
Department of Computer Science

Faculty of Mathematics, Physics and

Informatics

Comenius University

Analysis of algorithms for

computing the crossing number

(Master's Thesis)

Helena Kocúrová

Advisor: doc. RNDr. Rastislav Královi£, PhD. Bratislava, 2007

I hereby declare that I wrote this thesis by myself, only with
the help of the referenced literature, under the careful super-
vision of my thesis advisor.

. .

i

Acknowledgements

I am very grateful to my advisor Rastislav Královi£ for his patience, care, and a
number of inspiring discussions during my work on this thesis.

I am also grateful to Imrich Vr´o for introducing me to the intriguing subject of
crossing number and providing me with the initial volume of literature.

I am indebted to Peter �ech for helping me to acquire a large part of additional
literature. My special thanks belong to Milo² �ernák for his positive attitude and
many helpful ideas in the implementation parts of this work.

Last but not least, I wish to thank my friends and family for their love and
support during all those years.

ii

Abstract

The Crossing Number Problem is the problem to decide, for a given integer k > 0,
whether a graph G can be embedded in the plane with k or fewer pairwise edge
crossings. Its optimization version, the Crossing Minimization Problem, looks for
an embedding in the plane with a minumum number of edge crossings, and occurs as
one of the major tasks in application areas like automatic graph drawing and VLSI
design.

In this thesis, we survey and analyse exact, approximate, and heuristic algo-
rithms for computing the crossing number of a graph, and some of its variants,
e.g., the rectilinear crossing number and the (�xed) linear crossing number. Since
the Crossing Number Problem is NP-complete, no exact polynomial algorithms are
known for the general problem. However, algorithms based on a branch-and-cut
approach have been reported to solve medium sized instances to provable optimality
in a reasonable computation time.

For graphs of bounded degree, approximate algorithms based on a bisection width
concept have been developed, yielding an O(α2(n)log n)-approximation of the min-
imum drawing size, i.e, the number of crossings plus the number of vertices of a
graph.

In practice, the problem is mostly attacked heuristically using a planarization
approach consisting of two NP-hard steps, i.e., the Maximum Planar Subgraph
Problem and the Constrained Crossing Minimization Problem. In the �rst step, we
obtain a planar subgraph and its embedding by deleting a possibly small number
of edges from the graph. In the second step, the deleted edges are re-inserted back
into the graph trying to keep the number of crossings small. Various strategies
have been proposed optimizing over the set of all embeddings or iterating the whole
edge-reinsertion process.

Finally, we propose two new heuristics for the (�xed) linear crossing number, re-
spectively, based on the Simulated Annealing scheme and compare their performance
with the best heuristics known from the literature.

iii

Abstrakt

Problém priese£níkového £ísla je problém ur£i´, pre dané celé £íslo k, £i graf G
môºeme rozloºi´ v rovine tak, aby sa jeho hrany kríºili navzájom najviac k-krát.
Jeho optimaliza£ná verzia, h©adanie rozloºenia grafu v rovine s najmen²ím po£tom
hranových prekríºení, tvorí jeden z hlavných problémov pri automatickom kreslení
grafov a návrhu VLSI obvodov.

Táto práca sa zaoberá zhrnutím a analýzou exaktných, aproximatívnych a he-
uristických algoritmov na po£ítanie priese£níkového £ísla grafu a jeho variantov, na-
pr. rektilineárneho priese£níkového £ísla a (�xného) lineárneho priese£níkového £ísla.
Vzh©adom k NP-úplnosti tohto problému, nie sú známe ºiadne exaktné polynomiálne
algoritmy na rie²enie v²eobecného problému. Napriek tomu, algoritmy zaloºené na
�branch-and-cut� prístupe sú schopné efektívne a optimálne rie²i´ in²tancie strednej
ve©kosti.

Pre grafy s ohrani£eným stup¬om sú známe aproximatívne algoritmy zaloºené
na �bisection width� koncepte, dosahujúce O(α2(n)log n)-aproximáciu najmen²ej
kresliacej plochy, t.j. po£et kríºení plus po£et vrcholov grafu.

V praxi sa tento problém naj£astej²ie rie²i heuristicky tzv. planariza£ným pristu-
pom, ktorý pozostáva z dvoch NP-´aºkých krokov: Problém najvä£²ieho planárneho
podgrafu a Problém obmedzeného minimalizovania kríºení. V prvom kroku získame,
zmazaním £o najmen²ieho po£tu hrán z pôvodného grafu, planárny podgraf a jeho
rozloºenie. V druhom kroku vkladáme zmazané hrany spä´ do grafu tak, aby vý-
sledný po£et kríºení bol £o najmen²í. Predstavíme rôzne stratégie zaloºené napr. na
optimalizovaní vkladania cez v²etky rozloºenia planárneho podgrafu alebo iterácii
celého reinzertovacieho procesu.

Na záver navrhneme dve nové heuristiky na (�xné) lineárne priese£níkové £íslo,
respektívne, zaloºené na schéme simulovaného ºíhania a porovnáme ich úspe²nos´ s
najlep²ími heuristikami známymi z literatúry.

iv

Contents

1 Introduction 1
1.1 Practical Applications . 1

1.1.1 Automated Graph Drawing . 2
1.1.2 VLSI Design . 3

1.2 Guide to this thesis . 4

2 Graphs and crossing number 5
2.1 Preliminaries . 5

2.1.1 Drawing of a graph . 6
2.1.2 Embedding of a graph . 7
2.1.3 Combinatorial embedding . 8
2.1.4 Properties of planarity and non-planarity 9

2.2 Degrees of non planarity . 9
2.2.1 The crossing number . 9
2.2.2 The skewness . 10
2.2.3 The thickness . 10
2.2.4 The splitting number . 11
2.2.5 Some relationships between these problems 11

2.3 Complexity of the crossing number problem 11
2.3.1 Crossing number is NP-complete 11
2.3.2 Crossing number is �xed-parameter tractable 12
2.3.3 Crossing number on graphs with bounded tree-width 12

2.4 Known bounds . 13
2.4.1 Theory of small graphs . 13
2.4.2 Theory of large graphs . 16

2.5 Other crossing numbers . 16
2.5.1 Rectilinear crossing number . 17
2.5.2 Linear crossing minimization . 17
2.5.3 Book crossing number . 18
2.5.4 Crossing minimization on hierarchical embeddings 23

3 Algorithms for the general crossing number 26

4 Exact algorithms 27
4.1 Quadratic time algorithm . 27
4.2 Depth First Search with Branch-and-Bound 27
4.3 Mathematical programming formulations 28

4.3.1 Integer Linear Program for simple drawings 29
4.3.2 Integer Linear Program for SPQR-trees 31

5 Approximation algorithms 32
5.1 Approximation algorithm with estimators 32

6 Heuristic algorithms 34
6.1 Simulated annealing . 34

6.1.1 Simulated annealing for complete graphs 35

v

7 Maximum planar subgraph problem 37
7.1 Introduction . 37

7.1.1 Complexity of the maximum planar subgraph problem 38
7.2 Exact algorithms . 39

7.2.1 A branch-and-cut algorithm for MPS based on LP 39
7.3 Approximation algorithms . 41

7.3.1 The O(nm) algorithms . 43
7.3.2 The O(mlog n) algorithms . 43
7.3.3 The O(n2) algorithms . 44
7.3.4 The O(n) algorithms . 45

7.4 Heuristic algorithms . 48
7.4.1 GRASP for Graph Planarization 50
7.4.2 Performance of the heuristics . 52

8 Edge inserting strategies 58
8.1 Edge Re-insertion Strategies . 58

8.1.1 Fixed embedding. 58
8.1.2 Variable Embedding. 58
8.1.3 Constrained Crossing Minimization. 62

8.2 Post-Processing Strategies . 65
8.3 Permutations . 66
8.4 Computational study . 66

9 Algorithms for the rectilinear crossing number 67
9.1 Quadratic Constraints Formulation . 68
9.2 Genetic algorithms . 69

10 Algorithms for the (�xed) linear crossing number 72
10.1 Algorithms for the linear crossing number 72

10.1.1 Nicholson's heuristic . 73
10.1.2 Simulated annealing . 73
10.1.3 Experimental results . 74

10.2 Algorithms for the �xed linear crossing number 76
10.2.1 Exact algorithms . 76
10.2.2 Heuristics for the �xed linear crossing number 80

11 Conclusion 87

Bibliography 88

A (Integer) Linear Programming 101

B Some tree structures 103
B.1 SPQR-trees . 103
B.2 PQ-trees . 106

vi

List of Figures

1 Three drawings of the same graph with 51 (a), 12 (b), and 4 crossings (c). 2
2 Graph with multiple edges and loops. 5
3 The two �rst trees are the same graph, but the latter is rooted. 6
4 A combinatorial embedding of a graph, and a drawing that respects it. . . 8
5 Three embeddings of K4, (c) with the four faces marked. 9
6 K5 and K3,3 with their respective homeomorphs. 10
7 Drawing of K7,7 with a minimum number of 81 crossings using Zarankiewicz's

rule. 14
8 (a) A simple graph G. (b) A linear embedding of G. 18
9 Graph G embedded on a circle. 19
10 A four page embedding of the graph shown in Figure 8(a). 20
11 The 4x4 cylindrical grid and its convex and one-page drawings. 21
12 Sub-Hamiltonian graph, its circle representation and book embedding. . . . 22
13 Cuboctahedron . 24
14 Wrapping edge (2, 3) around vertex 4. 35
15 G is a nonplanar graph. G1 is a planar subgraph of G, but it is not a

maximal planar subgraph. Another maximal planar subgraph of G is G3.
G3 is also a maximum planar subgraph. 38

16 A step in the Deltahedron Heuristic for �nding a planar subgraph with
large edge weights (left), or in its generalization (left or right). 49

17 Comparative Performance of various Heuristics for the MPSP. 56
18 Running times (CPU seconds). 57
19 The number of crossings required when inserting an edge highly depends

on the chosen embedding. 59
20 Three di�erent edge insertion paths for v1 and v2. 60
21 On the left is a simple crossing at vertex v ∈ V, on the right is a distributed

crossing with common subsequence v0e1v1e2v2e3v3. 63
22 Example of a graph and its extended dual graph. 64
23 Recombination of Chromosomes. 70
24 Edge crossing condition i < j < k < l. 72
25 Graph G and its associated con�ict graph G′. 78
26 Running times for exact approaches. 80
27 Fixed embeddings for base cases of dynamic programming heuristic. 82
28 (a) Series decomposition, (b) Parallel decomposition, (c) Rigid decomposi-

tion. 105
29 A biconnected planar graph and its SPQR-tree. 106
30 Example for the expansion graph of a skeleton edge: (a) a biconnected

planar graph G, (b) the skeleton µ of a P-node in the SPQR-tree of G ,
and (c) the graph expansion+(e) for the gray edge e in skeleton(µ). 107

31 The second embedding is obtained from the �rst one by means of two swap
operations around the split pairs (1, 17) and (11, 15) and one �ip operation
around the split pair (1, 17). 108

32 Pertinent and skeleton graphs of the di�erent node types of an SPQR-tree.
The shaded regions represent subgraphs, (a) an S-node, (b) a P-node, and
(c) an R-node. 108

vii

33 Example of a PQ-tree. 109
34 Example of adding constraints to a PQ-tree (I1 = S1, I2 = S2). 109

List of Tables

1 Time and space complexities of the heuristics. 54
2 Number of crossings for random graphs with edge probability of 0.5. 75
3 Number of crossings for random graphs with edge probability of 0.3. 75
4 Number of crossings for random graphs with edge probability of 0.8. 76
5 Time Complexities of the Heuristics. 84
6 Number of crossings for complete graphs. 85
7 Number of crossings for random graphs with edge probability of 0.5. 85
8 Number of crossings for random graphs with edge probability of 0.3. 86
9 Number of crossings for random graphs with edge probability of 0.8. 86

viii

1 Introduction

For the �rst time, the crossing number problem was introduced by Pál Turán [200], who
posed it, while in a forced labor camp during the WW2, in his Note of Welcome as follows:

�There were some kilns where the bricks were made and some open storage yards where
the bricks were stored. All the kilns were connected by rail with all storage yards. ... the
trouble was only at crossings. The trucks generally jumped the rails there, and the bricks
fell out of them; in short this caused a lot of trouble and loss of time ... the idea occured
to me that this loss of time could have been minimized if the number of crossings of the
rails had been minimized. But what is the minimum number of crossings?�

Put in technical terms, the Turán's Brick Factory Problem is: �What is the crossing
number cr(Kn,m) of the complete bipartite graph Kn,m ?�

Garey and Johnson [80] have shown that the general Crossing Number decision problem:
�Given G and an integer k is cr(G) ≤ k� is NP-complete [79].

Due to the complexity of the Crossing Number Problem, many restricted variants
have been considered in the literature. However, in most cases, e.g., for bipartite, linear,
circular, and book drawings, the problem remains NP-hard [64, 140, 141].

Although no reasonable polynomial algorithms are known for the general graph, algo-
rithms are needed in practice. This work concentrates on gathering and analysing algo-
rithmic solutions available for computing the crossing number of graphs today. Moreover,
we conduct experimental studies evaluating the performance of the heuristics known from
literature [39, 152] in comparison with our new proposed heuristics based on the simulated
annealing approach for some restricted variants of the crossing number.

In the rest of this chapter, we present two important application areas of this problem,
automatic graph drawing and VLSI design. Furthermore, we give an overview of this
thesis in section 1.2.

1.1 Practical Applications

The crossing number represents a fundamental measure of nonplanarity of graphs but is
also attractive from practical point of view.

Crossing minimization is one of the oldest and most fundamental problems arising in
the area of automatic graph drawing and VLSI design. We can simply formulate it as
follows: �Given a graph G = (V, E), draw it in the plane with a minimum number of edge
crossings.�

Once the crossing numbers for complete graphs have been determined, the problem
can be generalized to apply to less than complete graphs. Examples of such graphs are
circuit diagrams, communication networks, railroad track and highway networks, and
other interconnection diagrams.

The aesthetics and readability of graphlike structures (circuit diagrams, information
diagrams, class hierarchies, �owcharts...) heavily depends on the number of crossings
[114, 150], when the structures are visualized on a 2-dimensional medium.

1

Figure 1: [20] Three drawings of the same graph with 51 (a), 12 (b), and 4 crossings (c).

1.1.1 Automated Graph Drawing

The main goal in automatic graph drawing is to obtain a layout that is easy to read and
understand. The de�nition of layout quality depends on the particular application and
is therefore hard to measure. However, the number of edge crossings is among the most
important criteria [166].

Figure 1 shows a comparison of di�erent drawings for the same graph preferring di�er-
ent aesthetic criteria. Most aesthetic criteria, for example, number of bends, uniformity
of edge lengths, or drawing area, favor the �rst two drawings, while the last drawing is
preferable with respect to the number of edge crossings.

A broad range of exixting algorithms for graph drawing favouring di�erent criteria
for both planar and nonplanar graphs can be experienced in practice using the Library
of Algorithms for Graph Drawing (AGD) [4]. It also o�ers tools for implemening new
algorithms.

Algorithms for Planar Graphs

Planar graphs are a relatively well studied class of graphs in respect to automatic layouts.
There are linear time algorithms for testing the planarity of a given graph. Following [65],
we can divide algorithms for the layout of planar graphs in those that use only straight
lines and those that allow bends on the edges.

Wagner was upon the �rst who showed that every planar graph can be drawn without
crossings using only straight lines to represent the edges [205]. Tutte presented in [201]
an algorithm that produces a straight line drawing for planar graphs. Other algorithms
were presented by De Fraysseix, Pach and Pollack [49] and by Schnyder [177] that draw
graphs with n vertices on a grid of size O(n2).

If we allow bends for edges we can use an algorithm proposed by Tamassia [49]. The
algorithm produces an orthogonal drawing if the maximum degree of any node of the
given graph is at most four. Orthogonal drawings use horizontal and vertical straight line
segments to represent the edges. Tamassia's algorithm minimizes the number of bends for
a �xed combinatorial embedding by transforming the problem to a network �ow problem.

There are extensions of the basic algorithm to graphs with maximum degree greater
than four. Further information concerning this extensions can be found in [119].

2

Algorithms for Nonplanar Graphs

Nonplanar graphs are usually solved heuristically using a planarization approach. After
computing a maximum or maximal planar subgraph we can use an algorithm for pla-
nar graphs to compute a combinatorial embedding. Afterwards the remaining edges are
reinserted while trying to keep the number of crossings low.

In addition to this approach there are two more widespread techniques, the so called
spring embedder method and the hierarchical method.

Spring embedders were introduced by Eades in [61]. The graph is interpreted as a physical
system. Vertices are balls that repel each other and edges are modeled as springs between
the balls. The preferred edge length can be in�uenced by changing the virtual spring
constant of each edge. The algorithm tries to reach a state of minimum energy by moving
the edges alongside their resulting force vector. Since crossings do not in�uence the overall
energy of the system, the quality in respect to the number of crossings is usually poor,
even for planar graphs.

The hierarchical method goes back to Sugiyama, Tagawa and Toda (see [121]). Their
method works in three steps.

1. Assign vertices to layers such that no two adjacent nodes are placed at the same
layer

2. Find a permutation of the nodes for each layer such that the number of crossings is
minimized.

3. Compute the actual coordinates of the vertices. The nodes of a single layer are
usually drawn on a straight line.

1.1.2 VLSI Design

VLSI Design (Very Large Scale Integration) deals with the layout of integrated circuits
on a single chip. We can understand a chip layout as a collection of components that are
connected by wires. One of the major problems in the design phase are crossings of wires.
A widely used method is based on a two-layer approach.

Components are placed on one layer and crossings between wires are resolved by
routing one of the wires to the second layer immediately before the crossing. After the
wire has passed the crossing point it can be routed back to the primary layer.

The changes between the two layers are realized by using contact cuts. They occupy
a large area and thus increase the total size of the layout. Moreover, the total edge length
grows usually with the number of crossings and the wires tend to cross-talk at these points.
This means that a change of the signal at one wire in�uences the voltage on the second
wire which decreases the reliability of chips. Thus minimizing the number of crossings is
one of the most important steps in the layout phase.

The work by Leighton [126] has shown that the crossing number of a graph can be used to
obtain a lower bound on the amount of chip area required by that graph in a VLSI circuit
layout. Chang [31] proposed an algorithm for minimizing vias in multi-layer circuits,
which is a transformation of the minimal crossing problem.

3

1.2 Guide to this thesis

In chapter 2, we de�ne basic terms from graph theory necessary for further reading of this
thesis. We introduce the Crossing Number Problem and investigate its properties such
as complexity and approximation bounds. We also present other variants of the crossing
number which, though still NP-hard, can be used to obtain approximate values for the
general crossing number satisfying speci�c restrictions.

Chapter 3 serves as an introduction to algorithmic solutions of the general Crossing Num-
ber Problem.

In chapter 4, we present algorithms for computing an exact value of the general crossing
number. Some are simple branch-and-bound techniques, others combine the branch-and-
bound method with a cutting plane approach in order to solve mathematical programming
formulations of the problem.

In chapter 5, we describe approximation algorithms for computing the crossing number
for bounded degree graphs, since there is no known polynomial time algorithm for general
graphs. This approach is based on the bisection width concept using estimators in every
node of the decomposition tree to obtain an O(α2(n)log n)-approximation of the minimum
drawing size, i.e. cr(G) + n, where n is the number of vertices of the graph G and cr(G)
its crossing number.

Heuristic algorithms are introduced in chapter 6. One of the most important methods for
solving the Crossing Number Problem heuristically represents the planarization approach.
It consists of two NP-hard problems which are thoroughly discussed in chapters 7, and 8,
respectively. In chapter 6, we also present another heuristic algorithm for computing the
crossing number on complete graphs based on the scheme of Simulated Annealing.

Computing the maximum planar subgraph, i.e., the �rst phase of the planarization ap-
proach, is discussed in chapter 7. We present numerous exact, approximation, and heuris-
tic algorithms with two computational studies evaluating the performance of the heuris-
tics.

In chapter 8, we discuss the second phase of the planarization approach, i.e., reinserting
edges deleted in order to obtain a maximum planar subgraph bach into the graph.

In chapter 9, we present algorithms for computing the rectilinear crossing number where
edges are shall be drawn as straight lines.

Various exact and heuristic algorithms for computing the (�xed) linear crossing number
are analysed in chapter 10. Moreover, we present an empirical evaluation of the heuris-
tics known from literature in comparison with our two proposed heuristics based on the
simulated annealing scheme.

In appendix A, we present some background knowledge from the theory of linear pro-
gramming. Appendix B provides some basic de�nitions and theoretical results concerning
two interesting data structures used in several algorithms discussed in this thesis, i.e., the
SPQR-trees and the PQ-trees.

4

2 Graphs and crossing number

This chapter provides a short introduction to the graph theory necessary for understanding
the graph theoretical aspects of this thesis. Some basic notions, de�nitions and properties
of graphs are given.

Next, we de�ne the Crossing Number Problem and its connection to other NP-hard
problems serving as a measure of planarity, and present some basic results concerning
the complexity of the problem and its approximation bounds. This chapter ends with an
overview of other variants of the Crossing Number Problem.

2.1 Preliminaries

A graph G(V, E) consists of a vertex set V and an edge set E. The order of G is |V | = n
and the size is |E| = m. An edge is a pair of vertices, drawn as a line between them.
Two vertices u, v ∈ V are adjacent if and only if there is an edge e = {u, v} ∈ E. A graph
has multiple edges if there exist edges e1, e2, . . . , ei ∈ E, i ≥ 2, where e1 = e2 = . . . = ei =
{u, v} for some vertices u, v. An edge {u, u} is called a loop. See Figure 2.

Figure 2: [204] Graph with multiple edges and loops.

A graph is �nite if both vertex- and edge-sets are �nite. A graph is simple if there
are no loops or multiple edges in the graph. Only �nite, simple graphs will he considered
in this thesis.

If the graph G is directed, the edges are ordered pairs, written (u, v) where the direction
is from u to v. A directed edge is drawn as an arrow, u being the tail and v the head,
(u, v) is an outgoing edge of u and an incoming edge of v. The degree of a vertex is the
number of edges adjacent to it. For directed graphs, a vertex has out-degree and in-degree
equal to the number of its outgoing and incoming edges, respectively.

A path from u to v, {u, e1, u1, e2, ..., uk−1, ek, v}, is a sequence of vertices and edges in which
all vertices are distinct and all edges ei ∈ E. For directed graphs, the edges must have
the same direction as the path. That is, ei = (ui−1, ui), for all i = 1, ..., k, u = u0, v = uk.
If v = u, we have a cycle.

A graph is connected if there is a path between every pair of vertices. A graph is
biconnected if there are two vertex disjoint paths between every pair of vertices. A vertex
is a cut vertex if its removal disconnects the graph.

A connected graph is a tree if every vertex of degree higher than one is a cut vertex
(Figure 3). The vertices of a tree are called nodes.

Rooted trees are drawn as the middle tree in Figure 3, with the root on top. Rooted
trees are considered to be directed in direction from the root. Thus, the root is the single
node in a tree with no incoming edges.

5

Nodes with no outgoing edges are called leaves, and nodes with both incoming and
outgoing edges are called internal. The root is the ancestor of all nodes below it, and
they are the descendants of the root. Leaves are their own descendants.

A node, not root, and all its descendants de�ne a subtree, with the node as root of the
subtree, (Figure 3). The immediate ancestor and descendants of a node are often referred
to as parent and children. Nodes that are children of the same parent are siblings.

Figure 3: [204] The two �rst trees are the same graph, but the latter is rooted.

A graph is complete on n vertices, denoted Kn, if there is an edge between every pair of
vertices.

A bipartite graph is a graph G(V1 ∪ V2, E), with V1 ∩ V2 = ∅, where for every edge
(u, v) ∈ E, u ∈ V1 and v ∈ V2 or vice versa.

A bipartite graph is complete if every vertex in V1 is adjacent to every vertex in V2.
If |V1| = n1, and |V2| = n2, the graph is denoted Kn1,n2 .

A H(V ′, E ′) ⊆ G(V, E) have V ′ ⊆ V and E ′ ⊆ E. A connected subgraph with exactly
n − 1 edges is called a spanning subtree of G. For a non planar graph G, if H is planar,
it is called a planar subgraph.

If no edge from E − E ′ can be added to H without destroying planarity, it is a
maximal planar subgraph. The largest of all such subgraphs of G with respect to E ′, is
the maximum planar subgraph of G. A subgraph H(V ′, E ′) where V ′⊂V and E ′ contains
all edges (u, v) ∈ E where u, v ∈ V , is called an induced subgraph on V.

The maximal biconnected subgraphs of a graph is called its biconnected components
or blocks. A biconnected graph has exactly one biconnected component.

A subdivision of an edge e = (u, v) is the insertion of a new vertex w on e, dividing e into
e1 = (u, w) and e1 = (w, v).

One graph is a homeomorph of another, if the �rst can be obtained from the second
by a sequence of subdivisions of edges.

2.1.1 Drawing of a graph

A drawing D of a graph G on a surface S consists of placing the vertices of G on S
and drawing the edges of G using the continuous curves of S between the corresponding
vertices, such that no curve has a vertex as an internal point and no point is an internal
point of 3 curves.

6

We also speak about the images of vertices as vertices, and about the curves as edges.
We say that two edges in a drawing cross in a certain point of the plane, or the point
is a crossing point of the two edges, if this point belongs to the interiors of the curves
representing the edges.

The number of crossings cr(D) in the drawing D is the sum of the number of crossing
points for all unordered pairs of edges.

A drawing is good when the following conditions hold:

(i) an edge does not cross itself,

(ii) any intersection of two edges is a crossing rather than tangential,

(iii) edges with common endpoints do not cross,

(iv) no three edges have a common crossing, and

(v) any pair of edges cross at most once.

Notice that if (iv) fails and some k curves cross each other in an otherwise normal
drawing in a single point, then this situation can easily be transformed locally into a
normal drawing where any two of the k curves cross each other locally once, and the
number of crossings in the drawing does not change.

It is a easy to show, for any graph G, there is a good drawing of G having the minimum
number of crossings. Two drawings are isomorphic if there is a homeomorphism from one
to the other such that vertices are mapped to vertices.

The crossing number cr(G) of the graph G is the minimum of cr(D) over all drawings of
G. We call a drawing D optimal (for cr) if it realizes cr(D) = cr(G). Thus, we have an
equivalent de�nition of cr(G): the minimum of cr(D) over all good drawings of G.

2.1.2 Embedding of a graph

For our purposes, a compact-orientable 2-manifold or simply a surface, may be thought of
as a sphere or a sphere with handles. The genus of the surface is the number of handles.

An embedding of a graph G on a surface S is a drawing of G on S in such a manner
that edges intersect only at a vertex to which they are both incident.

A region in an embedding is called a 2-cell if any simple closed curve in that region
can be continuously deformed or contracted in that region to a single point.

An embedding is called a 2-cell embedding if all the regions in the embedding are
2-cell. An algebraic description of a 2-cell embedding was given by Dyck [59] and He�ter
[99]. This description is referred to as a Rotational Embedding Scheme.

De�nition 1 (Good embedding). We call an embedding of graph G on a surface S of
genus g a good embedding if it satis�es the following conditions:

(i) all vertices of the graph are given as distinct points in S;

(ii) no two edge crossings happen in the same point in S;

(iii) for any edge no vertex of the graph, except the endpoints of the edge, is situated
on the edge.

The relationship between the number of regions of a graph and the surface on which it is
embedded is described by the well-known generalized Euler's Formula [32]:

7

Theorem 1. Let G be a connected graph with n vertices and m edges with a 2-cell em-
bedding on the surface of genus g having f regions. Then: n−m + f = 2− 2g.

2.1.3 Combinatorial embedding

In the current de�nition, we allow drawings with arbitrary curves for edges. How would
these be stored in a computer, i.e., represented in a discrete way? One option is to store
vertices as points and declare edges as straight lines.

Another is to represent planar graphs via what is called a combinatorial embedding.
This concept actually exists for all graphs, whether planar or not, but is equivalent to
planar graphs in a special case.

De�nition 2 (Combinatorial embedding). Let G be a graph. A combinatorial em-
bedding of G is a set of orderings Πv for each vertex v ∈ V , where Πv speci�es a cyclic
ordering of edges incident to v.

If we are given a drawing of a graph (with crossings or without), then this always
implies a combinatorial embedding, by taking the clockwise order of the edges incident
to each vertex. On the other hand, if we are given a combinatorial embedding, then it is
easy to create a drawing (with crossings, possibly) such that the combinatorial embedding
exactly corresponds to the clockwise order of edges at each vertex. Figure 4 shows an
example of a combinatorial embedding.

Figure 4: [1] A combinatorial embedding of a graph, and a drawing that respects it.

A graph is called planar when it admits a drawing into the plane without edge-crossings.
There are in�nitely many di�erent drawings for every planar graph, but they can be
divided into a �nite number of equivalence classes. We call two planar drawings of the
same graph equivalent when the sequence of the edges in clockwise order around each
vertex is the same in both drawings. In this case they realize the same combinatorial
embedding.

In general, a planar graph can have an exponential number of combinatorial embed-
dings, see Figure 5. A combinatorial embedding also de�nes the set of cycles in the graph
that bound faces in a planar drawing.

An alternative de�nition of a combinatorial embedding is de�ned as a clockwise or-
dered list of adjacent neighbors for each vertex v ∈ V. When, in addition, the outer face
is �xed, the combinatorial embedding is also called a planar embedding of G.

8

Figure 5: Three embeddings of K4, (c) with the four faces marked.

The complexity of embedding planar graphs has been studied by various authors in the
literature [16, 17, 24]. Given a planar graph, a combinatorial embedding can be computed
in linear time [33, 143].

2.1.4 Properties of planarity and non-planarity

As stated earlier, a planar graph, by de�nition, has a planar embedding, and any planar
embedding shows the number of faces of the graph. Then, by the Euler's polyhedral
formula, we have: n−m + f = 2.

In a planar embedding of a maximal planar graph every face must be a triangle, the
number of edges in such a graph is thus m = 3n− 6. Hence any graph on n vertices with
m > 3n− 6 edges is non-planar.

Another famous and important result, this time on non-planarity, was published in 1930
by Kuratowski [123]. It is known as the Kuratowski Theorem.

Theorem 2. A graph G is nonplanar if and only if there is a subgraph of G which is
homeomorphic to either K3,3, or K5.

This is why K5 and K3,3 often are called Kuratowski graphs. K5 and K3,3 are the smallest
non planar graphs.

2.2 Degrees of non planarity

There are several NP-hard problems that relate to the degree of non-planarity of a given
graph. Although the primary scope of this work are methods for solving the Crossing
Number Problem, we de�ne and give some theoretical results for four such problems:
Crossing Number, Skewness, Thickness and Splitting Number.

All four can be viewed as measures of non-planarity of a graph G and are somewhat
related in the way they may be heuristicly solved, as a heuristic solution for one problem
may provide a heuristic solution for the other [204].

2.2.1 The crossing number

The crossing number cr(G) is the minimum number of edge crossings in any possible
embedding of G.

9

Figure 6: [204] K5 and K3,3 with their respective homeomorphs.

If the drawing is required to have only straight lines, we get the rectilinear crossing
number cr(G). Naturally, cr(G)≥cr(G). Since any planar graph can be embedded using
only straight lines [71], cr(G) = cr(G) = 0 for G planar.

The Crossing Number Problem [79, 80] is the problem of determining, for a given integer
k, whether a graph G can be embedded in the plane with k or fewer pairwise crossings
of the edges (not including the intersections of the edges at their common endpoints).
Formally, the Crossing Number Problem is the decision problem:

Problem 1 (Crossing Number). Given a graph G and an integer k, is cr(G) ≤ k?

Garey and Johnson [80] proved it NP-complete, which makes the optimization ver-
sion of crossing number NP-hard, as we will show in section 2.3, where we discuss the
complexity of the Crossing Number Problem in further detail.

The Crossing Minimization Problem is the problem of �nding an embedding of a graph
in the plane with the minimum number of edge crossings.

2.2.2 The skewness

The skewness number or just skewness sk(G) of a graph G(V, E) is the minimum number
of edges whose removal makes G planar. Thus, if E ′ is a set of such edges, sk(G) = |E ′|.
If E ′ is given, the resulting subgraph H(V, E −E ′) is a maximum planar subgraph or G.
For G planar, sk(G) = 0 and H = G.

Finding the Skewness of a graph was shown NP-hard by Liu and Geldmacher in [136].

2.2.3 The thickness

The thickness of a graph, th(G), is the smallest number of planar subgraphs of G whose
union is G. For G planar, th(G) = 1, since it is its own planar subgraph.

The Thickness Problem is NP-hard, for a proof see [139]. A more complete historical
review and further references can be found e.g. in [193].

10

2.2.4 The splitting number

The splitting number of a graph G is the smallest integer k ≤ 0, such that a planar graph
can be obtained from G by k splitting operations. Such operation replaces a vertex v by
two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2.

In [69], Faria, de Figueiredo and Mendonça proved that the Splitting Number decision
problem is NP-complete. As a consequence, [69] obtained that Maximum Planar Subgraph
Problem remains NP-complete when restricted to graphs with maximum degree 3, to
graphs with no subdivision of K5, or when restricted to cubic graphs.

2.2.5 Some relationships between these problems

The problems discussed above all try to give a numerical value for how far a non planar
graph is from planarity. Since all these problems are NP-hard, no exact, polynomial
algorithms are known for the general graph. Vollen [204] proposed an intuitive heuristic
for skewness is proposed, based on a solution to or estimate of the crossing number.

Given a heuristic or accurate algorithm for the maximum planar subgraph problem, a
straight forward heuristic for the thickness problem is to repeatedly apply the planar
subgraph algorithm and remove this subgraph, until the graph is empty [204].

The thickness estimate is then the number of maximum or maximal planar subgraphs
extracted [42]. The connection between the thickness th(G) and crossing number cr(G)
is given by the relation th(G) ≤ cr(G) + 1.

As shown in [204], an algorithm for crossing number that also determines the edges in-
volved in each crossing can give a heuristic result for the skewness number.

Assume that each edge has received a set of (pointers to) crossing edges by the crossing
number algorithm. Edges are then given a priority according to the number of crossings
they are involved in. Edges with priority > 0 are put in a priority queue, the rest are left
in the planar subgraph.

Each edge that is removed from the front of the queue, is counted in the skewness
number. When no longer part of the graph, the priority of the edges it crosses with, is
decremented by 1. Edges fall out of the queue and into the planar subgraph when their
priority reaches zero.

2.3 Complexity of the crossing number problem

NP-complete problems are a class of decision problems that are considered to be in-
tractable. In other words, solutions to these problems probably will not be found by
using a polynomial time algorithm. Although it has not been proven whether or not NP-
complete problems are truly intractable, it would appear that a major breakthrough will
be necessary to solve them in polynomial time, for more information on NP-completness
see e.g. [79, 109]. In this section, we show that the crossing number problem is NP-hard.

2.3.1 Crossing number is NP-complete

As de�ned, the Crossing Number Problem is in NP. One need only guess the k or fewer
crossings (and the order in which they occur along edges involved in more than one

11

crossing), create a new �crosspoint� vertex for each, replace each edge involved in one or
more crossings by a path that contains all the crosspoint vertices associated with that
edge in the appropriate order, and then test the resulting graph for planarity.

Note that the above approach also allows us, for any �xed value of k to test whether
cr(G) ≤ k in polynomial time (the degree of the polynomial depending on k. The algo-
rithm guesses l ≤ k pairs of edges that cross and tests if the graph obtained from G by
adding a new vertex at each of these edge crossings is planar. The running time of this
algorithm is nΘ(k)[88].

Garey and Johnson have proved that the general Crossing Number decision problem:
�Given G and an integer k is cr(G) ≤ k?�, is NP-complete [79] and hence likely to be
intractable.

To prove that the Crossing Number Problem is NP-complete, one must show that a
known NP-complete problem can be transformed to it. The �known� NP-complete prob-
lem for Garey and Johnson [81] was the Optimal Linear Arrangement Problem: �Given a
graph G = (V, E) and an integer k, is there a one-to-one function f : V → {1, 2, . . . , |V |}
such that

∑
(u,v)∈E |f(u)− f(v)| ≤ k?�

Theorem 3 (Garey, Johnson [80]). There is a polynomial reduction of OLA to the
Crossing Number Problem.

A quick look at the reduction in [80] reveals that the constructions used involve
(many) parallel edges. Since crossing number of a graph is not changed under subdivision
of edges, the natural workaround is to subdivide the parallel edges. However, that yields
large collections of nontrivial 2 cuts. This gives rise to a very natural question: is the
Crossing Number Problem NP-complete even for 3 connected simple graphs? Hlin¥ný
proved the following result:

Theorem 4 (Hlin¥ný [102]). The Crossing Number Problem is NP-complete for 3-
connected (simple) cubic graphs.

2.3.2 Crossing number is �xed-parameter tractable

Downey, Fellows, Niedermeier and Rossmanith[56] raised the question if the crossing-
number problem is �xed parameter-tractable, that is, if there is a constant c ≥ 1 such that
for every �xed k the problem can be solved in time O(nc).

Grohe [88] answered this question positively with c = 2. In other words, he has
shown that for every �xed k there is a quadratic time algorithm deciding whether a given
graph G has crossing number at most k. However, the constant factor of this algorithm
is double-exponential in k, which makes it useless for practical purposes.

2.3.3 Crossing number on graphs with bounded tree-width

Generally speaking, many known results show that hard algorithmic problems become
easy for graphs of bounded tree-width. So, how di�cult is it to determine crossing number
of a given graph of bounded, tree-width (or path-width, or even bandwidth)?

The pessimistic point of view is supported by two observations. The �rst considers
OLA, which is reducible to the Crossing Number Problem and for which there has been

12

a long and so far infructuous quest for a polynomial algorithm for graphs with bounded
tree-width (of path-width).

The other considers the reduction of the Bandwidth Problem, NP-complete even on
graphs with bounded tree-width, to Unsaturated Drawing Problem [103], where the latter
is naturally related to the Crossing Number Problem.

Not surprisingly, exact crossing numbers are in general very di�cult to compute. As a
consequence, future research into crossing numbers will be justi�ed in focusing on inexact
methods that only estimate crossing numbers, and the quest for exact values of cr(G) will
have to be restricted to promising special cases.

Dealing with such a di�cult-to-compute parameter, structural theorems are most
valuable, but such results have been proved hard to come by. Those include, among
others, investigations on crossing-critical graphs (see [101, 168]) and general bounds for
crossing numbers of graphs (see for instance [159]).

2.4 Known bounds

Much of the literature falls into one of two categories: the �rst investigates exact values
of crossing numbers or makes lower bounds on crossing numbers based on information on
the crossing number of a certain small graph, the second tries to prove bounds based on
structural properties of the graph [186]. The �rst is called the theory of small graphs, the
second is called the theory of large graphs.

2.4.1 Theory of small graphs

During the early history of crossing numbers the theory of small graphs existed only.
For more information on the early history and the theory of small graphs, see White
and Beineke [209], for the modern history and the theory of large graphs, see Shahrokhi,
Sýkora, Székely and Vr´o [178], and for the most recent results see Pach [157].

Zarankiewicz's conjecture

The Turán's Brick Factory Problem is: what is the crossing number cr(K n,m) of the
complete bipartite graph K n,m ?

Place bn
2
c vertices to negative positions on the x -axis, bn

2
c vertices to positive positions

on the x -axis, bm
2
c vertices to negative positions on the y-axis, bm

2
c vertices to positive

positions on the y-axis, and draw nm edges by straight line segments to obtain a drawing
of K n,m. It is not hard to check that the following formula gives the number of crossings
in this particular drawing: bn

2
cbn−1

2
cbm−2

2
cbm−3

2
c.

Zarankiewicz's Crossing Number Conjecture is that the drawing described above is
optimal. In 1963, P. Kainen and G. Ringel found an error in the induction argument
of the proof. Nevertheless it can be used as an upper bound for the crossing number of
a comptete bipartite graph. Kleitman [127] veri�ed this conjecture in the special case
min{m, n} ≤ 6, and Woodall [160] for min{m, n} ≤ 7.

Guy [95] conjectured that the crossing number cr(K n) of the complete graph K n is equal
to Z(n) = ¼ bn

2
cbn−1

2
cbn−2

2
cbn−3

2
c. He proved this for n≤ 10 and also determined that,

13

Figure 7: [67] Drawing of K7,7 with a minimum number of 81 crossings using
Zarankiewicz's rule.

for n = 4, 5, 6, 7, 8, the number of optimal drawings of K n is 1, 1, 1, 1, 5, 3, respectively
[169].

Pan and Richter [163] constructed an algorithm by which they have shown that
cr(K 11) = Z (11). In particular, they determined that K 9 and K 10 have 3080 and 5679
optimal drawings, respectively. Along the way, they showed that every good drawing of
K n induces a 3-connected planar graph. The main theoretical result they obtained is the
following:

Theorem 5 (Pan and Richter [163]).

1. For n ≤ 8, any optimal drawing of Kn contains an optimal drawing of Kn− 1.

2. Any optimal drawing of K9 contains a good drawing of K8 with at most 20 crossings.
Any good drawing of K8 with at most 20 crossings contains an optimal drawing of
K7.

3. Any good drawing of K11 with fewer than 100 crossings contains a good drawing of
K10 with at most 62 crossings. Any good drawing of K10 with at most 62 crossings
contains an optimal drawing K9.

It is usually not hard to come up with drawings of graph whose optimality is intuitively
clear. The di�culty lies in proving matching lower bounds for the crossing numbers.

General bounds

The simplest lower bound for the crossing number of a simple graph with n ≥ 3 vertices
and m edges is cr(G) ≥ m−3n+6. Since any simple planar graph cannot have more that
3n− 6 edges, this immediately follows from Euler's polyhedral formula, and already gives
cr(K5) ≥ 1. A counterpart of this formula for triangle-free graphs cr(G) ≥ m − 2n + 4,
which proves cr(K3,3) ≥ 1. Both these formulas can give interesting lower bounds for
small graphs only, since the magnitude of the crossing number can be as large as m2.

14

Leighton [127] used induction on the number of nodes to show the following lower
bound for m ≥ 4n, where n denotes the number of vertices and m the number of edges:

cr(G) ≥ 1

100

m3

n2

. In [3], Ajtai et al. obtained the same result independently with a smaller constant of
1

375
.
In [67], Erdös and Guy have shown the following lower bound for cr(Kn):

cr(Kn) ≥ 1

80
n(n− 1)(n− 2)(n− 3).

Apart from bounds with respect to the number of vertices and edges we can try to obtain
lower bounds from other properties of a graph, e.g., the skewness, bisection width or
cutwidth.

Let sk(G) be the skewness of graphG. Each of the removed edges produces at least one
crossing, hence it is not di�cult to see that cr(G) ≥ sk(G) for any graph G. Cimikowski
showed in [41] that a planar graph can have skewness one, but an arbitrary high Crossing
Number.

E�cient lower bounds are obtained using the bisection width concept. The bisection
width of a graph G = (V, E) is the minimum number of edges whose removal divides
G into two parts having at most 2|V |/3 vertices each. Leighton [127] proved that in any
n-vertex graph G of bounded degree, the crossing number satis�es

cr(G) + n = Ω(bw2(G)).

This bound was extended to

cr(G) +
1

16

∑
v∈V

d2
v ≥

1

40
bw2(G)

in [158, 185], where dv is the degree of any vertex v ∈ V .
In [55], Djidjev and Vr´o improved this bound by replacing the bisection width with

a larger parameter - the cutwidth of the graph.

Unfortunately there are nearly no known general upper bounds for cr(G). The only bound
can be obtained from the observation that the crossing number of a graph G with n nodes
cannot exceed the crossing number of the complete graph K n. Hence we have

cr(G) ≤ cr(Kn) ≤ bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c.

The standard counting method

A basic technique to obtain a lower bound for the crossing number of a larger graph from
that of a sample graph is the standard counting method.

Take a hypothetical (good, optimal) drawing of the large graph, �nd many copies of
the sample graph in it, each exhibiting as many crossings as its crossing number. Add

15

up those numbers, and divide by the largest multiplicity with which a crossing may have
been counted in di�erent copies of the sample graph [186]

Graph minors

The graph minor community also has an interest in crossing numbers. Their usual ap-
proach is characterization in terms of excluded minors.

Robertson and Seymour [172] calls a graph H singly crossing provided H is a minor
of a graph that can be drawn on the sphere with at most one crossing. They show that
a graph is singly crossing if and only if it does not have one of 41 explicitly given graphs
as a minor.

2.4.2 Theory of large graphs

The modern history started with Leighton's thesis [127]. Leighton introduced methods to
set lower bounds for crossing numbers which instead of crossing numbers of small graphs,
depended on certain parameters of the large graphs. He introduced three methods that
become classic: lower bounds in terms of number of edges, bisection width, and graph
embedding.

For more on the results concerning the number of edges, see, for example [2, 3, 67,
127, 162, 159], a survey of results on the bisection width and graph embedding can be
found in [178], for the results concerning random graphs, see [161, 182].

2.5 Other crossing numbers

Considering the way, how a graph is embedded on a surface, we recognise several variants
of the crossing number problem. The most signi�cant are the rectilinear crossing number,
(�xed) linear crossing number, book crossing number and k-layer crossing number.

In [160], Pach and Tóth introduced two new variants of the crossing number problem:
The pairwise crossing number crpair(G) is equal to the minimum number of unordered

pairs of edges that cross each other at least once, (i.e., they are counted once instead of
as many times they cross), over all normal drawings of G ; and

The odd crossing number crodd(G) is equal to the minimum number of unordered pairs
of edges that cross each other odd times, over all normal drawings
of G.

In Tutte's work [202], another kind of crossing number is implicit:
The independent-odd crossing number criodd(G) is equal to the minimum number of

unordered pairs of non-adjacent edges that cross each other odd times, over all normal
drawings of G.

The following chain of inequalities is obvious from the de�nitions [157]:
criodd(G) ≤ crodd(G) ≤ crpair(G) ≤ cr(G)

16

2.5.1 Rectilinear crossing number

The rectilinear drawing D(G) of a graph G is a con�guration of G on the plane in such
a way that every edge is composed of horizontal and vertical line segments. Often the
plane is seen as a rectangular grid.

Rectilinear crossing minimization looks for an embedding of a graph G with the minimum
number of edge crossings, where the edges are represented as straight lines. This minimum
number of edge crossing is called the rectilinear crossing number [66, 108, 160, 182].

Problem 2 (Rectilinear Crossing Number). Given a graph G = (V, E), integer
k ≥ 0, decide whether cr(G) ≤ k?

Fáry's theorem [71] telling that planar graphs can be drawn using straight line segments for
edges and Zarankicwicz's Crossing Number Conjecture may suggest that optimal drawings
can be done using straight line segments for edges. This is not the case.

Guy showed that �rst for K9 [95], and later Bienstock and Dean [15] exhibited a series
of graphs with crossing number 4, whose rectilinear crossing numbers are arbitrary large.
On the other hand, they proved that any graph G for which cr(G) ≤ 3 must also satisfy
cr(G) = cr(G), as an extension of the Fáry's theorem. This yields that cr(G) ≤ cr(G).

Using the proof in [80], it can be shown that computing the rectilinear crossing number
is NP-hard. This problem is not yet known to be in NP, for the (cartesian) coordinates
of the vertices in a drawing can be assumed to be rational, and thus, integral.

We remark that practically every paper on crossing numbers has in fact also dealt with
rectilinear crossing numbers (the latter sometimes used to approximate the former).

2.5.2 Linear crossing minimization

We call an embedding of a given graph linear embedding, when it satis�es the following
conditions:
(i) the vertices are placed on a horizontal line l, and

(ii) the edges are drawn by semicircles (see Figure 8).

We call this type of embedding a linear embedding.

We can consider the linear crossing minimization problem with an additional con-
straint,
(iii) the positions of the vertices on l are predetermined.

The Fixed Linear Crossing Minimization Problem is the problem of �nding a linear em-
bedding of a graph with the minimum number of edge crossings under a speci�ed vertex
ordering. We call the problem of �nding such an embedding with no vertex ordering
speci�ed the Free Linear Crossing Minimization Problem.

Furthermore, we de�ne the Free Linear Crossing Number Problem to be that of determin-
ing, for a given integer k, whether there is a linear embedding of a graph with k or fewer
edge-crossings. When a vertex ordering is speci�ed, we call it the Fixed Linear Crossing
Number Problem.

17

Figure 8: [141] (a) A simple graph G. (b) A linear embedding of G.

2.5.2.1 Fixed linear crossing number

Let f : V → {1, 2, . . . , |V |} be a one-to-one function. We call an embedding G′ of G in
the plane an f -�xed linear embedding, or simply an f -linear embedding, if

(i) each vertex v ∈ V is placed on the x-axis l with x-coordinate f(v),

(ii) the edges in E are drawn by semi-ellipses, and

(iii) the semi-ellipses for nonparallel edges intersect in at most one point.

Problem 3 (Fixed Linear Crossing Number). Given a graph G = (V, E), integer
k ≥ 0 and one-to-one function f : V → {1, 2, . . . , |V |}, decide whether crf (G) ≤ k?

The special case of this problem in which k = 0 can easily be solved. Suppose
V = {v1, v2, . . . , vn} and f(vi) = i for i = 1, 2, . . . , n. It is obvious that crf (G) = 0 if
and only if graph (V, E ∪ {(vi, vi+1)|i = l, 2, . . . , n − l} ∪ {(vn, v1)}) is planar. Thus, one
can solve the problem in linear time by using one of the existing graph planarity testing
algorithms [19, 104]. In the general case the Fixed Linear Crossing Number Problem is
NP-complete.

The Linear Crossing Number Problems are related to the Book Embedding Problems [11,
35] which have recently attracted considerable attention.

2.5.3 Book crossing number

Informally, a drawing of an undirected graph G = (V, E) in the book consists of an
ordering of the vertices on the spine and then drawing each edge of the graph in one page
of the book with a curve, such that any curve has only its two end-points on the spine
and no three curves intersect in one point unless it is an end-point in common.

The spine of the book is a line. Each page is a half-plane that has the spine as its
boundary. One can assume with no loss of generality that the curves for drawing the
edges are half-circles.

18

For a drawing D of G on a k -page book, let crk(D) denote the number of edge
crossings in D. The book crossing number crk(G) is the minimum number of crossings
among all k -page book drawings of G.

Problem 4 (Book Crossing Number). Given a graph G, a k-page book and an integer
K>0, decide whether there is a k-page book drawing of graph G with less than or equal to
K crossings?

A book embedding of a graph is an embedding in a book with the vertices placed on the
spine and the edges on the pages such that no two edges drawn on the same page cross
each other.

The Book Embedding Problem is the decision problem: whether a given planar graph
can be embedded in a k-page book, so that no crossings occur.

The problem of embedding a graph in a book may be solved intuitively in the following
way:

1. Embed the graph so that its vertices lie on a circle and its edges are chords of the
circle, see Figure 9.

2. Assign the chords to layers so that edges on the same layer do not cross.

3. Cut the circle between two vertices and open it to form a line of vertices.

Figure 9: [18] Graph G embedded on a circle.

To embed the graph G in a book we have to solve two main problems [35]:

(i) Finding a Hamiltonian cycle in G or in some edge augmentation of G (that is, a
graph obtained by adding new temporary edges) such that the embedding will be
optimal. The order of the vertices in the cycle is equal to the order along the spine.

(ii) Assigning the edges of G to a minimum number of pages in some noncrossing man-
ner.

We call the Book Embedding and Crossing Number Problems �xed or free depending on
whether the vertex ordering on the spine is speci�ed or not.

The page number or book thickness of G, denoted by p(G) is the smallest k so that G
can be drawn on a k -page book with no edge crossings.

19

The �xed book thickness of a graph G is the least integer k such that G can be
embedded into k pages under a speci�ed vertex ordering. For example, the �xed book
thickness of the graph of Figure 8(a) is 4 if the vertices must be placed on the spine in
ascending order of their subscripts (see Figure 10).

Figure 10: [141] A four page embedding of the graph shown in Figure 8(a).

Graphs with page number one are exactly the outerplanar graphs. Graphs with
pagenumber two are the subhamiltonian planar graphs: these are the subgraphs of planar
Hamiltonian graphs. As there are triangulated (maximal) planar graphs which are not
Hamiltonian, this implies that there are planar graphs which require at least three pages
[213].

Berhart and Kainen conjectured that planar graphs have unbounded pagenumber,
but this was disproved in [23] and [98]. Yannakakis has shown that the right number is
four. That is, he gave an algorithm which embeds all planar graphs in four pages; the
algorithm runs in linear time. And conversely, he has shown that there are planar graphs
which cannot be embedded in three pages. [213]

The Book Crossing Number Problem is NP-complete [210, 35]. It deals with two sub-
problems both of which are NP-complete, at least for general graphs [78], the problem of
�nding a good vertex order and the problem of embedding the edges optimally for a �xed
node-embedding.

The Book Embedding Problem is also NP-complete already for a 1-page book. Note
that in this case the crux of the problem is in the node-embedding part, as once this is
�xed, it is easy to tell whether the edges can be embedded in two pages [210, 35].

Determining the Fixed Book Thickness of graphs is NP-hard, since it is equivalent to
Coloring Circle Graphs [35], which was proven to be NP-hard in [78]. Both of the Book
Crossing Number and Graph Thickness Problems are NP-complete for the general case
[80, 109], and they have the planarity testing problem, which is solvable in linear time
[19, 104], as their common subproblem.

20

2.5.3.1 1-page crossing number

In [35], Chung, Leighton and Rosenberg proved that a graph can be embedded in a one-
page book if and only if it is outerplanar. A graph G is outerplanar if its vertices can
be placed on a circle so that its edges become noncrossing chords of the circle. If G is
outerplanar and is laid out on a circle, then cutting the circle between any two vertices
and opening it out to form a line yields a one-page embedding of G.

A convex drawing of G is a rectilinear drawing in which the vertices are placed in the
corners of a convex n-gon, see Figure 11. Convex crossing numbers (also called outer-
planar crossing numbers) were �rst introduced by Kainen [115] in connection with the
Book Thickness Problem.

Let cr(G) and cr∗(G) denote the rectilinear crossing number and the convex crossing
numbers of G, respectively. Clearly cr(G) ≤ cr(G) ≤ cr∗(G). In particular, it is well
known that cr(K8) = 18 < cr(K8) = 19. (Note that cr∗(K8) =

(
8
4

)
= 70). In terms of the

k -page crossing number crk[178, 180], it is obvious that cr∗(G) = cr1(G) for every graph
G.

Figure 11: [179] The 4x4 cylindrical grid and its convex and one-page drawings.

Also, in [180] the following result and a greedy algorithm are given for constructing a
k -page drawing of G from a 1-page drawing with the indicated number of crossings:

Theorem 6.

crk(G) ≤ cr1(G)

k

2.5.3.2 2-page crossing number

A graph is sub-Hamiltonian if it is embeddable in the plane so that:

21

1. Its vertices lie on a circle.

2. Each of its edges lies either totally within the circle or totally outside it.

3. No edges cross in the layout.
A graph G admits a two-page embedding if and only if it is sub-Hamiltonian, i.e., a
subgraph of a planar Hamiltonian graph [35]. If G is sub-Hamiltonian and is laid out on
a circle, then cutting the circle between any two of G′ vertices and opening it out yields
a planar embedding of G in a line, with each edge lying either totally above the line (on
page 1) or totally below it (on page 2).

Figure 12: [18] Sub-Hamiltonian graph, its circle representation and book embedding.

Further, a graph G is 2-page free embeddable if and only if there exists a free linear
embedding of G with no edge crossings. Since testing the 2-page free embeddability of
graphs is NP-complete [35], the free linear crossing number problem is NP-complete.

On the other hand, it is easy to show that the 2-page �xed embeddability problem,
which is equivalent to the �xed linear crossing number problem with K = 0, is solvable
in linear time.

2.5.3.3 Theoretical bounds

Let G = (V, E), n = |V |, and m = |E|. Shahrokhi, Székely, Sýkora and Vr´o have shown
the following results:

Theorem 7 (Shahrokhi et al.[180]).

cr1(G) ≥ m− 2n + 3 for n ≥ 2

Theorem 8 (Shahrokhi et al. [180]).

cr1(G) ≥ m3

37n2
for n ≥ 4, m ≥ 3n

Theorem 9 (Shahrokhi et al. [180]).

crk(G) ≥ m3

37n2
− 27kn

37

22

Also, the following result can be deduced:

Theorem 10 (Cimikowski [39]).

cr1(Kn) =
n(n− 1)(n− 2)(n− 3)

24

The Following result for Kn was previously shown in [171] (see also [95, 94]):

Theorem 11 (Guy, Jenkyns and Schaer [171]).

cr2(Kn) ≤ 1

4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c

Actually, equality has been shown for n ≤ 10 in the above formula.

In [46], an alternate upper bound based on the adjacency matrix is given for cr(Kn) when
drawn on k pages, and tables of results for di�erent n and k values are given. The results
for k = 2 coincide with those of Theorem 11.

Theorem 12 (Cimikowski [39]).

ν2(G) ≤ (dm
2
e
2

+ bm
2
c
2

−m)/2

2.5.4 Crossing minimization on hierarchical embeddings

A common method for drawing directed acyclic graphs is to produce layered drawings or
hierarchical drawings as introduced by Tomii et al. [199], Carpano [30], and Sugiyama et
al. [121].

In these drawings, the vertices are arranged on two or more �layers�, i.e., on parallel
horizontal lines, and edges are drawn straight between vertices on adjacent layers. Edges
between vertices on the same layer are not permitted, and no point between layers may
lie on more than two edges.

Layouts of this kind have applications, for example, in visualization [7], in DNA
mapping [207], and in row-based VLSI layout [131]. The readability of layered drawings
is believed to depend crucially on the number of edge crossings. Once vertices have been
assigned to layers, this number is determined by the orderings of the vertices within the
layers.

Unfortunately, the problem of choosing vertex orderings that minimize the number of
edge crossings in layered drawings is in fact an NP-complete problem [80] even if there are
only two layers [64]. The problem of choosing vertex orderings that minimize the number
of edges whose removal leaves the graph planar is also NP-complete, even for two layers
[63].

2.5.4.1 k-layer crossing number

A k-layered graph or a k-layer hierarchy is de�ned as a graph G = (V, E) = (V1, V2, . . . , Vk, E)
with vertex sets V1, V2, . . . , Vk, V = V1 ∪ V2 . . .∪ Vk, Vi ∩ Vj = ∅ for i 6= j, and an edge set
E connecting vertices in levels Vi and Vj with i 6= j (1 ≤ i, j ≤ k). Vi is called the i-th
layer.

23

In a geometric representation of a k-layered graph, the vertices in each level Vi are
drawn on a horizontal line Li, with y-coordinate k − i, and the edges are drawn strictly
monotone, i.e., an edge (vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj, i < j, is drawn with decreasing
y-coordinates. Essentially, a k-leveled graph is a k-partite graph that is drawn in a special
way.

A proper k-layered graph is a k-leveled graph G = (V1, V2, . . . , Vk, E) in which any edge
in E connects vertices in two consecutive levels Vi and Vi+1 for i ∈ {1, 2, . . . , k − 1}.

The following �gure shows a proper layered graph on k = 4 layers. This graph
represents the face lattice of the Cuboctahedron [147].

Figure 13: [147] Cuboctahedron

Most techniques for producing layered drawings �rst assign vertices to layers (sometimes
this is determined by the context), and then do a layer-by-layer sweep. A permutation
Π1 for the vertices in the top layer L1 is chosen and �xed. Then for each succeeding layer
Li, a permutation Πi is sought that keeps to a minimum the number of edge crossings
among the edges between Li-1 and Li.

The k -layer crossing minimization problem as well as the related k -Layer Planarization
Problem have been studied from the �xed parameter tractability point of view in [58].
Here k represents the number of layers and planarization means to remove some number
h of edges so that the remaining graph can be drawn without crossings (see [63]).

According to [58], bounded pathwidth techniques prove both these general problems
are in the class FPT. Unfortunately, the pathwidth-based approach is only of theoretical
interest, since the running time of the algorithms is O(232(k+2h)3n). In [57], other FPT
techniques are used to derive an O(h6h + |G|) time algorithm for 2-Layer Planarization
of a graph G, and an O(3h|G|) time algorithm for 1-Layer Planarization.

2.5.4.2 Bipartite crossing number

Let G = (V, E), V = V0 ∪ V1 be a bipartite graph with vertex partitions V0 and V1. A
bipartite drawing of G is obtained by placing the vertices of V0 and V1 into distinct points
on two horizontal lines y0 and y1, respectively, and drawing each edge with one straight
line segment. Any bipartite drawing of G is identi�ed by two permutations Π0 and Π1 of
the vertices on y0 and y1.

The problem of the two-sided bipartite drawing of G is to �nd permutations Π0 and Π1 that
minimise the number of pairwise edge crossings in the corresponding bipartite drawing.

24

Let bcr(G, Π0, Π1) denote the total number of crossings in the bipartite drawing
represented by the permutations Π0 and Π1. The bipartite crossing number of G, de-
noted by bcr(G), is the minimum number of crossings over all Π0 and Π1. Clearly,
bcr(G) = minΠ0,Π1bcr(G, Π0, Π1).

The problem of the one-sided bipartite drawing of G is the same, except the permu-
tation Π1 is �xed.

Gary and Johnson [80] proved that the two-layer edge crossing minimization problem is
NP-hard. More recently, Eades, McKay, and Wormald [64] proved that the problem is
NP-hard even if the permutation of nodes on one layer is �xed.

The problem of determining the minimum cardinality set of edges whose removal
allows G to be drawn with no crossings is also NP-hard, whether or not the order on one
of the layers is �xed [63].

Junger and Mutzel [113] gave an exact integer linear programming algorithm for the
1-Sided Crossing Minimization problem. They also surveyed heuristics and made perfor-
mance comparisons with optimal solutions generated by their methods. They reported
that the iterated barycentre method of Sugiyama et al [121] performs best in practice.

However, from a theoretical point of view the median heuristic of Eades and Wormald
[64] is a linear 3-approximation algorithm, whereas the barycentre heuristic is a Θ(n1/2)-
approximation algorithm. The most recent heuristic based on the computation of feedback
arc sets and experimental results has been reported in [51].

When only a small number, c, of edge crossings is acceptable, then an algorithm for
1-Sided Crossing Minimization whose running time is exponential in c but polynomial in
the size of the graph may be useful.

The crossing minimization on hierarchical embeddings has been extensively studied and
surveyed in the literature, see for example [57, 58, 64, 184, 183, 151, 147]. Hence, it is not
the purpose of this work to study the algorithmic approaches for computing the crossing
number for hierarchical embeddings of graphs any further.

25

3 Algorithms for the general crossing number

It is well known that the general crossing minimization problem is NP-hard [80]. More
precisely, it is shown that the crossing number problem, i.e., �given a graph G and a non-
negative integer k, decide whether there is a drawing of G with at most k edge crossings�,
is NP-complete.

However, for every k, there is a simple polynomial time algorithm deciding whether
a given graph G has crossing number at most k: It guesses l ≤ k pairs of edges that
cross and tests if the graph obtained from G by adding a new vertex at each of these
edge crossings is planar. This can be implemented by exhaustive search of the space of
m2k k-tuples of edge pairs, where m denotes the number of edges of the input graph [88].
The running time of this algorithm is nΘ(k). Clearly, this algorithm is not appropriate in
practical applications for larger values of k.

Grohe [88] has given an exact algorithm that works in time O(|V |2) if the crossing number
is �xed. Even though the exponent is independent of k, the constant factor of this
algorithm grows doubly exponentially in k. Also this algorithm is rather of theoretical
nature and has so far not been useful for solving practical instances.

More promising are branch-and-cut algorithms using mathematical programming for-
mulations for computing the crossing number. In the next chapter, we discuss the exact
algorithms in further detail.

While there is no known polynomial time approximation algorithm with any type of
quality guarantee for the general problem, Bhatt and Leighton could derive an algorithm
for graphs with bounded degree that approximates the number of crossings plus the number
of nodes in polynomial time [13]. This was later improved by Even, Guha and Schieber
[68], see chapter 5.

Heuristic approaches for solving the general crossing number problem are attended in the
chapter 6. The most prominent and practically successful approach for solving the gen-
eral crossing minimization problem heuristically is the planarization approach [5], which
addresses the problem by a two step strategy.

In a �rst step, a preferably small number of edges is deleted from G = (V, E) in order
to obtain a planar graph P . In a second step, the edges are re-inserted into the planar
graph P while trying to keep the number of crossings small. Both of these steps are
NP-hard.

For each step, various algorithms can be applied. For the second step, pre- and
post-processing procedures have been developed to improve the solution quality. A com-
putational study on �state-of-the-art� of these heuristics can be found in [91]. We study
the two steps of the planarization method in chapters 7 and 8.

In chapters 9 and 10, we survey algorithms for solving the rectilinear and (�xed) linear
crossing number problems, respectively, including approaches based on genetic and neural
network models of computation.

In chapter 10, we also give an account of our experimental study, which we conducted
in order to compare our proposed heuristics based on a general simulated annealing scheme
with the existing heuristics for the (�xed) linear crossing number.

26

4 Exact algorithms

Grohe designed an exact quadratic time algorithm for computing the general crossing
number for a �xed k. Although it is not suited for practical use, we give a brief account
of his attempt in the beginning of this section.

In the next sections 4.2 and 4.3, we explore some more promising approaches based on
the branch-and-bound techniques combined with depth �rst search and/or mathematical
programming formulations.

4.1 Quadratic time algorithm

Grohe [88] proved, that the crossing number problem was �xed-parameter tractable and
constructed a quadratic time algorithm deciding whether a given graph G has crossing
number at most k. He also showed that if this is the case, a drawing of G in the plane
with at most k crossings can also be computed in quadratic time.

As for the crossing number, it is NP-complete to decide if the genus of a given graph
is less than or equal to a given k [192]. However, the fact that the genus problem is �xed-
parameter tractable was known earlier as a direct consequence of a strong general theorem
due to Robertson and Seymour [174] stating that all minor closed classes of graphs are
recognizable in cubic time.

Unfortunately, while the class of graphs of genus at most k is closed under taking
minors, the class of all graphs of crossing number at most k is not. So although Grohe
could not apply Robertson and Seymour's result directly, the overall strategy of his al-
gorithm is inspired by their ideas: The algorithm �rst iteratively reduces the size of the
input graph until it reaches a graph of bounded tree-width, and then solves the problem
on this graph.

For the reduction step, Grohe used Robertson and Seymour's Excluded Grid Theorem
[173] together with a nice observation due to Thomassen [194] that in a graph of bounded
genus (and thus in a graph of bounded crossing number) every large grid contains a
subgrid that, in some precise sense, lies ��at� in the graph. Such a �at grid does not
essentially contribute to the crossing number and can therefore be contracted.

For the remaining problem on graphs of bounded tree-width Grohe applied a theorem
due to Courcelle [43] stating that all properties of graphs that are expressible in monadic
second-order logic are decidable in linear time on graphs of bounded tree-width.

Of course, it is not surprising that Grohe's algorithm is double-exponential in k, which
makes it unsuitable for practical use.

4.2 Depth First Search with Branch-and-Bound

If the solution space of a problem can be mapped to a tree, where each interior vertex
is a partial solution, edges toward the leaves are options that re�ne the partial solution,
and the leaves are complete solutions, then there are various algorithms that can search
the tree to �nd the optimal solution.

A Depth First Search (DFS) algorithm is one such algorithm which, as its name
implies, searches more deeply into the tree for a solution whenever possible. Once a path
is found from the root to a leaf representing a solution, the search backtracks to explore

27

the nearest unsearched portion of the tree. This continues until the entire tree has been
traversed.

The Branch and Bound portion allows us to change one simple part of the DFS
algorithm. When the cost to get to a vertex v exceeds the current optimal solution, we
then tell the DFS algorithm not to traverse the subtree having v as its root.

This method exhaustively covers the entire search space even after �nding an initial
solution. However, it does not cover those sections of the search space that lead to
solutions that are guaranteed to cost more than the current optimal solution. When the
entire tree is covered the current optimal solution is the globally optimal solution.

F. and C. Harris [97] created a branch-and-bound algorithm for �nding the minimum
crossing number of a graph. The algorithm begins with the vertex set and adds edges by
selecting every legal option for creating a crossing or not.

After each edge is added a subroutine called the Rotational Embedding Scheme counts
the regions of the resulting embedding and using Euler's formula, determines if the given
graph has a planar embedding. A code for this routine can be found in [137].

The algorithm continues adding edges until either all edges have been added or it
reaches a point where the graph cannot be completed as started, because the number of
crossings would exceed the current optimum. At this point it backtracks to see if the
graph can be drawn with fewer crossings by selecting other options when adding edges.

Tadijev and F. Harris [187] constructed a preliminary parallel version of the above sequen-
tial algorithm. In order to obtain some initial results they did a basic static partitioning
of the search tree among the p processors in their parallel machine. This method, along
with its bene�ts and drawbacks, is discussed in detail in [122].

As a next step they intended to modify the implementation to have dynamic parti-
tioning of the search space.

4.3 Mathematical programming formulations

Mathematical programming is a powerful tool to address NP-hard combinatorial opti-
mization problems. Starting from an integer linear program (ILP) modeling the problem
under consideration, i.e., a linear program with integer variables, sophisticated techniques
like branch-and-cut can be applied.

In [21], Buchheim, Ebner, Jünger, Klau, Mutzel and Weiskircher present the �rst
algorithm able to compute the crossing number of general sparse graphs of moderate size.
They state computational results on a popular benchmark set of graphs, the so-called
Rome library [6].

The approach uses a new integer linear programming formulation of the problem
combined with e�cient heuristics and problem reduction techniques. Thus, they managed
to compute the crossing number for 91% of all graphs on up to 40 nodes in the Rome
library within a time limit of �ve minutes per graph.

In graph drawing it is often desirable to optimize some cost function over all possible
embeddings in a planar graph. In general these optimization problems are NP-hard
[82]. In the planarization method, the number of crossings highly depends on the chosen
embedding when the deleted edges are reinserted into a planar drawing of the rest-graph.

28

The problem can be formulated as a �ow problem in the geometric dual graph [148].
A �ow between vertices in the geometric dual graph corresponds to a �ow between ad-
jacent face cycles in the primal graph. Once we have characterized the set of all feasible
embeddings (via an integer linear formulation on the variables associated with each cy-
cle), we can use it in an ILP-formulation for the corresponding �ow problem. Here, the
variables consist of ��ow variables� and �embedding variables�.

In [148], Mutzel and Weiskircher introduced an integer linear program whose set of
feasible solutions corresponds to the set of all possible combinatorial embeddings of a
given biconnected planar graph.

One way of constructing such an integer linear program is by using the fact that every
combinatorial embedding corresponds to a 2-fold complete set of circuits (see MacLane
[138]). The variables in such a program are all simple cycles in the graph; the constraints
guarantee that the chosen subset of all simple cycles is complete and that no edge of the
graph appears in more than two simple cycles of the subset.

[148] have chosen another way of formulating the problem. They only introduce vari-
ables for those simple cycles that form the boundary of a face in at least one combinatorial
embedding of the graph, thus reducing the number of variables signi�cantly.

Furhtermore, [148] derive the constraints of their ILP using the structure of the graph
by constructing the program recursively using an SPQR-tree. The SPQR-tree data struc-
ture can be used to code and enumerate all possible combinatorial embeddings of a bi-
connected planar graph [10].

4.3.1 Integer Linear Program for simple drawings

Let G = (V, E) be a graph and let D be a set of unordered pairs of edges of G. We call D
simple if for every e ∈ E there is at most one f ∈ E such that (e, f) ∈ D. Furthermore,
D is called realizable if there is a drawing of G such that there is a crossing between edges
e and f if and only if (e, f) ∈ D.

For every graph G and every simple D, Buchheim, Ebner, Jünger, Klau, Mutzel and
Weiskircher [21] denote with GD the graph that is obtained by introducing a dummy node
de,f for each pair of edges (e, f) ∈ D. Note that GD is only well-de�ned if D is simple, as
otherwise it would not be clear where to place the dummy nodes. For both edges e1 and
e2 resulting from splitting e, we set e1 = e2 = e, analogously for f .

Corollary 1 (Buchheim et al. [21]). [21] Let D be simple. Then D is realizable if and
only if GD is planar.

Using a linear time planarity testing and embedding algorithm, we can thus test in time
O(|V |+ |D|) whether D is realizable, and compute a realizing drawing in the a�rmative
case.

De�nition 3. For a set of pairs of edges D ⊆ E2, de�ne

xD
e,f =

{
1 if(e, f) ∈ D

0 otherwise
.

Next, for every subgraph H = (V ′, E ′) of GD, let H = {e|e ∈ E ′} ⊆ E. Less formally, H
contains all edges of G involved in the subgraph H of GD.

29

Proposition 1 (Buchheim et al. [21]). Let D be simple and realizable. For an arbitrary
simple set of pairs of edges D′ ⊂ E2 of G = (V, E) and any subdivision H of K5 or K3,3

in GD′, the following inequality holds:

CD‘,H : Σ
(e,f)∈H

2
/D′x

D
e,f ≥ 1− Σ(e,f)∈H2∩D′(1− xD

e,f).

If we only consider the subgraph induced by H, it follows that H
2 ∩ D′ = H

2 ∩ D(see
De�nition 3). This means that the edges (e, f) ∈ H2 cross in respect of D′ if and only if
they cross in respect of D and H is also a �forbidden� subgraph in GD, i.e., a subdivision of
K5 or K3,3. It follows from Kuratowski's Theorem that GD is not planar. This contradicts
the realizability of D by Corollary 1.

Theorem 13 (Buchheim et al. [21]). Let G = (V, E) be a simple graph. A set of pairs
of edges D ⊆ E2 is simple and realizable if and only if the following conditions hold:

xD
e,f ∈ {0, 1} ∀e, f ∈ E, e 6= f

ΣxD
e,f ≤ 1 ∀e ∈ E

CD′,H for every simple D′ ⊆ E2 and every forbidden subgraph H in GD′

For every simple and realizable set D ⊆ E2, we can compute a corresponding drawing in
polynomial time. Thus we can reformulate the crossing minimization problem for simple
drawings as: �Given a graph G = (V, E), �nd a simple and realizable subset D ⊆ E2 of
minimum cardinality.� This immediately leads to the following ILP-formulation, where
we use x(F) as an abbreviation for the term Σ(e,f)∈F xe,f :

min x(E2) s.t.

ΣxD
e,f ≤ 1 ∀(e, f) ∈ E

x(H2\D′)− x(H2 ∩D′) ≥ 1− |H2 ∩D′| for every simple D′ and every forbidden sub-
graph H in CD′

xD
e,f ∈ {0, 1} ∀(e, f) ∈ E

It is clearly impractical to generate all constraints CD,H in advance and solve the ILP in a
single step. Instead, Buchheim et al. embed the given formulation into a branch-and-cut
framework, separating violated inequalities dynamically during runtime.

A crucial factor in this approach is the separation problem: �Given a class of valid
inequalities and a vector y ∈ Rn, either prove that y satis�es all inequalities in the class,
or �nd an inequality which is violated by y.� Although, it is easy to separate violated
inequalities for integral solution vectors, the problem is more complex within the branch-
and-cut framework since we have to deal with fractional values.

A heuristic for separating the inequalities is to round variables to either zero or one,
and then check for violated inequalities. The problem is that the inequalities produced
by this heuristic might not be violated by the current fractional solution. In this case
Buchheim et al. select a branching variable and split the current problem into two sub-
problems by setting the branching variable to zero, respectively one. The same is done if
no inequalities at all are produced by the separation heuristic.

30

In some cases, variables can be omitted from the ILP. For instance, when splitting the
graph into its blocks (two-connected components) and solving these blocks independently
- the crossing number of a graph is equal to the sum of the crossing numbers of its blocks.

Furthermore, it is obvious that adjacent edges do not cross in an optimal drawing and
no edge crosses itself, which makes it possible to restrict only to good drawings.

The results of their computational study show that Buchheim et al. [21] have improved
the heuristic results for the basic planarization approach, even for the relatively small
instances considered in their study. Compared to the best known heuristic methods, they
achieved a notable improvement for some larger instances. The average improvement over
the whole considered benchmark set was about 19.6% for the basic heuristic and 4.1% for
the best known strategy.

4.3.2 Integer Linear Program for SPQR-trees

The SPQR-tree represents the decomposition of a biconnected planar graph with respect
to its triconnected components. All embeddings of the graph can be enumerated by
enumerating all possible embeddings of these components in respect to the rest of the
graph.

The approach of Mutzel and Weiskircher [148] uses the fact that each skeleton of a
node in the SPQR-tree represents a simpli�ed version of the original graph. By computing
the integer linear programs (ILP) for these simple graphs and using a lifting procedure,
it is possible to compute an ILP for the original graph.

The skeleton of a node in the SPQR-tree, can be constructed from the original graph
by replacing one or several subgraphs by single edges, which are called split edges. Such
an edge is representing the set of all the simple paths in the original graph, that connect
the two nodes of the split edge. So every circle in a skeleton that includes a split edge
represents a set of circles in the original graph that we get by replacing the split edge
with the paths represented by it.

The variables of the program correspond to directed circles in the graph that are face
cycles in at least one planar embedding, because the recursive construction computes the
set of variables for the original problem using the sets of variables from subproblems for
which the ILP has already been computed. So circles in the original graph are constructed
from circles in the subproblems by replacing split edges with paths in the graph.

According to Mutzel and Weiskircher [148], every feasible solution of the generated
ILP corresponds to a combinatorial embedding of the given biconnected planar graph G
and vice versa: every combinatorial embedding of G corresponds to a feasible solution for
the generated ILP. For the full details on the recursive construction of the integer linear
program see [148].

The computational results on two benchmark sets of graphs have been quite surprising.
Despite expected that the size of the linear system will grow exponentially with the size
of the graph, the number of constraints and variables grew only linearly.

However, the time for generating the system grew subexponentially: but for practical
instances it was still reasonable. For a graph with 500 vertices and 1019 di�erent combi-
natorial embeddings the construction of the ILP took about 10 minutes. Very surprising
was the fact that the solution of the generated ILPs took only up to 2 seconds using
CPLEX.

31

5 Approximation algorithms

Concerning crossing numbers of standard graphs, there are only a few in�nite classes of
graphs for which exact or tight bounds are known [133]. The main problem is the lack
of e�cient lower bound methods for estimating the crossing numbers of explicitly given
graphs [DV03]. A survey on known methods is given in [88, 39, 178].

One of the powerful methods is based on the bisection width concept. The bisection
width of a graph G is the minimum number of edges whose removal divides G into two
parts having at most 2

3
|V | vertices each. Leighton [127] proved that in any n-vertex

graph G of bounded degree, the crossing number satis�es cr(G) + n = Ω(bw2(G)), where
cr(G) + n de�nes the minimum drawing size of the graph.

Bhatt and Leighton, in [13], apply a B(n)-approximate bisection procedure recursively
to decompose a bounded degree graph with n vertices. They prove that this recursive
decomposition induces a drawing of size O(B2(n)log2n) times the minimum size drawing.
Shahrokhi et at. [178] considered straight line drawings induced by decomposition trees
and presented a simpler construction of a drawing of the same size as the one achieved in
[13].

Leighton and Rao [128] showed that the above result can be realized with a (1
3
, 2

3
) sep-

arator. Leighton and Rao also showed how to �nd such a separator with size bounded by
α(n) = O(log n) times the optimal bisector. This implied an O(log4n) or O(α2(n)log2n)
approximation algorithm for the drawing size of a bounded degree graph. The bound on
the approximation factor in this algorithm relies only on the fact that an optimal drawing
induces a planar graph which admits small vertex separators.

Even, Guha, and Schieber [68] improved the approximation factor to log3n. There
is known nothing that would exclude the possibility of approximation within a constant
multiplicative factor [186].

The reason that the approximation algorithm applies only to bounded degree graphs
is that, in bounded degree graphs, the vertex separators and the edge separators have
roughly the same size. No non-trivial approximation algorithms are known for the general
case of arbitrary degrees. From now on we consider only bounded degree graphs for the
drawing problem.

5.1 Approximation algorithm with estimators

A decomposition tree of a graph G is a tree together with a one-to-one correspondence
between its leaves and the vertices of G. Each internal tree node is associated with the
cut separating the vertex sets mapped to the sets of leaves of the subtrees rooted at its
children.

Bhatt and Leighton, in [13], proposed a special type of decomposition trees, called
bifurcators. These decomposition trees are binary trees, and the cut sizes associated
with their nodes decrease exponentially relative to the cut size of the root. Using the
approximation of drawing size, Bhatt and Leighton provided an O(log2.5n) approximation
for the optimal

√
2-bifurcator.

Even, Guha and Schieber [68] �rst provide an O(log3n) approximation for the drawing
size problem. As a consequence of this result, based on Bhatt and Leighton's results,

32

Even et al. obtain an O(log2n) approximation for the optimal
√

2-bifurcator problem and
a corresponding improvement for all its applications.

Let α(n) denote the smallest known ratio of the separator size (that can be computed
e�ciently) to the optimal bisector size. Hence, the algorithm by Even et al. can be stated
as an O(α2(n)log n)-approximation of the minimum drawing size.

Even et al.`s approximation algorithm [68] constructs a decomposition tree T that can be
viewed as an approximation of a decomposition tree T obtained by recursively bisecting
the planar graph induced by an optimal drawing. Such a decomposition tree T induces a
drawing of size O(log n) times the optimal drawing size.

The decomposition tree computed by Even et al. mimics the useful properties of T .
In the problem of drawing a graph on the plane, Even et al. attach an estimator φ(t) to
every tree node that estimates the optimal drawing size of the corresponding subgraph.
The estimator quality is one-sided; it may not surpass (twice) the drawing size, but might
be much smaller than the drawing size.

The estimators have the following two properties that follow the properties of the
drawing sizes of the subgraphs in T : (a) the cut sizes are bounded by the square root
of the corresponding estimators upto an logarithmic error term; and (b) the estimators
decrease exponentially as one goes down the tree.

The main di�culty in constructing such an �approximated� decomposition tree with esti-
mators is that the only tool available are approximate separators [68].

A bottom-up approach fails because merging can take place only when the subgraphs
have comparable drawing sizes. Estimates on drawing sizes are based on lower bounds de-
rived from separators. Such a lower bound would need to be based on the subgraph with
the largest separator; however, �nding such a subgraph is computationally prohibitive. A
naive top-down approach of recursive separators fails since the partitioning is not guar-
anteed to divide the drawing sizes in a balanced fashion, and hence, the estimators may
not decay exponentially.

Therefore, Even et al. applied a top-down approach with re-balancing to guarantee
that the estimators decrease exponentially.

33

6 Heuristic algorithms

A practically very successful and important approach for solving the general crossing
minimization problem heuristically is the planarization approach [5], which addresses the
problem by a two step strategy.

In the �rst step, a preferably small number of edges is deleted from G = (V, E) in
order to obtain a planar graph P . In the second step, the edges are re-inserted into the
planar graph P while trying to keep the number of crossings small.

Both of these steps are NP-hard. For each step, various algorithms can be applied.
Pre- and post-processing procedures have been developed to improve the solution quality.
The planarization approach will be studied thoroughly in chapters 7 and 8.

Simulated annealing (SA) is a �exible optimization method, suited for large-scale combi-
natorial optimization problems. It has been applied successfully to classical combinatorial
optimization problems, such as the traveling salesman problem, and problems concerning
the design and layout of VLSI.

SA di�ers from standard iterative improvement methods by allowing �uphill� moves-
moves that spoil, rather than improve, the temporary solution. The rest of this chapter
discusses the application of SA to the crossing number problem.

6.1 Simulated annealing

The problems for which SA is useful are characterized by a very large discrete con�guration
space, too large for an exhaustive search, over which an objective cost function is to be
minimized (or maximized) [47].

After picking some initial con�guration, most iterative methods continue by choosing
a new con�guration at each step, evaluating it and possibly replacing the previous one
with it. This action is repeated until some termination condition is satis�ed (e.g., no
move reduces the objective function). The procedure ends in a minimum con�guration,
but generally it is a local minimum, rather than the desired global minimum. The SA
method tries to escape from these local minima by using rules that are derived from an
analogy to the process in which liquids are cooled to a crystalline form, a process called
annealing.

Metropolis et al. [144] devised an algorithm for simulating this annealing procedure
by a series of sequential moves. The basic rule is that the probability with which the
system changes its state from one with energy E1 to one with energy E2 is: e−

E2−E1
kT . This

rule implies that whenever the energy E2 of the new candidate state is smaller than the
current energy E l the system will take the move, and if it is larger the state change is
probabilistic.

Algorithm 6.1. Schematic form of the SA method
1. get an initial con�guration σ and an initial temperature T ;
2. while stop criterion is not satis�ed do

1. while inner loop criterion is not satis�ed do
1. choose a new con�guration σ′ from the neighborhood of σ;
2. let E and E ′ be the values of the cost function at σ and σ′ respectively;
3. if E ′ < E, set σ ← σ′

34

4. if E ′ ≥ E, set σ ← σ′ with probability e
(E−E′)

T

2. decrease the temperature T ;
3. return σ

Kirkpatrick et al. [118] were apparently the �rst to realize that the above procedure could
be used for general optimization problems.

In [47], Davidson and Harel pointed out SA is not always suitable for a given opti-
mization problem. A basic requirement from the cost function is that it should not have
overly steep descents, that is, the width of the valleys (around the minima points) should
be roughly proportional to their depth. A very narrow valley that contains the desired
minimum point has a low probability of being found.

To be amenable to solution by SA, the problem must also admit near optimal solutions
that are acceptable. SA is very successful in �nding minima values that are close to the
global minimum, but seldom does it detect the global minimum itself.

Another important requirement is that the cost function should be easily calculated
for a new con�guration (possibly using the value for the old one). This is due to the fact
that these calculations are carried out repeatedly and constitute the major computational
task in implementing SA.

6.1.1 Simulated annealing for complete graphs

In [170], Ringenburg described a method for attempting to �nd optimal or nearly optimal
crossing numbers of complete graphs using simulated annealing. He has shown that this
method has polynomial time and space requirements, and yet still achieves very close to
optimal results on this NP-Complete problem.

Ringenburg suggested that for the purposes of �nding the optimal crossing number,
any drawing of a complete graph can be represented simply by the set of edge pairs which
cross. Since any crossing between two edges sharing a vertex can be trivially removed, we
need only consider pairs of edges which share no vertices.

Any such pair will clearly contain four distinct vertices. There are
(

n
4

)
such sets of

vertices in an n vertex complete graph, and there are 3 distinct ways to pair them o�:
{(1, 2), (3, 4)}, {(1, 3), (2, 4)} and {(1, 4), (2, 3)}. Thus one needs to consider B = 3

(
n
4

)
pairs of edges. Since each pair either crosses or does not cross (multiple crossings can be
trivially removed), we can easily represent a drawing of a graph as a B-bit vector.

Figure 14: [170] Wrapping edge (2, 3) around vertex 4.

We can transform one drawing of a graph to another by a series of operations involving
wrapping an edge of the graph around a non-incident vertex, as shown in �gure 14 above.
This will have the e�ect of reversing whether or not the edge in question crosses each edge

35

incident on the vertex being wrapped around and not incident on either of the vertices of
the wrapped edge.

In the bit vector representation, this is equivalent to a bitwise XOR with a bit vector
which has l's in the bits representing whether or not the wrapped edge crosses each of
the edges incident on the wrap around vertex. Ringenburg referred to these bit vectors
representing the wrapping of an edge as �perturbation vectors�. Note that for any of the n
vertices, there are

(
n−1

2

)
non-incident edges which can be wrapped around it. Thus there

are n
(

n−1
2

)
perturbation vectors.

This representation allows to search the space of drawings of a complete graph by
starting with a bit vector representation of some drawing of the graph, and then XOR-ing
it with various sequences of perturbation vectors. Note that the crossing number problem
has essentially been reduced to a coding theory problem. Searching for the lowest crossing
number is equivalent to searching for the minimum weight vector. For implementation
details refer to [170].

The biggest limiting factor to the algorithm [170] seemed to be the space requirements of
the table of perturbation vectors. There are n

(
n−1

2

)
vectors, each of which is 3

(
n
4

)
bits.

This works out to θ(n7). The running time of the algorithm is essentially the number of
inner loop iterations times the number ot outer loop iterations. The inner loop iterations
are proportional to the neighborhood size, which is n

(
n−1

2

)
. Thus the inner loop is θ(n3).

The outer loop stops iterating when the results stabilize. Intuitively it would seem that
this should be at most polynomial, and the time trials performed by Ringenburg seem to
con�rm this. Thus supposedly the total running time is polynomial.

The experimental results performed by [170] show that optimal or nearly optimal
results to the crossing number problem can be found relatively quickly using simulated
annealing. Interestingly, Ringenburg observed that the algorithm almost always �nds a
drawing with the predicted number of crossings if the number of vertices is odd. However
when the number of vertices is even the algonihm tends to �nd results in a narrow range
above the predicted value.

36

7 Maximum planar subgraph problem

The heuristic planarization approach for solving the crossing number problem consists of
two steps. In the �rst step, a maximum planar subgraph is computed by deleting the
minimum number of edges of the original graph untill a planar subgraph is obtained.
In the second step, we try to reinsert all the edges deleted in the �rst step so that the
resulting number of crossings is small. Both these steps are NP-hard [135, 214].

In the beginning of this chapter, we de�ne the Maximum Planar Subgraph Problem
and present some theoretical results concerning its complexity. Thereafter, we give a brief
account of various methods for computing the Maximum Planar Subgraph Problem in
sections 7.2 to 7.4. Another survey of algorithms for graph planarization through edge
deletion can be found in, e.g., Liebers [133] or Mutzel [146].

7.1 Introduction

If a graph G = (V, E) with an edge e ∈ E is transformed into a graph G′ = (V, E\{e})
then we say that G′ was obtained from G by edge deletion. By repeatedly deleting edges
from a given nonplanar graph G, G can be transformed into a planar graph G′. In this
section, we are interested in planarizing G by deleting as few edges as possible [7].

De�nition 4 (Maximum Planar Subgraph, Skewness). If a graph G′ = (V, E ′) is a
planar subgraph of a graph G = (V, E) such that there is no planar subgraph G′′ = (V, E ′′)
of G with |E ′′| > |E ′|, then G′ is called a maximum planar subgraph of G, and the number
of deleted edges, |E| − |E ′|, is called the skewness of G.

So the skewness of a graph G is 0 if and only if G is planar. For some graph classes, the
skewness is known: The complete graph Kn has n(n−1)

2
edges. For n ≥ 3, it has a planar

subgraph with 3n− 6 edges. Since a planar graph with n ≥ 3 vertices cannot have more
than 3n−6 edges, the skewness of the complete graph Kn is n(n−1)

2
− (3n−6) = (n−3)(n−4)

2

for n ≥ 3. A similar argument shows that the skewness of the complete bipartite graph
Kn1,n2 is n1n2 − 2(n1 + n2) + 4 for n1 ≥ 2 and n2 ≥ 2 [41].

De�nition 5 (Maximal Planar Subgraph). If a graph G′ = (V, E ′) is a planar sub-
graph of a graph G = (V, E) such that every graph G′′ ∈ {(V, E ′ ∪ {e})|e ∈ E\E ′} is
nonplanar, then G′ is called a maximal planar subgraph of G.

In other words a maximal planar subgraph is maximal with respect to inclusion of its
edge set, whereas a maximum planar subgraph is maximal with respect to the cardinality
of its edge set. Observe that every maximum planar subgraph is also a maximal pla-
nar subgraph, but not vice versa. Figure 15 illustrates maximal and maximum planar
subgraphs.

Finding a maximum planar subgraph is an NP-hard problem, and Section 7.1.1 dis-
cusses this result. But a maximal planar subgraph can be found in polynomial time, as
we will see in Section 7.3. Sections 7.2, 7.3, and 7.4 discuss exact, approximative, and
heuristic approaches for �nding a large planar subgraph. We also consider the weighted
version where edges are assigned nonnegative edge weights, and where the goal is to �nd
a planar subgraph with total edge weight as large as possible.

37

Figure 15: [133] G is a nonplanar graph. Note that G contains K3,3 as a minor (contract
edge (2, 3)). G1 is a planar subgraph of G, but it is not a maximal planar subgraph:
Edge (1, 5) can be added to G1 without destroying planarity. The result is G2. Another
maximal planar subgraph of G is G3. G3 is also a maximum planar subgraph.

7.1.1 Complexity of the maximum planar subgraph problem

Problem 5 (Maximum Planar Subgraph [79]). Given a graph G = (V, E) and a
positive integer k ≤ |E|, is there a subset E ′ ⊆ E with |E ′| ≥ k such that the graph
G′ = (V, E ′) is planar?

Liu and Geldmacher [136], and, independently, Yannakakis [212], and, also independently,
Watanabe, Ae and Nakamura [206] showed that this problem is NP-complete. The proof
of Liu and Geldmacher is a two step reduction using the following problems:

Problem 6 (Vertex Cover [79]). Given a graph G = (V, E) and a positive integer
k ≤ |V |, is there a vertex cover of size k or less for G, i.e. is there a subset V ′ ⊆ V of
vertices with |V ′| ≤ k such that for each edge uv ∈ E at least one of its end vertices u
and v belongs to V ′?

Problem 7 (Hamilton Path in Graphs Without Triangles). Given a graph G =
(V, E) that does not contain a cycle of length 3, and given two vertices u ∈ V and v ∈ V ,
does G contain a Hamilton path from u to v?

Karp [117] shows Vertex Cover to be NP-complete. Liu and Geldmacher [136] �rst
reduces Vertex Cover to Hamilton Path in Graphs Without Triangles, and then reduces
this problem to Maximum Planar Subgraph. Recently, Faria, Figueiredo, and Mendonça
[69, 70] have shown that Maximum Planar Subgraph is even NP-complete for cubic graphs.

We should also mention a simpli�ed proof of the NP�Completeness of the Maximum
Planar Subgraph Problem (MPS). The proof presented in [29] is considerably shorter
and simpler, proceeding through a straight reduction from the MPS to the Bipartite
Hamiltonian Circuit Problem [79].

The problem can be solved in polynomial time if G is already planar, since planarity
testing can be done in linear time [104]. If G = Kn, the complete graph on n nodes, or
G = Km,n, the complete bipartite graph on n+m nodes, it is easy to construct a solution
which contains 3n− 6, resp. 2n− 4, edges. Since Euler showed that the number of edges
in a planar graph on n nodes cannot exceed 3n − 6, resp. 2n − 4, [111] have solved the
unweighted problem in linear time.

38

Problem 8 (Weighted Maximum Planar Subgraph). Given a graph G = (V, E)
with a nonnegative edge weight w(e) for each edge e, and a positive number k, is there a
subset E ′ ⊆ E with

∑
e∈E′ w(e) ≥ k such that the graph G′ = (V, E ′) is planar?

In other words, given a nonplanar weighted graph with edge weights w(e) for e ∈ E, we
want to delete a set of edges F to obtain a planar subgraph G′ = (V ′, E\F) such that
the sum of all edge weights

∑
e∈E\F we of G′ is maximum. In the unweighted case, where

w(e) = 1 for all edges e ∈ E, the problem consists of �nding the minimum number of
edges whose deletion from a nonplanar graph gives a planar subgraph.

Being a generalization of the Maximum Planar Subgraph Problem, Weighted Maxi-
mum Planar Subgraph is NP-complete as well [79].

7.2 Exact algorithms

For �nding the maximum planar subgraph, exact solution methods like Branch and Bound
[75] and Branch and Cut [112] have been proposed in the literature. Branch-and-bound
algorithms only have a chance on small dense graphs [75].

Jünger and Mutzel [111] presented a branch-and-cut algorithm using facet-de�ning
inequalities for PLS(G) (the planar subgraph polytope of graph G) as cutting planes. In
a cutting plane algorithm, a sequence of relaxations is solved by linear programming.

After the solution x of some relaxation is found, we must be able to check whether x
is the incidence vector of a planar subgraph (in which case we have solved the problem)
or whether any of the known facet-de�ning inequalities are violated by x. If no such
inequalities can be found, we cannot tighten the relaxation and have to resort to branching,
otherwise we tighten the relaxation by all facet-de�ning inequalities violated by x which
we can �nd. Then the new relaxation is solved, etc. The process of �nding violated
inequalities (if possible) is called �separation� or �cutting plane generation�.

If the number of edges to be deleted is small, this approach gives quite good, and in
many cases provably optimal, solutions for sparse graphs and very dense graphs. However,
the method is quite complicated to understand and to implement. Moreover, if the number
of deleted edges exceeds 10, the algorithm usually needs far too long to be acceptable
for practical computation. Interested readers are refered to the study of Ziegler [214]
concerning the number of deleted edges in the Rome library benchmark set.

7.2.1 A branch-and-cut algorithm for MPS based on LP

Jünger and Mutzel [111] designed a branch-and-cut algorithm based on polyhedral com-
binatorics [165], a sub�eld of combinatorial optimization which aims at describing combi-
natorial optimization problems as linear programs and solving these with special purpose
methods.

Jünger and Mutzel [111] de�ne a polytope of all planar subgraphs of a graph G.
All subgraphs of a graph G, which are subdivisions of K5 or K3,3, turn out to de�ne
facets of this polytope. For cliques contained in G, the Euler inequalities turn out to be
facet-de�ning for the planar subgraph polytope. Moreover, they introduce the subdivision
inequalities, V2k inequalities, and the �ower inequalities, all of which are facet-de�ning for
the polytope.

39

The approach of Jünger and Mutzel [111] is based on an algorithm which searches
for forbidden substructures in a graph that contains a subdivision of K5 or K3,3. These
structures give inequalities which are used as cutting planes.

A polytope in Rn is the convex hull of �nitely many points, or, equivalently, a polytope is
a bounded subset of Rn that is the intersection of �nitely many half-spaces. Those points
of a polytope P which are not representable as a convex combination of other points in
P are the vertices of P .

Suppose a graph G = (V, E) with edge weights we for all e ∈ E is given. Let PG be the
set of all planar edge-induced subgraphs of G. For each planar subgraph P = G[F] ∈ PG,
we de�ne its incidence vector χP ∈ RE by setting χP

e = 1 if e ∈ F and χP
e = 0 if e 6∈ F .

This yields a 1-1-correspondence of the planar subgraphs with certain {0, 1}-vectors in
RE. The planar subgraph polytope PLS(G) of G is de�ned as the convex hull over all
incidence vectors of planar subgraphs of G : PLS(G) := conv{χP ∈ RE|P ∈ PG}.

The problem of �nding a planar subgraph P of G with weight w(P) as large as possible
can be written as the linear program max{wT x|x ∈ PLS(G)}, since the vertices of the
polytope PLS(G) are exactly the incidence vectors of the planar subgraphs of G. In order
to apply linear programming techniques to solve this LP, PLS(G) has to be represented
as the solution of an inequality system.

Due to the NP-hardness of this problem, it cannot be expected to �nd a full description
of PLS(G) by linear inequalities. Nevertheless, a partial description of the facial structure
of PLS(G) by linear inequalities is useful for the design of a �branch-and-cut� algorithm,
because such a description de�nes a relaxation of the original problem. Such relaxations
can be solved within a branch-and-bound framework via cutting-plane techniques and
linear programming in order to produce tight bounds.

The Planarity-Testing Algorithm of Hopcroft and Tarjan [104]. At the beginning a depth-
�rst-search procedure is called in order to divide the edge set of the graph G = (V, E)
into back edges and tree edges. First, a cycle C is identi�ed. When this cycle is removed
from G, the graph falls apart into several pieces. The algorithm is called recursively to
embed each piece in the plane together with the original cycle. Then the embeddings of
the pieces are combined, if possible, to give an embedding of the entire graph.

One may think of successively adding paths consisting of tree edges and one back
edge at the end to a previously obtained partial embedding. For more details, see [145]
or [104]. In the following we describe some details of the branch-and-cut algorithm of
Junger and Mutzel [111, 112].

Cutting-Plane Generation. The trivial inequalities are handled implicitly by the LP-solver
via lower and upper bounds. At the beginning also the inequality x(E) ≤ 3|V |−6 is added,
if it is violated (resp. x(E) ≤ 2|V | − 4 in case G contains no triangles, if it is violated).

Let x be an LP-solution produced in the cutting-plane procedure applied in some
node of the enumeration tree. For 0 ≤ ε ≤ 1 we de�ne Eε = {ε ∈ E|xε ≥ 1 − ε} and
consider Gε = (V, Eε). For the unweighted graph Gε the linear planarity-testing algorithm
of Hopcroft and Tarjan is called. The algorithm stops if it �nds an edge set F which is
not planar. In case the inequality x(F) ≤ |F | − 1 is violated, we add the inequality
to the constraints of the current LP. Jünger and Mutzel [112] remove the back edge of
the path, which proved the nonplanarity of F after it was added and proceed with the

40

planarity-testing algorithm. This way Jünger and Mutzel usually �nd several forbidden
subgraphs of the graph Gε in one run of the planarity-testing algorithm. Of course, these
forbidden subgraphs do not necessarily de�ne facets of the PLS-polytope.

However, these subgraphs must contain subgraphs which de�ne facets. Jünger and
Mutzel [112] try to reduce them to facet-de�ning inequalities in the following way. Once
an edge set F is found, where the inequality x(F) ≤ |F | − 1 is violated, successively
one edge f ∈ F is deleted from it, and the planarity testing algorithm starts again. If
F\{f} is planar, it is added to F again. In either case a di�erent edge f ∈ F is chosen.
In at most |F | steps F is reduced to a set of edges, which induces a minimal nonplanar
subgraph.

So an inequality x(F) ≤ |F | − 1 is obtained which is facet-de�ning for PLS(G) and
still violated by the current LP-solution. Additionaly, a simple heuristic is used which
searches for violated Euler inequalities.

Lower-Bound Heuristic. After an LP has been solved, Jünger and Mutzel [112] try to
exploit the solution to produce a feasible solution, again, by applying the planarity-testing
algorithm. This way they obtain lower bounds which are useful not only for fathoming
nodes in the branch-and-cut tree but also for �xing variables due to their reduced costs
during a cutting-plane phase.

After discovering a forbidden substructure, the back edge of the last added path is
removed, so that the remaining substructure becomes planar. Since di�erent depth-�rst-
search trees yield di�erent paths and thus di�erent lower bounds, in every call of the
planarity-testing algorithm the depth-�rst-search tree is changed.

Jünger and Mutzel also implemented a simple random heuristic, where the edges are
subsequently added to the graph, if they do not destroy planarity. Their experimental
results con�rm the results of Cimikowski [36], who reported that simple random heuristics
lead to better results on random graphs than the above-described method.

Jünger and Mutzel [111] report computational results where the heuristic based on the
branch-and-cut algorithm was applied to various graphs known from the literature with
10 to 100 vertices. In many cases, a provably optimal solution, or at least a solution that
is better than the previously known one, could be found. But the running time needed
is usually signi�cantly larger than the running time of other algorithms. In fact, Junger
and Mutzel interrupt their algorithm when a time limit of 1000 CPU seconds is reached.
They �nd that the easiest problem instances are sparse graphs and very dense graphs
having up to 200 vertices or 700 edges, and that for weighted graphs the performance of
their branch and cut heuristic is much worse than for unweighted graphs.

7.3 Approximation algorithms

Numerous approximation algorithms for Maximum Planar Subgraph Problem appear in
the literature, the simplest ones being Spanning Tree (output any spanning tree of G,
assuming G is connected) and Maximal Planar Subgraph (output any planar subgraph to
which the addition of any new edge would violate planarity).

First consider a trivial approximation for �nding a maximum planar subgraph by
observing that for a given connected graph G with n vertices, any spanning tree of G is a
planar subgraph with n− 1 edges, and that a spanning tree can be found in linear time.

41

Furthermore, a planar subgraph of G cannot have more than 3n− 6 edges. So if E ′ is the
edge set of a spanning tree for a given graph G, and if E∗ is the edge set of a maximum
planar subgraph of G, then the ratio |E′|

|E∗| is bounded (see also [41]):

|E ′|
|E∗|

=
n− 1

E∗ ≥
n− 1

3n− 6
>

1

3

For a graph G, we de�ne Opt(G) to be the maximum size of a planar subgraph of
G. Given an algorithm A that takes representations of graphs G as input and outputs
subgraphs of G, de�ne A(G′) to be the size of the planar graph A produces when G is the
input. Now let us de�ne A's performance or approximation ratio r(A) to be the in�mum,
over all graphs G, of A(G)

Opt(G)
, if Opt(G) > 0, and 1 otherwise.

Dyer, Foulds and Frieze [60] proved that Maximal Planar Subgraph has performance
ratio 1/3. Cimikowski [36] proved that a path embedding heuristic of Chiba, Nishioka
and Shirakawa [34] and an edge-embedding heuristic of Cai, Han and Tarjan [25] have
performance ratios not exceeding 1/3. In the same paper, Cimikowski studied two other
polynomial-time heuristics: the �vertex-addition heuristic� and the �cycle-packing heuris-
tic�. The performance ratio of the former, to the authors' knowledge, is not known,
whereas for the cycle-packing algorithm, it is 0. Dyer, Foulds and Frieze [60] studied two
other algorithms and proved that each has performance ratio at most 2/9. What makes
the problem more tantalizing is that achieving a performance ratio of 1/3 is trivial.

The trivial bound was improved for the �rst time by Calinescu, Fernandes, Finkler and
Karlo� [26, 27, 28] who present two new approximation algorithms for Maximum Planar
Subgraph Problem. Each achieves a performance ratio exceeding 1/3. The higher perfor-
mance ratio is 4/9 = 0.444... and is achieved by an algorithm which (surprisingly) invokes
an algorithm for the graphic matroid parity problem as a subroutine and which runs in
time O(m3/2nlog6n). A greedy variant still has performance ratio 7/18 = 0.3888... and
runs in linear time on graphs of bounded degree.

Given a (connected) graph G, an algorithm which outputs a spanning tree of G
achieves a performance ratio of 1/3. A graph whose cycles all have length three, i.e. are
triangles, is planar, as it cannot contain a subdivision of K5 or K3,3

Moreover, a connected
spanning subgraph of G whose cycles are triangles, besides being planar, has one more
edge per triangle than a spanning tree of G.

Calinescu et al.'s better algorithm [27] produces a subgraph of G whose cycles are
triangles and, among these subgraphs, has the maximum number of edges. It can be
implemented in time O(m3/2nlog6n), where m is the number of edges in G and n is the
number of vertices in G, using a graphic matroid parity algorithm.

Planarity testing

Since �nding a maximum planar subgraph is NP-complete [79], a maximal planar sub-
graph seems to be a reasonable approximation, as it is solvable in polynomial time. The
maximal planar subgraph problem is closely related to the planarity-testing problem. In
fact, a graph is planar i� it is the maximal planar subgraph of itself.

Given an undirected graph, the planarity testing problem is to determine whether
there exists a clockwise edge ordering around each vertex such that the graph can be
drawn in the plane without any crossing edges.

42

Linear time planarity testing algorithm was �rst established by Hopcroft and Tarjan
[104] based on a �path addition approach�. A �vertex addition approach�, originally de-
veloped by Lempel, Even and Cederbaum [130], was later improved by Booth and Lueker
[19] to run in linear time using a data structure called a PQ-tree. These algorithms are
quite complicated to implement.

Di Battista and Tamassia [52] introduced �rst on-line planarity testing algorithms
based on a recursive SPQR-tree decomposition of a biconnected graph into its triconnected
components. This structure allows to test whether two vertices are on the same face of
the embedding and to add vertices and edges to the embedding in O(logn) time.

Subsequently, other algorithms for incremental planarity testing were designed, e.g.
by La Poutre [164] and Hsu [107].

7.3.1 The O(nm) algorithms

A straightforward way of �nding a maximal planar subgraph is the Greedy Algorithm
[133]: The input is a graph G = (V, E) with n vertices and m edges. The output is a
maximal planar subgraph G′ = (V, E ′) of G. We start with G′ = (V, E ′) and build up
E ′ by considering one edge e of E after the other. For each e ∈ E, e is added to E ′ if
G′ = (V, E ′) remains planar, and discarded otherwise. We stop either after all edges of E
have been considered, or when |E ′| becomes equal to 3n− 6 (since a planar graph cannot
have more than 3n− 6 edges).

For each edge of E that is considered we need to perform a planarity test for a graph
with n vertices and at most 3n−6 edges. Each planarity test takes linear time, i.e. O(n) in
the worst case. The remaining operations like updating E ′ take O(1) time per edge. Thus
the worst case time complexity is in O(nm). Therefore, algorithms for �nding a maximal
planar subgraph are sought that not only have a better worst case time complexity than
the algorithm described above, but that are also less involved.

Chiba, Nishioka, and Shirakawa [34] propose an algorithm using the planarity testing al-
gorithm of Hopcroft and Tarjan [104]. However, they achieve a worst case time complexity
of O(nm), the same as that of the Greedy Algorithm.

Ozawa and Takahashi [156] have presented an O(nm) algorithm based on the vertex addi-
tion algorithm for planarity testing of Booth and Lueker [19]. Jayakumar, Thulasiraman
and Swamy [196] showed that in general this algorithm does not determine a maximal
planar subgraph. Moreover, the resulting planar subgraph may not even contain all ver-
tices.

7.3.2 The O(mlog n) algorithms

In a static environment, where an n-vertex graph G is entirely known in advance, we
can test the planarity of G and compute a planar embedding in optimal O(n) time [104].
In a dynamic environment, where a planar graph G is assembled on-line by insertions of
vertices and edges, we would like to determine quickly whether an update causes G to
become nonplanar. A �rst step in this direction has been the dynamic technique presented
in [191] for the restricted problem of maintaining a planar embedding of a planar graph.

Di Battista and Tamassia [53, 10, 8, 9] de�ne and use SPQR-trees to describe the
recursive decomposition of a 2-connected graph into its 3-connected components. Their

43

incremental planarity testing problem consists of performing the following operations on
a planar graph G: (i) for two vertices v1 and v2 in G with v1v2 6∈ E, determine whether
G stays planar if the edge v1v2 is added to G; (ii) If v1 ∈ V , v2 ∈ V , v1v2 6∈ E, add the
edge v1v2 to G (assuming the corresponding request of type a yields a positive answer);
(iii) add a new vertex to G.

This data structure uses O(n) space, and allows to test whether two vertices are on the
same face of the embedding and to add vertices and edges to the embedding in O(log n)
time. Hence, Di Battista and Tamassia [53] obtained an O(mlog n) time algorithm
for �nding a maximal planar subgraph as a byproduct of an algorithm for incremental
planarity testing.

Independently, Cai, Han and Tarjan [25] give an O(mlog n)-time and O(m)-space solution
to the maximal planar subgraph problem. For sparse graphs (i.e. graphs with m =
O(n1+ε), where ε < 1), it beats the algorithm of Jayakumar et al. even in the special
case when a biconnected spanning planar subgraph is given. The method of [25] is much
less complicated than that of [53], however, as it is designed to solve a less general problem.

Cai et al.'s algorithm [25] is based on a new version of the Hopcroft and Tarjan
planarity testing algorithm [104]. The main di�erence is that it admits a more general
ordering than the original H-T algorithm does in processing the successors of each tree
edge. Also, the H-T algorithm processes one path at a time, while that of [25] processes
one edge at a time. In this sense, the new algorithm is a more recursive version of the
H-T algorithm.

In [164], La Poutre presented algorithms for incremental planarity testing that yield an
O(n + mα(m, n)) time algorithm for the maximal planar subgraph problem (where α(m,
n) is the functional inverse of the Ackermann function). This result was improved to
linear time complexity by Djidjev [54], and, independently, by Hsu [107].

7.3.3 The O(n2) algorithms

Jayakumar, Thulasiraman and Swamy [197] presented a two-phase algorithm for solv-
ing the maximal planar subgraph problem in time O(n2) based on the Lempel-Even-
Cederbaum algorithm for testing planarity. In the �rst phase, an algorithm called Pla-
narize computes a spanning planar subgraph Gs of G in O(n2) time. Furthermore, they
present an algorithm called MaxPlanarize that augments Gs to a subgraph G′ of G by
adding additional edges in O(n2) time. They claim that G′ is a maximal planar subgraph
of G if Gs turns out to be biconnected.

Kant [116] shows that this algorithm is incorrect, and suggests a modi�cation of the
second phase of the algorithm that augments Gs to a maximal planar subgraph of G, even
if Gs is not biconnected, maintaining O(n2) time requirement.

Jünger, Leipert and Mutzel [110] showed that the algorithm of Jayakumar et al.
[197] to solve the maximal planar subgraph problem with PQ-trees is not correct even
with the ideas described by Kant. The source of the problems is that the PQ-trees in
MaxPlanarize are constructed according to the st-numbering that was computed for the
nonplanar input graph G. As a matter of fact, the st-numbering of G does not imply an
st-numbering of any maximal planar subgraph Gp even if the subgraph Gp is biconnected.
Thus, MaxPlanarize does not obey the following invariant for planarity: Given a planar
graph G = (V, E) with an st-numbering, 1 ≤ k ≤ n.

44

If the edge (t, s) is drawn on the boundary of the outer face, then all edges and vertices
that have not yet been introduced into the current subgraph Gk are always embedded into
the outer face of Gk. Since the numbering that is used to determine the order in which
the vertices are reduced does not correspond to an st-numbering of Gp in general, the
algorithm of Jayakumar et al. ignores edges that can be added into an inner face of the
embedding of a current graph Gk without destroying planarity, and only considers edges
for reintroduction into the planar subgraph Gp that are on its outer face.

Jünger et al.[110] have further noted that even a corrected version of the two-phase
algorithm applied in the best possible case, where the st-numbering of a graph G is as
well an st-numbering of the planar subgraph Gp, is not correct. Since this best case is
a very rare case and since the modi�cations for the solved problems (see [129]) are far
beyond any reasonable implementation, Jünger et al. doubt that a useful algorithm based
on the strategy presented by Jayakumar et al. [197] can be found.

7.3.4 The O(n) algorithms

Djidjev [54] constructed an optimal linear time algorithm for the maximal planar subgraph
problem. His solution is based on a dynamic graph search procedure and a fast data
structure for on-line planarity testing of triconnected graphs.

Given a graph G = (V, E), Djidjev �rst computes a depth �rst search tree of G.
This spanning tree of G is the initial planar subgraph G′ = (V, E ′) of G. Then for each
edge e ∈ E\E ′ it is determined whether the graph (V, E ′ ∪ {e}) is still planar. If so,
e is added to E ′. The order in which the edges in E\E ′ are considered is chosen in a
sophisticated way so that, with O(1) amortized time per test and insert operation for each
edge e ∈ E\E ′, the overall time complexity is linear. Many intricate data structures are
needed to achieve the O(1) amortized time per test and insert operation. Two of them are
BC-trees to describe the decomposition of a connected planar graph into its 2-connected
components and SPQR-trees to describe the decomposition of a 2-connected graph into
its 3-connected components [9].

Djidjev's [54] algorithm for the maximal planar subgraph problem can be transformed
into a linear algorithm for planarity testing based on an approach completely di�erent
from the existing ones. The previous algorithms of Hopcroft and Tarjan [104] and Booth
and Lueker [19] are based on the Jordan Curve Theorem while Djidjev's algorithm is based
on the uniqueness of the planar embedding of any triconnected planar graph. Djidjev's
algorithm is linear and therefore asymptotically best possible. However, it is so involved
that a linear implementation seems di�cult to achieve.

Compared to the standard algorithms for planarity testing of Hopcroft and Tarjan [104] or
Booth and Lueker [19], Hsu and Shih [181] developed a very simple linear time algorithm
for testing planarity based only on a depth-�rst search tree. The key to their approach is
to add vertices according to a postordering obtained from a depth-�rst-search tree. The
postordering is a labeling l : V → {1, . . . , n} so that if u is an ancestor of v in the depth
�rst search tree, then l(u) > l(v).

By emulating its steps, Hsu [107] extended the planarity testing algorithm of [181]
for �nding a maximal planar subgraph. The new algorithm also starts with a depth �rst
search tree of the given graph G = (V, E) , and then determines a postordering of the
vertices of G. The initial planar subgraph G′ of G is empty, and the vertices are added in

45

ascending order of their labels. So in step i of the algorithm, the vertex with label i (and
the edges incident to it) are added to G′. Note that G′ is not necessarily connected at all
times.

Hsu pointed out the the way, in which the vertices are added and in which for each
edge it is decided whether the edge can be added to G′ without destroying planarity
ensures the construction of a maximal planar subgraph in linear time. Moreover this
algorithm appears to be less complicated than that of Djidjev [54].

7.3.4.1 A linear algorithm for �nding a maximal planar subgraph 1

Djidjev [54] described the �rst linear O(n + m) time algorithm for the maximal planar
subgraph problem. The algorithm uses a tree-represented decomposition of a biconnected
graph into triconnected components, a common feature of the incremental planarity test-
ing algorithms [53, 8, 208, 164].

The algorithm has the following structure: (i) it initially constructs a depth-�rst
spanning tree of G (we can assume that w.l.o.g. that G is connected) and uses it as
an initial approximation of the maximal planar subgraph; (ii) it adds the edges one by
one, making an on-line choice of the next edge to be added so that the testing time
be appropriately small. The ability to make a choice of the order in which to insert,
while possible, the edges into the subgraph so that planarity is preserved is essential for
achieving O(1) amortized time per test and insert operation.

Djidjev maintains in each bicomponent a special dynamic path of nodes of the decom-
position tree such that all testing and updating operations are performed on nodes of that
path. This makes it possible to implement data structures such as SPQR- or BC-trees
supporting set union and set split operations in a constant amortized time. Furthermore,
Djidjev developed a new e�cient data structure used for incremental planarity testing of
triconnected graphs which works in O(1) amortized time per operation.

Recall that a SPQR-tree for a biconnected graph G is a recursively de�ned tree T closely
related to the decomposition of G with respect to its split pairs [53]. T has four types of
nodes S, P, Q, and R and there is an st-graph, skeleton(µ), associated with each node µ
of T . The skeletons of the internal nodes of T are in one-to-one correspondence with the
tricomponents of G and hence their number is O(m). The endpoints of each edge t in the
skeleton of the root of T correspond to a maximal split pair of G and t represents the set
of split components of that split pair.

A property of the SPQR-trees that is relevant to planarity testing is that the skeleton
of any internal node µ of a SPQR-tree has either a unique planar embedding (if µ is an
R node), or any two edges can be placed on the same face (if µ is a P, Q, or S node.)
For a more detailed discussion of SPQR-trees see [53, 8]. Our next goal is to show how
to reduce a planarity testing in a graph to planarity testing in skeletons of nodes of its
SPQR-tree.

In order to handle connected graphs that are not necessarily biconnected we de�ne
the BC trees introduced in [8] which are extensions of the SPQR-trees. To construct a
BC tree of a connected graph G �rst �nd all bicomponents of G. Then construct a tree
that contains a node of type B for any bicomponent b and a node of type C for any cut
vertex c of G
Associate with each B node b an SPQR-tree representing b. Connect a C
node c and a B node b i� c belongs to b. Finally root the tree at an arbitrary B node.

46

Djidjev's algorithm [54] uses the decomposition tree described above to represent
the decomposition of the current planar subgraph. For maintaining the embeddings of
skeletons and for answering queries at each node of a SPQR-tree, Djidjev uses an algorithm
that chooses a new edge and checks if it is possible to add it to the subgraph so that
planarity is preserved at each iteration. The order in which edges are tested for insertion
into the subgraph is critical for the e�ciency of Djidjev's algorithm.

Another feature of the algorithm is that it maintains a dynamic set Upaths of paths
in the decomposition tree called update paths which will be the �working� paths, i.e. all
information it currently could need will be associated with nodes in these paths and all
updates will be done on nodes in paths from Upaths. By using properties of these paths
it is possible to make queries and do updates more e�ciently.

Djidjev's algorithm is linear and therefore asymptotically best possible. However, it is so
involved that a linear implementation seems di�cult to achieve.

7.3.4.2 A linear algorithm for �nding a maximal planar subgraph 2

In the two previous approaches [104, 130] of planarity test, the partial subgraph con-
structed at each iteration is always connected. The st-numbering of Lempel et al.'s
approach further requires that those vertices not added induce a connected subgraph.

Hsu [107] adopted a �vertex addition� approach which only requires that those vertices
�not added� induce a connected subgraph. Thus, a simple postordering of a depth-�rst
search tree of G su�ces. Let Gi be the subgraph at the i-th iteration consisting of the �rst
i vertices and those edges among them. In the approach of Hsu, Gi may be disconnected,
but the embedding for each biconnected component of Gi, once determined, is never
changed.

Assume the given graph G is biconnected and the degree of each vertex is at least 3.
Hsu [107] uses a generalized forest representation F i for each Gi. Each node in the
forest Fi represents either (a) an original vertex of G (denoted by a v-node) adjacent to
vertices not in Gi. or (b) a biconnected component of Gi whose planar embedding has
already been determined (denoted by a c-node).

Further Hsu de�nes the external degree of a vertex at iteration i to be the the
number of its neighbors among {i + 1, . . . , n}. Since some of those vertices in Gi−1

with external degree 0 do not have to be examined for future embedding, we shall apply
a vertex contraction procedure to eliminate them. The contraction procedure replaces a
connected subgraph by a contracted edge, which makes it possible to recognize and embed
the planar graph more e�ciently. Let T ′

j denote the tree after the vertex contraction from
Tj.

At the beginning of the i-th iteration, Hsu [107] reduces the external degrees of all
neighbors of vertex i in Fi by 1. The contraction procedure starts by marking all vertices
of Tj that are adjacent to i. Note that a vertex which is not marked at this stage can
become marked later through a contracted edge. There are two types of contraction:
contracting vertices on a path and contracting vertices on a cycle.

The main idea of the MPS (Maximum Planar Subgraph) algorithm presented in [107]
is to traverse the tree towards the root from those vertices adjacent to the new vertex.
To accommodate for slot reservation, it is required to label the vertices and biconnected

47

components traversed in the algorithm so that each edge will be traversed a constant
number of times.

Each tree in the current forest that contains vertices adjacent to the new vertex
will produce at most one biconnected component containing that new vertex. The MPS
algorithm will assume such a component is already formed (which is actually pending on
the determination of terminal nodes) and each vertex of the boundary cycle is labeled
with the new vertex. Thus, the next time any vertex, say u, of this component, say C, is
traversed two things will happen: (i) vertex u will be identi�ed to be lying on the boundary
of the biconnected component formed by the current new vertex; (ii) the traversal will
continue with the new vertex of C, thus skipping all other vertices of component C.

Let i be the new vertex in the current iteration. Consider a tree with root x in the
current forest that contains at least two vertices adjacent to i. Such a tree will create a
biconnected component for i at this iteration. We shall associate the edge (i, x) with this
component. The MPS algorithm traverses the vertices and edges of the tree as follows.
It �rst picks the neighbor of i with the lowest order, say u, in the tree and traverses the
unique path from u to x. Each vertex v on that path will be labeled with (i, x, d), where
d is the distance between v and u measured by the number of edges along the path.

Since the postordering guarantees that vertices with lower order will be considered
before those with higher orders, those neighbors of i along the path from u to i will be
labeled and they will no longer be considered at this iteration. After the unique path
from u has been traversed the algorithm will pick the next lowerest unlabeled vertex, say
u′, adjacent to i and traverse the unique path from u′ to i. The traversal will terminate
when it encounters a vertex already labeled. The algorithm then picks the next lowerest
unmarked vertex and continues until all neighbors of i in this tree have been considered.
Everytime a new edge is added to the subgraph some other edges could be deleted.

The argument for the linear complexity is mainly based on the fact that the number of
times an edge is traversed is a constant. Hence, the time complexity of the MPS algorithm
is linear. Full details on this approach can be found in [107].

7.4 Heuristic algorithms

The Greedy Algorithm of Section 7.3.1 �nds a maximal planar subgraph, which will be at
least as good as just taking a spanning tree. [120, 60, 74] use the following greedy heuristic
for the Weighted Maximum Planar Subgraph problem: Instead of considering the edges
in arbitrary order, they consider them in an order of nonincreasing weight. This Greedy
Heuristic does involve repeated planarity testing, and even though planarity testing can
be done in linear time, the algorithms are rather complicated. The following heuristics
avoid planarity testing.

The Deltahedron Heuristic [76, 74] of Foulds and Robinson starts with a tetrahedron
(K4) as the initial planar subgraph and then adds one vertex at a time, placing each new
vertex in one of the faces of the current planar subgraph. The sequence in which the
vertices are added is determined by a vertex weight W that can be de�ned in various
ways, as discussed below. Note that in contrast to the Greedy Heuristic, the Deltahedron
Heuristic does not necessarily yield a maximal planar subgraph of the input graph.

Leung [132] generalizes the Deltahedron Heuristic. Starting with a tetrahedron (K4),
a planar subgraph is built such that in each step, the current planar subgraph has only

48

Figure 16: [133] A step in the Deltahedron Heuristic for �nding a planar subgraph with
large edge weights [76, 74, 60](left), or in its generalization [132](left or right). In the
operation on the left, vertex v and 3 incident edges are inserted into face abc. In the
operation on the right, vertices v1, v2, v3 and 9 incident edges are inserted into face abc.

triangular faces. In each step, a single vertex and three incident edges (as in the Deltahe-
dron Heuristic) or a set of three vertices and nine incident edges are placed in one of the
faces of the current planar subgraph as illustrated in 16.

Unlike in the Deltahedron Heuristic, the vertices to be inserted are not chosen in any
predetermined ordering, but in each step the vertex or the set of three vertices, and the
face into which to insert them, is determined so that the gain in edge weights per inserted
vertex in this step is best possible. The worst case time complexity of this approach is
O(n4log n). Computational results are carried out, generating the test base in much the
same way as [74]. They suggest that the results of the generalized Deltahedron Heuristic
are better than the ones achieved by the original Deltahedron approach discussed in
[76, 74].

For the unweighted case (i.e. all edge weights are 1) there are still other approaches.
Cimikowski [41] suggests a heuristic based on �nding, for each 2-connected component of
a non-planar graph, a pair of edge-disjoint spanning trees whose union is planar. Then
this union forms a planar subgraph and has 2n− 2 edges.

Although no computational results are given by the author, the main interest of this
approach is due to the fact that, under certain conditions, the number of edges of the
generated planar subgraph is at least 2/3 of the optimum. If the graph does not have two
such spanning trees, some heuristic edge manipulations are performed, so that the output
is still a spanning planar subgraph, but without a guaranteed number of edges. If two
spanning trees exist, they can be found in O(m2) [175].

Takefuji and Lee [188, 189] and Goldschmidt and Takvorian [86] each propose a two-phase
heuristic for �nding a planar subgraph with as many edges as possible. In the �rst phase,
a linear ordering of the vertices is determined. The vertices are placed on a line according
to that ordering. In the second phase edges are placed above or below the line. The
resulting planar subgraph is thus embedded in a book with two pages. The techniques
used for each phase are very di�erent in [188] and [86]. [188] places the vertices in a
random order in the �rst phase and uses a neural network technique for the second phase.

Goldschmidt and Takvorian [86] argue that it is useful to attempt to order the vertices
of the input graph G = (V, E) according to a Hamiltonian cycle in the �rst phase. Given

49

an ordering of the vertices on a line, in the second phase a partition of E into three sets
A, B, and C must be determined so that |A| + |B| is as large as possible, and so that
no two edges of A (B) intersect if all edges of A (B) are placed above (below) the line of
vertices. The edges in C are not part of the planar subgraph. If we imagine the vertices
of G to lie on the real line, then each edge e ∈ E can be regarded as an interval de�ned
by its two end vertices [133]. Let H = (E, F) be a graph such that each edge of G is a
vertex of H. Let e1, e2 be two edges of G and thus two vertices of H, and let i1 and i2
be the intervals corresponding to the edges e1 and e2 in G, e1 and e2 are connected by
an edge in H if and only if the intervals i1 and i2 intersect but none is contained in the
other. Thus H is an overlap graph (also called circle graph). Finding the sets A, B and
C as described above is now equivalent to �nding a maximum induced bipartite subgraph
of the overlap graph H. Finding a maximum induced bipartite subgraph of an overlap
graph is NP-complete [176].

Goldschmidt and Takvorian [86] now use the following greedy algorithm to construct
a maximal induced bipartite subgraph of an overlap graph: Find a maximum independent
vertex set in H (the vertices of this set are then the edges in A), delete it from H, and
�nd a maximum independent set in the remaining graph (the vertices of this set are then
the edges in B). Since a maximum independent set of an overlap graph can be found in
polynomial time [83], this algorithm runs in polynomial time also. [86] shows that the
number of vertices in the maximal induced bipartite subgraph is at least 0.75 times the
number of vertices of a maximum bipartite subgraph.

Computational results reported by Goldschmidt and Takvorian [86] compare their
implementation of their heuristic with their implementation of [188] on a set of 19 graphs
with 10 to 150 vertices and two larger graphs with 300 and 1000 vertices, respectively.
For each instance, their heuristic �nds at least as good a solution as [188]. For the graphs
with 50 or more vertices, the solution of [86] is even dramatically better than that of [188].
But note that the test base is small, that it is unclear how representative it is, and that
even the results of [86] might still be very far away from an optimal solution.

The approach of [86] is further re�ned by Resende and Ribeiro [167]. They apply a greedy
randomized adaptive search procedure (GRASP), a metaheuristic for combinatorial op-
timization [72, 142], to the problem of planarizing a graph through edge deletion and
review basic concepts of GRASP: construction and local search algorithms.

Experimental results using most graphs from the test base in [86] as well as graphs
with up to 300 vertices collected by Cimikowski are discussed in [167]. They indicate that
the GRASP compares favorably with the results of [86]. In comparison with the branch
and cut heuristic [146, 111], however, the situation is not so clear: On some instances the
branch and cut heuristic is clearly better, on others the GRASP outperforms the branch
and cut heuristic. The latter happens in particular when the time limit set for the branch
and cut heuristic is reached so that the computation is halted and the best solution found
until then is reported.

7.4.1 GRASP for Graph Planarization

Resende and Ribeiro [167] apply the concepts of GRASP to the graph planarization
problem. A GRASP [72] is an iterative process, where each GRASP iteration consists
of two phases: construction and local search. The construction phase builds a feasible

50

solution, whose neighborhood is explored by local search. The best solution over all
GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. At each
construction iteration, the next element to be added is determined by ordering all elements
in a candidate list with respect to a greedy function that measures the actual bene�t of
selecting each element. The adaptive component of the heuristic arises from the fact that
the bene�ts associated with every element are updated at each iteration of the construction
phase to re�ect the changes brought on by the selection of the previous elements. The
probabilistic component of a GRASP is characterized by randomly choosing one of the
best candidates in the list, but usually not the top candidate. This way of making the
choice allows for di�erent solutions to be obtained at each GRASP iteration, but does not
necessarily jeopardize the power of GRASP's adaptive greedy component.

The solutions generated by a GRASP construction are not guaranteed to be locally
optimal with respect to simple neighborhood de�nitions. Hence, it is almost always
bene�cial to apply a local search to attempt to improve each constructed solution. A
local search algorithm works in an iterative fashion by successively replacing the current
solution by a better solution from its neighborhood. It terminates when there is no
better solution found in the neighborhood with respect to some cost function. Success
for a local search algorithm depends on the suitable choice of a neighborhood structure,
e�cient neighborhood search techniques, and the starting solution.

The GRASP construction phase plays an important role with respect to this last
point, since it produces good starting solutions for local search. Normally, a local op-
timization procedure, such as a two-exchange, is employed. While such procedures can
require exponential time from an arbitrary starting point, empirically their e�ciency sig-
ni�cantly improves as the initial solutions improve [167]. Through the use of customized
data structures and careful implementation, an e�cient construction phase that produces
good initial solutions for e�cient local search can be created. The result is that often
many GRASP solutions are generated in the same amount of time required for the local
optimization procedure to converge from a single random start. Furthermore, the best of
these GRASP solutions is generally signi�cantly better than the solution obtained from
a random starting point.

Algorithm 7.1.
procedure GRASP(ListSize, MaxIter, RandomSeed)
1 InputInstance();
2 for k = 1, . . . ,MaxIter do
3 ConstructGreedyRandomizedSolution(ListSize,RandomSeed);
4 LocalSearch(BestSolutionFound);
5 UpdateSolution(BestSolutionFound);
6 end
7 return BestSolutionFound
end

Algorithm 7.1 illustrates a generic GRASP implementation in pseudo-code. The
GRASP takes as input parameters for setting the candidate list size, maximum num-
ber of GRASP iterations and the seed for the random number generator. After reading
the instance data (line 1), the GRASP iterations are carried out in lines 2-6. Each GRASP

51

iteration consists of the construction phase (line 3), the local search phase (line 4) and, if
necessary, the incumbent solution update (line 5).

As outlined above, a GRASP possesses four basic components: a greedy function, an
adaptive search strategy, a probabilistic selection procedure, and a local search technique.
These components are linked together into an iterative method that constructs a feasible
solution one element at a time and then feeds the solution to the local search procedure.

The computational complexity of phases 1 and 2 of this GRASP [167] is discussed
next. The construction phase takes |V | − 1 iterations, each of which has complexity
O(|V |), resulting in an O(|V |2) procedure. To analyze the local search phase, we need an
upper bound on the number of edge crossings for a given vertex sequence. The number of
edge crossings in a complete graph is bounded above by O(|V |4). Each GRASP iteration
reduces the number of edge crossings by at least one. Consequently, the number of itera-
tions is bounded above by O(|V |4). Since each iteration has time complexity O(|E||V |2),
the time complexity for the local search is O(|E||V |6).

7.4.2 Performance of the heuristics

For algorithmic results, and in particular for approximations and heuristics, computational
results are an important performance measure, both regarding the quality of the result
of the algorithm and the running time needed. But a fair comparison of algorithms with
each other on the basis of computational results is usually di�cult, if not impossible, since
the implementation of an algorithm and the graphs used for the test strongly in�uence
the computational results. Hence, the comparisons of algorithms made in this section
have to be considered with caution.

In this section, we present two computational studies for evaluating the performance of
heuristics for computing the maximal planar subgraph, each of them comparing a di�erent
set of heuristics. The �rst study was conducted by Cimikowski (see [37, 36, 38, 41]), the
latter was conveyed by Silva Carmo and Wakabayashi (see [45]).

7.4.2.1 Computational study 1

Cimikowski [37, 36, 38, 41] performed an empirical evaluation of heuristics for the graph
planarization problem. Several heuristics were tested on a large and comprehensive set of
test problems.

These included random graphs with unknown maximum planar subgraph size, non-
planar graphs containing a maximum planar subgraph of size 3|V | − 6, random Hamilto-
nian non-planar graphs, and a few special graphs already considered in the literature or
possessing interesting structures or relevant applications. Cimikowski tested the following
heuristic methods:

7.4.2.1.1 The Path-Embedding Heuristic.

The path embedding heuristic CNS (after Chiba, Nishioka, and Shirakawa [34]) is based
on the linear time planarity algorithm of Hopcroft and Tarjan [104].

Using depth-�rst search (dfs), an initial cycle is found in a graph G, deleted, and
then embedded in the plane. The remainder of G is then decomposed into edge-disjoint
paths and an attempt is made to embed each path inside or outside the cycle. If all paths
can be embedded, the graph is planar; otherwise it is nonplanar. Whereas the original

52

planarity algorithm halts when a path cannot be embedded, the heuristic CNS deletes a
special edge called a �frond� from the path and continues.

7.4.2.1.2 The Edge-Embedding Heuristic.

Cai, Han, and Tarjan [25] proposed a variant of CNS which processes an edge rather than
a path at a time. The heuristic CHT begins by �nding a dfs tree with tree edges ET

and fronds EF . Then it constructs a maximal planar subgraph of input graph G by �rst
embedding an initial cycle C, then recursively embedding any remaining tree edges and as
many fronds as it can while maintaining planarity, in an order determined by a successor
relationship between edges.

For any edge e = (a, b), let b be the head of e. If (a, b) is a tree edge and (b, c) is any
edge, then (b, c) is a successor of (a, b). By de�nition, fronds have no successors. low1(c)
is the lowest-numbered vertex reachable from vertex a or from any of its descendants
(in the dfs tree) by a frond. Initially, the ordered list succ(e) is computed for each edge
e ∈ E. succ(e) gives the successor edges of e in increasing low1 order.

CHT �rst performs a dfs of G, partitioning E into tree edges ET and fronds EF . The
edge-embedding process then begins, starting with the �rst tree edge generated by dfs.
Then the next successor edge of the last tree edge is embedded. The embedding step
is recursively applied, where the next edge chosen is the next successor of the last edge
embedded, if any; otherwise, the next successor of the previous edge embedded is chosen,
etc. Nonembeddable edges are discarded. The time complexity of CHT is O(mlog n).

7.4.2.1.3 The Incremental Heuristic.

La Poutre's incremental heuristic INC starts with an �empty� graph and adds edges one at
a time, discarding an edge if it causes nonplanarity. After each edge addition, a planarity
test is performed. Using �incremental� planarity testing, i.e. [164], the time complexity is
O(n + mα(m,n)), which is roughly O(n + m).

7.4.2.1.4 The Vertex-Addition Heuristic.

Booth and Lueker [19] developed a planarity testing algorithm based on vertex addition
using PQ-trees. It embeds one vertex of a graph at each step in an order given by an
�st-numbering� of the vertices. After each vertex addition, it may be necessary to reverse
or permute pieces of the graph to preserve planarity.

Ozawa and Takahashi [156] extended this method, here we call it PQ, to �nd a max-
imal planar subgraph. Later, Kant [116] introduced some corrections to the method,
though as shown in [110] it still does not guarantee to �nd a maximal planar subgraph.

The theoretical worst case running time is O(|V |2). In practice it is much faster. The
quality of the results can be improved by introducing random events and calling them
several times. The random event can be simply to choose a random edge of E in order to
get s and t. Gutwenger and Mutzel [91] studied the e�ects of up to 100 calls.

7.4.2.1.5 The Cycle-Packing Heuristic.

This method by Goldschmidt and Takvorian ([85]) �nds an optimal ordering of vertices
along a horizontal �node line� in the plane and tries to embed as many edges as possible

53

Table 1: Time and space complexities of the heuristics († with incremental planarity
testing [164]).

Heuristic Time Space

CNS O(mn) O(mn)

CHT O(m log n) O(m)

PQ O(n2) O(n2)

INC O(n + mα(m,n))† O(m)

GT O(nm2) O(m)

above and below the line. In the �rst phase of the heuristic GT, an attempt is made
to �nd a hamiltonian cycle of a graph G = (V, E), using a probabilistic algorithm. The
cycle determines a vertex ordering O along the node line. The second phase embeds edges
above and below the node line.

The ordering O in�uences the number of edges embedded. If G is hamiltonian, the
optimal O corresponds to a hamiltonian cycle and a 3/4-approximation is guaranteed.
Otherwise, a greedy ordering is used, and there is no performance bound.

7.4.2.1.6 The Branch-and-Cut Heuristic.

The branch-and-cut heuristic developed by Jünger and Mutzel [111, 112] is an exhaustive
search algorithm based on linear programming and cutting plane generation, with feasi-
bility bounding performed by a planarity testing algorithm. As planar obstructions are
detected during the search process, fronds are deleted, until a maximal planar subgraph
is found.

Since heuristic JM can require exponential time, a time limit is imposed on the com-
putation and the current bound value is output. If run until completion, optimality is
guaranteed.

7.4.2.1.7 Time and space complexities

As displayed in Figure 1, the O(n2) PQ implementation of Kant [116] is currently the
fastest method for dense graphs. For sparse graphs, the incremental heuristic [164] is
O(n + mα(n,m)), while the method of [25] is O(nlog n).

Since Cimikowski [37, 36, 38, 41] didn't include any of the linear time algorithms
[107, 54] into his tests, these statements shall be considered with restraint.

7.4.2.1.8 Experimental results

Cimikowski's experiments show that the branch-and-cut heuristic of Jünger and Mutzel
(JM [111, 112]) consistently outperformed the other heuristics for the graphs tested.

The two-phase heuristic of Goldschmidt and Takvorian (GT [86]) markedly outper-
forms the remaining in terms of solution quality, although its running time makes it

54

prohibitive for very large graphs. It is the method of choice when the input graphs are
su�ciently dense and hamiltonian with high probability.

If the computation time is critical, then the approaches based on planarity testing
(PQ [197]) and edge embedding (CHT [25]) are recommended. If cpu time is very critical
then PQ and CHT is recommended.

The superiority of the incremental heuristic (INC [164]) over the path-embedding
heuristic (CNS [34]) and the edge-embedding heuristic CHT, is di�cult to explain. On
random graphs, sparse graphs, and hamiltonian graphs it consistently outperformed CHT
and CNS. Thus, INC is a good choice providing some care is taken to avoid occasional
bad orderings of edges. This can be achieved by trying several di�erent orderings.

7.4.2.2 Computational study 2

Foulds, Gibbons and Gi�n [74] and Leung [132] performed computational comparison of
the heuristics divided into two classes:

1. The greedy heuristic, which starts with the empty subgraph and tries to add edges
one at a time, accepting an edge only if its addition results in a planar subgraph
[84, 74]. Notice that all the heuristics mentioned in the �rst case are. in some sense,
greedy approaches, but we use this term here to refer to the second case only which
we denote GDY.

2. Those which start with a planar subgraph (actually a triangle) of the given graph
and appropriately add vertices and edges so that planarity is preserved from the
start to the end of the processing [75, 73, 62, 74, 132]. We call these the planarity
preserving heuristics.

The planarity preserving heuristics may be thought of as variations on two main themes,
with respect to the way the vertices and edges are added at each step: the deltahedron
(DH) approach [76] and the wheel expansion (WE) approach [62].

In [74] an experimental comparison of them and their variants is presented: Some
improvements to DH are proposed, which are referred to as IDH (for �improved DH�);
also, a variation on the choice of the starting triangle gives di�erent results, making up
a total of 6 �di�erent� heuristics which will be denoted as WE, WE', DH, DH', IDH and
IDH'; �nally, the simplicial decomposition approach, a last variation of DH, is presented
in [132]. We will denote this by SD.

Further, Silva Carmo and Wakabayashi [45] proposed a nonnaive greedy algorithm
GRD, where they tried to reduce the overhead imposed by the HT planarity test which
is needed at each step of the algorithm. In doing so, they introduce the concept of
hierarchies, a partial order with special properties which, when induced on the vertex set
of a graph, serves as the formal counterpart of the well known technique of Depth First
Search (DFS), and which can be easily �translated� into a data structure which represents
this DFS. However, the perfomance ratio of GRD doesn't exceed 1/3, just as that of GDY.

7.4.2.2.1 Experimental results

Foulds, Gibbons and Gi�n [74] and Leung [132] present experimental results on a set
of 102 complete graphs whose edge weights obey a normal distribution with controlled

55

variance. Some measures for the performances of the mentioned heuristics on instances
of various sizes are given in Figure 17.

Table (a) shows the average running times (I/O operations not computed) of each
heuristics; Table (b) shows, the proportion in what each heuristics yielded the best of the
solutions (compared to the solutions given by the others); Table (c) shows the average
performance of each of them; the values indicate the ratio obtained solution/optimal
solution the case of the size 10 instances and obtained solution/optimal solution in the
others, where upper bound is the sum of the 3n− 6 highest weight edges of the instance;
each column in the last line shows the average of that column; Table (d) shows the value
of the worst performance ratio obtained for each heuristics. At each table, n indicates the
number of vertices of the instances in question.

Figure 17: [45] Comparative Performance of various Heuristics for the MPSP.

These tables were based on data published in [74] and [132]. From these data we can
see that all the proposed heuristics give quite good results and, among them, GDY and
IDH show the best performances.

If we are to chose between these two, we can see that GDY has a more stable behavior,
slightly outperforming IDH in most of the tests. On the other hand, GDY has a serious
drawback: it is too time consuming, and this is due to the overhead of performing a
planarity test at each step of the construction, which is avoided by the planarity preserving
heuristics-Based on such remarks, [74] concludes that IDH is the best practical choice,
arguing that GDY, besides requiring the implementation of a linear planarity testing
algorithm (a laborious task) would become impractical for large instances of the problem.

Silva Carmo and Wakabayashi [45] performed a computational comparison of the above
heuristics with their algorithm GRD given in [45] on the same set of benchmark graphs.
The average running times obtained for a series of random generated instances are pre-
sented in 18, each instance consists of a complete graph, given by a list of its edges in
random order. The running times presented were averaged over a series of 10 runs for
each instance size; Figure 18 shows, for each instance G, the number of vertices and edges

56

and the time in seconds spent by the algorithm to �nd a greedy maximum weight planar
subgraph.

Figure 18: [45] Running times (CPU seconds).

57

8 Edge inserting strategies

In practice, the crossing minimization problem is usually solved heuristically using a 2-step
planarization approach. After obtaining a maximum planar subgraph, now, in the second
step of the planarization approach, we need to reinsert all edges that were removed for
violating planarity in the �rst phase back into the graph. The aim is to obtain a smallest
number of crossings in the resulting drawing of the graph.

8.1 Edge Re-insertion Strategies

According to Gutwenger and Mutzel [91] there are three main types of the edge re-inserting
strategies, all of which are NP-hard [214]. In addition to that, they mention several post-
processing strategies helping to reduce the number of crossings in the resulting drawing.

8.1.1 Fixed embedding.

The edge insertion problem for a �xed embedding can be stated as follows [91]: given a
planar graph G = (V, E) and a pair of vertices (v1, v2) in V , �nd a drawing of G′ =
(V, E ∪{(v1, v2)}) that has the minimum number of crossings among all drawings of G′ in
which every crossing is a crossing between an edge in E and the edge (v1, v2). Note that
such a drawing of G′ is not necessarily crossing minimal [93].

The standard algorithm used in practice re-inserts the edges e1, e2, . . . , ek iteratively start-
ing with a given planar embedding of G . The approach is based on the observation that
an edge ei crosses an edge in P if and only if it uses an edge in the geometric dual graph of
P . Hence, the problem of reinserting only one edge into P with a given planar embedding
can be solved via a simple shortest-path computation in the extended dual graph of P .
(We need to extend the dual graph in order to connect the end-vertices of ei with the dual
graph.) After each insertion step i, the crossings generated by edge ei are substituted
by arti�cial vertices so that the resulting graph G ∪ {e1, . . . , ei} becomes planar again
(i = 1, . . . , k).

The theoretical worst case running time for inserting k edges of the Gutwenger and
Mutzel's implementation [91] is O(Σk

i=1(|V |+ Σi−1
j=0cj)) = O(k(|V |+ |C|)), where cj is the

number of crossings introduced in step j, c0 = 0, and C the number of crossings in the
�nal drawing. In practice, it is much faster, since the updates of the dual graphs are
implemented e�ciently. Gutwenger and Mutzel denote this re-insertion method as FIX.

8.1.2 Variable Embedding.

Problem 9 (Edge Insertion Optimizing over All Embeddings [91]). Given a pla-
nar graph G = (V, E) and a pair of vertices (v1, v2 in G, �nd an embedding Π of G such
that we can add the edge e = (v1, v2) to Π with the minimum possible number of crossings
among all embeddings of G.

When inserting an edge into a planar graph P, the quality of the resulting drawing highly
depends on the chosen embedding of P . In [93], Gutwenger et al. present a linear time
algorithm based on the SPQR-tree data structure for inserting one edge into a planar

58

graph P so that the number of crossings in P ∪ {e} over the set of all possible planar
embeddings of P is minimized.

[91] denote this re-insertion method as VAR. Their implementation has the same
theoretical running time as the variant FIX. Note that an optimal solution of the edge
insertion problem does not necessarily lead to a drawing of the graph G′ = (V, E ∪ {e})
with the minimum number of crossings. This is due to the fact that there may not always
be a drawing with the minimum number of crossings such that G = (V, E) is drawn
without crossings.

8.1.2.1 Edge inserting into a planar graph using SPQR-trees

One criticism of the planarization method was that when choosing a �bad� embedding in
the edge re-insertion phase, the number of crossings may get much higher than necessary
[96]. Hence, the question arose if there is a polynomial time algorithm for inserting an
edge into the planar subgraph P so that the number of crossings is minimized. Therefore,
the task is to optimize over the set of all possible combinatorial embeddings of P .

While it is possible to compute an arbitrary combinatorial embedding for a planar
graph in linear time [143, 33], it is often NP-hard to optimize over the set of all possible
combinatorial embeddings. Figure 19 shows a simple case in which the choice of the
combinatorial embedding of the planar subgraph has an impact on the number of crossings
produced when inserting the dashed edge. When choosing the embedding of Figure 19(a)
for the planar subgraph (without the dashed edge), we get two crossings, while the optimal
crossing number over the set of all combinatorial embeddings is one (see Figure 19(b)).

Figure 19: [93] The number of crossings required when inserting an edge highly depends
on the chosen embedding.

Gutwenger, Mutzel and Weiskircher [93] show that the edge insertion problem can be
solved in polynomial time, thus solving a long standing open problem in graph drawing.
They present a conceptually simple linear time algorithm based on SPQR-trees which
is able to solve the edge insertion problem to optimality. The time complexity of the

59

algorithm for computing an optimal edge insertion path for two vertices in graph G =
(V, E) is O(|V |+ |E|).

De�nition 6 (Edge Insertion Path [93]). Let G = (V, E) be a connected planar graph,
and let n be an embedding of G. Let v1 and v2 be two non-adjacent vertices in G. Then
e1, . . . , ek is an edge insertion path for v1 and v2 in G with respect to Π if either k = 0 and
v1 and v2 are contained in a common face in Π or the following conditions are satis�ed:
1. e1, . . . , ek ∈ E.
2. There is a face in Π with e1 and v1 on its boundary.
3. There is a face in Π with ek and v2 on its boundary.
4. e∗1, . . . , e

∗
k is a path in Π*.

If p = e1, . . . , ek is an edge insertion path for v1 and v2 with respect to Π, then it is
possible to insert the edge (v1, v2) into Π with k crossings, where the ith crossing involves
edge (v1, v2) and edge ei for 1 ≤ i ≤ k. The length of p, denoted by |p|, is k. We call p an
optimal edge insertion path for v1 and v2 in G, if there is no shorter edge insertion path
for v1 and v2 in G with respect to any embedding of G. Figure 20 shows three di�erent
edge insertion paths for v1 and v2 with respect to the embedding realized by the drawing.
The three paths are the empty path, the path e1, e2, e3, and the path e4, e5, e6. In this
case the empty path is the optimal edge insertion path for v1 and v2.

Figure 20: [93] Three di�erent edge insertion paths for v1 and v2.

The traversing costs c(e) of a skeleton edge e are de�ned as follows. Consider an
arbitrary embedding Π of the graph expansion+(e) and its dual graph Π∗. Let f1 and
f2 be the two faces in Π that are separated by e and let f ∗

1 and f ∗
2 be the corresponding

vertices in the dual graph. Gutwenger et al. [93] denote with P (Π∗, e) the shortest path
in Π∗ that connects f ∗

1 and f ∗
2 and does not use edge e∗. They also show that the length of

this path is independent of the embedding Π chosen for expansion+(e). Thus they de�ne
the traversing costs c(e) simply as c(e) = length of the path P (Π∗, e) for any embedding
Π of expansion+(e).

For the algorithm for inserting an edge into a biconnected planar graph, we need a
de�nition of the augmented dual graph, which is used for �nding a shortest edge insertion
path in case of a �xed embedding.

60

De�nition 7 (Augmented Dual Graph [93]). Let G be a planar graph and let Π be
an embedding of G. Let v1 and v2 be two vertices in G. For i = 1, 2, let Fi be the set
{f ∗|f is a face with vi on its boundary}. The augmented dual graph of Π, v1, v2 denotes
the graph obtained from the dual graph Π∗ by adding the vertices v1 and v2 and inserting
the edges (v1, f1) for all f1 ∈ F1 and (v2, f2) for all f2 ∈ F2.

Further a skeleton edge e represents a vertex v of G if v is contained in expansion(e) and
v is not an endpoint of e. If L1 = a1, . . . , ak and L2 = b1, . . . , bk are two lists, we denote
with L1 + L2 the list a1, . . . , ak, b1, . . . , bk. The algorithm for computing an optimal edge
insertion path for a biconnected planar graph G and two non-adjacent vertices v1 and v2

of G is shown in 8.1

Algorithm 8.1. [93] Computes an optimal edge insertion path for a pair of non-adjacent
vertices v1, v2 in a biconnected planar graph G.
procedure OptimalBlockInserter(graphG, vertexv1, vertexv2)

Compute the SPQR-tree T of G;
Find the shortest path µ1, . . . , µk in T between an allocation node

µ1 of v1 and µk of v2;
for i = 1, . . . , k do

Si := skeleton(µis);
if v1 is in Si, then

x1
i := v1;

else
Split the edge representing v1 in Si by inserting a new vertex y1

i ;
Mark the two edges produced by the split;
x1

i := y1
i ;

end
if v2 is in Si then

x2
i := v2:

else
Split the edge representing v2 in Si by inserting a new vertex y2

i ;
Mark the two edges produced by the split;
x2

i := y2
i ;

end
let Gi be the graph obtained from Si by replacing each unmarked edge

with its expansion graph;
if µi is not an R-node then

set pi to the empty path;
else

Compute an arbitrary embedding Πi of Gi;
let Ai be the augmented dual graph of Πi, x1

i , x2
i ;

Compute the shortest path e∗0, . . . , e
∗
l + 1 in Ai between x1

i and x2
i ;

pi := e1, . . . , el, where ej is the primal edge of e∗j ;
end

end
return p1 + . . . + pk;

end

61

Algorithm 8.1 computes only an edge insertion path p = e1, . . . , el for the vertices v1

and v2 in G. but not the corresponding embedding of G. However, there is a simple way
for �nding an embedding Π such that p is an edge insertion path for v1 and v2 in G with
respect to Π. Construct a graph G′ by splitting each edge ei in p introducing a new vertex
wi and insert new edges forming a path v1, w1, . . . , wl, v2. Since p is an edge insertion path,
the graph C is planar and an embedding Π' for G′ can be computed in linear time (see,
e.g. [104] and [143]). Replacing all split edges in Π' by original edges (thus removing the
vertices w1, . . . , wl and their adjacent edges again) results in an embedding Π for G such
that p is an edge insertion path for v1 and v2 in G with respect to Π.

The algorithm for computing an optimal edge insertion path for a connected planar graph
G and two non-adjacent vertices v1 and v2 is given in Algorithm 2. The algorithm con-
structs the block-vertex tree B of G and considers only the blocks on the path from v1 to
v2 in B. For each block Bi, an optimal edge insertion path pi for the representatives of
v1 and v2 in Bi is computed using Algorithm 8.1, and these paths are then concatenated.

Algorithm 8.2. [93] Computes an optimal edge insertion path for a pair of non-adjacent
vertices v1, v2 in a connected graph G.
procedure OptimalInserter(graphG, vertexv1, vertexv2)

Compute the block-vertex tree B of G;
Find the path v1, B1, c1, . . . , Bk−1, ck−1, Bk, v2 from v1 to v2 in B;
for i = 1, . . . , k do

Let xi and yi be the representatives of v1 and v2 in Bi;
pi := OptimalBlockInserter(Bi, xi, yi);

end
return p1 + . . . + pk;

end

The algorithm 8.2 can easily be generalized to arbitrary planar graphs. If v1 and v2

belong to the same connected component, simply apply Algorithm 8.2. Otherwise, the
graph G ∪ {(v1, v2)} is obviously planar and an empty path is the optimal edge insertion
path.

8.1.3 Constrained Crossing Minimization.

Problem 10 (Constrained Crossing Minimization [91]). Given a connected planar
graph G = (V, E), a combinatorial embedding Π(G) of G, and a set of pairwise distinct
edges F ⊆ V ×V , �nd a drawing of G′ = (V, E∪F) such that the combinatorial embedding
Π(G) of G is preserved and the number of edge crossings is minimized.

Obviously, re-insertion of all edges at the same time will improve the solution. However, no
practically e�cient algorithm is known, since the constrained crossing minimization prob-
lem is NP-hard. The proof of Mutzel and Ziegler [149] is based on the NP-completeness
of Fixed Linear Crossing Number Problem, shown in [141]. The problem has been inves-
tigated in [149, 214]. Experiments show that it can only be solved to provable optimality
if there are less than 10 re-inserted edges - and even then, the running time is relatively
high.

62

In practice it is attacked by iterative heuristics using the following observation: If only
one edge needs to be inserted, the problem can be solved optimally in polynomial time
by computing a shortest path in the combinatorial dual graph extended by some vertices
and edges. The heuristics iteratively insert the edges using this dual graph approach.
However, the result is not always acceptable and it is supposed that the exact solution of
the constrained crossing minimization problem will lead to much nicer drawings [149, 150].

In [150], Mutzel and Ziegler have presented the �rst step towards an algorithm for
solving practical instances of the constrained crossing minimization problem to provable
optimality. They have shown that the constrained crossing minimization problem can be
formulated as an |F |-pairs shortest walks problem, where we want to minimize the sum
of the lengths of the walks plus the number of crossings between the walks.

8.1.3.1 The constrained crossing minimization problem using ILP

In [150], Mutzel and Ziegler have shown that the constrained crossing minimization prob-
lem can be formulated as a shortest crossing walks problem, which is of rather combinato-
rial than geometric nature. This allows us to solve practical instances of the constrained
crossing minimization problem to provable optimality.

A walk in a graph G is an alternating sequence of vertices and edges of G, beginning
and ending with a vertex, in which each edge is incident to the two vertices immediately
preceding and succeeding it. We denote a walk W between two vertices v0 and v1 by
W = v0 e1 v1 . . . el vl. If all the edges of a walk are distinct, we call the walk a trail. If all
the vertices are distinct, we call the walk a path.

Mutzel and Ziegler [149] de�ne the shortest crossing walks problem as follows. Given
a weighted planar connected graph G = (V, E) with embedding Π(G) and a set F ⊆
V × V of distinct pairs of vertices of G, called commodities, �nd a set of walks in G
with the following properties. There is one walk between sk and tk for each commodity
k = (sk, tk) ∈ F , no walk uses an end vertex of a commodity as an internal vertex, and
the sum of the weighted lengths of the walks plus the number of crossings between walks
is minimum.

Figure 21 illustrates the two kinds of crossings between walks that can appear, called
simple and distributed crossings. In a simple crossing two walks cross at one vertex and
in a distributed crossing they have a common subsequence.

Figure 21: [149] On the left is a simple crossing at vertex v ∈ V, on the right is a distributed
crossing with common subsequence v0e1v1e2v2e3v3.

The combinatorial dual graph G∗ = (V ∗, E∗) of a planar graph G = (V, E) with
embedding Π(G) has a vertex v∗ ∈ V ∗ for each face f of Π(G). Corresponding to each
edge e ∈ E there is an edge e∗ ∈ E∗ connecting the two vertices v∗ and w∗ corresponding

63

to the faces incident to e. The order of the edges around a vertexv∗ in Π(G∗) is de�ned
by the order of the edges in G on the boundary of the face corresponding to v∗. This
de�nes the embedding Π(G∗) of G∗ uniquely.

Given an instance, (G, Π(G), F), of the constrained crossing minimization problem
we compute the corresponding instance, (G∗, Π(G∗), F ∗), of the shortest crossing walks
problem as follows.

Let G∗ be the combinatorial dual graph of G. For every vertex of G that is an end
vertex of an edge in F we add a new vertex in the appropriate face of Π(G∗). We connect
each additional vertex to all vertices on the boundary of the face it was placed in (see
Figure 22). The resulting graph G∗ is still planar and Π(G∗) is uniquely determined by
Π(G). We call the resulting graph G∗ the extended dual graph. The set F ∗ is the set of
pairs of additional vertices corresponding to the end vertices of the edges in F .

Mutzel and Ziegler [MZ99.] associate weight 0 with the additional edges, weight 1/2
with the edges replacing a loop, and weight 1 with all the other edges. Using these
weights on the edges the value of a solution of the shortest crossing walks problem is the
same as the number of crossings in the corresponding solution of the constrained crossing
minimization problem.

Figure 22: [149] Example of a graph and its extended dual graph.

Figure 22a shows an instance of the constrained crossing minimization problem. Here G
is the graph induced by the solid edges and we want to insert the dashed edges with a
minimum number of crossings. Figure 22b shows G together with its extended dual graph.
The vertices of the combinatorial dual graph are drawn as rectangles and the edges as
grey solid lines. The additional vertices are 1,3,4,5,6,7 and the additional edges are drawn
as dashed lines.

This example also shows that considering only paths in the extended dual graph is not
su�cient to �nd an optimal solution of the constrained crossing minimization problem.
The optimal solution for this example has two crossings (Figure 22a). The best solution
using only paths in the extended dual graph needs three crossings.

The basic idea for representing a set of walks in terms of linear inequalities is to use vari-
ables for pairs of adjacent edges instead of variables for the edges only. Mutzel and Ziegler
[149] start with a few constraints and use the other constraints as cutting planes. They

64

managed to separate the constraints for simple crossings and cuts exactly in polynomial
time. For separation of distributed crossing constraints, they applied a heuristic. (See
[149] for more details.)

Although it is much easier to express a set of paths than a set of walks in terms
of linear inequalities, an optimal solution to the shortest crossing paths problem is, in
general, not an optimal solution of the constrained crossing minimization problem.

However, an ILP for the shortest crossing trails problem can be applied to the shortest
crossing walks problem. The only di�erence is that walks can use edges of the graph more
than once. The idea is to replace every regular edge by an appropriate number of parallel
copies (without changing the embedding). Then, an optimal solution of the shortest
crossing trails problem in the modi�ed graph corresponds directly to an optimal solution
of the constrained crossing minimization problem [150]. The full ILP for the shortest
crossing trails can be found in [149].

Mutzel and Ziegler [149] performed computational experiments considering 5157 graphs
from the benchmark set of graphs given in [6]. By deleting between 2 and 10 edges, for
every graph they computed a planar subgraph and a combinatorial embedding of the
planar subgraph. Mutzel and Ziegler attempted to compute provable optimal solutions
for the shortest crossing paths, the shortest crossing trails, and the shortest crossing walks
problem on the extended dual graphs of the benchmark graphs.

The number of crossings computed by the branch and cut algorithm for the trails
version improved by about 7% on average compared to the iterative heuristic. Mutzel
and Ziegler observed that the number of crossings of the paths version and the walks
version di�ered only slightly from that of the trails version, however, the trails version
came out as the most successful.

8.2 Post-Processing Strategies

The idea of the post-processing strategies is to iteratively delete an edge from the drawing
and to re-insert it again. The strategies suggested in [91] vary in the set and/or number of
edges involved in the deletion and re-insertion process, and the order of processing them.

The variant INS involves exactly those edges which have been deleted already in the
planar subgraph step, whereas the variants ALL and MOST involve the whole set of edges
E in the original graph G. The variant in which there is no post-processing routine is
called NONE.

An iteration takes either the whole set (in variant INS and ALL) or x% of this edges
(variant MOST x%) iteratively (one after the other). The procedure stops only if within
one iteration no improvement has been made. In variant MOST x%, after each iteration,
the involved edge set is sorted in descending order according to the number of crossings the
edges are involved in. Then, only the �rst x% edges of this list are taken for re-insertion.

The post-processing procedure can be implemented e�ciently by updating the dual
graph only at those regions, in which changes did occur. Gutwenger and Mutzel [91] did
this for the FIX strategy. In principal, such an update is also possible for the VARI-
ABLE embedding setting [10]. However, there was to the authors' knowledge [91] no
implementation of this algorithm. This explains the big running time discrepancy in the
post-processing procedure between the FIXED and VARIABLE embedding setting. The
results can be found in [91].

65

8.3 Permutations

After a whole deletion and re-insertion process of the chosen strategy for embedding FIX/
VAR and a strategy for post-processing NONE/ INS/ ALL/ MOST, we get a certain
crossing number.

The permutation variant of [91] does nothing else, but repeating the whole edge re-
insertion process and keeping the best results. The random e�ect exists in choosing a
di�erent ordering of the edges in G− P for the initial re-insertion step.

The notation PERM; gives the number of these repetition rounds. Gutwenger and
Mutzel have experimented with PERM1, PERM2, PERM10, and PERM20. The results
are given in [91].

8.4 Computational study

Gutwenger and Mutzel [91] have conducted extensive experimental studies on the crossing
minimization problem for a benchmark set of graphs. The main conclusions are:

1. Post-processing always helps. It is recommended not to restrict the postprocessing
procedure to the inserted edges. Already re-inserting 25% of all the edges helps a
lot.

2. Permutations and random e�ects help, but not as well as post-processing.

3. It is important to start with a good planar subgraph. A better subgraph leads not
only to an improved number of achieved crossings, but also to an improved running
time of the algorithm.

4. The re-insertion within a variable embedding setting is still worth doing, even if
post-processing is used.

Due to the high running time for the constrained crossing minimization method, Gutwenger
and Mutzel did not include this method into their experiments.

66

9 Algorithms for the rectilinear crossing number

Any drawing where the edges are straight-line segments is called a rectilinear drawing.
The goal of rectilinear crossing minimization is to �nd a rectilinear drawing of G with
as few edge crossings as possible. This minimum value is called the rectilinear crossing
number cr(G).

The corresponding decision problem is known to be NP-hard. The general crossing
number problem is known to be NP-complete [80], but so far no one has determined
whether the rectilinear crossing number problem is in NP. This is somewhat surprising,
since it is much easier to determine if two straight-line segments intersect than it is to
determine if two curved lines do.

In this chapter, we present two algorithms for computing the rectilinear crossing
number. The �rst one is a branch-and-bound algorithm formulating the problem as a
mathematical program with a linear objective function and simple quadratic constraints
[50]. The other is a genetic algorithm that uses parallel processing in a cooperative fashion
to determine mappings for the rectilinear crossing problem [195].

Research in integer and nonlinear programming provides some hope that some useful
instances of QCF (Quadratic Constraints Formulation) can be solved. One breakthrough
was made by Crowder, Johnson and Padberg [44] who solved binary integer programming
(BIP) problems with up to 2,756 variables and no special structure. Roy and Wolsey [203]
succeeded in solving mixed BIPs with nearly 1,000 binary variables and an even larger
number of real variables.

Dean [50] provides data to show that, for the graphs of most interest, the number of
binary and real variables in QCF is evidently still larger than the instances that can be
solved by the best solvers. On the other hand, there is hope that experts in the �eld can
somehow take advantage of the special structure or any new algorithmic developments
that can be applied to solve these problems.

Many mathematical problems have useful mathematical programming formulations
(for example, see [149, 190] for related results). Though there was no such formulation
for the rectilinear crossing number problem until Dean [50] presented a new approach to
rectilinear crossing minimization including a formulation of the problem as a mathematical
program with a linear objective function and simple quadratic constraints.

Genetic algorithms are heuristic search techniques. Hence, the goal of a genetic algorithm
is not to necessarily �nd the optimal solution, but to produce a �satisfactory� solution
when searching a complex system [195]. Random choice is used as a tool to guide a
genetic algorithm as it searches. As a genetic algorithm produces new generations, better
solutions may be discovered. Thus, the power of genetic algorithms lies in their robustness,
or ability to adapt, just as in natural systems.

The structure of a genetic algorithm is based on natural selection. First, an initial
population of feasible solutions is randomly generated. The initial population consists
of chromosomes representing particular encodings of solutions. Reproduction takes place
between members of the population, and a child is formed from a combination of the
parent chromosomes. For each new child, an evaluation function is used to determine
the �tness of that child. Whether or not the child becomes a member of the population
depends on its �tness value. Each new child chromosome is compared against the worst
member of the population, and the better one is kept in the population.

67

By producing new generations in this manner, the population improves and the best
member of the �nal population is the solution which is returned by the algorithm.

9.1 Quadratic Constraints Formulation

For any rectilinear drawing of a graph G = (V, E) with V = {1, 2, . . . , n}, Dean [50]
de�ned Area2(i, j, k) = xiyj−yixj +yixk−xiyk +xjyk−xkyj where (xi, yi),(xj, yj),(xk, yk)
are the coordinates for the vertices i, j, k, respectively. Geometrically, Area2(i, j, k) is
twice the signed area determined by the triangle ijk [155]; in particular, Area2(i, j, k) is
positive if vertex k lies to the left of line ij, negative if it lies to the right, and zero if k lies
on the line ij. With a line ij (not a line segment) is meant the two-way in�nite directed
line determined by the ordered pair of vertices i, j.

For any graph G, let I(G) denote the set of independent (i.e., disjoint) edge sets of size
two. Dean [50] formulated the rectilinear crossing minimization as the following problem
which he called the Quadratic Constraints Formulation QCF(G) for G, or simply QCF
when there is no particular graph G under consideration.

Minimize ∑
1≤i<j, i<k<l, {ij,ki}∈I(G)

cijkl

subject to

Area2(i, j, k) ≤ M(1− cijkl) + Mtijkl − 1 (1)

−Area2(i, j, l) ≤ M(1− cijkl) + Mtijkl − 1 (2)

−Area2(i, j, k) ≤ M(1− cijkl) + M(1− tijkl)− 1 (3)

Area2(i, j, l) ≤ M(1− cijkl) + M(1− tijkl)− 1 (4)

Area2(k, l, i) ≤ M(1− cijkl) + Mpijkl − 1 (5)

−Area2(k, l, j) ≤ M(1− cijkl) + Mpijkl − 1 (6)

−Area2(k, l, i) ≤ M(1− cijkl) + M(1− pijkl)− 1 (7)

Area2(k, l, j) ≤ M(1− cijkl) + M(1− pijkl)− 1 (8)

Area2(i, j, k) ≤ Mcijkl + Mtijkl + Mpijkl − 1 (9)

Area2(i, j, l) ≤ Mcijkl + Mtijkl + Mpijkl − 1 (10)

−Area2(i, j, k) ≤ Mcijkl + M(1− tijkl) + Mpijkl − 1 (11)

−Area2(i, j, l) ≤ Mcijkl + M(1− tijkl) + Mpijkl − 1 (12)

Area2(k, l, i) ≤ Mcijkl + Mtijkl + M(1− pijkl)− 1 (13)

Area2(k, l, j) ≤ Mcijkl + Mtijkl + M(1− pijkl)− 1 (14)

−Area2(k, l, i) ≤ Mcijkl + M(1− tijkl) + M(1− pijkl)− 1 (15)

−Area2(k, l, j) ≤ Mcijkl + M(1− tijkl) + M(1− pijkl)− 1 (16)

where the variables i, j, k, l satisfy {ij, ki} ∈ I(G), 1 ≤ i < j, i < k < l, the functions
c, t, p are 0-1 binary variables, and M is a su�ciently large integer constant.

68

The function cijkl counts the number of times edges ij and kl cross (i.e., 0 or 1). The
objective function counts the total number of crossings for the drawing. The -1 in the
constraints insures that |Area2(i, j, k)| ≥ 1, |Area2(i, j, l)| ≥ 1, |Area2(k, l, i)| ≥ 1, and
|Area2(k, l, j)| ≥ 1. Rescaling can be used to make all nonzero areas satisfy this condition,
and so the -1 really only ensures that no vertex lies on a line to which it does not belong;
in particular, only good drawings are considered.

Suppose cijkl = 1. Then constraints (9)-(16) become irrelevant, and constraints (l)-(4)
ensure that points k and l lie on opposite sides of the line ij. This holds because tijkl = 1
implies that k and l lie to the left and right of line ij(respectively), and tijkl = 0 implies
that k amd l lie to the right and left of line ij(respectively). Similarly, constraints (5)-(8)
ensure that points i and j lie on opposite sides of the line kl. The assignment pijkl = 1
implies i is on the left and j is on the right of kl and the assignment pijkl = 0 implies i
on the right and j is on the left. Therefore, the line segments ij and kl must cross.

Now suppose cijkl = 0. Then constraints (l)-(8) are irrelevant, and either pijkl = 0
which ensures that points k and l lie on the same side of the line ij (see constraints
(9)-(12)) or pijkl = 1 which ensures that points i and j lie on the same side of the line kl
(see constraints (13)-(16)). Thus, ij and kl do not cross.

Fixing the binary variables in a quadratic constraints formulation QCF(G) reduces to
the problem of deciding whether, for the given graph G and a given set of crossings (and
non-crossings), a set of coordinates exists for a rectilinear drawing of G that is consistent
with these constraints [50]. This problem is called the QCF Realization Problem, and
turns out to be NP-hard as explained below.

A pseudoline is a homeomorph in R2 of the closed unit interval. In an arrangement
of pseudolines every two lines meet at exactly one interior point where they must cross.
Bienstock [14] proved that any given arrangement of p pseudolines can be forced to occur
in every crossing minimal drawing of an appropriate graph, with O(p3) edges and 5p(p−1)
crossings by using some results of Goodman, Pollack, and Sturmfels [87] on arrangements
whose straight-line realizations require vertex coordinates with exponentially many bits.

Therefore, assuming that the coordinates must be stored and that drawing a graph con-
sumes time proportional to the size of the drawing, this yields that there is no polynomial-
time algorithm for producing a rectilinear drawing of a graph which achieves the rectilinear
crossing number.

9.2 Genetic algorithms

The algorithm by Thorpe and Harris [195] used for the rectilinear crossing problem is
basically a genetic algorithm with some modi�cations that enhance its use on a parallel
processing system. First, eight nodes of a parallel processing machine (iPSC/2) are allo-
cated to run the genetic algorithms. Each node generates its own initial population, and
begins executing the genetic algorithm. Each iteration of the genetic algorithm produces
two children to evaluate and possibly insert into the node's population. Every so often, a
�mutant� is generated and inserted into the population. Mutation is a technique to help
prevent stagnation of the population. Once the genetic algorithm meets one of its con-
vergence criteria (time limit, number of iterations, di�erence in the number of crossings
between the best and the worst solutions), the algorithm halts and broadcasts its results

69

to the host program. If all nodes have converged to the same crossing number, the host
stops and reports the results.

Thorpe and Harris [195] use no strategy involved in creating initial populations. The
graph vertices are randomly placed in a rectangular area, and the number of crossings for
each resulting graph are determined. After the initial population is generated, the genetic
algorithm selects two sets of parent �chromosomes� to recombine. One set is chosen via a
simple linear bias, the other is chosen from a normal distribution of the best ten percent
(10%) of the population.

A pollenation rate, P, is set as a parameter to the program, and once every P itera-
tions, each genetic algorithm sends a solution to the host program. The host then chooses
the best solution and broadcasts it back to all the nodes to use in their recombination. Ac-
cording to an previous observation given in [100], this method of cross-pollenation provides
better results then simply running eight genetic algorithms independently. Though, when
cross-pollenation occurs too frequently, the populations tend to converge very quickly,
and rarely do they produce a �good� result.

Thorpe and Harris [195] use a recombination technique based on uniform order-based
crossover presented by Davis [48]. According to this recombination, a chromosome is a
bit string that represents the contribution of the parents to a child, see Fig.23. A one in
the bit string indicates that the vertex corresponding to that bit index will contribute to
the construction of child 1, and a zero indicates that the vertex will contribute to child
2. This bit string is generated randomly for each generation with parent 1 receiving the
bit string and parent 2 receiving its complement. Hence, child 1 is composed of vertices
marked with ones and child 2 is made of vertices marked with zeroes.

Figure 23: [195] Recombination of Chromosomes.

The cost function of Thorpe and Harris for the rectilinear crossing problem proceeds
as follows. All edges are checked in a pairwise fashion such that no edge is compared to
itself, and no pair of edges are compared more than once. If a pair of edges cross, then
the crossing number is increased by one. Whenever the cost evaluation function detects

70

colinear edges (something that violate the problem constraints) a large penalty is invoked.
Solutions containing large penalty values tend to drop out of the population very quickly.

Thorpe and Harris [195] observed that in the genetic algorithms they used, there appears
to be no real correlation between the �goodness� of a solution and how long it takes
a genetic algorithm to produce it. Much of the disparity between the results of each
execution lied in the use of randomness as a tool to guide the search. Some of the
disparity was a result of the error checking and cost evaluation functions required by the
minimal crossing problem.

Furthermore, the performance of a traditional exhaustive search method is known to
have a speedup linearly proportional to the number of processors working in concert on
the problem. Genetic algorithms do not provide any speedup; however, the results of
Thorpe and Harris suggest that genetic algorithms are a valuable search tool.

71

10 Algorithms for the (�xed) linear crossing number

Many real-life scheduling, routing and location problems can be formulated as combina-
torial optimization problems whose goal is to �nd a linear layout of an input graph in
such a way that the number of edge crossings is minimized.

In a linear embedding, vertex adjacency is established by either an upper or a lower
edge with respect to the horizontal node line. Hence, the routing of edges either above or
below the horizontal node line determines the number of crossings in the embedding.

The ordering of vertices along the node line also a�ects the minimum number of
crossings obtainable, that is, once an ordering is �xed, the minimum number of crossings
for that ordering is not necessarily the global optimum for the graph. Hence, �nding a
good vertex ordering is a critical subproblem.

In this chapter, we present algorithms for computing the crossing number of linear
embedded graphs for both the free (section (10.1) and the �xed (section 10.2) ordering
of vertices. Moreover, we propose two new heuristic algorithms based on the simulated
annealing scheme for computing both the free and the �xed linear crossing number, re-
spectively. We also present an experimental study comparing our new heuristics with the
existing ones.

Figure 24: [39] Edge crossing condition i < j < k < l.

Counting the number of crossings. Let n = |V | where V = 1, 2, . . . , n. A 2-page drawing
of a graph is represented by a pair of binary adjacency matrices A[] and B[]. For each
edge ij, A[i, j](B[i, j]) is 1 if ij is embedded in the upper (lower) page and 0, otherwise.
Then any pair of edges ik and jl cross in a drawing i� 1 ≤ i < j < k < l ≤ n and both
lie in the same page (see Figure 24). Hence, the following formula [39] counts the number
of crossings in a 2-page drawing D :

cr2(D) =
n−3∑
i=1

n−1∑
j=i+2

{A[i, j]

j−1∑
k=i+1

n∑
l=j+1

A[k, l] + B[i, j]

j−1∑
k=i+1

n∑
l=j+1

B[k, l]}

10.1 Algorithms for the linear crossing number

The following heuristic algorithms try to �nd a linear embedding of a graph with the
minimum number of crossings both by permuting its vertices along the node line and by
switching its edges between the two pages.

In addition to the Nicholson's heuristic, in this section, we propose two new algorithms
for computing the linear crossing number based on simulated annealing. According to
our experiments, only one was able to improve solutions obtained with the Nicholson's
heuristic.

72

10.1.1 Nicholson's heuristic

Nicholson's heuristic is essentially a two-phase �greedy� method for �nding a linear em-
bedding of a graph with the minimum number of crossings.

In the �rst phase, vertices are placed along a horizontal node line in the plane. The
�rst vertex placed is one with maximum degree in the graph. Thereafter, the next vertex
selected for placement is one with maximum adjacencies to the vertices already placed.
The vertex is placed in the position on the node line for which the increase in the number
of crossings is least, with its edges drawn as arcs above or below the node line, according
to whichever route o�ers fewer crossings.

In the second phase, vertices are moved to di�erent positions along the node line,
modifying the routing of the edges appropriately. The next vertex selected for trial move-
ment is the one with the most crossings associated with its incident edges, and it is moved
to the position which o�ers the largest reduction in the number of crossings. Vertices are
moved until no further improvement is possible.

The time complexity of the method is O(n3). Further details are given in [152].

10.1.2 Simulated annealing

Simulated annealing is a well-known optimization technique. It is based on the analogy
with annealing in physics, where the changes of the system state are seen as essentially
random, but changes that reduce the energy are more likely than those that increase it.
In addition changes that increase the energy are more likely while the temperature is high
than later when the temperature is low.

Proposed algorithms.

Simple algorithm for computing the crossing number on linear embeddings of an arbitrary
graph is a customized version of a standard simulated annealing algorithm which appears
in [154]. The pseudocode scheme for the algorithm SA may be outlined as follows:

Algorithm 10.1.
procedure SimulatedAnnealing
1. start with an initial state and temperature
2. while outer loop criterion not satis�ed do

1. while inner loop criterion not satis�ed do
1. select a random neighbor from neighborhood
2. if neighbor has lower cost then transition

3. if neighbor has higher cost then transition with probability e−
difference

temperature

2. Reduce temperature
3. return best state seen

In our proposed algorithms for computing the linear crossing number, we speci�ed the
main entities as follows:

The initial state is represented by vertices of a graph in a random order with edges
randomly placed in the upper or in the lower half-plane. The cost function for a state is
the number of crossings. The temperature is reduced to a fraction r of its previous value
each time the inner loop �nished.

73

The inner loop criterion is k ∗ size(neighborhood). Neighbouring states are those
that di�er from the current state in having one of their edges embedded into a opposite
half-plane, thus size of the neighborhood is essentially the number of edges, i.e. O(n2).

The outer loop terminates when the cost does not improve for a �xed number critouter

of iterations in a row.

We propose two modi�ed versions of the simple algorithm:
The �rst algorithm (SA1) has a modi�ed inner loop. It can change the position of

a vertex in the vertex ordering, or move an edge to an opposite half-plane. This is set to
happen with a probability 1 : n.

The second algorithm (SA2) works in two phases: In the �rst phase, it determines the
initial vertex ordering by using Nicholson's heuristic. In the second phase, it attempts
to �nd an optimal solution using a simple simulated annealing algorithm switching only
edges between the two half-planes.

Time complexity of SA1. First, we shall analyze the complexity of the inner loop.

1. With a probability 1
n
, a vertex is moved to a di�erent position, which forces us to

count how many crossings the vertex is responsible for at its old and new position,
which takes O(n3)

2. In the remaining cases when an edge is moved to an opposite half-plane, we have
to count how many crossings the edge is responsible for in each half-plane, which
takes O(n2).

Thus, the amortized time complexity of the inner loop is 1
n
O(n3) + n−1

n
O(n2), which

yields O(n2). The running time of algorithm SA1 is essentially the number of inner loop
iterations times the number ot outer loop iterations. The outer loop stops iterating when
the results stabilize.

Time complexity of SA2. The �rst phase takes O(n3) (Nicholson's heuristic). The inner
loop of the second phase takes O(n2) � this follows from the analysis of the time complexity
of SA1. The overall complexity of algorithm SA1 depends on how many times the inner
loop is executed, i.e, on the outer loop criterion.

10.1.3 Experimental results

Implementation details for SA1 and SA2. The critinner was assigned to 10 ∗ n2 iterations
in one iteration of the outer loop. The outer loop criterion was set to 20. Initial system
temperature was set to n. The temperature cooling schedule was set to r = 0.7.

In our experiments, we ran the two proposed algorithms SA1 and SA2 together with
Nicholson's heuristic (NI) for comparison. We conducted the tests on random graphs
with di�erent edge densities (see tables 2, 3 and 4). Since our algorithms SA1 and SA2
are random, we ran each of them 10 times on a single graph to obtain a better impression
on how they performed.

Our �rst algoritm, SA1, was not successfull enough, it appears that frequent vertex
reorderings interferred unfavourably with the cooling process.

74

Table 2: Number of crossings for random graphs with edge probability of 0.5.

NI SA1 SA2

min max avg min max avg

rg10 2 1 2 1.2 2 5 2.3

rg15 72 83 102 95.0 68 87 74.9

rg20 210 329 378 359.6 197 199 197.2

rg25 584 897 959 930.7 562 606 568.6

rg30 2148 2933 3047 2984.8 2032 2150 2076.5

rg35 3475 5241 5479 5391.1 3393 3396 3394.1

rg40 6317 9951 10286 10145.5 6222 6243 6233.5

rg45 10604 16739 17029 16863.0 10415 10433 10423.9

rg50 16162 24156 24674 24478.8 15826 15854 15840.3

Table 3: Number of crossings for random graphs with edge probability of 0.3.

NI SA1 SA2

min max avg min max avg

rg10 0 0 0 0.0 0 0 0.0

rg15 11 16 23 19.8 11 28 12.7

rg20 74 118 136 125.1 71 92 79.3

rg25 142 233 267 255.5 130 168 141.3

rg30 566 903 951 932.4 522 621 540.4

rg35 1072 1913 1992 1954.8 1006 1020 1010.4

rg40 1363 2480 2577 2515.3 1276 1494 1302.1

rg45 3792 5686 6178 6001.2 3593 3674 3615.8

rg50 5229 8853 9236 9063.7 5160 5173 5165.6

75

Table 4: Number of crossings for random graphs with edge probability of 0.8.

NI SA1 SA2

min max avg min max avg

rg10 32 35 40 37.6 32 34 32.3

rg15 200 272 285 277.9 194 228 205.0

rg20 952 1328 1357 1346.8 932 949 939.7

rg25 2458 3503 3607 3565.6 2428 2719 2515.0

rg30 5364 7613 7801 7730.0 5243 5258 5248.4

rg35 9892 14034 14239 14128.3 9754 9770 9757.4

rg40 19320 27517 27774 27646.2 19026 19046 19032.5

rg45 30237 43848 44511 44205.0 29937 32371 30423.4

rg50 47248 67526 68271 67954.7 46769 50017 47096.6

On the other hand, Algorithm SA2 found a better or an equally good solution as NI.
For most of the tested graphs, even the average number of crossings was better than the
one obtained with NI.

Although the running times of SA1 and SA2 cannot be guaranteed, our experiments
suggest that they are polynomial (with the settings used, it is yO(n4), where y is the
number of times the outer loop is executed).

10.2 Algorithms for the �xed linear crossing number

In the restricted version of the Linear Crossing Number Problem called the Fixed Linear
Crossing Number Problem (FLCNP), the order of vertices along the node line is pre-
determined and �xed. FLCNP belongs to the class of NP-hard optimization problems
[141].

In section 10.2.1, we present two exact algorithms for solving this NP-hard problem.
The �rst is a simple branch-and-bound algorithm (section 10.2.1.1). The latter approach
(section 10.2.1.2) is based on a reduction of FCLNP to the Maximum Cut Problem.

Heuristic algorithms are described in section 10.2.2, including an experimental study
evaluating the performance of the heuristics. We propose a simple new heuristic based on
simulated annealing, performing even better then the best heuristic from the literature,
albeit at the cost of a higher complexity.

10.2.1 Exact algorithms

The exact algorithm used by Cimikowski [39] to solve the problem FLCNP is based
on the branch-and-bound technique: basically, all possible solutions of the problem are
enumerated.

The set of solutions is given by a binary enumeration tree, where each inner node
corresponds to a decision whether a chosen edge is drawn above or below the horizontal

76

line. In the worst case, an exponential number of solutions has to be enumerated.
However, the basic idea of branch-and-bound is the pruning of branches in this tree: at

some node of the tree, a certain set of edges is already �xed. According to this information,
one can derive a lower bound on the number of crossings subject to these �xed edges. If
this lower bound is at most as good as a feasible solution that has already been found,
e.g., by some heuristics, it is clear that the considered subtree cannot contain a better
solution, so it does not have to be explored.

Buchheim and Zheng [22] show that this NP-hard problem can be reduced to the well-
known maximum cut problem. The latter problem was intensively studied in the litera-
ture; e�cient exact algorithms based on the branch-and-cut technique have been devel-
oped.

By an experimental evaluation on a variety of graphs, [22] show that using this reduc-
tion for solving FLCNP compares favorably to the earlier branch-and-bound algorithm.
Moreover, testing the existence of a planar �xed linear embedding of a given graph can
be done in an easy way using this transformation.

10.2.1.1 A branch-and-bound algorithm

The number of �xed linear layouts of a graph is 2m. Ignoring up to n insigni�cant
edges, this yields at most 2m(n−3)/2 di�erent layouts. Since any layout has a �mirror
image� (symmetric) drawing with the same number of crossings obtained by switching
the embeddings between the two pages, only one half of this number need be checked, or
2m(n−3)/2−1.

Cimikowski [39] developed a branch-and-bonnd algorithm to �nd optimal solutions by
enumerating all possible embeddings of edges subject to optimization bound conditions.
Two bounding conditions were applied to prune partial solution paths in the search tree.
A path (branch) of the tree is pruned if:

(i) the number of crossings in the partial solution exceeds the current global upper
bound, or

(ii) the number of crossings in the partial solution plus the number of extra crossings
resulting from adding each remaining edge to the partial embeddding greedily and
independently of other remaining edges exceeds the current global upper bound.

Cimikowski developed a backtracking algorithm to enumerate the embeddings and apply
the bounding conditions. An initial global upper bound was obtained from the best
solution generated by the theoretical bounds and the heuristics. As with the heuristics,
the output of the algorithm is the number of crossings obtained and the corresponding
embedding.

This algorithm is a practical choice for graphs with up to approximately 50 edges,
although its performance is highly dependent on the quality of the initial upper bound
value.

77

10.2.1.2 FCLNP by reduction to the maximum cut problem

Buchheim and Zheng [22] have presented a new exact algorithm for the Fixed Linear
Crossing Number Problem, running signi�cantly faster than earlier exact algorithms. The
essential part of their approach is the reduction to the maximum cut problem given as
follows:

Problem 11 (Maximum Cut Problem (MAXCUT)). Given an undirected graph
G′ = (V ′, E ′), �nd a partition of V ′ into disjoint sets V1 and V2 such that the number of
edges from E that have one endpoint in V1 and one endpoint in V2 is maximal.

For an instance of FLCNP. i.e., a given graph G = (V, E) with a �xed vertex permutation,
we construct the associated con�ict graph G′ = (V ′, E ′) as follows: the vertices of G′ are in
one-to-one correspondence to the edges of G, i.e., V ′ = E. Two vertices of G corresponding
to edges e1, e2 ∈ E are adjacent if, and only if, e1 and e2 are potentially crossing. See Fig.
25 for an illustration.

Figure 25: [22] Graph G and its associated con�ict graph G′.

De�nition 8 (Cut embedding). Let G be a graph with a �red vertex permutation.
Given a vertex partition (V1, V2) of its con�ict graph G′, the associated cut embedding is
the �xed linear embedding of G where edges corresponding to V1 and V2 are embedded to
the half spaces above and below the vertex line, respectively.

Theorem 14 (Buchheim and Zheng [22]). Consider a partition (V1, V2) of V ′. Then
the corresponding cut embedding is a �xed linear embedding of G with a minimum number
of crossings if, and only if, (V1, V2) is a maximum cut in G′.

Theorem 15 (Buchheim and Zheng [22]). For a graph G = (V, E) with a �xed vertex
permutation, there is a planar �xed linear embedding of G if, and only if, the associated
con�ict graph G′ of G is bipartite.

78

Observe that testing whether the graphG′ is bipartite can be done in linear time (with
respect to G′) by two-coloring a DFS-tree.

By Theorem 14, we can use any algorithm for MAXCUT in order to solve FLCNP. One of
the most successful approaches for solving MAXCUT to optimality in practice is branch-
and-cut.

Buchheim and Zheng [22] �rst model the problem as an integer linear program (ILP)
and solve as a linear program (LP), i.e., the integrality constraints are relaxed. LPs are
solved very quickly in practice. If the LP-solution is integer, we can stop. Otherwise,
one tries to add cutting planes that are valid for all integer solutions of the ILP but not
necessary for (fractional) solutions of the LP. If such cutting planes are found, they are
added to the LP and the process is reiterated.

One has to resort to the branching part only if no more cutting planes are found. In
general, only a small portion of the enumeration tree has to be explored, as many branches
can be pruned. Compared to a pure branch-and-bound approach as presented in [39], the
number of subproblems to be considered is very small in general. This, however, depends
on the quality of the cutting planes being added.

The latter in turn depend on the speci�c problem; �nding good cutting planes is a
sophisticated task. Fortunately, the MAXCUT problem has been investigated intensively,
so that many classes of cutting planes are known. More detailed information on algorithms
for MAXCUT using cutting plane techniques can be found in [124, 134].

Observe that MAXCUT can also be adressed by semide�nite programming methods;
see e.g. [125]. These methods perform well on very dense instances, while being outper-
formed by ILP approaches on sparse or large graphs. Therefore, practical instances tend
to be easy for the ILP approach of [22].

10.2.1.3 Experimental Results

In order to evaluate the practical performance of the new exact approach to FLCNP
presented in the previous section, Buchheim and Zheng [BZ06.] performed extensive
experiments. In these experiments, they compared the performance of their approach to
the results obtained with the branch-and-bound algorithm proposed by Cimikowski [39]
on the same set of test instances as used in [39].

These instances mainly arise from network models of computer architectures; in gen-
eral they are harniltonian. The �xed order of nodes, as part of the input of FLCNP, is
then determined by a hamiltonian cycle in the graph, as an ordering of the vertices along
a hamiltonian cycle tends to yield a smaller number of crossings in general. In their ex-
periments, [22] always used the same ordering as chosen in [39] for ensuring comparability.

More speci�cally, the networks considered are the following, see also [39]:

(i) complete graphs Kn for n = 5, ..., 13

(ii) hypercubic networks: this class of graphs includes the hypercubes Qd and several
derivatives of hypercubes such as the cube-connected-cycles CCCd, the twisted cubes
TQd, the crossed cubes CQd, the folded cubesFLQd, the hamming cubes HQd,
the binary de Bruijn graphs DBd and the undirected de Bruijn graphs UDBd, the
wrapped butter�y graphs WBFd and the shu�e-exchange graphs SXd

79

(iii) other interconnection networks, including the d× d textit tori Td,d, the star graphs
STd, the pancake graphs PKd, and the pyramid graphs PMd

(iv) circular graphs: the circular graph Cn(a1, . . . , ak) is regular and hamiltonian.

Figure 26 shows the runtime results of the algorighm of [22] compared with those of
the branch-and-bound algorithm presented in [39]. All running times are given in CPU
seconds.

Figure 26: Running times for exact approaches.

As obvious from Figure 26, the new approach of [22] is much faster than the branch-
and-bound algorithm. This is particularly true for sparse instances, e.g., Q5. However,
the new approach outperforms [39] also on the larger complete graphs. [22] remark that
many instances can be solved very quickly by their new approach while others cannot
even be solved in one CPU day. Allegedly, the border line between easy instances (those
solvable within 25 seconds, say) and hard ones (those unsolved even in one day) is very
sharp, few instances do not fall into one of these categories.

The results of [22] can also help to evaluate the quality of the heuristic methods. In
fact, it turns out that many heuristics proposed by [39] are able to �nd optimal or near-
optimal solutions even for larger instances. In summary, [22] assume that small to medium
sized instances should be solved to optimality in general, whereas for larger instances one
can be con�dent that the heuristic solution is not too far away from the optimum.

10.2.2 Heuristics for the �xed linear crossing number

In this section, we present 8 heuristics designed by Cimikowski [39]. Additionally, we
compare their performance with our proposed heuristic based on the simulated annealing
scheme.

Preprocessing. Assume that vertices are �xed in the order 1, 2, . . . , n along the node line.
As a pre-processing step to each algorithm, all insigni�cant edges can be removed [39].

80

Observe that edges between consecutive vertices on the node line and the edge 1n cannot
be involved in crossings according to the constraints of the problem.

Also, if there is a vertex k, such that no edge ij, i < k < j exists, then edges 1k
and kn cannot cause crossings. Hence, these edges are insigni�cant and may be ignored
without a�ecting the �nal solution. At the same time, the problem size is reduced so that
larger instances can be solved.

The output of each heuristic is the minimum number of crossings obtained and the
corresponding embedding.

10.2.2.1 Greedy Heuristics

The Greedy heuristic [39] adds edges to the layout in row-major order of the adjacency
matrix of the graph, that is, �rst all edges 1i are added in increasing order of i -value,
then all edges 2i in increasing i -value order, etc. At each step, an edge is embedded in the
page (upper or lower) which results in the smallest increase in the number of crossings.
Ties are broken by placing the edge in the upper page.

Heuristic Gr-ran [39] uses the same approach but adds edges in random order.

10.2.2.2 Maximal Planar Heuristic

Heuristic Mplan [39] �nds a maximal planar subgraph in each page. In the �rst phase,
edges are added in row-major order of the adjacency matrix to the upper page. If an edge
causes a crossing, it is put aside until the second phase. In the second phase, all edges
put aside in the �rst phase are added to the lower page. If an edge causes a crossing, it
is once again put aside. In the third phase, any edges put aside in the second phase are
added to the page with the smallest increase in crossings.

10.2.2.3 Edge-Length Heuristic

Heuristic E-len [39] initially orders all edges non-increasingly by their �length�, i.e., |u−v|
for edge uv. The intuition here is that longer edges have a greater potential for crossings
than shorter edges and hence should be embedded �rst. Each edge is added one at a time
to the page of smallest increase in crossings.

10.2.2.4 One-Page Heuristic

This is essentially the method described in [180] and implied by crk(G) ≤ cr1(G)/k for
k = 2. Heuristic 1-page [39] initially embeds all edges in the upper page.This is followed
by a �local improvement� phase in which each edge is moved to the lower page if it results
in fewer crossings. Edges are considered for movement in order of non-increasing local
crossing number, i.e., the number of crossings involving an edge.

10.2.2.5 Dynamic Programming Heuristic

Unfortunately, FLCNP does not satisfy the principle of optimality which says that in
an optimal sequence of decisions each subsequence must also be optimal. Subgraphs
embedded optimally earlier in the process do not necessarily lead to optimal embeddings
of larger subgraphs when edges are added between the smaller subgraphs later on.

81

However, this does not preclude the potential bene�t of a dynamic programming
approach to the problem as a heuristic solution. If most crossings are localized within
relatively small subgraphs along the node line for a given graph, a dynamic programming
method [39] may produce a good solution.

Let Gi..j denote the subgraph induced by consecutive vertices i..j along the node line,
and let cr[i, k, j] be the number of crossings in the subgraph H = Gi..k ∪ Gk+1..j ∪ Ei,k,j

where Ei,k,j is the set of �link edges� between Gi..j and Gk+1..j. We compute cr[i, k, j]
greedily by adding each link edge to the page with the smallest increase in crossings. This
leads to a recurrence for the number of crossings, nc[1, n], computed by a dynamic pro-

gramming solution: nc[i, j] =

{
0 if j − i ≤ 3

mini≤k<j{nc[i, k] + nc[k + 1, j] + cr[i, k, j]} if i < j − 3

The base cases for the algorithm are the subgraphs of order 2-4, Optimal embeddings
for these are predetermined and shown in Figure 27.

Figure 27: [39] Fixed embeddings for base cases of dynamic programming heuristic.

10.2.2.6 Bisection Heuristic

This heuristic [39] uses a straightforward divide-and-conquer approach. The original graph
G i..n is initially bisected into two smaller subgraphs G1..bn

2
e and Gbn

2
e..n by temporarily

removing the link edges between them. Each subgraph is then bisected recursively in the
same manner until subgraphs of order 4 or less are obtained. Embeddings for these base
cases are the same as those shown in Figure 27.

When combining smaller subgraphs, link edges between the subgraphs are embedded
in greedy fashion as before. A similar method is described in [13], although the way in
which edges are re-inserted into the embedding after the bisection phase is not clearly
speci�ed.

10.2.2.7 Neural Network Heuristic

This heuristic [39] is based on the neural network model of parallel computation [106].
In this model there is a large number of simple processing elements called �neurons�.
Cimikowski assumes the McCulloch-Pitts binary neuron [211] in which each element has a
binary state . For testing purposes, a sequential simulator of the actual parallel algorithm
was used.

The model uses 2m neurons for a graph with m edges. With each edge is associated
an �up� and a �down� neuron, representing the two pages of the plane. Brie�y, two kinds
of forces, �excitatory� and �inhibitory�, are present in the neural network. The presence
of an edge uv in a graph encourages the two neurons for the edge to �re as the excitatory
force, while neurons of crossing edges are discouraged from �ring as the inhibitory force.

82

At each iteration of the main processing loop, neuron values are recalculated according
to speci�ed motion equations.

Eventually, after several iterations, either an �up� or �down� neuron for each edge is in
an excitatory state and a �nal embedding is obtained. Empirical testing shows that the
algorithm always converges to a solution within 50 iterations.The parallel time complexity
of the algorithm is O(1) for a neural network with n2 processing elements, where n is the
number of vertices of the graph.

It is straightforward to simulate the parallel algorithm with a sequential algorithm [39].
Whereas, in the parallel algorithm, the output values of the neurons are simultaneously
updated outside of the motion equation loop, in the sequential simulator, the output value
of each neuron is individually computed in sequence as soon as the input of the neuron is
evaluated inside of the motion equation loop.

A drawback to neural network algorithms is the possibility of non-convergence. Typ-
ically, a constant limit is imposed upon the number of iterations of the motion equation
computation loop, and the process is terminated if convergence to the equilibrium state
has not occurred by the limit. Full details of the heuristic are given in [40].

An extension of this method was suggested in [198], where Toma²tik presented a neural
network algorithm computing a k-page book crossing number and embedding.

10.2.2.8 Simulated annealing

Simulated annealing is a well-known optimization technique. It is based on the analogy
with annealing in physics, where the changes of the system state are seen as essentially
random, but changes that reduce the energy are more likely than those that increase it.
In addition, changes that increase the energy are more likely while the temperature is
high than later when the temperature is low.

This heuristic is essentially our algorithm SA1 proposed in section 10.1.2. The only
di�erence lies in the fact that in this version, there are no vertex permutations at all, i.e.,
every outer loop iteration has the same inner loop exchanging exclusively edges between
the two half-planes.

10.2.2.9 Time complexity

The time complexities of the heuristics are given in Table 5. For the greedy, maximal
planar, edge-length, and one-page heuristics, the total time is dominated by the time to
calculate the number of crossings after each edge is added to the layout, which is O(n4)
if eq. (1) is directly applied. Instead, however, we use a �dynamic� crossing recalculation
method which only checks for crossings involving the edge just added. This lowers the
recalculation time to O(m) for each edge added.

For the dynamic programming heuristic, there are a total of O(n2) subgraphs to pro-
cess, and each subgraph requires O(m2) time to add link edges and recalculate crossings.
The time for the bisection heuristic is given by the recurrence T (n) = 2T (n

2
) + O(n4),

where O(n4) is the time to merge each pair of subgraphs, and this recurrence has the
solution O(n4).

The sequential simulator of the neural network heuristic has a main loop with a
number of iterations dependent on the rate of convergence of the system to a stable state,

83

Table 5: Time Complexities of the Heuristics.

Heuristic Time Complexity

Greedy O(m2)

Gr-ran O(m2)

Mplan O(m2)

E-len O(m2)

1-page O(m2)

Dynamic O(m2)

Bisection O(m2n2)

Neural O(m)

Annealing rO(n4)

which is not bounded by any function of the input size. However, in [39], Cimikowski
claimed that the maximum number of loop iterations observed for any test graph was 84.
There are O(1) operations performed on each of the m edge neurons per iteration. Hence,
the time complexity is O(m).

The simulated annealing uses 2 nested loops. The inner loop is repeated O(n2) times
and takes O(n2) time. Number of iterations of the outer loop is variable, we shall denote
it as y. Hence, the time complexity is yO(n4). Although, a bound for y cannot be given,
experiments suggest that it is polynomial.

10.2.2.10 Experimental results

Inspired by Cimikowski [39, 40], we performed an experimental study of 9 di�erent heuris-
tics for the �xed linear crossing number problem (FLCNP).

The tests were conducted on instances of complete graphs (see Table 6) and random
graphs with 3 di�erent probabilities for edge occurrence (see Tables 7, 8 and 9). Each
instance was allowed to run up to four minutes on every algorithm. In the tables we
denote with �-� those instances that did not produce a result in the time limit.

Our results con�rmed Cimikowski's conclusion, that the neural network heuristic
topped the other heuristics presented in [39] in terms of solution quality. The second
best was the 1-page heuristic which gave nearly optimal solutions in very short time.

Our simulated annealing heuristic, which was not a part of the original study, per-
formed even better than the neural network heuristic. However, this was achieved partially
at the cost of an increase in the time complexity. Nevertheless, our simulated annealing
heuristic is still a feasible option, compared to the neural network heuristic, should a
closer-to-optimal solution be required on average.

84

Table 6: Number of crossings for complete graphs.
Greedy Gr�ran Mplan E�len 1�page Dyn. Bis. Neural Annealing

min avg min avg min avg

K5 1 1 1.0 1 1 1 1 1 1 1.0 1 1.0

K6 4 3 3.7 4 3 4 3 3 3 3.6 3 3.1

K7 11 9 9.2 11 9 9 9 9 9 9.2 9 9.4

K8 24 19 20.9 24 20 20 18 18 18 19.2 18 20.1

K9 46 36 39.4 46 36 42 40 42 36 37.6 36 39.6

K10 80 63 68.2 80 62 60 64 64 60 63.3 60 63.3

K11 130 102 105.0 130 100 100 112 120 100 101.4 100 107.2

K12 200 161 169.9 200 156 175 169 188 150 153.0 150 153.8

K13 295 225 253.6 295 231 225 255 277 225 228.0 225 231.2

K14 420 336 351.1 420 328 334 370 393 315 321.2 315 318.0

K15 581 451 477.2 581 449 441 501 543 441 447.0 441 441.6

K16 784 622 653.5 784 604 588 676 733 588 603.9 588 590.4

K17 1036 804 847.8 1036 796 784 892 986 784 790.0 784 785.6

K18 1344 1023 1079.3 1344 1045 1116 1149 1282 1008 1016.3 1008 1010.1

K19 1716 1318 1384.6 1716 1318 1296 1462 1640 1296 1303.6 1296 1297.0

K20 2160 1678 1759.3 2160 1675 1620 1847 2026 1620 1627.3 1620 1620.0

Table 7: Number of crossings for random graphs with edge probability of 0.5.
Greedy Gr�ran Mplan E�len 1�page Dyn. Bis. Neural Annealing

min avg min avg min avg

rg10 10 7 10.1 11 17 7 7 14 7 9.6 7 8.8

rg15 118 95 106.7 105 109 93 99 112 91 99.7 91 94.2

rg20 561 456 481.5 551 473 436 480 555 436 449.1 436 441.5

rg25 1189 911 980.1 1177 898 876 1012 1175 867 884.4 867 879.6

rg30 3115 2515 2572.4 3163 2506 2420 2644 2998 2407 2427.5 2405 2430.1

rg35 5052 4059 4151.3 5055 4306 3921 4298 5046 3910 3968.6 3904 3920.4

rg40 10738 8465 8702.8 10685 8539 8229 9189 10829 8258 8372.7 8228 8270.0

rg45 16871 12892 13205.5 16347 13311 12662 14405 16557 12682 12812.2 12662 12751.6

rg50 29291 22327 22969.7 29482 23035 21870 25997 29242 21888 22222.7 21873 22162.6

85

Table 8: Number of crossings for random graphs with edge probability of 0.3.
Greedy Gr�ran Mplan E�len 1�page Dyn. Bis. Neural Annealing

min avg min avg min avg

rg10 2 2 2.6 2 3 2 2 3 2 2.4 2 2.1

rg15 21 15 19.5 21 19 13 16 18 13 16.8 13 13.7

rg20 175 139 162.0 177 168 137 147 178 132 142.0 131 138.7

rg25 565 437 481.1 548 455 429 461 557 423 435.1 423 436.3

rg30 1056 841 887.6 1022 902 818 926 1024 810 822.2 808 832.6

rg35 2004 1610 1666.5 2006 1761 1533 1763 2016 1531 1601.0 1532 1588.7

rg40 4338 3516 3630.5 4274 3783 3298 3693 4465 3297 3402.2 3298 3335.9

rg45 6192 4719 4995.3 5945 5012 4644 5382 6124 4616 4723.3 4602 4649.8

rg50 9887 7696 7961.4 9748 8210 7508 8595 9992 7486 7576.7 7487 7590.8

Table 9: Number of crossings for random graphs with edge probability of 0.8.
Greedy Gr�ran Mplan E�len 1�page Dyn. Bis. Neural Annealing

min avg min avg min avg

rg10 49 38 42.2 47 37 34 41 44 34 37.8 34 37.8

rg15 294 225 244.2 291 249 207 255 275 207 219.9 207 214.8

rg20 1300 1050 1117.3 1323 1014 978 1152 1309 978 1011.1 979 1017.6

rg25 3645 2813 3013.0 3653 2823 2723 3243 3638 2723 2775.1 2723 2756.2

rg30 8238 6363 6621.7 8141 6859 6341 7200 7954 6282 6327.3 6282 6311.1

rg35 14886 11601 11976.0 15034 11452 11418 13007 14501 11314 11370.3 11316 11352.4

rg40 27172 20477 21436.6 26834 22082 20643 23767 26289 20246 20750.4 20205 20460.3

rg45 45631 34869 35609.6 45693 37595 34194 40372 45328 - - - -

rg50 - - - - - - - 68093 - - - -

86

11 Conclusion

The aim of this thesis was to survey and analyse the major algorithmic solution approaches
for the NP-complete Crossing Number Problem and some of its variants. We collected
and studied as much literature as possible in order to properly cover the subject.

The main areas presented were the general crossing number, the rectilinear crossing
number, and the (�xed) linear crossing number. The book crossing number was mentioned
only marginally, since there was not enough information available to us to study it in
further detail. The problem of the crossing number on hierarchical embeddings was not
included in this work, as it has already been thoroughly studied in the literature.

Most sections concerning algorithmic methods contain a paragraph analysing the per-
formance of the particular approaches. We demonstrated computational results of several
experimental studies and comparisons.

Moreover, we proposed three new heuristics for computing the (�xed) linear crossing num-
ber based on the simulated annealing scheme. We compared their performance with the
best known approaches from the literature. One heuristic was unsuccessful, the other two
managed to produce slightly better results for the respective variant of crossing number,
albeit at the cost of a higher time complexity.

We also attempted to design a heuristic based on simulated annealing for comput-
ing the rectilinear crossing number that would shift vertices along their incident edges.
Unfortunately, the computational results obtained were not satisfying, hence, we did not
include this method into our survey. Supposedly, this movement of vertices interferred
intrusively with the cooling process.

Since the problem covered in this thesis is so large-scale, there is a number of areas were the
study could continue, e.g., from keeping the survey up-to-date with new results, through
proposing new approaches following a more thorough acquaintance with the problem, up
to conducting further empirical evaluations.

87

Bibliography

[1] C. 762. Lecture notes of a graduate course, Fall 1999, Winter 2002, Winter 2004.

[2] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin,
1998.

[3] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free subgraphs,
1982.

[4] D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD-library: A library of
algorithms for graph drawing. Technical Report MPI-I-97-1-019, Im Stadtwald,
D-66123 Saarbrücken, Germany, 1997.

[5] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity relation-
ship diagrams. J. Syst. Softw., 4(2-3):163�173, 1984.

[6] D. Battista, Garg, Liotta, Tamassia, Tassinari, and Vargiu. An experimental com-
parison of four graph drawing algorithms. CGTA: Computational Geometry: Theory
and Applications, 7, 1997.

[7] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall; 1ST edition, 1998.

[8] G. D. Battista and R. Tamassia. On-line graph algorithms with spqr-trees. In
Proceedings of the seventeenth international colloquium on Automata, languages
and programming, pages 598�611, New York, NY, USA, 1990. Springer-Verlag New
York, Inc.

[9] G. D. Battista and R. Tamassia. On-line maintenance of triconnected components
with spqr-trees. Journal Algorithmica, 15(4), 1996.

[10] G. D. Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956�997, 1996.

[11] F. Berhart and P. C. Kainen. The book thickness of a graph, 1979.

[12] P. Bertolazzi, G. D. Battista, and W. Didimo. Computing orthogonal drawings with
the minimum number of bends. In Workshop on Algorithms and Data Structures,
pages 331�344, 1997.

[13] S. N. Bhatt and F. T. Leighton. A FRAMEWORK FOR SOLVING VLSI GRAPH
LAYOUT PROBLEMS. Technical Report MIT/LCS/TR-305, 1983.

[14] D. Bienstock. Some provably hard crossing number problems. Discrete Comput.
Geom., 6(5):443�459, 1991.

[15] D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. J. Graph
Theory, 17(3):333�348, 1993.

[16] D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs, 1989.

88

[17] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to
minimize certain distance measures, March, 1990.

[18] T. Bilski. Embedding graphs in books: survey. 139(2):134�138, 2005.

[19] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. JCSS, 13:335�379, 1976.

[20] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W. Klau,
P. Mutzel, and R. Weiskircher. A branch-and-cut approach to the crossing number
problem. Technical report, Zentrum für Angewandte Informatik Köln, Lehrstuhl
Jünger, January 2006.

[21] C. Buchheim, D. Ebner, M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher.
Exact crossing minimization. In P. Healy and N. S.Nikolov, editors, Graph Drawing,
pages 37�48. Springer, Limerick, Ireland, September 2005.

[22] C. Buchheim and L. Zheng. Fixed linear crossing minimization by reduction to the
maximum cut problem. In COCOON 2006, April 2006.

[23] J. F. Buss and P. W. Shor. On the pagenumber of planar graphs. In STOC '84:
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
98�100, New York, NY, USA, 1984. ACM Press.

[24] J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal on
Discrete Mathematics, 6(3):335�352, 1993.

[25] J. Cai, X. Han, and R. E. Tarjan. An o(m log n)-time algorithm for the maximal
planar subgraph problem. SIAM J. Comput., 22(6-7):1142�1162, 1993.

[26] G. Calinescu and C. G. Fernandes. Finding large planar subgraphs and large sub-
graphs of a given genus. pages 152�161, 1996.

[27] G. Calinescu, C. G. Fernandes, U. Finkler, and H. Karlo�. A better approxima-
tion algorithm for �nding planar subgraphs. In SODA: ACM-SIAM Symposium
on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of
Discrete Algorithms), 1996.

[28] G. Calinescu, C. G. Fernandes, U. Finkler, and H. Karlo�. A better approximation
algorithm for �nding planar subgraphs. volume 27, pages 269�302, 1998.

[29] R. J. S. Carmo. O problema do subgrafo planar ótimo, 1994.

[30] M.-J. Carpano. Automatic display of hierarchized graphs for computer-aided deci-
sion analysis, 1980.

[31] K. C. Chang and D. H.-C. Du. E�cient algorithms for layer assignment problem.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
6(1):67 � 78, January 1987.

[32] G. Chartrand and L. Lesniak. Graphs & digraphs (2nd ed.). Wadsworth Publ. Co.,
Belmont, CA, USA, 1986.

89

[33] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using pq-trees. J. Comput. Syst. Sci., 30(1):54�76, 1985.

[34] T. Chiba, I. Nishioka, and I. Shirakawa. An algorithm for maximal planarization of
graphs. In Proceedings on the 1979 IEEE International Symposium on Circuits and
Systems, pages 336�441, 1979.

[35] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs in books:
a layout problem with applications to vlsi design. SIAM J. Algebraic Discrete
Methods, 8(1):33�58, 1987.

[36] Cimikowski. An analysis of some heuristics for the maximum planar subgraph
problem. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical and Experimental Analysis of Discrete Algorithms), 1995.

[37] R. Cimikowski. Branch-and-bound techniques for the maximum planar subgraph
problem, 1994.

[38] R. Cimikowski. An analysis of heuristics for graph planarization, 1997.

[39] R. Cimikowski. Algorithms for the �xed linear crossing number problem, 2002.

[40] R. Cimikowski and P. Shope. A neural-network algorithm for a graph layout prob-
lem. IEEE Transactions on Neural Networks, 7(2):341�345, March 1996.

[41] R. J. Cimikowski. Graph planarization and skewness. In Congressus Numerantium,
volume 88, pages 21�32, 1992.

[42] R. J. Cimikowski. On heuristics for determining the thickness of a graph. Informa-
tion Sciences, 85(1�3):87�98, 1995.

[43] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science: Volume B: Formal Models and
Semantics, pages 193�242. Elsevier, Amsterdam, 1990.

[44] H. Crowder, E. L. Johnson, and M. Padberg. Solving large-scale zero-one linear
programming problems, 1983.

[45] R. J. da Silva Carmo and Y. Wakabayashi. The maximum planar subgraph problem
(extended abstract), June 1995.

[46] E. Damiani, O. D'Antona, and P. Salemi. An upper bound to the crossing number
of the complete graph drawn on the pages of a book. J. Comb. Inf. Syst. Sci.,
19(1-2):75�84, 1994.

[47] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301�331, 1996.

[48] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

90

[49] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid,
1990.

[50] N. Dean. Mathematical programming formulation of rectilinear crossing minimiza-
tion. Technical Report DIMACS TR 2002-12, 2002.

[51] C. Demetrescu and I. Finocchi. Break the �right� cycles and get the �best� drawing.
In Proc. 2nd Work. Algorithm Engineering and Experiments, ALENEX, 7�8 2000.

[52] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. 30th Annu.
IEEE Sympos. Found. Comput. Sci., pages 436�441, 1989.

[53] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. 30th Annu.
IEEE Sympos. Found. Comput. Sci., pages 436�441, 1989.

[54] H. N. Djidjev. A linear algorithm for �nding a maximal planar subgraph, 1995.

[55] H. N. Djidjev and I. Vr´o. Crossing numbers and cutwidths, 2003.

[56] R. G. Downey, M. R. Fellows, R. Niedermeier, and P. Rossmanith. Parameterized
Complexity. Springer, 1999.

[57] V. Dujmovi¢, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. A �xed-parameter approach to two-layer planarization. In Proc. Graph
Drawing (GD'01), pages 1�15, 2001.

[58] V. Dujmovi¢, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In European
Symposium on Algorithms, pages 488�499, 2001.

[59] W. Dyck. Beiträge zur analysis situs i. aufsatz. ein- und zweidimensionale mannig-
faltigkeiten, December, 1888.

[60] M. Dyer, L. Foulds, and A. Frieze. Analysis of heuristics for �nding a maximum
weight planar subgraph. European Journal of Operations Research, 20:102�114,
1985.

[61] P. Eades. A heuristic for graph drawing. In Congressus Numerantium, volume 42,
pages 149�160, 1984.

[62] P. Eades, L. R. Foulds, and J. W. Gi�n. An e�cient heuristic for identifying a
maximum weight planar graph, 1982.

[63] P. Eades and S. Whitesides. Drawing graphs in two layers. Theor. Comput. Sci.,
131(2):361�374, 1994.

[64] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs, 1994.

[65] D. Ebner. Optimal crossing minimization using integer linear programming, Febru-
ary 2005.

91

[66] R. B. Eggleton. Rectilinear drawings of graphs. Utilitas Math., 29:149�172, 1986.

[67] P. Erdos and R. K. Guy. Crossing number problems.

[68] G. Even, S. Guha, and B. Schieber. Improved approximations of crossings in graph
drawings. pages 296�305, 2000.

[69] L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça Neto. Splitting number
is NP-complete. In Workshop on Graph-Theoretic Concepts in Computer Science,
pages 285�297, 1998.

[70] L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça Neto. The splitting
number of the 4-cube. In Latin American Theoretical INformatics, pages 141�150,
1998.

[71] I. Fáry. On straight line representations of graphs. Acta Univ. Szeged Sect. Sci.
Math., 11:229�233, 1948.

[72] T. Feo and M. Resende. Greedy randomized adaptive search procedures, 1995.

[73] L. Foulds and D. Robinson. Construction properties of combinatorial deltahedra,
1979.

[74] L. R. Foulds, P. B. Gibbons, and J. W. Gi�n. Facilities layout adjacency determi-
nation: An experimental comparison of three graph theoretic heuristics, 1985.

[75] L. R. Foulds and D. F. Robinson. A strategy for solving the plant layout problem,
1976.

[76] L. R. Foulds and D. F. Robinson. Graph theoretic heuristics for the plant layout
problem, 1978.

[77] D. Franken, J. Ochs, and K. Ochs. Generation of wave digital structures for con-
nection networks containing ideal transformers. volume 3, pages 240 � 243, May
2003.

[78] M. Garey, D. Johnson, G. Miller, and C. Papadimitriou. The complexity of coloring
circular arcs and chords, 1980.

[79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[80] M. R. Garey and D. S. Johnson. Crossing number is np-complete. SIAM Journal
on Algebraic and Discrete Methods, 4(3):312�316, 1983.

[81] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed np-complete
problems. In STOC '74: Proceedings of the sixth annual ACM symposium on Theory
of computing, pages 47�63, New York, NY, USA, 1974. ACM Press.

[82] A. Garg and R. Tamassia. On the computational complexity of upward and recti-
linear planarity testing. SIAM Journal on Computing, 31(2):601�625, 2002.

92

[83] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a
circle graph, 1973.

[84] J. W. Gi�n and L. R. Foulds. E�cient graph planarity updating tests. Ars-
Combinatoria, 17:185�202, 1984.

[85] O. Goldschmidt and A. Takvorian. An e�cient graph planarization two-phase
heuristic. Technical Report ORP91-01, 1992.

[86] O. Goldschmidt and A. Takvorian. An e�cient graph planarization two-phase
heuristic, 1994.

[87] J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate representation of order
types requires exponential storage. In STOC '89: Proceedings of the twenty-�rst
annual ACM symposium on Theory of computing, pages 405�410, New York, NY,
USA, 1989. ACM Press.

[88] M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285�302, 2004.

[89] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear
ordering problem. Operations Research, 32(6):1195�1220, 1984.

[90] C. Gutwenger and P. Mutzel. A linear time implementation of spqr-trees. In GD '00:
Proceedings of the 8th International Symposium on Graph Drawing, pages 77�90,
London, UK, 2001. Springer-Verlag.

[91] C. Gutwenger and P. Mutzel. An experimental study of crossing minimization
heuristics. In G. Liotta, editor, Graph Drawing 2003, Perugia, September 2003.
Springer, 2003.

[92] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth and maximum
external face (extended abstract). In G. Liotta, editor, Graph Drawing, Perugia,
2003, pages pp. 259�272. Springer, 2004.

[93] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph.
In SODA '01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 246�255, Philadelphia, PA, USA, 2001. Society for Industrial and
Applied Mathematics.

[94] R. Guy. Latest results on crossing numbers. 1971.

[95] R. Guy. Crossing numbers of graphs. pages 111�124, May 1972.

[96] D. Harel and M. Sardas. Randomized graph drawing with heavy-duty preprocessing.
Journal of Visual Languages and Computing, 6(3):233�253, 1995.

[97] F. C. Harris, Jr., and C. R. Harris. A proposed algorithm for calculating the mini-
mum crossing number of a graph, 1995.

[98] L. S. Heath. Embedding planar graphs in seven pages. In Proc. 25th Annual Symp.
on Foundations of Comput. Sci., pages 74�83, 1984.

93

[99] L. He�ter. Über das problem der nachbargebiete, 1891.

[100] J. Hines, F. C. Harris, and K. B. Winiecki. Solving quadratic assignment problems
with parallel genetic algorithms, May 1992.

[101] P. Hlin¥ný. Crossing-critical graphs and path-width. In Graph Drawing, pages
102�114, 2001.

[102] P. Hlin¥ný. Crossing number is hard for cubic graphs. J. Comb. Theory Ser. B,
96(4):455�471, 2006.

[103] P. Hlin¥ný and G. Salazar. On di�culty of graph crossing number (extended ab-
stract), 2003.

[104] J. Hopcroft and R. Tarjan. E�cient planarity testing. J. ACM, 21(4):549�568,
1974.

[105] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135�158, 1973.

[106] J. Hop�eld and D. Tank. Neural computiaton of decisions in optimization problems.
52:141�152, 1985.

[107] W.-L. Hsu. A linear time algorithm for �nding maximal planar subgraphs. In
ISAAC: 6th International Symposium on Algorithms and Computation (formerly SI-
GAL International Symposium on Algorithms), Organized by Special Interest Group
on Algorithms (SIGAL) of the Information Processing Society of Japan (IPSJ) and
the Technical Group on Theoretical Foundation of Computing of the Institute of
Electronics, Information and Communication Engineers (IEICE)), 1995.

[108] H. F. Jensen. An upper bound for the rectilinear crossing number of the complete
graph. J. Combinatorial Theory Ser. B, 10:212�216, 1971.

[109] D. S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms,
7(4):584�601, 1986.

[110] M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal planar
subgraph using pq-trees. Technical Report TR GDEA-19, 1998.

[111] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Prac-
tical layout tools. Technical Report TR GDEA-25, 1993.

[112] M. Jünger and P. Mutzel. Solving the maximum weight planar subgraph problem
by branch and cut, 1993.

[113] M. Jünger and P. Mutzel. 2�layer straightline crossing minimization: Performance
of exact and heuristic algorithms, 1997.

[114] M. Jünger and S. Thienel. Introduction to abacus - a branch-and-cut system, March
1998.

[115] P. C. Kainen. Book thickness of graphs, ii, 1990.

94

[116] G. Kant. An o(n2) maximal planarization algorithm based on pq-trees. Technical
Report RUU-CS-92-03, January 1992.

[117] R. M. Karp, R. E. Miller, and J. W. Thatcher. Reducibility among combinatorial
problems, December 1975.

[118] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671�680, 1983.

[119] G. Klau and P. Mutzel. Quasi orthogonal drawing of planar graphs. Technical
Report TR MPI-I-98-1-013, 1998.

[120] B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence
systems, 1978.

[121] S. T. Kozo Sugiyama and M. Toda. Methods for visual understanding of hierarchical
system structures, 1981.

[122] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel comput-
ing: design and analysis of algorithms. Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1994.

[123] K. Kuratowski. Sur le probleme des courbes gauches en topologie, 1930.

[124] M. Laurent. The max-cut problem. In Chapter in Annotated Bibliographies in
Combinatorial Optimization, pages pages 241�259. edited by M. Dell'Amico, F.
Ma�oli and S. Martello. John Wiley, 1997.

[125] M. Laurent and F. Rendl. Semide�nite programming and integer programming,
2005.

[126] F. T. Leighton. New lower bound techniques for VLSI. NASA STI/Recon Technical
Report N, 83:19003�+, Aug. 1982.

[127] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shu�e-exchange
graph and other networks. MIT Press, Cambridge, MA, USA, 1983.

[128] T. Leighton and S. Rao. Multicommodity max-�ow min-cut theorems and their use
in designing approximation algorithms. J. ACM, 46(6):787�832, 1999.

[129] S. Leipert. Berechnung maximal planarer untergraphen mit hilfe von pq-bäumen,
diplom thesis, 1995.

[130] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs,
1966.

[131] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John Wiley &
Sons, Inc., New York, NY, USA, 1990.

[132] J. Leung. A new graph-theoretic heuristic for facility layout. Manage. Sci.,
38(4):594�605, 1992.

95

[133] A. Liebers. Planarizing graphs - a survey and annotated bibliography, 2001.

[134] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing exact ground states of
hard ising spin glass problems by branch-and-cut, 2003.

[135] P. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph, 1977.

[136] P. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph, 1979.

[137] C. Lovegrove. Crossing numbers of permutation graphs, master thesis, May 1988.

[138] S. MacLane. A combinatorial condition for planar graphs, 1936.

[139] A. Mans�eld. Determining the thickness of a graph is np-hard, 1983.

[140] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the np-completeness
of a computer network layout problem, 1987.

[141] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization
in linear embeddings of graphs. IEEE Trans. Comput., 39(1):124�127, 1990.

[142] C. C. R. Mauricio G. C. Resende. Greedy randomized adaptive search procedures,
2002.

[143] K. Mehlhorn and P. Mutzel. On the embedding phase of the hopcroft and tarjan
planarity testing algorithm. Algorithmica, 16(2):233�242, 1996.

[144] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of
state calculations by fast computing machines. J. Chem. Phys., 21(6):1087�1092,
1953.

[145] P. Mutzel. A fast 0(n) embedding algorithm, based on the hopcroft-tarjan planary
test. Technical report, 1992.

[146] P. Mutzel. The maximum planar subgraph problem, phd thesis, 1994.

[147] P. Mutzel. Optimization in leveled graphs, 1999.

[148] P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a
planar graph. Lecture Notes in Computer Science, 1610:361+, 1999.

[149] P. Mutzel and T. Ziegler. The constrained crossing minimization problem. In GD
'99: Proceedings of the 7th International Symposium on Graph Drawing, pages 175�
185, London, UK, 1999. Springer-Verlag.

[150] P. Mutzel and T. Ziegler. The constrained crossing minimization problem - a �rst
approach, 1999.

[151] M. Newton, O. Sýkora, and I. Vr´o. Two new heuristics for two-sided bipartite
graph drawing. In GD '02: Revised Papers from the 10th International Symposium
on Graph Drawing, pages 312�319, London, UK, 2002. Springer-Verlag.

96

[152] T. Nicholson. Permutation procedure for minimising the number of crossings in a
network. Proc. IEE, 115(1):21�26, 1968.

[153] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, volume 140.
North-Holland Mathematics Studies.

[154] K. J. Nurmela and P. R. J. Östergard. Constructing covering designs by simulated
annealing. Technical Report B10, 1993.

[155] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[156] T. Ozawa and H. Takahashi. A graph-planarization algorithm and its application
to random graphs. In Proceedings of the 17th Symposium of Research Institute of
Electric Communication on Graph Theory and Algorithms, pages 95�107, London,
UK, 1981. Springer-Verlag.

[157] J. Pach. Crossing numbers, 2000.

[158] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing numbers.
Algorithmica, 16:11�117, 1996.

[159] J. Pach, J. Spencer, and G. Tóth. New bounds on crossing numbers. Technical
Report 99-37, 21, 1999.

[160] J. Pach and G. Tóth. Which crossing number is it anyway? Technical Report 29,
11, 1998.

[161] J. Pach and G. Tóth. Thirteen problems on crossing numbers, 2000.

[162] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. In S. North,
editor, Graph Drawing, Berkeley, California, USA, pages pp. 345�354. Springer,
September 1996.

[163] S. Pan and R. B. Richter. The crossing number of k(11) is 100, January 2007.

[164] J. A. L. Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In STOC '94: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 706�715, New York, NY, USA, 1994. ACM Press.

[165] W. R. Pulleyblank. Polyhedral combinatorics. pages 371�446, 1989.

[166] H. C. Purchase. Which aesthetic has the greatest e�ect on human understanding?
In GD '97: Proceedings of the 5th International Symposium on Graph Drawing,
pages 248�261, London, UK, 1997. Springer-Verlag.

[167] M. Resende and C. Ribeiro. A GRASP for graph planarization. NETWORKS:
Networks: An International Journal, 29, 1997.

[168] R. B. Richter and C. Thomassen. Minimal graphs with crossing number at least k.
J. Comb. Theory Ser. B, 58(2):217�224, 1993.

[169] R. B. Richter and C. Thomassen. Relations between crossing numbers of complete
and complete bipartite graphs, February 1997.

97

[170] M. Ringenburg. Using simulated annealing to �nd crossing numbers, 2000.

[171] J. S. R.K. Guy, T. Jenkyns. The toroidal crossing number of the complete graph.
J. Combin. Theory, 4:376�390, 1968.

[172] N. Robertson and P. Seymour. Excluding a graph with one crossing. pages 669�675,
1971.

[173] N. Robertson and P. D. Seymour. Graph minors. v. excluding a planar graph. J.
Comb. Theory Ser. B, 41(1):92�114, 1986.

[174] N. Robertson and P. D. Seymour. Graph minors. xiii: the disjoint paths problem.
J. Comb. Theory Ser. B, 63(1):65�110, 1995.

[175] J. Roskind and R. E. Tarjan. A note on �nding minimum-cost edge-disjoint. span-
ning trees, 1985.

[176] M. Sarrafzadeh and D. T. Lee. A new approach to topological via minimization
problem, August 1989.

[177] W. Schnyder. Embedding planar graphs on the grid. In SODA '90: Proceedings
of the �rst annual ACM-SIAM symposium on Discrete algorithms, pages 138�148,
Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.

[178] F. Shahrokhi, O. Sýkora, L. Székely, and I. Vr´o. Crossing numbers: bounds and
applications, 1997.

[179] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vr´o. A gap between crossing numbers
and convex crossing numbers, September 2003.

[180] F. Shahrokhi, L. A. Székely, O. Sýkora, and I. Vr´o. The book crossing number of
a graph. J. Graph Theory, 21(4):413�424, 1996.

[181] W.-K. Shih and W.-L. Hsu. A simple test for planar graphs, 1993.

[182] J. Spencer and G. Tóth. Crossing numbers of random graphs. Random Struct.
Algorithms, 21(3-4):347�358, 2002.

[183] M. Stallmann, F. Brglez, and D. Ghosh. Evaluating iterative improvement heuristics
for bigraph crossing minimization, 1999.

[184] M. Stallmann, F. Brglez, and D. Ghosh. Heuristics, experimental subjects, and
treatment evaluation in bigraph crossing minimization, 2000.

[185] O. Sýkora and I. Vr´o. On vlsi layout of the star graph and related networks, 1994.

[186] L. A. Székely. A successful concept for measuring non-planarity of graphs: the
crossing number, 2004.

[187] U. Tadjiev, F. C. Harris, and Jr. Parallel computation of the minimum crossing
number of a graph, 1997.

98

[188] Y. Takefuji and K. Lee. A near-optimum parallel planarization algorithm, Septem-
ber 1989.

[189] Y. Takefuji, K. Lee, and Y. B. Cho. Comments on o(n2) algorithms for graph
planarization, 1991.

[190] R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing, 16(3):421�444, 1987.

[191] R. Tamassia. A dynamic data structure for planar graph embedding (extended
abstract). In ICALP '88: Proceedings of the 15th International Colloquium on Au-
tomata, Languages and Programming, pages 576�590, London, UK, 1988. Springer-
Verlag.

[192] C. Thomassen. The graph genus problem is np-complete. J. Algorithms, 10(4):568�
576, 1989.

[193] C. Thomassen. Embeddings and minors. pages 301�349, 1995.

[194] C. Thomassen. A simpler proof of the excluded minor theorem for higher surfaces.
J. Comb. Theory Ser. B, 70(2):306�311, 1997.

[195] J. T. Thorpe and F. C. Harris. A parallel stochastic optimization algorithm for
�nding mappings of the rectilinear minimal crossing problem. Ars Combin., 43:135�
148, 1996.

[196] K. Thulasiraman, R. Jayakumar, and M. Swamy. On maximal planarization of
nonplanar graphs, August 1986.

[197] K. Thulasiraman, R. Jayakumar, and M. Swamy. O(n2) algorithms for graph pla-
narization, March 1989.

[198] M. Toma²tik. Metóda neurónových sietí v rie²ení problému lineárneho
priese£níkového £ísla, práca ±tudentskej vedeckej konferencie, 2006.

[199] N. Tomii, Y. Kambayashi, and Y. Shuzo. On planarization algorithms of 2-level
graphs, 1977.

[200] P. Turán. A note of welcome, 1977.

[201] W. T. Tutte. How to draw a graph, 1963.

[202] W. T. Tutte. Toward a theory of crossing numbers. J. Combinatorial Theory,
8:45�53, 1970.

[203] T. J. van Roy and L. A. Wolsey. Solving mixed integer programming problems using
automatic reformulation, 1987.

[204] G. Vollen. Pq-trees and maximal planarization - an approach to skewness, diplom
thesis, February 1998.

[205] K. Wagner. Bemerkungen zum vierfarbenproblem, 1936.

99

[206] T. Watanabe, T. Ae, and A. Nakamura. Np-hardness of edge-deletion and contrac-
tion problems, 1983.

[207] M. Waterman and J. Griggs. Interval graphs and maps of dna, 1986.

[208] J. Westbrook. Fast incremental planarity testing. In Proc. 19th Int. Colloquium on
Automata, Languages and Programming, pages 342�353. Lecture Notes in Computer
Science, Springer-Verlag 623, Berlin, 1992.

[209] A. T. White and L. W. Beineke. Topological graph theory. pages 15�49, 1983.

[210] A. Widgerson. The complexity ot the hamiltonian circuit problem for planar graphs.

[211] W. P. W.S. McCulloch. A logical calculus of ideas imminent in nervous activity.
5:115�133, 1943.

[212] M. Yannakakis. Node-and edge-deletion np-complete problems. In STOC '78: Pro-
ceedings of the tenth annual ACM symposium on Theory of computing, pages 253�
264, New York, NY, USA, 1978. ACM Press.

[213] M. Yannakakis. Four pages are necessary and su�cient for planar graphs (extended
abstract). In STOC, pages 104�108, 1986.

[214] T. Ziegler. Crossing minimization in automatic graph drawing, phd thesis, 2000.

100

A (Integer) Linear Programming

A Linear Program (LP) is an optimization problem consisting of an objective function
and several constraints. George B. Dantzig proposed the following standard model:

maximize cT x
subject to Ax ≤ b

x ≥ 0

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm. The linear function cT x : Rn → R is called the
objective function and the inequalities in the system Ax ≤ b are called constraints. We can
transfrom minimization problems to maximization problems by multiplying the objective
function cTx by −1.

Problem 12 (Linear Programming). Given a matrix A ∈ Rm×n, and vectors b ∈ Rm,
c ∈ Rn, �nd a vector x̂ ∈ Rn with

cT x̂ = max{cT x|Ax ≤ b}

Linear Programs can be solved in polynomial time. The most widespread algorithms are
the simplex- , the ellipsoid- and the interior point method [65]. There are a number of
well developed and optimized implementations that e�ciently solve linear programs, even
on a very large scale.

Solving large Linear programs

In large linear programs, especially for NP-hard optimization problems, the number of
variables and/or constraints often becomes too large to be handled by the LP-solver [65].
In both cases there are techniques that start with a subset of variables (inequalities) and
add new ones only if required during the runtime of the algorithm.

Column generation

Column generation is a widely used technique to work around a huge number of vari-
ables. Instead of solving the original linear program, we solve a reduced LP L(J) =
max{

∑
j∈J cjxj|

∑
j∈J Ai,jxj ≤ b} for some J ⊆ {l, ..., n}. Using the dual variables y we

can search for a j /∈ J such that cj − ŷAj > 0. If there is such a j we can add it to J and
solve the new LP, otherwise we have an optimal solution over all columns.

Branch-and-Cut

The cutting plane approach starts with a small subset of constraints and computes an
optimum solution. If there are no more constraints that are violated by the current
solution, we have an optimum solution for the original linear program. Otherwise we add
the violated constraint and resolve the LP.

It is not required to have a complete "list" of all constraints, but we need a method to
identify constraints that are violated by the current solution but are valid for the original
LP. This is called the general separation problem and de�ned as follows:

101

Problem 13 (General Separation). Given a class of valid inequalities and a vector
y ∈ Rn, either prove that y satis�es all inequalities in the class, or �nd an inequality
which is violated by y.

When we want to apply the cutting plane approach to zero-one ILPs, we can transform the
ILP I = max{cT x|Ax ≤ b, x ∈ {0, 1}n} to a linear program by dropping the integrality
constraints and adding for each variable x, an inequality xi ≤ 1. The resulting linear
program L = max{cT x|Ax ≤ b, 0 ≤ xi ≤ l,∀i ∈ {l, ..., n}} is called the linear relaxation
of I.

Every optimum solution x of L that is integral (xi ∈ {0, 1}∀i ∈ {0, ..., n}) is also an
optimum solution for our original problem I. If x̂ is fractional we can try to �nd further
problem speci�c inequalities to "cut o�" the fractional solutions. Another possibility
is the use of general purpose cutting planes, for example, Gomory Cuts [65]. They are
not speci�c to the particular linear program and can be used in conjunction with every
combinatorial optimization problem.

For a large number of NP-hard optimization problems no e�cient exact separation
algorithms are known. However, we can use the cutting plane approach in combination
with an enumeration procedure called branch-and-bound (see next subsection).

The branch-and-bound approach is a simple divide-and-conquer approach that tries to
solve the original problem by splitting it in smaller subproblems. On each node of the
resulting search tree upper and lower bounds are computed. An upper bound is called
local if it is only valid for the current subproblem and global otherwise.

In the case of zero-one integer linear programs the root of the search tree corresponds
to the original problem. At each node a local upper bound can be computed by solving the
linear relaxation of the particular subproblem. If the solution is feasible and its objective
value is higher than the best found feasible solution, it is stored and the global lower bound
is increased accordingly. If the local upper bound is smaller than the current global lower
bound, we can discard the subproblem. Otherwise (the local upper bound is higher than
the best feasible solution known so far), we select a fractional branching variable and
create two new subproblems by setting the branching variable to zero, respectively one.

The procedure is repeated until the list of unsolved subproblems becomes empty. In
this case we can guarantee that the best feasible solution is an optimum solution for the
root problem.

The branch-and-cut approach was �rst used by Grötschel, Jünger and Reinelt in [89] for
the linear ordering problem. It is a combination of the branch-and-bound method and
the cutting plane approach.

In addition to the pure branch-and-bound approach we try to �nd violated cuts which
are added to the LP relaxation and the subproblem is solved again. The branching process
continues when no more cuts can be separated. A more detailed description can be found
in [65].

102

B Some tree structures

B.1 SPQR-trees

In this section, we give a brief introduction to the SPQR-tree data structure for bicon-
nected planar graphs. SPQR-trees were introduced by Di Battista and Tamassia [10] and
since then have been used in various graph drawing applications like, e.g., minimizing the
number of bends in an orthogonal drawing [12, 93] or �nding planar embeddings with a
minimum depth and a maximum external face [92]. Recently, SPQR-trees have also been
applied in the area of circuit design [77].

An undirected graph G is connected, if any two vertices of G are connected by a path.
The maximal connected subgraphs of G are the connected components of G. A vertex v
is a cutvertex if the removal of v increases the number of components. G is biconnected.
if G is connected and G has no cut vertices. The maximal biconnected subgraphs of G
are called bicomponents. A pair u, w of vertices of G is a separation pair, if the deletion of
v and w disconnects G. G is triconnected, if G has no cut vertex and no separation pair.

An essential property of triconnected graphs related to planarity is given in the next
lemma. A subdivision of a graph H is a graph H ′ that can be obtained by H by replacing
some of the edges of H by paths having at most their endpoints in common.

Lemma 1 (Nishizeki, Chiba [153]). A planar graph G has a unique embedding in the
plane if and only if G is a subdivision of a triconnected graph.

The triconnected components (or tricomponents) of G are produced by a recursive
procedure that, if G has a separation pair v, w, divides G into two subgraphs G1 and G2

de�ned by the separation pair. Each of v and w is included in both G1 and G2. For the
precise de�nition and a linear time algorithm that �nds the tricomponents of a graph see
[105].
The decomposition tree

SPQR-trees represent the decomposition of a planar biconnected graph according to its
split pairs. Let G be a planar biconnected graph. A split pair of G is either a separation
pair or a pair of adjacent vertices. A split component of a split pair {u, v} is either an edge
(u, v) or a maximal subgraph C of G such that {u, v} is not a split pair of C. Let {s, t}
be a split pair of G. A maximal split pair {u, v} of G with respect to [s, t] is such that,
for any other split pair {u′, v′}, vertices u, v, s, and t are in the same split component.

The decomposition tree T of G describes a recursive decomposition of G with respect
to its split pairs and will be used to synthetically represent all the embeddings of G with
vertices s and t on the external face.

Let e = (s, t) be an edge of G, called the reference edge. The SPQR-tree T of G
with respect to e is a rooted ordered tree whose nodes are of four types: S, P, Q, and R.
Each node µ of T has an associated biconnected multi-graph, called the skeleton of µ and
denoted by skeleton(µ). Also, it is associated with an edge of the skeleton of the parent
ν of µ, called the virtual edge of µ in skeleton(ν).

Tree T is recursively de�ned as follows:

Trivial Case. If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node whose skeleton is G itself.

103

Parallel Case. If the split pair {s, t} has k split components G1, ..., Gk with k ≥ 3, the
root of T is a P-node µ, whose skeleton consists of k parallel edges e = e1, ..., ek between
s and t.

Series Case. Otherwise, the split pair {s, t} has exactly two split components, one of
them is e, and the other one is denoted with G′. If G′ has cut-vertices c1, ..., ck−1(k ≥ 2)
that partition G into its blocks G1, ..., Gk, in this order from s to t, the root of T is
an S-node µ, whose skeleton is a cycle e0, e1, ..., ek where e0 = e, c0 = s, ck = t, and
ei = (ci−1, ci)(i = 1...k).

Rigid Case. If none of the above cases applies, let {s1, t1}...{sk, tk} be the maximal
split pairs of G with respect to {s, t}(k ≥ 1), and, for i = 1, ..., k, let Gi be the union
of all the split components of {si, ti} but the one containing e. The root of T is an R-
node, whose skeleton is obtained from G by replacing each subgraph Gi with the edge
ei = (si, ti).

Except for the trivial case, µ has children µ1, ..., µk, such that m is the root of the SPQR-
tree of G ∪ ei with respect to ei(i = 1, ..., k). The endpoints of the edge ei are called the
poles of node µi. Edge ei is said to be the virtual edge of node µi in the skeleton of µ and
of node µ in the skeleton of µi . We call node µ the pertinent node of ei in the skeleton
of µi , and µi the pertinent node of ei in the skeleton of µ. The virtual edge of µ in the
skeleton of µi is called the reference edge of µi.

Let µr be the root of T in the decomposition given above. We add a Q-node repre-
senting the reference edge e and make it the parent of µr so that it becomes the new root.
Figure 2 shows an example of a graph and its SPQR-tree.

Let e be an edge in skeleton(µ) and let v be the pertinent node of e. Deleting edge
{µ, v} in T splits T into two connected components. Let Tv be the connected component
containing v. The expansion graph of e (denoted with expansion(e)) is the graph induced
by the edges of G contained in the skeletons of the Q-nodes in Tv. We further introduce
the notation expansion+(e) for the graph expansion(e) ∪ e. Figure 3 gives an example
for the expansion graph of an edge.

The pertinent graph of a tree node µ is obtained from the skeleton of µ by replacing
each skeleton edge except for the reference edge of µ with its expansion graph. Examples
for the pertinent and skeleton graphs of the di�erent node types are shown in Figure 4.
If v is a vertex in G, a node in T whose skeleton contains v is called an allocation node
of v.

Two basic primitives can be used to obtain a new planar embedding from T . A reverse
operation consists of �ipping a split component around its poles. A swap operation
consists of exchanging the position of two split components of the same split pair. For
example, Fig. 31 shows a planar embedding obtained by means of two swap operations
and one �ip operation.

SPQR-trees can be constructed in linear time and their size including the skeleton
graphs is linear in the size of the original graph [10, 90]. Choosing a di�erent reference
edge e′ is equivalent to rooting the tree T at the Q-node whose skeleton contains e′. In
particular, the unrooted version of the SPQR-tree of a planar biconnected graph (including
the skeleton graphs) is unique.

104

Figure 28: [10] (a) Series decomposition, (b) Parallel decomposition, (c) Rigid decompo-
sition.

As described in [10], SPQR-trees can be used to represent all combinatorial embed-
dings of a biconnected planar graph. This is done by choosing combinatorial embedd'mgs
for the skeletons of the nodes in the tree. The skeletons of S- and Q-nodes are simple cy-
cles, so they have only one embedding. The skeletons of R-nodes are always triconnected
graphs. According to the de�nition of combinatorial embeddings, a triconnected graph
has two embeddings which are mirror-images of each other, i.e., the order of the edges
around each vertex is reversed in the mirror embedding. The number of embeddings of a
P-node skeleton with k edges is (k − 1)!.

Every embedding of the original graph de�nes a unique embedding for each skeleton
of anode in the SPQR-tree. Conversely, when we de�ne an embedding for each skeleton
of a node in the SPQR-tree. we de�ne a unique embedding for the original graph. Thus,
if the SPQR-tree of G has r R-nodes and P-nodes P1 to Pk where the skeleton of Pi has
pi edges, then the total number of combinatorial embeddings of G is

2r

k∏
i=1

(pi − 1)!.

105

Figure 29: [93] A biconnected planar graph and its SPQR-tree.

In [12] SPQR-trees are used to enumerate all combinatorial embeddings of a bicon-
nected planar graph within a branch-and-bound algorithm for �nding a combinatorial
embedding and an external face for a graph such that the drawing computed by Tamas-
sia'S algorithm [190] has the minimum number of bends among all possible orthogonal
drawings of the graph.

B.2 PQ-trees

The PQ-tree data structure, used for planarity testing of graphs, is the basic building
block in this thesis. The PQ-tree data structure was designed by Booth and Lueker [19] for
sorting out permissible permutations of a set, where some subsets have to be consecutive.
This sorting algorithm is also useful in planarity testing, which were one of the main
uses for it described in [19]. The other two were tests for consecutive ones property and
interval graphs. Today, the PQ-tree data structure is used in biology, chemistry, graph
theory, graph drawing, circuit layout, matrix manipulation, and other areas where certain
types of legal permutations are of interest.

PQ-trees are rooted trees, which have two types of internal nodes, called P-and Q-
nodes. A Q-node speci�es that its children can be placed in forward or reverse order,
while a P-node speci�es that its children can be placed in any order. (Note that if a node
has two children, it does not matter if it is a P- or a Q-node.) The permutations stored
by the entire tree, then, are the set of all allowed permutations of the leaves.

An example of a PQ-tree is given in Figure 5.3. P-nodes are depicted using a circle,

106

Figure 30: [93] Example for the expansion graph of a skeleton edge: (a) a biconnected
planar graph G, (b) the skeleton µ of a P-node in the SPQR-tree of G , and (c) the graph
expansion+(e) for the gray edge e in skeleton(µ).

whereas Q-notes are depicted by a rectangle. The permutations allowed by the PQ-tree
in Figure 5.3 include among others

AB ODE F GH IJ
AB EDO F GH IJ
EDO BA F GH IJ
F ODE BA JI HG.

In general, PQ-trees serve to solve the following problem [1]:

Problem 14. Given a �nite set U and a collection Sof subsets of U , �nd a permutation
Π(U) such that for each Si ∈ S the elements of Si are consecutive in Π.

This problem is solved with a PQ-tree in an iterative approach. We start with the PQ-tree
allowing all possible permutations (i.e., it consists only of all the leaves connected to a
P-node). We then add each constraint in S one at a time.

To add a constraint Si ∈ S we try to modify the tree until the elements of Si are
consecutive. This can be tested in O(|Si|) amortized time. If this cannot be done, then
there is no possible permutation which satis�es the constraints. If it can be done, then
we update the tree to re�ect the new constraint.

Booth and Lueker showed that this can be done with only a constant number of
replacement rules in O(|Si|) amortized time. Therefore, in total, adding a constraint can
be done in O(|Si|) amortized time. In all, determining whether or not a the set U of
elements has a permutation in which all consecutiveness constraints Si ∈ S are satis�ed
can be done in time and space O(|U|)

∑
Si∈S |Si|) amortized time. Pull details can be

found in Booth and Lueker [19].
For example, let U = {A, B, C,D}, and S = {S1 = {A, B, C}, S2 = {AD}}. Figure

5.4 shows the steps in adding the constraints to the PQ-tree. The �nal tree gives all
possible orderings which satisfy the constraints: {B, C, A,D}, {C, B, A,D}, {D, A, C, B},
and {D, A, B, C}.

107

Figure 31: [10]. The second embedding is obtained from the �rst one by means of two
swap operations around the split pairs (1, 17) and (11, 15) and one �ip operation around
the split pair (1, 17).

Figure 32: [93] Pertinent and skeleton graphs of the di�erent node types of an SPQR-tree.
The shaded regions represent subgraphs, (a) an S-node, (b) a P-node, and (c) an R-node.

108

Figure 33: [1] Example of a PQ-tree.

Figure 34: [1] Example of adding constraints to a PQ-tree (I1 = S1, I2 = S2).

109

	Introduction
	Practical Applications
	Guide to this thesis

	Graphs and crossing number
	Preliminaries
	Degrees of non planarity
	Complexity of the crossing number problem
	Known bounds
	Other crossing numbers

	Algorithms for the general crossing number
	Exact algorithms
	Quadratic time algorithm
	Depth First Search with Branch-and-Bound
	Mathematical programming formulations

	Approximation algorithms
	Approximation algorithm with estimators

	Heuristic algorithms
	Simulated annealing

	Maximum planar subgraph problem
	Introduction
	Exact algorithms
	Approximation algorithms
	Heuristic algorithms

	Edge inserting strategies
	Edge Re-insertion Strategies
	Post-Processing Strategies
	Permutations
	Computational study

	Algorithms for the rectilinear crossing number
	Quadratic Constraints Formulation
	Genetic algorithms

	 Algorithms for the (fixed) linear crossing number
	 Algorithms for the linear crossing number
	 Algorithms for the fixed linear crossing number

	Conclusion
	Bibliography
	(Integer) Linear Programming
	Some tree structures
	SPQR-trees
	PQ-trees

