky uw
D d iy R aar
E iy S eh s
F eh f T t iy
G jh iy U y uw
H ey ch Vv v iy
I ay W dahblyuw
J jh ey X eh k s
K k ey Y w ay
L ehl Z z iy
M eh m | SILENT sil
N eh n

Table 1: Listed are the phonemic transcriptions for each of the letters of
the English alphabet (plus a transcription for silence) used for the phoneme
models.

cise segmentation of the data and/or co-articulation effects. To address this
issue the second phoneme experiment replaced the phone transcription of the
letters A and E with distinct phones. The idea was that only the training
data for the letters A and E would contribute to the training of these models
and thus would be modeled better.

5 Discussion

In this section a short summary and discussion of the experimental evaluation
is given.

Performance was measured by using the percent correct measure given in
Eq. (1). To find the best percent correct score various combinations of the
number of HMM states, the number of mixtures and the degrees of freedom of
the covariance matrix (i.e., diagonal vs. full) were investigated. For the word
based model, the number of states € [1,...,10] and the number of mixtures
€ [1,...,10]. For the phone models, the number of states was fixed to 3 (as
suggested in class and in [3]) and the number of mixtures € [1,...,10]. All



experiments used the first production of each letter from ISOLET 1-4 for
training and all the data in ISOLET-5 for testing.

The top result for each of the strategies is summarized in Table 2. As can
be seen the best result was 98.44% obtained by using the Phone Model 2,
where the covariance matrix was full. Interestingly, in [1] the authors report
that the best performance they achieve using the same subset of data for
training and testing as presented here was 95%.

Further improvements may be had by using the gender information pro-
vided in the ISOLET data set to improve trained models. This would be
accomplished by building separate models for male and female speakers.
Additionally, leveraging the georgraphical information of the speakers may
improve results.

References

[1] R. Cole, Y. Muthusamy, and M. Fanty. The ISOLET spoken letter database.
Technical report, Dept. Comp. Sci., Oregon Graduate Institute, Nov. 1994.

[2] L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. In Proceedings of the IEEE, volume 77, pages 257-286,
Feb 1989.

[3] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland.
The HTK Book. Microsoft Corp., 3.1 edition, July 2000.



‘f UOIJ09S UL POUI[INO [ JIPOJY 2UOYJ JO UOISUDIXD O} 0} SIOJAI [T [9POJY dUOYJ PUR F UOIII0S
Ul POUI[INo pur T d[qe], Ul UoAls uonduosuer) ouoyd o) Sursn juowLIodxo o) 03 SIOJAIL [ (9POJ dUoYJ ‘7€
UOL)09SANS 0} SIOJAIL [T JOPOJA PLOAL ‘T°¢ UOIDDSUNS Ul POZIIRWIWINS JUOWILIOAX0 oY) 0} SIOJRI [ 19POJA PLOM
SI9H "Pajonpuod sjustuLedxe Imoj oY) 10} (9dA) 90URLIRAOD PUR SIINIXIW JO ISUINU ‘S9)e)S JO IoquInu *o°T)
stojetrered Surdueduoooe o) UM (1001100 O 1se3Ie[ 9'T) SHMSAI o[} Jo ATewrwns & st paidlda(] :g 9[qR],

ot € Y786 ot € 79°96 ot € 8L°L6 (028 € 1676
6 € Y786 6 € 79°96 6 € 8L°L6 6 € 1676
8 € Y786 8 € 79°96 8 € 8L°L6 8 € 1676
L € Y786 L € 79°66 L € 8L°L6 L € 1676
9 € Y786 9 € ¥9°96 9 € 8L°L6 9 € 1676
g € Y786 g € ¥9°66 g € 8L°L6 g € 1676
14 € ¥v°'86 4 € ¥9°96 14 € 8L°L6 14 € 1676
€ € Y786 € € ¥9°66 € € 8L°L6 € € 1676
4 € ¥¥°'86 4 € 79°66 4 € 8L°L6 4 € 16'76
T € ¥¥°'86 T € 79°66 T € 8L'L6 T € 16°¥6
SOINIXIIN JO sojelg Jo SOINIXIJN JO sejel}g Jo SOINIXIIN JO sejelg Jo S9INIXIN JO sojelg Jo
Joquun N Joquun N 3091107y w& Joquun N Joquun N }09.1107) ﬁxv Joquuin N Joquun N }09.1I07) Axu Joquun N Joquuin N 1091107 nxu
2duRLIBRAOD) 2d0UuRLIBRAOD 20UurRLIBRAOD) 20UurRLIBRAO)
ng [euoserq ng [euoserq
11 1PPON 2uoyd 1 1?PON 2uoyd
(028 4 ¥8°L6 ot L G096
6 4 ¥8°L6 6 L G096
8 14 ¥8°L6 8 L G096
L 14 ¥8°L6 L L G096
9 14 78'L6 9 L G096
g 14 78°L6 g L G096
14 v 78°L6 4 L G096
€ 4 78°L6 € L G096
4 14 78'L6 [4 L G096
T 14 78'L6 T L 096 4 9 ¥9°96 € 8 cv'v6
SOINIXTIN JO sojelg Jo SOINIXIN JO soje}g jo SOINIXTIN JO sojelg Jo SOINIXIIN JO soje)g jo
Ioquin N IoquIn N 1091100 IoquIn N IoquIn N 4091100 Ioquin N IoquIn N 10991100 %, Ioquun N Ioquun N 1001100 %,
2ouURIIRAOD) 90URLIBRAOD) 90URLIBRAOD) 90URLIBRAOD)
e reuoSer JILLE reuosSer(y
11 12PON PLOM 1 1°PON PLoM




