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Abstract

The thesis is a study of creating environment around Windows USB scanner drivers

in Linux operating system. We achieved using Windows USB scanner drivers to

drive the scanners in Linux operating system. Also we fully managed to incorporate

implemented Windows scanner architecture into Linux SANE scanning architecture.

The thesis starts with a briefing of a Windows driver model and Windows scan-

ning architecture. Then it continues with a Linux driver model and user space

implementation of Win32 API in Linux environment called Wine.

The core of the work is a description of our design and design decisions for

implemented Windows scanning architecture in Linux environment. Finally, we

describe, in details, incorporation of implemented Windows scanning architecture

into Linux scanning architecture.

We also provide how to put all the implemented pieces of code together and to

setup a scanner to scan images in Linux environment with Windows driver.

Keywords: driver, scanner, Linux, Windows
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Preface

Wide spreading of Linux on desktop machines is inhibited by the lack of support for

device drivers. Overwhelming majority of device vendors ship their products with

drivers for Microsoft Windows platform. Another issue with a lot of devices is that

their specification is proprietary, hence it is tedious, sometimes even impossible, to

write a Linux driver for a specific device.

Our goal was to use existing Windows drivers and create environment around

them that will resemble original Microsoft Windows environment to let the driver

drive the device.

Typographic Conventions

Typographic conventions used in this thesis are simple and intuitive:

• Typewriter-like font denotes source code, function() definitions and related
things.

• Files and directories like [usbscan.c] for Linux kernel driver are enclosed in
square brackets.

Copyrights

Microsoft R© is registered trademark of Microsoft Corporation in the United States
and/or other countries.

Windows R© is registered trademark of Microsoft Corporation in the United States
and/or other countries.

Linux R© is registered trademark of Linus Torvalds.
Unix is a registered trademark of The Open Group.

TWAIN is a Trademark of the TWAIN Working Group.

All other trademarks or service marks are the property of their respective owners.
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Chapter 1

Introduction

There is one large group of devices that connect through Universal Serial Bus. These

devices are grouped into classes where each class depends on different Windows sub-

system. For example USB printers depend on Microsoft Windows printing subsys-

tem, USB scanners depend on Microsoft Windows still image subsystem. Another

difference between these driver classes is that drivers from one class can run solely

in user-space mode and thus depend only on Win32 API another class’s drivers can

run partially in kernel-mode or completely in kernel-mode, thus they also depend

on Microsoft Windows Executive.

To achieve our goal we reduced our domain of interest only to USB scanner de-

vices. Drivers for these devices run completely in user-space mode and communicate

with kernel through USB scanner driver that runs completely in the kernel.

The reader is expected to have some preliminary knowledge about operating

systems.

1.1 Thesis Content

The first several chapters are necessary to understand the whole background around

drivers. Chapter 2 describes basics about the file format for all Microsoft’s drivers.

Information provided in this chapter can be fully utilized during debugging of Win-

dows drivers, but basic understanding of this chapter can help in chapters 4, 6 and

9.

Principles of Universal serial bus functionality can be found in chapter 3.

Detailed description for some aspects of Microsoft Windows driver model can be

found in 4. This chapter is dedicated to driver installation, its loading and initial-

ization and principles of device access from drivers. Knowledge from this chapter

will be useful in chapter 9, especially in part about implementation of USB scan-

1



Chapter 1. Introduction

ner kernel module and methods how to implement interface between USB scanner

module and user-space scanner driver.

Understanding of Linux driver model in chapter 5 will be presented on the USB

subsystem. Its understanding is a condition for implementation of interface for USB

scanner module.

Userspace part of Windows drivers for USB scanners use only Win32 API that

is implemented in Linux by Wine project. We used this implementation with small

modifications to create a wrapper around scanner drivers. First we need to under-

stand architecture and some implementation decisions of Wine to adjust it to our

requirements. These are described in chapter 6.

Low level architecture of Windows USB scanner drivers is described in chapter 7.

High level API above STI is called TWAIN. As most of the modern scanner drivers

conform to TWAIN architecture, we had to modify TWAIN support library imple-

mented in Wine, too. The architecture of TWAIN model is described in chapter 8.

All the information is put together in chapter 9, where the whole implemented

architecture is described as a whole. Here we also describe decisions and restrictions

that were made during the development phase.

To fully integrate our implemented Windows scanning architecture into Linux

environment we decided to incorporate it into SANE architecture. The achievement

is described in chapter 10.

By following steps in chapter 11 the reader is welcome to try to setup the scan-

ner in Linux. It is a complete know-how of getting the scanner working with our

implementation. The reader is required to have some basic understanding of Linux

environment and programming in C language.

2



Chapter 2

Microsoft Portable Executable

Microsoft Portable Executable is a file format for executables, object files and dy-

namic link libraries (DLLs) used in 32-bit and 64-bit (with extensions called PE32+)

versions of Windows. ”Portable” refers to the file format portability across all 32-

bit and 64-bit Windows operating systems on all supported CPU types. On NT

operating systems the PE format is used for EXE, DLL, OBJ, SYS file types.

Distinction between EXE and DLL files is in its semantics. They both use the

same PE file format. The only difference is in one bit that indicates if the file should

be treated as EXE or DLL.

2.1 Overview

The most important feature of the PE file format is that the file on disk is very

similar to what the image will look like after Windows has loaded. The loader does

not need to work hard to create process from the disk file.

All the memory used by the image for code, data, resources, import tables,

export tables and other required image data structures is in one contiguous block

of memory. All we need to know is where the loader mapped the file into memory.

Then we can find all the various pieces of the image by following pointers that are

stored as part of the image as shown in figure 2.1.

When file is loaded it is mapped into its virtual address space. Many fields in

PE files are located by Relative virtual address (RVA). An RVA is simply the offset

of some item, relative to where the file is memory-mapped. The base address is the

starting address of a memory-mapped EXE or DLL. We can compute RVA:

RV A = V irtualAddress−BaseAddress

3



Chapter 2. Microsoft Portable Executable

Offset 0

COFF File header

Optional header

“MZ”

“PE\0\0”

DOS Header

Section Table ( array of IMAGE_SECTION_HEADERs )

...

.text

.data

.edata

.idata

.reloc

...

S
e

ct
io

n
s

COFF line numbers

COFF symbols

DEBUG information

Figure 2.1: The PE file format

The final concept of PE files is sections. Sections contain either code or data.

They are blocks of contiguous memory with no size constraints. Some of them

contain code or data that program declared and uses directly, while others are

created by linker and contain information vital to the operating system.

2.2 File Headers

The PE file has a collection of fields at a known (or easy to find) location that define

how the rest of the file looks like. This header contains information about locations

and sizes of the code and data areas, what operating system the file is intended for,

the initial stack size and other vital information.

The first bytes of the typical PE file are taken up by the Microsoft MS-DOS

stub. The MS-DOS stub is a valid application that runs under MS-DOS. The linker

places a default stub here, which prints out the message ”This program cannot be

run in DOS mode” when the image is run in MS-DOS.

After the MS-DOS stub, at the file offset specified at offset 0x3c, is a 4-byte sig-

nature that identifies the file as a PE format image file. This signature is ”PE\0\0”.
Following the PE signature in the PE header are structures: COFF file header

and an optional header. In both cases, the file headers are followed immediately by

section headers. The COFF file header contains only the most basic information

about the file: CPU that this file is intended for, number of sections, timestamp

4



Chapter 2. Microsoft Portable Executable

of file creation by linker, pointer to symbol table, number of symbols in the COFF

symbol table, size of the optional header and characteristics for the file.

The optional header is optional in the sense that some files (specifically, object

files) do not have it. For image files, this header is required.

Not all of the COFF optional header fields are necessarily to be aware of. The

most important ones to be aware of are the ImageBase and the Subsystem fields.

Details can be found in [1]. Fields for this header are divided into three groups:

Optional Header Standard Fields

The first eight fields of the optional header are standard fields that are defined

for every implementation of COFF. These fields contain general information that

is useful for loading and running an executable file. They are unchanged for the

PE32+ format.

Optional Header Windows-specific Fields

The next 21 fields are an extension to the COFF optional header format. They

contain additional information that is required by the linker and loader in Windows.

2.3 Section Table

This table immediately follows the optional header, if any. This positioning is re-

quired because the file header does not contain a direct pointer to the section table.

Instead, the location of the section table is determined by calculating the location

of the first byte after the headers. Make sure to use the size of the optional header

as specified in the file header.

Each row of the section table is, in effect, a section header. This section header

contains a set of attributes including whether section contains code, if it is read-only

or read/write section and whether the data in the section are shared between all

processes using the executable. The number of entries in the section table is given

by the NumberOfSections field in the file header. Beginning address (RVA) of the

section can be retrieved from section’s record in section table. Sections are ordered

by their starting RVAs.

Section represents code or data of some type. The code or data is related in some

way. While code is just code, there are multiple types of data. Besides read/write

program data, there are other types of data in sections including API import and

export tables, resources and relocations.

5



Chapter 2. Microsoft Portable Executable

2.3.1 Common Sections

The following list of sections is not complete. It will include sections that are present

almost in every EXE or DLL file. For complete list of sections and for details see [1].

The .text section

The .text section is where all general purpose code emitted by the compiler or

assembler ends up. The linker concatenates all the .text section from all OBJs files

into one big .text section.

The .data section

The .data section is where all initialized data goes. These data consist of global and

static variables that are initialized at the compile time. They also include the string

literals. The linker combines all the .data sections from the OBJ files into one .data

section.

The .edata section

The .edata section is a list of the functions and data that the PE file exports for

other modules. This section can be seen mostly in DLL files and is illustrated on

figure 2.2.

At the start of an .edata section is an Image Export Directory structure. This

structure is immediately followed by data. There are pointers in the structure to

these data. The primary components of an .edata section are tables of function

names, entry point addresses and export ordinal values. These arrays are parallel

to each other. To find information about a specific function it is needed to look it

up in all three arrays.

Note that in many cases there are two functions exported that only differ by one

character at the end of the name. This is how UNICODE support is implemented

transparently. The functions that end with A are the ASCII compatible functions,

while those ending with W are the UNICODE version of the functions. In code, we

do not explicitly specify which function to call. Instead the appropriate function is

selected via preprocessor.

The .idata section

The .idata section contains information necessary for the loader to determine the

addresses of the functions imported from other DLLs and patch them into the exe-

cutable image. The .idata section is in fact an import table as shown in figure 2.3. In

6



Chapter 2. Microsoft Portable Executable

Characteristics

...other fields...

Name = “foo.dll”

Base = 1

NumberOfFunctions 

NumberOfNames = 3

AddressOfFunctions

AddressOfNames

AddressOfNamesOrdinals

Export Address Table 

Export Name Table

42 1084 5200

1 42

Export1 AnotherExport StillExport

Data

Image export directory structure

Figure 2.2: The PE export directory

this table there is one entry (of type IMAGE IMPORT DESCRIPTOR) for each imported

DLL that the PE file implicitly links to. Last entry of the table is always filled with

NULLs to indicate the end of the table.

The important parts of each table entry are the imported DLL name and the two

arrays of pointers. These two arrays run parallel to each other and are terminated

by a NULL pointer entry at the end of each array. The pointers in both arrays point

to an IMAGE IMPORT BY NAME structure. These arrays’ names are Import Address

Table (IAT) and Import Name Table (INT). During binding, the entries in the

Import Address Table are overwritten with the addresses of the symbols that are

being imported. These addresses are the actual memory addresses of the symbols,

although technically they are still called virtual addresses. The loader typically

processes the binding.

The .rsrc section

The .rsrc section contains all the resources for the image. Resources are indexed by

a multiple-level binary-sorted tree structure. For details about how this structure

looks like and how to search it see [1].
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TimeDateStamp

OriginalFirstThunk

Imported DLL Name

ForwarderChain

FirstThunk

IMAGE_IMPORT_DESCRIPTOR

44

GetMessage

72

LoadIcon

19

TranslateMessage“USER32.DLL”

Import Name Table Import Address Table

This table is 
overwritten by 
PE loader

IMAGE_IMPORT_BY_NAME

Figure 2.3: The PE Import table descriptor

The .reloc section

The .reloc section holds a table of the base relocations. A base relocation is an

adjustment to an instruction or initialized variable value that is needed if the loader

could not load the file where the linker assumed it would. If the loader is able to

load the image at the linker’s preferred base address, then the loader completely

ignores the relocation information in this section.

The .tls section

The .tls section refers to thread local storage. For .tls section the memory manager

sets up page tables so that whenever a process switches threads, a new set of physical

memory pages is mapped to the .tls section’s address space. This permits per-thread

global variables.

The .pdata section

The .pdata section contains an array of function table entries that are used for

exception handling. It is pointed to by the exception table entry in the image data

directory. The entries must be sorted according to the function addresses (the first

field in each structure) before being emitted into the final image.

8



Chapter 2. Microsoft Portable Executable

2.4 Loading Procedure

The loader is responsible for loading PE file and preparing it in memory for execu-

tion. First it will find free virtual address space to map the file in memory. It tries

to load the image at the preferred base address. If it is not possible then it will try

to load it at different base address.

After this is done, the loader maps the sections in memory. The loader goes

through the section table and maps each section at the address calculated by adding

the RVA of the section to the base address.

After mapping the section in memory, the loader performs based relocation if

the base address is not equal to the preferred base address. Then the Import Table

is checked and the required DLLs are loaded. The same procedure for loading

executable-mapping sections, based relocations, resolving imports is also applied

while loading a DLL. After loading each DLL, the Import Address Table (IAT) is

fixed to point to the actual imported function address.

9



Chapter 3

The Universal Serial Bus

3.1 USB Basics

The Universal Serial Bus is a type of bus that is topologically laid out as a tree built

out of several point-to-point links.

A hub is a USB device which extends the number of ports to connect other USB

devices. Normally ports of the USB host controller are handled by a virtual root

hub. This hub is simulated by the host controller’s device driver and helps to unify

the bus topology.

The USB host controller is in charge of asking every USB device if it has any

data to send. USB device can never start sending data without first being asked to

by the host controller. The communication on the USB is done in two directions.

Data directed from the host to a device is called downstream or OUT transfer, the

other direction is called upstream or IN transfer.

There can be used three different transfer types for communication:

• Control transfers - are used to request and send reliable short data packets.
It is used to configure devices and each one is required to support a minimum

set of control commands.

• Bulk transfers - are used to request or send reliable data packets up to the full
bus bandwidth. Scanners are using this transfer type.

• Interrupt transfers - are similar to bulk transfers which are polled periodically.

• Isochronous transfers - send or receive data streams in real-time with guaran-
teed bus bandwidth but without reliability.

System communicates with scanner devices only by control and bulk transfers.

10
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3.1.1 Endpoints

The USB communication is realized through endpoints. A USB endpoint can carry

data in one direction only, either from the host to the device or from the device to

the host.

3.1.2 Interfaces

USB endpoints are bundled up into interfaces. Interface has a zero or more end-

points. USB interfaces handle one type of a USB logical connection only. Some

USB devices have multiple interfaces. Because the USB interface represents basic

functionality, each USB driver controls an interface. Hence if the device has more

than one interface, every interface can be driven by its own driver.

USB interfaces may have alternate settings, which are different choices for pa-

rameters of the interface. The initial state of an interface is in the first setting,

numbered 0. Alternate settings can be used to control individual endpoints in dif-

ferent ways.

3.1.3 Configurations

USB interfaces are themselves bundled up into configurations. A USB device can

have multiple configurations and might switch between them in order to change the

state of the device. A single configuration can only be enabled at one point in time.

The overview of USB device is illustrated in figure 3.1.

3.2 USB URBs

The USB code communicates with all USB devices using structure URB (USB Re-

quest Block). An URB is used to send or receive data to or from a specific USB

endpoint on a specific USB device in an asynchronous manner. A USB device driver

may allocate many URBs for a single endpoint or may reuse a single URB for many

different endpoints. Every endpoint in a device can handle a queue of URBs, so that

multiple URBs can be sent to the same endpoint before the queue is full.

The lifecycle of a URB is as follows:

• Created by a USB device driver

• Assigned to a specific endpoint of a specific USB device

• Submitted to the USB core, by the USB device driver

11
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Figure 3.1: USB device overview

• Submitted to the specific USB host controller driver for the specified device
by the USB core

• Processed by the USB host controller driver that makes a USB transfer to the
device

• When the URB is completed, the USB host controller driver notifies the USB
device driver

URBs can also be cancelled any time by the driver that submitted the URB or by

the USB core. 1

1Corbet, J. et al.: Linux Device Drivers Third Edition, O’Reilly, 2005, p. 335
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Windows Device Drivers

4.1 Type of Windows Drivers

There are two basic kinds of Windows drivers:

• User-mode drivers - are represented by typical user-mode libraries.

• Kernel-mode drivers - run as a part of the Executive, which consists of kernel
operating system components (manages I/O, memory, processes, threads, . . .).

They are implemented as modular components with a defined set of required

functionality. All WDM drivers run in kernel mode.

4.1.1 Windows Driver Model (WDM)

Microsoft introduced Windows Driver Model to allow writing of kernel mode drivers

that are source-code compatible across all Windows operating systems. All WDM

drivers must follow defined WDM rules.

Types of WDM Drivers

There are three types of WDM drivers:

• Bus drivers - drive an I/O logical or physical bus. A bus driver is responsible
for detecting and informing PnP manager of devices attached to the bus it

controls and also managing the power setting on the bus.

• Function drivers - drive individual device. Bus drivers present devices to func-
tion drivers via the PnP manager. The function driver is the driver that

exports the operational interface of the device to the operating system. In

general, it is the driver with the most knowledge about the operation of the

device.
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• Filter drivers - filter I/O requests for a device, class of devices, or a bus. They
create logical layer above or below function drivers, augmenting or changing

the behavior of a device or another driver.

Each device typically has a bus driver for the parent I/O bus, a function driver

for the device and zero or more filter drivers for the device. A driver design that

requires many filter drivers does not yield optimal performance.

The figure 4.1 shows the relationship between the bus driver, function driver and

filter drivers for a device.

Device drivers
Bus drivers

Function driver

Bus driver

Bus filter driver

Upper-level class 
filter driver

Upper-level device 
filter driver

Lower-level class 
filter driver

Lower-level device 
filter driver

Figure 4.1: Driver layers

Bus Drivers

A bus driver drives bus controller, adapter or bridge. There is one bus driver for

each type of a bus on a machine. A bus driver can service more than one bus, if there

is more than one bus of the same type on the machine. The primary responsibilities

of a bus driver are to:

• Enumerate the devices on its bus

• Respond to Plug and Play IRPs and power management IRPs
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• Multiplex access to the bus

• Generically administer the devices on its bus

During enumeration the bus driver identifies the devices on its bus and creates

device objects for them. This approach is described in section 4.2. The method the

bus driver uses to identify connected devices depends on the particular bus.

The bus driver does not handle read and write requests for the devices on its bus.

Read and write requests to a device are handled by the device’s function driver.

A bus driver acts as the function driver for its controller, adapter or bridge and

therefore manages device power policy for these components.

Function Drivers

A function driver is the main driver for a device. A function driver is typically

written by the device vendor and is required. The PnP Manager loads at most one

function driver for a device. A function driver can service one or more devices.

A function driver provides the operational interface for its device. Typically the

function driver handles reads and writes to the device and manages device power

policy.

The function driver for a device can be implemented as a driver/minidriver pair

or class/miniclass driver pair. In such driver pairs, the minidriver is linked to the

second driver which is a DLL.

Filter Drivers

Filter drivers are optional drivers that add value to or modify the behavior of a

device. A filter driver can service one or more devices.

Bus filter drivers typically add value to a bus. A bus filter driver could, for

example, implement proprietary enhancements to standard bus hardware.

Lower-Level Filter Drivers

Lower-level filter drivers typically modify the behavior of device hardware. A

lower-level device filter driver monitors and/or modifies I/O requests to a particular

device. For example such filters redefine hardware behavior to match expected spec-

ifications. A lower-level class filters driver monitors and/or modifies I/O requests

for a class of devices. For example, a lower-level class filter driver for mouse devices

could provide acceleration.

Upper-Level Filter Drivers

Upper-level filter drivers typically provide added-value features for a device. An

upper-level device filter driver adds value for a particular device. For example,

an upper-level device filter driver for a keyboard could enforce additional security

checks. An upper-level class filter driver adds value for all devices of a particular

15
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class. 2

4.2 Driver Objects and Device Objects

A driver object represents an individual driver in the system. The I/O manager

obtains the address of each of the driver dispatch routines from the driver object.

A device object represents a physical or logical device on the system and describes

its characteristics.

The I/O manager creates a driver object when a driver is loaded into the system

and it then calls the driver’s initialization routine, which fills in the object attributes

with the driver’s entry points.

After loading, a driver can create a device object for each device it controls.

The device object represents the device to the driver. Every kernel-mode driver

creates at least one device object. Some drivers must create more than one device

object. Each driver object represents a single driver that can create one or more

device objects. The I/O Manager maintains a list of device objects created by each

driver and stores a pointer to this list in the driver object. Each standard driver

routine that is passed an IRP is also passed a pointer to the target device object for

the I/O request. Most drivers use the device extension of the target device object

to maintain device state information or driver-specified context data for the I/O

request.

When a driver creates a device object, the driver can optionally assign a name to

the device. A name places the device in the object manager namespace, and a driver

can either explicitly define a name or let the I/O manager generate one. Device

objects are placed in the [\Device] directory in the namespace, which is inaccessible

by user-space API. (Object manager is the executive component responsible for

creating, deleting, protecting and tracking objects). If a driver needs to make it

possible for applications to open the device object, it must create a symbolic link in

the [\Global??] directory to the device object’s name in the [\Device] directory.

Plug and Play drivers expose one or more interfaces by calling the

IoRegisterDeviceInterface function, specifying a GUID that represents the type

of functionality exposed. IoRegisterDeviceInterface determines the symbolic

link that is associated with a device instance. An application wanting to open a

device object represented with a GUID can call PnP setup functions in user-space,

such as SetupDiEnumDeviceInterfaces, to enumerate the interfaces present for a

particular GUID and to obtain the names of the symbolic links it can use to open

2Microsoft Driver Development Kit, Microsoft Corporation, 2006
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the device objects. For each device reported by SetupDiEnumDeviceInterfaces,

an application executes SetupDiGetDeviceInterfaceDetail to obtain additional

information about the device, such as its name. After obtaining the device’s name,

the application can execute the Windows function CreateFile to open the device

and obtain a handle.

4.3 Opening Devices

File objects are the kernel-mode constructs for handles to files or devices. When a

caller opens a file or a device, the I/O manager returns a handle to a file object.

4.4 Driver Installation

The components involved in the driver’s installation are shown in figure 4.2. Shaded

objects in the figure correspond to components generally shipped with driver’s instal-

lation files. The others are supplied by the system. If the PnP manager encounters

a device for which no driver is installed, it relies on the user-mode PnP manager

to guide the installation process. If the device is detected during the system boot,

a devnode is defined for the device but the loading process is postponed until the

user-mode PnP manager starts. The user-mode PnP manager is implemented in

[umpnpmgr.dll] and runs as a service.

When a bus driver performs device enumeration, it reports device identifiers for

the devices it detects back to the PnP manager. The identifiers are bus specific.

For a USB bus, an identifier consists of a vendor ID and a product ID that the

vendor assigned to the device. Together these IDs form what Plug and Play calls

a device ID. The PnP manager also queries the bus driver for an instance ID to

help it distinguish different instances of the same hardware. The instance ID can

describe either a bus relative location or a globally unique descriptor. The device ID

and instance ID are combined to form a device instance ID (DIID), which the PnP

manager uses to locate the device’s key in the enumeration branch of the Registry

(HKLM\SY STEM\CurrentControlSet\Enum). The device’s key contains sub-

keys Service and ClassGUID that help the PnP manager locate the device’s drivers.

When device is connected to the bus, the bus driver informs the PnP manager

about a device it enumerates using a DIID. The PnP manager checks the Registry

for the presence of a corresponding function driver and when it does not find one, it

informs the user-mode PnP manager about the new device by its DIID. The user-

mode PnP manager first tries to perform an automatic installation without user
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Figure 4.2: Components involved in the installation
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intervention. If the installation process involves user interaction the user-mode PnP

manager launches the [rundll32.exe] application to execute the Hardware Instal-

lation Wizard. The Hardware Installation Wizard uses SetupAPI and CfgMgrAPI

to locate INF files that correspond to drivers that are compatible with the detected

device. This process might involve having the user insert installation media contain-

ing a vendor’s INF files or the wizard might locate a suitable INF file in the cabinet

file that contains drivers that ship with Windows.

To find drivers for the new device, the installation process gets a list of hardware

IDs and compatible IDs from the bus driver. These IDs describe all the various

ways the hardware might be identified in a driver installation file. The lists are

ordered so that the most specific description of the hardware is listed first. If some

matches are found in multiple INFs, more precise matches are preferred over less

precise matches.

The INF file locates the function driver’s files and contains commands that fill in

the driver’s enumeration and class keys and the INF file might direct the Hardware

Installation Wizard to launch class or device co-installer DLLs that perform class

or device-specific installation steps.

4.4.1 Co-installers

A co-installer is a user-mode Win32 DLL. Typically, a co-installer performs instal-

lation tasks that require dynamic information that is not available when the INF

for its device or device class is written.

4.5 Driver Loading and Initialization

The PnP manager begins device enumeration with a virtual bus driver called Root,

which represents the entire computer system and acts as the bus driver for non-Plug

and Play drivers and for the HAL. The HAL acts as a bus driver that enumerates

devices directly attached to the motherboard as well as system components such

as batteries. Instead of actually enumerating, the HAL relies on the hardware

description the Setup process recorded in the Registry to detect the primary bus and

devices such as batteries and fans. The primary bus driver enumerates the devices on

its bus, possibly finding other buses, for which the PnP manager initializes drivers.

Those drivers in turn can detect other devices, including other subsidiary buses. This

recursive process of enumeration, driver loading and further enumeration proceeds

until all the devices on the system have been detected and configured.
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The PnP creates an internal tree called the device tree that represents the re-

lationships between devices. Nodes in the tree are called devnodes and a devnode

contains information about the device objects that represent the device.

A record of all the devices detected since the system was installed is recorded

under the HKLM\SY STEM\CurrentControlSet\Enum Registry key. Subkeys

are in the form 〈Enumerator〉 \ 〈DeviceID〉 \ 〈InstanceID〉, where 〈Enumerator〉
is a bus driver, 〈DeviceID〉 is a unique identifier for a type of device and the
〈InstanceID〉 uniquely identifies different instances of the same hardware. 3

3Russinovich, M. et al.: Microsoft Windows Internals, Fourth Edition: Microsoft Windows

Server, Microsoft Press, 2004, Chapter 9
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Linux Driver Model

5.1 Classes of Devices and Modules

The Linux way of looking at devices distinguishes between three fundamental de-

vice types: char devices, block devices and network devices. Each module usually

implements one of these types.

Character Devices

A character device is one that can be accessed as a stream of bytes. A char driver

is in charge of implementing this behavior. Char devices are accessed by filesystem

nodes in the [/dev] directory.

Block Devices

A block device is a device that can host a filesystem. Linux allows the application

to read and write a block device like a char device, it permits the transfer of any

number of bytes at a time. As a result, block and char devices differ only in the

way data is managed internally by the kernel and thus in the kernel/driver interface.

Like a char device, each block device is accessed through a filesystem node, and the

difference between them is transparent to the user.

Network Interfaces

A network interface is in charge of sending and receiving data packets, driven by

the network subsystem of the kernel. A network interface is not mapped to a node

in the filesystem.

There are other ways classifying driver modules. In general, some types of drivers

work with additional layers of kernel for a given type of a device. For example, one

can talk of USB modules, serial modules and so on. Every USB device is driven by

a USB module that works with the USB subsystem, but the device itself shows up

in the system as a char device, a block device or a network device.
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5.1.1 Loadable Modules

Linux kernel possesses ability to extend at runtime the set of features offered by the

kernel. Each piece of code that can be added to the kernel at runtime is called a

module. The Linux kernel offers support for quite a few different types of modules,

including device drivers. Each module is made up of object code that can be dy-

namically linked to the running kernel by program [insmod] and can be unlinked

by the program [rmmod].

5.2 Device Model

The Linux device model is a complex data structure. The kobject is the fundamen-

tal structure that holds the device model together. The tasks handled by struct

kobject and its supporting code are reference counting of objects, sysfs represen-

tation, hotplug event handling. It is rare for kernel code to create a standalone

kobject. Instead kobjects are used to control access to larger objects, thus they are

found embedded in other structures.

The kobject structure is often used to link together objects into a hierarchical

structure that matches the structure of the subsystem being modeled. There are

two separate mechanisms for this linking: parent pointer and ksets. The parent field

in struct kobject is a pointer to another kobject - the one representing the next

level up in the hierarchy. For example a kobject that represents a USB device, its

parent pointer may indicate the object representing the hub into which the device

is plugged. The main use for the parent pointer is to position the object in the sysfs

hierarchy.

The main function of a kset is containment for kobjects. In fact, each kset

contains its own kobject internally and it can be treated the same way as a kobject.

A subsystem is a representation for a high-level portion of the kernel as a whole.

A subsystem, thus, is just a wrapper around a kset that contains a semaphore.

This semaphore is used to serialize access to a kset’s internal list. Every kset must

belong to a subsystem.

Kobjects are the mechanism behind the sysfs virtual filesystem. For every di-

rectory in sysfs, there is a kobject living in the kernel. The sysfs filesystem has

the usual tree structure, reflecting the hierarchical organization of the kobjects it

represents.
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5.2.1 Devices

At the lowest level, every device in a Linux system is represented by an instance of

struct device structure. There are some interesting fields in this structure. The

field parent holds a device to which this device is connected. In most cases a parent

device is some sort of bus or host controller. The field kobj holds kobject that

represents this device and links it into the hierarchy. The field bus id is a string

that uniquely identifies this device on the bus. The field bus type identifies which

kind of bus the device sits on. The field device driver points to the driver that

manages this device. The field driver data may be used by the device driver to

point to device’s private data.

5.2.2 Device Drivers

The device model tracks all of the drivers known to the system. The main reason

for this tracking is to enable the driver core to match up drivers with new devices.

Once drivers are known objects within the system a number of other things become

possible. Device drivers can export information and configuration variables that are

independent of any specific device.

Drivers are defined by a struct device driver. Once again, there are some

interesting fields in this structure. Here, field name is the name of the driver, kobj

is the inevitable kobject, devices is a list of all devices currently bound to this

driver, probe is a function called to query the existence of a specific device, remove

is called when the device is removed from the system and shutdown is called at the

shutdown time of the driver.

Driver Structure Embedding

The device driver structure is usually found embedded within a higher-level struc-

ture. To retrieve field struct device driver from higher-level structure function

container of can be used.

5.3 Device Lifecycle

To better understand what the driver model does, let us walk through the steps of

a device’s lifecycle within the kernel. We describe how the USB subsystem interacts

with the driver model, the basic concepts of how a driver is added and removed and

how a device is added and removed from the system.

23



Chapter 5. Linux Driver Model

5.3.1 Add a Device

The USB subsystem declares a single struct bus type called usb bus type. This

usb bus type variable is registered with the driver core when the USB subsystem

is loaded in the kernel with a call to bus register. When that happens, the driver

core creates a sysfs directory in [/sys/bus/usb] that consists of two directories:

devices and drivers. All USB drivers must define a struct usb driver variable

that defines the different functions that this USB driver can do.

That structure contains a struct device driver that is then initialized by the

USB core when the USB driver is registered with driver core.

The USB core, with help from the architecture-specific code that actually talks

to the USB bus, starts looking for all USB devices. When a USB device is found,

the USB core creates a new variable in memory of type struct usb device.

The bus-specific fields of this USB device are initialized by the USB core, and the

struct device parent variable is set to the USB bus device that this USB device

lives on. After the USB device structure is initialized, the device is registered with

the driver core with a call to device register.

Within the device register function, the driver core initializes a number of

device’s fields, registers the device’s kobject with the kobject core (this causes a

hotplug event), and then adds the device to the list of devices that are held by the

device’s parent.

The device is then added to the bus-specific list of all devices. Then the list of

all drivers that are registered with the bus is walked and the match function of the

bus is called for every driver, specifying this device.

The match function looks at the USB device-specific information of the device

and driver to see if the driver states that it can support this kind of device. If the

match is not successful, the function returns 0 back to the driver core and the driver

core moves on to the next driver in its list.

If the match is successful, the function returns 1 back to the driver core. This

causes the driver core to set the driver pointer in the struct device to point to

this driver and then it calls the probe function that is specified in the struct

device driver.

If the USB driver’s probe function determines that it can not handle this device

for some reason, it returns a negative error value, which is propagated back to the

driver core and causes it to continue looking through the list of drivers to match

one up with this device. If the probe function can claim the device, it does all the

initialization that it needs to do to handle the device properly and then it returns 0

back up to the driver core. This causes the driver core to add the device to the list
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of all devices currently bound by this specific driver and creates a symlink within

the driver’s directory in sysfs to the device that it is now controlling. This symlink

allows users to see exactly which devices are bound to which drivers.

5.3.2 Remove a Device

A USB device can be removed from a system at any time. When a USB device is

to be removed, function device unregister is called with a pointer to the struct

usb device’s struct device member.

In the device unregister function, the driver core unlinks the sysfs file from

the driver bound to the device, removes the device from its internal list of devices,

and calls kobject del with a pointer to the struct kobject that is contained in

the struct device structure. That function makes a hotplug call to user space

stating that the kobject is now removed from the system and it deletes all sysfs

files associated with the kobject and the sysfs directory itself that the kobject had

originally created.

The kobject del function also removes the kobject reference of the device itself.

If that reference was the last one, then the release function for the USB device

itself is called. That function frees up the memory that the struct usb device

took up.

5.3.3 Add a Driver

A USB driver is added to the USB core when it calls the usb register driver func-

tion. This function initializes the struct device driver structure that is contained

within the struct usb driver structure. Then the USB core calls the driver -

register function in the driver core with a pointer to the struct device driver

structure contained in the struct usb driver structure.

The driver register function initializes a few locks in the struct device -

driver structure and then calls the bus add driver function. This function looks

up the bus that the driver is to be associated with, the driver’s sysfs directory is

created. The bus’s internal lock is grabbed and then all devices that have been

registered with the bus are walked and the match function is called for them, just

like when a new device is added. If the match function succeeds, then the rest of

the binding process occurs, as described in the previous section.
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5.3.4 Remove a Driver

Removing a driver is a very simple action. For a USB driver, the driver calls

the usb unregister driver function. This function calls the driver core function

driver unregister, with a pointer to the struct device driver portion of the

struct usb driver structure passed to it. The driver unregister function han-

dles cleaning up sysfs attributes that were attached to the driver’s entry in the sysfs

tree. It then iterates over all device that were attached to this driver and calls

the release function for it. Then it waits for all reference counts on this driver to

be dropped to 0 before it is safe to return. This is needed because the driver -

unregister function is most commonly called as the exit path of a module that is

being unloaded. The module needs to remain in memory for as long as the driver is

being referenced by devices and by waiting for this lock to be freed, this allows the

kernel to know when it is safe to remove the driver from memory.

5.4 Hotplug

There are two different ways to view hotplugging. The kernel views hotplugging

as an interaction between the hardware, the kernel and the kernel driver. Users

view hotplugging as the interaction between the kernel and user space through the

program called hotplug. This program is called by the kernel when it wants to notify

user space that some type of hotplug event has just happened within the kernel. 4

This program is typically a very small bash script that passes execution on to a

list of other programs that are place in the [/etc/hotplug.d/] directory tree.

As mentioned previously [/sbin/hotplug] is called whenever a kobject is cre-

ated or destroyed. The hotplug program is called with a single command-line argu-

ment providing a name for the event. The kernel and specific subsystem involved

also set a series of environment variables with information what has just occurred.

Default environment variables set by the kernel are:

• ACTION - string add or remove, depending on whether the object was just
created or destroyed.

• DEVPATH - a directory path, within the sysfs fylesystem.

• SEQNUM - sequence number for this hotplug event.

• SUBSYSTEM - subsystem name involved, for USB devices it contains string
usb.

4Corbet, J. et al.: Linux Device Drivers Third Edition, O’Reilly, 2005, p. 397
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The USB subsystem always adds the following environment variables

• PRODUCT - a string in the format idVendor/ idProduct/bcdDevice

• TYPE - a string in the format

bDeviceClass/bDeviceSubClass/bDeviceProtocol

• INTERFACE - a string in the format

bInterfaceClass/bInterfaceSubClass/bInterfaceProtocol. This variable is set

if bDeviceClass field is set to 0.
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Wine

6.1 Wine Architecture

Wine is an implementation of the Windows API and can be used as a library to

port Windows applications to UNIX systems. Wine’s main task is to run Windows

executables under non Windows operating systems. Wine implementation is closer

to the Windows NT architecture as illustrated in figure 6.1.

Wine completely replaces [kernel32.dll], [user32.dll] and [gdi32.dll]

with its own implementation. All other DLLs on top of these three DLLs fully de-

pend on them. Since Wine is leaning towards the NT way of implementing things,

the NTDLL is another core DLL that is implemented in Wine and much of KER-

NEL32 and ADVAPI32 functionality is implemented through the NTDLL.

Role of Wine server in the whole design is to provide the backbone for the im-

plementation of the core DLLs. It mainly implements inter-process communication,

synchronization, process/thread management and object sharing. It can be seen,

from functional point of view as a NT kernel.

When the Wine server launches, it creates a UNIX socket for the current host. All

Wine processes launched later will connect to the Wine server using this socket. If a

Wine server was not already running, the first Wine process will start up the Wine

server in auto-terminate mode (once the last client is disconnected it will terminate

itself). Every thread in each Wine process has its own request buffer, which is shared

with the Wine server. When a thread needs to synchronize or communicate with any

other thread or process, it fills out its request buffer, and then writes a command

code through the socket. The Wine server handles the command as appropriate,

while the client thread waits for a reply. The Wine server itself is a single separate

UNIX process and does not have its own threading - instead it is a simple poll

loop that alerts the Wine server whenever anything happens. Because the Wine
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server needs to manage processes, threads, shared handles, synchronization and any

related issues, all the clients’ Win32 objects are also managed by the Wine server,

and the clients must send requests to the Wine server whenever they need to know

any Win32 object handle that is associated with UNIX file descriptor.

Wine uses the UNIX drivers to access the various hardware on the box. However,

in some cases, Wine provides a driver in Windows sense to a physical hardware

device. This driver is in fact a proxy to the UNIX driver. 5

6.1.1 Wine Dlls

Each DLL is implemented in a UNIX shared library. The file name of this shared

library is the module name of the DLL with a .dll.so suffix. This shared library con-

tains the code itself for the DLL, as well as some information, as the DLL resources

and a Wine specific DLL descriptor. The descriptor, when DLL is instantiated, is

used to create an in-memory PE header. Details about DLLs file can be found in

chapter 2.

The DLL descriptor and entry point table is generated by the [winebuild] tool,

taking DLL specification files with the extension .spec as input. Resource or message

tables are also added to the descriptor by [winebuild].

If the application wants to import a DLL, Wine will search for the DLL in the

following order till it finds it:

• list of registered DLLs (loaded both native libraries and shared libraries with
its DLL descriptors)

• Wine will look for it on the disk. First it will try to find shared library and if
it fails, it will look for a native Windows DLL.

After the DLL has been identified, it has been mapped into memory using a

dlopen call. Wine does not use the shared library mechanisms for resolving and/or

importing functions between two shared libraries. The shared library is only used

for providing a way to load a piece of code on demand. This piece of code, thanks

the DLL descriptor will provide the same type of information a native DLL would.

Wine is using the same code for native and builtin DLL to handle imports and

exports.

Wine also relies on the dynamic loading features of the UNIX shared libraries to

relocate the DLL if needed. Since Wine is 32bit code itself and if the compiler sup-

ports Windows’ calling convention (stdcall), Wine can resolve imports into Win32

5Wine Developer’s Guide, Wine Community, 2006, p. 66
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code by substituting the addresses of the wine handlers directly without any layer

in between.

6.1.2 File Management

Windows API implementation comes closer to the UNIX paradigm ”Everything is

a file”. Access to devices in Windows is done through the same API as access to

ordinary files.

In Wine implementation of Windows interface there is need to map a file name

into a file name in the UNIX world. In the following lines we will only focus on

device names mapping. Access rights to all files and regular file names mapping can

be found in [2].

Devices are manipulated in Windows with both read and write operations, but

also control mechanisms. Since, this is also supported in Linux, there is also a need

to open a device when given a Windows device name.

Every device path is of the following form [/??/devicename]. As Windows

device names are case insensitive, Wine also converts them to lower case be-

fore any operation. Then, the first operation Wine tries is to check whether

[$(WINEPREFIX)/dosdevices/devicename] exists. If so, it is used as the final

UNIX path for the device. The configuration process is in charge of creating sym-

bolic links pointing to real device file (for example /dosdevices/physicaldrive0 point-

ing to /dev/hda0). If such a link cannot be found and the device name looks

like a DOS disk name (like c:), Wine first tries to get the Unix device from path

[$(WINEPREFIX)/dosdevices/c:] (i.e. the device which is mounted on the target

of the symbolic link). If this does not give a UNIX device, Wine tries whether

[$(WINEPREFIX)/dosdevices/c:] exists. If so, it is assumed to be a link to the

actual UNIX device. If it does not exist, Wine tries to get the UNIX device from

the system information. If the devicename is NULL, then [/dev/null] is returned.

If the devicename is a default serial name (COM1 up to COM9) or default parallel

name (LPT1 up to LPT9), then Wine tries to open the Nth serial or printer in the

system. Some basic old DOS name support is done and the whole process is retried

with those new names. Summary of described mappings is in table 6.1.

Operations on Files

Reading and Writing

Wine server is involved in any read or write operation, as Wine needs to trans-

form the Windows handle to the file into a UNIX file descriptor it can pass to any

UNIX file function. But the reading and writing is done on client side by calls to
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Table 6.1: Mapping of device names
Windows device name NT device name Mapping to Unix de-

vice name

〈any path〉NUL \Global??\NUL /dev/null

\.\E: \Golbal??\E: $(WINEPREFIX)/

dosdevices/e::, if link

exists, guess the de-

vice from the system,

if link does not exist

\.\ 〈device name〉 \Global??\ 〈device name〉 $(WINEPREFIX)/
dosdevices/

〈device name〉, if

the link exists

UNIX equivalents of functions for reading and writing. The user, from the UNIX

perspective, running the Wine executable must have read or write access respectively

to the device.

Locking

Windows provides file locking capabilities. When a lock is set it controls how

other processes in the system will have access the range in the file. The implemen-

tation of locking is done in wineserver.

I/O Control

Wine has not implemented support for files and directories for IO control. But

it implements IO control for specific devices such as disks and cdroms.

Buffering

Wine does not do any buffering, but rely on the underlying UNIX kernel for

that. Doing lots of small reads on the same file can turn into a performance hit,

because each read operation needs a round trip to the wineserver in order to get a

file descriptor.
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Microsoft STI

The imaging architecture in Windows 2000 and Windows 95/98 consists of a low-

level hardware abstraction - STI and a high-level set of APIs known as TWAIN. In

Windows XP and Windows ME Microsoft introduced Windows Imaging Architec-

ture (WIA), which is built on top of STI. This document will describe TWAIN/STI

stack which was also implemented in Linux environment.

STI architecture also supports the so called ”push model” of events handling.

New types of scanners can notify imaging subsystem about events generated in

device (e.g. button press). This event is propagated through push model into

system. These events are handled in STI Event Monitor. Push model feature will

not be supported in Linux implementation of STI.

7.1 Core Components

Main component of the Still Image imaging architecture is a dynamic library called

[sti.dll]. There are four types of components that communicate with [sti.dll]

library, as shown in picture 7.1.

One of it is a STI class installer ([sti ci.dll]). Functionality in Still Image

devices class installer is invoked only when a new Still Image device is installed or

removed.

A Still Image Event Monitor ([stimon.exe]/[stisvc.exe]) monitors all in-

stalled Still Image devices and receives notification when STI device event occurs.

An event typically indicates that a device is ready to transmit image data. The

Event Monitor also keeps track of all registered applications and can start an appli-

cation when an event is detected.

Scanners and Cameras Control Panel application is represented by

[sticpl.cpl] component. This component is invoked only for configuration pur-
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Figure 7.1: The STI architecture
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poses from Windows control panel. It allows users to assign specific Still Image

device events to specific applications. In this way, the Event Monitor will know

which application to start when it detects an event. It also lets users test STI

devices.

The TWAIN DataSource is a component of the TWAIN Scanning architecture

described in chapter 8.

STI dynamic library communicates with appropriate user mode Still Image

minidrivers. These minidrivers can detect device activity and notify the Still Image

Event Monitor of that activity through Still Image device events. These minidrivers

also pass image data from kernel-mode drivers to upper level software.

User-mode Still Image minidrivers are vendor supplied components that provide

a device-specific, user-mode interface to an appropriate kernel-mode driver. Each of

these user-mode drivers must implement the IStiUSD COM interface. They commu-

nicate with kernel-mode drivers by calling the CreateFile, ReadFile, WriteFile

and DeviceIoControl Win32 functions.

7.1.1 STI COM Interfaces

Microsoft STI defines several Still Image COM interfaces that allow STI components

to communicate with each other.

IStillImage COM Interface

The IStillImage COM interface provides access to Still Image Event Monitor. Ap-

plications can register themselves as push-model aware or obtain information about

the system’s Still Image devices. The interface provides some application manage-

ment functions, such as enabling event notification and starting an application for

use by customized application control software. Additionally, the IStillImage in-

terface provides access to the IStiDevice COM interface, which allows applications

to perform I/O operations on Still Image devices.

IStiDevice COM Interface

The IStiDevice COM interface provides applications with the ability to commu-

nicate with Still Image devices. Interface methods allow applications to send and

receive data and commands, to run diagnostic tests, to receive notifications of Still

Image device events and to obtain device capabilities and status information.

Access to the IStiDevice interface is obtained by calling the CreateDevice

method of the IStillImage COM interface. Many of the IStiDevice interface’s
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methods are implemented by calling like-named methods defined by the IStiUSD

COM interface.

IStiUSD COM Interface

The IStiUSD COM interface is the means by which the IStiDevice COM interface

communicates with Still Image devices. The IStiUSD interface’s methods are im-

plemented by each vendor-supplied user-mode Still Image minidriver. Still Image

minidrivers typically implement IStiUSD interface methods by calling the appropri-

ate kernel-mode driver. Each minidriver must define all interface methods, but if a

method is not needed it can return unsupported status.

IStiDeviceControl COM Interface

The IStiDeviceControl COM interface provides user-mode Still Image minidrivers

with access to information stored within the Still Image Event Monitor. It also allows

minidrivers to write information into the Still Image error log.

7.2 Installing and Configuring Still Image Com-

ponents

7.2.1 Still Image Devices Class Installer

Microsoft provides a default class installer for Still Image devices with support for

special INF file entries enumerated in table 7.1. The default class installer supports

vendor-supplied co-installer extensions. If necessary vendors can provide customized

installation programs that can be used instead of the Microsoft-supplied class in-

staller. The default class installer for Still Image devices, [sti ci.dll], recognizes

a special set of INF file entries. Within an INF file, these entries must be placed

within a device’s INF DDInstall section.

The default INF file for USB Still Image devices, defines two installation sections

for each device type:

1. Needs=STI.USBSection

2. Needs=STI.USBSection.Services

These sections are defined in file STI.INF. Clause Include=sti.inf is therefore re-

quired in vendor supplied INF file.
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Table 7.1: STI INF sections
INF file entry Value Comments

Subclass StillImage Required

DeviceType 1 for scanners, 2 for cameras Required

DeviceSubType Vendor-defined value Optional

Connection For non-PnP devices Optional

Capabilities Flags identifying device capabilities Optional

PropertyPages identifies the name and entry point of a DLL

that creates customized property sheet pages

for STI devices

Optional

DeviceData Identifies a vendor-supplied data section con-

taining information to be stored in the

Registry, under the DeviceData key. For

TWAIN-supported devices, this key must

contain a TwainDS entry

Optional

Events Identifies a vendor-supplied data section list-

ing Still Image device events

Optional

UninstallSection Points to an INF section typically containing

INF delfiles directives and INF delreg direc-

tives

Optional
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7.2.2 Registry Entries for Still Image Devices

Non-modifiable Registry Entries

Microsoft STI defines some registry entries that are used internally by Still Image

Subsystem. The table 7.2 lists all of the types of registry entries that should not be

modified by vendor software.

Table 7.2: STI registry entries
Registry key and Definition

HKLM\SYSTEM\CurrentControlSet\Control\StillImage\Logging\STICLI
Specifies which vendor-generated messages are written to the Still Image log file. Can be

any combination of the following bit masks: 0x1 info messages, 0x2 warn messages, 0x4

error messages

HKLM\SYSTEM\CurrentControlSet\Control\StillImage\Logging\STIMON
Specifies which Event Monitor messages are written to the Still Image log file. Can be

any combination of the following bit masks: 0x1 info messages, 0x2 warn messages, 0x4

error messages

HKLM\SYSTEM\CurrentControlSet\Control\Class\{6bdd1fc6-810f-11d0-
bec7-08002be2092f}
Contains information about installed Still Image devices

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\StillImage\
RegisteredApplications

Contains a list of registered imaging applications

HKLM\SYSTEM\CurrentControlSet\Control\DeviceClasses\{6bdd1fc6-
810f-11d0-bec7-08002be2092f}
Contains information about installed Still Image device interfaces

Vendor-modifiable Registry Values

Still Image architecture defines several registry entries. Some of them can be modi-

fied by vendor-supplied components. They are defined in [stireg.h].
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TWAIN

TWAIN defines a standard software protocol and API for communication between

software applications and image acquisition devices.

8.1 The TWAIN Architecture

The TWAIN architecture consists of four layers (Application, Protocol, Acquisi-

tion, Device). These layers are occupied by TWAIN software elements (application,

Source Manager, Source) as shown in figure 8.1.

Source

Source Manager

Application

Device

Device Interfacing

TWAIN Interface

TWAIN Interface

Application Layer

Protocol Layer

Acquisition Layer

Device Layer

Figure 8.1: TWAIN layers
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8.1.1 Application Layer

TWAIN describes user interface guidelines for the application developer regarding

how users access TWAIN functionality and how a particular Source is selected.

TWAIN is not concerned about how the application is implemented.

8.1.2 Protocol

The protocol is the language spoken and syntax used by TWAIN. It implements

precise instructions and communications required for the transfer of data. This

layer includes:

• Part of application software that provides the interface between the application
and TWAIN

• The TWAIN Source Manager provided by TWAIN

• Part of Source that provide interface to Source Manager to receive instructions
and transfer back data and Return Codes.

8.1.3 Acquisition

Acquisition devices may be physical (e.g. scanner) or logical (e.g. image generator).

The software elements written to control acquisitions are called Sources and reside

primarily in this layer. The Source transfers data for the application. It uses the

format and transfer mechanism agreed upon by the Source and application.

The Source always provides a built-in user interface that controls the device the

Source was written to drive. An application can override this and present its own

user interface for acquisition.

8.1.4 Device

TWAIN is not concerned with the device layer at all. The Source hides the device

layer from the application. The Source provides the translation from TWAIN opera-

tions and interactions with the Source’s user interface into the equivalent commands

specific for the device driver that cause the device to behave as desired.

8.1.5 Communication between TWAIN Elements

Communication between TWAIN elements is possible through two entry points.

They are called DSM Entry() and DS Entry().
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The Application

The goal of the application is to acquire data from a Source. However, applications

cannot contact the Source directly. All requests for data must be handled through

the Source Manager.

TWAIN defines operations through operation triplets that are passed to DSM -

Entry() function. The application specifies in each operation triplet which element,

Source Manager or Source, is the final destination for requested operation. Function

DSM Entry() is the only TWAIN entry point for application.

The parameter list of the DSM Entry() function contains:

• An identifier structure providing information about the application that orig-
inated the function call

• The destination of this request (Source Manager or Source)

• A triplet that describes the requested operation.

• A pointer field to allow the transfer of data

Operation Triplets

• Data group for the operation (DG )

• Data argument type for the operation (DAT )

• Message for the operation (MSG )

The desired action is defined by an operation triplet passed as three parameters in

the function call. Each triplet uniquely and without ambiguity specifies a particular

action. No operation is specified by more than a single triplet. The three parameters

that make up the triplet are Data group, Data argument type and Message ID. Each

parameter conveys specific information.

Data Group (DG XXX)

Operations are divided into groups identified by data group identifier. There are

currently two defined in TWAIN:

• DG CONTROL - these operations involve control of the TWAIN session.

• DG IMAGE - these operations work with image data.

Data Argument Type (DAT XXX)
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This parameter of the triplet identifies the type of data that is being passed or

operated upon. The argument type may refer to a data structure or a variable the

pData pointer argument is pointing at.

Message ID (MSG XXX)

This parameter identifies the action that the application or Source Manager has

to take.

The complete list of all TWAIN operation triplets can be found in [3].

The Source Manager

The Source Manager provides the communication path between the application and

the Source. It supports the user’s selection of a Source and loads the Source for

access by the application. Communication from application to Source Manager

arrive in the DSM Entry() entry point.

• If the destination in the DSM Entry call is the Source Manager, then the Source
Manager processes the operation itself.

• If the destination in the DSM Entry call is the Source - The Source Manager
translates the parameter list of information, removes destination parameter

and calls appropriate Source by calling its DS Entry() function. TWAIN re-

quires each Source to have this entry point.

The Source Manager can initiate three operations that were not originated by the

application. These operation triplets exist just for communications between Source

Manager and Source and are executed by the Source Manager while it is displaying

its Select Source dialog box. These operations are used to identify the available

Sources and to open or close Sources.

The Source

The Source receives operations either from the application, via the Source Manager

or directly from the Source Manager. It processes the request and returns the ap-

propriate return code indicating the results of the operation to the Source Manager.

If the originator of the operation was the application then the return code is passed

back to the application as the return value of its DSM Entry() function call. If the

operation was unsuccessful a condition code containing more specific information is

set by the Source. Although the condition code is set, it is not automatically passed

back. The application must invoke an operation to inquire about the contents of

the condition code.
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Communication Flow from Source to Application

The majority of operation requests are initiated by the application and flow to the

Source Manager and Source. The Source, via the Source Manager, is able to pass

data back and return codes. However there are four times when the Source needs

to interrupt the application and requests that an action occurred. These notices are

presented to the application in its event loop.

• Notify the application that a data transfer is ready to occur

• Request that the Source’s user interface is closing

• Notify the application that the OK button bas been pressed, accepting the
changes the user has made

• A device event has occurred

8.2 The User Interface

When an application uses TWAIN to acquire data, the acquisition process may use

following user interfaces:

• Application user interface - Allow user select the device from which to acquire
the data.

• Source Manager user interface - Provides list of available Sources - devices.
User can choose one of the devices to acquire data from it. If desired, the

application can write its own version of this user interface.

• Source user interface - Every TWAIN Source provides a user interface specific
to its particular device. If desired, the application can write its own version

of this user interface.

8.3 The TWAIN State Protocol

The application, Source Manager and Source must communicate to manage the

acquisition of data. The process occurs in a particular sequence as illustrated in

figure 8.2. The TWAIN protocol defines seven states to ensure the sequence is

executed correctly. These states exist in a TWAIN session. First session is defined

as a period while an application is connected to a particular Source via the Source

Manager. The second unique session is the period while an application is connected
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to the Source Manager. At a given point in a session the TWAIN Source and the

Source Manager occupy a particular state. Transitions to a new state are caused

by operations requested by the application or Source. State transitions can be in a

forward or backward direction. Most of the transitions are single-state transitions,

but there are situations where two-state transition may occur.

The states can be divided into two groups:

• States that are occupied only by Source Manager - that are states 1, 2 and 3

• States that are occupied only by Sources - that are states 4, 5, 6 and 7

The Source Manager and Sources can not occupy other states than the enumerated

above. If application uses multiple Sources then each connection is a separate session

and each Source resides in its own state without regard for what state the other

Sources are in.

8.3.1 Description of States

State 1 - Pre-Session

The Source Manager resides in this state before application establishes a session

with it. At this point the Source Manager is not loaded into memory.

State 2 - Source Manager Loaded

The Source Manager is now loaded into memory. It is not open yet. At this time

the Source Manager is prepared to accept operations from the application.

State 3 - Source Manager Open

The Source Manager is open and ready to manage Sources. The Source Manager is

now prepared to provide lists of Sources, to open Sources and to close Sources. The

Source Manager will remain in State 3 for the remainder of the session until it is

closed. It can not be closed while the application has any Sources opened.

State 4 - Source Open

The Source has been loaded and opened by Source Manager in response to an

operation from the application. It is ready to receive operations. The Source should

have verified now that sufficient resources exist for it. The application can inquire

about the Source’s capabilities and also to set those capabilities to its desired values.

Inquiry of capabilities can occur while Source is in states 4, 5, 6 and 7, but setting

values to capabilities can occur only in state 4.
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Figure 8.2: TWAIN state transitions
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State 5 - Source enabled

The Source has been enabled by an operation from application via the Source Man-

ager and is ready for transfers. If the application has allowed the Source to display

its user interface, the Source will do that when it enters this state.

State 6 - Transfer is Ready

The Source is ready to transfer one or more data items to the application. The

transition from state 5 to 6 is triggered by the Source notifying the application that

the transfer is ready. Before initiating the transfer the application must inquire

information about the image.

State 7 - Transferring

The Source is transferring the image to the application. The transfer mechanism

being used was negotiated during state 4. The transfer will either complete success-

fully or terminate. The Source sends appropriate return code indicating result of

the transfer.

8.4 Capabilities

Developers of applications need to be aware of a Source’s capabilities and may

influence the capabilities that the Source offers to the application’s users. To do

this, the application can perform capability negotiation:

• Determine - if the selected Source supports a particular capability.

• Inquire - about the current value for particular capability, its default value
and set of available values that are supported by the Source.

• Request - that the Source set concrete value to the application’s desired value.

• Limit - if needed, the Source’s available values to a subset of what would
normally be offered.

• Verify - that the new values have been accepted by the Source.

8.4.1 Available Modes for Data Transfer

There are three different modes that can be used to transfer data from the Source

to the application: Native, Disk file and Buffered memory.
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Native

Every Source must support this transfer mode. It is the default mode and is the

easiest for an application to implement, but the format of the data is platform-

specific. The Source allocates a single block of memory and writes the image data

into the block. It passes a pointer of the memory location to the application. The

application is responsible for freeing the memory after the transfer.

Disk File

A Source is not required to support this transfer mode but it is recommended. The

application creates the file to be used in the transfer and ensures that it is accessible

by the Source. File format can be negotiated through capabilities negotiation.

Buffered Memory

Every Source must support this transfer mode. The transfer occurs through mem-

ory using one or more buffers. Memory for the buffers are allocated and deallocated

by the application. The data are transferred as an unformatted bitmap. The ap-

plication must use information available during the transfer to learn about each

individual buffer and be able to correctly interpret the bitmap. 6

6TWAIN Specification, TWAIN Working Group Committee, 2000, p. 22

47



Chapter 9

Implemented Code

Goal was to use existing Windows drivers and create an environment around them

that will resemble original Microsoft Windows environment to let the driver drive the

device. We focused on USB scanner devices. Following are identified requirements

for scanner drivers to work in Linux environment:

• Implementation of Microsoft Windows Still Image Architecture in Linux en-
vironment that will provide the same interface to scanner device drivers as

Windows would.

• Implementation of interface that will provide Still Image implementation ac-
cess to USB scanners.

• Implementation of high-level API for scanning subsystem.

Figure 9.1 illustrates all components involved in Microsoft’s Windows scanning

architecture and the interactions between these components. All user-space com-

ponents depend on Win32 API. Windows application component stands for any

application that provides acquisition functionality from scanner devices and uses

scanning subsystem.

Image acquisition subsystem component covers all system scanning functionality,

including low level API (Still Image) and high-level API (TWAIN or WIA).

Device driver component covers all driver libraries and/or kernel system libraries

that are shipped with driver for specific device.

Kernel driver component stands for all kernel drivers in the system that are

fundamental in communication of device driver with scanner device.

Device component stands for scanner device itself.
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Figure 9.1: Overview of scanning components

9.1 Implementation Decisions

9.1.1 USB Scanner Driver

The skeleton for the USB scanner driver was taken from Linux kernel source tree.

It was updated with specific code to simulate behavior of the original Microsoft’s

[USBSCAN.SYS] driver.

The USB scanner driver communicates with scanners through control and bulk

endpoints. Support for communication through control endpoints were added to the

skeleton. Communication through bulk endpoints was already implemented in the

skeleton.

Windows USB drivers access devices through files created in device tree. For spe-

cific device there can be found device files for device and for every device’s endpoint

in the device tree. Windows drivers access the endpoints through these device’s

endpoint files. Our USB scanner implementation is creating a device file for each

endpoint in [/dev] directory that points to original device file that was created by

the kernel in the [/dev] directory. The requests from Windows’ scanner drivers

are properly mapped to the device files. Note that Wine supports symlinks from

[$(WINEPREFIX)/dosdevices] directory to [/dev] directory, that is described in 6.

However, we chose not to use this mechanism, because it requires another manual

step in scanner configuration.

Support for handling USB ioctl codes that originate in Windows scanner drivers
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was added to simulate properly USB device communication. Adjustment can be

found in function ioctl() in module [usbscan.c].

The driver has one functionality restriction that comes from architecture. There

is no way how our USB scanner driver can communicate with Wine or query the

Wine’s Registry. When a new scanner is installed then the Linux usbscan driver

will create files for the scanner in [/dev] directory. These files will be of form:

[USBSCAN0], [USBSCAN0\0], [USBSCAN0\1], [USBSCAN0\2]. But there
is no way how to check Wine’s Registry for user that will try to scan from Wine,

thus we are not sure that the scanner installed in Linux as scanner 0 will be installed

in Wine also as scanner 0.

Note that every user that runs Wine uses different Registry (Registry loaded from

different files).

9.1.2 Wine as Win32 API Wrapper

Wine is an open source implementation of Win32 API on top of Unix system. The

decision was to extend this implementation to provide environment for scanner de-

vice drivers. Identified key components from Windows are:

• GUI - the whole graphical user interface. TWAIN DataSources do not separate
driver access from graphical representation.

• SETUPAPI - scanner driver installation uses SETUPAPI during its installa-
tion phase. Though there is still missing implementation for a lot of SETU-

PAPI functions in Wine. Our goal was not to implement the whole SETU-

PAPI, however we implemented some of them to satisfy our requirements.

• Registry - Possibly every Windows piece of functionality depends on Registry
and Microsoft’s Registry are vastly used by drivers.

• COM interfaces - Still Image architecture is based on COM interfaces.

• Windows kernel - Wine server implements part of Windows kernel that is used
by Win32 API.

At first look it seems that these identified components can be extracted from

Wine and used separately to create environment around Windows scanner drivers.

Identified components can depend on other components, finally it ends up with

extracting considerable part of Wine.

Also it seems that there could be a possibility that the installation information

contained in INF files can be parsed and used to create Registry entries for scanner.
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Similar approach was used by NDIS wrapper to load particular DLL for network

card driver. But Windows scanner drivers are often set of DLLs that can be loaded

also with the help of the information stored in the Registry, thus the installation

process could be hard without SETUPAPI. The use of other components during

normal driver installation can make INF parsing hard, even impossible.

9.1.3 Scanning Subsystem Implementation

Microsoft Windows’ scanning subsystem concept is shown in figure 7.1. Core of

the scanning subsystem is represented by Still Image component. This is a core

component that is employed with every scanner driver even with other scanning

components. We have implemented this component in Linux environment. Details

about its implementation decisions are described in 9.1.6

On the top of STI resides WIA and/or TWAIN component. WIA is new type

of scanning architecture introduced by Microsoft in Windows XP. It is a complex

subsystem with its own Windows service.

This new concept of scanning is not spread between scanner vendors yet, thus

only minimum of all scanner drivers works with WIA. Even if there exists WIA

scanner driver there exists also TWAIN driver for the same device.

TWAIN is designed as an open standard, simple to use. Every Windows scan-

ner driver that conforms to TWAIN standard uses more or less Microsoft’s STI

functionality. Wine provides implementation for TWAIN and also original TWAIN

DLls can be used. Wine’s implementation of TWAIN 32bit version of DLL will

load only one DataSource provided by Wine. To allow load another TWAIN

Data Source, code need to be changed and recompiled. Place, where changes are

needed, is in file [$(WINE SOURCE DIR)\dlls\twain 32\dsm ctrl.c] in func-

tion twain autodetect(). To add new driver following line needs to be added:

twain add onedriver(”c : \windows\system32\sti− twain.ds”).

And lines:

twain_add_onedriver("gphoto2.ds");

twain_add_onedriver("sane.ds");

need to be commented out.

Note that now it will suffice to create only symlink that will be called

[sti-twain.ds] that will point to installed Data Source.

For testing purposes Wine’s implementation of TWAIN was used, with patched

DataSources that will load.
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STI

WIA TWAIN

Not implemented Implemented

Legend:

Figure 9.2: TWAIN and WIA

9.1.4 STI Interface to USB Implementation Proposals

It is tempting to implement all STI COM interfaces with generic implementa-

tions, but that is impossible. The drivers for scanners rely on the vendor-supplied

minidriver which implements IStiUSD interface. This minidriver interprets com-

mand to particular device, therefore it is impossible to replace this minidriver with

generic implementation.

Vendor minidrivers must be loaded and here comes the problem when the

minidriver tries to open USB kernel module. The device path will parse as a VxD7 in

Wine and thus fail. Since VxD’s do not implement ReadFile() and WriteFile(),

or the correct range of IOCTL codes, they cannot be used to implement Wine’s own

USB module. DeviceIoControl(), ReadFile() and WriteFile() need to be im-

plemented using libusb or Linux specific ioctl()’s that work on the [/proc] filesys-

tem. At present, NtDeviceIoControlFile() calls CDROM DeviceIoControl() and

NtReadFile()/NtWriteFile() calls read()/write() which is not very useful.8

Possible solutions are:
7VxD is Virtual Device Driver. It runs under the Windows 3.x, 9x and Me operating systems,

and have access to the memory of the kernel and all running processes, as well as raw access to

the hardware
8http://www.winehq.com/pipermail/wine-devel/2005-September/039905.html
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Kernel Module

Implement a kernel module that would accept read(), write() and ioctl() calls,

and deal with them like windows USB scanning kernel would.

Advantages:

Only CreateFile() and NtDeviceIoControlFile() implementation need to be

changed.

Disadvantages:

Completely Linux-specific, this work is not aimed to portability so this is not a

problem. Inconsistent ioctl codes with Linux kernel numbering (created driver can

not be included in Linux kernel tree).

Problems porting to different Linux kernel versions (e.g. project SANE had a

scanner kernel module in 2.4 kernels, but it was replaced with libusb in 2.6)

For every type of bus there is a need for separate kernel module (USB, SCSI,

serial, infra red), in fact this is not an issue of this work, because the only focus is

on the USB devices. Kernel module for particular bus has to be generic to support

all types of USB device configurations, because every type of a scanner can have

different USB endpoints in its configuration. For example, different endpoint for

image transfers for scanners from different vendors can be used.

Dll Patching

Patch DLL imports for the minidriver so that CreateFile(), ReadFile(),

WriteFile() and DeviceIoControl() get dynamically linked to alternative im-

plementations that use libusb functions.

Advantages :

No changes to existing Wine code.

Disadvantages :

Wine does not support DLl patching.

Many versions of each function for USB, SCSI, etc.

Typed Handles

Modify handle to store handle type, or else function pointers to functions used

on handles, like reading, writing and ioctl. Ntdll functions like NtWriteFile(),

NtReadFile() and NtDeviceIoControlFile() should use the handle type to

demultiplex the I/O request to the correct function. For example when

NtDeviceIoControlFile() is called on a handle of type HANDLE USB SCAN, the func-

tion UsbScanDeviceIoControl() is called. Each handle would have also generic
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data pointer to associate internal data with handle.

Advantages :

Easy to add STI USB, and also SCSI, serial and infrared device types.

Easy to add other hardware support in general.

Disadvantages :

This might require changes to Wine server.

Wine community does not want to support device drivers in Wine.

9.1.5 STI Interface to USB Implementation

The decision was to implement STI interface to USB by using kernel module as

described in 9.1.4. This implementation requires minimal changes to Wine architec-

ture, in fact it is only addition of new features to existing Wine implementation.

9.1.6 Implementation of STI Architecture

STI architecture is designed as pull and push acquisition protocol as illustrated in

figure 9.3. Pull protocol means that application requests an image from STI and

the request goes all the way down to the scanner.

Push protocol means that an application can register with STI to handle scanner

events. For example if button is pressed on scanner this event is propagated through

STI and registered application is launched.

The decision is to implement only STI pull acquisition protocol. Push protocol

cons are that events from scanner can be catched by Linux kernel scanner module,

but there is a problem how to propagate this event to Wine. Wine has the informa-

tion about registered applications stored in user’s Registry that are not accessible

to kernel module.

9.2 TWAIN Implementation

TWAIN working group provides TWAIN Development Kit package that was used

during implementation. In this package there are sources of TWAIN testing ap-

plication that was used for testing purposes for TWAIN elements cooperation -

DataSourceManager and DataSources. TWAIN Development Kit sources where

with small changes compiled by Wine compiler. This was achieved by following the

winelib how-to.
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Figure 9.3: STI push vs pull model
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9.3 Implementation Issues

9.3.1 Supported Scanners by USB Scanner Kernel Driver

Linux USB scanner kernel driver is implemented not to drive all USB devices probed.

If a new type of scanner has to be driven by this driver then function probe() has

to be updated to support new vendors and/or devices. Following change is needed.

Find following if command in [usbscan.c]:

if (dev->udev->descriptor.idVendor != 0x05DA) {

retval = -ENODEV;

goto error;

}

Update it to enable driving scanners from different vendors.

Driver can be modified to support configuration parameters vendor and device.

This modification will remove need to recompile driver for different scanner devices.

9.3.2 Missing DLLs

In case Wine complains about missing DLL, one must locate it and then needs to

make sure Wine is able to use it. DLLs usually get loaded in the following order:

• The directory the program was started from

• The current directory

• The Windows system directory

• The Windows directory

• The PATH variable directories

There was a problem with DLLs installed by DataSource during testing. They

are usually in-

stalled into [$(WINDOWS DIRECTORY )\twain 32\DATASOURCE DIR].

This directory is not one of the directory types stated above. The optimal solution

is to add DATASOURCE DIR into PATH variable to solve the problem.

9.3.3 Wine’s Problem with GUIDs

Used Wine implementation had problem with braces ({}) in GUIDs, when search-
ing the Registry. The workaround for this issue is to duplicate Registry entry for

{GUID} with new name GUID. Example of usage is available in section 9.4
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9.4 Installed Scanner Driver Example

Following example will illustrate minimum set of Registry entries that need to be

created for every scanner. This example will be for Microtek scanner where Vendor

ID is 05da and Product ID will be 009a.

Key HKEY LOCAL MACHINE\System\Current-
ControlSet\Enum\USB\Vid 05da&Pid 009a\5&23a18cd&0&3 must contain String
values:

• ClassGUID = {6bdd1fc6-810f-11d0-bec7-08002be2092f}

• Driver = {6bdd1fc6-810f-11d0-bec7-08002be2092f}\0001

Key HKEY LOCAL MACHINE\System\Current-
ControlSet\Control\Class\{6bdd1fc6-810f-11d0-bec7-08002be2092f}\0001 and its
duplicate HKEY LOCAL MACHINE\System\CurrentControlSet\Control\Class\-
6bdd1fc6-810f-11d0-bec7-08002be2092f\0001 must contain values

• Capabilities = 00000003

• CreateFileName = \\.\USBSCAN0

• DeviceSubType = 00000000

• DeviceType = 00000001

• DriverDesc = Microtek SlimScan C6u

• FriendlyName = Microtek SlimScan C6u

• HardwareConfig = 00000000

• PropertyPages = 00000000

• Vendor = Microtek

Note that numeric values Capabilities, DeviceSubType and DeviceType must have

the same values for every scanner.

Key HKEY LOCAL MACHINE\System\CurrentControlSet\Control\Device-
Classes\{6bdd1fc6-810f-11d0-bec7-08002be2092f}\##?#USB#Vid -
05da&Pid 009a#5&23a18cd&0&0#{6bdd1fc6-810f-11d0-bec7-08002be2092f} must
contain String value

• DeviceInstance = USB\V id 05da&Pid 009a#5&23a18cd&0&3
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Key HKEY LOCAL MACHINE\System\CurrentControlSet\Control\Device-
Classes\{6bdd1fc6-810f-11d0-bec7-08002be2092f}\##?#USB#Vid 05da&Pid -
009a#5&23a18cd&0&0#{6bdd1fc6-810f-11d0-bec7-08002be2092f}\# must contain
String value

• SymbolicLink = \\?\USB#Vid 05da&Pid -
009a#5&23a18cd&0&3#{6bdd1fc6-810f-11d0-bec7-08002be2092f}
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Cooperation with SANE

Over the years SANE became standard scanning architecture in Linux world. It

has very flexible architecture, stable and tested implementation and it offers a lot of

implemented Linux scanning applications that can connect to standardized SANE

interface. The next section will describe basics of SANE architecture and prepare

the reader for design of cooperation SANE with TWAIN scanners.

10.1 SANE Introduction

SANE is an application programming interface that provides standardized access to

any raster image scanner hardware. It is a universal scanner interface that allows

writing just one driver for each scanner device instead of one driver for each scanner

and scanning application. It allows easy implementation of the API while accommo-

dating all features required by scanner hardware and applications. While SANE is

primarily targeted at a UNIX environment, the standard has been carefully designed

to make it possible to implement the API on virtually any hardware or operating

system.

Scanning application that uses the SANE interface is called a SANE frontend.

A driver that implements the SANE interface is called a SANE backend. A meta

backend manages one or more other backends. Note that a meta backend is frontend

and a backend at the same time. It is a frontend from the viewpoint of the backends

that it manages and a backend from the viewpoint of the frontends that access it.

Accessing a raster scanner device typically consists of two phases:

• In the first phase various controls of the scanner need to be setup or queried.

• In the second phase one or more images are acquired.
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Since the device controls are widely different from device to device, SANE is

designed to abstract each device control into a SANE option. An option is a self-

describing name-value pair. The backend simply provides a list of SANE options

that describe all the controls available in the device. It is not concerned with the

presentation, because of self-describing options.

There are three possibilities how SANE frontend connects to a SANE backend.

• Static linking - a SANE backend may be linked directly into a frontend. This
is the simplest method of attaching to a backend. It is limited in functionality

since the available devices are limited to the ones for which support has been

linked in when the frontend was built.

• Dynamic linking - in this case, a frontend is linked against any shared library
that implements SANE backend. It is possible to switch the backend by in-

stalling appropriate backend dynamic library. Dynamic linking makes it easy

to implement a meta backend that loads other backends on demand. This is a

powerful mechanism since it allows adding new backends merely by installing

a shared library and updating a configuration file.

• Network connection - It is a way how to attach a scanner by using the network
to connect to a backend on a remote machine. This makes it possible to scan

images from any host, as long there is a network connection to that host and

if the user has permission to access the scanner.

It is possible to combine these solutions to provide a hierarchy of SANE backends.

10.1.1 Image Data Format

The most important aspect of an image acquisition system is how image data are

represented. The SANE defines a simple representation that is sufficient for majority

of applications and devices.

A SANE image is a rectangular area. The rectangular area is subdivided into a

number of rows and columns. At the intersection of each row and column is a pixel.

A pixel consists of one or more sample values. Each sample value represents one

channel.

The SANE API transmits an image as a sequence of frames. Each frame covers

the same rectangular area of the entire image, but may contain only a subset of the

channels in the final image. For example, a red/green/blue image could either be

transmitted as a single frame that contains the sample values for all three channels

or it could be transmitted as a sequence of three frames.
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Sample values in a frame are transmitted row by row and each row is transmitted

from left-most to right-most column. The left-to-right, top-to-bottom transmission

order applies when the image is viewed in its normal orientation. If a frame contains

multiple channels, then the channels are transmitted interleaved.

10.1.2 SANE API

The SANE standard is expected to evolve over time. Whenever a change to the

SANE standard is made that may render an existing frontend or backend incom-

patible with the new standard, the major version number must be increased.

SANE version control also includes a minor version number and a build revision.

Control of these numbers remains on the implementer of a backend. 9

Data Types

Description of standard SANE data types can be found in [4]. In this section we

will describe essential types only.

Device Descriptor Type

Each SANE device is represented by a structure of type SANE Device. The

structure provides the unique name of the scanner. This unique name is passed in

a call to sane open(). The format of this name is completely up to the backend.

The only constraints are that the name is unique among all devices supported by

the backend. The remaining members in the device structure provide additional

information on the device corresponding to the unique name.

Scanner Handle Type

Access to a scanner is provided through an opaque type called SANE Handle.

While this type is declared to be a void pointer, an application must not attempt

to interpret its value.

Status Type

Most SANE operations return a value of type SANE Status to indicate the com-

pletion status of the operation.

Option Descriptor Type

Options are used to control all aspects of device operation. Options are described

by SANE Option Descriptor. Thus, a frontend can control a scanner abstractly,

without requiring knowledge as to what the purpose of any given option is. A scanner

backend can describe its controls without requiring knowledge of how the frontend

operates. Option name is a string that uniquely identifies the option. Option title

9SANE Standard Version 1.04, 2006, p. 13
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is a single-line string that can be used by the frontend. Option desc is a long string

that can be used as a help text to describe the option. Option value type specifies

the type of the option value. The possible values are defined by SANE Value -

Type. Option value unit specifies what the physical unit of the option value is. The

possible values are defined by type SANE Unit. Option value size specifies the size of

the option value. This member has a slightly different interpretation depending on

the type of the option value. Option capabilities describe what capabilities the

option possess. This is a bitset that is formed of the capabilities defined by SANE.

Option value constraints are used to constrain the values that an option can take.

While most backend options are completely self-describing, there are cases where

a user interface might want to handle certain options in a special way. These are

• option number count - is option number zero with empty string as its name.
This option specifies the total number of options available for a given device.

• scan resolution option - is used to select the resolution at which an image
should be acquired.

• preview mode option - is used by a frontend to inform the backend when image
acquisition should be optimized for speed, rather than quality.

• scan area options - are represented by four options that define the scan area.
The scan area is defined by two points that specify the top-left and the bottom-

right corners.

Code Flow

The code flow for the SANE API is illustrated in Figure 10.1. Detailed description

of SANE API can be found in [4].

Functions sane init() and sane exit() initialize and exit the backend, respec-

tively. All other calls must be performed after initialization and before exiting the

backend. Function sane get devices() can be called any time after sane init()

has been called. It returns the list of the devices that are known at the time of the

call. This list may change over time since some devices may be turned on or off.

Once a device has been chosen, it is opened using a call to sane open(). Multiple

devices can be open at any time given.

An open device can be setup through the corresponding device handle using func-

tions sane get option descriptor() and sane control option(). While setting

up a device, obtaining option descriptors and setting and reading option values can

be mixed freely. The device handle can be put in blocking or non-blocking mode by
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a call to sane set io mode(). Devices are required to support blocking mode. If

device does not support non-blocking mode it returns status unsupported.

After the device is setup properly, image acquisition can be started by a call to

sane start(). The backend calculates the exact image parameters at this point.

So future calls to sane get parameters() will return the exact values, rather than

estimates. Whether the physical image acquisition starts at this point or during the

first call to sane read() is unspecified by the SANE API.

Image data are collected by repeatedly calling sane read(). Eventually, this

function will return an end-of-file status. This indicates the end of the current

frame. If the frontend expects additional frames, it can call sane start() again.

Once all desired frames have been acquired, function sane cancel() must be called.

This operation can also be called at any other time to cancel a pending operation.

Having completed the usage of the device, the handle should be closed by a

call to sane close(). Finally, before exiting the application, function sane exit()

must be called.

sane_init()

sane_exit()

sane_open()

sane_close()

sane_get_option_descriptor()
sane_control_option()

sane_start()

sane_cancel()

sane_get_parameters()

sane_read()
loop

until read returns EOF

loop

until device configured as desired

Device 
setup

Image 
Acquisition

Figure 10.1: SANE code flow
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Network Protocol

The SANE network protocol is a client/server style remote procedure call protocol.

The SANE protocol can be run across any transport protocol that provides a reliable

data delivery. The data transferred from the client to the server is comprised of the

RPC code, followed by arguments for RPC call. The format of the server’s answer

depends on called procedure. The details about encoding of data types and format

of requests and responses can be found in [4].

10.2 Design of SANE Cooperation with TWAIN

Our goal was to make TWAIN scanners work with SANE. The optimal solution was

to implement some kind of wrapper around the TWAIN drivers that will be able to

process SANE requests through network.

SANE design goals reflect our requirements that we want to achieve. SANE is

designed to run on any UNIX platform, even it is virtually possible that it will run

on any hardware or operating system. The implementation is system dependent as

little as possible. The SANE design enables us to reuse a lot of its implementation

on Windows platform. On Windows side we needed implement SANE backend that

will connect to TWAIN DataSource Manager and TWAIN DataSource.

SANE also supports network connectivity that reflects our next requirement.

SANE implementation provides SANE daemon which is special type of SANE meta

backend. SANE daemon implementation was ported with required changes to Win-

dows platform.

On server side, in daemon, there were used SANE implementation and also

in new implementation (of the twain-sane backend) we used SANE helper functions

whenever possible. On client side there were no changes in implementation required.

The only change was needed in configuration of dll meta backend to use also the

net backend. In the net backend configuration we only added IP address of host

where Windows version of SANE daemon runs. Proposed solution is illustrated in

figure 10.2.

Many of the implementation efforts were focused on the communication with

TWAIN DataSource Manager, TWAIN DataSource and to map the TWAIN states

to SANE states. Figure 10.3 illustrates mapping of TWAIN states on SANE states.

Transitions of SANE states are in one direction only from top to bottom. Transitions

between TWAIN states are shown in chapter 8. These transitions can occur in both

directions between two adjacent states.

In sane init function we will load and open TWAIN DataSource Manager. If
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SANED

sane-twain
backend

TWAIN 
DataSource Manager

TWAIN 
DataSource

SANE 
net backend

SANE 
dll meta backend

SANE frontend 
(xsane)

Wine process or 
Windows machine

Linux machine

Figure 10.2: SANE - TWAIN cooperation

this action is successful then the first TWAIN DataSource is opened. Here we need

to note that TWAIN does not separate the user-interface from the driver of a device,

thus here we can have a problem when DataSource is opened and no scanner was

found, then the GUI on server for DataSource is displayed. This GUI blocks until

it is handled properly and the client side will block, too.

Proposed implementation will load the first DataSource found by DataSource

Manager. In the future this implementation can be extended to support more Data-

Sources installed on a computer, but this feature was not our aim. This can be

achieved by iteration through all DataSources and expose them to SANE as scan-

ners, so the client can choose one of them.

There is an objective purpose to open DataSource in this function. Before tran-

sition to another state we need to know the attached scanner that is driven by

particular DataSource. This scanner information is later used by frontend in call to

sane open function.

When sane open is called no transition in TWAIN states will occur. We will

remain in TWAIN DataSource open state.

Frontend can now retrieve values for scanner’s options. While TWAIN Data-

Source is in state opened its option values can be also negotiated. Thus the only

possible mapping between SANE and TWAIN states here is that sane open maps

to Source open.

After all values are negotiated by SANE frontend we are ready for image aqui-
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sition. Call to sane start will move DataSource to state enabled and wait for

DataSource till it is in a state ready to transfer. Then it will start acquisition of the

whole image. Acquired image is stored in memory and the DataSource will move to

state DataSource enabled.

Bitmap stored in memory is in Microsoft’s DIB format. This bitmap can not be

sequently read by SANE. We need to make a few adjustments before providing data

to SANE. DIB stores rows upside down. That means that the upmost row which

appears on the screen actually is the lowest row stored in the bitmap. DIB uses

row padding to adjust row length to a multiple of dword size. To SANE we need to

provide image data beginning from first byte of first line without padding.

Now SANE frontend will repeatedly call function sane read to retrieve image

data. This data are send back from memory. When there are no more image data

available EOF status is returned. After that sane cancel is called and the TWAIN

DataSource is disabled. After this call TWAIN DataSource is back in state open.

Call to sane close will not change TWAIN state. It will only free structures

used by our TWAIN scanner.

When sane backend will not be needed then function sane exit is called. Here

we will tidy up the whole TWAIN: DataSource is closed, DataSource Manager is

closed and unloaded.

Pre-Session

SM loaded

SM opened

Source open

Source enabled

Transfer ready

Transferring

sane_init

sane_open

sane_start

sane_cancel

sane_close

sane_exit

TWAIN states

SANE states

sane_read

Figure 10.3: Map TWAIN states to SANE states

66



Chapter 11

How To Put it all Together

All files mentioned in this chapter can be found on the CD attached to this work, if

not stated otherwise.

11.1 Scanner Kernel Driver

Copy directory [usbscan] with source code for kernel driver from CD.

11.1.1 Customization of the Scanner Driver

1. When we connect scanner for the first time we can use application [usbview]

to inspect scanner properties. This application can be downloaded from

[http://usbview.sourceforge.net].

2. In [usbview], on the left side we can see plugged USB devices. The red ones

are devices for which no suitable driver was found. The black ones are with a

driver loaded and ready to use.

3. Our scanner has to be in a red state. If it is not, then unload found driver and

disable the driver loading for this particular device.

4. Now scanner is in a red state, when we click on it we can see its properties in

the right panel. Find Vendor and/or Device properties.

5. Configure kernel driver to drive our scanner. Configuration is described

in 9.3.1, where properties Vendor and/or Device are used.

11.1.2 Compilation, Loading and Unloading

Compile kernel driver with command [make] typed in [usbscan] directory.
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Load driver into memory with command [insmod]. Example of the command

use: [/sbin/insmod /path/to/driver/usbscan.ko]. When the driver is success-

fully loaded and scanner is plugged in, then the scanner is in program [usbview]

in black state.

Change access permissions to files [USBSCAN0], [USBSCAN0\0],
[USBSCAN0\1], [USBSCAN0\2] in [/dev] dirctory, if needed.
Unloading the driver from kernel can be done by command [rmmod]. Example

of command use: [/sbin/rmmod usbscan].

Kernel driver is implemented to print debug messages. These messages can be

shown by command [dmesg].

11.2 Still Image Subsystem in Wine

1. Download Wine source code from [http://www.winehq.org] and prepare it

for compilation.

2. Add directories [sti], [sti ci] to wine build tree into [dlls] direc-

tory. Merge file [kernel/file.c.change] with file found in [WINE SRC -

DIR/dlls/kernel/file.c]. Mentioned directories and files can be found on

CD attached to this work.

3. Modify Wine’s [configure.ac] file to reflect new DLL components. In this

file change value of variable AC CONFIG FILES. Add following lines to its value

dlls/sti/Makefile, dlls/sti ci/Makefile.

4. Adjust code of the TWAIN DataSource Manager as mentioned in section 9.1.3

5. Compile and install wine.

6. Now Wine is prepared for scanner installation. Run install program for your

scanner driver and follow steps stated by scanner vendor.

7. Now create symlink called [sti-twain.ds] in direc-

tory [c://windows/system32]. This symlink should point to DataSource

installed in previous step.

If scanner installation program fails, probably it was because of lack of Wine’s

implementation of SetupAPI. In this case you can try to install scanner on Win-

dows machine. Then copy directory with installed TWAIN scanner driver to Linux

machine and copy registry entries mentioned in chapter 7 and also in section 9.4.

Installed TWAIN scanner driver should be in directory [WINDOWS HOME/Twain 32].
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11.3 SANE Scanning

To enable SANE scanning configuration is required on server and client side.

11.3.1 Configure Server Side

Requirements are that scanner is installed and configured properly. Steps required

to install and configure the scanner are described in the previous sections.

1. Copy compiled version of [saned-twain] directory from CD.

2. Edit file [saned.conf]. Change entries of client IPs from which clients are

permitted to access scanner.

3. Start [saned-twain] daemon. Daemon can be started from shell with com-

mand [wine SANED-TWAIN.EXE]. Daemon can run in normal or debug mode.

To enable debug mode export environment variable SANE DEBUG TWAIN with

value from 0 to 255. Greater value means more debug messages. For ex-

ample command [export SANE DEBUG TWAIN=255] will set debug variable for

saned-twain to maximum sensitivity.

Compilation of Saned-twain

Saned-twain is project created in Bloodshed Dev-C++ v4.9.9.2 10. To edit/compile

this project it is necessary to open its project’s file [SANED-TWAIN.dev] in Dev-

C++. To change application type (GUI/Console) go to project options submenu of

the project menu.

Project can be compiled from menu Execute submenu Compile.

11.3.2 Configure Client Side

Requirement is that client side has compiled SANE with backends dll and net.

The following configuration is needed.

1. In file [dll.conf] enable net backend. In file [net.conf] configure servers

running [saned], that the client should connect to. Mentioned configura-

tion files can be found in directory [/usr/local/etc/sane.d/], in version of

SANE compiled from source code.

2. Run any SANE frontend and try the scanner. Frontend tested with this project

are [xsane], [scanimage] and [xscanimage].

10Dev-C++ homepage is http://www.bloodshed.net
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11.4 Known Problems

Saned-twain daemon has to be compiled as GUI application if it is run in Wine.

But then if it runs in debug mode, all debug messages will be printed after daemon

finishes. When daemon will run under Windows it can be compiled as Console

application to behave normally in the debug mode.

70



Chapter 12

Conclusion

Our goal was to design and implement environment around Windows scanner drivers

that will enable scanner drivers to drive the scanner. We have successfully imple-

mented scanning subsystem stack that consists of low-level Windows API - STI

and high-level API - TWAIN. We provide compatible interface for Windows USB

scanner drivers that allow them access scanner hardware. Finally, we achieved to

incorporate Windows scanner architecture into Linux scanning architecture called

SANE. Scanning tests were successfully made through SANE frontends.

Windows scanning architecture was implemented with the help of Wine project,

which is a free implementation of Win32 API. Our improved Wine provides envi-

ronment for scanning subsystem and also for SANE network daemon that exposes

Windows TWAIN USB scanners to SANE. The side effect of our design is that we

can expose TWAIN compatible scanners, installed on Windows machines, to UNIX

machines that run SANE configured to access network scanners.

Some restrictions were made upon our implementation.

We support only one USB scanner device connected to the system. That means we

can handle only one device that is connected to the Linux machines and used with

our scanning subsystem and also only one scanner that is accessible through our

SANE daemon.

Our USB kernel driver will not automatically drive every USB device connected to

the system, but this is only configuration restriction. Configuration can be changed

in kernel driver code. Steps needed for reconfiguration are described in this work.

Continuation of this work is possible in two areas. First is that Wine lacks

implementation of SetupAPI that is needed to install scanners from some vendors.

We have implemented some of the SetupAPI to be able to install some scanners, but

there is still a lot of work to be done. Second possible area of interest is to implement

subsystem for another class of USB devices, for example printers or cameras.
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Glossary

• API - Application Programming Interface

• COFF - Common Object File Format

• DIID - Combination of Device ID and Instance ID in Windows OS

• DLL - Dynamic Link Library

• FD - File Descriptor

• GUID - Global Unique Identifier

• HAL - Hardware Abstraction Layer

• I/O - Input/Output

• INF - Information file

• IRP - I/O Request Packet

• NT - New Technology

• OS - Operating System

• PnP - Plug and Play

• RVA - Relative Virtual Address

• SANE - Scanner Access Now Easy

• STI - Still Image subsystem

• TWAIN - Standard for acquiring images from scanners

• URB - USB Request Block

• USB - Universal Serial Bus

• UUID - Universally Unique Identifier
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Glossary

• VA - Virtual Address

• VxD - Virtual Device Driver

• WDM - Windows Driver Model

• Wine - Wine Is Not an Emulator
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Abstract in Slovak Language

Práca sa zaoberá vytvorením vhodného prostredia pre Windows USB ovládače pre

skenery v prostredí operačného systému Linux. Naším výsledkom je použitie Win-

dows USB ovládačov pre skenery v prostredí Linuxu. Ďalším výsledkom je zapracov-

anie implementovanej Windows skenovacej architektúry do Linux SANE skenovacej

architektúry.

Práca začína vysvetlením modelu Windows ovládačov a Windows skenovacej

architektúry. Pokračuje modelom Linux ovládačov a implementáciou user space

Win32 API v prostredí Linuxu nazvanou Wine.

Jadrom práce je popis návrhu a návrhárskych rozhodnutí implementácie Win-

dows skenovacej architektúry v prostredí Linuxu. Nakoniec sa venujeme opisu de-

tailov prepojenia implementovanej skenovacej Windows architektúry s Linux sken-

ovacím subsystémom.

Poskytli sme aj návod ako spojiť všetky časti implementácie a nastaviť skener

aby fungoval v prostredí Linuxu s Windows ovládačom.

Kľúčové slová: ovládač, skener, Linux, Windows
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