Methods used for requirements engineering

Veronika Sladekova

May 3, 2007

Contents

1 Introduction

1.1 Abstract
1.2 Foreword
1.3 Motivation
1.4 Goal
2 Theoretic background
2.1 Software lifecycleo
2.2 Software Requirements
2.2.1 IEEE Recommendation for SRS
3 Informal Methods
3.1 QuARSTool.
3.2 Template. Lo
4 Semiformal Methods
4.1 Unified Modelling Language
4.1.1 Requirements Model
4.1.2 Structural Models
4.1.3 Behavioral Models,
4.1.4 Extension Mechanism
4.2 User Requirements Notation
4.2.1 Goal-oriented Requirements Language
422 UseCase Maps
5 Formal Methods
5.1 Zmnotation
52 KAOS
5.3 Usage of Formal Methods

6 Choosing the Right Technique
6.1 Considered properties L.

7 Conclusion

13
14
17

20
20
21
22
22
25
25
25
28

33
34
35
37

38
38

42

Chapter 1

Introduction

1.1 Abstract

The thesis discribes the model of software life cycle and refers to the im-
portance of requirements capture and analysis. The main characteristics of
the good requirements specification, taken from IEEE recommendation are
described.

The thesis presents two informal methods for capturing software require-
ments. The first method uses lexical analysis for parsing of written text. The
parsed text is compared to the defined dictionary. The dictionary is defined
to indicate every use of word or sentence structure that leads to ambiguous
description. The second method works as a template to assist in writting
a good quality requirements specification. The template forces the writer
to write in defined manner. This manner is defined by formal context free
grammar.

As an example of semiformal method the thesis decsribes the UML no-
tation. UML is a general modelling method with various kinds of diagrams,
each viewing the system from different points of view. It is the most used
modelling method. As a contrast to UML the URN notation is described.
The URN is esspecially developed for usage in telecomunication systems and
services. The diagrams are designed to used for concrete situation. The
transformation of URN into other ITU-T languages is supported. The URN
notation models also the non-functional requirements, which importance is
often underestimated.

For precise specification the mathematics are used. Formal methods are
based on set theory and logics. The Z language as an example of formal
method is described. Desribed language KAOS is an example of graphical
notation with formal description. The occasions of proper and effective use
of formal methods are stated.

The thesis describes the main characteristics, notations and examples of

CHAPTER 1. INTRODUCTION 3

selected techniques representing different approaches. Discuss their possible
collaboration and usage in various kinds of software systems.

1.2 Foreword

Supposition of creating a software system with good quality is to under-
stand the process of creation of the software system and to give appropriate
attention to every step in the process of creation. With creation of more
complicated and large systems the need of good coordination of the work is
also neccessary.

The first step in the process of software creation is the elicitation and
elaboration of the software requirements followed by analysis. This part of
the process of software creation is wrongly considered as easy one and not
enough attention is payed to it. The requirements enginnering is slowly
finding its place in computer science.

There are many theories about how the requirements should look like,
what techniques are the best for requirements elaboration, but in the real
project the need of good quality requirements is often underestimated and
various available techniques for requirements elaboration are rarely used.

In my thesis I try to remind the necessity of good quality requirements.
Introduce various techniques for requirement elaboration and to show their
aplicability in the real world systems

1.3 Motivation

The complexity of the software systems made is rapidly raising. The pro-
cess of software development complicates with the raising complexity of the
systems made.

There is a tendency to automatize as many parts of the process of soft-
ware development as possible. The part of requirements capture is very
special. It is due the need of cooperation with the customers - laics. This
is the part where informal meets the formal. We cannot eliminate the infor-
malism totally, because there is the customers, who do not understand the
formalism at all. But with informal came the problems of ambiguity and
misunderstanding.

The semiformal methods were developed to reduce the ambiguity and
to raise the readability of the requirements stated. The graphical notations
use graphs intuitively representing the system. With very little learning the
quality of the requirements capture is rising rapidly. Not all problems are
eliminated but the effectivness is very high. This is the reason of the popu-
larity of using graphical notations in the process of software development.

CHAPTER 1. INTRODUCTION 4

There are other models developed especially for capturing software re-
quirements. Formal methods are based on exact sciences of matematics as
logics and set theory.

At this time there exists many different aproaches dealing with software
requirements. When creating software developers need to decide which meth-
ods are the most suitable for the software being developed. My diploma thesis
gives an overview of aproaches dealing with software requirements. An ex-
amples of aproaches are given, to help the potential developers to choose a
good method for their particular type of system.

1.4 Goal

The goal of my diploma thesis is to introduce techniques for elaboration of
software requirements and gives an overview of different aproaches.

The thesis is divided into several chapters. In the second chapter is de-
scribed the theoretic background, an example of software life cycle, the types
of software requirements, and the recommendation of IEEE of the content of
Software Requirements Specification to describe a good quality requirements
specification.

The third chapter describes informal approaches in requirements elabo-
ration. Two different techniques are presented to give an inspiration of how
to deal with natural language.

The fourth chapter describes semiformal methods based on graphical no-
tations. URN and UML notations are introduced and compared.

The fifth chapter introduces formal approach. The basic characterisation
of Z notation and KAOS are given.

In the last chapter all techniques are summarized and their aplicability
in various kinds of software systems is discussed.

Chapter 2

Theoretic background

2.1 Software life cycle

The model of software development life cycle describes the phases of soft-
ware development and their order in the development. There exists several
models of software development life cycle, many companies developed their
own model, adapted to the companys’ principles. All these model has similar
patterns, which can be put together to create a general model of software
development life cycle (Figure 2.1). [1]

The requirements phase is responsible for gathering all needed informa-
tion from the customers about the wanted functionality of the system. These
functionalities are written down and, when accepted by customer, the design
phase can begin. In the design phase the details of system are stated. The
software and hardware architecture is defined. The implementation is where
the code is produced. It is the longest phase of the life cycle. At the end
is the test phase, where the funcionality is checked, wheather the software
fulfill the customers needs.

Examples of software development life cycle models are given below (Fig-
ure 2.2, 2.3, 2.4, 2.5). In each of this models the phase of requirements is at
the beginning, so the quality of the requirements has an impact on the whole
system development.

Requirements Design Implementation Testing

Figure 2.1: The general model of software development life cycle

CHAPTER 2. THEORETIC BACKGROUND

Reguirements

| %

Design

Implementation
and Unit
Testing

megrafion
and System F——
Testin
Ogearation

Figure 2.2: The Waterfall model

Requirements

F

¥
Design
Tmplementation
and Unit
Testing Tniegrafion
and System —
Testing
Operation

Figure 2.3: The Incremental model

; System Test System
Requirements Planning Testing
High Level Integration Integration
Design Test Planning Testing

— 1

—

Low Level
Design

Unit Test
Planning

— Unit Testing

h

Implemeantation

4

3

Figure 2.4: The V-shaped model

CHAPTER 2. THEORETIC BACKGROUND 7

Planning Risk Analysis

equirements
Gathgring

Evaluation Engineering

Figure 2.5: The Spiral model

2.2 Software Requirements

The process of software requirements engineering can be divided into four
main phases (See figure 2.6).

First is the elicitation of the requirements with the customer. At this
phase the meetings with the customer are held, where analysts collect the
requirements.

Then the phase of analysis came. Here are the collected requirements
analyzed to find out all hidden meanings.

After analysis, requirements are documented. Here is the output Software
Requirements Specification (SRS) [2].

The last phase is the verification of SRS document. The document as a
part of the contract is verified by the customer. When the verification process
ends up with more requirements the process starts from the beginning again.

The process is drawn as spiral to show the incremental property. The
process ends up when the verificatin passes with closed document.

The requirements itself can be divided into two main groups, functional
and nonfunctional requirements. The functional requirements of the system
describe the expected functionality of the system. Functions are described
as input output functions. The exceptions and their handlings are stated.

The non-functional requirements do not care about what the system
should do, but how. Non-functional requirements state the limitations for the

CHAPTER 2. THEORETIC BACKGROUND 8

Informal staterment of
Decision poirg: requirements
Accept docrment
oF re-auer spird

/\

‘Reanemems elicitation

Requuements amlysis and
negotiation

_— / / ﬁ NN

document and-- P Agreed
vaidation requrrements
report

|Requ11fments validation |_,, Requirements documentation |

Draft requiremerts
document

Figure 2.6: The model of requirements phase

system. The non-functional requirements include the response time of the
system, the hardware limitations, the business constrains, and other things.
Sometimes it is really hard to decide wheather is the requirement functional
or non-functional. It is due to level of detail of the requirement. Because
if a non-functional requirement is stated, when is it deaply analyzed it con-
cludes into several functional requirements. So at some level of detail only
functional requirements are considered.

2.2.1 IEEE Recommendation for SRS

The definition of software requirements are the first step in developing soft-
ware. To reduce the software cost, developers are trying to reduce the amount
of mistakes. Most of the misunderstandings are between the developers and
the customers. They are from two different professions and got different
styles of thinking and expressing.

The result of software requirement specification process is a document
named Software Requirement Specification (SRS), which should be unam-
biguous and complete. The good way to start writing a SRS is to follow IEEE
Standard 830, Recommended Practice for Software Requirements Specifica-
tions [3]. This standard describes what should be in the SRS and which
rules should the writer obey to end up with qood quality specification. Ap-
pendix of this standard also contains several sample SRS outlines, for better
understanding.

The SRS should provide the basis for agreement between the suppliers and

CHAPTER 2. THEORETIC BACKGROUND 9

customers. The customers or potential users should be able to determinate
if the functions of the software specified in SRS meet their needs.

A good written SRS can be used to estimate the costs and schedules of
the development of the software. When the SRS is complete and precise, so
no big changes are needed, the estimates are good enough. The advantage is
that they are stated at the begining of the development process.

The requirements stated in the SRS are the baseline for validation and
verification plans. Because the SRS describes the product not the project, it
can serve as a basis for later enhancement or tranformation to other users or
machines. In the SRS there should not be design or project requirements. It
should only state the constrains on design and project.

The SRS writer should address:

- Functionality. What is the software supposed to do 7

- External intefaces. How does the software interact with people, the
system’s hardware, and other software?

- Performance. What is the speed, availability, response time, recovery
time of various software functions, etc.?

- Attributes. What are the portability, correctness, maintainability, se-
curity, etc. considerations?

- Design constrains imposed on an implemantation. Are there any
required standards in effect, implementation language, policies for
database integrity, resource limits, operating environment(s) etc.?

Attributes of quality of a SRS are:
- Correct
- Unambiguous
- Complete
- Consistent
- Ranked for importance and/or stability
- Verifiable
- Modifiable

- Traceable

CHAPTER 2. THEORETIC BACKGROUND 10

SRS Properties

Correct An SRS is correct if, and only if, every requirement reflects the
actual needs of customer. There is no tool or procedure to check the
correctness, only customers and users can determinate if the SRS is
correct.

Unambiguous An SRS is umambiguous if, and only if, every requirement
has only one interpretation. The SRS is used by both developers and
users of software. The problem is that they are from different environ-
ments, that’s why they tend to understand things differently, without
knowing it. There are techniques used to capture these ambiguities.
Mostly used is review by independent people.

Complete An SRS is complete if, and only if, it contains all significant
requirements, definitions of the responses of input data, full labels and
references to all figures, tables, and diagrams, definitions of all terms
and units of measure. Phrase TBD (to be determined) is not allowed in
complete SRS. When is the use neccessary there should be a description
why the answer is not known, who is responsible to eliminate TBD and
when it must be eliminated.

Consistent An SRS is consistent if, and only if, there are no requirements
in conflict. There may be real-world objects in a conflict, for example
color of a control light. Or there may be a logical conflict, for example
different mathematical operations within input variables. Sometimes
the same real-world objects are decsribed differently within a group of
requirements. The use of standard terminology and definitions removes
this problem. If the SRS document is in conflict with another high-level
document, then it is not correct.

Ranked for importance and/or stability A SRS is ranked for impor-
tance and/or stability if every requirement has a label to indetify it’s
importance or stability. Not all requirements are equally important.
Some of them may be essential, while other may be desirable. It is best
to let customers consider each requirement, this can clarify hidden as-
sumptions.

Verifiable An SRS is verifiable if every requirement is verifiable. A re-
quirement is verifiable if there exists finite process that can check that
the software meets the requirement. The statement the program shall
never enter an infinite loop’ is nonverifiable, because the testing is teo-
retically impossible. The statement ’Output of the program shall be
produced within 20s of event 60% of the time, and shall be produced

CHAPTER 2. THEORETIC BACKGROUND 11

within 30s of event 100% of the time’ is na example of verifiable state-
ment, where every property is measurable quantified. If a requirement
is not expressible in verifiable terms at the time the SRS is written,
there should be stated at which point of software development the re-
quirement must be put into verifiable form.

Modifiable An SRS is modifiable if the structure allows easy changes to
the requirements without breaking the completeness and consistency.
These include to have a coherent and easy-to-use organization with a
table of contents, an index and explicit cross-referencing. The SRS
should not be redundant, this means every requirement should appear
only once. The redundancy is not an error, but can cause one if the re-
dundand requirement is to be revised. If not explicitly cross-referenced
it is revised only once and cause inconsistency.

Traceable An SRS is traceable if the origin of every requirement is known
and referenced. There are two types of traceability. Backward trace-
ability is the reference of each requirement in previous documents.
Forward traceability is that each requirement has a unique name or
reference number, so it can be referenced in future documents. For-
ward traceability is important for maintenance and operation phase, to
assure that the needed change is made on all affected requirements.

SRS Layout

A good SRS should not miss information included in the following draft of
the table of contents.

i Introduction

ii Purpose
ii Scope
ii Definitions, acronyms, and abbreviations
ii References
ii Overview
i Overall description

ii Product perspective
ii Product functions
ii User characteristics

ii Costraints

CHAPTER 2. THEORETIC BACKGROUND 12

ii Assumptions and dependencies

ii Apportioning of requirements
i Specific requirements
i Appendixes

In the Introduction part the overview of the entire document is given.
The organization of the SRS is explained. Definitions and references if larger
can be stated as a reference to appropriate appendix.

The Overall description includes the relationships, if any with other sys-
tems, specify the interfaces of the system and other constraints made on the
system. The summary of the main functions. The qualification of expected
users is stated as a reason for requirements. This section also identifies the
requirements that may be delayed for future versions of the system.

The biggest and most important is the part where the concrete require-
ments are stated. The requirements should be uniquely identifiable and the
organization should maxize the readability of the document. The level of
detail of the requirements should be sufficient to designers and testers.

This is only a recommendation, it can be adapted to the needs of the
user. I can only recommend to read this IEEE recomendation to realize all

the needed components of the document and properties that is important to
be checked.

Chapter 3

Informal Methods

The most natural way of expresing requirements is plain natural language.
The main problem with natural language is that it is ambiguous, and the
requirements written with it lack the needed quality.

The alternatives to the plainly written text are:

- structured natural language. In structured natural language the writer
is limited by the terminology. The writer may have a preddefined
template, which helps him to keep the predefinned way of writing.

- graphical notations. The graphical notations by the use of different
charts or graphs gives the image of the system from different points
of view. These notations are suitable mainly for defining functional
requirements.

- mathematical specifications. The precise model of the system, using
set and logic theory is made. This model is only a step from the real
code.

Requirements written in natural language are the junction points between
customers - laymen and developers - profesionals. Natural language is am-
bigous, that is why are prefered requirements expressed by other more formal
methods. But requirements written in natural language are neccessary for
layman to understood. Mostly it is the first step in expresing requirements.
These requirements are then transformed into other models, mostly graphi-
cal. Many tools are developed to simplify the trasformation. Mostly based
on lexical and syntactical analysis. I chose two of them. First is tool made
for automatical quality evaluation of Natural language requirements. The
second is a template made for writing natural language requirements in a
stylizied english grammar defined by context-free grammar developed espe-
cially for this purpose.

13

CHAPTER 3. INFORMAL METHODS 14

3.1 QuARS Tool

Tool called QuARS (Quality Analyzer of Requirements Specification) [4]
was developed at Instituto di Elaborazione dell’ Informazione del C.N.R. In
Pisa, Italy. This tool analyze natural language requirements and check them
againt Quality Model. To make transforming natural language requirements
into formal models easier, and more automatized.

This tool is made for detecing and removing defects that could cause
problems in the transformation to formal models. The tool uses syntactic
analysis for elaboration of document and then checking the words and their
position in the sentence against dictionary adjusted for this purpose.

As the first step in development the Quality Model was designed. It is
composed of quality properties. The high level properties of the Quality
model are :

- Testability - each requirement should by specified in a quantitative or
pass/fail test manner

- Completeness - The entities refered by the requirement should be pre-
cisely identified

- Understability - The requirement should be fully understand by devel-
opers and also by users when reading requirement specification docu-
ment

- Consistency - The requirements should avoid disagreements

The violation of these properties are signalized by indicators stated in ta-
ble 3.1. After the analysis of many software requirements specifications taken
from industrial projects, the keywords used for detecting the indicators were
defined. In table 3.2 are listed examples of ’bad’ sentences, to realize the
needed writing style. Not every indicator can be shown as a bad sentence
example. Indicators such as comment frequency, directives frequency, read-
ability index, under-reference and unexplanation cover the whole document.
To catch these indicators the whole document should be analyzed.

The linguistic analysis engine in the QuARS tool defines a basic en-
glish Grammar with about 40 production rules and small dictionary.
Dictionary consists of grammatical words developed by linguists such
as determiners, particle, quantifier, auxialiary verbs, etc, and seman-
tic words automatically generated from morphological analyzer ENGLEX
(http://www.sil.org) such as nouns, adjectives, adverbs, verbs. The dictio-
nary contains words defined by AECMA-boeing simplified English Project
(http://www.aecma.org/Publications/SEnglish /senglish.htm)

The main logic modules of QuARS tool are : Lexical analyzer (ENGLEX
) Syntax analyzer Quality Evaluator Special purpose grammar Dictionaries

CHAPTER 3. INFORMAL METHODS 15

Indicator Description Notes

Optionality An Optionality Indicator | Optionality - revealing words
reveels a requirement sen- possibly, eventually, if case,
tence containing an op- | if possible, if appropriate, if
tional part (ie. A part | needed, ...
that can or cannot be con-
sidered)

Subjectivity | A Subjectivity Indicator | Subjectivity - revealing words :
is pointed out if sentence | similar, better, similarly, worse,
refers to personal opinions | having in mind, take into ac-
or feeling count, take into consideration,

as |adjective| as possible

Vagueness A Vagueness Indicator | Vagueness - revealing words :
is pointed out if the | clear, easy, strong, good, bad,
sentence includes words | efficient, useful, significant, ad-
holding inherent vague- | equate, fast, recent, far, close,
ness, i.e. Words having a | in front, ...
non uniquely quantifiable
meaning

Weakness A Weakness Indicator is | Weak verbs : can, could, may.
pointed out in a sentence
when it contains a weak
main verb

Under- An Under-specification In- | This indetificator deals with

specification | dicator is pointed out in | the syntactic and semantics of
a sentence when the sub- | the sentence under evaluation
ject of the sentence contains
a word identifying a class
of objects without a mod-
ifier specifying an instance
of this class

Under- An Under-reference Indica- | -

reference tor is pointed out in a NL-

SRS document when a sen-
tence contians explicit ref-
erence to :

-not numbered sentences of
the NLSRS document itself
-documents not referenced
into the NLSRS document
itself

-entities not defined nor
described into the NLSRS
document itself

CHAPTER 3. INFORMAL METHODS

16

Indicator

Description

Notes

Implicity

An Implicity Indicator is
pointed out in a sentence
when the subject is generic
rather than specific

Subject expressed by : Demon-
strative adjective (this, these,
that, those) or Pronouns (it,
they, ..). Subject specified by :
Adjective (previous, next, fol-
lowing, last, ...) or Preposi-
tion (above, below, ...).

Multiplicity

A Multiplicity Indicator is
pointed out in a sentence if
the sentence has more than
one main verb or more than
one direct or undirect com-
plement that specifies the
subject

Multiplicity - revealing
words:and, or, and or, ...

Comment
Frequency

It is the value of the CFI
(Comment Frequency In-
dex). |[CFI=NC/NR where
NC is the total number of
requirements having one or
more comments, NR is the

number of requirements of
the NLSRS document]|

Readability
Index

It is the value of ARI (Au-
tomated Readability Index)
[ARI=WS + 9*SW where
WS is the average words
per sentence, SW is the
avrage letters per word]

Directives
Frequency

It is the rate between the
number of NLSRS ahd the
pointers to figures, tables,
notes, ...

Unexplanation

An Unexplanation Indica-
tor is pointed out in a NL-
SRS document when a sen-
tence contain acronyms not
explicitly and completly ex-
plained within the NLSRS
document, itself

Table 3.1: Quality Properties and their Indicators

CHAPTER 3. INFORMAL METHODS 17

Indicators Negative Examples

Implicity the above requirements shall be verified by test

Optionality the system shall be such that the mission can be pursued,
possibly without performance degradation

Subjectivity in the largest extend as possible the system shall be
constituted by commercially available software products

Vagueness the C code shall be clearly commented

Weakness the results of the initialization checks may be reported in
a special file

Underspecification | the system shall be able to run also in the case of attack

Multiplicity the mean time needed to remove a faulty board and re-
store service shall be less than 30 min.

Under-reference the software shall be designed according to the rules of
the Object Oriented Design

Unexplanation the handling of any recieved valid TC packet shall be
started in less than 1 CUT

Table 3.2: Examples of requirement sentences containing defects

The files in SRS document are analyzed by lexical analyzer to verify the
correct english dictionary. Output of lexical analyzer are words each asso-
ciated with it’s lexical category. This is the input for syntactical analyzer.
Syntactical analyzer builds the derivation trees. Syntactic nodes are associ-
ated with morpho-syntactic and application-specific data. Derivation trees
are input for the quality evaluator module. Also the special dictionaries are
used. The Evaluator according to the rules of Quality model and the dic-
tionaries evaluate the sentences and provides warning messages. The main
purpose of building this tool was to make it easy to use and run independently
on the format of SRS document. And also modifiable to run effectively on
particular application domains. For easy to use was developed graphical in-
terface. For generality the expected format of SRS document is text format.
Every format can be transformed into text format. Sometimes are some in-
formation kept in layout lost, but when we assume that the hierarchy of the
requirements is established by numeration of requirements and not by for-
mating, this lack of information doesn’t compromise the validity. In QuARS
it is possible to modify the Dictionaries, to assure a meaningful evaluation
in the particular domain.

3.2 Template

Unlike the QuARS tool where the requirements are written and then checked,
this approach is bottom-up. The automatization of requirements assessment

CHAPTER 3. INFORMAL METHODS 18

requires the understanding of natural language. This linguistic problem can
be simplified by limiting the language itself. This is why William Scott
and Stephen Cook at University of South Australia developed a context-
free grammar for English language to describe software requirements [5].
This grammar limitates the writer to use the predefined writing style to
improve the quality of the requirements written. Requirements are written
into template that follows the rules of the grammar.

The context-free grammar was chosen because of its ability of parsing for
its sufficient coverage of the task. Mathematicaly the grammar is defined as
the quadruple G =< Vn, Vt, P,omega > where terminals are the words of
Engish language, the starting nonterminal is called <Requirement> and the
grammar in Backus Naur From is discribed :

<Requirement> — [<TC Clause> ")"| <Independent Clause> |[<Re-
strictive Relative Clause>| | <Independent Clause> [<Restrictive Rel-
ative Clause>||<TC Clause>|

<Independent Clause> — <Subject><Auxiliary
Verb><Verb><Noun Phrase>

<Restrictive Relative Clause> — |<Preposition>|<Criterion Indica-
tor><Value>

<TC Clause> — <TC Indicator><noun Phrase>|<Verb><Noun
Phrase>|

<TC Indicator> — <Preposition>|<Condition>
<Value> — <Number><Units>

<Noun Phrase> — [<determinant>|<Adjective><Noun>|<Preposition><Noun
Phrase>|[<Conjuction><Noun Phrase>|| [<determi-
nant>|<Adjective><Adjective>|<Preposition ><Noun
Phrase>|[<Conjuction><Noun Phrase>|

<Subject> — [<determinant>|<Adjective><Noun>

<Auxiliary Verb> — "shall"["not"|

<Criterion Indicator> — "no greater than"|"no less than"|"within"

The sentences are divided into phrases. They distinguish two kinds of
phrases. Independent one which can stand alone as a full sentence and sub-
ordinate phrases dependent on the rest of the sentence. Independent phrases
contains verb and a subject. Subordinate phrases are divided into subtypes.

A temporal phrase specifies when the action occurs.

CHAPTER 3. INFORMAL METHODS 19

Conditional phrase makes the action dependant on the subordinate
phrase. (if, unless)

Relative phrase specifies the noun and give additional detail. In require-
ments it is recommended to use only restricted relative phrases, which help
identify the referent noun. Non-restrictive relative phrases does not help in
the identification that’s why their use is redundant.

To satisfy the best practice in software requirements there should be
placed restrictions on the language defined by the context-free grammar. It
is known that the presence of pronouns is the source of ambiguity a that’s
why the use of pronouns should be omited when writting a requirements
specification. Easy identification of relationships within requirements can
be achieved by using active voice. The context-free grammar emphasizes the
active voice. These restrictions limit the language, but they help in providing
a good quality requirements.

To support parsing of manualy written requirements the grammar needs
to allow the requirements to be structured in different ways. The grammar
was implemented, creating the parse and assess algorithm. The words where
checked against Thesaurus dictionary. For the purpose of sotfware require-
ments the dictionary was extended with abbreviations and acronyms, which
are mostly used by software engineers. Because the dictionary consider the
synonyms as equivalet, in the process of comparison of requirements the sys-
tem interacts with writer to consider the minor variations in the meaning of
synonyms.

A prototype named BADGER (Built-in Agent using Deterministic Gram-
mar for the Engineering of Requirements) was created as a template for writ-
ing requirements.

Both approaches are only university projects, that were applied onto
smaller systems, but the results were as expected better than not limited
writing. Here you can see that with little checks the quality of the document
can be better. Important is that this checking does not spend a lot of time
due to automatization. Because of elaboration of natural language, the tools
are forced to collaborate with dictionaries. This fact is suitable for other
potential users, because with appopriate changes to the vocabulary the tools
can be adapted to different conditions.

Chapter 4

Semiformal Methods

By semiformal methods are meant graphical representations of the system,
mostly supported with written description. Graphical representation helps
the understanding of the system. Detailed description in natural language
may not be clearly understandable, when describing larger systems, because
of the amount of information.

The most popular from all graphical notations is Unified Modelling Lan-
guage (UML). This language consists of several types of diagrams to offer a
complex model of a system from different points of view. As a second graph-
ical notation I choose User Requirements Notation (URN) that belong to the
family of ITU-T Languages created especially for telecomunication systems.
URN includes special language just for nonfunctional requirements. There
are only few methods concernig nonfunctional requirements, that is why I
choose URN as a second method to present.

4.1 Unified Modelling Language

Unified Modelling Language (UML) [6, 7, 8] is modelling language for object-
oriented systems. It is the combination of the notations of Rumbaugh, Booch
and Jacobson. UML became a standard by the Object Management Group
in 1997. The UML is semiformal specification language, trying to find a
balance between formalism and readability.

UML diagrams do not have stated the level of abstraction to be used.
The UML diagrams can be precise, but also more abstract, it depends on the
author. It is cause the need of different level of detail in the system model.
While during the presentation there is not need for specific details, after the
contract submition the work at the system model get into higher detail.

The UML provides different points of view at the system. Requirements
model shows the external funcionality of the system. How the system reacts
to the environment. There are also the structural model and the behaviour

20

CHAPTER 4. SEMIFORMAL METHODS 21

model. The behavioral model represents the behavior of the system, how
is the system changing throughtout the time and when recieving different
inputs as a stimuli. The structural model represents the structure of the
system and also the structure of the data that is processed by the system.
The structural model gives us an overview of the whole system, to better
understand its division of the system and the processes inside the system.

With many types of diagrams, UML became large and complex model
of the system. The UML model do not directly support the non-functional
requirements. The extension mechanism of UML can be used to deal with
some kind of non-functional requirements. There are many different attepmts
to capture the non-functional requirements with UML diagrams. This field
is not yet standardized.

4.1.1 Requirements Model

The UML requirements model is a black-box view of the system, that hides
implementation decisions. The goal of the requirements model is to decsribe
the behavior of the system as a whole, not concerning the components. It is
a model of external funcionality of the system, the definition of the system
at system-level of interaction.

The requirements model of UML is based on use cases. The Use case
model consists of actors and use cases. Actors represents objects outside
the system (users, others systems, hardware). Use case is a coherent part
of functionality visible from the outside of the system. The interaction of
actors and use cases is in the mean of exchanging messages. The actors are
divided into primar and secondary. The primar actor initiate the use case.
Secondary actors supports the use case. Use case have one primar actor and
can have many secondary actors. The use case description can be textual, or
other more formal techniques can be used.

The description of the Use Case includes a unique identification of the
Use Case, primar and secundar actors. The input and output conditions
of the Use Case are stated. The output conditions are divided into success
end conditions and failed end conditions. Also the triggering event, that
initiates the execution of the Use Case should be identified. The description
of the Use Case is in form of steps that are supposed to be executed. The
extensions from the success execution should be stated. The quality of the
requirements written highly depends on the quality of the description. The
structured description of the Use Case is used to achieve a good quality
specification.

The mapping between the blackbox view of use cases and the whitebox
view of structure of the system can be really hard, due to multiple collabo-
ration of classes, that can be in more than one use case.

CHAPTER 4. SEMIFORMAL METHODS 22

o,

Heqistar PUM Usar at a Terminal
iR for Dutgoing Calls R\\

o e

————

foi i
/\C\\MH Specify Access Paint far Incaoming e
; S Call Authorized user
PUM user —— H_ﬂf—”‘r;

e

Specify Senice Typs

e
-

Spacify Profile

Figure 4.1: An example of UML Use Case diagram

4.1.2 Structural Models

The logical structure of the system, the interfaces of the classes, their re-
lationships are captured in the class diagram and package diagram. The
mapping of the physical structure of the system to the logic structure is
captured in deployment diagram.

4.1.3 Behavioral Models

The behaviour of the system is modelled by two different views. One is the
view of the data processing in the system. The second view is the reaction
of the system to the events. This division is done because of the kinds
of system being developed. The business systems are primary concerned
with data processing, the data flow model is sufficient. On the other hand,
real-time systems are event driven, with minimal data processing, there is
sufficient state machine model.

Behavior of individual objects is pictured throught the state machines.
Interaction of objects, by the means of message interchanging is pictured
in collaboration diagram. When the message interchanging is so large that
the readability of the collaboration diagram is poor, the time line as other
dimension is added. This type of diagram is called sequence diagram.

CHAPTER 4. SEMIFORMAL METHODS 23

“Ecommunication systam antiys =

<gn

mmunioation sstem entiy>>
Dite clary PINK

FINZ
1
<<communioation system entiby>
Wisitos B8
L%,
1 Sa,
» %
<<pommunication sstemn endibye = -
Home PR

“<communicalion interfaces»
FUM signalling at a Home FINZ
(fram Intemaces)

+ FLIW_SETUP(F UMRegisirationing | FumRagisirasg)
+ PUM_COMHNECT(PUMD elR egistationResp : Pumle-reghrg)
+ PUK_CONNECTIFISHEnquingResp | PisnEnqRes)
+ CaLL PROCEEDINGG
+ RELEASED
+ RELEASE_COMPLETED
+ PUN_SETUP(PumDe-reghig | Fumbe-regarg)
+ PU_SETUP(Pumintemogéng - Fumintera gérg)
+ PLUM_CONHECTFumlateragfng : Purminlersgfsg)
FPUR_CONNEC TLOUmIy R Es T DTy H BT

"
-

<<rommunication interdace>>
FUR signalling at a Direstony FINX
(fiom Inberfaces)

+ FUM_SETURPISNEnguindny . FisnEngAig)
H RELEASED

<<gommunication inleface=»
FUR signalling at a Wisitor PINE

Crrom Inke i ces)

+ Iegistation_requesin

+ PUM_COMMECT(PUMA egistrationResp : PumBegisicRes)
+ PUM_CONKECT(FUMRE gtiabonEr - FumBegEdnans)
+ PUM_SETUP(FUMDeiRegistationiny : FumDelRegérg)
+ CALL_PROCEERNGO

+ RELEASE_COMPLETED)

+ PLIM_CONKECT(Fumbe-regarg | PumbPe-iegAig)

+ RELEASED)

+ de-regislration inugked

+ irterrogation imsoke)

+ PLUM_CONKECTCargname | Purninlenagig

+ PUM_SETUP(argname : Fumintericgieg)

+ PUM_FACITILTFumintewagAng - Fuminlensghrg)

Figure 4.2: An example of UML Class diagram

CHAPTER 4. SEMIFORMAL METHODS

A

Yisitor . Visitor Home - Home
. PUM User PINX PINX
v de-ragistration irvoke()
i = :
PUM_SETUP(PumDe-reghrg) :
] '
! CALL_PROCEEDING() ;
e < 5
; PUM_CONMNECT{PumDe-regirg) :

Pl
[

© de-registration response() :

RELEASE()

. 3

RELEASE_COMPLETE()

=
by
'

Figure 4.3: An example of UML Sequence diagram

24

CHAPTER 4. SEMIFORMAL METHODS 25

4.1.4 Extension Mechanism

UML is design to be applicable to most of the types of systems. Of course
for some special kinds of systems is UML not so suitable, for this purpose
UML has an extension mechanism. By defining your own types of notation
one can adapt UML to the concrete project. When extending the UML make
sure the notation is stated clearly enough to be helpful and not confusing.

UML with its many diagrams can be really helpful when creating a sys-
tem. Especially when creating a larger system. Graphs alone are not suf-
ficient, the documentation to the graphs is necessary too and cannot be
omitted. The quality of the textual documentation has a big impact on the
quality of the whole model. UML supports documentation written in formal
language OCL to raise the quality of model.

UML has an advantage in simple notation which is mostly intuitite so
the graphs are readable also to customers laymen. Graphs included in a
document can help to rise the readibility. UML is not hard to learn and
the effectivness is very high that is why it is the most used requirements
technique.

4.2 User Requirements Notation

In February 2003 the International Telecommunication Union (ITU-T, SG
10) approved standard Z.150 User Requirements Notation (URN) - Language
requirements and framework for description of requirements for future teleco-
munication systems and services |9, 10]. It is standard requirements notation
for complex reactive, distributed and dynamic systems and applications.

URN contains two languages Use Case Maps (UCM) [11] for capturing
functional requirements and Goal-oriented Requirements Language (GRL)
[12, 13, 14, 15] for non-functional requirements. URN is a graphical notation
at high level of abstaction, designed for the use at early stages of require-
ments specification. It does not require to define messages, components and
components states. URN supports reusability of scenarios, traceability and
transformation to other languages such as Message Sequence Charts (MSC)
or Unified Modelling Language (UML). URN deals with non-functional re-
quirements and specifies the relationships between non-functional and func-
tional elements. The prime application domain of URN is telecommunication
services, that is the reason why it’s application in other domains is not ex-
plored.

4.2.1 Goal-oriented Requirements Language

It is the attempt to formalize non-functional requirements. Failures of soft-
ware projects were often caused by mistakes in informal non-functional re-

CHAPTER 4. SEMIFORMAL METHODS 26

quirements. Formalization of requirements capture leads to formal docu-
mentation, validation and testability. GRL provide requirements in terms of
objects and desired goals. Representing goals in GRL makes it possible to
analyze various alternatives. GRL contains three main categories of concepts
- intentional elements, links and actors.

Notation

Intentional Elements. The primar concern of intentional elements is "why?".
Why particular behaviours and structures were chosen, what are other al-
ternatives, what are the reasons of chosing one alternative among the other,
which criteria were taken into account.

There are five kinds of intentional elements :

- Goal : Quantifiable high-level (functional) requirement (illustrated as
a rounded-cornered rectangle).

- Softgoal : Qualifiable but unquantifiable requirement, essentially non-
functional (illustrated as a cloud).

- Task : Operationalized solution that achieves a goal, or that satisfices
a softgoal which can never be fully achieved due to its fuzzy nature
(illustrated as a hexagon).

- Resource : Entity whose importance is described in terms of its avail-
ability (illustrated as a rectangle).

- Belief : Rationale or argumentation associated to a contribution or a
relation (illustrated as an ellipse).

Intentional Relationships. There are five kinds of intentional relations,
which connect elements :

- Contribution : Describes how softgoals, tasks, beliefs, and relations
contribute to each other. A contribution is an effect that is a primary
desire during modelling. Each contribution can be qualified by a degree:

- AND : The relations between the contributing elements are ’AND’.
Each of the sub-components is positive and necessary

- OR : The relations between the contributing elements are 'OR’.
Each of the sub-components is positive and sufficient.

- MAKE : The contribution of the contributing element is positive
and sufficient.

- BREAK : The contribution of the contributing element is negative
and sufficient.

CHAPTER 4. SEMIFORMAL METHODS 27

- HELP : The contribution of the contributing element is positive
and but not sufficient.

- HURT : The contribution of the contributing element is negative
but not sufficient.

- SOME+ : The contribution is positive, but the extent of the
contribution is unknown.

- SOME- : The contribution is negative, but the extent of the con-
tribution is unknown.

- EQUAL : The equal contribution in both directions.

- UNKNOWN : There is some contribution, but the extent and the
sense (positive or negative) of the contribution is unknown

- Correlation : Contribution that indicates side-effects on other inten-
tional elements (dashed line)

- Means-end : Link for tasks achieving goals. Different alternatives are
allowed.

- Decomposition : Defines what is needed for a task to be performed
(refinement), always AND.

- Dependency : Link between two actors depending on each other (half-
circle).

Actor.

An actor is an active entity that carries out actions to achieve its goals.
an actor is represented by a circle. An actor can have a boundary, with
intentional elements inside, graphically shown as a grey shadow.

Model

Modelling with GRL notation begins with determination of the high-level
goals. These goals can be accompanied with beliefs. The high-level goals are
divided into smaller goals, marking the right degree of relationship. Then
the positions of actors and their boundaries are stated. Other alternative
in modeling is to begin with defining actors and then binding the particular
goals to the actors.

The ambition of GRL is to make the writer find all possible alternatives
about how can be the high-level goals satisfied, to think about their relation-
ships and interactions wheather they are positive or negative.

CHAPTER 4. SEMIFORMAL METHODS 28

Resource Actor
Dependency

- T = %2 ’

Break Hurt Some- Undetermined Boundary > s
L] ~ -

+ 1. + o~ e i _—

Make Help Some+ Equal e — .

- -
e T e

Figure 4.4: An example of GRL model

Evaluation

The first step in evaluation is to decide on the satisfaction of the goals and
tasks that represent leaves in the GRL model. Then by the propagation
algorithm, using logic of degrees of the relationships, evaluate the model
bottom-up. One can try more possible decisions of satisfing goals and tasks
at the bottom, to see their impact on the satisfaction of the high-level-goals.

Tool Support

The Organization Modelling Environment (OME) which supports i* and
NRF framework was extended also to support GRL framework and GRL
export to XML. This goal-oriented and agent-oriented modelling and anal-
ysis tool is written in Java language and was developed at the Knowledge
Managment Lab at the University of Toronto.

4.2.2 Use Case Maps

Use Case Maps (UCM) as a part of URN is a simple visual notation for
capturing functional requirements. It’s primary usage is in concurrent and
real-time systems. The big advantage of UCM is its independence from
internal components and other design details. The use of UCM is at first
phases of software development.

CHAPTER 4. SEMIFORMAL METHODS 29

Notation

The basis of UCM notation are set of paths along which are defined respon-
sibilities of the system.

Starting point Graphically represented by filled circle. Starting point is
the beginnig of the path. It is set by preconditions and triggering
event.

Path The line between the starting point and the end bar. Path is devided
into path’ segments. To each segment a responsibility is joined.

Responsibility In the case of UCM, responsibilities are characterized by
short textual description, along with unique identifier. Responsibilities
are marked by small letters from the beginning of the alphabet.

End bar Vertical bar, which represents the ending point in the execution of
the path. The ending point is set by postconditions, output parameters,
and resulting events.

Waiting place Graphically represented as filled circle (the same as starting
point). The execution of the path is stopped until the conditions set
by the waiting place are satisfied or a triggering event occurs.

Timer is a special kind of waiting place, where a time period is set, after
which, if still waiting the execution continues by the timeout path. The
timer is used to prevent deadlock. (graphically represented as a clock
icon)

Stub Stub represents a path abstraction. Complicated part of path can be
described on a separate map. The original part is replaced by a symbol
of the stub (diamond). This construction allows moddeling at many
level of detail and allows better readability. The function of the stub is
extended by dymanic replacing of stubs. The map used in extraction
is dynamically chosen from a set of maps at the time of execution.

UCM Model

The modelling UCM starts with main path with it’s responsibilities, and
then alternative paths are added.

The place where two paths are joining together into a single path is called
Join. In the OR-~join the execution of single path begins when the execution
of one of the starting path comes to the joining point. In AND-join the
execution of single path starts when executions of both starting paths comes
to the joining point. AND-join is mostly used for synchronization.

CHAPTER 4. SEMIFORMAL METHODS 30

TaxPayer Security Electronic_Accountant
Sessions
- Session
Authorize 1
Access CheckID INi X ouT1 ~r
7 .,
B Acquire
Rejected
|
Accepted LogOK
— *—
i i TaxPayer 5
b) Biometrics Plug-In z ¢) PassWord Plug-in
InputPW
BioDB
Bio GetBio [CheckBio [BioCK] | Continue YEIS
[BioRgtOK]
NID R?‘e“ Timer

[PWOK] ves

Continue

Reject

Figure 4.5: An example of UCM model

CHAPTER 4. SEMIFORMAL METHODS 31

Fork is when one path is splitting into two different paths. In OR-fork
the execution continues only in one of the paths, depending on the conditions
stated in the splitting point. In AND-fork the execution continues in both
paths simultanously.

The OR’s are graphically represented by simple crossing. The AND’s are
graphically represented by vertical line, to emphasize the need of synchro-
nization.

There also can be presented an interaction of two or more paths, without
actual joinning. These are the cases when starting points (waiting points) of
one path is dependent form the execution of other paths. It is graphically
repesented by drawing the line near the starting (waiting) point. There is
also a special sign for abort. In this case the execution of one path interupts
the execution of another path. Graphically represented as lightning.

When the UCM model is finished we can bound this model to the model
of the system with possible components.The System is drawn as a rectangle,
with smaller rectangles inside representing different components. The path
segments are drawn inside the components, to show the responsibility of the
components in execution of particular path segment.

Tool Support

The tool support of UCM can be found at the www.usecasemaps.org. Here
you can find UCM navigator called UCMNav, which is a tool made by the
student as his M.Eng thesis in 1998. From this time many other people
participated in adding new features to the navigator. The group of people
working around this tool have decided to begin working on a new generation
of navigator, in a form of Eclipse platform. This platform is called jUCMNayv,
and is also available for download on UCM web page.

URN as a notation is simple and easy to use. The advantage is in the
elaboration of the nonfunctional requirements. The main difference between
Use Case Maps of URN and Use Case diagrams of UML is in the level of
detail. UCM is designed only for low level of detail, the use cases in UML
can be used in various level of detail. Higher level of detail with UCM can be
achieved by transformation into Message Sequence Charts (MSC) as an al-
ternative to collaboration diagram in UML. MSC is also an ITU-T language.
The transformation can continue into SDL language, which is a combination
of graphical technique with formal description. These languages were cre-
ated as a complements to each other and the transformation is supported by
ITU-T products. The advantage in choosing a family of languages is in their
collaboration and their big coverage of the requirements analysis process.

The effectiveness of graphical models is very high. Drawing a model can

CHAPTER 4. SEMIFORMAL METHODS 32

help to better vizualize the system as a whole. Drawing a grahical represen-
tation of whole system can help finding gasps that were not so obvious before.
Graphical models with their simplicity are the best way when starting using
techniques in requirements analysis.

Chapter 5

Formal Methods

The primar reason of using mathematical formalism in requirements engi-
neering is the quality of the requirements and the possibility of automatisa-
tion of some of the processes, especially some test cases. The ambiguity is
the biggest problem within requirements engineering and the exact science
removes it.

Formalizing of the requirements can also be used in automatic test case
generation, and formal proof can replace many test cases. On the other hand
the formal specification does not show the correctness of the entire system.
The end-to-end tests are still to be done individually. Also good design of the
system is needed for system to be correct. The reason why formal techniques
are not used so often is in the cost of the formal specification. Many think
that the use of formal methods raises the price of the software system, the
fact is that the formal specification takes more time and so money, but this
time is spared in the phase of software development and maintainance.

The notation used in formal methods is more complex that in graphical
models, but because of usage of basic mathematical symbols it is not so hard
to learn, and does not require trained mathematicians. The use of formal
methods is recommended in every system where the correctness is wanted.

Formal models techniques can be divided into two main categories.
Model-based formal methods and property based formal methods.

The model based formal methods creates the model of the system de-
scribing the different states of the system and possible operations that can
be made on a particular state.

Property based formal methods decribes operations of the system and
their relationships. These methods are based on process algebra. Algebraic
specification defines syntax of operations and axioms of the system. |16, 17,
18]

33

CHAPTER 5. FORMAL METHODS 34

5.1 7 notation

Model based formal methods build an abstract model of the system and
specify the operations being made. In model based formal specification are
used set theory, function theory and logic. The models made are idealized,
trying to be free from implementation bias.

The model of the system consists of possible states of the system, accom-
panied by possible operations of the system and indication of the change of
the state.

The most popular model based formal methods are Vienna development
method (VDM) and Z notation [19, 20|. They are both based on mathemat-
ical set theory, but have different syntaxes. The VDM was the first formal
method ever used for large scale project. The Z notation was also used for
large scale projects, and it became IBM’s main formal specification tool.

7 notation was proposed in 1977 by Jean-Raymond Abrail. Further de-
velopment continues at Programming Research Groups at Oxford University.
Z notation became an ISO standard in 2002. Z is formal specification that
is independent from program code and can be completed early in the devel-
opment. Z notation uses predicate logic. The requirements are decomposed
into small pieces called schemas. In Z notation we distinguish two kinds of
schemas, static and dymanic.

Static schemas describes all the possible states of the system and invariant
relationships. The static schema consist of name of the schema. The top
part of the schema contains declarations of variables. At the bottom part
the system invariants as relationships between the values of the variables are
declared. System invariants are true in every state of the system.

Dynamic schemas represents the operations. The name contains A as
a symbol of the state change. The top part includes observations before
the state change. The input variables names ends up with 7 to be clearly
recognized. The bottom part contains observations after the state change.

The properties defined in the operations are proved by the invariants
using a predicate logic.

With the schemas it is possible to describe the whole system. The de-
scription is so specific that it is only a step from real program language.
The schemas can be rewritten as procedures. This kind of specification is
the bridge between the written code and the specification. It is writting a
pseudocode, that is not so exact as code, but has all it’s attributes. The
most used one is the possibility of automatic test generation and possibility
of prove.

CHAPTER 5. FORMAL METHODS 35

__ BirthdayBook1 — RAddBirthday
names : My — NAME A Birthday Book
dates 1 My — DATE o

hwm : M result! : REPORT

Vi, 7:1.. hwme {name? & knouwn A
= birthday U {name? — date?} A

i &£ § = names(i) & names(j)

__ FindBirthdayl
= BirthdayBook]

resuli! = alveady fmown)

name? : NAME
date! : DATE
de:1.. huwm e

name? = names{1) A datel = dates(i)

Figure 5.1: An example of Z schema

5.2 KAOS

KAOS is goal-oriented formal language [21, 22, 23]. The KAOS models
contains both graphical representations of system and formal mathematical
description of the objects.

KAOS contains four types of models. Goal model specifies the goal and
its subgoals. The goals with its subgoals are drawn as a derivation trees. The
derivation of goal continues while the identification of the agents, responsible
for the leafs of the derivation tree, is not explicit.

Agents are responsible for achieving goals. Agents can be users of the
system or parts of the software. In the Agent model the agents are assigned
to the goals. Operation model specifies the operations made by agents to
achieve the goals. The operations are described by the input, output, the
state of the system before the operation starts and the state of the system
after the oparation ends.

Object model identifies the objects used in KAOS models, such as entities,
agents, relationships. A formal specification is used for dascription of the
objects in KAOS.

Objectiver is a software used for tool support of KAOS model. This tool
supports generation of software requirements specification from the KAOS
model, which is heplfull when writting the specification document.

It is relevant to think about KAOS model for projects where the require-
ments analysis takes form 4 to 8 man months. The time spent using KAOS
is around 3 man months and the cost is 10

CHAPTER 5. FORMAL METHODS

<Rgent > COperation
/Hequirement? g Refinement

;Gpe-ratiﬁnaiize % Responsible

Figure 5.2: KAOS notation definition

36

Goal modeling

KAOS

How ?
Responsibility modeling

OBSTACLE

y n?um:ngr y

ENTITY
] (}.

-Rgre ation
! g\

Binary
Association

ENTITY

OPERATION

Link What to do?
When ?

On what?

Tlsa |_— Input
~ entrty
N-AR
ASSOCIATION

Object modeling

Operation modeling

& Output
Figure 5.3: KAOS modelling example

CHAPTER 5. FORMAL METHODS 37

Requirement In-DES_64.State

Concerns Sgppe where Ssppe = DESGdsppe
Refines Achieve[Adapt from. DES 64 ta DES 128]
InformalDef The program satisfies Ssppc.
FormalDef Ssppec = DESGlsppc

Goal Achieve[Adapt_from_DES_64_to_DES_128]

Concerns Ssppc. Tsppc. A REQ where
Ssppc = DES64sprpc Tsppa = DES128spEcy
Appg = Request 64_to 128 Onepoint ppg

Refi nedTo In. DES 64 State : [n. DES. 128 State

InformalDef The program initially satisfies: Ssppc.
When it reaches a safe state all obligations generated by

Ssppc are satisfi ed.

FormalDef Ssppc A ¢ Arpg 1 Tsprc

Operation RequestG4tol 280nepoint

Input The adaptive system status = status of MetaSocket
Output Agpg

DomPre Ssppc

DomPost Ssppc A A REQ

Figure 5.4: An example of formal description of entities in KAOS

5.3 Usage of Formal Methods

The use of mathematical model eliminates the ambiguity from the require-
ments specification. With the help of mathematical proving methods many
expected properties of the system can be proved. This helps to find mistakes
made in the analysis. It is important to realize that not everything can be
proved and also that there can be mistakes made in the proofs. By testing
the presence of the mistakes is proved not the absence. In the formal proofs
the correctness of the system is prooved, and if the mistakes are made they
are easier to find.

The formal methods are used more often in large systems, where the
collaboration of many programers is needed. The use of formal methods
is rising. Nowadays for building most of critical systems the use of some
kind of formal method is required. The formal specification is used whenever
the correctness is important. The problem with formal methods is that it
takes time to make a good specification. Even if this is returned in the
maintainance phase, the managers don’t take this into account.

Due to lack of experience the estimations made are not so precise as
expected. This fact often leads to disillusion from the use of formal methods.

Formal specification can be used also for generating a natural language
specification. By automatic generating the specification from the formal
model one can avoid the main problems of the natural language written spec-
ification. When generated from formal model there is no place for ambiguity.
It is complete and consistent.

Chapter 6

Choosing the Right Technique

When finding the right modelling technique for particular software system,
one should consider many different aspects.

6.1 Considered properties

- Size and complexity of the system

- The level of abstraction of the model

- The applicability of the model for special kinds of systems
- Support of the non functional requirements analysis

- The possibility of modelling technique to capture the most important
parts of software

- The features of the tools available
- Traceability
- The experience of the analysits, programers

- The experience of the customer

The expected complexity and size of the system is the main aspect to be
considered. Smaller systems are mostly simplier and the work around is not
so big. Complex modelling techniques are not necessary to be used here, and
often spare more time than clasical analysis.

For more complex systems it is recommended to use more complex mod-
elling techniques. The use of structural language, when writting down the
basic user requirements to set out the main functionality of the created soft-
ware, is important. Structural language can truncate the amount of text

38

CHAPTER 6. CHOOSING THE RIGHT TECHNIQUE 39

needed. When good writting styles are used the understandability of the
text is even higher than writting with classic sentences.

For deeper analysis the usage of graphical models is recomended. Our
brain works with images that is why we better and faster understand the
images than paragraphs of text describing the image. The graphical repre-
sentation can be heplful when comunicating with customers - laicks.

Graphical models do not consist of images alone, written description is
also needed. The quality of written description has impact on the quality
of the whole model. The deeper is analysis the more time is spend, but the
implementation is easier than. Graphical models have different kinds of the
depth of the analysis. The wanted depth of the analysis of the requirements
should be also considered when chosing a right modeling technique.

UML model contains many kinds of diagrams, which can be used with
different depth of analysis. On the other hand the URN language supports
only the upper level of the requirements analysis. To support deeper analysis
URN has an option of transformation into MSC language, which goes into
more detail. The family of ITU-T languages ends up with graphical model
using formal methods SDL. On the ITU-T family is best the support and
coordination of the languages.

I consider as an advantage the GRL model, which as one of a few is
esspecially made for capturing non functional requirements. There are not
many languages considering non functional requirements. Non functional
requirements are important, because are mostly crucial for software accep-
tance by the customer. When using a model not considering non functional
requirements at all, there is a high chance that this can be forgotten and the
created software is out of scope of the requirements. As a disadvantage of
ITU-T languages I consider their applicability. They are designed only for
telecomunication systems and services. This can be considered as an advan-
tage when choosing a model for telecomunication systems and services. It is
always better to choose a specific model for the wanted kind of system, than
the general one.

The notation available in modelling technique should be also considered.
In every kind of software one should concentrate on the most complex part of
the software, and find out if the notation of the modelling technique decsribes
this part enough to make it clear. Not everyhing can be modelled. One have
to realise that it is only a model, the real system is more complicated. The
model should emphasize the most complex parts of the system.

With choosing a modelling technique hand by hand one need to choose
also a software that supports the technique. The rules are the same as
choosing any kind of software. One should find references on this software,
if there are not any hidden troubles that could affect the usage for a specific
kind of software.

CHAPTER 6. CHOOSING THE RIGHT TECHNIQUE 40

The traceability of the modelling technique in other development is also
important. For example the eclipse platform which supports the UML mod-
elling is able to generate a headers of the needed procedures in Java language.
This feature of the tool supports the programers. Many of the more complex
techniques supports the test case generation. When using the formal meth-
ods unit test can be even automated. The ability of the tool to generate a
readable documentation is also important. When writing of the documen-
tation is automated, lot of time is spared. In more complex systems the
documentation has more than hundreds pages, which is hard to maintain.

The experience of the people working with the model is also decisive.
When the analysits are used to model using one kind of technique, it is
propable that when the experience is good, they will continue in using this
technique in future projects. When considering a new technique the analysits
should be trained to be able to use it properly. This also spends time and
money, which is important for the managers to consider also. Not only
analysits creating model should be trained. There are also programers, who
work with the model. The programers opinion should be considered to.

The model of the system is a basis for the documentation needed by the
customer. This documentation is often a part of contract, so it must be
written in a style that is understandable for the customer. If the customer is
used to more detailed specification it is an advantage for the analysts. They
can discuss all details of the proposed system and so can find many mistakes.
If the customer needs to approve complex analysis document, which he is not
able to understand, he is not able to consider whether it has the expected
functionality.

CHAPTER 6. CHOOSING THE RIGHT TECHNIQUE 41
Technique | scope domain abstraction | notes
level
QuARS natural language | general low university
description project. not
widely used
BADGER | natural language | general low university
description project. not
widely used
Circe natural language | general low used for wvalida-
description tion of require-
ments
UML graphical — model, | general not defined | the most used
supported by graphical model
textual description
URN graphical model, | telecomunication low supported by
supported by | services ITU-T, dealing
textual description especially with
non-functional
requirements
MSC graphical model, | telecomunication medium supported by
supported by | services ITU-T
textual description
KAOS graphical ~ model, | general high can be used from
supported by the beginning of
formal description the requirements
analysis, auto-
matic validation
of the model
supported
VDM formal model general high first used in large
scale project,
very similar to Z
notation
Z formal model general high the most used for-
mal method
SDL graphical model, | telecomunication high supported by
supported by | services ITU-T
formal decsription
OBJ formal model general high family of lan-

guages based on
algebra and logic

Table 6.1: Overviw of basic properties of modelling techniques

Chapter 7

Conclusion

In my diploma thesis I outline the life cycle model of software system to show
the importance of the requirements engineering as a part of software engi-
neering. | presented an IEEE Recomendation for a Software Requirements
Specification to show a reader all the properties of a good quality require-
ments documentation. These properties are emphasized to help reader to
realize the aspects of natural language written documentation and its prob-
lems.

I presented modelling techniques, that are used for capturing software
requirements. I show different approaches to give reader an overall overview
of specification techniques, to realize all different possibilities in choosing a
modelling technique. T presented techniques that works with the natural
language description to show what can be done only by proper formulation
of the sentences.

The techniques using graphical notation were presented as an example of
most used techniques, that are also heplfull for customers for better under-
standing of software description.

At the end were presented techniques using formal description, which are
slowly finding their users due to the need of mathematical notation. The
formal methods are forcing analysits to model the system to the deepest
details, which spends a lot of time. I tried to show that formal methods are
not just a teory, and the obstacles are not so big as they are presented.

42

Bibliography

[1] http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

[2] Tan Sommerville. Software Engineering, 6th Edition. Addison-Wesley,
2002.

[3] Software Engineering Standards Committee of the IEEE Computer So-
ciety. Std 830-1998 ieee recommended practice for software requirements
specifications. pages 1-20, 1998.

[4] G.Lami M.Fusani, S.Gnesi. An automatic quality evaluation for natural
language requirements.

[5] Stephen Cook William Scott. A context-free requirements grammar to
facilitate automatic assessment.

[6] Bruce Powel Douglas. The uml for systems engineering.
hitp:/ /www.nohau.se/articles e, pages 1-12.

[7] http://www 306.ibm.com/software /rational /uml/.
[8] http://portal.etsi.org/mbs/Languages/UML.

[9] Daniel Amyot. Introduction to the user requirements notation: Learning
by example. Computer Networks: The International Journal of Com-
puter and Telecomunications Networking, 42:285-301, 2003.

[10] Daniel Amyot. Requirements engineering & user requirements notation.
http://www. UseCaseMaps.org/urn/, pages 1-46, 2002.

[11] http://www.usecasemaps.org.

[12] K. Saleh A. Al-Zarouni. Capturing non-functional software requirements
using the user requirements notation. The 2004 International Research
Conference on Innovations in Information Technology, pages 1-9, 2004.

[13] http://www.cs.toronto.edu/km/GRL.

43

BIBLIOGRAPHY 44

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

Gunter Mussbacher Daniel Amyot. Urn: Towards a new standard for

the visual description of requirements. www.usecasemaps.orq/pub, pages
1-17, 2002.

Study Group 10. Draft specification of the user requirements notation.
ITU - Telecomunication Standardization Sector, 2000.

Tan Sommerville. Requirements Engineering: Processes and Techniques.
John Wiley & Son Ltd, 1998.

Anthony Hall. Seven myths of formal methods. Software, IEEFE, Volume
7, Issue 5, pages 11-19, 1990.

Michael G.Hinchey Jonathan P.Bowen. Seven more myths of formal
methods. Fifth Furopean Software Engineering Conference, pages 34—
41, 1995.

J. M. Spivey. The z notation:a reference manual. J. M. Spivey, Oriel
College 1998, pages 1-168.

http://en.wikipedia.org.

A kaos tutorial. http://www.objectiver.com/en/documentation/kaos/,
pages 1-42.

Denis Ballant. Modeling project requirements with objectiver.
http:/ /www.objectiver.com/en/documentation/kaos/, pages 1-12.

Heather Goldsby Ji Zhang Greg Brown, Betty H.C.Cheng. Goal-oriented
specification of adaptation requirements engineering in adaptive sys-
tems. hitp://www.objectiver.com/en/documentation/kaos/, pages 1-7.

Abstrakt.

Proces tvorby softvérového systému sa so zvicujicou komplexitou sys-
tému stava komplikovanej$im. Vzniki potreba riadenia ¢innosti stivisiacich s
tvorbou softvéru. Vytvoril sa model Zivotného cyklu softvéru. Vseobecne by
sa dal cyklus rozdelit na pat zdkladnych faz : zber a analyza poziadaviek,
design, implementacia, testovanie a udrzba.

Kazda z faz je pre vyvoj softvéru dolezitd. Chyby vytvorené v tej ktorej
faze ovplyviuji fazy nasledujice. Snahou je zachytit chyby ¢o najskor, preto
je kladena dolezitost na kvalitu poziadaviek, ktoré ovplyviuju cely proces
vyvoja softvéru. Chyby vytvorené vo faze zberu a analyzy poziadaviek ¢asto
vedi k vyvoju softvéru nepouzitelného zakaznikom. Ak v zbere poziadaviek
dojde k nedorozumeniu so zédkaznikom,a v popise Specifikicie poziadaviek sa
nedostatoc¢ne popise. Takéto nedorozumenie sa odhali az v procese testova-
nia zédkaznikom. Co je v8ak dost neskoro, kedze boli uz vynalozené nemalé
prostriedky na implementaciu. Takymito zbyto¢nymi chybami sa mini pe-
niaze a hlavne aj kopa casu. Casto sa stava Ze tieto naklady v plnej miere
nesie vyvojova firma. Aby sa predislo zbyto¢nym chybam je potreba poriadne
popisat vyvyjany softvér eSte pred zac¢iatkom implementacie.

S definovanm poziadaviek bol vzdy najvicsi problém, kedze je potreba ko-
munikacie so zakaznikom-laikom, ktory ¢asto nevie spravne formulovat pozia-
davky. Preto je potreba spisat poziadavky vo forme prijatelnej pre zdkaznika.
Poziadavky treba popisat spdésobom, aby sa vyhlo nedorozumeniam. Prob-
lém pri pouziti hovorového jazyka je z jeho nejednoznacnostou. Pouzitie
struktirovaného jazyka a jednoduchych viet pomaha v opise. Pri pisani je
potreba pouzit formulacie, ktoré ¢o mozno najjednoznacnejSie opisuji sys-
tém. Treba sa vyvarovat slovnych spojeni ktoré vedu k nejednoznacnosti a
¢o mozno najkonkrétnejsie popisat systém.

Vyvinulo sa niekol'ko roznych systémov ktoré poméhaju pri pouzivani hov-
orového jazyka. Napriklad taky QuARS je postaveny na lexikilnej analyze
pisaného textu. Text je rozdeleny na lexémy, a nasledne kontrolovany oproti
nadefinovanému slovniku. Systém upozoriiuje na slovné formulacie ktoré
vedl k nejednoznacnosti pisaného textu. Tento nastroj je tak dobry ako do-
bre je nadefinovany slovnik. Aj ked sa systém konkrétne nepouZije, je poucné
oboznamit sa s formulaciami vediacimi k nejednozna¢nosti a pokusit sa ich v
pisanom texte nepouzivat.

Dalsi sposob kontroly pisaného textu je kontrola priamo pri pisani. Vety
st tvorené priamo podla predlohy. V systéme BADGER bola predloha vyv-
inutd na zéklade spravnych formulécii a zaznamenana pomocou formélneho
jazyka pouZzitim bezkontextovej gramatiky. Pisnie podla takejto predlohy je
obmedzujice a teda aj naro¢nejsie ale vysledok je viditelne lepsi. PouZité
formulacia je ovela presnej$ia a nie prili§ vSeobecna. Nejednoznadnost je
ovela menSia a tak aj mozné chyby si eliminované. PouZzitie nastrojov na

BIBLIOGRAPHY 46

apravu pisaného textu je jednoduché a nie velmi ¢asovo naroc¢né. Je vsk
potreba si uvedomit, ze nejednoznacnost sa neda celkom odstanit.

Dalgim sposobom ako zlep§it jednozna¢né pochopenie popisovaného sys-
tému je pouzitie grafického modelu. Grafické modely majua velka vyhodu, su
ovela priehladnejSie ako pisany text. Ludsky mozog pracuje s obrazkami a
preto je pouZitie obrazkov na vysvetlenie problematiky ovela lepsie ako kopa
pisaného textu. Grafické modely st jednoduché a ich notécia je intuitivna,
takZe nie je potreba dlhodobého Skolenia. Notacia je porozumitelna aj pre
laikov - zékaznikov.

Najcastejsie pouzivanym grafickym modelom je UML Model. Graficky
model systému pozostava z viacerych diagramov, kazdy z inym uhlom
pohladu. Tento model obsahuje diagramy popisujice vonkajSiu, hrubu
funkcionalitu systému, datovy model systému, Strukturdlny model zachy-
cujuci vztahy medzi jednotlivymi softvérovymi ¢astami systému ako aj pre-
viazanie softvérovych casti na hardvérové komponenty. UML obsahuje aj
diagramy zachycujice spravanie systému a to pomocou popisu vymeny dat
medzi jednotlivymi objektami, alebo popisom reakcif ¢asti systému na vonka-
jsie impulzy. Pre kazdy typ softvéru je vhodné pouzitie inych diagramov.
Diagramy UML vSak nie su dostacujice. Kazdy objekt v modeli je do-
plneny popisom. Tento popis méa predpisand struktiru, aby sa zvysila kvalita
popisovanych pociadaviek. UML model podporuje aj popisovanie forméalnym
jazykom OCL. Kvalita popisanych poziadaviek zavisi aj od hIbky modelova-
nia systému, kedZe UML nepredpisuje do akej hibky ten ktory model za-
sahuje.

Pre porovnanie som si vybrala modelovaci jazyk URN. Jedna sa o jazyk
vyvijany Specidlne pre telekomunika¢né systémy. URN pozostava z dvoch
modelov GRL model zachytava nefunkéné poziadavky na systém, UCM
zachytava funkéné poziadavky. Nefunk¢éné poziadavky st pre vyvoj velmi
dolezité, maji vplyv na vyber pouzitych technologickych rieSeni. UCM model
zachytava zdkladnt funkcionalitu systému. Je to ekvivalent k Use Case dia-
gramu v UML modeli. Pre hibsiu analyzu je potreba transformécie na dalsi z
ITU-T jazykov MSC. MSC jazyk je obdobou sekvenénych diagramov UML.
Popisuje vymenu dat medzi jednotlivymi komponentami systému. I[TU-T
jazyky podporuji esSte transformaciu MSC na graficky model s formalnym
popisom SDL jazyk.

Vyhodou ITU-T jazykov je ich priama nadviznost a jednozna¢na hibka
zachytenej analyzy. 'Tieto jazyky st vSak jednostranne orientované na
analyzu telekomunika¢nych systémov, ¢o obmedzuje ich pouzitie. UML
model je vS§eobecny vhodny pre vac¢sinu systémov, preto je aj najpouzivanejsi
spomedzi grafickych modelov. Ak sa v8ak firma jednostranne orientuje na
vyvoj Specializovanych systémov urcite je vhodnejSie vybrat si modelovaci
jazyk usity na mieru.

BIBLIOGRAPHY 47

Jednoznacné eliminovanie nejednoznacnosti je mozné len pouzitim
matematickych formalnych modelov. Na popis poziadaviek sa pouziva mnozi-
nova teoria, logika, ale aj pseudoprogramovacie jazyky. Vzhladom na kom-
likovanti notaciu je potreba viac ¢asu na naStudovanie notacie. Pouzitie
formalnych metod je velmi zriedkavé. NajcastejSie pouzivanym formalnym
jazykom je 7 jazyk. Z je pouzivany IBM ako zakladny formalny jazyk. Z
pouziva na modelovanie systému schémy. Schémami popisuje jednotlivé stavy
systému ako aj prechody medzi tymito stavmi. Modelovaci jazyk KAOS je
prikladom spojenia grafického modelu a formélneho popisu. KAOS vytvara
model systému pomocou cielov. K ciefom sa priradené ¢asti systému, ktoré
zodpovedaji za vyplnenie jednotlivych cielov. Jednotlivé ¢asti systému si
popisané formalnym jazykom. KAOS podporuje generovanie dokumentécie s
vytvoreného modelu, ¢im Setri ¢as potrebny pre spisanie dokumentu potreb-
ného pre zakaznika. Formélne jazyky sa pouzivaji hlavne koli moznosti au-
tomatického modulového testovania.

Pri vybere modelu na zachytenie poziadaviek je potrebné vziat do tvahy
viacero faktorov. V prvom rade je to velkost a komplikovanost systému
na urcenie potrebnej hibky analyzy. Pre menej komplikované systémy nie
je potreba hibkovej analyzy. Komplikovana analyza by zbyto¢ne predrazila
jednoduchy systém. Naopak pri vi¢som systéme investicie do analyzy su
nutnostou. Model by mal ¢o najlepSie zachytit hlavne najzlozitejsie Casti
systému. Schopnost modelu zachytit podrobne zlozité ¢asti systému by malo
byt to najdolezitejsie kritérium pri vybere modelu. Popri vybere modelu je
potreba vybrat si aj nastroj na modelovanie. Tu treba vziat do ivahy mozné
technické naroky na pocitac, dostatotna podpora timovej prace, a naroc¢nost
na ovladanie.

Vyvoj softvéru je komplexna vec. Kazda faza vyvoja je dolezita. Zber a
analyza poziadaviek je ¢asto podcenovana. Popis poziadaviek je podkladom
pre programatorov a ulahc¢uje im pracu ak je kvalitny. PoZitie modelov na
zachytenie poziadaviek poméha pri analyze uvodomit si potrebné suvislosti
a tak predist zbytoénym chybam.

