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Abstract

A real flow on a graph is a flow with values in R. A real nowhere-zero r-flow is a real
flow ¢ with each edge satisfying the condition 1 < |p(e)| < r — 1. The real flow number
$g(G) of a graph G is the infimum of all reals r such that G has a real nowhere-zero
r-flow. The purpose of this thesis is threefold.

First, we summarize and systematize the fundamental results of real flow theory. We
give new proofs of several known results, in particular we present a new direct combina-
torial proof of the existence of the minimal real nowhere-zero r-flow.

Second, we continue in the work of Z. Pan and X. Zhu who showed that for each
rational number r between 2 and 5 there exist a graph with real flow number r [J. Graph
Theory 49 (2003), 304-318]. We answer their question whether for each rational number
4 < r <5 exists a snark with real flow number r by constructing an infinite family of
snarks for each such r.

Finally, we obtain a lower bound on the real flow number of a snark of a given order
and show that the Isaacs flower snarks attain this bound. As a consequence we show that
the real flow number of the Isaacs snark lop,1 is Pr(logr1) = 4 + 1/k, completing the
upper bound of E. Steffen [J. Graph Theory 36 (2001), 24-34].

Key words. Real flows, real flow number, flow number, snark, Isaacs snarks.
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Chapter 1

Introduction

The flow on a graph is a well-known and important concept in graph theory with many
theoretical and practical applications. A k-flow on a graph G is an orientation of G and
an assignment of non-negative integers smaller than k to the edges of G such that the
sum of incoming values equals the sum of outgoing values. The concept of an A-flow,
where A is an abelian group, is similar, but instead of integers we use elements of A and
the addition in A. A nowhere-zero flow is one which does not use 0. The concepts of
nowhere-zero A-flow and nowhere-zero k-flow are closely related — a graph has a nowhere
zero A-flow, |A| = k if and only if it has a nowhere-zero k-flow [20].

A systematic study of nowhere-zero flows was initiated by Tutte in [19] and [20] as a
dual concept to vertex coloring. Among others, Tutte proposed the following important
conjecture.

e 5-Flow Conjecture: Every bridgeless graph admits a nowhere-zero 5-flow.

Trivially, a graph with a bridge cannot have a nowhere-zero A-flow for any abelian
group A (including the group of integers Z). On the other hand, there is an immediate
question whether there exist a bound n such that each graph G has a nowhere-zero n-flow.
The 5-Flow Conjecture states 5 as this bound. The existence of such a general bound was
first established independently by Kilpatrick [12] and Jaeger [11] who showed the bound
to be 8. Later Seymour [16] proved that every bridgeless graph has a nowhere-zero 6-flow.

The 5-Flow Conjecture still resist all attempts of solving. During the time many
different approaches have arisen, real flows being one of them. The fundamentals of real
flow theory were set by Goddyn, Tarsi and Zhang in [6] by introducing the concept of a
fractional flow and the star flow index. Again this notion was derived as the dual concept
to (k, d)-colorings and the star chromatic number. Also the basic properties of these flows
were acquired via this duality. One of the most important results says that these flows
are in fact a refinement of integral flows. Later it has transpired that these notions can be
introduced more naturally by employing rational or real flows instead of the previously
used (k, d)-flows. A real nowhere-zero r-flow is then an R-flow such that the values belong
to the interval (1,7 — 1). The real flow number of a graph G is the infimum of all reals r
such that G has a real nowhere-zero r-flow. This infimum is known to be a minimum and
also to be rational. These historical issues are one of the reasons why the terminology in
this theory has become patchy. Therefore one of the objectives of this thesis is to unify the
terminology and to establish the basic theorems by using the notions of real flow theory
itself.

The question “ Which are the possible integral flow numbers of a graph?’ naturally
suggests a similar question about real flows: Which are the possible real flow numbers of
a graph? Pan and Zhu [15] showed that all rational numbers between 2 and 5 are possible
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real flow numbers. The graphs which they constructed for the rational numbers between 4
and 5 have several nice properties which led them to ask whether for each number greater
than 4 and smaller than 5 there exists a snark with whose real flow number is exactly
this number. Since the existence of a 4-edge-coloring in a cubic graph is equivalent to
the existence of a nowhere-zero 4-flow, the validity of the 5-Flow Conjecture would imply
that these are the only possible real flow numbers of snarks. The second objective of this
thesis is to give the affirmative answer to this question.

Steffen [18] showed, among others, that the Isaacs snark 5,1 has a real nowhere-zero
(4 4+ 1/k)-flow. During our attempt to show this flow to be the best possible we have
found out that there exists a general bound of the “size” of a graph having a given real
flow number. For regular graphs the “size” is the number of vertices of a graph. This
fact allowed us to give a lower bound for the real flow number of a snark with a given
number of vertices. For Isaacs snarks the resulting lower bound coincides with Steffen’s
upper bound and consequently establishes the real flow number of the Isaacs snark Iz, 1.
Reporting this research is the third main objective of this thesis. This direction may lead
to further interesting results.



Chapter 2

Preliminaries

2.1 Graphs

There are variable definitions of graphs. Some allow parallel edges, loops, semiedges, etc.,
some not. In this work all graphs are finite, undirected, and may contain both parallel
edges and loops. Occasionally we consider directed graphs as graphs endowed with an
orientation.

To be more precise, a graph is an ordered quadruple G = (D,V,I, L) where D is a
set of darts, V is a nonempty set of vertices, which is required to be disjoint from D, [
is a mapping of D onto V and L is a permutation of D, such that L? is the identity and
L(z) # x. The vertex set of G and the dart set of G are often denoted by V(G) and
D(G). We sometimes write 7! instead of L(z).

The mapping [ assigns to each dart its initial vertex, and the permutation L inter-
changes a dart and its reverse. The terminal vertex of a dart x is the initial vertex of 2.
The set of all darts having a given vertex v as their common initial vertex is denoted by
D(u). The cardinality of D(u) is the valency of the vertex u. The orbits of L are called
edges. Fach dart determines uniquely its underlying edge. A set of edges of a graph G
is denoted by E(G). An edge e is incident to a vertex v, if v € I(e). The set of vertices
incident to e is denoted by V'(e). A loop is an edge, which is incident only with one vertex.
Two edges are parallel if they are incident with the same two vertices. All basic notions of
graph theory can be easily use in this model. For definitions and more information about
graphs we refer to [2]. We recall that a circuit is a connected subgraph whose all vertices
have valency 2. The girth of a graph G is the length of the shortest circuit of GG, denoted
by g(G).

Let S C V(G). Then the boundary of S is the set of edges incident with one vertex
for S and one vertex from V(G) — S is denoted by 05S. Let H be a subgraph of G. A
contraction of G according to H, denoted by G/H, is a graph G’, such that all components
of H are contracted into a single vertex.

An directed graph is a graph G with an orientation O. The orientation O is a function
from the set of edges to the set of darts such that O(e) € e; O(e) is called the preferred
dart. The initial and the terminal vertex of an edge is an initial respectively terminal
vertex of its preferred dart. A circuit in a directed graph is a circuit such that the
terminal vertex of the an edge is also the initial vertex of another edge.

Let S C V(G). The set of edges incoming to S (denoted S™) is the set containing
all edges from V(G) — S to S. The set of edges outgoing from S (denoted S*) is the set
containing all edges from S to V(G) — S.



2.2 Flows in graphs

Let A be an abelian group written additively and let G be a graph. An A-chain on G is
a function ¢ : D(G) — A satisfying the following condition.

(F1) o(z7!) = —p(x).

For a vertex v, let Op(v) = >_ ) p(2). This value is the outflow from v with respect
to . A vertex with a non-zero outflow is called singular. An A-chain ¢ is an A-flow if it
has no singular vertices, that is, if the following property holds:

(F2) 0p(v) =0, for each vertex v € V(G).

A flow is said to be nowhere-zero if p(z) # 0 for each dart z € D(G). If A = Z and
lo(x)| < k for each dart x, ¢ is also called a k-chain, k-flow and a nowhere-zero k-flow,
respectively. A flow on a graph G induces a flow on G/H for every subgraph H of G by
simply keeping the values on darts that have not been contracted. An outflow from H a
subgraph of a graph G, 0p(G) is the sum of outflows of all vertices of H.

From the definition it is easy to see that if a graph has a nowhere-zero k-flow, it also
has a nowhere-zero k’-flow for any k&’ > k. It can easily be shown that every bridgeless
graph has a nowhere-zero k-flow for some k. Therefore, for a bridgeless graph G, there
exists the smallest integer k, such that G has a nowhere-zero k-flow. This value is called
the flow number of G and is denoted ®z(G).

The following two theorems describe the relationship between integer k-flows and flows
in abelian groups of order k.

Theorem 2.2.1. [20] A graph G has a nowhere-zero k-flow if and only if it has a nowhere-
zero Zi-flow.

Theorem 2.2.2. [20| Let A and B be two abelian groups of equal order. Graph G has a
nowhere-zero A-flow if and only if it has a nowhere-zero B-flow.

The flow number of a bridgeless graph is always at least 2. A fundamental question
is which integers are the possible values for the flow number of a graph. It is easy to
construct graphs with flow numbers 2, 3, 4 and 5, but graphs with other flow numbers
are not known. This led Tutte to propose the following two conjectures.

Conjecture 2.2.1. (5-Flow Conjecture) |20| Every bridgeless graph has a nowhere-zero
5-flow.

Conjecture 2.2.2. (3-Flow Conjecture) |21| Every graph without a 3-edge cut has a
nowhere-zero 3-flow.

The best approximations of these conjectures are theorems by Seymour [16] and Jaeger
[10], respectively.

Theorem 2.2.3. Fvery bridgeless graph has a nowhere-zero 6-flow.
Theorem 2.2.4. FEvery graph without edge 3-cuts has a nowhere-zero 4-flow.

One of the possible approaches to these conjectures is o reduce the scope for coun-
terexamples as much as possible. For example, it is known that it suffices to establish the
5-Flow Conjecture for cubic graphs [16] and the 3-Flow Conjecture for 5-regular graphs
[18]. In this thesis we study flows on cubic graphs. In this case, there is an important
relationship between edge colorings and 4-flows. |2]
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Figure 2.1: Basic segment of Isaacs snarks.

Theorem 2.2.5. [20| For a cubic graph G the following statements are equivalent:
1. The graph G has a 3-edge coloring.
2. The graph G has a nowhere-zero 4-flow.
3. The graph G has a nowhere-zero (Zy X Zs)-flow

For more information about flows we refer the reader to [2|. For additional information
about nowhere-zero flows we refer to [17] and [11].

2.3 A little about snarks

A snark is a ‘non-trivial’ cubic graph whose edges cannot be colored with 3 colors. Gard-
ner [4] took the name ‘snark’ from Lewis Carroll’s “Hunting of the Snarks" to mean a
graph which is very difficult to find. The interest in these graphs grew as it was found
out that several significant conjectures about graphs would have snarks as minimal coun-
terexamples. Despite their simple definition and years of investigation very little is known
about these graphs.

‘Non-triviality’ of snarks is usually defined as follows. A snark is usually assumed
to be cyclically 4-edge-connected cubic graph with girth at least 5 and chromatic index
4. A graph is said to be cyclically k-edge-connected if deleting fewer than k£ edges does
not disconnect the graph into components each containing a circuit. This constraint is
brought to avoid cases where it would be trivial and non-interesting to construct a snark
— for instance this would happen with the occurrence of a bridge in a snark as there is no
cubic graph with a bridge that can be 3-edge-colored. Note that, by Theorem 2.2.5, the
condition to have the chromatic index 4 is equivalent to the non-existence of a nowhere-
zero 4-flow.

For a long time since the snarks were introduced, only a few snarks were known. The
first infinite classes of snarks was constructed by Isaacs [8]. Isaacs also gave a construction
which created an infinite family of snarks from non-snarks. These graphs are called Isaacs
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Figure 2.2: Isaacs snark I5.

snarks or flower snarks [8]. So far this is the only known construction that produces snarks
from non-snarks.

The Isaacs snark (Figure 2.2) Iy, is the graph with the vertex set V(lgi1) =
{a;,bi,ci,d; | i =0...2k} and the edges

E([2k+1) = {aibia a;C;, a;d;, bibiyy, cicitr, didigq \ 1=0,..., 2]9}7

with indices reduced modulo 2k + 1 (Figure 2.1). Since then, many construction methods
have been developed, but the class of Isaacs snarks is the only class of 6-edge-connected
snarks. Because of their extraordinarily their are often used to test different hypotheses.
Therefore their properties are intensively investigated (|3, 14, 5]).
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Chapter 3

Real flow theory

3.1 Real lows and real flow number

Tutte’s conjectures still resist attempts solving. Therefore many different approaches to
them have arisen. The concept of real flows and real flow number was introduced in [6]
as a (k,d)-flows and star flow index. The idea is to refine the concept of the flow number
of a graph.

Definition 3.1.1. Let G be a graph and let k, d be two positive integers k > 2d. A
(k,d)-flow on G is a Z-flow ¢ such that range of ¢ is in {£d,£(d+1),- -+ (k—d)}.
The star flow number ®*(G)is the infimum of k/d over all (k,d) flows on G

It is possible to take a more general approach. The relationship between these two
definitions will be discussed later.

Real flow theory is a natural extension of integral nowhere-zero flow theory. Since the
set of real numbers R under addition forms an abelian group, it is possible to consider
R-flows on graphs. By analogy to integer k-chains, k-flows and nowhere-zero k-flows, we
define their real counterparts. Let » > 2 be a real number. A real r-chain ¢ is an R-chain
such that for every dart d, |o(d)] < r — 1. A real r-flow is a real r-chain which is a
flow. A real nowhere-zero r-flow is an r-flow satisfying |¢(x)| > 1. The real flow number
$r(G) of a graph G is the infimum of the set of all real numbers r, such that G has a
real nowhere-zero r-flow. Note that if we chose |p(x)| # 0 instead of |o(x)| > 1 (as by
nowhere-zero flows in groups), we could divide all flow values to create a real nowhere-zero
r-flow for any r > 1 on any bridgeless graph.

Having a flow r-flow ¢ on a graph G, for r a real number, we can consider the darts
with positive flow value as preferred. Such an orientation is called the positive orientation
of G with respect to ¢. The flow through an edge e, p(e), is the flow through the preferred
dart of the positive orientation of G with respect to .

Analogously we can define a rational g-chain, a rational ¢-flow and a rational nowhere-
zero q-flow for ¢ is a rational number. The rational flow number, ®q(G), of a graph G, is
the infimum of all rational numbers ¢ such that GG has a rational nowhere-zero g-flow.

First we turn our attention to real flows. The first important result is that the infimum
in the definition of real flow number can be replaced by a minimum.

Theorem 3.1.1. [6, 18| Let G be a bridgeless graph with ®r(G) =r + 1. Then G has a
real nowhere-zero (r + 1)-flow.

Proof. Let r = inf{s € R; G has a real nowhere-zero s-flow} — 1. Then for each positive
integer n, G admits a real nowhere-zero (r + 1/n + 1)-flow, say ¢! . Clearly, ¢! can be
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viewed as an element of RP(@. The sequence (/,)°, is clearly bounded and therefore it

has a convergent subsequence (¢,,),~ ;. Let ¢ be limit of this sequence. Then the following
hold:

o (F1) p(x) = lim, .o on(z) = lim, oo —@n(x™1) = —lim, o0 pp(z71) = —p(z71),

o (F2) erD(v) plr) = ZmeD(v) Iy, o0 on () = Lm0 ZmeD(v) () = limy 00 0 =
0.

From the definition of a limit we get 1 < |p(z)| < r. Therefore ¢ is a real nowhere-zero
(r + 1)-flow. O

A combinatorial proof of Theorem 3.1.1 will be given later.
Theorem 3.1.2. [6, 18] Let G be a bridgeless graph. Then ®g(G) is a rational number.

Proof. Assume ®g(G) = r 4 1. Let ¢ be a real nowhere-zero (r + 1)-flow such that the
number of darts satisfying ¢(d) = r is minimal. Let us consider the positive orientation
with respect to . Clearly there is an edge e carrying the value r. Let a and b be two
vertices incident with e. We delete all edges carrying either the value 1 or r. The resulting
graph G’ is clearly disconnected — there is no path between a and b. If such a path P
would exist, then we could add a sufficiently small flow value to the circuit Pe of G, in
the direction opposite to the positive orientation of e. This would decrease the number
of edges of G with ¢(d) = r. Therefore G’ consist of several components.

Let G" = G/G'. The edges in G” with ¢(e) = r cannot form a circuit. Otherwise we
could subtract a sufficiently small flow value from this circuit and decrease the number of
darts with ¢(e) = r, which contradicts the choice of .

This means that there exists a vertex v of G” where edges with ¢(d) = r only point
to. Let k be the number of edges with ¢(d) = r flowing into this component, let [ be the
number of edges with ¢(d) = 1 flowing into this component, and let m be the number of
darts with ¢(d) = r flowing out of this component. Then

kr+11—m1=0

Therefore r is rational. O

The next theorem shows that the real flow number of a graph may be viewed as a
refinement of its flow number. This theorem also shows that our definition of the real
flow number is equivalent to the definition of the star flow index.

Theorem 3.1.3. [18] Let G be a graph, and let ¢ be a real nowhere-zero (p/q + 1)-flow
on G. Then there exists a rational nowhere-zero (p/q+1)-flow ¢’ on G such that for each
d e D(G), o(d) = k/q for some k € Z.

Proof. We proceed by induction on the number of darts such that ¢(d) # k/q for some
k € 7Z. If this number is zero, the theorem is proved. Assume that this number is non-zero
and let us take an edge e such that |p(e) — k/q| is minimal non-zero. We show that this
edge must lie on some circuit containing only edges carrying the flow p(e') # k/q.

If there was not such a circuit, the graph G’ created from G by deleting edge e and
edges carrying the value k/q would be disconnected. For the component X of G’ that
contains one of the incident vertices of e we would get

0=qdp(X)=q >, o= > qed.

d=(z,y),z€X,y¢X d=(z,y),zeX,y¢ X
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All but one of the numbers in the latter sum of are integers. Therefore we have a circuit
containing only edges with ¢(d) # k/q.

But |¢(e)—k/q| is minimal, so we can add the value |¢(e)—k/q| to the circuit according
to the positive orientation with respect to ¢. This decreases the number of darts such

that p(d) # k/q. O

The previous theorems show that the occurrence of irrational numbers is not essential.
Henceforth we can therefore assume that our flows only use rational values. Note that
the proof of this theorem does not use previous results, and therefore can be used as a
basis for a combinatorial proof of Theorem 3.1.1. We now establish two corollaries of
Theorem 3.1.3 which show that the real flow number is a refinement of the flow number
and the concept of a star flow index coincides with the rational flow number.

Corollary 3.1.4. [6, 18] Let G be a bridgeless graph. Then
Pz(G) = [Pr(G)].

Proof. By Theorem 3.1.1, graph G has a real nowhere-zero ®r(G)-flow. At the same
time, the latter flow is a real nowhere-zero [®7(G)]-flow. By using Theorem 3.1.3, G also
has a rational nowhere-zero [®g(G)|-flow such that for each dart ¢(d) = k/1. So ¢ is a
nowhere-zero [P (G)]-flow. O

We show that there is a one-to-one correspondence between (k, d)-flows and k/d-flows.
Corollary 3.1.5. Let G be a bridgeless graph. Then ®*(G) = Pr(G) = Po(G).

Proof. Let ®*(G) = k/d, where k and d are two positive integers. It follows that G has a
(k,n)-flow p. We can simply obtain a rational (k/n)-flow ¢ by setting ¢'(d) = ¢(d)/n for
each dart d. Conversely, if we have a real k/n-flow, using Theorem 3.1.3, we can obtain
a rational nowhere-zero k/n-flow ¢” such that for all darts ¢”(d) = k/n. Then we can
create a (k,n)-flow ¢"”, by choosing ¢'(d) = ¢(d).n. O

Now we are in position to give an entirely combinatorial proof of Theorem 3.1.1. The
original proof of this result due to Goddyn [6] uses flow-coloring duality in matroids. We
give a direct proof. We need the following simple number-theoretical result.

Lemma 3.1.6. Let r be an irrational number, and let N be a positive integer. Then there
exist positive integers p and q such that (p—1)/q < r < p/q and all non-zero solutions of
the diophantine equation x.p/q+ y.(p — 1)/q + z = 0 have one of |z|, |y| and |z| greater
than N.

Proof. We show that for each triple (x,y, z) # (0,0,0) of integers, there is only a finite
number of pairs (p,q) € N? satisfying the conditions of the lemma. The diophantine
equation can be also rewritten as follows

(+y)p+2z¢—y=0 (3.1)
From condition (p — 1)/q < r < p/q we obtain

p—qr <0
p—qr—1>0 (3.2)

Let « be the angle between the lines (x +y)p+ 2¢ —y = 0 and p — gr = 0. Clearly « # 0.
Therefore the length of the line segment on the line (3.1) delimited by the area (3.2) is
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at most 1/sin« which is finite. Since the distance between two possible pairs (p,q) is
at least 1, we have only a finite number of pairs (p, q) for each triple (z,y, z). Therefore
there are only finite number of choices of ¢ for each triple (x,y,2). But we have only
N3 “forbidden” triples (z,v, z), and therefore we have only finite “forbidden” choices of q.
Now, if we choose an integer ¢ which is not “forbidden”, we can compute p = [rq]. This
choice satisfies the conditions of lemma. O

Proof of Theorem 3.1.1. First we show that the infimum is rational. Suppose that &g (G) =
r + 1 is irrational. Using Lemma 3.1.6, there exist two integers p and ¢ such that
(p—1)/g+1 < r < p/g+ 1 and all non-zero solutions of the diophantine equation
x.p/q+y.(p — 1)/q = z have one of |z|, |y| and |z| greater than |D(G)|. By our assump-
tion, there is a real nowhere-zero (p/q + 1)-flow on G. By Theorem 3.1.3 there exists a
rational-valued nowhere-zero p/g-flow on G with flow values k/q. From all such flows we
take one for which the number of darts taking the value p/q is minimal. Let ¢ be such a
flow. Let G’ be the graph created by deleting this edges carrying flow values 1, (p — 1)/q
and p/q. The graph G’ is clearly disconnected. The graph G/G’" with orientation accord-
ing to ¢ does not contain a directed circuit with edges having ¢(e) = p/q. Therefore there
exist a vertex where such darts with only point to. For that component we have that

0=0p(X)=xp/qg+y.(p—1)/q+ =

But because for every non-zero solution of this diophantine at least one of |z, |y| and
|z| is greater than d = |D(G)|, the only possible solution is (0,0, 0). Therefore the flow ¢
is also a ((p — 1)/q + 1)-flow, which contradicts the fact that ®x(G) =r + 1.

Now we show that ®g(G) is rational. Assume that & = p/q+ 1 and let € = 1/(¢.2%).
Clearly there exists a real nowhere-zero (p/q+ ¢+ 1)-flow on G. Theorem 3.1.3 guarantees
a rational nowhere-zero (p/q + € + 1)-flow such that ¢(d) = ke. We take an edge such
that |¢(e) — k/q| is minimal non-zero. This edge must lie on a circuit only containing
edges carrying the flow p(e) # k/q. So we can add |¢(e) — k/q| in the positive orientation
according to . This can be done until there are no edges with p/q < ¢(e) < (p+1)/q.
But for every edge e in G with p(e) > p/q, the change of its flow value is not large enough
to increase ¢(e) to (p+1)/q, because the difference |¢(e) — k/q| grows no more than twice
in each step. So ¢(e) < (p+ 1)/q for every edge and therefore the flow we have created
is a nowhere-zero (p/q + 1)-flow. O

3.2 Modular flows

In this section we prove an analogue to Theorem 2.2.1. Let r > 2 be real number. Consider
the quotient group R, = R/rZ of all real numbers by the subgroup of all integral multiples
of r. Every element of this group can be uniquely described by a real number s € (0, r).
The operation in R, is the usual sum taken modulo r.

Chains or flows with values in R, are usually called modular r-chains and modular
r-flows respectively. A modular r-flow is nowhere-zero if p(z) € (1,r — 1) for each dart z.
As with k-flows and modular Z,-flows, the existence of a nowhere-zero r-flows is equivalent
to the existence of a real nowhere-zero r-flows. As we shall see the proof is analogous.

Theorem 3.2.1. Let G be a graph. Then G has a real nowhere-zero r-flow if and only if
it has a modular nowhere-zero r-flow.

Proof. If G has a real nowhere-zero r-flow, then its reduction modulo r is a nowhere-zero
modular r-flow.
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Conversely, let G have a modular nowhere-zero r-flow ¢ on GG. Choose a preferred
orientation on G and for each edge replace the modular value carried by the preferred
dart by the corresponding real number in the interval (1,7 —1). Assign the opposite
value to the opposite dart. Let ¢ be the resulting r-chain. Clearly, for each vertex v,
Jp(v) =0 (mod r), so dp(v) is a multiple of r. Let V; be the set of vertices with positive
outflow and V5 the set of vertices with negative outflow. Suppose that we constructed ¢
in such way, that the outflow from V; is minimal. The outflow from V; is also clearly a
multiple of 7.

If the outflow from V; is zero, then Jy,¢ = Oy, and we have a nowhere-zero r-flow.
If there is a vertex in Vi, there necessarily exist a vertex in V5. There must be a path
P from Vj to V, with orientation according to ¢. (otherwise there would be an edge cut
separating V; and V5 such that all cutting edges have positive orientation with respect to ¢
pointing to the component containing V5 and the sum of flow in either component can not
be zero.). So we can subtract r along P in the direction of positive orientation according
to G. But the outflow from V; decreases then. Therefore ¢ is a rational nowhere-zero
r-flow. O

3.3 Rational flows and orientations of graphs

Given a graph G, a rational nowhere-zero flow on G uniquely determines the positive
orientation of G with respect to the flow in question. This process can be reversed. Let
us take an orientation O of a graph G. We can construct a nowhere-zero flow ¢ in such
way that the preferred darts have positive flow value.

The definition of a flow on a graph can be also used in directed graphs, with demanding
in addition that preferred darts have positive value. Such flows resp. chains are called
directed.

If an graph G with an orientation O does not contain a set X into which edges
only point to, we can construct a directed nowhere-zero flow on G. Analogously as
for undirected graphs we can define directed flow number and directed real flow number,
denoted by (G, O).

In the real-valued case the theorems and proofs are very similar to the undirected case.
It is only necessary to replace the word “bridgeless" with the phrase “does not contain a
set of vertices X into which darts only come in". This means, among others, that the
infimum in the definition is minimum and is rational.

We prove an interesting relation between orientations of a graph and real flows.

Theorem 3.3.1. [6] Let G be a bridgeless graph. Then G has a nowhere-zero real (p/q+1)-

flow if and only if there exist an orientation O of G such that for each set X of vertices
of G we have

q/p < |XT|/IXT] < p/g.

Proof. Let ¢ be a real nowhere-zero (p/q + 1)-flow on G. Let us take the positive orien-
tation with respect to . Then

q/p=1/(p/q) <|XF|/IX7|) < (p/a)/1=p/q

Suppose that there exists an orientation O of G such that for every set of vertices X

q/p < |XT/IXTI < p/a.

Suppose Pr(G,0) > p/q+ 1. Let r = Pr(G,0) — 1 and let ¢ be a rational nowhere-zero
(r + 1)-flow such that the number of darts with ¢(d) = r is minimum. Let us remove
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the edges carrying either the flow value 1 or r. Let us denote the sets of these edges F
and FE,, respectively. The new graph G’ is not connected. Let H = G/G’. Because there
cannot exist a circuit in H containing only the edges from FE, in the direction according
to O and the edges from F; in the opposite direction, there exists a component X of G’
into which the edges from E, only come in and the edges from E; only go out. But

0=08p(X) = [X*|r—|X|.1.

Therefore x|
Pr(G,0) = 1= 1< 1.
r(G,0) =71+ |X+|+ <p/q+
Therefore G has a real nowhere-zero (p/q + 1)-flow. O

3.4 Real lows and balanced valuations

The previous result allows us to compute the real low number using the orientation of
edges. However, to compute the real flow number it is sufficient to do computations on
vertices only. To show this we will need the concept of a balanced valuation on a graph
which is due to Bondy [1] and Jaeger [9]. Let G be a graph. A balanced valuation of G is
a mapping w : V(G) — R such that for each subset S C V(G), we have | _cw(v)| <
|0 (S)|. The theory of flows can be translated into the theory of balanced valuations by
the following theorem of Jaeger [9].

Theorem 3.4.1. A graph G has a rational nowhere-zero (p/q + 1)-flow (0 < q < p) if
and only if there is a balanced valuation w of G such that for each vertex v € V(G) there
is an integer k, for which k, = dg(v) mod 2 and w(v) = ky(q +p)/(q — p).

Proof. According to Theorem 3.3.1, the graph G has a rational nowhere-zero (p/q+1)-flow
if and only if there exists an orientation O of the graph G such that for each S C V(G) we
have ¢/p < |S*|/|S7| < p/q. Let k, = {v}T — {v}~ (clearly k, = dg(v) mod 2). Without
loss of generality we can assume |ST| > |S~|. We get

S w) [ = | S ({u - fo) L

ves ves =P

|S*/IS7] =1 q+p

SH/IS=|+1 g—p —
p/lg—1 q+p

Oq (S — =0g(S

|0c:( )Ip/qul p— 10a(S)|

Therefore w is a balanced valuation. Let now w’ be a balanced valuation of GG such that
w'(v) = ky(qg +p)/(qg —p) and k, = Og(v) mod 2. We can construct a new balanced
valuation by setting w(v) = 2k, for each vertex v. Let a, = (k, — |0g(v)|)/2. From the
definition of a balanced valuation we get

—[0a(9)] < D ves wW(v) < |0c(9)]
—10c(9)] < Yes (200 — [0a(v)]) < 106(95)]
Let M be the set of edges with both endvertices in S. Then
—10a(9)] < Xes 200 — 2| E(S)| = |0(S)] < 106(5)]
0< D ves @ — |E(S)] < 10c(9)|

- | ls-1571) 22| -

(1S*1+1571)

Therefore the following two conditions hold.
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e For each SCV(G) >

® D eq @ = |E(G)]

Hakimi proved [7] that this two conditions are necessary and sufficient for G to have an
orientation such that [{v}*| = a,. We can easily find out that k, = |[{v}T| — [{v}~|.
Suppose that [ST| > |S7[. Since | Y, cqw(v)| < |0c(S)], we get

a, > |E(S)|

vES

WS/IST =g+ p pla—lq+p

St +1S | < [0a(S

1571+ |)|5+|/|5‘|+1q—p 196 )|p/q+1q—p

From this we can get that ¢/p < |ST|/|S™| < p/q for every S C V(G). O

For a cubic graph, the only two possible values for k, are +1 and —1. This splits the
set of vertices of a graph G into two disjoint sets V1 (G) and V~(G). Therefore we can
rephrase the previous theorem for cubic graphs.

Theorem 3.4.2. Let G be a graph. And let 0 < q¢ < p be two integers. Graph G has a

rational nowhere-zero (p/q+1)-flow if and only if there exists two disjoint sets Vi C V(Q)
and Vo C V(G) such that Vi UVa = V(G) satisfying For each subset S € V(G)

_|_
VAN S| =N S| | <= 10e(S)l.

3.5 The real low number of some graphs

Theorem 3.1.2 shows, that the real flow number is always rational. It is also clear that all
real flow numbers are at least 2. Due to Theorem 2.2.3 and Theorem 3.1.3, all real flow
numbers are at most 6. If Tutte’s 5-Flow Conjecture holds, all real flow numbers would
be at most 5. In [22], it is proved that for any rational number r € (2,4) there exist a
planar graph with this real flow number. In [15] it is shown that there exist a graph with
real flow number r also for r € (4,5). This construction will be shown latter.

However for regular graphs it is known that the set of possible values is not an interval
due to following theorem of Steffen [18].

Theorem 3.5.1. Let k > 1, for a (2k + 1)-regular graph G the following statements are
equivalent:

e Graph G is bipartite.

o The real flow number of G is 2+ 1/k.

e Graph G admits a (2 + %)-flow where 1 <% < 2=

In particular for cubic graphs this means that there is no cubic graph with real flow
number between 3 and 4.

Now we give some examples of real flow numbers of simple graphs. Steffen [18] has
shown that for complete graph Ky, o we have ®g(Korio) = 2+ 2/k. It is also known by
a result of Steffen [18], that the real flow number of the Petersen graph is 5. However
there exist many classes of graphs whose real flow numbers are not known. One of these

classes are the Isaacs snarks. The only result is the following theorem by Steffen [18|. In
the last chapter we determine the real flow numbers of these snarks.

Theorem 3.5.2. The graph Is,+1 has a nowhere-zero rational (4 + 1/k)-flow, moreover
Og(Iog11) > 4. For the real flow number of I3 holds Pr(I3) = 5.
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Chapter 4

Snarks with given real flow number

4.1 Two-terminal graphs

In this section we develop technique which will be useful for constructing snarks with given
real flow number. Our construction consist of two parts. First we construct cyclically 4-
edge-connected graphs with girth at least 5 which are not necessarily cubic. In the second
step we split the vertices with bigger valency appropriately and get snarks.

From small graph we can construct a larger ones by many different techniques. How-
ever we will only use the simplest one — every smaller graph has only two vertices where
it has to be joined with another one.

A two-terminal graph is a triple (G;z,y) such that G is a graph and x and y are two
distinct vertices of G, called terminals. If the two terminals are clear from context instead
of (G;x,y) we use G.

Let A be an abelian group and (G; z,y) be a two-terminal graph. A rooted A-flow on
is a nowhere-zero chain on G, such that the outflow from all vertices except x and y is
0. The value of a rooted A-flow is the outflow from z. A rooted r-flow on a two-terminal
graph (G;z,y) is a nowhere-zero modular r-chain such that for all non-terminal vertices
the outflow from them is 0. The value of a rooted r-flow is the outflow from x. Set of
values of all rooted r-flows on (G;x,y) is called r-transmissibility set of (G;z,y) and is
denoted by L,(G;z,y).

The r-transmissibility set is symmetrical, that is with each element a it also contains
—a. If a two-terminal graph has r-flow ¢ with value a, —¢ is a rooted r-flow with value —a.
From the r-transmissibility set we can easily decide whether GG has a rational nowhere-zero
r-flow — a rooted r-flow with value 0 on (G;z,y) is a modular nowhere-zero flow on G.
This means that G admits a nowhere-zero r-flow if and only if 0 € L,.(G;z,y). We can
also create a new graph G|, , by identifying the vertices x and y into one vertex. Such a
graph admits a nowhere-zero r-flow if and only if L, (G; z,y) # 0.

The basic operations in construction of graphs are the parallel join and the series join.
The parallel join || of two disjoint two-terminal graphs (G; z,y) and (G’; 2/, y'), is the two-
terminal graph (G”;z”,y”) obtained from the union of these two graphs by contracting
x and 2’ and y and 3’ into a single new vertices z” and y”, respectively. The series
join o of tho disjoint two-terminal graphs (G;z,y) and (G'; 2, 1/), is a two-terminal graph
(G"; x,y’) obtained from the union of these two graph by contracting y and 2’ into a single
new vertex y”. In both cases, from the r-transmissibility sets of (G;z,y) and (G;2',y’)
we can easily find out the r-transmissibility set of newly constructed graph.

Let the sum of two sets A and B under the operation +,, A+, B ={a+,b:a € A b € B}.

Lemma 4.1.1. [15]| Let G and G’ be two two-terminal graphs, then
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1. If " =G || G' then
L.(G") = L.(G)N L.(G").

2. If G = G oG then
L.(G") = L.(G) +, L.(G").

This theorem allows us to construct a large variety of networks with known r-transmissibility
set. Trivially, the r-transmissibility set (r > 2) of a two-terminal graph containing only
one edge between the terminals is L,(G) = (1, —1). Let P’ be a two-terminal graph cre-
ated from the Petersen graph by choosing two adjacent vertices as terminals and removing
the edge between them. Because the real flow number of P is 5 [18] and the real flow
number od P’ is 4 [15] we can easily find out about the r-transmissibility set of P’ [15]:

0 2<r<4
L.(Piz,y)=1¢ (—(r—4),r—4)4<r <5
(0,7) 5<r

Now we can easily compute the r-transmissibility set of P, a graph created with the
series join of k copies of P’ [15].

0 2<r<4
L.(Pg;x,y) =< (—k(r—4),k(r —4)) 4<r<4+1/k
0,7) 44+ 1/k<r

4.2 Graphs with given real low number

In [15] Pan and Zhu presented a the construction of graphs with given real flow number.
In this section we will follow this construction. A graph G is feasible if the valency of
every vertex is at least 3, G is cyclically 4-edge-connected and has girth at least 5. A
two-terminal graph (G;x,y) is feasible if G is feasible and distance between terminals is
at least 4; if we allow terminals to have valency (at least) 2, then (G;z,y) is said to be
weakly feasible. We prove that the graphs we get by Pan’s and Zhu’s construction are
feasible. We start with the basic elements of construction.

Lemma 4.2.1. The graph P’ is weakly feasible.

Proof. 1t is well known that P cyclically 5-edge-connected. This implies P’ is cyclically
4-edge-connected. The other conditions are obvious. O

Lemma 4.2.2. For k > 2, P, is feasible.

Proof. Since P’ is cyclically 4-edge-connected with valency of terminals at least 2, every
possible edge 3-cut must lie in different parts of P,. But then one of parts must be cut
by one edge. So Py is cyclically 4-edge-connected. Let K be a circuit with at most 4
vertices. Since the distance between x and y is 4, the circuit K cannot lie in more then
a single copy of P’. Since K is in one copy of P’ it must have at least 5 vertices, because
g(P") = 5. Moreover Py has a circuit containing 5 edges. So g(Py) = 5. Also d(z,y) = 4
and all the vertices have valency at least 3, so Py is for & > 2 feasible. O

The next lemma will be used later. It shows that graphs remain feasible during the
later presented construction
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Figure 4.1: Graph G from Lemma 4.2.3.

Lemma 4.2.3. Let A be a feasible two-terminal graph, and B, C two weakly feasible
two-terminal graphs. Then the two-terminal graph

G=(((AoKy) || (AoK3))oB) | C
is feasible (Figure 4.1).

Proof. First it is easy to see that d(x,y) > 4 and g(G) = 5. Moreover G has no edge
2-cut. Any edge 3-cut separates only vertices inside A, B or C. But all these graphs are
cyclically 4-edge-connected, and thus every edge 3-cut separates only one vertex. O

To construct graphs with given real flow number we need an ordering of fractions. Let
r=p/q,p > 1,9 > 1,(p,q) = 1. Then there exist two unique integers 0 < a < p and
0 < b < ¢ such that pb — ag = 1. The number a/b is called the lower parent of r (A(r)).
The number o' /b = (p — a)/(q — a) is called the upper parent of r (Y(r)).

These are the basic properties of A and T.

Lemma 4.2.4. Let r = p/q, p,q >0, A(r) =a/b, Y(r) =d'/b'. Then

Alr)y < r <X(r)
A(Y(r)) < A(r)
T(A(r)) = T(r)

Now we can proceed to the construction itself. The critical part is the proof of following
lemmas.

Lemma 4.2.5. For each 4 < p/q <5, (p,q) =1, a/b = A(p/q), o'/V = Y(p/q) there
exist a feasible two-terminal graph G, such that for a/b <r < a'/V

L.(G)=(—(qr—p+1),qgr—p+1).

Forr <a/b
L.(G) =0.
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Proof. We will use induction on the denominator. If A(p/q) = 4/1, then p/q =4+ 1/k.
Y(p/q) =4+ 1/k — 1. Let G = P;. The graph G satisfies the conditions of the theorem.

Assume now that A(p/q) > 4, By induction hypothesis, there is a feasible two-terminal
graph G, such that for every A(a/b) <r < Y(a/b)

L. (G)={(=(br—a+1),br —a+1).

From Lemma 4.2.4, A(a/b) < a/b, ' /b < Y (a/b) and A(a/b) < a/b<r <da' /0 <Y (a/b),
so fora/b<r <d/V L. (G")=(=(br —a+1),br —a+1).
Let Q = G' o K,. By Lemma 4.1.1,

Lo(Q) = L(G") N Ly(EK») = (—(br —a+1),br —a+1) N (L, —1).

If br — a + 1 < 1, which is equivalent to r < a/b, we have that L,.(Q) = (). This will be
true for all graphs created from this graph by performing join to the other graphs. From
now on we suppose a/b <r < a'/t/. Else

L(Q)=(L1+br—a)U(-1—(br —a),—1).
Let R =@ || Q. Then

L.(R)=(L,1+br—a)U(—1— (br —a),—1)
+(L1+br—a)U(—1—(br —a),—-1)
= (—=(br —a),br —a)U(2,—(2a —2— (20 — 1)r))
U(2a—2—(2b—1)r,—2).

Let now G* = Ro P’. We have r —4 < 2. From Lemma 4.2.4, we obtain r < a'/b' <
(a+1)/b. Using r —4 < 2a — 2 — (2b — 1)r from Lemma 4.2.4, we get r —4 > br — a so

L.(G")=(—(br —a),br —a).
If Y(p/q) =5, then g=b+1and p=a+5. Let G=G* | P'. Then

L,(G) = L.(G") + L.(H)
= (—(br —a),br —a) + (—(r —4),r — 4)
=(—((b+1)r—(a+5)+1),b+1)r—(a+5)+1)
=(=(¢gr—p+1),qr—p+1).

Moreover, by Lemma 4.2.3, (G is feasible.
If Y(p/q) < 5, by induction hypothesis, there is a feasible two-terminal graph G”, such
that for A(a’/b') <r <Y (da'/V)

L. (G")y=(=('r—d +1),b'r—d +1).
Let G = G* || G". Since by Lemma 4.2.4, A(a'/b') < a/b and d' /b < Y (d'/V)

L.(G) = Ly (G") + L. (G")
= (—(br —a),br —a) + (—(t'r —a+1),b'r —a+1)
=(=((b+b)yr—(a+d)+1),b+0)r—(a+d)+1)
= (=(pr—q+1),pr—q+1).

Moreover by Lemma 4.2.3, the graph G is feasible. O
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The proof of the next theorem is now easy.

Theorem 4.2.6. For every rational number r = p/q, 4 < r <5, there is 3-edge-connected,
cyclically 4-edge-connected graph with girth 5, such that Pr(G) = p/q.

Proof. By Lemma 4.2.5 there is a feasible two-terminal graph such that
L(G) =(=(qr —p+1),qr—p+1)
Let (G';z,y) = G o Ks.
Ln(G') = Lo(G) N Ly (Ky) = (=(qr —p+1),qr —p+1) N (1, 1)

which is empty if and only if r > p/q. Let G"” = G'|,,. Then ®r(G") = p/q. Since G is
feasible, G” is 3-edge-connected, cyclically 4-edge-connected and with girth 5. O

4.3 Snarks with given real low number

In this section we show that for each rational number p/q such that 4 < p/q < 5 there
exist a snark G with ®g(G) = p/q. To proof this we will need the notion of dipole. A
dipole is a graph with two chosen distinct vertices as the connectors. The edges incident
to this vertices are called the dangling edges.

Let D; and Dy be two dipoles and v; and vy one of the connectors of Dy and D,
respectively, such that the valency of v; is the same as the valency of vy. The join of two
dipoles D; and Ds is a dipole created by deleting v; and v, and joining edges that were
incident to v; with the edges that ware incident to vy. Note that the resulting graph is
also dipole.

First we give a simple lemma.

Lemma 4.3.1. Let G be a graph and let X be any subset of vertices of G. Then
Or(Glx) < Pr(G).

Proof. Since every real nowhere-zero r-flow on GG induces a real nowhere-zero r-flow on
G|x, the inequality Pr(G|x) < Pr(G) follows immediately. O

The critical part of the proof is this:

Lemma 4.3.2. Let G be a feasible graph with 4 < ®r(G) < 5. Then there ezist a feasible
cubic graph with the same real flow number.

Proof. Let ®g(G) = r and ¢ be a real nowhere-zero r-flow on G. To prove the lemma we
will substitute each vertex v of valency greater than 3 by a cubic graph GG, with dangling
edges (corresponding to the edges of G incident with v) in such a way that the resulting
cubic graph is feasible and has an r-flow on G. From Lemma 4.3.1, we deduce that the
real flow number of the new graph is the same as the real flow number of G, that is, r.

Consider the positive orientation of G with respect to ¢. Let v be any vertex of valency
greater than 3. The set of edges incident with v splits into the set ET(v) of edges directed
from v and the set £~ (v) of edges directed to v.

We describe two operations.

1) Let e be a directed edge carrying a flow value ¢(e) such that 2 < ¢p(e)(< 4). Attach
2 2
a dipole with a single input edge e and two output edges e; and e, carrying values
w(e1) > 1 and p(ez) > 1 such that p(er) + p(es) = p(e) to e.
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a a+1 a-g

T+¢

b b+1+¢ Lﬁ/}b+g

Figure 4.2: Simplified transferring construction.

f 1 )

a a+1 a-¢

T+e

b b+1+¢ b+g

c c+1 b c

Figure 4.3: Simplified transferring operation for three edges.

(2) Let e and f be two directed edges carrying the flow values ¢(e) and ¢(f) such
that p(e) < 2 and ¢(f) < 2. Let £ > 0 be a real number such that ¢ < r —4 and
p(e) > 1+e. We attach the dipole shown in Figure 4.2 with flow values as indicated
to e and f.

Now let us remove the vertex v from G and retain the edges of E~(v) and E™(v)
as dangling edges. Apply the operations (1) and (2) to E~(v) repeatedly to produce a
dipole D~ whose input is the set £~ (v) and the output is a set of edges such that all of
them carry the flow value 1 except the last one which carries a value greater than 1 and
smaller than 2. It is easy to see that this is always possible. We apply a similar procedure
to ET(v), but in the reverse direction, to obtain a dipole DT. By the flow conservation
property, the number of output edges of D~ equals the number of input edges of DT, so
we can connect an edge of D~ with an edge of D' which carries the same value to obtain
a new graph G’. The latter graph admits a nowhere-zero r-flow and has fewer vertices of
valency greater than 3.

However the new graph is not feasible — it may contain short circuits and need not
be cyclically 4-edge-connected. To avoid creating short circuits we employ a bit more
complicated version of the operation (2) described above. We can easily generalize the
dipole in Figure 4.2 to a transferring dipole which involves more than two edges (Figure
4.3). Moreover we can avoid forming short circuits (Figure 4.4) by inserting a circuit
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Figure 4.4: Transferring operation for three edges with circuits between these edges.
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Figure 4.5: Transferring construction for three edges.




between any two edges and by using the more general construction three times with the
same inserted circuits. The resulting multipole for three edges is shown in 4.5. Now
instead of joining with the dipole in Figure 4.2 on edges e and f we will join the dipole
in Figure 4.5 on all edges of E~ or E™, respectively.

To retain cyclic connectivity we must join all edges somehow. This can be done simple,
on the last step of construction when joining edges instead of joining the edges of £~ and
E™, we join both sets with dipole in Figure 4.5.

The resulting graph constructed this way is feasible and also we constructed a O (G)-
flow on it. Using this construction on all vertices with valency at least 4 we get a cubic
graph. O

Theorem 4.3.3. For any rational number 4 < r <5, there exists a snark G with Pr(G) =
r.

Proof. Because a feasible cubic graph is a snark, for 4 < r < 5 we can use Theorem 4.2.6
and Lemma 4.3.2. If r =5 let G = P. Petersen graph is a snark and ®g(P) = 5. O

Note that the graphs constructed in Section 4.2 have always a vertex of valency at
least 4. On these vertices we can use the transferring construction in infinitely many
ways. Macajova and Raspaud [13] showed that there exists infinitely many graphs with
real flow number 5. Therefore we have following theorem.

Theorem 4.3.4. For any rational number 4 < r <5, there exist infinitely many snarks
G with real flow number r.
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Chapter 5

Lower bound on the rational flow
number of a snark

5.1 Lower bound for the size of a graph with given real
flow number

Let G be a graph. Let ®r(G) = p/q + 1 where p and ¢ are two relatively prime positive
integers. In this chapter we will try to decide how small actually such a graph can be.
From Theorem 3.3.1 we can obtain following result.

Theorem 5.1.1. Let G be a graph such that Pr(G) = p/q + 1 where p and q are two
relatively prime positive integers. Then there erists a subset S C V(G) such that both
subgraphs of G induced by S and V (S) — S are connected and

da(S) >p+gq.

Proof. Theorem 3.3.1 shows that there exist an orientation O and a subset S of vertices
of G such that

IS _p
5= ¢ (5-1)
Moreover, we can assume that both the graph G[S] induced by S and the graph G[S]
induced by V(G) — S are connected. Indeed, if G[S] was not connected, one of its
components G[T], where T' C S, would have to satisfy (5.1). Now G[T] is connected.
If G[T] was disconnected, we could take a component G[X] of G[T] induced by a subset
X C T. Choosing S = V(G) — X, both G[S] and G[S] are connected and satisfy (5.1).
It follows that
oS =[S+ |S7I = p+q.

From this theorem we easily obtain some interesting corollaries.

Corollary 5.1.2. Let G be a graph such that ®g(G) = p/q + 1 where p and q are two
relatively prime positive integers. Then

|E(G)| Zp+q+|V(G)| -2
Moreover if G is 2k + 1-reqular

V() >~

—2
25— P+a=2)
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Proof. From Theorem 5.1.1, we know that there exists a vertex set S such that 65 (S) >
p + q. Both graphs induced by S and V(G) — S are connected, therefore they contain
at least |S| — 1 and |V(G) — S| — 1 edges, respectively. Both these components together
contain at least |V (G)|—2 edges and the boundary contains at least p+q edges. Therefore
the total number of edges in G is at least p+ ¢+ |V (G)| —2. Moreover for a 2k + 1-regular
graph (2k + 1)|V(G)| = 2|E(G)|. Therefore

V(G) 2 s—(p+a—2)
0

This result can be used to get a lower bound of the real flow number of a snark with
a given number of vertices.

Theorem 5.1.3. Let G be a snark containing no more than 8m + 4 vertices. Then

Bp(G) > 4+ —,
m

Proof. Let ®r(G) = p/q+1 where p and ¢ are two relatively prime positive integers. Since
G is a snark, we have p/q > 3. Suppose Pr(G) < 4 + % and therefore p/q < 3+ 1/m.
Then ¢ > m+ 1 and p > 3m + 3. From Corollary 5.1.2 for 3-regular graphs, we get

V(G| >2(p+q—2) >2(4m+2) =8m+4,
which contradicts the fact that G contains no more than 8m + 4 vertices. O

Corollary 5.1.4. Let G be a snark with 2k vertices. Then

1
Op(G) >4+ [%1.

5.2 Real low number of Isaacs snarks

The Isaacs snark [8] Io;1 is the graph with the vertex set V (Iog11) = {a;, b, ¢i,d; | i =0...2k}
and the edges

E([2k+1) = {az’bia a;C;, a;d;, bibiyy, cicitr, didigq \ 1=0,..., 2]9}7

with indices taken modulo 2k + 1.
In [18] Steffen showed that the Isaacs snark o1 has a nowhere-zero (4 + 1/k)-flow,
and therefore O (Io,11) < 4+ 1/k. We show that this inequality is in fact equality.

Theorem 5.2.1. The real flow number of the Isaacs snark Iopiq is Pr(logy1) =4+ 1/k.

Proof. The proof of the upper bound follows [18|. For a graph G, a directed circuit C' in
G and a real number r, we define rC' to be the flow ¢ on G such that p(e) =rife € C
and ¢(e) = 0 otherwise. Moreover, the positive orientation of G with respect to ¢ induces
the orientation of C.

First we define some directed circuits in Jopi1. For 1 <17 < k let

Ci = by, ag, co,dy, ..., diy 1, diga, - - - doio1, Qi1,b2i-1, ba;, baiya, - - -, bo,
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Figure 5.1: The circuits C; and Cs in I5.

(Il <i, 1 =1 (mod2)). For k+ 1 <i <2k let

Ci = bQ(ifk)fla bz(zek), A2(i—k)» C2(i—k)> dQ(ifk)fla A2(i—k)—15 b2(ifk)717
Coky1 = co, dog, ok, Cok, dog—1, - - . , do, ag, co,
Cory2 = co,dy, ay,¢1,da, . . ., dog, og, Cox, do, bo, Co,
Cokys = by, by, ..., bok, bo.

Consider the flows ¢; = (1/k)C; for i € {1,...,k} and the flows ¢; = 1C; for i €
{k+1,...,2k + 3}. The sum of all these flows is a real nowhere-zero (4 + 1/k)-flow on
Iogy1-

Lower bound. Let G = Ip;1 where k > 1 is fixed. Set r = ®g(G) — 1. The graph
G is a snark and has 8k + 4 vertices. Therefore by Theorem 5.1.3, we have Pg(loy1) =
4+1/k. 0

5.3 Remarks

Theorem 5.1.3 shows that a snark G' with 8m + 4 vertices cannot have ®x(G) < 4+ 1/m.
In the previous section we have showed that there exist graphs with 8m+4 vertices having
the real flow number 4 + 1/m. The natural question is how is it with the graphs with
8m — 2, 8m and 8m + 2 vertices. Such a graphs with the real flow number 4 + 1/m still
can exist. An example of such a graph is Petersen graph. It contains 8.1 4+ 2 vertices
and its real flow number is 5. A natural question is whether there are other such graphs.
Also we need not require G to be a snark. If it is cubic and has no integral nowhere-zero
4-flow, the statement of Theorem 5.1.3 still holds. Also among these graphs there can be
some graphs with 8m — 2, 8m or 8m + 2 vertices and real flow number 4 4+ 1/m.
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Chapter 6

Summary

A real flow on a graph is a flow on the additive group of reals. The real nowhere-zero
r-flow is a real flow ¢ such that for each dart 1 < |p(d)| < r — 1. A real flow number
Pr(G) of a graph G is the infimum of all reals r such that G has a real nowhere-zero
r-flow. The work itself consist of four parts.

In the second chapter we collect some concepts from the graph theory necessary for
understanding the work itself. We also introduce the notation used in the work.

In the next chapter we summarize the basics of the real flow theory and we try to
unify the terminology of this theory. We prove known results of this theory by using the
terms of this theory. Therefore many proofs are original. Perhaps the most interesting is
a direct combinatorial proof of the fact, that the infimum from the definition of the real
flow number is the minimum.

The fourth chapter contains the first of the original results of this thesis. We continue
in the work ok Pan and Zhu [15] who showed that for each real number between 2 a 5
there exists a graph with this real flow number. We answer their question whether for each
rational number 4 < ¢ < 5 there exists a snark S such that ®g(S) = ¢. As it is well known
snarks are “non-trivial” cubic graphs without 3-edge coloring, and therefore without an
integral nowhere-zero k-flow for £ < 5. To prove this we use the graphs constructed in
their work. We present the construction which splits the vertices of degree at least 4 in
such way that the newly constructed graph keeps the real flow number, girth and cyclic
connectivity. Using this construction we prove that for each rational number 4 < ¢ < 5
there exists a snark with this real flow number and moreover that there exists infinitely
many such snarks. Since Mac¢ajova and Raspaud [13] showed, that there exist infinitely
many snarks having real low number 5, we have proved the following theorem:

Theorem 1. For every rational number 4 < q < 5 there exist infinitely many snarks with
this real flow number.

In the last part of the thesis we show how small a graph with given real flow number
can be. We use the relationship between real flows and orientations of a graph. We get
the fact that if a graph G has its real flow number p/q, where p and ¢ are two relatively
prime positive integers, G must contain two disjoint connected subgraphs such that the
boundary between them contains at least p + ¢ — 2 edges. If we estimate the number
of edges of these two graphs as the number of edges of their spanning trees and use this
result for 2k + 1-regular graphs, we get the lower bound of number of vertices of such a
graph. In particular, for snarks we can formulate the following theorem.

Theorem 2. For a snark containing 2m vertices

1
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Subsequently we show that this estimation can be achieved. We use the result of
Steffen [18] who showed that the Isaacs snarks have a real nowhere-zero (4 + 1/k)-flow.
Our theorem completes this upper bound. Therefore we get the following theorem:

Theorem 3. For the Isaacs snark Iopiq1, Pr(lopi1) =4+ 1/k.

In the estimation in Theorem 2 the equality holds for four factorization classes modulo
8 (the cubic graphs have even number of vertices), namely 8m — 2, 8m, 8m + 2 a 8m + 4.
Isaacs snarks are the largest of these graphs. Only one smaller graph is known — the
Petersen graph. These facts raise the following question:

Question 1. Do there exist snarks, with real flow number 4 + 1/m with either 8m — 2,
8m, 8m + 2 or 8m + 4 vertices other than the Petersen graph and Isaacs snarks?

This question could be the objective of further research.
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Stuhrn v slovenskom jazyku

Redlny tok na grafe je tok, ktory pouziva ako obor hodnot aditivnu grupu redlnych éisel.
Nikde nulovy realny r-tok je taky realny tok ¢, pre ktory navyse plati 1 < |p(e)| < r—1.
Redlne tokové c¢islo ®r grafu G je infimum z mnoziny realnych ¢isel r, pre ktoré ma G
nikde nulovy redlny r-tok. Praca sa sklada zo Styroch casti.

V druhej kapitole pripominame ¢itatelovi niektoré pojmy tedrie grafov nevyhnutné pre
pochopenie samotnej prace. Zaroven zavadzame niektoré oznacenia pouzivané v praci.

V dalgej kapitole zhihame zéklady tedrie realnych tokov a zaroven sa pokusame zjed-
notit pouzivanu terminologiu. Zname vety z tedrie tokov dokazujeme pomocou pojmov
tejto tedrie. Preto si mnohé dokazy znamych tvrdeni nové. Asi najzaujimavejSim z nich je
novy priamy kombinatoricky dokaz skuto¢nosti, Ze infimum z definicie readlneho tokového
¢isla sa dosahuje.

Stvrta kapitola obsahuje prvy z vlastnych vysledkov prace. Nadviazeme na pracu Pana
a Zhu, ktori ukazali, zZe pre kazdé racionélne ¢islo medzi 2 a 5 existuje graf s tymto realnym
tokovym ¢islom. Kladne zodpovedame otédzku Pana a Zhu [15], ¢ pre kazdé racionalne
¢islo 4 < ¢ < b5 exiskuje snark S, pre ktory plati ®g(S) = ¢. Ako je zname, snarky
st “netrividlne" kubické grafy bez hranového 3-farbenia, a teda bez nikde nenulového
celoc¢iselného k-toku pre k < 5. Na dokaz pouzivame nimi vytvorené grafy. Prezentujeme
kon$trukciu, ktord rozdeluje vrcholy grafu stupiia aspon 4, tak Ze novovzniknuty graf si
zachovava tokové ¢islo, obvod i cyklicka suvislost. Tym dokazeme, Ze pre kazdé racionalne
¢islo 4 < q < 5 exiskuje snark s tymto redlnym tokovym ¢islom a dokonca, 7e existuje
takychto snarkov nekonecne vela. Kedze Macajova a Raspaud [13] ukazali, Ze existuje
nekonecne vela snarkov s readlnym tokovym ¢islom 5, dokazali sme nasledujicu vetu:

Veta 1. Pre kazdé raciondlne ¢islo 4 < q < 5 exiskuje nekonecéne vela snarkov s tiymto
realnym tokovym cislom.

V poslednej ¢asti prace ukazujeme, aki najmensiu velkost mozu mat grafy s danym
tokovym ¢islom. Pouzitim vztahu medzi orientaciami grafu a redlnym tokovym c¢islom
dostdvame, 7e ak ma graf redlne tokové ¢islo p/q, kde p a ¢ st nesidelitelné kladné
celé ¢isla, tak v iom musia existovat dva disjunktné suvislé podgrafy s hranicou aspon
p+ q— 2. Ak pocet hran tychto podgrafov odhadneme ich kostrou a vysledok aplikujeme
na 2k + 1 regularne grafy ziskame dolny odhad pre pocet vrcholov grafu. épeciélne pre
snarky mozeme formulovat nasledovni vetu:

Veta 2. Pre snarky s 2m vrcholmi plati

Nésledne ukazujeme, 7e tento odhad sa dosahuje. Vyuzijeme vysledok Steffena [18],
ktory ukazal, Ze Isaacsove snarky maji nikde nulovy realny (4 + 1/k)-tok. NaSa veta
dopliia tento odhad, ¢im dostavame nasledujice tvrdenie:
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Veta 3. Pre Isaacsov snark Iop.q plati, Pr(logi1) =4+ 1/k.

V odhade vo Vete 2 vSak nastava rovnost pre 4 zvyskové triedy modulo 8 (kubické
grafy maju parny pocet vrcholov) a to 8m — 2, 8m, 8m + 2 a 8m + 4. Isaacsove snarky
st teda najvicsie z tychto grafov. Z mengich grafov je znamy iba Petersenov graf. Tieto
fakty vedu k nasledujucej otazke:

Otazka 1. FEzistuju aj dalsie snarky s redlnym tokovgm cislom 4 + 1/m a 8m — 2, 8m,
8m + 2 alebo 8m + 4 vrholmi, iné ako Petersenov graf a Isaacsove snarky?

Tato otéazka by mohla byt predmetom dalgieho vyskumu.
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