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Abstract

A circular r-edge-coloring of a graph G is a mapping c : E(G) → [0, r) such that for

any two adjacent edges e and f of G we have 1 ≤ |c(e)− c(f)| ≤ r − 1. The circular

chromatic index χ′c(G) is the infimum of all real numbers r such that G has a circular

r-edge-coloring.

We establish a general lower bound for the circular chromatic index of a snark G

depending only on the order of G. This bound is asymptotically tight. We also

determine the exact value of the circular chromatic index of the generalized Blanuša

snarks. In this case, the index takes infinitely many values and can be arbitrarily close

to 3. The generalized Blanuša snarks are the first explicit class of snarks with this

property.
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Introduction

Graph coloring problems are known for a long time. The most famous among them

is the Four-Color Problem. Many approaches have been used while tackling this

problem. P. G. Tait initiated the study of edge colorings by proving that the Four-

Color Theorem is equivalent to the statement that every bridgeless cubic planar graph

is 3-edge-colorable. Bridgeless cubic graphs which are not 3-edge-colorable were named

snarks by Martin Gardner, because they are rather rare and people were hunting for

them: a planar snark would be a counterexample to the Four-Color Theorem.

Many other connections between snarks and other areas of the graph theory are known.

There are several conjectures to which the smallest counterexample is known to be

a snark. The most famous of them is the Cycle Double Cover Conjecture, which is

still open and motivating research today.

In a classical 3-edge-coloring of a cubic graph we use three colors. The colors are nat-

urally represented as integers 0, 1, 2. There is no reason to impose such a restriction.

There are two ways of a natural generalization: the colors could be elements of an

additive group or real numbers. The group approach leads to flows. A variant of the

second approach, to admit the colors to be fractions, was introduced by Vince in [6]

under the name star coloring . Currently it is widely known as circular coloring .

Vizing’s theorem says that graphs can be divided into two classes – those with chro-

matic index equal to the maximal degree ∆ and those which require one more color.

Circular chromatic index is a refinement of the usual chromatic index. In some sense

it says which snarks are closer to being 3-edge-colorable than the others.

In general, very little is known about the circular chromatic index, and this remains

true if we restrict ourselves to snarks. The aim of this work is to find a general

lower bound on the circular chromatic index and to use it to determine the circular

chromatic index of the Blanuša snarks.

5



Chapter 1

Circular Chromatic Index

1.1 Colors as Real Numbers

Edge colorings are a special case of vertex colorings, and this remains true for circular

colorings. Many properties of vertex colorings can be carried over to edge colorings

without any problem, and it is simpler to prove them for vertex colorings. This is the

reason why we begin with vertex colorings instead of beginning with edge colorings

directly.

Although we assume the reader to be familiar with the usual vertex colorings of graphs,

we give the precise definition.

Definition 1. An r-coloring of a graph G is a mapping c : V (G) → {0, 1, . . . , r − 1}
such that for any two adjacent vertices u and v we have

1 ≤ |c(u)− c(v)| ≤ r − 1.

The least integer r such that the graph G has an r-coloring is called chromatic number

and is denoted by χ(G). We say that a graph G is r-colorable if there is an r-coloring

of G.

Why do we use integers as colors? There is no reason to impose this restriction. We

allow ourselves to use real numbers as colors. Let us color the vertices of a graph G

by reals from the interval [0, r). Now we have a few issues to deal with.

We see that in the usual coloring we have “different” colors of adjacent vertices. This

means that the absolute value of their difference is at least 1. This is exactly what we
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want from our new coloring by real numbers. The largest difference of colors in the

usual coloring is r − 1. We impose this restriction also on the new coloring. Now we

are in a position to define the circular coloring precisely. (The word “circular” will be

explained later.)

Definition 2. A circular r-coloring of a graph G is a mapping c : V (G) → [0, r) such

that for any two adjacent vertices u and v we have

1 ≤ |c(u)− c(v)| ≤ r − 1.

The circular chromatic number , denoted by χc(G), is defined by

χc(G) = inf {r : G has a circular r-coloring}.

We say that a graph G is circularly r-colorable if there is a circular r-coloring of G.

The circular chromatic number is well-defined – if a graph G has a circular r-coloring,

then it has circular r′-coloring for any r′ > r. The circular r-coloring is just the usual

r-coloring, if we use only integers from [0, r) as colors. This suggests that the circular

chromatic number is not greater than the usual chromatic number. This, and even

more, is captured in the following theorem.

Theorem 3. For any graph G we have χ(G) − 1 < χc(G) ≤ χ(G). In other words,

χ(G) = dχc(G)e.

Proof. Assume there exist a circular r-coloring c of G such that r ≤ χ(G) − 1. Let

c′(v) = bc(v)c for any vertex v ∈ V (G). Now c′(v) is an integer and 1 ≤ |c′(u)−c′(v)| ≤
r − 1 holds for any u, v ∈ V (G). Thus we obtained an brc-coloring c′ of the graph

G. We have brc ≤ r ≤ χ(G)− 1, hence we have a (χ(G)− 1)-coloring of G, which is

impossible. The second inequality is obvious.

The infimum in the definition of the circular chromatic number is always attained.

The circular chromatic number is rational for any finite graph G. (This is not true

for infinite graphs, but such matters are beyond the scope of this work. All graphs

considered here are finite and simple.) Both of these properties of the circular chro-

matic number were first proved by Vince in [6] by methods of continuous mathematics;

a purely combinatorial proof was given by Bondy and Hell in [7].
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1.2 Equivalent Definitions

We have promised to explain the word “circular” in the definition of a circular coloring.

Therefore we give an equivalent definition of a circular coloring that has something to

do with circles.

Definition 4. Let C be a circle with perimeter r > 0. A circular r-coloring of

a graph G is a mapping f which assigns to each vertex v an open unit-length arc f(v)

of C in such a way that for any adjacent vertices u and v we have f(u) ∩ f(v) = ∅.

Let c be a circular r-coloring of G according to Definition 2. We construct a mapping f ,

which will be a circular r-coloring of G according to Definition 4. Let v be a vertex

of G. Let f(v) = (c(v), c(v) + 1) (the right endpoint is taken modulo r). It is easy to

verify that arcs corresponding to adjacent vertices have empty intersection.

To prove the second implication of our equivalence, let c(v) be the left endpoint

of the arc f(v). Again, it is easy to verify all conditions imposed on the mapping c

constructed in this way.

Together we have proved that a graph G has a circular r-coloring according to Defini-

tion 2 if and only if G has a circular r-coloring according to Definition 4. The choice

of the definition depends on the problem we are tackling. Moreover, we give one more

equivalent definition which will be used most often in this work. It is the definition

used by Vince to introduce star colorings.

Definition 5 (Vince). Let p and q be positive integers. A (p, q)-coloring of a graph

G is a mapping c : V (G) → {0, 1, . . . p− 1} such that for any two adjacent vertices u

and v we have

q ≤ |c(u)− c(v)| ≤ p− q.

A graph has a circular (p/q)-coloring if and only if it has a (p, q)-coloring. The proof

of equivalence can be found in [8].

Remark. This coloring is often referred to as a p/q-coloring instead of a (p, q)-coloring.

In fact, all the three given definitions are equivalent, and the usual coloring is a special

case of these colorings. Therefore it is no need to distinguish between the usual coloring

and the circular coloring. We will use the term “r-coloring” for circular r-coloring.

Similarly we say “r-edge-coloring” instead of “circular r-edge-coloring”.

8



1.3 Basic Properties of Circular Edge Colorings

Let G be a graph. Let L(G) be a graph with vertex set E(G) and two vertices u and v

of L(G) adjacent if and only if u and v are adjacent as edges is G. The graph L(G) is

called the line graph of the graph G. It is easy to see that any edge coloring of G has

the corresponding vertex coloring of L(G), and vice versa. Therefore we are allowed

to define a circular edge coloring as follows.

Definition 6. A circular r-edge-coloring of a graph G is a circular r-coloring of L(G).

The circular chromatic index of a graph G is the circular chromatic number of its line

graph; χ′c(G) = χc(L(G)).

Definition 7. A (p, q)-edge-coloring of a graph G is a (p, q)-coloring of L(G).

Our aim is to examine edge colorings. First we state several basic properties of edge

colorings. There is no problem to generalize them for vertex colorings. We know that

the circular chromatic index of a graph G is a rational number p/q. Moreover, we may

assume that p and q are coprime.

Theorem 8. Let G be a graph with χ′c(G) = p/q, where p and q are coprime integers.

a) There exist a (p, q)-edge-coloring of G.

b) In any (p, q)-edge-coloring of G any of the colors 0, 1, . . . , p − 1 is used at least

once.

c) We have p ≤ |E(G)|.

d) The denominator q is at most the cardinality of maximum matching of G, in

particular, q ≤ |V (G)|/2.

Proof. The parts a) and b) are easy consequences of Lemma 1.3 of [8]. The part c)

is obvious from b). To prove d), note that the edges colored by colors 0, 1, . . . , q − 1

form a matching in G.
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Chapter 2

Snarks

As we have said before, bridgeless cubic graphs that are not 3-edge-colorable are

of special interest. They are called snarks . Until Isaacs constructed two infinite

classes of snarks in [2], there were only four known snarks. Currently we have a lot

of families of snarks and some constructions for creating new snarks from existing

ones. There have been many attempts to classify snarks in some reasonable way, for

example [15]. Some snarks are considered trivial; we will discuss it in the next part.

Questions of Triviality

If a graph has more than one component, we can color the components separately.

Therefore we may assume that all considered graphs are connected. It is a consequence

of the Parity Lemma (stated and proved later in this chapter) that a cubic graph with

a bridge is not 3-edge-colorable. Therefore cubic graphs with bridges are “trivially”

snarks and we exclude them from the definition of a snark.

Next we focus on girth. A cubic graph always contains a cycle, so its girth is at least 3.

Figure 2.1: Replacing triangles and quadrilaterals in a snark.
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Consider a snark G with a triangle. This triangle can be replaced by a vertex to get

a smaller snark H (with two vertices less than the original snark). It works also the

other way: replacing any vertex in a snark H by a triangle we get another snark

G, because 3-edge-colorability of G implies 3-edge-colorability of H and vice versa.

Therefore snarks with girth 3 are “trivial” and are excluded from the definition of

“genuine” snarks.

Consider a snark G with girth 4. It contains a quadrilateral. This quadrilateral can

be replaced by a pair of two parallel edges, in this way we obtain a graph H. Again,

if H is 3-edge-colorable, then also G is 3-edge-colorable; a contradiction. Hence H is

a snark. This construction (shown in Figure 2.1) does not work in the other way; by

replacing a pair of parallel edges by a quadrilateral we can obtain a 3-colorable graph

from a snark.

Therefore a snark is considered “nontrivial”, if it has the girth at least 5. What can

we say about the edge connectivity number of a snark? It is a cubic graph, so there

is a cut with 3 edges, that decomposes the graph into two components – we can take

three edges adjacent with the same vertex to obtain such a cut. This situation is not

interesting, we look for cuts that are not so trivial – cycle-separating cuts. By using

the Parity Lemma (see the next section) it is easy to prove that if a snark G has

a cycle-separating cut with three edges, then we can take one of the pieces separated

by the cut and construct a new snark which is smaller than the original one. Therefore

we assume that a “nontrivial” snark is cyclically 4-edge-connected.

There are similar results for higher edge connectivity numbers, and we could demand

cyclic 6-edge connectivity from a nontrivial snark, but we stick to the definition most

often used in the literature.

Definition 9. A snark is a cyclically 4-edge-connected bridgeless cubic graph G with

girth at least 5 and χ′(G) = 4.

2.1 Construction of Snarks

The Parity Lemma

Many constructions of snarks are based on the Parity Lemma. The underlying concept

of the lemma is that of a flow . Therefore we first transform a 3-edge-coloring into

a flow and then state and prove the Parity Lemma.
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(1, 1)

(0, 1) (1, 0)

Figure 2.2: A coloring of edges incident with the same vertex.

Consider a 3-edge-coloring of a cubic graph. If we know the colors of two edges incident

with the same vertex, we know the color of the third edge incident with that vertex.

Hence a 3-edge-coloring is a kind of flow. In fact, we can use nonzero elements of the

group Z2 × Z2 as colors to obtain a nowhere-zero flow that corresponds to a 3-edge-

coloring of our graph. It is easy to verify that for any a, b, c ∈ Z2 × Z2 \ {(0, 0)} we

have a + b + c = 0 if and only if a, b, c are pairwise distinct. The colors on the edges

incident with the same vertex are shown in Figure 2.2.

Lemma 10 (The Parity Lemma). Let G be a cubic graph with a cutset A consisting

of n edges. Consider a 3-edge-coloring of G with colors 1, 2, and 3. Let ni be the

number of edges in A colored by the color i for i = 1, 2, 3. Then

n1 ≡ n2 ≡ n3 ≡ n (mod 2).

Proof. As we have shown, we can identify the colors with the nonzero elements of the

group Z2×Z2, obtaining a nowhere-zero flow. Therefore the sum of the colors on the

edges of the cutset A is zero:

n1 × (1, 0) + n2 × (0, 1) + n3 × (1, 1) = (0, 0).

Hence

n1 + n3 ≡ 0 (mod 2),

n2 + n3 ≡ 0 (mod 2),

and this implies n1 ≡ n2 ≡ n3 (mod 2), hence ni ≡ n (mod 2).

The lemma can be proved also by Kempe chains or other flow-free arguments. How-

ever, we have seen that a 3-edge-coloring of a cubic graph is in fact a flow and it is

pleasant to work with it as with a flow. Nothing like this can be said about circular

edge colorings, as we will see in Chapter 3.
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Dot Product

The first known construction of snarks is the dot product operation. We take two

snarks G1 and G2 and form a new snark G1 ·G2 as follows.

1) Remove any two adjacent vertices from G1.

2) Remove any two nonadjacent edges from G2.

3) Join vertices a, b, c, d to 1, 2, 3, 4 in this order (see Figure 2.3).

A result of the dot product depends not only on G1 and G2, but also on the choices

made in 1) and 2). For example, the two types of the Blanuša snark are formed by

different choices from two copies of the Petersen graph.

We claim that we always obtain a snark by the dot product. This deserves a proof. As-

sume the resulting graph is 3-edge-colorable. We have a cutset of size 4. According to

the Parity Lemma edges from this cutset can be colored 1111, 1122, 1212 or 1221. Any

of these possibilities allows a 3-edge-coloring of G1 or G2, and this is a contradiction.

Other Constructions

There are many other constructions of snarks, some examples are in [3]. Some of them

use the Parity Lemma, mainly the general ones. There are certain specific construc-

tions which exclude the possibility of a 3-edge-coloring without the Parity Lemma, for

example the construction of flower snarks. Those constructions are based on a case

analysis of a small piece of a graph. On the other hand, we have not seen any con-

structions of graphs with circular chromatic index in a given nontrivial interval.

a

b

c

d

1

2

3

4

Figure 2.3: Dot product of two cubic graphs.
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Chapter 3

Determining the Circular

Chromatic Index of a Snark

It is a consequence of the Theorem 3 that the circular chromatic index of a snark

lies in the interval (3, 4]. The upper bound cannot be attained. It has been proved

in [10] that a cubic graph without a bridge has the circular chromatic index at most

11/3. The upper bound is tight, because the circular chromatic index of the Petersen

graph is 11/3, as we will show later. We do not know of any other graph G with

χ′c(G) > 7/2. In Chapter 4 we show that the circular chromatic index of a snark can

be arbitrarily close to 3.

The existence of snarks of arbitrarily high girth was proved by Kochol in [13]. On the

other hand, high girth means small circular chromatic index, as showed in [14]: for any

ε > 0 there exist an integer g such that the circular chromatic index of every bridgeless

cubic graph with girth at least g is at most 3 + ε. In particular every bridgeless cubic

graph with girth at least 14 has circular chromatic index at most 7/2.

The question is how to determine the circular chromatic index of a particular graph.

It is not at all easy. For small graphs we can do a case analysis by hand or use

backtracking by a computer. As the number of vertices grows, also the upper bound

for the nominator and denominator grows. There is no known effective algorithm to

go through so many possible colorings. It is not surprising: even determining the usual

chromatic index of a cubic graph is known to be NP-complete (for a proof see [5]).

There are only a few classes of snarks with known value of circular chromatic index;

we will list them later in Section 3.2. Why is it so hard to determine the circular
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chromatic index? One of the problems seems to be the absence of almost any flow

arguments to handle circular colorings. There is nothing like the Parity Lemma for

(p.q)-edge-colorings. It can even be worse. Consider a (3k + 1, k)-edge-coloring. If we

have a vertex with two edges colored by 0 and k, the third edge incident with this

vertex can be colored by 2k or 2k + 1. This is the difference between the ordinary

3-edge-coloring and a (3+ε)-edge-coloring: in the 3-edge-coloring we have the color of

the third edge determined by the colors of the first two edges and in the (3 + ε)-edge-

coloring this fails. In a snark with enough vertices there can be any colors on a cut in

a (3 + ε)-edge-coloring, so there cannot be anything like the Parity Lemma.

In our effort to find a lower bound we use the following simple observations.

• If a cubic graph contains two disjoint perfect matchings, it is 3-edge-colorable.

• Two perfect matchings in a simple graph cannot differ in a single edge.

These observations were used in [11] to determine the circular chromatic index of small

flower snarks. We use them to derive a general lower bound for a snark of a given

order.

3.1 Lower Bound for a Snark of a Given Order

We start with two technical lemmas.

Lemma 11. Let k ≥ 3 be an integer. Consider the fractions p/q with denominator

q ≤ 2k + 1 satisfying
p

q
> 3 +

1

k
.

The least of all such fractions is 6k−1
2k−1

= 3 + 2
2k−1

.

Proof. We proceed by contradiction. Assume we have a fraction p/q with denominator

q ≤ 2k + 1 satisfying

3 +
2

2k − 1
>

p

q
> 3 +

1

k
.

Then we have a fraction p′/q with denominator q ≤ 2k + 1 satisfying

2

2k − 1
>

p′

q
>

2

2k
· (3.1)
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If p′ ≥ 3, then
2

2k − 1
>

p′

q
≥ 3

q
≥ 3

2k + 1
.

This implies 4k + 2 > 6k − 3 which clearly does not hold for k ≥ 3.

Otherwise p′ ∈ {1, 2}. Therefore 2q/p′ is an integer. From (3.1) we have

2k − 1 <
2q

p′
< 2k,

yielding a contradiction.

Lemma 12. Let k ≥ 4 be an integer. Consider the fractions p/q with denominator

q ≤ 2k + 1 satisfying
p

q
> 3 +

2

2k − 1
.

The least of all such fractions is 3k−2
k−1

= 3 + 1
k−1

.

Proof. Essentially the same as the proof of Lemma 11.

Lemma 13. Let G be a connected cubic graph with 4k + 2 vertices. If G does not

have a 3-edge-coloring, then χ′c(G) > 3 + 1/k.

Proof. Assume G has a (3k + 1, k)-edge-coloring c. We derive a contradiction. Graph

G has 6k + 3 edges. Assume that one color (say, 0) is used at most once. Then the

sets

M1 = c−1({1, 2, . . . , k}), M2 = c−1({k + 1, k + 2, . . . , 2k}),
M3 = c−1({2k + 1, 2k + 2, . . . , 3k}).

are pairwise disjoint matchings in G. Graph G cannot have two disjoint perfect

matchings, because it does not have a 3-edge-coloring. Hence at most one of the

matchings M1,M2, and M3 is perfect. So we have

6 + 3k = |E(G)| = |c−1({0}) ∪M1 ∪M2 ∪M3| ≤ 1 + |M1|+ |M2|+ |M3|
≤ 1 + (2k + 1) + 2k + 2k = 6k + 2.

This is impossible. Therefore we know that any color is used at least twice which

implies that one color (say, k − 1) is used three times and any other color is used

exactly two times. Consider matchings

M1 = c−1({0, 1, 2, . . . , k − 1}) and M2 = c−1({1, 2, . . . , k}).
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The matchings M1 and M2 are perfect, because both of them consist of 2k + 1 edges.

In M1 we have two edges v1v2 and v3v4 colored with color 0. Those edges are not

contained in M2. Any other edge from M1 is contained in M2. The matching M2

is perfect, so there has to be exactly one edge incident with each one of the vertices

v1, v2, v3, v4. Those edges are, say, v1v3 and v2v4. This means that we have a cycle

of length 4 in the graph G. The edges of this cycle are colored 0, k, 0, k in the indicated

order. The graph G is cubic, so we have four other edges incident with the vertices

v1, v2, v3, v4 respectively. There are only two possibilities for the colors of those edges:

2k − 1 and 2k.

If G has girth at least 5, we are ready. Now we prove that G with girth at most 4

is 3-edge-colorable, which is the contradiction sought. We repeat the argument from

the previous paragraph. The conclusions are summarized in the following table.

M1 induced by colors M2 induced by colors cycle colors of edges

0, 1, 2, . . . , k − 1 1, 2, . . . , k + 0 0, k, 0, k 2k, 2k + 1

1, 2, 3, . . . , k + 0 2, 3, . . . , k + 1 1, k + 1, 1, k + 1 2k + 1, 2k + 2

2, 3, 4, . . . , k + 1 3, 4, . . . , k + 2 2, k + 2, 2, k + 2 2k + 2, 2k + 3
...

...
...

...

k − 2, k − 1, . . . , 2k − 3 k − 1, k, . . . , 2k − 2 k − 2, . . . , 2k − 2 3k − 2, 3k − 1

Let Ci be the cycle with edges colored by colors i, k + i, i, k + i for i = 0, 1, . . . , k− 2.

Three edges colored by color k − 1 are not incident with any vertex from the cycles

C0, . . . , Ck−2. No two of these edges have a vertex in common, so they form a graph

D on six vertices. Edges colored by the colors 2k − 1 and 3k are not incident with

any vertex from the cycles C0, . . . , Ck−2, hence their endpoints belong to V (D). We

add these edges to D. Now D needs four more edges to be cubic, these edges can be

colored only by the colors 3k − 1 and 2k. Therefore we can look at D as it is Ck−1:

the edges from Ci can go to Ci−1 or to Ci+1, but to no other Cj (indices are taken

modulo k − 1).

Consider a cycle Ci with vertices v1, v2, v3, v4 (they form the cycle in this order).

Assume that v1 and v3 are joined by an edge. Then v2 and v4 are not joined by an

edge, if they were, Ci would be a proper component of G, but G is connected. So Ci

either contains a triangle or not. In the case it contains a triangle both edges leaving

Ci are of the same color, that is, Ci is joined to one of its neighbours Ci−1, Ci+1, but

not to both of them. A similar idea can by applied to Ck−1: it has four “semiedges”,

two of them colored by 2k and two of them colored by 3k − 1. We can join two
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semiedges of the same color together or join them both to one of the neighbours Ck−2

and C0.

Now we will perform on G two operations showed in Figure 3.1.

1. Replacing a Ci not containing a triangle by a pair of two parallel edges.

2. Replacing a Ci containing a triangle by a single edge.

The first operation is removing a quadrilateral which we have already seen. We have

checked that if G is not 3-edge-colorable, then also G′ obtained by the first operation

from G is not 3-edge-colorable. Look at the second operation. Assume we have applied

it on G and obtained a graph G′. One can easily verify that if G′ has a 3-coloring,

then also G has a 3-coloring. In other words: G′ is not 3-edge-colorable, because G is

not 3-edge-colorable.

Figure 3.1: Operations 1. (on the left) and 2. (on the right).

Repeating these operations we finally arrive at a graph H. In this graph there are no

vertices from C0, C1, . . . , Ck−2; all were removed either by the first or by the second

operation. Thus H has at most 6 vertices and H is not 3-edge-colorable. There are

no cubic graphs on at most 6 vertices which are not 3-edge-colorable. We have finally

derived a contradiction. Graph G does not have a (3k + 1, k)-edge-coloring, hence its

circular chromatic index is greater than 3 + 1/k.

Theorem 14. Let G be a connected cubic graph with 4k + 2 vertices. If G does not

have a 3-edge-coloring, the following holds:

(i) If k = 2 then χ′c(G) > 7/2.

(ii) If k = 3 then χ′c(G) ≥ 17/5.

(iii) If k ≥ 4 then χ′c(G) ≥ 3 + 1
k−1

.
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Proof. By applying Lemma 13 we obtain χ′c(G) > 3 + 1/k. We have proved the part

(i).

Let k ≥ 3. By applying Lemma 11 we obtain χ′c(G) ≥ 6k−1
2k−1

. We have proved the part

(ii).

Let k ≥ 4. Assume χ′c(G) = 6k−1
2k−1

. According to Theorem 8 we have a (6k−1, 2k−1)-

edge-coloring such that every one of 6k − 1 colors 0, 1, 2, . . . , 6k − 2 is used at least

once. We have 6k + 3 edges in G. These two facts imply that four edges are colored

by some colors already used. We have five possibilities how to write 4 as an unordered

sum of positive integers: 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. First we

exclude the possibilities containing a number greater than 1.

Assume that some color i is used at least three times (this corresponds to a number

2 or greater in the partitions above). Consider the matchings (sets of independent

edges)

M1 = c−1({i− 1, i, . . . , i + 2k − 3}) and M2 = c−1({i, i + 1, . . . , i + 2k − 2}).
Both have to be perfect, because they have at least 2k +1 edges. This means that the

colors from {i− 1, i + 1, i + 2, . . . , i + 2k− 2} are used exactly once (if they were used

more times, we would have 2k + 2 or more edges in a matching which is impossible).

This means that the matchings M1 and M2 differ in a single edge (colored by the color

i− 1 or i + 2k − 2 respectively). This is impossible for any simple graph.

There remains just one case to deal with; 1 + 1 + 1 + 1. Assume that the four busy

colors are used twice and all other colors are used once.

Imagine all colors 0, 1, . . . , 6k − 2 in this order along a circle of length 6k − 1 with

unit distances between consecutive colors. We have four busy colors, so there are two

busy colors i, j such that the distance between them is at most (6k − 1)/4 < 2k − 2.

Assume that j ∈ {i + 1, i + 2, . . . , i + 2k − 3}. Consider the matchings

M1 = c−1({i− 1, i, . . . , i + 2k − 3}) and M2 = c−1({i, i + 1, . . . , i + 2k − 2}).
Both of them have at least (2k − 3) · 1 + 2 · 2 = 2k + 1 edges, so they are perfect.

Moreover, if color i − 1 (or i + 2k − 2) is used more than once, then M1 (or M2)

has more than 2k + 1 edges, which is impossible. Therefore M1 and M2 are perfect

matchings, which differ in a single edge. This is a contradiction.

By the argument above we have proved that χ′c(G) > 6k−1
2k−1

= 3 + 2
2k−1

. The value

χ′c(G) is a fraction with denominator at most 2k + 1. By applying Lemma 12 we

obtain χ′c(G) ≥ 3 + 1
k−1

as desired.
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Theorem 15. Let G be a cubic graph with 4k vertices. If G does not have a 3-edge-

coloring, then χ′c(G) ≥ 3 + 1
k−1

.

Proof. Assume G has a (3k + 1, k)-edge-coloring c : E(G) → {0, 1, . . . , 3k}. Graph G

is cubic, so it has 6k edges. Hence at least one color is used at most once. Let this

color be 0. Consider the sets of edges

M1 = c−1({1, 2, . . . , k}), M2 = c−1({k + 1, k + 2, . . . , 2k}),

M3 = c−1({2k + 1, 2k + 2, . . . , 3k}).
The set Mi is a matching in G, as any two edges e and f from Mi are not adjacent

because of the inequality |c(e)− c(f)| ≥ k. Moreover, the matchings M1, M2, and M3

are pairwise disjoint. If two of them were perfect matchings, we would have a 3-edge-

coloring of G. This would be a contradiction, because G is not 3-edge-colorable.

A perfect matching in G has size 2k. Between M1, M2, and M3 we have at most one

matching with such cardinality, other consist of at most 2k− 1 edges. We now derive

a contradiction.

6k = |E(G)| = |c−1({0}) ∪M1 ∪M2 ∪M3| ≤ 1 + |M1|+ |M2|+ |M3|
≤ 1 + 2k + 2k − 1 + 2k − 1 = 6k − 1.

We have proved that G does not have (3k +1, k)-edge-coloring. Therefore the circular

chromatic index of G is greater than 3 + 1/k.

All cubic graphs with fewer than 10 vertices are 3-edge-colorable – cubic graph with

fewer then 10 vertices cannot have a bridge and the smallest snark is the Petersen

graph. Our graph G does not have a 3-edge-coloring, so k ≥ 3. If χ′c(G) = p/q, then

q ≤ 2k ≤ 2k + 1 (Theorem 8). All conditions of Lemma 11 are satisfied. By applying

this lemma we get that the circular chromatic index of G is at least 3 + 2
2k−1

.

Assume χ′c(G) = 3+ 2
2k−1

. Then we have (Theorem 8) a (6k− 1, 2k− 1)-edge-coloring

of G such that every one of the 6k − 1 colors 0, 1, . . . , 6k − 2 is used at least once.

Graph G has 6k edges, so one color (say, 1) is used twice, any other color is used once.

Consider the matchings

M1 = c−1({0, 1, 2, . . . , 2k − 2}) and M2 = c−1({1, 2, . . . , 2k − 1}).

Since both of them have 2k edges, they are both perfect; and they differ in a single

edge. This is a contradiction.
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So χ′c(G) is a fraction greater than 3 + 2
2k−1

with denominator at most 2k. For k ≥ 4

we apply Lemma 12 and obtain χ′c(G) ≥ 3 + 1/(k − 1). For k = 3 it is sufficient to

verify that the least fraction with denominator at most 6 greater than 17/5 is 7/2.

Remarks. The established bounds could be improved a bit using the same methods.

Later we will construct an infinite sequence of snarks on 4k + 2 vertices with circular

chromatic index 3 + 1
ck

for some constant c. Therefore in some asymptotical sense the

derived bound is tight. Note that we do not use the assumption that G is cubic in

any essential way. The lower bounds can be generalized for ∆-regular graphs.

3.2 Known Values of the Circular Chromatic Index

The following result has been proved in [9], we give a much shorter proof and illustrate

the use of our lower bound.

Theorem 16. The circular chromatic index of the Petersen graph is 11/3.

Proof. A (11, 3)-edge-coloring of the Petersen graph G is showed in Figure 3.2.

The Petersen graph G has 10 = 4 · 2 + 2 vertices. From Theorem 14 we know that

χ′c(G) > 3 + 1/2 = 7/2. From Theorem 8 we have that for any (p, q)-edge-coloring of

the Petersen graph p ≤ |E(G)| = 15. Together with the inequality p/q > 3 it implies

q < 5. The first fraction greater than 7/2 with denominator q < 5 is 11/3. Hence

χ′c(G) ≥ 11/3.

There are two infinite classes of snarks with known values of the circular chromatic

index. Proofs of the upper bounds are easy – we only need to find a suitable coloring.

Proofs of the lower bounds copy the idea of the original proof of the nonexistence

of a 3-edge-coloring of these graphs. Both these infinite classes are constructed from

small pieces joined together to form a circle. To determine possible colorings of the

semiedges of the pieces is in the original proof used the Parity Lemma. While working

with circular colorings, we do not have anything of that kind. The pieces used in

construction are small enough and by a case analysis we can obtain enough information

to find the lower bound and to prove this bound.
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Figure 3.2: A (11,3)-edge-coloring of the Petersen graph.

Figure 3.3: A piece of graph used in flower snarks construction.

Flower snarks

Flower snarks were constructed by Isaacs in [2]. We use the pieces showed in Figure

3.3, arrange them into a circle and join semiedges. From the Parity Lemma we know

something about colors on semiedges of a piece. By considering a few cases we find

out that if the number of used pieces is even, the resulting graph is 3-edge-colorable,

and if the number is odd, then we have a snark F2k+1 consisting of 2k + 1 pieces.

A complete proof can be found in [2].

The pieces used to construct a flower snark are very small. Hence it is possible to do

a case analysis and capture some information about colors on semiedges. Some parity
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argument is used as in the original proof. The values (proved in [11]) are

χ′c(F3) = 3.5,

χ′c(F5) = 3.4,

χ′c(F2k+1) = 3.3 for k ≥ 3.

Goldberg snarks

The construction of the Goldberg snarks is based on the construction described by

Loupekine. If we remove a path of length 2 from the Petersen graph, the resulting

graph has five semiedges. We can choose four of them to form two pairs a, b and c, d

in such a way that a, b has the same color if and only if c, d have different colors. This

piece of a graph is sometimes called a negator. We join an odd number k of negators

to form a circle; the resulting graph Gk is a snark.

Determining the circular chromatic index of Goldberg snarks is based on the idea

of the original proof of the nonexistence of a 3-edge-coloring. The crucial step is to

precisely capture the meaning of “the same color” and “different colors” in the terms

of circular colorings. Moreover, the original proof uses the Parity Lemma, now we

have to do without it – a place for a case analysis of negators, which are small enough

in this case. The values determined in [12] are

χ′c(G3) = 3 +
1

3
,

χ′c(G2k+1) = 3 +
1

4
for k ≥ 2.
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Chapter 4

Blanuša Snarks

Two of the first snarks known for a long time appeared in a paper of D. Blanuša.

Isaacs showed in [2] that in fact they can be constructed by dot product from two

copies of the Petersen graph. This construction can be generalized to form an infinite

class of snarks (see [3]). These snarks are not too valuable from some point of view –

they are not cyclically 5-edge connected. The Petersen graph is a member of this class,

and it is known for its high circular chromatic index. Maybe this class contains other

such snarks. Moreover, we want to know more about relations of the dot product and

circular colorings. This class provides some examples.

Our aim is to determine the circular chromatic index of graphs in this class. They

have rather regular structure – a pieces joined together to form a circle. As we have

seen in the previous chapter, this is in fact the only type of larger graph, for which

we are able to determine the circular chromatic index. First we give a description of

this class and introduce some notation.

4.1 Generalization of Blanuša snarks

The basic piece A used in the construction of generalized Blanuša snarks is showed

in Figure 4.1. We call it A-piece or A in the following. In any 3-edge-coloring of the

A-piece the semiedges a and c are colored by the same color and b and d are colored

by the same color. We prove this by the case analysis showed in Figure 4.2. Without

loss of generality we can color the bottom edges by colors 0 and 1. The following two

edges in the cycle of length 8 can be colored in four ways:
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d c

a bA

Figure 4.1: The basic piece used in the construction of Blanuša snarks.

(1) 2, 0; showed in Figure 4.2, part (1), with two neighbouring edges colored by 0,

so this coloring is not possible,

(2) 2, 1; showed in Figure 4.2, part (2),

(3) 0, 2; showed in Figure 4.2, part (3), but after cyclic permutation of colors it is

the same coloring as (2),

(4) 0, 1; showed in Figure 4.2, part (3).

So there are only two essentially different 3-edge-colorings of the A-piece: with a, b,

c, d all of the same color or a, c of one color and b, d of another color. The property

of the A-piece used to construct snarks is that a and c receive the same color in any

3-edge-coloring. We demonstrate it by constructing the Petersen graph from one A-

piece (Figure 4.3). The semiedges a and c of A are joined to the vertex v, hence no

3-edge-coloring of the resulting graph is possible. It is easy to verify that this graph

is isomorphic to the Petersen graph.

In the same way we can construct the first Blanuša snark using two A-pieces. The

construction is shown in Figure 4.4. It is easy to see that again two of the edges

1 0

2

0 1

0 1

2

0

2

02
1

2 0

0 2

0 1

1 0

1

2

2

10
2

1/2 2

2 1/2

0 1

1 0

2/1

0

0

2/12
1/2

Figure 4.2: Possible 3-edge-colorings of the A piece.
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A

v

Figure 4.3: The Petersen graph constructed from the A-piece, the dashed edges wrap

“around” the figure.

A A

v

Figure 4.4: The first Blanuša snark constructed from two A-pieces.

A A A

v

u

Figure 4.5: Generalized Blanuša snarks of the first kind.

incident with v have the same color in any 3-edge-coloring. Note that by removing

two neighbouring vertices from the Petersen graph we obtain the A-piece. In the

second copy of the Petersen graph we cut two edges to get four semiedges (as showed

in Figure 4.3). Now we create the first Blanuša snark by a dot product from the

prepared pieces. This process can be repeated as many times as we wish, and we

get an infinite class of graphs showed in Figure 4.5. These graphs are snarks for the

same reasons as the Petersen graph and the Blanuša snark are. As we have already

said, they can be constructed by a dot product from a finite number of copies of the

Petersen graph. The graph of this kind created from m A-pieces is denoted by B1
m.

The infinite class containing all these graphs is denoted by B1.

26



4.2 Circular Chromatic Index in the Class B1

Theorem 17. The circular chromatic index of B1
m is

χ′c(B
1
m) = 3 +

2

3m
.

The proof of this result is divided into three parts.

The lower bound

Why is B1
m a snark? We refine the original proof from the circular colorings viewpoint

and derive a lower bound for the circular chromatic index of B1
m. Look at Figure 4.5

and consider a 3-edge-coloring of B1
m. The dashed edge incident with the vertex v is

colored by some color, say, 0. This edge serves as an “input” for an A-piece, and as

we have showed before, the edge on the “output” of that A-piece has the same color.

So we have a sequence of edges of the same color beginning and ending in v. Call this

path the upper line. Similarly is defined the bottom line passing through u. Existence

of these lines implies that no 3-edge-coloring of B1
m exists. Now we are trying to find

a (3 + ε)-edge-coloring of this graph with ε as small as possible. Consider the upper

line. After each A-piece the color on the upper line can be slightly changed – we

have discussed this property of circular colorings in Chapter 3. What does it mean,

“slightly”? We prove that the change of color made by one A-piece is at most 3ε.

We use the technique introduced in [12]. Consider a (3 + ε)-edge-coloring of the

A-piece. For any a, b ∈ [0, r) the r-circular interval [a, b]r is defined as follows:

[a, b]r =

{
[a, b] if a ≤ b,

[a, r) ∪ [0, b] if a > b.

It is convenient to reduce a and b modulo r and use the same notation even if a or b

are out of the interval [0, r). Moreover, while r is fixed, we will usually write just [a, b]

for the r-circular interval [a, b]r. In order for this technique to be succesful we need

the ε > 0 to be small enough. Any color x+yε for integers x, y used as a boundary of

the intervals in Figure 4.6 should be close enough to the color x. This is important in

order to preserve the order of colors of the edges incident with a vertex. For example,

if we have colors 1 + 2ε and 2 − 2ε then we need 1 + 2ε ≤ 2 − 2ε, hence ε < 1/4. If

we assume 0 < ε < 1/4, all the necessary orders will be preserved. Therefore we will
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work under this assumption. The only exception are small graphs from the class B1;

we deal with them later in this section.

Now back to our problem: we want to derive a lower bound. Suppose that the A-piece

is colored in a (3 + ε)-edge-coloring for ε < 1/4. Let the colors of the semiedges a, b,

c, d be α, β, γ, δ in the indicated order. We prove that the total change of colors

D = |α− γ|+ |β − δ|
satisfies the inequality D ≤ 3ε. We may assume that α ≤ γ and α = 0. Hence

D = γ + |β − δ|.
The two edges adjacent with the semiedge a are colored by colors from [1, 1 + ε] and

[2, 2 + ε] respectively. The A-piece is symmetric, hence we do not need to analyse

the two cases. Then there are four possibilities to color the neighbouring edges. All

are shown in Figure 4.6. In fact, these possibilities correspond to the three possible

3-edge-colorings of the A-piece (to see this, let ε = 0). The case in the bottom right

corner is impossible. Note that the change of color on the upper line |γ−α| is at most

2ε, hence γ ∈ [0, 2ε].

The colors of the edges incident with a vertex go along the circle of length 3+ε in some

order. We analyse the three cases of a possible (3 + ε)-edge-coloring. We will make

use of the fact that the order of colors around any vertex is completely determined.

Consider the first case (upper left corner of Figure 4.6). The color γ is “almost 0”,

and the color which follows γ in the mentioned order is “almost 1”. This color has

to be at least 1 + γ. By repeating this argument we get that the next edge along the

shortest path from c to d has color at least 2 + γ. Then δ ∈ [−2ε, ε] has to be in the

distance at least 1 from 2 + γ. Therefore δ ∈ [γ − ε, ε]. Similarly by repeating this

argument along the shortest path from c to b we obtain that β ∈ [γ − 2ε, 2ε].

If β ≥ δ, then D = γ + β − δ ≤ γ + 2ε− (γ − ε) = 3ε.

If β < δ, then D = γ + δ − β ≤ γ + ε− (γ − 2ε) = 3ε.

In the second case (upper right corner) we have δ ∈ [2 + γ − ε, 2 + 2ε] and the same

bounds for β. Hence |β − δ| ≤ 2 + 2ε− (2 + γ − ε) = 3ε− γ and D ≤ 3ε.

In the third case (bottom left corner) we have 1 + γ − ε ≤ β ≤ 1 + 2ε and the same

bounds for δ. Hence |β − δ| ≤ 1 + 2ε− (1 + γ − ε) = 3ε− γ and D ≤ 3ε.

The total change of color for m A-pieces is has to be at least 2 (1 for the upper line

and 1 for the bottom line), hence 2 ≤ m · 3ε. Therefore ε ≥ 2
3m

. The lower bound

χ′c(B
1
m) ≥ 3 +

2

3m
is established.
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[−2ε, ε] [−2ε, 2ε]

0 [−ε, 2ε]

[2− ε, 2 + 2ε] [1− ε, 1 + 2ε]

[1, 1 + ε] [2, 2 + 2ε]

[1− ε, 1 + ε]

[2, 2 + ε]

[2− ε, 2 + 2ε]

[1− ε, 1 + 2ε]
[−ε, ε]

[−ε, ε]
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[−ε, ε] [1− ε, 1 + 2ε]

[1, 1 + ε] [−ε, ε]

[1− ε, 1 + ε]

[2, 2 + ε]

[2− ε, 2 + 2ε]

[1− ε, 1 + 2ε]
[2, 2 + 2ε]

[−ε, ε]

[1− ε, 1 + 2ε] [−2ε, 2ε]

0 [1− ε, 1 + 2ε]
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[−ε, ε]
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[1− ε, 1 + ε] [−ε, ε]
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[−ε, ε]

[2, 2 + ε]

[−2ε, ε]

[2− ε, 2 + 2ε]
[2, 2 + ε]

[1− ε, 1 + ε]

Figure 4.6: All possible (3 + ε)-edge-colorings of the A-piece.

1 9m ≡ −2

0 9m− 1 ≡ −3

6m + 1 3m− 1

3m 6m

3m + 1

6m + 1

6m− 1

3m− 19m + 1

9m + 1
3m + 1

1− 3m ≡ 6m + 3

−3m ≡ 6m + 2 v

u

Figure 4.7: A (9m + 2, 3m)-edge-coloring of the graph B1
m.
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The upper bound

Lemma 18. The circular chromatic index of B1
m satisfies

χ′c(B
1
m) ≤ 3 +

2

3m
.

Proof. We prove the lemma by constructing a (9m+2, 3m)-edge-coloring of B1
m. Look

at Figure 4.7. The A-piece is colored in such a way that the color on the upper line

decreases by 3 and the same holds for the bottom line. We repeat this coloring for

all other A-pieces in B1
m, decreasing colors by 3 after each repetition. It is clear that

after m A-pieces the colors on both lines are decreased by 3m. The edge uv is colored

by color 3m + 1. It is easy to check that we have obtained a correct (9m + 2, 3m)-

edge-coloring of B1
m.

Small graphs from B1

For certain considerations above we needed ε < 1/4. Therefore we have to exclude all

graphs with χ′c(B
1
m) ≥ 3 + 1/4. In fact, for m ≥ 3 the upper bound proved in Lemma

18 ensures χ′c(B
1
m) ≤ 3 + 2

3m
< 1/4. We determine here the circular chromatic index

of B1
m for m = 1 and m = 2.

Lemma 19. We have

χ′c(B
1
1) = 11/3, χ′c(B

1
2) = 10/3.

Proof. The first value was already proved in Theorem 16.

The graph B1
2 has 18 = 4 · 4 + 2 vertices. From Theorem 14, part (iii) we have

χ′c(B
1
2) ≥ 10/3. Theorem 18 guarantees that there exists a (20, 6)-edge-coloring of

B1
2 .

Combining the established lower bound with the upper bound from Lemma 18 we get

χ′c(B
1
m) = 3 + 2

3m
for m ≥ 3. Together with small cases analysed in Lemma 19 we

have a complete proof of Theorem 17.

4.3 The Second Blanuša Snark

It is easy to find a (7, 2)-edge-coloring of the second Blanuša snark G. The lower bound

from Theorem 14 is χ′c(G) ≥ 10/3. This cannot be improved without considering the
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structure of G, as the first Blanuša snark B1
1 would provide a counterexample for any

such improvement. By a brute-force computer search we can exclude the possibility

of (17, 5)-edge-coloring of G. Hence by Theorem 8 there are only two candidates for

χ′c(G): 24/7 and 7/2. The exact value remains as an open question. As the circular

chromatic index of the first Blanuša snark is 10/3, we see that by performing a dot

product on two copies of the Petersen graph we can obtain graphs with different values

of the circular chromatic index.
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[15] R. Nedela and M. Škoviera, Decompositions and reductions of snarks , J. of Graph

Theory 22 (1996), 253–279

33



Abstrakt

Cirkulárne hranové r-farbenie grafu G je zobrazenie c : E(G) → [0, r) také, že pre

každé dve susedné hrany e a f grafu G platí 1 ≤ |c(e) − c(f)| ≤ r − 1. Circulárny

chromatický index χ′c(G) je infimum zo všetkých reálnych čísel r, pre ktoré má graf

G cirkulárne hranové r-farbenie.

V práci stanovíme a dokážeme všeobecný dolný odhad cirkulárneho chromatického

indexu snarku G. Tento odhad závisí len od počtu vrcholov grafu G a je asymptoticky

tesný. Ďalej určíme cirkulárny chromatický index zovšeobecnených Blanušových snarkov.

Index snarkov z tejto triedy môže nadobúdať nekonečne veľa hodnôt a môže byť

ľubovoľne blízky číslu 3. Zovšeobecnené Blanušove snarky sú prvou známou triedou s

touto vlastnosťou.

Kľúčové slová: snark, Blanušov snark, cirkulárny chromatický index
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