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Abstract
Queries for optimal connection in timetables can be answered by
running Dijkstra’s algorithm on an appropriate graph. However,
in certain scenarios this approach is not fast enough. In this thesis
we introduce methods with much better query time than that of
the efficiently implemented Dijkstra’s algorithm. We analyse these
methods from both theoretical and practical point of view, perform-
ing experiments on various real-world timetables of country-wide
scale.

Our first method called USP-OR is based on pre-computing paths,
that are worth to follow (the so called underlying shortest paths).
This method achieves speed-ups of up to 70 (against Dijkstra’s
algorithm), although at the cost of high amount of preprocessed
data. Our second algorithm computes a small set of important
stations and additional information for optimal travelling between
these stations. Named USP-OR-A, this method is much less space
consuming but still more than 8 times faster than the Dijkstra’s
algorithm on some of the real-world datasets.

Key words: optimal connection, timetable, Dijkstra’s algorithm, distance oracles, under-
lying shortest paths

Abstrakt
Optimálne spojenia v cestovnom poriadku vieme hľadať pomo-
cou Dijkstrovho algoritmu na vhodnom grafe, avšak v niektorých
situáciách tento prístup výkonnostne nepostačuje. V tejto práci
uvádzame metódy, ktoré na dotaz na optimálne spojenie odpovedajú
podstatne rýchlejšie ako efektívna implementácia Dijkstrovho algo-
ritmu. Tieto metódy analyzujeme ako z teoretického, tak aj z prak-
tického hľadiska pomocou experimentov na viacerých cestovných
poriadkoch celonárodnej škály.

Naša prvá metóda nazvaná USP-OR je založená na predpočítaní
trás, ktoré sa oplatí následovať (tzv. podkladové najkratšie cesty).
Táto metóda dosahuje faktor zrýchlenia až 70 (oproti Dijkstrovmu
algoritmu), avšak za cenu veľkej pamäťovej náročnosti. Náš druhý
algoritmus predrátava malú množinu dôležitých staníc a dodatočné
informácie pre optimálne cestovanie medzi nimi. Táto metóda s
názvom USP-OR-A je už oveľa menej pamäťovo náročná, stále však
vyše 8 krát rýchlejšia ako Dijkstrov algoritmus na niektorých reál-
nych cestovných poriadkoch.

Kľúčové slová: optimálne spojenie, cestovný poriadok, Dijkstrov algoritmus, dištančné
orákulá, podkladové najkratšie cesty
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1 Introduction
World is getting smaller every day as new technologies constantly make communication and travelling
faster and more effective then yesterday. Road network, Internet and many other networks are
becoming more evolved and denser which also brings along new problems. In order to fully take
advantage of such huge networks, we must have efficient algorithms that operate on these networks
and give us answers to many questions. Among many others, one that we take particular interest
in is the question: “What is the shortest path from place x to place y”?

In different networks this question can make different sense. In the road network, we would
like to obtain a sequence of intersections we have to go through in order to reach our destination,
driving the shortest possible time (or the smallest possible distance). GPS devices and the likes of
Google maps have to deal with this problem. In case of the Internet network, we might be interested
in the shortest path to a destination computer in terms of router hops. In a network of social
acquaintances, the smallest number of persons connecting us e.g. with guitarist Mark Knopfler or
Liona Boyd could be expressed as a shortest path problem. Many problems in artificial intelligence
(e.g. planning of actions) can be expressed, or include, looking for shortest paths.

Figure 1.1: In a study carried out by
Facebook it was claimed the average
distance (in terms of friendship links)
between the people on the site dropped
from 5.28 in 2008 to 4.74 in 2011 [Bar].

The tremendous amount of work done in this area
signifies the importance of quick distance or shortest path
retrieval in graphs. A simple Dijkstra’s or A* algorithm no
longer comply to the requirements of today’s applications
in which a server often has to answer hundreds of shortest
path queries per second in a large-scale networks. To speed
up the mentioned algorithms we usually sacrifice generality
and concentrate on a particular type of network, or even
on one concrete network.

In this thesis, the type of network we deal with
is the one representing timetable connections, where nodes
are the stations and arcs represent a direct connection be-
tween the two stations. We will talk in more details about
this in following sections. However, this network has one
substantial difference that we would like to point out - it is time-dependent. That means that the
shortest path from station x to station y may have different solutions depending on the time when
we start at station x. Therefore, we will not talk about shortest paths and distances, but rather
about optimal connections and earliest arrivals and each query will now bear a third parameter -
the departure time from x.

To informally develop the discussion about optimal connections in timetables, we will now clarify
the motivation, approach and the goals of this thesis. We also sketch out the difference between the
theory and practice when it comes to timetable search engines.

1.1 Motivation
We have already approached the motivation in the introductory text. We consider that a server
(hosting e.g. journey-planning application) has to answer many queries per given time unit. What
does it mean many? British National Rails Enquiries website that hosts journey planner supports
over 1 million queries per day [1Te]. Even if these queries were distributed evenly throughout the
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whole day, there would still be more than 11 queries per second.
11 queries per second is probably not a big issue. There is about 2500 railway stations

in Great Britain and a current state of the art computer with basic implementation of a time-
dependent Dijkstra’s algorithm (to be talked about later) would be able to handle the mentioned
load without any problems. However, things get more difficult on a bigger scale, in rush hours and
when additional requirements are posed on the search results (transfers, cost of travel or simply
outputting more results that the user can choose from).

In shortest path routing on road networks very much has been done to speed-up the query
times using pre-processing on the input graph (for a good review of such methods, see [DSSW09]).
Some developed methods answer distance queries more than 1 000 000 faster than the Dijkstra’s
algorithm on large road networks. In timetable scenario, the achieved speed-ups are much more
modest. We will talk about the related work and achieved speed-ups in this area in the section 3.

1.2 Approach
We have mentioned that to get more effective algorithms with better query times, we need to focus
on a special type of network and take advantage of its properties. In addition to this, what we can do
is to pre-compute some information on the particular timetable and to use this information later to
speed-up the answering of the queries. This is not a new technique and in the shortest path routing
it is commonly referred to as creating a distance oracle [TZ05]. Our approach is different in only
that instead of static graphs we deal with graphs representing the timetables 1 and look for optimal
connections. We will go more into the details about this approach in the preliminaries section 2.

1.3 Goals
We have set two main goals for this thesis:
• Analyse real-world timetables and their properties. More specifically, given the graph
representing the timetable, we were interested in its sparsity, connectivity, average and maximal
degrees, average optimal connection sizes... We will talk about the various properties mostly
in the section 4, but also throughout the rest of this thesis

• Develop methods with fast query times for optimal connections, based on pre-computing
information

1.4 Theory and practice
This thesis is more theoretically oriented - we consider the optimal connection problem in probably
its purest form which does not account for the many requirements posed by travellers using timetable
search engines. Those include number of transfers, preferred route, cost of travel and others. These
multi-criteria queries are discussed e.g. in [MHSWZ07]. In practice, we also usually want to output
multiple connections, so that the user has a chance to choose suitable option. Needless to say, all of
this makes the problem much more complicated and challenging than a pure search for an optimal
connection.

On the other hand, the real-world timetable search engines concentrate usually on one
given dataset, which enables them to exploit its properties 2 and tailor the search engine specifically

1Hence the name of this thesis - Distance oracles for timetable graphs, the “distance” being part of the title mostly
because the term “distance oracle” is generally recognized.

2E.g. the city of Bratislava has only four (functioning) bridges, which could be taken into account when designing
a public transportation search engine.
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for it. There is also a choice of a suitable timetable model based on the characteristics of the given
timetable.

The aim of the theoretical works (like this thesis) is not therefore to develop an algorithm
immediately deployable into practice but rather to investigate techniques which might be useful to
consider when designing practical timetable search engines.

1.5 Organization & conventions
This thesis is organized as follows:
• Preliminaries: We provide the necessary definitions (most notably timetable and its graph
representations) and formally define the problem we deal with, as well as the approach we use

• Related work: This section summarizes the main related work in distance oracles, static
route-planning and time-dependent scenarios

• Data & analysis: We introduce real-world timetables we worked with and analyse many of
their properties

• Underlying shortest paths: In the main part of the thesis, we present the two methods
we developed to speed-up optimal connection queries in timetables. These methods are also
analysed from both theoretical and practical point of view

• Neural network approach: We summarize a little experiment in which we tried to train a
neural network to answer optimal connection queries

• Application TTBlazer: This section shortly describes the application we used to analyse
our datasets and test the methods

• Conclusion: Finally, we conclude, pointing out the main results and contribution, drawbacks
and possibilities for future work

In this thesis, we also use some conventions:
• With a few exceptions, we will use bold font to mark currently defined term (or its notation)
• Names of our algorithms are in italics

3



2 Preliminaries
In this section, we provide most of the definitions and terminology used throughout the thesis.

2.1 Objects
First, we will formalize the notion of a timetable and its derived graph forms, the underlying graph
and terms related to these objects.

Definition 2.1. Timetable (TT)
A timetable is a set T = {(x, y, p, q)| p, q ∈ N, p < q}.
• Elements of T (the 4-tuples) are called elementary connections. For an elementary con-
nection e = (x, y, p, q):
– from(e) = x is the departure city (station)
– to(e) = y is the arrival/destination city (station)
– dep(e) = p is the departure time
– arr(e) = q is the arrival time

• The set of all cities (stations) will be denoted as ctT = {x| (x, y, p, q) ∈ T or (y, x, p, q) ∈ T}
and the number of cities as nT

• Pairs (x, p) or (y, q) such that (x, y, p, q) ∈ T form the set of events evT . The set of events
in a specific city x is evT (x) = {(x, t)| (x, y, t, q) ∈ T or (y, x, p, t) ∈ T}

• Let tlowT = mine∈T dep(e) and thighT = maxe∈T arr(e). The value trT = thighT − tlowT
is called the time range of the timetable

• Height of the timetable is the average number of events in a city:

hT = |evT |
nT

Let us describe some of the defined terms more informally. An elementary connection corresponds
to moving from one stop to the next one, e.g. with a bus (thus we disregard the notion of lines, i.e.
getting on and off from a bus). Note that we express time as an integer - throughout this paper, this
integer will represent the minutes elapsed from the time 00:00 of the first day. Thus we may take the
liberty of talking about time in integer or days hh:mm format, as convenient at the moment. Lastly,
an event simply represents an arrival or departure of a e.g. train at some station. The remaining
terms should be clear enough.

Place Time
From To Departure Arrival
A B 10:00 10:45
B C 11:00 11:30
B C 11:30 12:10
B A 11:20 12:30
C A 11:45 12:15

Table 2.1: An example of a timetable - the set of elementary connections (between pairs of cities).
An example of an event is a pair (A, 10:00), when some elementary connection departs from A.

Following is a definition of a connection.
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Definition 2.2. Connection
A connection from a to b is a sequence of elementary connections c = (e1, e2, ..., ek), k ≥ 1, such
that from(e1) = a, to(ek) = b and ∀i ∈ {2, ..., k} : (from(ei) = to(ei−1), dep(ei) ≥ arr(ei−1).
• We extend from(c) = from(e1), to(c) = to(ek), dep(c) = dep(e1), arr(c) = arr(ek)
• Length of the connection is len(c) = arr(c)− dep(c)
• Size of the connection is size(c) = k 3

• We will denote the set of all connections from a to b in a timetable T as CT (a, b). We also
define CT = ∪a,bCT (a, b)

So we understand connection as a (valid) sequence of elementary connections.

[B, 11:00] [C, 11:30] [C, 11:45] [A, 12:15]
0:30 0:15 0:30

elementary connection

connection

Figure 2.1: A valid connection made out of elementary connections (and waiting, which is implicitly
fills out the time between successive elementary connections).

Next, we continue with the underlying graph - a graph representing basically the map on top of
which the timetable operates.

Definition 2.3. Underlying graph (UG graph)
The underlying graph of a timetable T , denoted ugT , is an oriented graph (V,E), where V is the set
of all timetable cities and E = {(x, y)| ∃(x, y, p, q) ∈ T}
• By mT we will denote the number of arcs in the UG

Note, that we do not specify the weights of the edges in the underlying graph - they will be specified
based on the current usage of the UG. Most of the time, however, if we work with a weighted UG,
the weight of an arc will be the length of the shortest elementary connection on that arc. More
specifically, w(x, y) = min(x,y,p,q)∈T (q − p) ∀(x, y) ∈ E(ugT ). Such weighted UG will be called
optimistic (denoted ugopt

T ).

If we want to represent the timetable by a graph, there are two most common options [MHSWZ07]
- the time-expanded and time-dependent graph.

Definition 2.4. Time-expanded graph (TE graph)
Let T be a timetable. Time-expanded graph of the timetable T , denoted teT , is an oriented graph
(V,E) whose vertices correspond to events of T , that is V = {[x, t]| (x, t) ∈ evT }. The edges of G
are of two types

1. ([x, p], [y, q]) ∀(x, y, p, q) ∈ T - the so called connection edges
2. ([x, p], [x, q]) [x, p], [x, q] ∈ V, p < q and 6 ∃[x, r] ∈ V : p < r < q. - the so called waiting edges

Weight of the edge ([x, p], [y, q]) is w([x, p], [y, q]) = q − p.

Informally, an edge in TE graph represent either the travelling with an elementary connection or
waiting for the next event in the same city. Also, the time range and height of a timetable could be
easily illustrated on the TE graph (see figure 2.3).

3We will use similar terminology when talking about paths - the size is the number of vertices (hops) in the path
while the length refers to the actual distance (sum of weights of the edges in the path).
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A

B

C

45m

50m

30m

30m

Figure 2.2: An optimistic underlying graph of the timetable 2.1. The nodes are the cities of the
timetable.

[A, 10:00]

[B, 10:45]

[B, 11:00]

[C, 11:30]
[B, 11:20]
[B, 11:30]

[A, 12:30]

[C, 11:45]

[C, 12:10]
[A, 12:15]

0:45

0:30

0:40
1:10

0:30

2:15

0:15

0:15

0:20

0:10

0:15

0:25

tr
a
n
g
e T

Figure 2.3: Time-expanded graph of the timetable 2.1. Nodes represent the events. There are
connection and waiting edges (dashed). The time range is 2h:30m and the height is 10

3 (since there
are as many events in a city on average).

Definition 2.5. Time-dependent graph (TD graph)
Let T be a timetable. Time-dependent graph of the timetable T , denoted tdT , is an oriented graph
(V,E) whose vertices are the timetable cities and E = {(x, y)| ∃(x, y, p, q) ∈ T}. Furthermore, the
weight of an edge (x, y) ∈ E is a piece-wise linear function w(x, y) = fx,y(t) = q − t where q is:
• min{arr(e)| e ∈ T, dep(e) ≥ t}
• ∞, if dep(e) < t ∀e ∈ T

Intuitively, the TD graph is simply the UG graph with each arc carrying a function specifying the
traversal time of that arc at any time. For an example, see figure 2.5.

The algorithms in this thesis use almost exclusively the TD graphs, mainly because they
are less space consuming. Also, time-dependent Dijkstra searches are a bit faster on TD graphs,
because the search space that has to be explored is smaller. On the other hand, TE graphs are more
flexible when we need to take additional search parameters into consideration (like transfers, travel
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costs). Since we will not talk about these, TD graphs are more suitable.

A

B

C

fB,C

Figure 2.4: Time-dependent graph of the
timetable 2.1. The nodes are the cities.

t

fB,C(t)

30m
40m

10:00 11:00 12:00 13:00

Figure 2.5: Piece-wise linear function -
traversal times for the arc (B,C). The
highlighted points are called interpolation
points and each of them corresponds to an
elementary connection (its coordinates are
dep(e), len(e) for a corresponding elementary
connection e). Note that a list of all interpo-
lation points fully defines the piece-wise lin-
ear function.

To sum up, there are four main types of objects we will be working with:
• Timetable (TT)
• Underlying graph (UG)
• Time-expanded graph (TE)
• Time-dependent graph (TD)

For future reference, we will call TT, TE and TD as timetable objects and UG, TE and TD as
graph-like objects.

Note: Throughout this paper, we will relax a bit the notation and leave out subscripts (e.g.
ugT → ug, nT → n, etc.) in situations, where the context is clear enough.

2.2 Earliest arrival and optimal connection
Now we formulate the main problems this thesis deals with.

Definition 2.6. Earliest arrival problem (EAP)
Given a timetable T , departure city x, destination city y and a departure time t, the task is to
determine t∗(x,t,y) = minc∈CT (x,y){arr(c)| dep(c) ≥ t}.
• We will refer to the tuple (x, t, y) as an EAP instance, or an EAP query (or just query)
• The time t∗(x,t,y) is called the earliest arrival (EA) for the given EAP instance

A bit more difficult version of this problem is one where we require to actually output the connection
arriving at time given by EA.
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Definition 2.7. Optimal connection problem (OCP)
Given a timetable T , departure city x, destination city y and a departure time t, the task is to find
the optimal connection (OC) c∗

(x,t,y) = argminc∈CT (x,y){arr(c)| dep(c) ≥ t}.

The instance/query in case of the optimal connection problem has the same form as EAP query.
Also, note that the OCP is at least as hard to solve as EAP since having the optimal connection
implies the optimal (earliest) arrival time. In order to avoid technical issues (e.g. in the definition),
we may assume that the optimal connection is unique (i.e., there is not a different connection with
the same end time). However, we consider any connection which arrives at time t∗(x,t,y) to be optimal
for the given query.

Example 2.1. Consider our timetable from table 2.1. For the EAP instance (B, 10:45, A), the
earliest arrival (EA) is 12:15 and the optimal connection (OC) is ((B, C, 11:00, 11:30), (C, A,
11:45, 12:15)), as could be easily seen from the figure 2.6.

[A, 10:00]

[B, 10:45]

[B, 11:00]

[C, 11:30]
[B, 11:20]
[B, 11:30]

[A, 12:30]

[C, 11:45]

[C, 12:10][A, 12:15]

0:45

0:30

0:401:10
0:30

2:15

0:15

0:15

0:20

0:10
0:15

0:25

Figure 2.6: Depicting the situation from example 2.1 on TE graph. The optimal connection and
earliest arrival time are marked in bold.

2.3 (Distance) Oracles
The term distance oracle was first coined in 2001 by Thorup and Zwick [TZ05], when talking about
quick shortest path (or distance) computations on graphs. One approach to this problem is to pre-
compute some information on the graph to speed-up answering of the queries. The paper of Thorup
and Zwick was dealing with trade-offs among the time complexity of the pre-computation, the
amount of preprocessed information, the speed-up in query times and the accuracy of the answers.
Since the pre-computed data structure is something that helps us answer the queries more efficiently,
it resembles an oracle, thus the term distance oracle.

In this thesis, we will discuss methods that behave the same way, but deal with the optimal
connection problem (or earliest arrival problem) - there is some preprocessing of the timetable with
a resulting data structure that speeds up answering subsequent queries. To formalize this a little
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more, we will refer to this kind of methods as oracle based methods. For such a method m, we
are interested mainly in its four parameters:
• Preprocessing time (prep(m)) - the time complexity of the pre-computation
• Preprocessed space (size(m)) - the space complexity of the pre-computed data structure
(the so called oracle)

• Query time (qtime(m)) - the time complexity of answering a single query
• Stretch (stretch(m)) - the worst-case ratio against the optimal value of the earliest arrival
(the lower, the better)

T Oracle
prep

User
(a, t, b)

stretch·c∗(a,t,b)

size

qtime

Figure 2.7: Principle of oracle based methods - we preprocess the timetable, creating a structure
that helps us speed-up the answers to queries for optimal connection.

The preprocessing time is probably the least critical resource. A reasonable polynomial should
bind its time complexity, depending on the computational power of the user and the scale of the
timetable. The size of the preprocessed oracle is much more important - in the optimal case, it
should be bound by the space complexity of the timetable itself. Optimality of the query time
depends on which problem we are solving. If we query for the whole optimal connection, we have
to count with a time complexity at least proportional to the average optimal connection size. If
we require only the EA value as an output, much better speed-ups could be expected. The stretch
should be of course as low as possible.

2.4 Dijkstra’s algorithm
Throughout this thesis, we will often use Dijkstra’s algorithm and its modifications both as a part
of our algorithms and as a reference point against which we will compare the performance of our
methods. This is a common practice. Researchers working on methods answering distance or shortest
path queries in road networks commonly use the term speed-up, i.e. how many times faster is their
algorithm against the Dijkstra’s algorithm.

Dijkstra’s algorithm is originally an algorithm that looks for shortest paths in weighted
oriented graphs. It was published by E. W. Dijkstra in 1959 [Dij59] and we will not explain it at this
place, as the algorithm is very well explained at many other places (e.g. [KP]). For a good summary
of Dijkstra’s algorithm related implementations and publications see [Som10].

As our task is to compute earliest arrivals or optimal connections instead of distances and
shortest paths, our “reference point” will be a slightly modified Dijkstra’s algorithm called time-
dependent Dijkstra’s algorithm [DW09] (or TD Dijkstra for short). The algorithm is run on a
time-dependent graph and works just like the ordinary Dijkstra’s algorithm, except that the weight
of each arc (x, y) is determined for the time t at which we had settled vertex x.

If we assume that the evaluation of an arc by the cost function of the TD graph is imple-
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mented in constant time, the running time of the TD Dijkstra is O(n2), just like the normal Dijkstra’s
algorithm. On sparse graphs, this bound can be improved using a quick data structure to determine
the next node we settle. A good option is a priority queue implemented as a Fibonacci heap, which
implements deletion in O(logn) and all other operations in constant amortized time [Som10]. This
yields the running time of TD Dijkstra O(n logn+m).

We may therefore introduce a fifth parameter of our oracle based methods, the speed-up:

Definition 2.8. Speed-up (spd(m))
A speed-up of an oracle based method m is the ratio qtimeavg(TD Dijkstra)

qtimeavg(m) where qtimeavg(m′)

is the average query time of the respective oracle based method m′ 4.

The definition is rather loose in the sense that we may refer to a concrete speed-up of the method
on a concrete dataset, or a general theoretical speed-up expressed as a function of the size of input.

4Note that we may also consider the TD Dijkstra algorithm to be an oracle based method - it just happens that
it does not require any preprocessing.
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3 Related work
In this section, we summarize the work related to the subject of this thesis. Apart from the papers
discussing searching for optimal connections and earliest arrivals in time-dependent scenarios, we
also briefly summarize the research done on route planning in road networks and on distance oracles
in general.

3.1 Distance oracles and route-planning
We have already mentioned in section 2 the paper of Thorup and Zwick [TZ05] where the term
“distance oracle” originated. The authors have shown that given an undirected weighted graph of n
vertices and m edges and a chosen integer k ≥ 1, we can build a distance oracle such that:
• preprocessing takes O(kmn1/k) expected time
• resulting distance oracle is of size O(kn1+1/k)
• answering queries takes O(k) time
• stretch is at most 2k − 1

Moreover, the authors have reasoned that their construction is essentially optimal with respect to
space - i.e., if we want to have exact and constant-time answers, we will in general be forced to
pre-compute Ω(n2) information. The parameter k however provides a nice option to make trade-offs
between the four parameters, as depicted on figure 3.1.

preprocessing size query time stretch

Figure 3.1: By moving k (decreasing on the picture), we can achieve compromises between the four
parameters of the distance oracle.

Another work by Gavoille et al. [GPPR04] concerned distance labelling - a somewhat restricted
version of a distance oracle where we assign each node in the graph its distance label. This is again
only some pre-computed information and upon a query from x to y, we should be able to figure out
their distance only using the corresponding distance labels. In the paper it is shown that for all n,
there exist infinitely many graphs of n vertices for which we have an exact distance labelling scheme
of a small overall size (O(n logn)), but for which the process of figuring out the distance from the
labels takes too long from practical point of view.

Even though these results imply that we cannot create a sufficiently small efficient distance oracle
in general, it may still be possible for sub-classes of general graphs, or even better, for a single
particular graph. In that respect, the road network is the point of interest and fortunately it has a
few “nice” properties (it is sparse, almost planar, the maximum node degree is small...) which made
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it possible to design exact and efficient algorithms with extremely fast query times. To name a few
of these:
• Highway hierarchies (2005, [SS05]). The preprocessing of the algorithm works in iterations
- in each of them the edges of little importance are pruned, the remaining graph is contracted
(long chains of edges are replaced with shortcuts) and the result forms the new layer, connected
to the previous one, and used as an input for the next iteration. On such hierarchy of layers,
bidirectional Dikstra’s algorithm is run, climbing up the hierarchy in each direction.
– Speed-up: about 2500
– Techniques: hierarchy, shortcuts, bidirectional Dijkstra

• Transit node routing (2006, [BFM06]). The algorithm completely replaces searching with
table look-ups. There is a small set of transit nodes between which the exact distance is stored
in a table. Also each node remembers its nearest transit nodes (called access nodes 5) and
their distance. A search is necessary only in case of a local query. A disadvantage is a bigger
space consumption.
– Speed-up: more than 1 000 000
– Techniques: landmarks

Figure 3.2: Highway hierarchies (left) - the bidirectional Dijkstra search climbs up the hierarchy
to reach the most sparse level. Transit node routing (right) - access nodes (in red) that cannot be
avoided when going “out of town”.

• Contraction hierarchies (2008, [GSSD08]). The preprocessing creates additional shortcut
edges in the graph. This is done by deleting one by one the vertices of the original graph
and adding shortcuts where necessary - to preserve original distances. The quality of the
preprocessing depends mostly on the order in which we delete the vertices. Upon a query, a
bidirectional Dijkstra search is run on the original graph enriched with the added shortcuts.
The algorithm is less memory demanding than Transit node routing.
– Speed-up: more than 30 000
– Techniques: shortcuts (contractions), bidirectional Dijkstra

One thing these methods have in common is that their query time is very low in practice, but it is
not guaranteed theoretically. This was the point of interest in the work [AFGW10], which introduces
a parameter called highway dimension. The authors show that a low highway dimension guarantees
good query times of many route-planning algorithms, including the three we have mentioned.

5This served partly as an inspiration for our algorithm USP-OR-A discussed in section 5.
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Figure 3.3: Deleting vertex E in Contraction hierarchies. Before (left) and after (right).

A very good summary of the techniques devised for road network route-planning up to the year
2009 can be found in [DSSW09]. Efficient distance oracles are also known for graphs with small
recursive separators [GPPR04]. The work [Som10] suggests efficient distance oracle for power-law
graphs and another distance oracle method for general graphs, offering trade-offs between stretch
and query times. It also gives an exhaustive and comprehensive discussion regarding shortest path
queries in general, which we point out to interested readers.

3.2 Time-dependent scenario
The time-dependent scenario has so far seen much smaller speed-ups than static routing in road
networks, one reason for this being that the adaptation of the many techniques used for road networks
to the time-dependent scenario is not so straightforward. This is mainly due to the fact that running
bidirectional Dijkstra’s algorithm (commonly used with static route-planning techniques) in time-
dependent networks requires the knowledge of the destination time [DPW09]. All the same, for some
methods this adaptation was carried out with good results:
• Time-dependent contraction hierarchies (2009, [BDSV09]). The focus in this case was
on road networks having time-dependent edge weights (e.g. the traversal time varies due to
congestions) and on computing earliest arrival value for a given query. The main difference
between the static Contraction hierarchies is that the backward search is run from more arrival
times of the destination node. Each such run may then contribute a new lower or upper bound
for the actual earliest arrival value, based on if the forward and backward search met (a solution
was found) or not.
– Speed-up (TD road-network, 18 million nodes): up to 2000

• Time-dependent SHARC (2008, [Del08]). Static SHARC is an algorithm using unidirec-
tional Dijkstra, it was therefore a good candidate to be adjusted for time-dependent scenario.
It combines several techniques, perhaps the most important being pre-computing arc flags (see
e.g. [KMS06]) for a multi-partition of the input graph, which is basically an information stating
if the given arc should/should not be considered when travelling to the destination cell.
– Speed-up (TD road-network, 5 million nodes): up to 800
– Speed-up (timetable, 30 000 stations): up to 27

• Engineering time-expanded graphs... (2009, [DPW09]). While the previous papers used
the time-dependent model of the timetable, this work concentrates on the time-expanded
model. On a high level, this model is further refined by bypassing some low degree nodes,
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remodelling unimportant stations and introducing time-dependent shortcuts - still in the phase
of preprocessing. During the query, additional speed-up techniques are deployed to reduce the
search space explored by Dijkstra’s algorithm, as this can get quite huge in time-expanded
graphs.
– Speed-up (timetable, 30 000 stations): up to 57

A summary of some time-dependent route planning techniques (up to year 2009) can be found
in [DW09]. The paper [MHSWZ07] discusses also multi-criteria queries and gives an overview on
comparisons between the time-dependent and time-expanded timetable model.
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4 Data & analysis
In this section we would like to introduce the timetable datasets we were working with and provide
the analysis of their properties. The main reason for this analysis is that it gives some insight into
the characteristics of the timetables and so may contribute to develop an oracle based method with
better qualities.

4.1 Data
We have obtained timetable datasets from numerous sources, in varying formats and of different
types. Some of them were freely available on the Internet while others were provided by companies
upon demand. Let us provide their brief description.

The dataset air01 contains schedules of domestic flights in United States for the
January of 2008. It is not comprehensive in the sense that it contains entries only for flights of some
of the major airports in US. However it is large enough for our purposes (almost 300 airports). This
dataset is just a fraction of the data that are freely available at the pages of American Statistical
Association 6 in CSV format.

Timetable cpsk represent the regional bus schedules from the areas of Ružomberok and
Žilina, Slovakia. The data were provided by the company in charge of the cp.sk portal - Inprop
s.r.o. . The timetable contains about 1900 bus stops and came in a JDF 1.9 format 7. Apart from
the actual schedules, the data in JDF contain numerous other information which were not relevant
for our purposes. From both timetables we have extracted subsets with a time range of one day.

The gb-coach and gb-train timetables are freely available from National Public Transport
Data Repository (NPTDR) 8 in an ATCO-CIF format. These are not actually timetables but rather
weekly snapshots of national public transport journeys made by coach and train in Great Britain
(during certain week in year 2011). The datasets contain about 2500 stations each.

Themontr dataset is part of a public feed forGreater Montreal public transportation,
available at Google Transit Feeds 9. The data are in a GTFS format (defines relations between
CSV files listing stations, routes, stop-times...) and were made available by Montreal’s Agence
métropolitaine de transport. Our timetable montr corresponds to daily schedules of the Chambly-
Richelieu-Carignan bus services (more than 200 bus stops).

Also in GTFS format come the data of French railways operated by company SNCF,
publicly available at their website 10. The schedules are weekly and there were two of them: one for
intercity trains and one for TER trains (regional trains). Thus the three timetables sncf-inter (366
stations), sncf-ter (2637 stations) and their union sncf (2646 stations).

Finally, one more country-wide railway timetable was provided by ŽSR, the company in
charge of the Slovak national railways. This timetable was exported in a MERITS format and
its time range is for one year. The number of stations in zsr dataset is 233.

With the help of Python and Bash scripts, we converted each of these datasets to our timetable
format (described in appendix A). This timetables were then loaded by our application TTBlazer,

6http://stat-computing.org/dataexpo/2009/the-data.html
7Jednotný dátový formát (JDF).
8http://data.gov.uk
9http://code.google.com/p/googletransitdatafeed/wiki/PublicFeeds

10http://test.data-sncf.com/index.php/ter.html
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which can further generate sub-timetables (with less stations or smaller time range), underlying
graphs and TE and TD graphs.

For a summary of the used timetables’ descriptions, see table 4.1 and for their main prop-
erties, refer to table 4.2.

Name Description Format Provided by Publicly available
air01 domestic flights (US) CSV American Stat. Assoc. 4

cpsk regional bus (Ružomberok & Žilina, SVK) JDF 1.9 Inprop s.r.o. 7

gb-coach country-wide buses (GB) ATCO-CIF NPTDR 4

gb-train country-wide rails (GB) ATCO-CIF NPTDR 4

montr public transport (Montreal, CA) GTFS Montreal AMT 4

sncf country-wide rails (FRA) GTFS SNCF 4

zsr country-wide rails (SVK) MERITS ŽSR 7

Table 4.1: Datasets descriptions.

Name El. conns. Cities UG arcs Time range Height
air01 601489 287 4668 1 month 2512.3
cpsk 97916 1905 5093 1 day 50.2

gb-coach 260710 2448 5793 1 week 106.3
gb-train 1714535 2555 8335 1 week 800.4
montr 7153 217 349 1 day 33.1
sncf 416302 2646 7994 1 week 288.1

sncf-inter 22750 366 901 1 week 111.7
sncf-ter 393587 2637 7647 1 week 274.2

zsr 932052 233 588 1 year 7322.2

Table 4.2: Main properties of the timetables. The value of time range is approximate.

To see better the differences in the properties of different timetable types (train, flight, bus...), we
made sub-timetables with 200 cities and with the upper bound on time range being 1 day and 6
hours 11 (thighT < 1 day and 6 hours) from each of our dataset. We name these datasets by ap-
pending to the original name “-200d” 12. See table 4.3 for details.

Name El. conns. Cities UG arcs Height
air01-200d 19010 200 3973 112.7
cpsk-200d 14747 200 592 50.7

gb-coach-200d 2760 200 564 48.0
gb-train-200d 24323 200 792 129.6
montr-200d 6841 200 320 35.0
sncf-200d 4192 200 611 42.4

sncf-inter-200d 2172 200 493 20.8
sncf-ter-200d 8469 200 600 34.0

zsr-200d 2031 200 454 21.6

Table 4.3: 200-station sub-timetables with the time range of one day.

Also, to further justify our choice of using TD graphs instead of TE graphs in this thesis, we provide
11We took all elementary connections that were within our time range. From this timetable, we made an UG and

its (random) sub-graph of 200 cities. Finally we selected only those elementary connections, that were on top of this
sub-graph to form a timetable with 200 cities and the desired (maximal) time range.

12Similarly, throughout this thesis, suffix “-d” would mean “with daily time range”, “-w” “weekly time range” and
suffix “-#” would mean sub-timetable with # stations.
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their space consumption comparison in table 4.4.

TD graph TE graph
Name Nodes Arcs Size (MB) Nodes Arcs Size (MB)
air01 287 4668 27 715211 1307432 72
cpsk 1905 5093 5 95601 189205 11

gb-coach 2448 5793 12 259589 512862 32
gb-train 2555 8335 79 2042316 3745751 263
montr 217 349 0.4 7182 13992 0.9
sncf 2646 7994 19 758867 1166646 85

sncf-inter 366 901 1.1 39765 60602 4.6
sncf-ter 2637 7647 18 720651 1107301 81

zsr 233 588 42 1706077 2637896 173

Table 4.4: Space consumption of time-dependent vs. time-expanded model. The number of nodes
and arcs for TD graph is the same as for the corresponding underlying graph.

4.2 Analysis of properties
First we will take a look at the optimal connection sizes (size is the number of elementary connections
in a connection) in the timetables. For a given timetable T , we will denote the average optimal
connection size as γT and will call it the optimal connection diameter (OC diameter). We
computed an approximate OC diameter for each of our datasets by measuring an average connection
size of sufficiently many OCs. The results in table 4.5 indicate that the average OC size generally
falls under

√
n.

Next we would like to get an idea of the sparsity of the underlying graphs. We see from
the table 4.2 that the graphs are pretty sparse (with the exception of air01 ), but we would like to
make sure that the sparsity is uniform. More specifically, we will be interested in the δ-density:

Definition 4.1. δ-density
A graph G of n vertices and m arcs is δ-dense ⇐⇒ ∀G′ ⊆ G,n′ ≥ 4

√
n : m

′

n′
≤ δ

• For a timetable T , we will denote its density parameter 13 as δT = min{δ| ugT is δ-dense}

To find out at least approximate δT values for our timetables, we have randomly sampled their
UGs for (connected) sub-graphs of various sizes (starting from 4

√
n 14). In table 4.6 you can see the

maximal density found during the sampling. With exception of air01, it is less than logn.

The density is related to the average degree degavg in the UG, since in oriented graphs:

degavg = m

n

So the average degree is a lower bound on the graph’s density. Table 4.7 lists the average and
maximal degrees in the underlying graphs.

We would also assume, that the underlying graphs of each timetable will be connected (and even
strongly connected), or at least that the largest connected component spans almost the whole graph.

13Note that this has nothing to do with the frequency of elementary connections, only with the density of the
underlying graph.

14The choice of 4√n will be justified later, during the analysis of the algorithms.
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Name γT
Max. OC
size found

√
n

air01 2.4 8 16.9
cpsk 40.8 162 43.6

gb-coach 25.2 128 49.5
gb-train 25.6 111 50.5
montr 21.1 63 14.7
sncf 36.8 111 51.4

sncf-inter 17.1 58 19.1
sncf-ter 48.0 167 51.3

zsr 15.0 57 15.3

Table 4.5: With one exception, OC diam-
eter is less then

√
n (this was expected, as

montr is the only timetable with “geograph-
ically one dimension long” - all other timeta-
bles span areas with more uniform shape).
Note extremely low value for airline timetable
- this is due to the fact that UGs of air-
line timetables have small-world characteris-
tics [Som10]. Another thing we may notice is
that regional timetables (cpsk, sncf-ter) have
higher OC diameter then country-wide and
inter-city timetables. We also point out that
the inter-city trains in French railways de-
crease the average optimal connection size by
about one third.

Name Maximal δT found
air01 34.5
cpsk 4.1

gb-coach 5.0
gb-train 5.8
montr 1.9
sncf 5.0

sncf-inter 3.0
sncf-ter 4.8

zsr 3.2

Table 4.6: Approximate density of the under-
lying graphs.

Name Avg. degree Max. degree
air01 16.3 166
cpsk 2.7 27

gb-coach 2.4 103
gb-train 3.3 30
montr 1.6 5
sncf 3.0 27

sncf-inter 2.5 12
sncf-ter 2.9 27

zsr 2.5 12

Table 4.7: Average and maximal degree in
the underlying graphs.

From the table 4.8 we may see that this assumption holds.

Connectivity Strong connectivity
Name n Connected Largest comp. Connected Largest comp.
air01 287 4 287 7 286
cpsk 1905 4 1905 7 1903

gb-coach 2448 7 2374 7 2332
gb-train 2555 4 2555 4 2555
montr 217 7 211 7 209
sncf 2646 4 2646 7 2594

sncf-inter 366 7 328 7 316
sncf-ter 2637 4 2637 7 2583

zsr 233 4 233 7 225

Table 4.8: Connectivity of underlying graphs.

In the previous section (3) we have mentioned the highway dimension [AFGW10] as a parameter
which, when being low, guarantees low query times for certain route-planning methods. Here we
were interested in the highway dimension of our underlying graphs.

Definition 4.2. Highway dimension
Highway dimension HD(G) for a directed, edge-weighted graph G = (V,E) is the smallest integer
h, such that:
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∀r ∈ R+, ∀u ∈ V, ∃S ⊆ Bu,2r, |S| ≤ h, ∀v, w ∈ Bu,2r:
if r < |P (v, w)| ≤ 2r and P (v, w) ⊆ Bu,2r then P (v, w) ∩ S 6= ∅

where:
• P (v,w) is the shortest path between v and w
• Bu,r = {v ∈ V | |P (u, v)| ≤ r or |P (v, u)| ≤ r} and is called ball of radius r centred at u.

Intuitively, a graph has a low HD, if for any r we have a sparse set of vertices Sr, such that every
shortest path longer then r includes a vertex from Sr. By the set being sparse, we mean that every
ball of radius O(r) contains just a few elements of Sr.
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2r = 12

Figure 4.1: Demonstration of a definition of HD. We chose some r (r = 6) and some vertex v (v = C)
to root the ball Bv,2r. All the shortest paths longer than r inside the ball have to contain a vertex
from S (orange vertices C and A in our case). The upper bound on |S|, considering any ball with
any radius, is the required highway dimension. Note: in our case, we had to choose also A to be
part of S, since a shortest path from B to D does not include C.

Highway dimension is difficult to measure due to the way it is defined. We compute at least ap-
proximate value by randomly sampling balls of various radii and using greedy algorithm to compute
shortest path covers. Results could be seen in table 4.9, where we also show the approximate high-
way dimension for a sub-graph with 2500 nodes of the Slovakia’s road network. The results indicate
that the highway dimension of the underlying graphs is comparable to that of the road network.

Name n apx. HD normalized HD
svk 2500 53 0.021
air01 287 49 0.171
cpsk 1905 30 0.016

gb-coach 2448 91 0.037
gb-train 2555 56 0.022
montr 217 18 0.083
sncf 2646 31 0.010

sncf-inter 366 13 0.036
sncf-ter 2637 36 0.014

zsr 233 9 0.039

Table 4.9: Highway dimension of 200 vertex sub-graphs of the underlying graphs. Normalized HD
is the highway dimension divided by n.
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We conclude this section with following observations about our timetables:
• The average daily number of events in a city (i.e. height) ranges from 20 to 130
• Time-dependent graphs are much less (more than 4 times in some cases) space-consuming then
time-expanded graphs

• With exception of air01, the underlying graphs of our timetables are uniformly sparse (δ ≤
logn)

• The average size of an optimal connection in all of our timetables is generally up to
√
n

• The average degree of underlying graphs is very small (less than 4), with the exception of air01
which is much higher (more then 16)

• All the underlying graphs contain one large strongly connected component spanning almost
the whole graph

• Highway dimensions of the underlying graphs are fairly low (again with exception of air01 )

We will continue studying other properties of the timetables throughout the remaining of this thesis,
especially in the section 5.
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5 Underlying shortest paths
In section 2 we have defined a timetable as a set of elementary connections. While we do not pose any
other restrictions on this set or on the elementary connections themselves, the real world timetables
usually have a specific nature. Quite often are the connections repetitive, that is, the same sequence
of elementary connections is repeated in several different moments throughout the day.

Another thing we may notice is that if we talk about optimal connections between a pair
of distant cities u and v, we are often left with a few possibilities as to which way should we go.
This is not only because the underlying graph is usually quite sparse 15, but also because for longer
distances we generally need to make use of some express connection that stops only in (small number
of) bigger cities.

Thus the main idea common to the methods presented in this section: when carrying out
an optimal connection between a pair of cities, one often goes along the same path regardless of the
departure time 16.

To formalize this idea, we will introduce the definition of an underlying shortest path - a path in the
underlying graph that corresponds to some optimal connection in the timetable. To do this, we will
first define a function path that extracts the underlying path (trajectory in the UG) from a given
connection. Let c be a connection c = (e1, e2, ..., ek).

path(c) = shrink(from(e1), from(e2), ..., from(ek), to(ek))

Note, that if the connection involves waiting in a city (as e.g. in figure 5.1), eix = ei+1
x for some i.

That is why we apply the shrink function, which replaces any sub-sequences of the type (z, z, ..., z)
by (z) in a sequence. This is a rather technical way of expressing a simple intuition - for a given
connection, the path function outputs a sequence of visited cities. Now we can formalize the notion
of underlying shortest path.

Definition 5.1. Underlying shortest path (USP)
A path p = (v1, v2, ..., vk) in UGT is an underlying shortest path if, and only if ∃t ∈ N : p =
path(c∗(v1,t,vk)), c∗(v1,t,vk) ∈ CT

[B, 11:00] [C, 11:30] [C, 11:45] [A, 12:15]
0:30 0:15 0:30

connection c

B C A

path(c)

Figure 5.1: The path function applied on a connection to get the underlying path.

Please note that the terminology might be a bit misleading - an USP is not necessarily a shortest
15Maybe with exception of the airline timetables, which tend to be more dense.
16Or similarly, there are only few paths that are worth to follow.
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path in the given UG. For example, the connections on a shortest path may require too much waiting
and thus it might be that travelling along the paths with greater distance proofs to be faster.

5.1 USP-OR
We can easily extract the underlying path from a given connection. Now let us look at this from
the other way - if, for a given EA query, we know the underlying shortest path, can we reconstruct
the optimal connection? One thing we could do is to blindly follow the USP and in each city take
the first elementary connection to the next one on the USP. This simple method called expand is
described in algorithm 5.1.

Algorithm 5.1 expand
Input
• timetable T
• path p = (v1, v2, ..., vk), vi ∈ ctT
• departure time t

Algorithm
1: c = empty connection
2: t′ = t
3: for all i ∈ {1, ..., k − 1} do
4: e = argmine′∈CT (vi,vi+1){dep(e′)| dep(e′) ≥ t′} # take first available el. conn.
5: t′ = arr(e)
6: c .= e # add the el.connection to the resulting connection
7: end for
Output
• connection c

A question is - will we get an optimal connection if we expanded all possible USPs between a pair
of cities? We show that we will, provided the timetable has no overtaking [DW09] of elementary
connections.

Definition 5.2. Overtaking
An elementary connection e1 overtakes e2 if, and only if dep(e1) > dep(e2) and arr(e1) < arr(e2).

[A, 10:00]

[B, 10:45]

[B, 11:00]

[C, 11:30]
[B, 11:20]
[B, 11:30]
[B, 11:40]

[A, 12:30]

[C, 11:45]

[C, 12:10]
[A, 12:15]
[A, 12:05]

0:45

0:30

0:40
1:10

0:25
0:30

2:05

0:10

0:15

0:15

0:20

0:10
0:10 0:15

0:25

Figure 5.2: An example of overtaking (in thick), de-
picted in a TE graph.

Name Overtaken
air01 1%
cpsk 2%

gb-coach 1%
gb-train 0%
montr 1%
sncf 1%

sncf-inter 6%
sncf-ter 1%

zsr 0%

Figure 5.3: Percentage of over-
taken elementary connections in
the timetables.
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Lemma 5.1. Let T be a timetable without overtaking, (x, t, y) an query in this timetable and
usps(x, y) = {p1, p2, ..., pk} a set of all USPs from x to y. Define ci =expand(T, pi, t) to be the
connection returned by the algorithm expand (5.1). Then ∃j : cj = c∗x,t,y.

Proof. The optimal connection c∗x,t,y has an USP p which must be present in the set usps(x, y), as
it is the set of all USPs from x to y. So p = pj = (v1, v2, ..., vl) from some j. We want to show that
cj is the optimal connection. This may be shown inductively:

1. Base: expand reaches city v1 = x as soon as possible (since the connection just starts there).
2. Induction: expand reached city vi as soon as possible, it then takes the first available elementary

connection to the next city vi+1. Since the elementary connections do not overtake, expand
reached the city vi+1 as soon as possible.

We would like to stress that overtaking is understood as a situation when e.g. one train overtakes
another between two subsequent stations. This situation is not that common, however it is still
present in the real world timetables 17, as shown in table 5.3. All the same, we can simply remove
the overtaken elementary connections from the timetables, as they can be substituted by the quicker
connection plus some waiting, thus we will not change the earliest arrival time for any query.

The basic idea of the algorithm USP-OR (USP oracle) is therefore simply to pre-compute all the
USPs for each pair of cities. Upon a query, the algorithm expands all the USPs for a given pair of
cities, reconstructs respective connections and chooses the best one.

Algorithm 5.2 USP-OR query
Input
• timetable T
• query (x, t, y)

Pre-computed
• ∀x, y : usps(x, y)

Algorithm
1: c∗ = null
2: for all p ∈ usps(x, y) do
3: c = expand(T, p, t)
4: c∗ = better out of c∗ and c
5: end for
Output
• connection c

5.1.1 Analysis of USP-OR

We will now have a look at the four parameters of this oracle based method. As for the preprocessing
time, we need to find the optimal connections from each event in the timetable to each city (or in
other words - solve all possible OC queries). On these connections we apply the path function to
obtain the USPs. There is hn events and one search from a single event to all cities can be done in
time O(n logn+m) with TD Dijkstra (in this section we use exclusively the time-dependent graphs).

17In Slovak rails, no overtaking has been detected. This is not surprising as (to my knowledge) there are no
inter-station tracks with multiple rails going in one direction. French railways, on the other hand have designated
high-speed tracks and thus overtaking is not impossible.
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In worst case, m could be as much as n2 but we may bound it as m ≤ δTn (where δT is the density of
the timetable, defined in section 4). We therefore get the preprocessing time O(hn2(log n+δ)).

As for the preprocessed space, we need to store USPs for each pair of the cities (n2 pairs)
and each USP might be long at most O(n) hops. What is more, there might be multiple USPs for
a single pair of cities. Therefore we have two questions with respect to the space complexity of the
preprocessing:

1. What is the average size of the USPs?
2. How many are there USPs between pairs of cities on average?

As for the first question, we will call the average size of USPs in a timetable T the USP diameter
and denote it ωT . This value is generally higher then the OC diameter 18, but can still be very well
approximated by

√
n (see table 5.1 and plot 5.4).

To answer the second question, we will introduce the following definition:

Definition 5.3. USP coefficient
Given a timetable T and a pair of cities x, y, we define the USP coefficient τT (x, y) = |uspsT (x, y)|.
By τT we will denote the average USP coefficient in timetable T .

From the table 5.1 we may see that τ is quite small (≈ 10). Important thing however is whether or
not it is constant with respect to:
• n - we found τ to be slightly increasing, sometimes almost constant (see plot 5.5)
• time range - again the value of τ was slightly increasing (plot 5.6)

Generally, we may bound the size of the preprocessed oracle as O(τn2ω).

Name τ max τ (x, y) ω

air01-200d 5.6 29 3.7
cpsk-200d 7.7 37 19.4

gb-coach-200d 3.5 29 7.2
gb-train-200d 6.8 40 10.3
montr-200d 2.7 18 26.1
sncf-200d 3.8 16 10.5

sncf-inter-200d 1.8 13 14.8
sncf-ter-200d 4.1 14 15.1

zsr-200d 2.3 13 16.2

Table 5.1: Average and maximal USP coefficients and USP diameter for daily timetables with 200
stations (

√
200 ≈ 14).

18If, for example, we have 8 optimal connections (on the same underlying path) with size 1 and 1 optimal connection
with size 10, the OC diameter will be 2 but the average USP size will be 5.5.
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Figure 5.4: Changing of ω with increased
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Figure 5.5: Changing of τ with increased
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Figure 5.6: Changing of τ with increased
time range.
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Figure 5.7: Changing of τ with increased
time range when using segmentation.

Also the query time depends on the USP coefficient of a given pair of cities x, y, as we have to try
out all USPs in usps(x, y). The expansion of a USP by expand function takes time linear in the size
of the USP 19, leading to query time O(τω) on average. Note, that if τ was a constant this would
be pretty much optimal, as we need to output the connection itself which takes linear time in its
size.

To alleviate the problem of increased τ in timetables with e.g. weekly time range, we did a
simple trick called segmentation. First, we normally computed the USPs. Then we segmented the
timetable to individual days and for each of them we stored the pointers to necessary USPs. This
does not require additional memory but it makes the value of τ constant, or even decreasing (see
plot 5.7) with increasing time range. Note that this would be reflected only in an improved query
time of USP-OR, the size of the preprocessed data will be left unaffected. From this point on we
assume the use of segmentation for multi-day timetables (also in USP-OR-A algorithm, explained
in the next section).

19In time-dependent graphs, this requires a constant-time retrieval of the correct interpolation point of the cost
function (the piece-wise linear function that tells us the traversal time of an arc at a given time) for some time t. More
specifically, we need to obtain an interpolation point argmin(t′,l){t′| t′ > t}. If we assume uniform distribution of
departures throughout the time range of the timetable, this can be implemented in constant time. Otherwise, binary
search lookup is possible in time O(log h).
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Finally, the stretch of USP-OR is 1, since it returns exact answers.

USP-OR prep size qtime stretch

guaranteed O(hn2(logn+ δ)) O(τn2ω) avg. O(τω) 1
ω ≤
√

n, δ ≤ log n O(hn2 logn) O(τn2.5) avg. O(τ
√
n) 1

Table 5.2: The summary of the USP-OR algorithm parameters.

5.2 USP-OR-A
With USP-OR the main disadvantage is its space consumption. We may decrease this space com-
plexity by pre-computing USPs only between some cities. The nodes that we select for this purpose
will be called access nodes (AN for short), as for each city they would be the crucial nodes we
need to pass in order to access most of the cities of T . It would be suitable for this access node set
to have several desirable properties. In order to formulate them, we need to define a few terms first.

Definition 5.4. Front neighbourhood
Given a timetable T and access node set A, a front neighbourhood of city x is the set of all cities (in-
cluding x) that are reachable from x without the need to pass a city from A. Formally neighA(x) =
{y ∈ ctT | ∃ path p = (p1, p2, ..., pk) from x to y in ugT : pi 6= a ∀a ∈ A, i ∈ {2, ..., k − 1}} 20

We define analogically back neighbourhood (denoted bneighA(x)), as nodes that could be
reached in UG with reversed orientation (←−−ugT ). Note that the access nodes that are on the boundary
of x’s neighbourhoods are also part of these neighbourhoods. These access nodes form some sort of
separator between the x’s neighbourhood and the rest of the graph and we will call them local access
nodes (LAN) (lanA(x) = A∩neighA(x)), or analogically back local access nodes (blanA(x)).

Now we may formulate the three desirable properties of the access node set. Given a timetable T ,
we would like to find access node set A with parameters r1, r2 and r3 such that:

1. The access node set is sufficiently small

|A| ≤ r1 ·
√
n (5.1)

2. The average square of neighbourhood 21 size for cities not in A is at most r2 · n∑
x∈ctT \A

|neighA(x)|2

|ctT \A|
≤ r2 · n (5.2)

3. The average square of the number of local access nodes 22 for cities not in A is at most r3∑
x∈ctT \A

|lanA(x)|2

|ctT \A|
≤ r3 (5.3)

20In neighA(x) we leave out subscript identifying the timetable T . In situation with clear context, we may also
leave out the A subscript.

21We required the same for back neighbourhoods.
22We required the same for back LANs.
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An access node set A with the above mentioned properties will be called (r1, r2, r3) access node
set (AN set). We will now explain how the USP-OR-A (USP oracle with access nodes) algorithm
works and return to its analysis later.

During preprocessing, we need to find a good AN set and compute the USPs between every
pair of access nodes. For every city x 6∈ A, we also store its neighA(x), bneighA(x), lanA(x) and
blanA(x). On a query from x to y at time t, we will first make a local search in the neighbourhood
of x up to x’s local access nodes. Subsequently, we want to find out the earliest arrival times to each
of y’s back local access nodes. To do this, we take advantage of the pre-computed USPs between
access nodes - try out all the pairs u ∈ lan(x) and v ∈ blan(y) and expand the stored USPs. Finally,
we make a local search from each of y’s back LANs to y, but we run the search restricted to y’s back
neighbourhood. For more details, see algorithms 5.3 and 5.4 and figure 5.8, where we have split the
algorithm answering queries to 3 distinct phases.
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Local front search Inter-AN search Local back search

Figure 5.8: Principle of USP-OR-A algorithm. The arcs in bold mark areas that will be explored:
all nodes in neighA(x), USPs between LANs of x and back LANs of y and the back neighbourhood
of y (possibly only part of it will be explored, since the local back search goes against the direction
of the back neighbourhood).

Algorithm 5.3 USP-OR-A preprocessing
Input
• timetable T

Algorithm
1: find a good AN set A
2: ∀x, y ∈ A compute usps(x, y)
3: ∀x ∈ ctT \A compute neighA(x), bneighA(x), lanA(x) and blanA(x)

Algorithm 5.4 USP-OR-A query
Input
• timetable T
• query (x, t, y)

Algorithm
1: let lan(x) = x if x ∈ A

2: let blan(y) = y if y ∈ A
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3: Local front search
4: perform TD Dijkstra from x at time t up to lan(x)
5: if y ∈ neigh(x) then
6: let c∗loc be the connection to y obtained by TD Dijkstra # the optimal connection may

still go via ANs (though it is unlikely)
7: end if
8: ∀u ∈ lan(x) let ea(u) be the arrival time and oc(u) the connection to u obtained by TD Dijkstra
9: Inter-AN search
10: for all v ∈ blan(y) do
11: oc(v) = null
12: for all u ∈ lan(x) do
13: for all p ∈ usps(u, v) do
14: c = expand(T, p, ea(u))
15: oc(v) = better out of oc(v) and c
16: end for
17: end for
18: end for
19: ∀v ∈ blan(y) let ea(v) = arr(oc(v))
20: Local back search
21: for all v ∈ blan(y) do
22: perform TD Dijkstra from v at time ea(v) to y restricted to bneigh(y)
23: let fin(v) be the connection returned by TD Dijkstra
24: end for
25: v∗ = argminv∈blan(y){arr(fin(v))}
26: u∗ = from(oc(v∗))
27: let c∗ = oc(u∗).oc(v∗).fin(v∗) # the dot (.) symbol is concatenation of connections
28: output better out of c∗loc and c∗

Output
• optimal connection c∗(x,t,y)

5.2.1 Analysis of USP-OR-A

Let us now analyse the properties of this oracle-based method. Clearly, much depends on the way
we look for the access node set. We will address this issue in next subsections but for now, we
will assume we can find (r1, r2, r3) AN set A in time f(n). Then, in the preprocessing, we have to
find USPs among the access nodes, which requires running Dijkstra’s algorithm from each event in
an access node (city from A). There is O(r1h

√
n) such events which leads to the time complexity

O(r1hn
1.5(logn + δ)). We also have to find local access nodes and neighbourhoods for each city,

which can be accomplished with e.g. depth first search exploring the neighbourhood. This search
algorithm (run from non-access city) has complexity linear in the number of arcs and so we could
bound the total complexity as:

∑
x∈ctT \A

|E(neighA(x))| ≤
∑

x∈ctT \A

|neighA(x)|2 ≤ r2n
2

where E(V ) is the set of arcs among vertices of V . However this is very loose upper bound, as our
UGs are actually very sparse. Therefore we can improve it. We know from the equation 5.2 that
the average square of neighbourhood size is at most r2 ·n. As a consequence of the Cauchy-Schwarz
Inequality [ops] the following holds for positive real numbers xi:√

x2
1 + x2

2 + ...+ x2
n

n
≥ x1 + x2 + ...+ xn

n
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Applying this to our neighbourhood sizes, we get that the average size of the neighbourhood is at
most √r2n. We now split the vertices of ctT \ A to two categories: those with neighbourhoods of
size at most 4

√
n will be part of the set S≤ and those with neighbourhoods of size bigger then 4

√
n

will be in S>. A neighbourhood in the first category cannot possibly contain more than
√
n arcs

while those in the second category can have at most δT |neighA(x)| arcs (thus depending on the
timetable’s density).

∑
x∈ctT \A

|E(neighA(x))| ≤

∑
x∈S≤

≤
√
n︷ ︸︸ ︷

|E(neighA(x))|+
∑
x∈S>

≤δ|neighA(x)|︷ ︸︸ ︷
|E(neighA(x))| ≤

n
√
n+ δn

√
r2n ≤

δr2n
1.5

Therefore, the total time complexity of the preprocessing is O(f(n) + r1hn
1.5(logn + δ)) +

O(δr2n
1.5) = O(f(n) + (r1 + r2)(δ+ log n)hn1.5).
As for the size of the preprocessed data - we need to store all the neighbourhoods, LANs

and USPs between access nodes. We already know that the average size of the neighbourhood is at
most √r2n, thus the total size of the (front and back) neighbourhoods is O(r2n

1.5) 23. This term
bounds also the size of the pre-computed local access nodes for each node.

Finally we have the preprocessed USPs. There is at most r2
1n pairs of access nodes and

for each of them we have possibly several USPs. We will denote by τA the average USP coefficient
between pairs of cities from A and by ωA the average USP size between cities in A. This amounts
to O(r2

1τAωAn) for storage of USPs and to a total preprocessing size O(r2n
1.5 + r2

1τAωAn).

Name n τA ωA

√
n

air01-d 284 10.4 3.4 16.9
cpsk-d 1905 15.9 42.6 43.6

gb-coach-d 2427 6.3 20.2 49.3
gb-train-d 2550 21.8 23.0 50.5
montr-d 217 4.0 24.3 14.7
sncf-d 2608 9.8 34.0 51.1

sncf-inter-d 344 2.8 12.2 18.5
sncf-ter-d 2600 8.9 45.5 51.1

zsr-d 225 4.7 16.5 15

Table 5.3: USP coefficient and diameter for
access node sets, daily timetables.
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Figure 5.9: Changing of ωA with increased
number of stations in cpsk dataset. Com-
pared to the OC diameter and

√
n.

23As r2 should be a very small constant, we may disregard the square root.
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Figure 5.11: Changing of τA with increased
time range (using segmentation).

On a query from x at time t to y, we first perform the local front search (see algorithm 5.4). In this
step we explore the neighbourhood of x with a time-dependent Dijkstra’s algorithm, which takes on
average time O(√r2n(log(√r2n) + δ)). We then expand all the USPs between u and v such that
u ∈ lan(x) and v ∈ blan(y), which takes on average O(r3τAωA). Finally, from each v ∈ blan(y) we
do a TD Dijkstra, restricted to bneigh(y), leading to time complexity O(√r3r2n(log(√r2n) + δ)).

Summing up the three terms we obtain the query time of O(r2
√

r3
√

n(log (r2n)+δ)+

r3τAωA).
Stretch of the USP-OR-A algorithm is 1, as it is exact algorithm.

The resulting bounds do not look very appealing. This is because we wanted to preserve the gen-
erality - the concrete bounds will depend on what kind of properties the timetables have and what
algorithm for finding the AN set is plugged in. In table 5.4, we summarize the parameters of USP-
OR-A method and provide the bounds for a case when the properties of the timetables correspond
to those we have measured in our datasets and when we have an algorithm that finds good AN set.

USP-OR-A guaranteed r1, r2, r3 = O(1), ω ≤
√

n, δ ≤ log n

prep O(f(n) + (r1 + r2)(δ + logn)hn1.5) O(f(n) + hn1.5 logn)
size O(r2n

1.5 + r2
1τωn) O(τn1.5)

qtime avg. O(r2
√
r3

√
n(log(r2n) + δ) + r3τω) avg. O(τ

√
n logn)

stretch 1 1

Table 5.4: The summary of the USP-OR-A algorithm parameters. Here we left out subscripts
identifying AN set for τ and ω.

5.2.2 Correctness of USP-OR-A

Finally, we will proof the correctness of the algorithm, i.e. that it always returns the optimal
connection.

Theorem 5.1. The algorithm USP-OR-A (5.3, 5.4) always returns the optimal connection.

Proof. Let A be the set of access nodes and consider a query from city x to city y at any time t.
If x ∈ A and y ∈ A, an optimum is returned due to lemma 5.1 (in such a case, we basically run
USP-OR algorithm).
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In the following we will assume that y 6∈ neigh(x), which means that the optimal connection goes
through some access node u ∈ lan(x) and v ∈ blan(y). Note that it may be that u = v.

What we would like to prove as a next step is that we reach the back LANs of y (or y itself if it is an
access node) at the earliest arrival time. After the local front search, we have reached the x’s local
ANs at times ea(u) ∀u ∈ lan(x). For some local access node this value is the true earliest arrival.
Let us denote the set of such local ANs as lan∗(x). The crucial thing to realize is that the optimal
connection to any city out of the x’s neighbourhood will lead via some u ∈ lan∗(x) (see figure 5.12).
And because the inter-AN search phase finds optimal connections between pairs u ∈ lan(x) and
v ∈ blan(y), it follows that for each v ∈ blan(y) the ea(v) is the earliest arrival to this city after the
inter-AN search phase.
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Figure 5.12: On the picture lan(x) = {G,H} and blan(y) = {G,H, I}. In thick we have highlighted
the optimal connection. The connection to H is sub-optimal after the local front search phase,
however the optimal connection to y (and to H and I as well) leads through lan∗(x) (some of x’s
local access nodes to which we have an optimal connection after the local front search. Particularly,
in this case it goes through G).

In the local back search we run a TD Dijkstra search from all back LANs of y. And since this algo-
rithm is exact and starts from each back LAN as early as possible, we get the optimal connection to y.

It remains to show that if y ∈ neigh(x), we also get the optimal connection. In such case, we
simply compare the connection that goes via access nodes and the one that was obtained solely
within the neighbourhood and output the shorter one. As there are no other options, the proof is
complete.

5.2.3 Modifications of USP-OR-A

Our implementation of the USP-OR-A algorithm uses one slight improvement, which we did not
mention in its description, since it is more of an optimization technique without any theoretical
guarantees on actual improvement of the running time. However, we consider it an interesting idea
so we mention it at this place.

Definition 5.5. USP tree
Given a pair of cities x and y in a timetable T , we will call a USP tree the graph made out of edges
of all USPs in uspT (x, y): usp3

T (x, y) = (V 3, E3) where V 3 = {v| v lays on some p ∈ uspT (x, y)}
and E3 = {(a, b)| (a, b) is part of some p ∈ uspT (x, y)}.
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We could take advantage of these USP trees to speed up the local front search phase of the algorithm,
where we unnecessarily explore the whole neighbourhood when we could just go along the arcs of
the USP trees. The figure 5.13 depicts this.
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Figure 5.13: Using USP trees (thick non-dashed arcs in neighA(x)) to decrease the explored area
in local front search. A full neighbourhood search is done only when y ∈ neigh(x).

The interesting thing about this is the exploitation of both - timetable and its underlying graph.
While the neighbourhood of a node is something static, related only to the structure of the UG and
generally time-independent, the USP trees reflect to some extent the properties of the timetable
(e.g. which ways are frequently serviced and thus provide optimal connections). By intersecting
these two things, we get the area that is worth to be explored and that is small at the same time
(provided, of course, that the neighbourhoods are small).

5.3 Selection of access node set
The challenge in the USP-OR-A algorithm comes down to the selection of a good access node
set - a (r1, r2, r3) AN set with both three parameters as low as possible. However, intuitively
(and experimentally verified), decreasing e.g. r1 (the AN set size) increases r2 (the size of the
neighbourhoods). We therefore have to do some compromises.

In the following we first show the problem of choosing an optimal access node set to be
NP-hard. We then present our methods for heuristic selection of access nodes and show their
performance on real data.

5.3.1 Choosing the optimal access node set

A question stands - what is an optimal access node set? To keep the query time as low as possible,
we need to avoid large neighbourhood sizes, because that would mean spending too much time doing
local searches. A pretty good upper bound for neighbourhood sizes seems to be

√
n (i.e. r1 = 1)

- the idea is that in such case the local searches cannot possibly last longer then O(n) while the
inter-AN search is linear in the size of the connection and can also be at most O(n). In practice,
both of these steps will be faster because the neighbourhoods are sparse and because the connections
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are on average much shorter then n. However, it gives an idea of why
√
n should be considered for

a target neighbourhood size.
Therefore, the question stands: What is the smallest set of ANs, such that the neighbour-

hood sizes are all under
√
n? More formally, for a timetable T , the task is to minimize |A| where

A ⊆ ctT and ∀x ∈ ctT \ A : |neighA(x)| ≤
√
n. We will call this the problem of the optimal

access node set and in what follows we will show that it is NP-complete.

Theorem 5.2. The problem of the optimal access node set is NP-complete

Proof. We will make a reduction of the min-set cover problem (a NP-complete problem) to the
problem of optimal AN set.

Consider an instance of the min-set cover problem:
• A universe U = {1, 2, ...,m}
• k subsets of U : Si ⊆ U i = {1, 2, ..., k} whose union is U :

⋃
1≤i≤k

Si = U

Denote S = {Si| 1 ≤ i ≤ k}. The task is to choose the smallest subset S∗ of S that still covers the
universe (

⋃
Si∈S∗

Si = U). We will now do a simple conversion (in polynomial time) of the instance of

min-set cover to the instance of the optimal AN set problem (which is represented by the underlying
graph of T ).

For each j ∈ U , we will make a complete graph of βj vertices (the value of βj will be
discussed later) named mj and for each set Si we make a vertex si and vertex s′i. We now connect
all vertices of mj to si for each j ∈ Si. Finally, for we connect si to s′i, 1 ≤ i ≤ k.

Example. Let m = 10 (thus U = {1, 2, ..., 10}) and k = 13:
• S1 = {1, 3, 10}
• S2 = {1, 2}
• ...
• S13 = {2, 3, 10}

For this instance of min set-cover, we construct the graph as depicted on figure 5.14.

m1 m2 m3

..........

m10

size β10

s1

s′1

s2

s′2

s2

s′3

............ s12

s′12

s13

s′13

Figure 5.14: The principle of the reduction. In mi, there are actually complete graphs of βi vertices
(as shown for m1). Thick arcs represent arcs from all the vertices of respective mi. The si vertices
are connected to their s′i versions. If e.g. s1 is selected as an access node, s′1 is no longer part of any
neighbourhood (except for its own).
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Now we would like to clarify the sizes of mi. Define αi to be the number of sets Sj that contain i:
αi = |{Sj ∈ S| i ∈ Sj}| and assume the constructed graph has n vertices. We want the βi to satisfy
βi ≥ 2 and βi + 2αi − 1 ≤

√
n but βi + 2αi >

√
n. The last two inequalities would mean that if at

least one sj connected to mi is chosen as an access node, the neighbourhood for nodes in mi will be
still large at most

√
n, but if none of them is chosen, the neighbourhood size will be just over

√
n.

We leave out the details of the construction at this place.
Now consider an optimal AN set which contains a vertex from within some mi. If this is

the case, either some sj to which mi is connected is selected as AN, or all vertices from mi are
access nodes or the neighbourhood is too large. Keep in mind that the local access nodes are also
part of neighbourhoods, so unless we select for AN some of the sj that mi is connected to, the
neighbourhood of any non-access node in mi will be too large. As there are at least two nodes in
every mi, it is more efficient to select some sj rather then select all nodes in mi. Thus when it comes
to selecting ANs it is worth to consider only vertices sj .

From this point on, it is easy to see that it is optimal to select those sj that correspond
to the optimal solution of min-set cover. The reason is that each of the mi will be connected to at
least one access node sj and will thus have neighbourhood size at most

√
n, while the number of

selected access nodes will be optimal.

It remains to show how to choose values βi. Due to the condition βi ≤
√
n − 2αi + 1 we need to

have sufficiently big n to fulfil βi ≥ 1. We will accomplish this by adding dummy isolated vertices
to the graph. Define function nextSquare(x) to output the smallest y2 > x where y is a natural
number. We then compute w = (max{2αi} + 2)2 and select the starting value of n to be n′ =
nextSquare(max{w − 1,

√
2k +m}). We create the sj and s′j vertices and the complete graphs mi

containing so far only one vertex each. We connect everything according to the rules stated earlier
in this proof and we create dummy vertices up to the capacity defined by n. Now we repeat the
following:
• We compute

√
n which is a natural number

• For i from 1 to m we add vertices to mi till it does not contain
√
n − 2αi + 1 vertices. For

each added vertex we delete one dummy vertex
• If we run out of dummy vertices, n = nextSquare(n)
• Break out of the loop if |mi| =

√
n− 2αi + 1 ∀i

With each iteration of this little algorithm we will be forced to add one more vertex to all mi (since√
n increased by one), a so called inefficient increase. At the beginning, we need to make at most

m
√
n′ efficient increases to meet the breaking condition. And since m is constant and the capacity

of new dummy vertices increases linearly, after t steps we create O(t2) dummy vertices that may be
used for efficient increases. Therefore, the algorithm will stop after O(

√
mn′) steps.

5.3.2 Choosing ANs based on node properties

In the previous sub-subsection, we have shown the problem of choosing the optimal AN set to be
NP-hard. In this sub-subsection we perform a simple experiment of choosing for the access nodes
the cities that seem to be the most important. More specifically, in the optimistic underlying graph
(see section 2) ugoptT we were looking for cities with:

1. High degree. We consider the sum of in-degree and out-degree 24 of the respective node x:
deg(x) = degin(x) + degout(x).

24In-degree is the number of arcs going into the node and out-degree the number of outgoing arcs.
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2. High betweenness centrality (BC). Betweenness centrality for a node v is defined as

g(v) =
∑
s 6=v 6=t

σst(v)
σst

where σst(v) is the number of shortest paths from s to t passing through v and σst is the total
number of shortest paths from s to t [Bra01]. We then scale the values to the range < 0, 1 >
to obtain for each city x its scaled betweenness centrality bc(x).

We will denote by Adeg(k) the set of k cities with highest deg(x) value. We were interested in the
smallest k such that Adeg(k) is (r1, r2, r3) AN set with r2 ≤ 1 (the average square of neighbourhoods
is at most n). Denote such set as Adeg and the triplet (r1, r2, r3) as (rdeg

1 , rdeg
2 , rdeg

3 ) 25.

We define similarly Abc and rbc
i . Plots 5.15 summarize the properties of access node sets obtained

this way on daily datasets sncf and cpsk.
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Figure 5.15: Parameters of the access node sets Adeg and Abc with increasing n. Datasets sncf (left)
and cpsk (right). r2 ≤ 1. The occasional “roller coaster” bumps (for value of r3) are due to our
stopping criterion which does not consider r3 at all.

5.3.3 Choosing ANs heuristically - the locsep algorithm

Clearly, selecting the cities for access nodes solely by high degree or BC value is not the best way.
Probably the few nodes with highest degrees and BC will indeed be part of the AN set, as they are
intuitively some sort of central hubs without which the network would not work. However, after we
select these most important nodes to the AN set, we need some better measure of node’s importance,
or suitability to be an access node. In the following we present a simple heuristic approach run on
the underlying graph ugT of a given timetable T that evaluates its vertices based on how good local
separators they are.

The algorithm that we call locsep (as it looks for good local separators) will work in
iterations, each of them resulting in a selection of the city with the highest score to the access node
set A 26. We continue to select access nodes until we meet the following stopping criterion: A is

25Intuitively - rdeg1 is the smallest r1 such that r1
√
n highest-degree cities selected as ANs are enough to satisfy

that the average square of neighbourhoods is at most n.
26Actually, in our implementation, we allow an occasional deselection of an already selected node with the lowest

score, to avoid having in the resulting set cities that had high score when selected but were not very useful access
nodes at the end.
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(r1, r2, r3) AN set with r2 ≤ 1 (the average square of neighbourhoods is at most n) 27. We will
denote the resulting set Aloc and its parameters as rloc

i .
The important thing that remains to be shown is how we compute the score for a particular

city. The following text explains this.

In each iteration, we first compute the neighbourhoods and back neighbourhoods (given the current
access node set A) for each city. We need this to evaluate the stopping criteria, but the information
is also used in the computation of the potential (the score) of the cities.

For a city x, we compute its potential px in the following way: we explore an area Ax of
√
n nearest

cities around x, ignoring branches of the search that start with an access node (x is an exception
to this, since we start the search from it, although x 6∈ Ax holds). We do this exploration in an
underlying graph with no orientation and no weights. Next we get the front and back neighbourhoods
of x within Ax (fn(x) = neigh(x) ∩Ax, bn(x) = bneigh(x) ∩Ax).

For a set of access nodes A, let us call a path p in ugT access-free if it does not contain a
node from A. Now as long as x is not in A, we have a guarantee that for every pair u ∈ bn(x) and
v ∈ fn(x) there is an access-free path from u to v within Ax. Our interest is how this will change
after the selection of x.
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Figure 5.16: The principle of computing potentials in locsep algorithm. We explored an area of
√
n

nearest cities (in terms of hops) around x. Access nodes (like z) and cities behind them are ignored.
Little squares are nodes from fn(x) and diamonds are part of bn(x). From y we run a forward
search (the thick arcs). Nodes from the fn(x) that were not explored in this search can only be
reached via x itself. Such nodes contribute to x’s potential assuming y has large neighbourhood size
that needs to be decreased.

27In our implementation, we perform some further adjustments of the resulting set, such as removing unnecessary
access nodes and optimising for the r3 value.
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Consider now a node y ∈ bn(x). We will call sur(y) = max{0, |neigh(y)| −
√
n} the surplus

of y’s neighbourhood, i.e., by how much we wish to reduce it so that it is at most
√
n. If the

surplus is zero, y will not add anything to the x’s potential. Otherwise, we run a restricted (to
Ax) search from y during which we explore j vertices in fn(x). We increase the potential of x by
min{sur(y), |fn(x)− j|} - i.e. by how much we can decrease the surplus of y’s neighbourhood if we
select x. We do the same for all y ∈ bn(x) and a similar thing for all y ∈ fn(x) (we use←−−ugT instead of
ugT , bneigh(y) instead of neigh(y) etc...). For an illustration of potential computing, see figure 5.16.

Finally, we simply get the city x 6∈ A with the highest potential and select it as an access node. We
check the stopping criterion and in case it is not satisfied yet, we move on to next iteration. However,
note that when a new node x′ is selected to A, we do not have to re-compute neighbourhoods and
potentials of all cities - it is only necessary for those cities that could reach/be reached access-free
from x′ (i.e. nodes from neighA(x′)∪ bneighA(x′)). Algorithm 5.5 provides a high-level overview of
the locsep method.

Algorithm 5.5 locsep
Input
• ugT

Algorithm
1: A = ∅
2: ct′ = ctT
3: while r2 > 1 do
4: ∀x ∈ ct′: compute neighA(x), bneighA(x)
5: ∀x ∈ ct′: compute px
6: x′ = argmaxx 6∈A{px}
7: A = A ∪ {x′}
8: ct′ = neighA(x′) ∪ bneighA(x′)
9: end while
10: Remove unnecessary ANs
11: Optimise r3

Output
• AN set Aloc (|Aloc| =

√
nrloc1 )

Now we would like to estimate the time complexity of locsep algorithm. As mentioned, one
iteration consists of three parts:

1. Computing neighbourhoods. Unfortunately, at the beginning when A = ∅, the neighbourhood
sizes may be as large as O(n). Therefore, we may bound the complexity of this phase only as
O(nm) = O(δn2)

2. Computing potentials. For a city x we explore area of the size
√
n and from each node in that

area we do a restricted search. Therefore the total complexity of this step is O(n ·
√
n · δ
√
n) =

O(δn2)
3. Selecting the node with the highest potential. This can be done in O(n)

Adding up the individual terms, we get the complexity of one iteration to be at most O(δn2). As
we aim for the resulting access node set of size O(

√
n), we would get the total running time of

O(δn2.5). However, we remind that the algorithm is only a heuristics with no guarantees on the
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resulting access node set size 28.
The resulting running time is still quite impractical for bigger timetables. For example,

the computation on the dataset sncf took more than an hour. This is due to the initial iterations,
during which average neighbourhood is still very large (spanning almost the whole graph) and thus
we have to do a lot of re-computations (potentials, neighbourhoods). We therefore embrace a simple
trick: we do not start with A = ∅ but with some access nodes already selected based on high degree.
We chose to start with 2

√
n

3 nodes with the highest degree (i.e. with the set Adeg( 2
√
n

3 )) - enough to
speed-up the computation but not influencing the resulting AN set too much.

The access node sets chosen with the locsep algorithm had much better properties com-
pared to those selected by the previous approaches. The summary of their properties for each of our
datasets can be seen in table 5.5, while plots 5.17 illustrate the evolution of r1 and r3 with increasing
n.
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Figure 5.17: Parameters of the access node set Aloc with increasing n. Datasets sncf (left) and cpsk
(right). r2 ≤ 1. An ideal situation would be constant (or non-increasing) functions.

Name rloc
1 rloc

3
air01-d 3.9 57.4
cpsk-d 2.3 10.8

gb-coach-d 3.4 20.7
gb-train-d 3.2 22.7
montr-d 2.1 3.3
sncf-d 2.0 12.0

sncf-ter-d 1.8 9.7
sncf-inter-d 1.3 3.9

zsr-d 1.7 4.5

Table 5.5: Parameters of Aloc for all of our datasets in their maximum size. r2 ≤ 1. The timetable
of airlines is the most challenging to find a good AN set on, since it forms a highly interconnected
network and thus makes it difficult to separate the nodes’ neighbourhoods with few local access
nodes.

To sum up, in all of our datasets (except for air01 ), we were always able to find (r1, r2, r3) access
node set with the locsep algorithm, such that:

28The algorithm basically selects access nodes on a greedy basis. However, even that is done only heuristically,
using local scope to reduce the time complexity.
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• r1 ≤ 3.5
• r2 ≤ 1
• r3 ≤ 25 (i.e. up to 5 local access nodes on average)

In what follows we try to analyse the parameters of USP-OR-A combined with locsep. We however
ask the reader to consider the following more like an informal discussion providing a better insight
on performance of the mentioned combination, rather than a rigorous analysis.

Suppose the following conditions to be true:
1. We have a timetable with δ ≤ logn on which we found Aloc (thus rloc2 ≤ 1)
2. ωAloc ≤

√
n

3. rloc1 is bound by a constant
4. rloc3 ≤ logn
5.

√
rloc3 ≤ τAloc

The first two conditions were generally satisfied by our timetables (again, not including air01 ). As
for the third one, we found the value of rloc1 , very small, almost constant and only very slightly
increasing with n 29. Finally, if the last two conditions hold, we may estimate the average query
time of USP-OR-A with locsep as:

O(r2
√
r3
√
n(log(r2n) + δ) + r3τω) =

O(
√
r3
√
n(logn+ δ) + r3τω) =

O(
√
r3
√
n logn+ r3τ

√
n) =

O(τ
√
n logn+ logn τ

√
n) =

O(τ
√
n logn)

Most of our datasets came very close to satisfy the mentioned conditions, under which USP-OR-A
with locsep reaches parameters as described in the following table.

USP-OR-A + locsep prep size qtime stretch

Under certain conditions O(n2.5 logn) O(τn1.5) avg. O(τ
√
n logn) 1

Table 5.6: Parameters for USP-OR-A with locsep under certain conditions listed above.

Using USP-OR-A with locsep therefore seems to be a solution which (theoretically) should work
pretty well. To justify this statement we performed experiments, the results of which we provide in
the next subsection.

5.4 Performance and comparisons
In this subsection we show the performance of our algorithms on our datasets. We focus on query
time and space complexity of the preprocessed oracles 30. We have already introduced the speed-up
as the ratio of average query time for the TD Dijkstra and the average query time for the given

29Although this is nowhere near the proof that rloc1 could be bound by a constant.
30The methods are exact (i.e. stretch = 1) and we consider the preprocessing time as the least important parameter

out of the four.
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algorithm. We will have a similar measure for the size of the preprocessed data, which we compare
against the amount of memory needed to store the actual timetable.

Definition 5.6. Size-up (szp(m))
A size-up of an oracle based method m is the ratio size(TD)

size(m) where size(TD) is the size of the
memory necessary to store the time-dependent graph.

Furthermore, all of our timetables have very sparse underlying graphs 31(i.e. m ≤ n logn). Therefore
we can bound the time complexity of the TD Dijkstra as O(n logn). Thus if we look at TD Dijkstra
as an oracle based method (with the oracle size being simply the size of the time-dependent graph
representing the timetable), we can summarize its parameters as in the table 5.7.

TD Dijkstra prep size qtime stretch

m ≤ n log n O(1) O(mh) O(n logn) 1

Table 5.7: The summary of the TD Dijkstra algorithm parameters.

5.4.1 Performance of USP-OR

Query time-wise, USP-OR clearly outperforms time-dependent Dijkstra’s algorithm, however at
the cost of high space consumption. The best results were achieved for the timetable of domestic
US flights (with both daily and weekly time range), with speed-up of more than 110 against TD
Dijkstra (see table 5.8). Interestingly, the size-up for this timetable was also the best one - the size
of preprocessed data was about 10 times the size of the timetable itself. The reasons for such good
values is that the USP diameter ω is very low in air01 dataset (much lower than

√
n), while the

USP coefficient τ is also a reasonable value (see table 5.1).
For similar reasons, the gb-coach dataset also achieved fairly good results. However, with

this dataset (and few others marked with asterisk) we may notice the main disadvantage of USP-
OR-A - we only could carry out the preprocessing for sub-timetable of up to 700 stations due to
high space requirements and our space limitations.

The preprocessing time ranged according to the size of the timetable. For weekly gb-train
dataset, it came close to 4 hours, which was the maximal time.

Name n spd szp

air01-d 284 110.4 11.4
cpsk-d* 700 14.4 301.8

gb-coach-d* 700 64.7 79.1
gb-train-d* 700 24.4 134.6
montr-d 217 8.1 40.7
sncf-d* 700 28.7 263.7

sncf-inter-d 344 26.1 58.1
sncf-ter-d* 700 22.2 390.6

zsr-d 225 15.1 66.4

Name n spd szp

air01-w 287 113.0 9.6
gb-coach-w* 700 69.5 50.6
gb-train-w* 400 16.0 40.5
sncf-w* 600 30.3 161.1

sncf-inter-w 366 24.5 69.8
sncf-ter-w* 500 23.5 168.2

zsr-d 233 15.0 42.8

Table 5.8: Speed-ups and size-ups of the USP-OR algorithm for the whole timetables (for those
marked with asterisk we took only a subset of n stations, as we were limited by the space). Daily
time range on the left, weekly on the right.

31Maybe with exception of air01.
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The query times were almost constant with increasing n, especially in sncf and gb-coach datasets,
where τ is very low and only slightly increasing (see table 5.5) and similarly for ω. With cpsk the ω
increases as

√
n (plot 5.4), thus the increase in query time is more noticeable.
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Figure 5.18: Query time of USP-OR algo-
rithm compared to TD Dijkstra on the sncf
dataset. Changing n.
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Figure 5.19: Query time of USP-OR al-
gorithm compared to TD Dijkstra on the
gb-coach dataset. Changing n.
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Figure 5.20: Query time of USP-OR al-
gorithm compared to TD Dijkstra on the
cpsk-d dataset. Changing n.
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Figure 5.21: Query time of USP-OR al-
gorithm compared to TD Dijkstra on the
gb-train-d dataset. Changing n.

From plots 5.22 and 5.23 we see that the time range does not play a role in the query time of neither
TD Dijkstra, nor USP-OR-A.
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Figure 5.22: Query time of USP-OR al-
gorithm compared to TD Dijkstra on the
gb-coach-200 dataset. Changing tr (days).
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Figure 5.23: Query time of USP-OR al-
gorithm compared to TD Dijkstra on the
air01-200 dataset. Changing tr (days).

The size of USP-OR oracle increases as O(τn2.5) in our datasets. This kind of (super-quadratic)
increase can be observed from plots 5.25 and 5.24.
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Figure 5.24: Size (in MB) of the oracle
for USP-OR vs. size of TD graph on sncf
dataset. Changing n.
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Figure 5.25: Size (in MB) of the oracle for
USP-OR vs. size of TD graph on gb-coach
dataset. Changing n.

5.4.2 USP-OR-A

In these tests, we coupled USP-OR-A exclusively with locsep. The speed-ups were no longer so
high as in case of USP-OR, but neither were the size-ups, so this time we were able to try out our
datasets in their full size. The maximum speed-up was achieved in weekly gb-coach timetable, where
USP-OR-A outperformed TD Dijkstra more than 8 times, requiring memory 4 times the size of the
timetable itself.

The air01 timetable was not so successful this time for the reasons stated in table 5.5 - it
is difficult to find an access node set with desired properties. However, fairly good speed-ups were
achieved also for sncf datasets. Again, the main factors for the query time were τA, ωA (table 5.3)
but also r3 (table 5.5).

The preprocessing times were similar as in case of USP-OR. E.g. the weekly dataset sncf
was preprocessed in about one hour, while gb-train required almost 5 hours of preprocessing time.
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Name n spd szp

air01-d 284 2.4 1.7
cpsk-d 1905 2.9 6.6

gb-coach-d 2427 8.2 7.4
gb-train-d 2550 2.9 4.3
montr-d 217 2.8 1.7
sncf-d 2608 5.4 5.1

sncf-inter-d 344 5.2 1.9
sncf-ter-d 2600 5.5 5.2

zsr-d 225 3.0 2.7

Name n spd szp

air01-w 287 2.4 1.1
gb-coach-w 2448 8.5 3.8
gb-train-w 2555 2.9 2.3
sncf-w 2646 6.3 4.2

sncf-inter-w 366 4.9 1
sncf-ter-w 2637 5.6 3.0

zsr-d 233 2.6 1

Table 5.9: Speed-ups and size-ups of the USP-OR-A for the whole timetables. Daily time range on
the left, weekly on the right.

Comparisons of query times with increasing n are on plots 5.26 to 5.29. We have also observed
(sometimes quite irregular) increase of speed-ups with increasing n. 32

500 1,000 1,500 2,000 2,500

0

50

100

150

200

n

10
00

0
qu

er
ie

s
(s

ec
)

TD Dijkstra
USP-OR-A

Figure 5.26: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the
sncf dataset. Changing n.
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Figure 5.27: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the
gb-coach dataset. Changing n.
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Figure 5.28: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the
cpsk-d dataset. Changing n.
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Figure 5.29: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the
gb-train-d dataset. Changing n.

32Basically, we would expect the speed-up to increase as O(
√
n

τA
).
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Again it seems that increased time range has no effect on the query time of neither method.
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Figure 5.30: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the
gb-coach dataset. Changing tr (days).
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Figure 5.31: Query time of USP-OR-A al-
gorithm compared to TD Dijkstra on the zsr
dataset. Changing tr (days).

Finally, the size of the preprocessed oracle in USP-OR-A increases less steeply than with USP-OR.
Plot 5.33 is a good example of this and suggests that the theoretical space complexity O(τn1.5) is
plausible. In plot 5.32 the sudden increase of the size at the end is caused by our optimisation in
locsep which may add up to

√
n more cities to the AN set at the end of the algorithm described in

the previous subsections.
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Figure 5.32: Size (in MB) of the oracle for
USP-OR-A vs. size of TD graph on sncf
dataset. Changing n.
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Figure 5.33: Size (in MB) of the oracle for
USP-OR-A vs. size of TD graph on gb-coach
dataset. Changing n.
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6 Neural network approach
In this section we describe our experiment approaching the optimal connection problem in timetables
with the help of an artificial neural network, which is the “oracle” in this case. More specifically,
we consider multi-layer perceptron with back-propagation training algorithm. The training time
corresponds to the preprocessing time and the size can be parametrized by the number of hidden
layers (and the size of each layer). Our main interest was if the network was able to answer with
reasonable connections for given queries.

The input layer of the perceptron has one neuron for each event of the timetable and one
neuron for each city of the timetable. Thus each instance of the earliest arrival query can be repre-
sented by exactly two neurons on the input layer. The output layer has one neuron for each arc of
the underlying graph. The idea is that the network will activate those output neurons (arcs), that
correspond to the underlying path of the connection. As we have pruned the overtaking elementary
connections, we can easily reconstruct the actual connection by expanding the underlying path (al-
gorithm 5.1). See figure 6.1 for an illustration.

[A, 10:00] [B, 10:45] [B, 11:00]
.............................

A B C

events cities

UG arcs

hidden layers

...
.

(A,B) (B,A) (B,C) (C,A)

Figure 6.1: The model of our neural network - on the input layer (down) we activate the neurons
corresponding to the departure event and destination city. On the output, we expect the activation
of neurons corresponding to the underlying path of the connection.

For example, consider the following query in the timetable 2.1: “From A at 10:00 to C”. The optimal
connection is [A, 10:00], [B, 10:45], [B, 11:00], [C, 11:30]. The query will activate two input neurons
- the one corresponding to [A, 10:00] and the one corresponding to destination C. On the output
we expect two activated neurons, since we really moved only two times - from A to B and from B to C.

After the training, we feed the network random inputs (queries for optimal connection). It might be
that even though the network was trained, the desired neurons at the output will not be sufficiently
activated and rounding them would yield all-zero output. That is why we employed the following
method to recover the sequence of traversed cities:
• Start at departing city
• Consider all leaving arcs from this city
• Choose the one with strongest activation (leading to yet unvisited city)
• Terminate when the target city is reached or we cannot continue
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From the method mentioned above we can see that the network may fail to find the answer in
some cases (sometimes there is simply no solution, e.g. when “the last train already left”). In such
situation, it outputs at least the partial answer, so to speak, “how to begin the journey”.

The perceptron was trained with training data divided into two groups: validation and
estimation data with 80% being part of the latter group. To eliminate overfitting, early stopping
was used as a stopping criterion in some cases (that is, we stopped once the validation error 33

started to increase). To disregard noise on the validation error curve (and thus too early halt of the
training when validation error accidentally increased) we compare the validation error against its
value from 10 iterations back. Sigmoid activation function is used in all layers.

For the testing, we used several subsets of our datasets, described in table 6.1.

Name n m

tt 4 5
air30-10 30 187
air50-20 50 185
cpsk30-10 30 97
cpsk50-20 50 120
montr30 30 40
montr50 50 71
zsr30-10 30 71
zsr50-20 50 137

Table 6.1: Datasets used for testing.

6.1 Results
For each dataset, we have trained 7 types of networks:
• 1 hidden layer with 30 neurons

– 1.) 100 training examples (t = 100), α 34 = 0.1, early stopping
– 2.) 300 training examples (t = 300), α = 0.1, early stopping
– 3.) 100 training examples (t = 100), α = 0.1, minimum of 300 iterations

• 5 hidden layers, each with 30 neurons
– 4.) 100 training examples (t = 100), α = 1, early stopping
– 5.) 300 training examples (t = 300), α = 1, early stopping
– 6.) 100 training examples (t = 100), α = 1, minimum of 300 iterations

• 1 hidden layer with 100 neurons
– 7.) 100 training examples (t = 100), α = 0.1, minimum of 500 iterations

For the first six types of network, the maximum number of iterations was set to 300, for the last
one it was 500 (thus it was trained with exactly 500 iterations). Also, each network was trained on
a different randomly generated training set.

Once the networks were trained, we have compared the first triple (table 6.2) on 1000
randomly generated earliest arrival queries (on a given dataset) and the second triple (table 6.3) on

33Validation error was computed as
∑

v∈V

∑m

i
(dvi−y

v
i )2

2 where V is the validation set, m the number of output
neurons, dvi the i-th neuron’s target value for training example v and yvi the actual value of i-th neuron for that
training example.

34α is the parameter used in adjusting weights in the back-propagation algorithm.
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another 1000 generated queries. In each case, Dijkstra’s algorithm was part of the comparison so that
we obtained the optimal values and could evaluate the accuracy of the networks (the seventh network
was compared simply against the Dijkstra’s algorithm, table 6.4). Even though the generated queries
were different in each case, the comparison among them all can still be made based on the percentage
of the times when the network was able to answer with the optimum (table 6.5).

1.) t = 100, α = 0.1, E.S. 2.) t = 300, α = 0.1, E.S. 3.) t = 100, α = 0.1, 300 it.
Name Conn ∃ E.E. V.E. Found Opt E.E. V.E. Found Opt E.E. V.E. Found Opt

tt 462 0.442 0.77 462 435 0.31 0.91 462 462 0.67 1.02 450 450
air30-10 945 105.29 28.93 184 21 331.61 88.84 187 51 46.20 26.21 464 82
air50-20 931 133.90 36.57 112 33 385.32 94.89 166 104 48.30 31.52 426 204

cpsk30-10 504 63.83 12.42 146 57 124.55 32.96 287 160 16.74 13.96 270 147
cpsk50-20 620 140.59 47.67 214 182 429.81 119.36 197 181 20.63 43.59 221 189
montr30 545 69.28 35.02 268 234 52.24 60.05 418 376 4.89 18.51 366 310
montr50 572 81.19 54.28 290 253 161.01 124.99 351 314 6.61 33.43 341 300
zsr30-10 643 57.08 29.24 278 204 298.64 69.62 179 144 13.59 23.02 306 229
zsr50-20 892 130.74 46.05 152 53 448.37 134.80 185 60 34.02 41.85 347 122

Table 6.2: The first triple of trained neural network. Conn ∃ - number of test cases (out of 1000)
when there existed a connection (found by Dijkstra’s algorithm) for the query. E.S. - early stopping.
E.E. and V.E. - estimation and validation error at the end of training. Found - found a connection
for the query. Opt - found optimal connection.

4.) t = 100, α = 1, E.S. 5.) t = 300, α = 1, E.S. 6.) t = 100, α = 1, 300 it.
Name Conn ∃ E.E. V.E. Found Opt E.E. V.E. Found Opt E.E. V.E. Found Opt

tt 449 12.16 3.13 292 292 2.79 1.02 403 403 0.00 1.35 449 449
air30-10 939 119.56 30.77 178 21 339.35 79.04 121 26 34.21 37.8 505 94
air50-20 922 132.05 28.36 30 16 371.12 106.18 50 36 33.86 54.17 387 171

cpsk30-10 518 61.83 13.91 133 94 195.12 35.84 156 101 30.25 20.52 174 80
cpsk50-20 601 133.25 46.01 164 119 363 115.19 179 159 64.85 53.07 162 143
montr30 495 103.71 33.63 349 248 191.92 107.10 304 273 8.67 36.86 250 214
montr50 565 124.11 44.92 240 226 411.93 111.62 249 243 68.37 50.77 238 229
zsr30-10 658 115.50 26.28 140 117 331.12 82.83 147 124 16.42 37.08 211 165
zsr50-20 900 156.06 32 110 57 475.49 104.63 135 45 43.78 50.12 321 134

Table 6.3: The second triple of trained neural network. Conn ∃ - number of test cases (out of 1000)
when there existed a connection (found by Dijkstra’s algorithm) for the query. E.S. - early stopping.
E.E. and V.E. - estimation and validation error at the end of training. Found - found a connection
for the query. Opt - found optimal connection.

7.) t = 100, α = 0.1, E.S.
Name Conn ∃ E.E. V.E. Found Opt

tt 471 0.1 2.24 471 471
air30-10 931 23.47 30.76 573 107
air50-20 938 37.66 38.44 405 203

cpsk30-10 481 11.67 17.22 281 135
cpsk50-20 605 8.51 46.87 252 195
montr30 527 2.85 43.44 346 300
montr50 615 4.13 24.97 386 346
zsr30-10 672 7.7 26.92 307 234
zsr50-20 887 22.68 42.68 426 178

Table 6.4: The 7th trained neural network. Conn ∃ - number of test cases (out of 1000) when there
existed a connection (found by Dijkstra’s algorithm) for the query. E.S. - early stopping. E.E. and
V.E. - estimation and validation error at the end of training. Found - found a connection for the
query. Opt - found optimal connection.

There are several things to notice about these results:
• Interestingly, validation error is smaller (in most cases) when we did not use the early stopping
criterion than in the case when we used it for networks with one hidden layer (first triple).
For the second triple, this is no longer the case. Upon closer look, we have found out that
this phenomenon is simply due to different training sets used with each network (e.g. on the
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montr50 dataset, type 3.), the network has already started with validation error being lower
than validation error on a trained network of type 1.) on this dataset).

• Unfortunately, already we can see that the neural networks performed very poorly, especially
on the datasets zsr and air, finding optimal connections in barely 5% of the queries. Better
summary will be visible in table 6.5.

We have taken a closer look at the evolution of validation errors in the training of type 7.) networks
and have found that in general, the validation error went steeply down at the beginning, followed
by an interval of fluctuations (which probably caused early stopping when this criterion was in use)
and finally found a pretty stable value. The estimation error was decreasing all this time, which is
why the networks of type 7.) obtained most of the time the best results in the final comparison.

1.) 2.) 3.) 4.) 5.) 6.) 7.)
Name O.f.F. F.O. O.f.F. F.O. O.f.F. F.O. O.f.F. F.O. O.f.F. F.O. O.f.F. F.O. O.f.F. F.O.

tt 94.2 94.2 100.0 100.0 100.0 97.4 100.0 65.0 100.0 89.8 100.0 100.0 100.0 100.0
air30-10 11.4 2.2 27.3 5.4 17.7 8.7 11.8 2.2 21.5 2.8 18.6 10.0 18.7 11.5
air50-20 29.5 3.5 62.7 11.2 47.9 21.9 53.3 1.7 72.0 3.9 44.2 18.5 50.1 21.6

cpsk30-10 39.0 11.3 55.7 31.7 54.4 29.2 70.7 18.1 64.7 19.5 46.0 15.4 48.0 28.1
cpsk50-20 85.0 29.4 91.9 29.2 85.5 30.5 72.6 19.8 88.8 26.5 88.3 23.8 77.4 32.2
montr30 87.3 42.9 90.0 69.0 84.7 56.9 71.1 50.1 89.8 55.2 85.6 43.2 86.7 56.9
montr50 87.2 44.2 89.5 54.9 88.0 52.4 94.2 40.0 97.6 43.0 96.2 40.5 89.6 56.3
zsr30-10 73.4 31.7 80.4 22.4 74.8 35.6 83.6 17.8 84.4 18.8 78.2 25.1 76.2 34.8
zsr50-20 34.9 5.9 32.4 6.7 35.2 13.7 51.8 6.3 33.3 5.0 41.7 14.9 41.8 20.1

Table 6.5: Table summarizes in how many cases (in percents) the network found the optimum value
(F.O. - found optimum) and in how many cases (percents) when the network found some connection
sequence, it was the optimal sequence (O.f.F - optimum from found).

In table 6.5 we note down two measures of the network’s quality:
• F.O.: The network’s capability to output the optimum connection (when it, in fact, exists)
• O.f.F: The network’s reliability - that once the network has found a connection, it is really
the best one

Network with one big hidden layer, trained without the early stopping criterion was the most suc-
cessful one, when it comes to the F.O. measure, though the best value (69 %) was achieved by a
network of type 2.) trained on a bigger training set. Perceptrons trained on these bigger training
sets (2.) and 5.)) were also more reliable.

6.2 Conclusion of the experiment
First of all, we would like to point out some positive aspects. The networks were able to learn
optimal answers to queries that were not part of the training. Also, it looks like enhanced training
of the network could produce much better results.

On the other hand, there are other parameters that could possibly help more then just
increasing the number of iterations: different activation functions, error functions, weights adjust-
ments (using momentum, or weight decay) or even using different type of network (some publications
have used Hopfield network to search for shortest paths in graphs).

However, we conclude that we failed to train neural network to answer optimal connection
queries in timetables. We suppose the main reason for this is that the problem is simply too
challenging for a neural network.
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7 Application TTBlazer
For the purposes of analysing our timetables and testing our methods we developed a C++ com-
mand line application named TTBlazer 35, which we will now shortly describe. The application is
not meant for common users but rather for those who would like to try out algorithms by themselves,
review their code or continue with our work.

The application works with 4 main types of objects that we have introduced in the section 2:
• Underlying graph
• Time-expanded graph
• Time-dependent graph
• Timetable

A user can save/load each of this object from a file (in appendix A we describe the file formats).
Once loaded, there are four types of actions to be performed on the objects:
• Analysing properties of the objects (e.g. analysis of degree distribution of the underlying
graph)

• Generating other objects from those that are loaded. This includes also conversions e.g.
from a timetable to the time-expanded graph. Another example may be extracting the largest
strongly connected component of a graph

• Modifying the object, e.g. removing overtaken connections from a timetable
• Creating an oracle on the object. We distinguish two types of oracles:

– Distance oracle. Answers queries for shortest-path or a distance between two nodes
– Timetable oracle. Answers queries for optimal connection or the earliest arrival be-

tween two cities, given the departure time
Once the oracle is created (preprocessing is finished), the user can query it for the optimal
shortest-paths/connections

There is one more auxiliary type of action that can be carried out - we call it posting. A postman
(posting method) generates something (a mail) and stores it (in a postbox) to be later retrieved
by another action. For example, we compute cities in the underlying graph with high betweenness
centrality value, store the computed set and then use it to pre-compute USP-OR-A using the set as
an access node set.

The main purpose of the application is therefore to serve as an environment for algorithms
that manipulate timetables and other objects. The list of implemented actions can be found in the
table 7.1.

7.1 Features
Besides the implemented actions, the application has the following features:
• The program may be fed commands either through standard command line input, or through
UDP port on which it is listening. The user may switch between these two options to specify
the so called command source, however listening on a UDP port is a default option

35The latest and full version with all the datasets can be found on the accompanying CD or at http://fish.
studenthosting.sk/?page_id=183.
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Action type Action Objects Description

usp TE, TD analyses the underlying shortest paths (created by posting ac-
tion)

conns TE, TD analyses the optimal connections (avg. size, length...)
hd UG, TE, TD analyses the highway dimension
var TE, TD, TT analyses various properties of timetable objects (e.g. height)
conn UG, TE analyses connectivity

strconn UG analyses strong connectivity of the underlying graph
degs UG analyses degrees of the underlying graph
paths UG analyses shortest paths (avg. size, length...)
betw UG, TE analyses betweenness centralities
accn UG analyses access node set (created by posting action)

density UG analyses the density of the underlying graph

Analysing

overtake TT analyses overtaking in a timetable
subcon UG generates connected subgraph of the given UG

strcomp UG generates the UG with nodes from the largest strongly con-
nected component

2ug TE, TD, TT generates the underlying graph from given timetable object
2te TT generates the time-expanded graph from the given timetable
2td TT generates the time-dependent graph from the given timetable

Generating

subtt TT generates a sub-timetable from the given timetable
Modifying rmover TT removes overtaking from given timetable

neural TE, TD creates the oracle based on a neural network
uspor TD creates the oracle based on USP-OR

usporseg TD creates the oracle based on USP-OR, uses segmentation

uspora TD creates the oracle based on USP-OR-A (requires access node
set computed by posting action)

usporaseg TD creates the oracle based on USP-OR-A, uses segmentation (re-
quires access node set computed by posting action)

Timetable oracle

dijkstra TE, TD creates the oracle based on time-dependent Dijkstra’s algo-
rithm

Distance oracle dijkstra UG creates the oracle based on Dijkstra’s algorithm
anhbc UG creates the access node set Abc

andeg UG creates the access node set Adeg

usp TE, TD computes the USPs (between all pairs or just on a given sub-
set)Posting

locsep UG creates the access node set Aloc

Table 7.1: A list of actions implemented in TTBlazer. In the actual implementation there may be
more actions that we created for other experiments not included in this thesis.

• The output is done through logging of the program. The logs could be output to screen,
written to files or sent on ports. There are 3 types of logs:
– Info: information for the user (is always printed)
– Error : is always printed
– Debug message: information for the developer, printed only if debugging is turned on.

The debug message is further parametrized by a number (debug level), usually a different
one for each module of the program

• The application can run scripts with commands stored in a file
• A user can see the duration of a an action that was carried out. Also the size of the oracle is
output (or at least the lower bound)

7.2 Design
In the whole solution, there are basically 2 applications that share some common parts:
• TTBlazer - the main application, that carries all the logic and does all the computation
• Commander - small program that sends commands to TTBlazer. The advantage of this is,
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that even when the main application is busy computing, it still listens on a port for commands
to be executed later

• Common - these are just common files shared by both applications (like logging, working with
network connections etc...)

The source files of TTBlazer are further structured. There is a folder for each of the mentioned 4 +
1 types of actions:
• Analysers - contains analysing actions
• Generators - contains generating actions
• Modifiers - contains modifying actions
• Oracles - contains oracle-creating actions
• Postbox - contains posting actions (postmen)

7.3 Compilation and usage
In the directory of the solution, following folders can be found:
• common/
• commander/
• data/
• ttblazer/
• inscripts/

The folders ttblazer, commander and common contain source files for respective applications (or
shared files). Both applications have a file buildinfo.sh specifying (relative) paths to source files
folder, binary files folder, name of the final binary, compilation flags and then the individual modules
(one per source file). This file is used by depmake.sh - a bash script that creates a makefile from the
information in buildinfo.sh.

In order to compile the programs, boost library must be installed in the parent folder
(“solution” in this case) in a directory called “boostlib”. It should look like this:

1 solution /
2 |-- boostlib
3 | |-- boost
4 | |-- accumulators
5 | | |-- accumulators_fwd .hpp
6 | | |-- accumulators .hpp
7 | | |-- framework
8 ...

Listing 1: Location of the Boost library.

Boost library is freely available at http://www.boost.org/. In case you have the library installed,
you may also just adjust the path to the library in buildinfo.sh files (located in directories ttblazer
and commander).

For both programs there are following 3 simple shell script:
• Xcomp.sh 36 - recreates the makefile, compiles the sources and builds the binary. Its arguments

are forwarded to make
36“X” is t for TTBlazer or c for Commander.
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• Xrun.sh - runs the binary. Arguments are forwarded to the started binary
• Xboth.sh - combination of Xcomp.sh and Xrun.sh. Arguments are forwarded to the started
binary

In the folder data/example, there are 4 files - one for each type of object mentioned at the beginning
of this section. In the data/real folder we provide some of the real-world timetables, converted to
our format (described in appendix A).

Finally, the folder inscripts contains 3 scripts which could be run with TTBlazer to demon-
strate some functionality. In order to do so, proceed as follows:
• Install the Boost library according to the steps above
• Compile the main application: ./tcomp.sh

• Run TTBlazer scripts like this: ./trun.sh -script inscripts/uspora-sncf.sc. All three scripts
contain a short description of what functionality they demonstrate.

In case you want to send commands to TTBlazer manually, open another terminal window and
proceed e.g. like this:

1 ./ ccomp .sh // compile the Commander program
2 ./ crun.sh load tt data/ example /tt.tt // load the timetable from file
3 ./ crun.sh gen tt 2td last // generate the time - expanded graph

from the loaded timetable
4 ./ crun.sh or td dijkstra last // create oracle ( based on Dijkstra ’s

algorithm ) on the time - expanded graph
5 ./ crun.sh conn td last dijkstra A 0 10:00 D // use the oracle to find out earliest

arrival for some query

Listing 2: Sending commands to the main application through Commander.
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8 Conclusion
In this thesis we studied the optimal connection problem in timetables on which we are allowed
to carry out preprocessing. We formally approached the topic by clearly defining the terminology,
model of the timetable and its graph representations, as well as the approach that is based on the
preprocessing of the timetable. On a more practical note, we have gathered numerous real-world
timetables of various type and scale and analysed their main properties.

In the hearth of this thesis, we have developed exact methods to considerably speed-up the query
time for the optimal connections compared to the time-dependent Dijkstra’s algorithm (running in
O(m+n logn)). Our first algorithm - USP-OR - is based on pre-computing paths, that are worth to
follow (the so called underlying shortest paths). The method achieves speed-ups of up to 113 on the
weekly timetable of US domestic flights, requiring about 10 times the memory needed to represent
the timetable itself. A noticeable speed-up (up to 70) was also reached for the sub-timetable of
country-wide coaches in Great Britain. However, here the space consumption was much higher (a
factor of more than 50), which was also the case with other timetables of bigger scale. We conclude
that the algorithm is suitable for smaller-size timetables with very short connections, such as airline
timetables. With most bus/train timetables this method has a space complexity O(τn2.5) and an
average query time O(τ

√
n).

Our second algorithm called USP-OR-A computes a small set of important access stations
and an additional information for optimal travelling between these stations. It is much less space
demanding, however still more than 8 times faster then the time-dependent Dijkstra’s algorithm
on the dataset of British country-wide coaches (about 2500 stations) and about 6 times faster on
the dataset of French railways (also about 2500 stations). The size of the preprocessed data was
no more than 7.5 times the size of the timetable for any of our datasets. Under certain conditions,
this algorithm has an average query time O(τ

√
n logn) and the space complexity O(τn1.5). This

method works well on timetables with sparse underlying graphs that contain small sets of important
transit-like stations. We showed that finding these sets is NP hard problem in general, however, the
heuristics we developed for this purpose seems to behave reasonably well.

With respect to USP-OR-A’s query times, we would like to note that we measured the
query times using a completely uniform distribution of queries, which is not very realistic scenario.
A real-world distribution is much different in that it strongly favours queries concerning the most
important cities. We observed that such cities were generally part of the access node sets in USP-
OR-A 37. As computing optimal connections between these cities is very fast (just like in USP-OR),
we could expect much better speed-ups in real-world situations.

As a possibility for the future work, it would be interesting to see how our techniques could
be combined with other, already developed. Extension to a model that includes lines and transfers
might also be worth considering. Finally, we also believe that relaxing the requirement for exactness
(e.g. pre-computing only most important underlying shortest paths) might lead to better query
times.

From other contribution of this thesis we mention the application TTBlazer for timetable analysis
and performance tests that we developed for the purpose of this thesis, as well as the experiment
in which we tried to train a neural network to answer optimal connection queries. This approach
turned out as not working good enough, leading to our belief that the problem in question is too

37E.g. stations like Gare de Lyon were always part of the access node set in sncf dataset.
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demanding for a neural network to solve.

To conclude, we feel this thesis provides useful techniques, results and information in general that
might be of interest when designing a large-scale timetable information system.
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Appendices

A File formats
Timetable is simply a set of elementary connections, thus the format is:
• number of el. connections
• the list of all el. connections (one per line, format “FROM TO DEP-DAY DEP-TIME ARR-
DAY ARR-TIME”)

1 7 // number of elementary connections
2 A B 0 10:00 0 10:45 // el. connection
3 A B 0 11:00 0 11:45
4 A B 0 12:00 0 12:45
5 A C 0 09:30 0 10:00
6 A C 0 10:15 0 10:45
7 C D 0 11:00 0 11:30
8 C D 0 13:00 0 13:30

Listing 3: TT file format.

Underlying graph is basically an oriented graph, with some optional parameters. The format is
the following:
• number of cities
• number of arcs
• the list of all cities (one per line)

– optional coordinates (otherwise null)
• the list of all arcs (one per line, format “FROM TO”)

– optional length (otherwise null)
– optional list of lines operating on that arc (otherwise null)

1 4 // number of cities
2 5 // number of arcs
3 A 45 32 // name of the city , optional coordinates
4 B null
5 C 56 34
6 D null
7 A B 57 Northern //arc , optional length and list of lines
8 A C null Picadilly Victoria
9 C B 45 Circle Jubilee Picadilly
10 C D 32 null
11 D A null null

Listing 4: UG file format.

Time-expanded graph is simply an oriented weighted graph, with nodes being the events and
arcs being the elementary connections or waiting edges:
• number of nodes (i.e. events)
• number of arcs (el. connections + waiting)
• the list of all events (in the format “CITY DAY TIME”)
• the list of all arcs (in the format “FROM-EVENT TO-EVENT”)
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1 5 // number of events
2 15 // number of arcs
3 A 0 13:30 // event
4 A 0 14:00
5 B 0 13:45
6 B 0 15:00
7 C 0 14:15
8 A 0 13:30 A 0 14:00 // waiting arc
9 A 0 13:30 B 0 13:45 // el. connection arc
10 A 0 14:00 B 0 15:00
11 A 0 13:30 B 0 15:00
12 C 0 14:15 B 0 15:00
13 ...

Listing 5: TE file format.

Time-dependent graph is an oriented graph with a function on the arc specifying the arc’s
traversal time at any moment. In timetable networks this function is piece-wise linear and it is fully
represented by the list of its interpolation points. Thus the TD file format:
• number of cities
• number of arcs
• the list of all cities (one per line)

– optional coordinates (otherwise null)
• the list of all arcs (one per line). Arc has the format “FROM TO INT-POINTS” where
INT-POINTS is a list of interpolation points 38, see the listing 6 for an example

1 4 // number of stations
2 5 // number of arcs
3 A 0 0 // name of the city , optional coordinates
4 B 4 4
5 C null
6 D 12 0
7 A B (0 13:30 45) (0 14:00 40) // arc and the list of interpolation

points
8 A C (1 14:15 10)
9 C B (0 15:00 20)
10 C D (2 10:00 70)
11 D A (1 17:20 35) (1 18:00 40) (1 18:50 35)
12 ...

Listing 6: TD file format.

38An interpolation point is described by a triple “DAY TIME MINUTES”, where MINUTES are the traversal time.

56



References
[1Te] 1Tech. National rail case study.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck.
Highway dimension, shortest paths, and provably efficient algorithms. In Moses
Charikar, editor, SODA, pages 782–793. SIAM, 2010.

[Bar] Emma Barnett. Facebook cuts six degrees of separation to four.

[BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-
dependent contraction hierarchies. In Irene Finocchi and John Hershberger, editors,
ALENEX, pages 97–105. SIAM, 2009.

[BFM06] Holger Bast, Stefan Funke, and Domagoj Matijevic. Transit ultrafast shortest-path
queries with linear-time preprocessing, 2006.

[Bra01] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001.

[Del08] Daniel Delling. Time-dependent sharc-routing. In Dan Halperin and Kurt Mehlhorn,
editors, ESA, volume 5193 of Lecture Notes in Computer Science, pages 332–343.
Springer, 2008. ISBN 978-3-540-87743-1.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE
MATHEMATIK, 1(1):269–271, 1959.

[DPW09] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded
graphs for faster timetable information. In Ravindra Ahuja, Rolf Mohring, and Chris-
tos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of
Lecture Notes in Computer Science, pages 182–206. Springer Berlin / Heidelberg, 2009.
ISBN 978-3-642-05464-8.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineer-
ing route planning algorithms. In ALGORITHMICS OF LARGE AND COMPLEX
NETWORKS. LECTURE NOTES IN COMPUTER SCIENCE. Springer, 2009.

[DW09] Daniel Delling and Dorothea Wagner. Time-dependent route planning. In Robust and
Online Large-Scale Optimization, LNCS. Springer, 2009.

[GPPR04] Cyril Gavoille, David Peleg, Stephane Perennes, and Ran Raz. Distance labeling in
graphs. Journal of Algorithms, 53(1):85 – 112, 2004. ISSN 0196-6774. URL http:
//www.sciencedirect.com/science/article/pii/S0196677404000884.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Catherine C.
McGeoch, editor, WEA, volume 5038 of Lecture Notes in Computer Science, pages
319–333. Springer, 2008. ISBN 978-3-540-68548-7.

[KMS06] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast point-to-point short-
est path computations with arc-flags. In IN: 9TH DIMACS IMPLEMENTATION
CHALLENGE [29, 2006.

57



[KP] Kelly Kinahan and Jennifer Pryor. Dijkstra’s algorithm for shortest route problems.

[MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes
in Computer Science, chapter Timetable Information: Models and Algorithms, pages
67 – 90. Springer, 2007.

[ops] Art of problem solving. Root-mean square-arithmetic mean-geometric mean-harmonic
mean inequality.

[Som10] Christian Sommer. Approximate Shortest Path and Distance Queries in Networks.
PhD thesis, Graduate School of Information Science and Technology, The University
of Tokyo, 2010.

[SS05] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path
queries. In Gerth Stølting Brodal and Stefano Leonardi, editors, ESA, volume 3669
of Lecture Notes in Computer Science, pages 568–579. Springer, 2005. ISBN 3-540-
29118-0.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24,
2005.

58


	Introduction
	Motivation
	Approach
	Goals
	Theory and practice
	Organization & conventions

	Preliminaries
	Objects
	Earliest arrival and optimal connection
	(Distance) Oracles
	Dijkstra's algorithm

	Related work
	Distance oracles and route-planning
	Time-dependent scenario

	Data & analysis
	Data
	Analysis of properties

	Underlying shortest paths
	USP-OR
	Analysis of USP-OR

	USP-OR-A
	Analysis of USP-OR-A
	Correctness of USP-OR-A
	Modifications of USP-OR-A

	Selection of access node set
	Choosing the optimal access node set
	Choosing ANs based on node properties
	Choosing ANs heuristically - the locsep algorithm

	Performance and comparisons
	Performance of USP-OR
	USP-OR-A


	Neural network approach
	Results
	Conclusion of the experiment

	Application TTBlazer
	Features
	Design
	Compilation and usage

	Conclusion
	Appendix File formats

