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Abstrakt

Práca sa zapodieva problémom definovania, riešena a hl’adana konfliktov medzi závislos-

t’ami v balíčku, a to najmä pre package manager-y pre programovacie jazyky, konkrétne

najmä pre Javascript v prostredí Node.js. Udávame prehl’ad existujúcimi metódami a prob-

lémami ktoré sa v nich vyskytujú. Ďalej navrhujeme nový model pre zdiel’ané závislosti,

formálne ho definujeme, ukážeme oblasti v ktorých zlepšuje súčasný stav a tiež jeho spätnú

kompatibilitu so súčasným modelom peer závislostí, používanom v NPM a Node.js. Naviac

prezentujeme VPM (stiahnutel’né z https://github.com/vacuumlabs/vpm) - package

manager pracujúci s nami definovaným modelom, ktorý navyše ponúka lepšie výkonnostné

výsledky ako NPM. Nakoniec ukazujeme možnot’ použitia simulovaného žíhania na riešenie

konfliktov pri zdiel’aných závislostiach.

K ’lúčové slová: package manager, zdiel’ané závislosti, súkromné závislosti, Node.js, NPM,

simulované žíhanie
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Abstract

We explore the problem of defining, resolving and determining conflicts on package de-

pendencies, primarily focusing on a package manager for a programming language (more

specifically the Node.js environment). We provide a rundown of previous approaches along

with the problems they bring. We propose a new model of shared dependencies called public

dependencies, define it formally, show the areas in which it improved on the existing solu-

tions, as well as prove it’s backwards compatibility with currently popular model in Node.js

community, that is the one using peer dependencies. Additionally, we propose a package

manager (located here: https://github.com/vacuumlabs/vpm) which works with this

concept, in addition to being offering better performance than the currently most popular

alternative. Finally, we show the use of simulated annealing as a possible way of resolving

conflicting dependencies.

Keywords: package manager, shared dependencies, private dependencies, Node.js, NPM,

simulated annealing
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Chapter 1

Introduction

1.1 Preface

We can safely proclaim that the era we live in is the age of information. This is meant

both in the context of value that is today associated with every form of raw data (as anyone

working with analytics and big data can attest to), and on the other hand, in the ease that the

publicly available information can be accessed. This accessibility is true for literally every

area of expertise we can think of, and naturally, even truer when talking about the science

discipline which brought on the information revolution itself - that being informatics, and in

a narrower sense, computer programming.

With thousands of lines of code and programming knowledge shared every minute, it is

only logical that many of the programmers (the author included), when faced with a problem

that isn’t hyper-specific to the task or a project they are working on, will turn to the Internet

for solutions. We may be talking about smaller code chunks, like the at the moment infamous

left-pad, for which people might argue that the only reason for not writing them on their

own is laziness. Or, we can talk about complex libraries whose implementation is simply

not feasible within the bounds of time available for the project, or that aren’t within the

area of expertise of the programmer at hand (and really, if we’re to take the example to the

extreme, you shouldn’t be required to write a secure database server solution every time

you’re creating a web application).

Either way, a need for a method of easy code sharing arises, and not only to ease the

installation of a more elaborate solutions for our programs. We could argue that the DRY

(“don’t repeat yourself”) principle, which is well known by the programming community,

can be expanded to include the whole universe of code on the Internet - in a sense that it’s

useless to “reinvent the wheel”, even for a function with just a few lines of code, if there is

1



CHAPTER 1. INTRODUCTION 2

already a tried-and-true variant shared on the web. This also promotes readability - when

a library does a single, well defined task across multiple application, a developer that is

familiar with it can instantly know it’s purpose seeing it again in other context, in contrast

with seeing a custom method doing the same job, but written by a different programmer (and

in worse case, having unpredictable side effects).

Last but not least, there is the other side to the benefits of an easy and unified way of code

sharing, the one of code reusability and the view of someone writing a would-be package

function. Again, there is a need for a simple tool allowing us to export our library into the

world, so that we can later include it without carrying a collection of files across multiple

repositories. Later, when bug-fixes, modifications or additional functionality is needed, we

have a well separated bundle instead of a set of broken copies, all of which would need to be

rewritten.

Of course, the solution to many of the aforementioned problems lies in the concept of

openly available libraries (packages, modules or simply a bundles of functions, methods,

classes or lines of code in general). Still, libraries on their own don’t deal with the problem

of ease of their accessibility. Every (reasonably advanced) Windows user knows the pain

of hunting the Internet for missing .dll files, where adding one only triggers an error of

two more that are still required. And of course, as the title suggest, the big solution we’re

building up for is in the concept of Package managers - yet, the trouble does not end there.

1.2 Package managers and dependencies

With package managers, the accessibility of even smaller, user written libraries increases

greatly. Despite the fact that they come in many different flavours and may encompass a wide

array of additional functions, often related to the setting they operate in, the core idea behind

them is to rid the programmers of the burden of finding modules on the Internet, installing

them manually and later, maintaining them (which mostly means simply updating to a newer

version). Thus, we should establish that by package manager, we refer to a tool that allows

us to (as a bare minimum), firstly, easily find a package of given name, provided that it has

access to some kind of package repository, and secondly, install it, so that we can use the

package (often within our desired version range) with as little further tinkering as possible.

Also, a way to bump a certain package version should be at hand, in case it is available and

satisfies the provided constrains within the dependency tree (more on this later).
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With a tool like this at hand, it is only natural that when the need for larger and more com-

plicated packages appears, we want to reuse some of the code already available in different

modules, ideally getting it via the given package manager. And as we had said in the pre-

vious section, in most cases this need existed even before a package manager for the given

setting was conceived (the only exception being environments which had dedicated package

managers from their very beginning). Such action creates the concept of nested dependen-

cies - by which we will mean the situation, where for package A that you require for you

project also needs packages B and C to function properly (this should not to be confused

with nested vs. flat package structure, discussion on which will be brought up later). Ideally,

we would want our package manager to handle this for us - in our example, we only care

about package A and it working properly, the fact it needs two other libraries to run may

often stay completely obfuscated from us. If we were to adhere to the principle we have set

in the previous article - installing working packages with minimal further tinkering on our

side, we would expect our package manager to simply install B and C and not to bother us

anymore. Yet, this is where the design philosophies of many package managers differ, and

for good reason. What if this is not possible ? What if there are multiple possibilities, some

of which are valid, some that are not, and some that are valid in the current situation but will

make installation of the next required package impossible. As the dependency tree grows

larger, more and more of these problems arise - and although it is hard, if not nigh impossi-

ble to provide a definitive answer, the focus of this paper is primarily in trying to solve some

of the given issues, and in building a concept which would prevent the emerging of some

problems all together. We will also show in our managers run down that in this regard, the

ostrich principle of doing nothing and leaving it all to the user is the most common choice -

we believe this should not be the only option, and that some of the (valuable) development

time, currently spent on resolving dependencies, could be saved using well known heuristics.

If we were to take a higher-level look on the issues that arise within current generation of

package managers, you could maybe write off some of the discussion as a purely semantic

jabber (i.e. when talking about peer dependencies and whether specifying a need for a “peer”

is something that should exist within the world of nested dependencies) Still, anyone who

ever needed to work or maintain a large and presumably also an old project, understands

the need for the codebase and relations within it to, in a layman terms, make sense. Some

other may be more environment - or language - specific. You may need to avoid importing

the same package twice, or having different versions of it across the project because of the

conflicting namespaces it would create.
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There is also the question of the degree of freedom that the writers of libraries should be

given - mainly in the fact of making assumptions about the environment their library will be

run in, along with assumptions about other already installed dependencies (again, the concept

of peer dependencies comes to mind). Summing up all of these, the big question lies in the

dispute between private and public dependency model (and their variants and combinations)

and we believe that in the Javascript and Node.js module environment, we can provide a

model that is in our opinion superior to the one that is used now.



Chapter 2

Terminology

Let us first define the terms and vocabulary that will be used throughout this paper. This

section should serve just as an informal rundown, some of the terms mentioned here will

be brought up again in the following chapter within a more formal context and definitions.

Though the vocabulary is largely established within the programming community, and we

will try not to deviate from the settled terminology, we still offer this brief list just in case.

Package - may also be called a module or an library, a set of functions or classes that

performs a well defined, enclosed task. It does so on it’s own unless we’re talking

about a plugin.

Plugin - a special kind of package that works in synergy with a different one or changes the

behaviour of a different package, thus requiring it to work.

Dependency - a term used to describe a package that is required either by our own code or

by a different package for it to work properly (or at all), although in most situations

and environments the program we’re writing is also considered a package or module,

making the former and the latter option essentially the same thing.

Dependency tree - describes the dependencies of a certain program or module and the

relations between them. Note that circular dependencies (i.e. package A requiring B

requiring C which requires A again is an example of a circular dependency of length 3),

despite being uncommon, is something that does happen within the context of package

managers. This means that the dependency “tree” may in general take the form of a

general directed graph - but we’ll still use the term dependency tree since it’s well

established (and sounds better than “directed dependency graph”).

Private dependency - a dependency that is used only by the package that required it and is

not shared within the dependency tree.

5
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Shared dependency - a dependency required by two or more packages within the depen-

dency tree. More specifically, we’re talking about the situation where the given pack-

ages are sharing the exact same files (or functions or classes), in contrast with using

two copies of the same module in certain version - the latter still being considered a

situation with two separate private dependencies.

Package manager - in general, describes a program meant to resolve the dependency tree

given a certain recipe to do so. The amount of pro-activity doing this varies largely

between different managers and environments.



Chapter 3

Hardness of shared dependencies
problem

Let us first reason about rationale behind the topic of this paper. We will establish the

fact that the problem of automatic dependency resolution is a hard one to solve (at least

when talking about the general case of the dependency tree being in no way constrained).

This in turn means, firstly, that providing the programmers with a set of tools which make

it easier from him (or for a software tool which he uses) to reason about the dependency

hierarchy and the potential problems which may appear within it is essential. We attempt

to help with this issue by providing a design that models shared dependencies in a novel

way, that hopefully provides more insight into the way the package APIs are exported from

one module to another. Secondly, since it also signifies that no reasonable deterministic way

of solving this problem exists, we provide a heuristic approach for finding the solution in a

plausible time frame. But before we get to that, allow us to present the proof of this hardness

itself.

3.1 Resolvability of a dependency tree

The NP complexity class covers a set of decision problems for which exists a non - de-

terministic algorithm that runs in polynomial time.[17] Within it resides the NP-complete

subclass. If a problem is said to be NP-complete, any other problem which belongs to the

NP complexity class is reducible to it in polynomial time. We will show that the decision

problem of whether a given set of dependencies is installable (without any conflicts) is NP-

complete, and thus creating an algorithm that is guaranteed to find a correct answer to this

question in general case (and on current hardware with a reasonable amount of time) is rather

unlikely. The formal proof we present is a slightly modified version of the one in [18], trans-

formed to better fit the setting of Node.js packages. Other works proving this theorem exist

7
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[19], yet the one we have chosen is a better starting point for our version of the proof, since,

similarly to NPM’s package system, it does not deal with package negation (one package

telling us we can not install it alongside other). The only constraint for installation comes

from two different instances of a same package needing to agree on a single version.

Theorem 3.1. Deciding the resolvability of a Node.js package is NP-complete.

By resolvability of a package we mean the feasibility of installing all of it’s dependencies

(and their dependencies, and so on...) without a single conflict. We will prove this by reduc-

tion of 3SAT to this problem. Since 3SAT is known to be NP-complete and the reduction

will be polynomial, it will prove the NP-completeness of out own problem.

Definition 3.1. 3SAT is the problem of deciding whether a formula in a 3 conjunctive normal

form is satisfiable, that is, if there is a valuation of variables appearing in it’s clauses, such

that the entire formula evaluates as true.

The 3CNF looks as follows:

(x1,1 ∨ x1,2 ∨ x1,3) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧ ... ∧ (xn,1 ∨ xn,2 ∨ xn,3)

Where each literal xi, j is given the value of either vk or ¬vk from the set of variables V .

Each variable can appear multiple time in the formula, whether it is with or without negation.

Let us now define define our package repository in a fashion similar to the one in [18]. All

of the dependencies in this repository will be shared across the whole dependency tree. For

each variale vi we create two package - Pi
1 and Pi

2, the former representing vi, the latter ¬vi.

Throughout this section, the superscripts will mark distinct packages, while the subscript

represent the version of said package. Despite the standard for Node.js modules is to use

Semantic versioning (more on that later), we will omit the minor and patch versions for legi-

bility. Additionally, we will define another kind of packages, that are going to represent each

of the clause as a whole. For each clause (with an index) j, a package C j in three different

versions will exist in the repository - each one requiring a single package, representing the

variable given to one of the literals in the clause. That is for a clause j of the form:

(vk ∨ ¬vl ∨ ¬vm) j

C j
1 will depend on P1

1, C j
2 on P2

2 and C j
3 on P3

2. Finally, we define a package representing

the whole formula F, which depends on all of the ‘clause’ packages C1 . . .Cn, each one in

any of it’s version.
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Theorem 3.2. The package F as we have defined it is resolvable if and only if the said 3CNF

formula is satisfiable.

Proof.

⇒ If the package is resolvable, the formula is satisfiable. Since we know all the de-

pendencies of F are satisfied, we can state that for each package C j, a single version was

resolved. This version specifies which variable within the CNF clause was evaluated as true.

From this we can conclude that each clause within the 3SAT problem formulation contains

at least a single literal evaluated a true, and therefore every clause, as well as the formula as a

whole is satisfiable. Since we have defined our package as resolved only when no conflicting

versions are selected to be installed, and dependecies are shared across the whole hierarchy,

we can be sure that the situation where a single variable would need to be true and false at

the same time cannot arise.

⇐ If the formula is satisfiable, the package is resolvable. From the previous set of defi-

nitions, we can be sure that each package P and C will be present in only a single version -

thus avoiding conflicts. The resolvability requires us to satisfy every package C - for one of

them to be omitted, a clause of the form (¬x j,1∨¬x j,2∨¬x j,3) j (that is, the literals themselves

evaluating as false, not the variables having a negative value) would have to exist, which

would cause the whole CNF formula to be unsatisfiable.

�

By this, we have also proven the original theorem, of the problem being NP-complete. �



Chapter 4

Package managers

In this section, we’ll go through the list of currently available package managers, for

both Node.js (or Javascript in general) packages and package or module systems in other

languages or environments. We’ll be particularly interested in a way that they handle shared

dependencies. Naturally, those that deal with both private and shared ones and are thus

closest to our line of work will also be the ones we take the closest look at. On the other

hand, managers which enforce a single package version across the whole dependency tree

essentially model the borderline situation of making every dependency public in our own

mixed model, that will be presented later in this paper.

4.1 Operating System package managers (GNU / Linux)

By the sheer nature of the way the packages tend to build on one another, the outset of

package managers can be tracked within the FOSS (which stands for Free and Open-source

Software) community. More specifically dpkg, which is considered to be one of the earliest

examples of a package management software, emerged as a part of the Debian project. While

it did not feature any form of automatic dependency resolution at the time of it’s inception, it

is also regarded as the first one with widely known tool for such process, in the form of APT

(Advanced Packaging Tool).

In the words of Ian Murdock, one of the creators of the Debian Linux distribution, the

concept of package management is the biggest advancement that Linux has bought to the

computer industry. [3]. Murdock was also one of the original creators of dpkg, although the

package has been rewritten by numerous programmers since then. While system packages

are different by their very nature from the libraries for a programming language or environ-

ment (such as the target of our endeavor - Node.js and Javascript), the package managers

created to handle them deal with the very same problem we have defined earlier - that is, the

10



CHAPTER 4. PACKAGE MANAGERS 11

dependency graph represents essentially a general satisfiability problem, with the domain of

available packages being way too large to explore as a whole. Thus, the same kind of diffi-

culties arises during the dependency resolution. In fact, due to the sheer size of some of the

system repositories, and the lengthy period for which some of the packages present in them

are maintained (some may very well have 20 or more years already), these problems may be

even more severe. Thus, we can maybe observe that even the package managers and their

approach towards the dependency tree resolution might be, if we are to say so, more mature.

We will focus on Linux-based operating systems, since package managers on different

OSes are mostly either much simpler in their way of resolving dependencies - that is, they

often do not do so at all, or are ports of Linux managers or managers strongly inspired by

ones available for Linux. By the first of the options we mean mostly the various kinds of App

stores or other distribution platforms, which are, strictly speaking, also a form of package

managers (albeit, the apps or packages in them rarely have any decentralized dependencies -

those which aren’t already expected to be a part of the OS itself).

Packages on Linux systems are usually distributed in one of the two de-facto standard for-

mat - either DEB or RPM. While .deb is essentially a tar archive with additional metadata,

.rpm is an ad-hoc binary format designed specifically for this purpose [1]. The most im-

portant fields of metadata specified by both of these formats are (besides the obvious - name

of the package and it’s version) the dependencies of a given package, conflicts - packages

which can’t be installed alongside of the one being currently installed, and then also the so

called pre-dependencies - packages that need to be installed before the installation of our

package beings (as opposed to regular dependencies which can be deployed on the system

concurrently with it’s installation). For all intents and purposes of this paper, we do not need

to go into any further specification of either of them, we will just note that from the following

list APT uses the .deb format (probably along with OPIUM, since it’s comparison tests are

ran against APT, despite this fact not being mentioned in OPIUM’s research), while ZYpp,

YUM, DNF use the RPM package format.

4.1.1 APT

Advanced Packaging Tool is probably the most high-profile package manager, whether it

is because of functionality or simply as a result of being the primary package manager of

Debian and Debian-based Ubuntu (which is currently the most wide-spread Linux distribu-

tion). As mentioned before, it works with the .deb package format, though flavours that run

with .rpm exist. APT has two modes of operation - the immediate and the interactive mode.
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The former offers a fast way to solve most dependency problems, while the latter allows for

user input to provide feedback to the resolver and thus, guide it towards the correct solution.

The immediate mode is essentially a bruteforce algorithm - the manager will list through

the dependencies attempt to install each of the packages there - or check if it is already

installed, or whether it’s already satisfied as a suggestion (suggestions are not installed if

another package with the same suggestion in same version is already installed). If such

package is not available, or is conflicting within the current setup, it will attempt to install

the highest-priority (an optional field for .deb packages - can be Required, Important, Stan-

dard, Optional, Extra, in order of decreasing priority value) package whose candidate version

provides the target of the current alternative [2]. When even this option fails, it looks for al-

ternatives specified within the package dependencies (as a disjunction of packages which

may replace each other). If any of the previous step succeeds, the algorithm will be called

recursively on the newly installed package’s dependencies.

As it tends to be with most bruteforce algorithms in various programming applications,

the immediate mode provides a good baseline but is in no way a complete solution to a

wide array of situations which may happen during the resolution algorithm. Therefore APT

provides users with the aforementioned interactive mode, where they may manually choose

the dependencies they want to install along with their versions. This approach, while no

doubt functional, is far from being user friendly.

4.1.2 OPIUM

Optimal Package Install/Uninstall Manager can be considered more of a science project,

or a proof-of-concept of a research paper [4]. It uses off-the-shelf SAT solvers in conjunc-

tion ILP solvers to resolve the dependency tree prior to proceeding with installation. OPIUM

claims to be complete, in the sense that if a solution exists, it is guaranteed to find it. In addi-

tion, it optimizes the cost of this solution (the number of installed or uninstalled packages) -

this comes as a natural requirement, since otherwise a “trivial” strategy of uninstalling every

package on a system to make sure it does not conflict with the new installation would pro-

vide a valid solution. Still, the use of generic SAT solvers, while sufficient, have proven to be

maybe the greatest holdback of this project - meaning they might not have been quite suit-

able for the problem at hand. More precisely, heuristics used in said general solvers, whether

the ones solving satisfiability or those computing integer linear programming (which is used

specifically in the case where uninstalling certain packages was needed to proceed) have

shown to be not all that appropriate for the hierarchies yielded by package repositories. This

was addressed in the next package manager on this list.
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4.1.3 ZYpp

In the words of OPIUM’s creators - “Opium runs fast enough to be usable” [4]. The natural

step forward while maintaining the idea of using SAT solver to resolve the dependency tree

prior to the package installation itself, is to use a solver dedicated to the task of solving the

package hierarchies. This was realized in ZYpp (or previously libzypp), a Novell sponsored

package manager for openSUSE and other SUSE Linux distributions, used in many of the

core packages that this distribution is known for (like YaST)[5]. In contrast with OPIUM,

while both are built upon the same idea, ZYpp was the one built for production purposes. It

is also worth noting that at the moment of writing this paper, the DNF (Dandified YUM),

which is the default package manager for Fedora distribution starting from version 22, uses

the libsolv solver library from ZYpp.

4.1.4 Other

The other, currently fairly large package managers that did not make it on this list (because

of reasons usually related to the fact that their resolution algorithm was not interesting to us)

are as follows. Yum, which has just been replaced on Fedora and is still the main package

manager for CentOS, and is considered by the community to be broken and obsolete, with

documentation either missing or being cryptic.[7][8]. Pacman, the package manager of Arch-

Linux, using it’s own binary package format. There is also the briefly mentioned DNF that

uses the resolve algorithm of ZYpp. And finally Portage, that again uses a SAT solver with

custom heuristics [10], which is an approach already talked about in ZYpp’s section.

4.2 Note on difference between system and programming

language packages

Citing from OPIUM’s paper [4] once more - the three problems a package manager for

Linux/GNU packages is trying to solve are:

Install Problem - determine if a new package can be installed and, if so, determine how

Minimum Install Problem - determine the optimal way to install a new package, where

optimality is determined by an objective function whose value is to be minimized.

Uninstall Problem - given a new package to install, determine the minimal number of

packages (possibly none) that must be removed from the system in order to make the

package installable
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This is different to our situation within the Node.js environment. That is, despite the title

of this section, the discussed differences may perhaps be applicable only in the context of

Javascript modules, since that is our target platform and the point of our interest.

The only time we are essentially solving the uninstall problem is with two conflicting

versions of a same package. In a way, we are only upgrading or degrading a single package.

Although this may lead to change of it’s dependencies and some packages becoming no

longer needed, they (the “obsolete” ones) in no way interfere with the installation of the

new package - even if a public dependency which might disrupt the new installation exists

among them, it will no longer be used and therefore has no effect. In fact, we can view the

uninstall problem simply as the removal of needless modules. Yet, we can look at the install

and minimum install problems in basically the same way.

There is also the notion of pre-dependencies being specified in both the .deb and .rpm

formats. As noted in the Debian documentation: Pre-Depends should be used sparingly,

preferably only by packages whose premature upgrade or installation would hamper the

ability of the system to continue with any upgrade that might be in progress. [9] This option

is not really needed in the context of Javascript modules, since their configuration or any

kind of interaction between the dependencies happens only at runtime.

4.3 Programming environment package managers

“It is a truth universally acknowledged that a programming language must be in want of

a package manager.” (as paraphrased from [6]) And indeed, we can say that the want is so

prevalent that it tends to materializes in the form of multiple package managers for a single

language. Critics of this practice call for a possibility of centralization - using one package

manager across multiple languages, yet, as the communities of distinct environments stay

relatively separated, principles of each manager are different and conventions move at dif-

ferent paces and often in different directions, we are left with a specific set of tools for each

language for at least the next couple of years.

We will be talking about “environments” more so than “programming languages”, to cover

instances such as Bower or .NET framework, which span across a few of those, or something

like Node.js, which may be viewed as a subset of Javascripts habitat. Albeit, in most cases

they will be used as synonyms, referring to the language itself, and whatever system of

libraries (modules, packages... ) it supports.
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4.3.1 Semantic versioning

A brief note on semantic versioning before we move on to examples. As we were talking

about different conventions, semver is perhaps the one actually being adopted by multiple

separate programming communities and package managers. It is a standard that dictates the

way a package developer should change the version of a package, which itself is of a format

MAJOR.MINOR.PATCH, according to the following set of rules[12]:

MAJOR version when making incompatible API changes

MINOR version when adding functionality in a backwards-compatible manner

PATCH version when making backwards-compatible bug fixes

Semver is most prominent in the NPM community, though the other high-profile package

manager pushing it is Ruby’s Bundler.

Despite the (short) documentation of the standard opening with claims of it helping with

the so-called “dependency hell”[12], and we do not wish to challenge these claims, from

our perspective, that is of someone being concerned primary about automatic dependency

resolution, it is not of much use at all. The semver documentation specifically states that it

has no intention of documenting the changes in dependencies - meaning that a patch version

is free to remove every dependency that the package had since it inception as well as replace

them with a completely new set, whilst still adhearing to the standard which semver has set.

All in all, this means that while humans can use the information provided by it to instantly

know how far can they push with upgrades before their application starts to break (provided

that everything works as intended), package managers are still left in the dark in terms of

knowing which version changes the dependencies or how severe this change is.

We should mention that we reference semver both in the implementation, as well as in the

formalization chapter - this is mostly to make use of the semantic version ranges - a standard

through which a set of compatible versions of a dependency is defined (which is all that we

need to specify for the purposes of this paper, more details can again be found in [12]).

4.3.2 Pip

As it is with many of the names given by the programming community, PIP is also a re-

cursive acronym, which can stand for either “Pip Installs Packages” or “Pip Installs Python”.

That is, PIP serves as a package manager in the Python universe, working in conjunction

with Python Package Index to find and download the desired modules.
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It’s hard to talk about any kind of dependency resolution within pip - essentially all is

left upon the user. Pip has a straightforward way of installing packages which goes as

follows[16]:

Listing 4.1 The PIP resolution algorithm

for top-level requirements:

a. only one spec allowed per project, regardless of conflicts

otherwise a "double requirement" exception

b. they override sub-dependency requirements.

for sub-dependencies

a. first found, wins (where the order is breadth first)

This issue has been open at least since Jun of 2013 and does not look to be resolved any

time soon. Note that python itself does not support multiple versions of the same module

- since they are not being namespaced, they would collide under the global scope. Here,

everything related to dependency resolution is left up to the programmer.

4.3.3 Bundler

Bundler is the primary package manager for ruby applications - or in the community’s

lingo, it is a “gem to manage gems” (gems are ruby’s packages). In a fashion similar to

python, ruby does not really support having multiple versions of the same package available

as dependencies to different ones (since there is no module system akin to the one in node.js

that would attempt to resolve the package within it’s namespace).

As far as the resolve algorithm goes, Bundler have actually changed it’s resolver back-

end just in march of this year - previously, it used a custom one, presently the Molinillo

resolver from CocoaPods (a package manager for Cocoa) has took it’s place. Yet, both of

said resolvers take essentially a common approach to to the problem - the one of backtrack-

ing the dependencies in case of conflict, with Molinillo having the advantage of performing

a lookahead.

That is, at heart, both of the algorithms mark gems as prepared for installation greedily,

and once a conflict emerges, they try to recursively solve the problem. Note that this means
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that Bundler, unlike for example NPM, performs a separate precomputation step on required

dependencies (and tries to solve the conflicts) before continuing with the install step.

Let us perhaps briefly address the criticism that tends to be leveled against NPM in com-

parison with Bundler - the latter having a better reputation of installing what is needed with-

out the need of developer intervention. The algorithm Bundler uses for automatic resolution

might be problematic to use in Node.js’s package format environment. First of, this is in

part due to the nature of the structure of packages - or how careful they need to be with their

requirements. Without the ability to add multiple versions of a single package to the same

program, the authors of the gems, if they want them to be used by as many people as possi-

ble, need to ensure they do not require any gem that locks them out of a spectrum of projects

for which it would conflict. Secondly, there is the structure of the dependency tree itself -

with Bundler’s being flat, the recursion on it is also shallower than it may be in a comparably

large Node.js project.

4.3.4 Other

As state earlier, numerous package managers exists for many of the very large list of

languages that have became popular over the years. There are also those which are not nec-

essarily constrained to a single language, like Bower, that manages the “front-end” web page

dependencies, from Javascript to CSS related plugins. It has a flat structure of dependencies

and offers an interactive mode for users to resolve conflicts on their own.

Then there is NuGet, the package manager for the Microsoft development platform in-

cluding .net framework. It does not support multiple versions of the same package and again

uses a set of heuristics to choose a correct one in case of conflicts (using either the nearest,

lowest possible or highest possible version, depending on the package version definition and

circumstances). Or from the set of language specific ones, we have Cabal, a manager for

Haskell, for which a special term of Cabal Hell has been introduced - and naturally, it also

does not feature conflict resolution. This list can go on for quite a while, but we can already

see the general pattern of how this problem is being handled.

4.3.5 Node.js

As the title of this paper suggests, we will be most interested in package managers set to

work within the Node.js environment. At the time of writing this paper, and to our knowl-

edge, there are two such package managers available - NPM being the obvious one and also
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the one that is production ready (and used in production every day by thousands of program-

mers around the globe), with ied being more akin to a small experiment, taking on a different

approach (and not yet working for general cases).

NPM

While we are going to compare, and often criticize the approach of NPM in relation to

our own proposed model, we really think that Node Package Manager was a step in the right

direction. The focus on private dependencies, separated from the outside world is perhaps

what allowed the developer to have much more freedom with what tools and packages they

will use in their projects. One may say that this additional degree of freedom is what lead

a lot of people to perceive NPM as being prone to errors and inconsistencies. When in fact,

if a different architecture of module dependencies, or a philosophy of one of the previously

mentioned package managers (like Bundler) was in place, many of the ready-to-use packages

would not be even feasible to install on the given setup. Or, at minimum, the developers of

these package would have to work much harder to keep their package compatible with the

highest available version of their dependency, so that this version may be shared across the

whole project.

We could also speculate that it was this freedom that made NPM or maybe perhaps Node.js

as popular as it is today. The growth rate of NPM’s repository is also currently unmatched

(4.1), though if we were to take a more cynical look at this fact, the amount of modules

which are a wild ideas at best, and unusable thrash at worst, is also non-trivial.

The process of handling shared dependencies, in the NPM’s form of peer dependencies,

is described in detail throughout the following chapters of this paper. NPM on it’s own has

no form of conflict resolution, it’s philosophy being more in their prevention via their nested

model. We are trying to improve on both of those points.

ied

The smaller, experimental cousin of NPM within the Node.js world (this time, the acronym

itself has no particular meaning, if we were to take a wild guess, then it was probably one of

the fewer three letter names still available to be used in node’s package registry). While the

original purpose of this project was simply to implement the NPMv2’s installation algorithm

in as few lines as possible, it has later come to improve on some of the aspects of NPM.

Probably the main feature of ied, and the way it stands out the most in comparison to

NPM, is it’s way of addressing the installed package by their content - in that, two packages
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Figure 4.1: The number of modules in node’s and other environments package repositories.

are considered to be the same if and only if they don’t differ in what they consist of (with

the exception of SHA1 - which is used to decide this - having a collision). Following this,

it installs the packages flatly while using symbolic links to recreate the required dependency

hierarchy. In addition it offers some quality of life (as opposed to the previous ones being

more conceptual) changes, like correct caching or atomic and concurrent installations (with

NPM still having trouble with at least the first two of these points).

Still, it does not offer any kind of dependency resolution - in fact, it does not differentiate

between the users definition of the package type (whether it s a private or a peer dependency),

and installs everything as public by default, as long as it is possible. It also does not support

packages referenced via a git URL.

4.4 Discussion on current models

4.4.1 Conflict resolution

As we have seen, the package managers with most advanced - and most “complete” in the

sense of resolving the hierarchy when possible - conflict resolutions algorithms are typically

the ones which handle installation of system dependencies. With programming language

related managers, there tends to be a more of an utilitarian approach - since the simpler, more

bruteforce way of handling things (maybe with a couple of heuristics which were shown to

work) seems to get the job done in most cases, the completeness is traded perhaps for speed

- running a SAT solver is no small task - or predictability - as something like SAT solver may

change the . Still, we believe that there is a place for a package manager that, albeit slower,
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provides better guarantees on ending up with a resolved dependency tree without any human

involvement. Few extra minutes of processor time are certainly cheaper and less valuable

then an hour of developers time, and that is not even accounting for the shortening of his

lifespan caused by the stress of manual dependency resolution.

4.4.2 The need for shared dependencies

First of let us establish that we will be talking about shared dependencies in the sense of

two packages requiring to agree on a same version on one of more of their dependencies (and

in some cases also the need to agree on its subdependencies), in contrast with two packages

linking to the same package installed on the disk - although the former may often imply the

latter, the opposite implication is much rarer (at least in the world of Node.js).

Although it might not have been all that evident from the previous rundown, there are two

primary problems which cause all the package dependency conflicts to emerge. The first one

is caused by the constraint on language or environment, which can import only one version

of a package at time. There is not much that can be done about that, at least from a point of

view of the authors of the package managers. The second one are shared dependencies - or

in some of the cases, even the complete lack of private dependency option. Once you have a

package which locks a version of a dependency for the whole system, it is only a matter of

time until the given conflict arises.

On the other hand - while you can, in theory, work with shared dependencies only, it is not

possible to do the same with private ones. The reason are plugins, or packages that augment

the functionality of different ones in general. With these, you need a way to specify the exact

version of cooperating package - or, so to say, what should the plugin plug into. Without

such option, there may be unforeseen consequences resulting from an incorrect plugging.

Therefore, even if NPM tries to enforce private dependencies as much as it can, conflicts

from it using peer dependencies (which is it’s way of solving this need, since as we had said,

they had to have one) still arise.
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Public dependencies

We will now present our suggested model for shared package dependency resolution. Our

primary motivation behind it is to provide a concept that provides the user with a semantically

sound way of defining dependencies based on their role in the hierarchy, while guaranteeing

that any possible problems or conflicts are immediately detected. Additionally, as we would

like to implement this within the Node.js environment, we would like to maintain backwards

compatibility with the peer-dependency based model of NPM.

The reason we are not simply setting for peer dependencies, is that we believe the concept

itself is fundamentally flawed. In our opinion, each package should be self contained, and we

feel that dependencies required for the execution of said package being told to be installed

outside of it break containment. Additionally, as we will later show, there are some cases

with peer dependencies that we think should result in conflicts, yet in the peer model, they

pass as trouble-less hierarchies.

5.1 Definition

We shall recognize the ‘outside’ entities, supplied by the programmer or the environment

and the ‘inside’ ones, constructed within the model itself using the outside information.

These supplied - input - constructs are, first and foremost, the package definition within the

package.json itself, along with it’s private and public dependencies. These are all taken

from a form of a universe of packages, which should be the first item we will define.

Definition 5.1. Repository is a finite set of packages R = {pkg1 . . . pkgn}

We may be talking about a repository in it’s narrower sense as NPM public registry, but

for the sake of generality we will mostly mean ‘every package on the Internet’, whether

21
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accessible trough some kind of registry or simply stored on Github, or maybe even just

‘every package that exists’. Following, we will define packages as:

Definition 5.2. Package is an ordered quintuple (N,V, prv, pub) where N is the name of

the package, V is it’s (Semantic) version, prv is set of all of it’s private dependencies and

pub a set of all of it’s public dependencies. These dependencies are each of the form

(package_name, semver_range).

If some version v satisfies a given semantic range semver, we will write it as v . semver.

We can see that each of the dependencies defined within the package.json essentially

describes a set of packages having the same name, and satisfying the required semver range.

We will use this to define the dependency function:

Definition 5.3. Dependency is a function on package name pkgName and version range

semver such that D(pkgName, semver) = {pkg | pkg ∈ R, pkg = (n, v, prv, pub), n =

name, v . semver}

With the last definition, we have essentially passed the threshold between the input and

output constructions. When talking about the latter concept, we will mean the ones created

by the model itself, as opposed to those defined by the programmer. These are the ones used

in the resolution algorithm, and also the ones that the end user does not necessarily needs

to know. Naturally, they build upon the input ones. Our goal here is to build up a concise,

consistent representation of the dependency hierarchy and define a single source of conflicts

within it.

Definition 5.4. Node is an ordered pair (id, package), package ∈ R, and ∀N1,N2,N1 , N2,

N1 = (id1, p1),N2 = (id2, p2)⇒ id1 , id2.

The id serves as a unique identifier - that is, while we could say that a node is defined

by it’s package and it’s privateImports(N) function (defined further down the line), we will

never be able to draw equality between two different nodes. Nodes will be the basic building

blocks of the dependency tree.

Definition 5.5. Let N = (id, pkg) be a Node such that pkg = (n, v, prv, pub) and pkgName is

name of a package such that (pkgName, semver) ∈ prv∪pub for some version range semver.

Dependency tree is a function T that maps the given N, pkgName such that T (N, pkgName) =

N′, with N′ being some other Node (N′ , N), and moreover N′ = (id′, pkg′) and pkg′ ∈

D(pkgName, semver)
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Or in other words, Dependency tree as we have defined it is a function that lets us tra-

verse our resolved hierarchy, starting from a node given to it as an argument. Note that this

formalization alo implies that for every pair of node and package_name, only a single de-

pendency may exist - that is, we do not allow for a single node (or package) to require the

same package in two different versions.

We will also require a definition of traversal, that stays on the public relations. The

definition is analogous, the only difference being the set prv being omitted as a possible

source for package names.

Definition 5.6. Let N = (id, pkg) be a Node such that pkg = (n, v, prv, pub) and pkgName

is name of a package such that (pkgName, semver) ∈ pub for some version range semver.

Public subtree of a dependency tree T is a function Tp that maps the given N, pkgName such

that Tp(N, pkgName) = N′, with N′ being some other Node (N′ , N), with N′ = (id′, pkg′),

pkg′ ∈ D(pkgName, semver). Additionaly, ∀N,∀name,Tp(N, pkgName) = T (N, pkgName)

The last constraint, along with each node having a unique identifier, ensures that Tp is

indeed a subtree of T , instead of being a different hierarchy all together. We can now use the

last two definitions to define the privateImports(N) and publicExports(N) functions.

Definition 5.7. Given dependency tree T , privateImports(N) is a function that maps a node

N to a set such that privateImport(N) = {A | A is a node,A = N ∨ A ∈
⋃

N′∈T (N){N′} ∪

publicExports(N′)}.

Definition 5.8. Given dependency tree T and it’s public subtree Tp, publicExports(N) is

a function that maps a node N to a set such that privateImport(N) = {A | A is a node,

A = N ∨ N ∈
⋃

N′∈Tp(N) N′ ∪publicExports(N′)}.

Note that the Node itself is always in - it is the minimal dependency constraint that is

exported when the given Node is specified through one of the dependency relations.

A ⊆ publicExports(A) ⊆ privateImports(A)

Now, putting this all together, we have a simple apparatus to detect conflicts within the

hierarchy that is.

Definition 5.9. A conflict in a dependency tree exists ⇐⇒ ∃A, ∃B, ∃N, {A, B} ∈ privateImports(N),

A = (ida, pkga), B = (idb, pkgb), pkga = (namea, versiona, prva, puba),

pkgb = (nameb, versionb, prvb, pubb), namea = nameb ∧ versiona , versionb
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5.2 Concept Overview

In a more general sense, public dependency describes such dependency, whose API may

be accessed by the module requiring the package within which it is defined. Meaning that if

package A depends on package B and exports from it a function, class or in any way provides

direct access to package B, the dependency between the two packages should be defined as

public. Each of these dependencies are inherited along any number of public branches and a

single step along a private branch (explained further in the following section), which creates

an inherited (public) dependency. This dependency class locks a package it represents to

the same version as was the public dependency it originated from - it is not automatically

installed and exists solely to cause (and thus warn about) conflicts in the dependency tree

Inherited dependencies are exported the same way as public ones - apart from this, they

serve exactly the same purpose as peer dependencies do in NPMv3 and higher (before that,

peer dependencies were automatically installed, now they serve mainly as a source of warn-

ings and suggestions). As mentioned before, private dependencies are handled in a way that

is very similar to any other package manager supporting this concept, except for the times

when they play a role in aforementioned public dependency inheritance.

The only way a conflict may arise, is when a package of certain name is contrained to two

different versions on a single node, be it through private, public or inherited dependencies.

5.3 Dependency inheritance

In essence, each public dependency and inherited public dependency is exported in the

direction towards the root (from child to parent) along any number public relations (or

“branches”), becoming an inherited dependency after first such export, and then finally along

a single private branch - from there, it can’t continue, not even using public branches.

The reasoning behind this follows the definition of what it means for dependency when

it is marked as public - that one or more of its functions or classes may be accessed from

it’s parent. Let u first look at the situation with nested public dependencies. Suppose that

package A is a public dependency of B which is in turn a public dependency of C. This

means that there exists a function (or a class) in B that has access to A’s API, and there is

also one that is exported to C. Without any additional information, we can not reasonably

rule out the possibility of this being the same function (or class) - meaning that A’s API is

exported further down into C, despite the fact it never explicitly asked for it.
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Now, if the package C requires another version of A directly - lets call it A’, and again, we

can’t make any assumptions of whether it plans to use the function exported from A through

B (if such function exists), but similarly we can’t rule out the possibility of B existing solely

to augment A’s functionality, and C’s intent to use it in conjunction with some other function

provided by package A’. Therefore, the only reasonable stance we can take in this situation

is to conclude the worst scenario and force both A and A’ to agree on a single version.

Similar situation arises not only for subtrees with purely public relations, but also for a

single level of private branches (thus the reason public dependencies are exported along this

extra step). Let us once more create an example with root package R, this time with two

private dependencies B and C. Both of these specify a public dependency A, let us again

theorize about their version not agreeing, consequently spawning package A as B’s (public)

dependency, and package A’ as C’s dependency. Now again from root’s perspective, both B

and C exports A’s functionality in some way - whether it is a function a class or anything else.

Either way, we are facing a situation where the two entities of possibly different versions (of

the same package) may interact, which can once again yield unpredictable results. Hence,

our best bet is a consent between the versions of A and A’. Expanding the idea for the option

where one dependency is exported along a private branch and the other along a public one

should be trivial.

While this may sound as an additional layer of intricacy, especially if comparing to dif-

ferent approaches within the field. Yet (despite being fans of the KISS principle), we argue

that in this case it is needed and without it, certain problems arise when dealing with nested

public dependencies. Additionally - still in defense of the proposed complexity - we should

keep in mind that with the ostrich based “ignore the problem” approach to handling conflicts

in dependency hierarchies being the most widespread one, we are hardly expected to stay on

the same level of complexity as a method where such complexity is inherently non-existent.

The other, brighter side to the matter is that in a way, when our concept is put in contrast

with peer dependencies, it actually unifies the “source of truth” for required dependencies -

as in, the flow of constrains is always from the child to the parent.

We can say that this form of locking is removing some of the programmers freedom in

exchange for protection from a weird class of hard to track down bugs resulting from mixing

APIs of two different versions of a same package - again, we feel that it isn’t too wise to trust

the package creators to detect this kind of conflicts, since they indeed may appear extremely

rarely. Still, the rarer and more cryptic the bug happens to be, the harder it will be for the

unlucky person who happens to run into it to correctly track it down. The important message
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of this section is, that although the imposed rule may be stricter than might be needed in some

(or maybe even in the majority of) cases, it is still the best that can be done without making

assumptions about installed packages that can’t be programmatically checked. In addition,

the proposed design creates a reasonable safeguard for situations with a large amount of

nested shared, problems with which can be naturally hard to untangle.

A certain detriment which emerges from this behaviour is nevertheless present, and will

be further elaborated upon at the end of the next section, since it is perhaps more closely

related to the matter presented there.

5.4 Self-containment of public dependencies

In our model, we can say that each dependency, whether it is public or private is self-

contained - or in other words - does not assume any information about the outside world.

The dependency stores all the necessary information about packages it needs for it to work

either directly in itself, or inherited from one of it’s subdependencies - yet, still contained

within the subtree of the dependency without polluting the ’global’ scope (even if it is only

the scope of the parent). You always get the full info required for the current package to

install by looking at all of it’s children, and you can be sure there is never an additional

’hidden’ source of such information.

If we were to compare this approach to the one of peer dependencies, this may seem as a

more of a semantic than a functional change - since despite our containment for the current

package we nevertheless export the same constrains to the parent as we would have done

using those. Actually, this is not true and in the next segment we will present a certain set of

situations, which are not handled as conflicts in the peer model in spite of the fact they may

produce an unwanted mix-up of package versions.

While we consider the fact that current setup allows us to comfortably reason about the

needed dependencies - and more importantly, safeguard a wider class of problems - as worthy

of forfeiting some of the simplicity, there is still a severe drawback associated with this

(and in part with the previous) feature, which also has to be recognized when working on a

package manager utilizing our dependency model. Although we indeed gain the ability to

resolve each subtree on its own, with all possible conflicts modeled in the form of children

of our subtrees root, the state of this root itself is now defined not only by the version of a

package it represents, but also by its chosen public dependencies and public subdependencies

- or more importantly, by the ones we export as inherited from our root. Firstly, this means
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that we can have (and in fact may often need) multiple copies of the same package in the same

version installed, each one resolved using (and exporting) different public dependencies.

Secondly, we can no longer choose to use a installed package as a dependency simply based

on it’s version - which implies that the ied package manager based approach of differentiating

packages based on their content (whether we are taking symbolic links into account or not -

the problem may arise at a deeper level) is not available to us anymore.

5.5 Comparison with peer dependencies

Let us begin by stating that almost each kind of resolvable (or unresolvable) dependency

tree modeled using public dependencies can be modeled via peer dependencies, while pre-

serving it’s resolvability. The same is true for the opposite implication - (almost) every

hierarchy using peer dependencies can be rewritten into public ones without changing the

status of it being resolvable. The formal proof of these theses is presented in the appendix.

Here, we instead want to focus on the differences between the two, as well as the occur-

rence in which the said compatibility breaks. We must stress that the case of incompatibility

is a deliberate decision, and it actually highlights one of the problems we have with peer

dependencies.

5.5.1 The difference in resolvability

While modeled to bear close resemblance to peer dependencies in many aspects, there is

a certain case of problems upon which we want our concept to fail, while peer dependencies

view it as passing. It is the case of private dependencies conflicting somewhere in the middle

of a chain of public dependencies, and it is perhaps best explained on an example.

Suppose we have a chain of public or peer dependencies P1...Pn. In the former case, the

public dependencies will create a n-steps deep branch of a dependency tree 5.1, in the later

we will have all the peer dependencies directly on the package upon which this chain was

rooted 5.2. Now let us choose one of these packages as Pi and let it have private dependency

P′j, such that j − i > 1, and P′j is a different version of P j which lies somewhere further

down the chain. This may be a perfectly natural ’real world’ example, since the packages

usually do not know much about each other past the depth of 1. Following the definition

of public dependencies, the API exported by P j can bubble up to Pi, where it clashes with

P j’s. In our model, this situation is correctly handled and a conflict would be triggered, as

the dependency of P j would be exported along every Pk, k < j. On the other hand, in the

peer dependency model the dependency would lie isolated on one of the peer nodes, and

everything would be considered all right - which could be a problem.
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Figure 5.1: Red lines are private dependencies, green are public. A chain of public de-

pendencies A,B,C with an additional private dependency C. The versions of C must agree,

otherwise a conflict arises.

The side effect to this is that we also do not allow for a package to have different version

of dependency defined as both public and private, whereas this could be done with a peer

and a private dependency. Although borderline cases where this could be useful may exists

(think of a ’polyfill’ plugin that exports an API to some older version of a package, but

augments it with functionality from privately required newer version), they are few and far

between and it would thus be unfortunate to forgo the model because of them. Also, a simple

augmentation could be made, where public, non-inherited dependencies do not conflict with

private dependencies - this would be taking on the (bold) assumption, that the writers of

packages know better than to set up direct conflicts in their specifications. Yet, we will not

mention this case further to keep things as legible as possible.

5.5.2 Key points

Now, let us round up the main differences between the public and peer dependency ap-

proaches.

1. Public dependencies are self-contained

As we had already discussed before, what we consider a huge advantage of our

public dependency concept is that all the information necessary for the successful in-

stallation of the whole subtree is stored only in given subtrees root and it’s successors.
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Figure 5.2: The colors are chosen to mirror the hierarchy in 5.1, only with peer dependencies.

This time, the versions of C does not have to agree, which is a problem.

This is in stark contrast with the design of peer dependencies, which need to make

assumptions about the outside world - or maybe even force the outside world to be-

have according to our subtrees idea, for it to successfully install. We believe this is a

bad design decision that makes the dependency tree as a whole harder to reason about,

and maybe more importantly harder to satisfy. In fact, even the community behind the

NPM is perhaps slowly trying to phase out this concept ([23]), as may be already seen

in softening the requirements of peer dependencies in version 3 of NPM.

2. Public dependencies are exported along other public dependencies

Public dependencies ’bubble up’ along the whole public chain, while peer depen-

dencies end up resolved at once on a single node - causing the problems examined in

the previous subsection.

3. Inherited dependencies are not mandatory

Whilst inherited public dependencies directly resemble peer dependencies in many

ways, maybe even more so now in version 3 of NPM, the semantic role between the

two is quite different. Each peer dependency essentialy tells us to ’require a certain

version of a given dependency to be installed on a parent package’ (despite the fact

that avoiding any installed version completely only yields an ignorable error) , while

the condition set by an inherited public dependency is a bit softer - ’make sure that
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if any other dependency for the same package appears on this level, it matches the

version set by the public dependency inherited from’.

Of course, when being compared to NPMv2, the difference is obvious, taking older

NPMs automatic installation into account - although one may argue that in our concept

all of the public dependencies are installed no matter what, which is true and may

be considered a drawback (and once again, is a discussion for the implementation

chapter). Yet, the installed public dependencies are hidden in the ’local’ scope of the

dependency which required it, and are exposed to the outside world (in a way that it

can access it) only when they are explicitly required there.



Chapter 6

Implementation

We will now cover the implementation of our custom package manager, which works with

the concept of public dependencies as we have defined it earlier. We shall provide the list

of features that are presented in it’s current state, the techniques and algorithms we have

used, as well as the libraries (or packages) which helped us with achieving our goal. We

will also get to all the details that were earlier said to be postponed until the implementation

stage. Finally, a section on simulated annealing is present, which covers our proposed way

of resolving conflicting dependencies.

6.1 Vacuum Package Manager

VPM is a package manager for Node.js, designed to provide an alternative for the de-facto

standard package manager at the moment - NPM. You can view it here -

https://github.com/vacuumlabs/vpm - and it’s features are as follows:

Works with packages using either peer or public dependencies (or both) As we have

proven earlier, public dependency model is backwards compatible with the one using peer

dependencies (except for the case where we want the incompatibility to happen, more in the

public dependencies section of this paper). Therefore, our manager immediately works with

all the packages which are set out to work with NPM.

Better security against conflicting shared dependencies using public dependency model
This is related to the situations not handled by peer dependencies, again talked about in the

previous chapters

Parallel and atomic installations Downloading of the packages, their un-taring, and in-

stallation happens in parallel. The linking into the final hierarchy expected by node happens

31
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only once a package is successfully placed within it’s residing directory, so that you do not

end up with partially installed packages if something goes wrong (as it sometimes happens

with NPM).

Installs into flat structure Every installed package can be found directly in the

node_modules subdirectory vpm. No package in the exact same version is installed twice,

unless it is needed because of it’s different public dependency subset. The package depen-

dencies are handled via symbolic links, with the packager required directly by the root being

linked into the node_modules, just like with NPM which installs them there. From the point

of view of Node.js module parser, everything looks as expected. We may even save it a

couple of resolution steps.

Automatic conflict resolution In cases where both NPM and ied would fail with instal-

lation, VPM will try to find a plausible solution and install with it, if it succeed in doing

so

Smaller installations Since we try to reuse already installed packages as much as possible,

and avoid installing the same packages twice, we save a couple of megabytes compared to

NPM

6.2 Libraries used

As was mentioned repeatedly throughout this paper, package managers encourage the

sharing and reuse of code. We have thus leveled the opportunity presented by NPM, and in

this section, present some of the key libraries that helped us shape the project.

babel A transpiler for es6 Javascript code. Essentially, much of the functionality from the

2015 standard is not yet implemented in Node.js - therefore, tools such as babel exist that

translate the code from the newer standard to a one in the older, currently available standard,

while maintaining the same functionality.

js-csp An alternative to callbacks and promises in handling asynchronicity (althought,

since it is still a javascript package, internally the asynchronicity is still done through call-

backs). CSP stands for Communicating Sequential Processes, and is a way of handling the

problem in Go or Clojure (of whose async library js-csp claims to be a “very close port”[24]).

Which, in turn, might have been inspired by something like parallel programming in OC-

CAM.
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lodash One of the go-to algorithm libraries for javascript. Provides you with implementa-

tions of day-to-day programming tasks functionality.

mocha A simple, rather minimalist plugable testing framework. We’ve also used it for

generating and iterating the experiments shown in the results chapter.

semver An NPM package for parsing of semver strings, along with some additional utility

functions (like checking whether a given version satisfies a semver string). We have also used

a couple of additional packages for working with semver ranges, in the spirit of avoiding of

reinventing-the-wheel, when the functionality we needed already existed in the repository.

transducers.js A powerful tool for creating a reusable transformations that work on both

the Javascript collections and CSP channels. Ultimately, we have ended up using only a very

small subset of it’s functionality, in the form of map and filter functions in manipulations of

our data structures.

6.3 Node.js module system

Node.js’s documentation provides a well defined algorithm that node uses to resolve the

modules of an application - or dependencies of a package. It’s module system is actually

responsible for not only finding the files of the dependencies, but also for their loading,

caching and compiling [22] - which we can leave up to it, as it does not really interfere

with what we, as a package manager, are doing. As we are currently concerned primarily

about the packages installed locally and required by their name, we shall skip the part of this

algorithm related to the resolution on system wide packages, or files referenced directly by

their path.

In case of local packages, Node.js first looks into the node_modules directory of the par-

ent of the file from which the require was called. If it does not find the dependency there, it

ascends into the parent directory and looks into the node_modules there. This process is re-

peated until the system’s root folder is reached. Since packages are unlikely to be found out-

side of a node_modules folder, the rest of the directories met during this search are ignored.

Node will also not append node_modules to a path already ending in node_modules[21].

NPM takes advantage of this behaviour, and installs in the highest possible subdirectory

- which is then checked as the module system searches for dependencies from the lowest to

the highest one (of course, the “height” talked about here is referencing the inverse of how
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deep have we descended within the subdirectory structure). Or, to be more precise, does

so in it’s dedupe step, which is run automatically after installation since version 3. On the

other hand, because we are using symbolic links, we can take the extra step of linking every

dependency directly at the point it is required. While this may save the resolver a couple of

operations, it is overly a minor change, and a one that is not noticeable unless we were to

craft an extreme, non-realistic example of a dependency tree which would attempt misuse

this behaviour. Thus, we will not stress this difference further.

6.4 Asynchronous operations

The V8 compiler, used for running of Javascript code within the node environment, pro-

duces a synchronous, unparallelizable code. On the other hand, Node.js strongly pushes the

idea of asynchronicity. This is for all the operations done by node outside of the Javascript

code, these operations being mostly handling of input/output. Since I/O is genuinely slower

then the rest of the code execution because of hardware or service (such as Internet) lim-

itations, it is generally a good idea to abide by these standards and handle node’s native

operations through asynchronous calls. For this, we are using a library that provides us

with the ability to handle the asynchronicity in the style of CSP, which is explained in the

following paragraphs.

The reason for us preferring this approach is the additional degree clarity it introduces to

the code. Or, if we were to look on it from the other side, the mess that is often introduced

through callbacks embedded in each other. Though the callback cascades are avoidable

through the use of promises, which would be certainly a more “mainstream” choice, we still

like the syntax, and the semantic idea behind CSP channels more. Promises also bring in

their own set of problems, such as, to paraphrase, events (which are the way of promise to

signal their resolution status) being a bad primitive for data flow [20].

6.4.1 CSP

The central idea of CSP is the one of a channel - it is through it that two asynchronous

tasks may communicate and wait for each other when needed. By default, these channels

are unbuffered, meaning you have to wait for the other side to put or take the information to

continue. For this, one can use the es6 generator functions, which enables us to yield on a

put or take channel operation - meaning that we offer the execution to a different thread until

this operation returns. We can also put or take synchronously, providing a callback after the

operation executes, if we are to do this action outside of the context of a generator, where the
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yield keyword is not available to us. Buffered channels, which provide us with a fixed length

queue, also exist and are used.

The advantage of CSP library from a code legibility, or maybe even a more semantic

view, is that you can easily see and reason about the points in code where the context switch

happens. That is, you can be sure that your code always runs uninterrupted from yield to

yield. This is easier to track than with the original approach, where you skip a bunch of

callback and then either end up with a ten tabs deep cascade, or with yourself tracking the

code execution spaghetti across multiple functions and possibly files.

The drawback here is in the fact, that unless you are going to cut-off this behaviour with a

synchronous, callback based csp.take - and you will need to do so at least at the highest level

(perhaps the “main” function of the program), you will pollute the rest of your code with

generators, or more precisely the csp.go or csp.spawn functions. Both of the aforementioned

functions spawn a go-routine, which is a generator function which returns a CSP channel.

Now, if you use such go-routine somewhere in your code, you probably want to yield from

the channel it returns at some point (a yield without other operation is an implicit take) -

that means you have to do so in another generator function, which would probably also be

a go-routine, and so on, until you decide that instead of yielding you will do a synchronous,

callback-based take. Still, this may be preferable to the program execution flowing through

callback functions, or emitting events.

6.4.2 CSP channel as a data structure

Apart from using the CSP channels to transfer the data between two asynchronous func-

tions, there is also a point in our algorithm where they instead serve us as a structure for data

storage. This might be considered a bit of an out of line idea, therefore we should explain

our motivations further.

Though the original intent of thee structures was merely to model the data flow, not to

store any information, this time we will be taking on a more utilitarian mindset ourselves -

it has worked out so far for us, even in a quite elegant way, so we are sticking to it. While

touching on the topic of channels nt being used as data structures, but only to “hold” data

until the first request for them arrives - we can say they can maybe be viewed as streams

between asynchronronous processes (or threads) more so than asynchronous queues. The

difference here being that in case of unbuffered channels, the side offering the data also has

to wait.
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The benefit of our method is the one of unified approach to the stored data. In our algo-

rithm, we needed access to the date that was asynchronely downloaded from the internet.

This data can be accessed by multiple threads at the same time - and at the time of accessing

them, these threads can actually not move forward until the data is available. Thus, instead

of an endless loop of retries until the data arrives (not that we have ever considered such so-

lution), we instead let each of the threads yield on the channel where the data will eventually

become available.

Simply taking from the channel would of course make the information unavailabe to any

other threads that might require it. Therefore, we will always “peek” the channel. Since node

guarantees us that code execution won’t be interruped until we tell it to do so, we simulate

the peek simply by using csp.take to get the value, and then putting it back on the channel

using csp.put. More on this in the implementation details section.

We have therefore created somewhat of a asynchronous storage, using a buffered CSP

channel of length 1 with our custom peek function, convenient when one or more “con-

sumers” have to wait for data. We use this method to download and store package.json

files for each dependency, as will be shown in the further sections.

6.5 Installation algorithm

When you provide the main install function with a package.json you want to install, the

following steps will be executed, in the given order:

1. A root package is created, for which the nodes for all of it’s dependencies (whether

they are private, public, peer or devDependencies) are gathered.

2. When a new node is created, the information specified by the package dependent on it

(that had caused the creation) is used to request the details about it. This information

might be either an URL to an archive of a concrete version of a package - in which

case the details stored will be it’s package json, or a semver range, in which case

the package will be looked up in the node registry, and the json supplied from there is

what we end up with - which contains the package.json files for each of the available

versions. Either way, these json files are stored in a peekable CSP channel, in a map

in pkg_registry

3. The node stores the said peekable channel and yields on it - continuing only once the

json is downloaded.
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4. Once this info is retrieved, the node chooses a suitable version based on it and on a

semver range specified by it’s parent.

5. Since the previous two steps are asynchronous, once a suitable candidate for a new

node is found, it is first checked with a node registry, whether a node with a different

(or even the same) version was resolved and used in the meanwhile - since we want to

reuse nodes as much as possible, if such node exists, we will use that one and throw

away the other that we have just resolved.

6. Now that we have solidified a single version for the newly created node, we will again

go through it’s dependencies, create a new node for each of them, link it with an

appropriate dependency format (based on it being public or private) and repeat the

steps 2 to 5 on them

7. The resolution function returns (or if we are talking in the asynchronous context,

yields) the node it was given to resolve only once it’s whole subtree of is constructed.

Therefore, once the root node is returned in described way, we know the whole depen-

dency tree is prepared

8. The conflict resolution - simulated annealing - function is called. If no conflicts exist

in the system as it is, this function is returned even before the first iteration and the

algorithm continues with the installation step. Otherwise, the annealing process is run

either for a set amount of iterations or - if this happens earlier - until we reach a point

with 0 conflicts

9. The packages are downloaded and unarchived into a temporal directory, and after-

wards moved into the vpm subdirectory of the node modules. These steps are done

asynchronously and in parallel.

10. Once all of the packages are ready, the hierarchy required by the package dependen-

cies, and represented in our node graph is constructed in node_modules using sym-

bolic links

devDependencies are currently handled in a way where they are installed only for the top

level package, and ignored elsewhere.

6.6 Implementation details

In this section, we will further explain the concepts, data structures and algorithms that

were mentioned in the installation steps. We will focus on the two primary files, or ‘modules’

or the manager - the Package and Node registry.
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6.6.1 Pkg registry

The package registry contains the code responsible for downloading and storing the

package.json files. This store is in the form described earlier, with buffered CSP channels

used to hold data, so that when another thread has to wait for a package, it can yield on on of

such channels. The primary function within this file, and also the only one being imported

outside of test suites, is the getPackageInfo function (B.1), which we shall now use to

explain multiple of the programming concepts used throughout this project.

First of all, the function takes a single argument, that being the number of async workers.

Since even in node.js (which, as mentioned earlier, has a different approach to asynchronicity

then what we came to expect from most of the programming languages), having an abun-

dance of threads can kill the performance of your application, not to mention the problems

arising from running too many concurrent requests for the same server (i.e. the npm registry

deciding it should start ignoring you). The default value of 6 seems to work in general situa-

tion, but there is definitely place for fine-tuning and optimizations for the future (on different

machines, or with a different ISP). Naturally, this is used to call the function spawnWorker

for the said amount of times - with each instance of the workers running endlessly and lis-

tening on a single CSP channel.

The data arriving through this channel are always the pairs of [pkg, resChan]. The only

task of the worker is to keep calling the function which downloads, parses (occasionally,

some minor changes to the json are needed before storing it, which is also handled in the

same function) and saves the resulting json as Javascript object in the desired CSP channel,

until it runs without returning any errors. This simple wrapper is what we use as a basic form

of error handling around all of the network related functions, since they are most prone to

failure and simply restarting the operation often solves the problem.

The workers get the channel to store into instead of creating it in place, since the channel

has to be created and put into registry before any yields - such as the one letting the channel

do it’s work - occur. This is so that you do not end up with wasting multiple workers on

getting the same package, that might have been mentioned in the subsequent calls from the

node registry.

The way that the package registry is exposed to the outside world is through the func-

tion returned from the getPkgInfo. That is, you can think of getPkgInfo as a form of a

‘constructor’, that initializes the workers and returns a getter function for the registry itself -

which is then used every time you want it to be processed by the given set of workers.
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6.6.2 Node registry

Node registry is where, at the moment, everything from the construction of dependency

tree to annealing and final installation is placed (and as a side-note, it is our near-future goal

to split this functionality into multiple, concise parts). The core of this functionality is related

to the node class. In a more of a classical OOP pattern, node has a set of functions that define

what should be done with it - whether it is resolving, installing, mutating etc. The rest of the

functions present are there primarily to aid with each of the steps in this process.

A lot of the code, outside of the functions we can map to one of the ten installation steps,

is related to the handling of the dependency construct - which is our way of keeping track of

organization within the dependency tree. Essentially, they represent the ‘links’ between the

nodes, along with the information of which dependency is satisfied by given link (and what

is the range of versions from which a new node can choose in case of a mutation within the

annealing process). Note that nodes are never deleted - since during the annealing part, a time

may come when we find a use for them again. That means that the only way of determining

whether a node is within the currently active hierarchy (for example, during the installation

process) is to check if it is linked to the root node. The root (or __root__) node is a special

node representing the package whose dependency tree we are currently installing. It has a

priviledged position during the annealing step - when it can’t be mutated away, and in the

install step, when it is simply ignored.

Since the installation and the linking process is mostly about using tools and libraries

already available, the topic we still want to focus on is the one of conflict detection(B.5).

That one works with the gathering of publicExports and privateImports in the same manner

as we have done in the formal part, or the proof in the appendix. The only difference being a

use of a hashmap for memoization - since otherwise, the performance has been rather poor.

Finally, in a way mirroring the one found in package, there is also a node registry - provid-

ing a similar functionality of stopping us from creating a new node when there is an available

one already resolved.

6.6.3 CSP utils

This helper ‘library’ exists to reduce code repetition and also provide us with alternatives

to some of the callback-or-promise-based functions, that produce the same outcome but in-

stead of providing a callback hook, they return a CSP channel. In fact, apart from a couple

specific, ‘hardwired’ ones, we also provide a couple of general ones. In this text, we present
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a general callback one (B.2, there is also a version that handles data passed to the callback),

and a node stream one (B.3 working for a subclas of output streams, that emit the data,

error and end events).

There is also a spawnWorkers function, for running general functions with a limited

amount of workers. It is virtually the same to the one described regarding getting packages

in package registry section, the difference being that instead of a package name, a function

with bound variables to be executed is passed (and the provided CSP channel is simply

returned by the main function, instead of also being stored in a registry). Along the same

lines, there is also a generalized network-retry wrapper function present.

Finally, a couple of general CSP-library related utility functions we have came to need.

The cspAll exists as a simple way of synchronizing multiple CSP async functions from a

single thread - as it waits for the whole array of channels to yield and returns the said array

of yielded values. We also can show the rather straightforward implementation of a peek

method, use of which was discussed earlier.

6.7 Conflict resolution

6.7.1 Simulated annealing

Simulated annealing, in general, is a Monte Carlo method which approximates a global

optimum of a given function. It is an adaptation of a slightly older Metropolis-Hastings

algorithm, essentially using technique from the area of study of thermodynamics to further

improve the chances of it converging to the correct result. It has first appeard in a paper from

1983, and later was independently described in [14].

The method is especially usefull for finding a minimum (or a maximum) of a function

which is hard to define over the entire domain but can be computed for a single point -

or in other words sampled. We will later show how our problem is easily reducible to fit

into the described setting. The high-level idea is taken from metallurgy, where the term

describes the process of heated metals being allowed to cool down slowly, with their atoms

being able to migrate along the crystal lattice. The higher the temperature, the easier it is

for an atom to break it’s bond and move, thus, as the metal is getting cooler, less and less

changes are happening to it’s structure. Using this mechanism, the mean value of overall

energy of the system is able to spontaneously approach, and subsequently fluctuate around,

a state of equillibrium[14] - which will get progressively lower as the temperature decreases.
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Mentioned mean energy will be in a way analogous to our sampled function, with the state

of equillibrium essentially represeting a local minimum.

To put it all into the context of computer programming, when we “simulate” the annealing

process, we will create a random walk on a discreet states of the system (similarly to the

Monte Carlo Markov Chain walk done in Metropolis-Hastings - we can say that the core of

the algorithm is still the same, but it is wrapped in another loop which gradually reduces

the temperature), where the probability of moving to the next state is based on it’s ‘energy’

(the value of the examined function, or in other words the ‘fitness’ of the state) and the

current temperature. The states proposed in the transitions are called the ‘neighbours’ of the

current state. The higher the temperature, the greater is also the probability that we allow for

transition from a lower energy state to a higher one. This, just like in metallurgy, allows us

to escape the local minima we might fall into, but as the temperature descreases over time,

makes us fluctuate around a single state - which should represent the global minimum we

were searching for.

6.7.2 Application

There is a single, key difference in the application of this method to our problem as com-

pared to the general case. The variable we are to minimize through the process of annealing

is the number of conflicts in the dependency tree. For this variable, the global minimum we

are trying to reach is know - that is, naturally, a state with zero conflicting dependencies.

When this state is reached, we may safely abandon any further computation and claim it as

our final solution. On the other hand - we can’t be sure if this desired outcome exists in the

system - maybe the hierarchy is inherently conflicting, without a way of resolving it.

As we have already defined the way we are approaching the energy of our system, and fol-

lowing from it the definition of our state as a resolved dependency tree (whether conflicting

or not), we only need to determine the process of neighbourhood selection to aquire a full

road map of our annealing algorithm. We will be referring to the process of mutation more

so than the concept of neighbours, since it mirrors the syntax we have used in our code better.

By mutation, we will mean the whole process of selecting one of the packages, changing it’s

version (and automatically rejecting and retrying if the version does not satisfy any of the

packages dependent on it) and resolving any of the dependencies that has been newly added

to the tree as a result of this change. Though to be consistent with the original definition, we

should mention that valid neighbours are always resolved dependency trees, where a single

dependency of a single package has changed it’s version within it’s defined bounds.
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The package selected to be mutated has to be either directly one of the packages marked as

conflicting or a predecessor of such package. Thanks to the way we have defined our system

of shared dependencies, we can limit the search for candidates between the root and the last

conflict on a branch - and also ignore the branches where such conflict does not exist - as we

know that changes to the subtree beyond the conflicting node would have no effect on the

collisions currently present.

After each mutation, the number of conflicting dependencies is recounted across the whole

hierarchy, and the newly proposed state is accepted according to it’s energy, current temper-

ature and a factor of randomness. This concludes a single iteration and restarts the procedure

with whichever state was chosen in the last step of a previous one , and also with slightly

lower temperature.

Rounding it up, our proposed setup for simulated annealing on dependency trees is as

follows:

State - a fully resolved dependency tree, whether it is still conflicting or not

Energy - the number of packages conflicting in the given state

Mutations (defining neighbours for each state) - changing a single package version,

where the package is a either a conflicting one, or a predecessor of one of the con-

flicting packages. The new version must satisfy the version range of at least one of the

packages dependent on the mutated one - if it does, it is set as a new dependency of

said package, otherwise it is immediately discarded as not being a valid neighbour and

a new mutation is generated.

There is much fine-tuning that can be done as far as setting a correct transition function as

well as initial temperature goes. As the main focus of this paper is in the formalization and

the use of the concept of public dependencies, we have used perhaps the most general of the

acceptance probabilities, which is the one in the form of

e−4D/T > Random(0, 1)

Where 4D is the difference in the energy value between the two states (the different num-

ber of conflict), T marks the current temperature and Random(0, 1) is a random value be-

tween 0 and 1, generated anew with each iteration. The distance is positive when the number

of conflicts rises and negative otherwise (yielding a result over 1). [25] The problem with
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this general formula in our case lies mostly in the fact of the energy having not enough fluc-

tuation (most of the mutations add or resolve 0 - 2 conflicts) - still, the approach has yielded

some promising results, and we believe that with additional tuning and heuristics, it may be

usable in production environment. Our code can be found, just like the rest of the samples,

in the appendix B B.6
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Results

We have tested our package manger against the two other Node.js managers that we know

of - NPM and ied. To keep the tests topical, we have done so on the three of these packages

themselves - each of them installing the remaining two as well as itself to a local folder.

Our PC setup was a machine running a 32 bit version of Ubuntu 14.04, with 2Ghz Intel

Core 2 Duo processor, together with a 25Mb/s broadband Internet connection (other aspects,

such as the amount of RAM, should not have any impact on the tests we have run). We have

used the command line time utility to track the duration of execution of each of the installs.

The time used in the following measurements is the ‘real’ output from the time command

- the actual time of execution as compared to i.e. the amount of time the CPU was used

by the process. This is because much of the time spent is on I/O operations, whether it is

downloading or installing of the packages, thus we have decided to handle the fluctuations

caused by outside sources by measuring on multiple trials.

Since at the time of writing is, our manager did not have a command line interface, we

have tracked the gulp task which in turn have run the mocha tests containing the function

call to install the desired package. This introduces some minor overhead before the package

manager execution is started, but since it was generally under 3 seconds. Again, that is

smaller then the fluctuations seen when running on the same package multiple times in a

row, we consider this slowdown insignificant and ignore it in further comparisons.

7.1 Package Managers installation results

The resulting attributes of each installation are shown in the following tables - three trials

has been done for each of the installed packages, by each of the package managers. We can

conclude that while we have outperformed NPM in all of the trials, ied is still substantially

44



CHAPTER 7. RESULTS 45

faster than both VPM and NPM. Yet, ied actually gives very small guarantees as far as the

conflict safeguards go, and would be hard to come close in terms of the installation speed

as long as we do the two-step process of building the hierarchy before we start with the

installation attempts. As for the size of the installation, VPM has shown an overall best

performance amongst the three. As for the size of the installation, VPM has shown an overall

best performance amongst the three.

VPM NPM ied

56 405 99 537 17 389

58 377 94 083 17 525

57 964 99 059 20 416

Table 7.1: Installation times of VPM, in miliseconds

VPM NPM ied

81 115 160 983 22 619

84 053 159 152 21 433

82 446 147 503 21 003

Table 7.2: Installation times of NPM, in miliseconds

VPM NPM ied

75 677 96 701 16 854

66 793 94 654 15 564

69 526 95 310 12 431

Table 7.3: Installation times of ied, in miliseconds

. VPM NPM ied

VPM 39.7 44.2 40.1

NPM 52.7 61.2 52.6

ied 27.8 31.3 34.4

Table 7.4: The size of installations in MB, collums specifying the manager used, rows the

manager installed
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To list all of the (minor) issues that might have caused additional time disadvantage, we

can say that VPM is by far the most talkative one, changing which could save it maybe up

to a couple seconds of time. In our trials we have prevented NPM from running additional

scripts (like installing documentation), since neither VPM or ied currently does so. Both

VPM and ied is in that they currently do not support installing from github links, though this

has not shown in tests.

7.2 Annealing - simple example

Since NPM - the package manager used in production - does not have a way to resolve

conflicts, the packages you can find in it’s repository are also prepared in a way as to not

cause any of them. As we in fact needed to generate examples to test our problem resolution,

we have taken the following approach.

We have defined a mode that is set before any of the tests regarding the annealing process

is run. In this mode, every dependency is considered public - we are thus working in a

similar environment as Bundler or PIP. Since keeping any of the dependencies as private

would either not affect the problem, or make it easier, we can declare that this is a strictly

harder problem - and solutions from it can always be applied in the situation with mixed

dependencies.

Listing 7.1 Dependencies, as defined in package.json

"dependencies": {

"firebase-queue": "*",

"firebase": "*",

"lodash": "3.7.x"

}

In this example, the package.json file is as follows 7.1. From it, resolving greedily

without any annealing yet, the following hierarchy arises 7.2. We can see the conflicting

lodash versions right away (keep in mind that in these tests, all the dependencies are kept

public). Additionally, firebase-queue1.3.1 does not allow for a lodash version satifying

the 3.7.x requirement, the only way to resolve the hierarchy is to swap the firebase-queue

version itself. At this point, NPM would fail, printing a conflict, while ied would continue

as if nothing happened (changing the conflicting public dependencies to private) - which is

potentially even worse.



CHAPTER 7. RESULTS 47

Listing 7.2 The resulting tree before any annealing was done. The lodash versions are con-

flicting. The packages marked with * are the ones being reused.

__root__ 0.0.0

lodash 3.7.0

firebase-queue 1.3.1

lodash 4.11.2

rsvp 3.2.1

node-uuid 1.4.7

firebase 2.4.2

faye-websocket 0.11.0

websocket-driver 0.6.4

websocket-extensions 0.1.1

winston 2.2.0

pkginfo 0.3.1

colors 1.0.3

cycle 1.0.3

eyes 0.1.8

isstream 0.1.2

async 1.0.0

stack-trace 0.0.9

*firebase 2.4.2

With annealing enabled, since this is a simple problem with just a couple of conflicts VPM

finds a valid solution, usually within the first 10 - 15 iterations.

7.3 Conclusion

We have presented a novel model for handling a hierarchy with mixed - private and shared

- dependencies. We have shown the problems of the currently used concepts as well as the

measures we have taken to fix them. The previous sections of this chapter have also shown

the application of this concept on real life data.
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Listing 7.3 The resulting, conflict-free hierarchy

__root__ 0.0.0

firebase 2.4.2

faye-websocket 0.11.0

websocket-driver 0.6.4

websocket-extensions 0.1.1

lodash 3.7.0

firebase-queue 1.0.0

*firebase 2.4.2

rsvp 3.2.1

node-uuid 1.4.7

*lodash 3.7.0

winston 1.1.2

async 1.0.0

isstream 0.1.2

cycle 1.0.3

stack-trace 0.0.9

pkginfo 0.3.1

eyes 0.1.8

colors 1.0.3
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Future work

As far as the work related to the public model itself goes, the one hurdle we have not yet

decided upon are (public) optional dependencies. That is, handling of dependencies which,

first of all, may not be installed at all without the manager viewing this as a problem, and that

provide the same guarantees as public dependencies, but only when actually installed - oth-

erwise, they should not ‘lock’ the version of their respective package. The first requirement

would currently be satisfied simply by allowing the programmer to directly define something

like inherited dependencies directly in their package.json, but we have yet to decide on an

elegant way to satisfy both of these demands at once.

The annealing section of the algorithm is currently more of a proof-of-concept than a

production tool. The ‘default’ acceptance function, although fine tuned to our needs, is

still probably not the best option for the problem at hand, since the energy - the amount of

conflicts in the hierarchy - is a function that rarely fluctuates past the difference of one or two

steps (conflicts). Also, there is definitely place for additional heuristics.

As far as the quality-of-life features of a package manager goes, the one that we would

really like to add in the near future is a form of a shrinkwrap file - a one that would lock cur-

rently installed versions for any further installations, even between different machines. This

is a sound idea both in the context of annealing, and considering that due to race conditions,

even the installation itself might not always be deterministic (if multiple correct installa-

tions exist). Additionally, we would like to add support for git links in package.json and

possibly a simpler way of updating a hierarchy.

Rounding up, we would like to ultimately make this project an open-source collaborative

effort. Which certainly requires a couple more iterations of refactoring and documenting of

provided functions.
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Appendix A

Proof of Public And Peer Dependency
model equivalence

The characteristics we set out to formally prove are as follows. Firstly, we would like to

show that we can mimic the construction of a peer dependency tree using public dependen-

cies - in that for every hierarchy in one of the models, we can always build a tree representing

it in the second one. Following this, we prove that the resolvability of the two is equivalent -

again, except for the deliberate case outlined earlier (we will also prove this is the only case

of such inconsistency). Finally, the results of these proofs are used to show the backwards

compatibility of our model.

Since we do not allow for multiple versions of the same package on a single level (meaning

- as two separate dependencies for the same package), we can’t really model the situation

where a single package requires two different versions of a dependency, once as public and

once as private. This, apart from the slight shift in resolvability talked over in detail in

chapter regarding the public dependency model, should be the only borderline case where

the backwards compatibility would not be present. To our knowledge, this kind of practice

was never a part of any of the publicly used NPM packages.

A.1 NPMv3 vs NPMv2

For the sake of simplicity, we will use the model of NPMv2 - the one where every peer

dependency is automatically installed. Yet, as we still claim both the backwards compati-

bility and equivalence with NPMv3 - though both are harder to define due to the nature of

peer dependency warnings - we will briefly outline the differences that the use of this model

would cause within the proof.
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Maybe the most major change relevant to the formalization of version three’s model would

be in warnings for missing peer dependencies. If we were to treat them as errors - that is,

consider the dependency tree yielding them as unresolvable - we would lose on some of the

functionality of inherited public dependencies, which we have defined not be mandatory. On

the other hand, ignoring them completely, while providing us with the behaviour close to the

public dependency model, would then let us create dependency tree that, though resolvable,

do not provide the desired functionality to the end user - in that it misses some of the packages

required for the whole program to run.

Note the differences are only related to the handling of warnings in the resolution step. The

construction steps, and from them the ensuing compatibility is unaffected by this, proving of

which is our primary objective. Stretching the resolvability equivalence to work with said

warnings, though certainly doable, would only introduce additional level of technicality into

the proof, and was thus omitted.

A.2 Peer dependency formalism

Since with peer dependencies, we do not have the privateImports and publicExports func-

tions, as they would not really make much sense in this context, we will define an alternative

(though do so maybe in a less formal way). That is, let children(A) define the set of all chil-

dren of an arbitrary resolved node A - whether they were direct dependencies of A or were

resolved in their place through a chain of peer dependencies.

A.3 Peer dependency model construction

We are going to split the construction formalism into two subsections, so that it best suites

us in our inductive proof later. The first one describes the ’growth’ of the dependency tree,

while the second one is concerned with the reviewing of peer dependencies and identifying

possible conflicts. As a matter of fact, this also mirrors the way that both our package man-

ager and many of the aforementioned others approach the problem - resolving the hierarchy

first before continuing on with collision checking (with some featuring also a third step, that

being dependency resolution).

For any unresolved or partially resolved dependency tree using the concept of peer depen-

dencies, we have (just like in the case of public dependencies) only a single action available

to us - choosing a version of an unresolved dependency, within the bounds of the version
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interval defined by it’s parent. In doing so, one or more of the following situations may

arise:

1. The resolved package had no dependencies

2. One or more private dependencies are added as children of a resolved package

3. One or more peer dependencies are added on the same level as the resolved package

The review step is rather trivial in this case - we simply check each level and look whether

it has any peer dependencies which conflict. Therefore, the only rule we need is a follows:

Let us choose an arbitrary node A. Then the nodes B = (idb, pkgb) and C = (idc, pkgc),

pkgb = (nameb, versionb, prvb, peerb), pkgc = (namec, versionc, prvc, peerc) (changing our

formal definition slightly to accommodate for peer dependencies) are conflicting if {B,C} ⊇

children(A), nameb = namec and versionb , versionc, meaning they represent the same

package in different versions. This is the only kind of conflicts which may appear within this

model.

Lemma A.1. By using only the action of choosing a version of an undecided dependency, we

can reconstruct any resolved dependency tree (which uses the concept of peer dependencies)

given to us, whilst only one or more of the three previously described situations may arise

after each such choice.

Proof. The proof is constructive - in that, we start from the root and begin resolving depen-

dencies in the same versions as they are in the hierarchy we want to copy. When a package

is locked to a concrete version, we can look into it’s package.json for any private or peer

dependencies and resolve the accordingly - add them as unresolved children if they are pri-

vate (point 2) or as unresolved peers if they are peer dependencies (point 3). If the tree we

are reconstructing use the same data as we are, the dependencies we have added must also

be the same. Thus, when every dependency is resolved, we must end up with a copy of the

original hierarchy. �

A.4 Proposed model construction

We shall now define the same steps on public dependencies, as to draw a comparison.

Again, we first define the those applied during the construction of the hierarchy, and sub-

sequently the ones concerned with checking the correctness of public dependencies within

it.
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Once again, the only action available is the one of a single package resolution, upon which

one or more of the following may happen:

1. The resolved package had no dependencies and did not conflict with any other public

dependency

2. One or more private dependencies are added as children of a resolved package

3. One or more public dependencies are added as children of a resolved package

During the review step, we need to collect the exported public dependencies along the

public branches, as was specified earlier. For a pair of nodes A and B:

1. If B is a private dependency of A, then privateImports(A) ⊃ publicExports(B)

2. If B is a public dependency of A, then publicExports(A) ⊃ publicExports(B)

3. A conflict exists on an arbitrary node A for B,C, {B,C} ∈ privateImports(A), B =

(idb, pkgb), C = (idc, pkgc), pkgb = (nameb, versionb, prvb, pubb),

pkgc = (namec, versionc, prvc, pubc), nameb = namec ∧ versionb , versionc, no other

source of conflicts exists

Lemma A.2. By using only the action of choosing a version of an undecided dependency,

we can reconstruct any resolved dependency tree (which uses the concept of public depen-

dencies) given to us, whilst only one or more of the three previously described situations may

arise after each such choice.

Proof. Analogous to the one of Lemma A.1. �

A.5 Theorem, proof and corollary

Theorem A.3. For every dependency tree using the peer dependency model exists an equiv-

alent tree using public dependencies, which installs the same packages, in the same versions,

and is resolvable if and only if the original tree was also resolvable. The only exception to

this is the case discussed in “The difference in resolvability”, and this class of hierarchies

are the only one where the resolvability does not agree.

Proof. The reason for excluding the borderline case was covered before. We will split the

proof in a similar fashion as we did previously - into the construction and the dependency

resolution parts.
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Construction Induction over the situations which occur after a single package version is

resolved. The base of induction is a root package with no dependencies - which is the same

situation with no actions in either model.

Induction step always includes the action of resolving a package to a concrete version -

that is present and equivalent in both models - after which it iterates over the given options.

We will skip points one and two right away, since the equivalence between their counterparts

is trivial. For the third point, we instead add a public dependency as a child of the current

package - no further action is needed just yet. In this way, it is shown that we can mirror

each step of the peer dependency tree construction, and following Lemma A.1, proves that

we can reconstruct any peer dependency hierarchy using public dependencies.

Resolvability What is left to prove is that the newly constructed hierarchy will be resolv-

able if and only if the same can be said about the original, peer dependency based one. While

the construction worked with the tree being build from bottom up, now we need to show that

the peer dependency propagation works from top down in a way similar to the one used by

public dependencies. A brief reminder that we are still working with NPMv2’s mandatory

peer dependency model - in NPMv3 this propagation would need have been maintained by

the package developers of each of the dependencies. �

Lemma A.4. If a package P1 is a private dependency of root package R, and we have a chain

of peer dependendencies where P2 has a peer dependency on P1, P3 has a peer dependency

on P2 and Pn has a peer dependency on P(n − 1), then all the packages P1 to Pn will be

resolved as the children of root R.

Proof. By induction on the length of the chain. Basis is trivial, with chain length being 0.

Induction step - we have n packages, each is a peer dependency of the previous one and all of

them are resolved as children of a single node. We add a peer dependency requirement for a

package n+1 on the last of the reolved packages. This peer dependency will be automatically

resolved (we are taking only non-conflicting dependencies into account, a conflict will abort

this chaining, which is fine for us), on the same level as the package that required it - meaning

they will share the same parent. �

Following Lemma A.4, we can draw the equivalence between chains of public dependen-

cies and those of peer dependencies (additionaly, the same rules apply for the “chain” of

length 1). The only way a conflict may arise in the two models is if two copies of the same

package, in different versions ends up in the same set of an arbitrary node - this set being

children(A) for peer and privateImports(A) for public dependencies. In the NPM model,

each node in the chain of peers ends up as child of the parent of the first node of this chain
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- let us call it root R - thus the only place where the conflict within the chain needs to be

detected is in the set children(R). On the other hand, since public dependencies are exported

one step past the last public branch - that being the same root package as in the case of peer

dependencies if we have copied their hierarchy - the only place needed to check in this case

is privateImports(R). This conflict may arise earlier on one of the nodes deeper in the chain

of dependencies, it is trivial to show that the privateImports sets on these nodes must be strict

subsets of the privateImports of the root of the chain, since during each step, dependencies

are only added (and at least one is added per step).

A different conflict can also emerge deeper within the public dependency chain, between a

public and a private dependency, but this is again related to the problem we have covered and

have said to exclude - in this paragraph, we will clarify that this class of problems is the only

one on which the equality of resolvability will fail - or in other words that no other source of

additional conflicts in the public model exists. We have to realize that every peer dependency

is ultimately checked in the children(R) of the node in which the chain it belongs to is rooted

- any conflicts between two public dependencies (respectively, their peer equivalents) are

handled there since they have to be the part of the same chain. Conflicts between two private

dependencies, if such exist, has to be handled “in place” - on the parent node they belong to -

since a method to transfer them is present in neither of the two models. The only option left

are conflicts between public and private dependencies - and with them, only two situations

may arise. Either the private dependency is directly on the node where the peer chain will be

rooted (and is handled during the check of the children(R)), or lies somewhere deeper on the

public chain, which is exactly the case of aforementioned problem. No other options are left

to enumerate.

Following the rules set for exporting public dependencies, since a private brach essetially

halts any further public dependency propagation, we can be sure that no dependencies out-

side of the chain were exported to the highest level (where the constrains for peer dependency

model is checked), and therefore prove the equivalence of the sets children(R) and privateIm-

ports(R). The dependency check “algorithm” on these two is the same - finally proving our

proposed thesis.

Lemma A.5. For every dependency tree using the public dependency model exists an equiv-

alent tree using peer dependencies, which installs the same packages, in the same versions,

and is resolvable if and only if the original tree was also resolvable.

Proof. The proof of the second implication is in many ways equivalent to the previous one.

Let us just point out the only major difference, the fact that we no longer need to exclude

the borderline case - the reversed transformation works every time. This is because in our
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construction, we can take the extra step of being vigilant and adding additional private de-

pendencies - and let the system fail on collision between two private dependencies. Thus,

we define adding a new peer dependency (mirroring a addition of a public one) as a two step

process - adding the peer dependency itself, analogically to the previous case to the parent of

a package it belongs to, and adding an additional private dependency. This way, the layer of

security we may have missed with peer dependencies in general, for packages Pn on a peer

dependency chain, is provided in (possibly) conflicting packages in the sets children(Pn).

The rest of the proof is analogous in it’s steps and uses Lemma A.2 instead of Lemma

A.1. �

We had a second question in mind during the construction of previous proofs. The fact to

the matter is, you can always transform a model with shared dependencies into a one that has

only private ones, if you add enough constraints (in the form of additional private dependen-

cies) along the places in the hierarchy where shared dependencies would be exported (and of

course, make two private dependencies rooted in the same parent trigger a conflict). This is

similar to the “hack” we have used in the proof of second implication. The resulting hierar-

chy would resolve into the same set of packages, although the rules of such transformation

would be much less legible then the current ones. Thus, the construction proof on it’s own

is not of that great of a value, yet, in the way we had modeled it, we have also proven the

following premise.

Corollary A.5.1. The public dependency model is backwards compatible with NPMv2’s

model of peer dependencies, in a way where treating every peer dependency in the defi-

nition of each package as public will yield a hierarchy equivalent to the original one using

peer dependencies.

This is an important aspect of our design, since it allows us to use it in the present envi-

ronment, and on current NPM packages, without the need of additional prefabrication.
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Listing B.1 The getPackageInfo function

export function getPackageInfo(nrConnections = 6) {

let ch = csp.chan()

function* spawnWorker() {

while (true) {

let [pkg, resChan] = yield csp.take(ch)

let res = yield csp.take(downloadAndParsePackage(pkg))

let errCount = 0

while(res instanceof Error) {

// error handling/printing omitted

res = yield csp.take(downloadAndParsePackage(pkg))

}

yield csp.put(resChan, res)

}

}

for (let i = 0; i < nrConnections; i++) {

csp.go(spawnWorker)

}

// pkfInfoGetter - pkg is either a name or an url to tarball

return (pkg) => {

return csp.go(function*() {

if (pkg in registry) {

if (registry[pkg]) {

return yield csp.peek(registry[pkg])

}

}

// resChan has to have buffer of a size 1 to be peekable

let resChan = csp.chan(1)

registry[pkg] = resChan

yield csp.put(ch, [pkg, resChan])

return yield csp.peek(resChan)

})

}

}
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Listing B.2 The function to transform a callback function to a one using csp.

// returns a channel that blocks until function callback is called

// the channel yields either an error or csp.CLOSED

export function cspy(fn, ...args) {

let ch = csp.chan()

fn(...args, (err) => {

if (err) csp.putAsync(ch, err)

ch.close()

})

return ch

}

Listing B.3 The function that handles Node.js stream and returns the result in csp channel.

// returns contents of any stream that emits ’data’ and ’end’

// events as a single string

export function cspyDataStream(stream) {

let ch = csp.chan()

let str = []

stream.on(’data’, (chunk) => {

str.push(chunk)

})

stream.on(’error’, (e) => {

csp.offer(ch, e)

ch.close()

})

stream.on(’end’, () => {

csp.offer(ch, str.join(’’))

ch.close()

})

return ch

}
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Listing B.4 Our implementation of the missing peek function

// patch csp with a peek method:

// obtain a value from channel without removing it

csp.peek = function(ch) {

return csp.go(function*() {

let res = yield csp.take(ch)

yield csp.put(ch, res)

return res

})

}

Listing B.5 The recursive checkNode algorithm.

const checkNode = (visitedSet = new Map()) => {

if (visitedSet.has(self)) return visitedSet.get(self)

visitedSet.set(self, [])

let publicExports = []

.concat(...self.getDependencyNodes(true)

.map(d => d.checkNode(visitedSet)), self)

visitedSet.set(self, publicExports)

let privateImports = []

.concat(...self.getDependencyNodes(false)

.map(d => d.checkNode(visitedSet)), self)

let checkMap = {}

for (let dep of privateImports) {

if (checkMap[dep.name] &&

(checkMap[dep.name].version !== dep.version)) {

conflictingNodes.add(dep)

conflictingNodes.add(checkMap[dep.name])

}

checkMap[dep.name] = dep

}

return publicExports

}
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Listing B.6 The simulated annealing algorithm

export function annealing(root) {

return csp.go(function*() {

debugroot = root

for (let j = 0; j < TEMP_ITERATIONS; j++) {

let oldState = 0

for (let i = 0; i < ANNEAL_ITERATIONS; i++) {

oldState = checkDependencies(root)

if (!oldState) break

let muts = mutatibleNodes()

let candidate = sample(muts)

let undoMutation = yield candidate.mutate()

let newState = checkDependencies(root)

if (!annealTransition(oldState, newState, j)) {

undoMutation()

}

}

if (!oldState) break

}

})

}
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