
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Type-Awareness in Dynamic Languages

Diploma Thesis

Dominik Kapǐsinský 2014

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Type-Awareness in Dynamic Languages

Diploma Thesis

Program of Study: Informatics
Field of Study: 2508 Informatics
Department: Department of Informatics
Supervisor: RNDr. Tomáš Kulich, PhD.

Bratislava, 2014 Dominik Kapǐsinský

56333852

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Dominik Kapišinský
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický

Názov: Kontrola typov v dynamických jazykoch

Cieľ: Navrhnúť spôsob, ako do nie staticky typovaného jazyka zaviesť pre užívateľa
nepovinnú informáciu o typoch a doménach hodnôt objektov, Na základe týchto
informácií dedukovať možné miesta chýb, ktorých sa programátor dopustil.

Vedúci: RNDr. Tomáš Kulich, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 21.11.2012

Dátum schválenia: 28.11.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

I hereby declare I wrote this thesis by myself, only with
the help of the referenced literature, under the careful su-
pervision of my thesis supervisor.

. .

iv

I would like to thank my supervisor RNDr. Tomáš Kulich, PhD. for his great help,
advices and supervising.

v

Abstract
The aim of the thesis is to propose and to implement a solution of a type in-
ference in a certain dynamic language. It is not a hard problem to infer the types
in a static language due its strict rules. On the other hand, almost each dynamic
language is also a dynamically typed language. Such language is bounded only by a
few rules regarding a type information and therefore a programmer is provided with
a freedom that may be dangerous sometimes.

Our solution is a tool that is able to analyse a given source code of a Python
program. The result is a list of the possible errors appearing in the input source
code. Furthermore, our tool supports other functionalities suitable for a proper
plugin supporting a development of the Python programs in a certain editor.

KEYWORDS: Dynamic programming languages, Python 3, Type inference

vi

Abstrakt
Ciel’om tejto práce je navrhnút’ a implementovat’ riešenie dedukovania typov v
určitom dynamickom jazyku. V pŕıpade statických jazykov nie je t’ažké dedukovat’
typy vd’aka ich striktným pravidlám. Na druhej strane, takmer každý dynamický
jazyk je taktiež dynamicky typovaným jazykom. Taký jazyk má len malé množstvo
pravidiel týkajúcich sa typových informácíı a teda ponúka programátorovi slobodu,
čo môže byt’ niekedy nebezpečné.

Naš́ım riešeńım je nástroj, ktorý je schopný analyzovat’ daný zdrojový kód Python
programu. Výsledkom je zoznam možných výskytov chýb vo vstupnom zdrojovom
kóde. Okrem toho náš nástroj podporuje aj d’aľsiu funkcionalitu, ktorá je vhodná
pre náležité rozš́ırenie podporujúce vývoj Python programov v určitom editore.

KL’ÚČOVÉ SLOVÁ: dynamické programovacie jazyky, Python 3, dedukcia
typov

vii

List of Figures

1.1 Dynamic vs. static languages . 3

1.2 Encapsulating of the scopes - Built-in Python (The names preassigned
in the built-in names module: open, range, TypeError...), Global (The
names assigned at the top-level of a module file, or declared global in a
definition of a function within the file), Enclosing function locals (The
names in the local scope of any and all enclosing functions from inner
to outer), Local (The names assigned in any way within a function and
not declared global in that function) 9

4.1 Table of results . 47

viii

Contents

Introduction 1

1 Overview of the problem 2

1.1 How to infer a type of an object . 3

1.2 Formulation of the problem . 5

1.3 Python . 6

1.3.1 Python scoping . 7

1.3.2 Python AST module . 9

2 Related works and motivation 13

2.1 Related works . 13

2.1.1 Pydev . 13

2.1.2 Pylint . 16

2.1.3 Pyflakes . 20

2.1.4 Pychecker . 21

2.2 Motivation . 23

3 Proposed solution and implementation 27

3.1 Problem definition . 27

3.2 Symbolic execution . 28

3.2.1 Typez . 29

3.2.2 Scope . 30

3.2.3 Mechanism of symbolic execution 31

ix

3.2.4 Parser . 33

3.2.5 Standard library . 39

3.3 Summary of the implementation . 40

4 Results 41

4.1 Demonstrating the functionality . 41

4.2 Comparison with existing solutions 46

4.2.1 Benchmarking . 46

4.2.2 Results and samples . 47

4.3 Possibilities of improvement . 48

Conclusion 49

Bibliography 50

Appendix 51

x

Introduction

The dynamic programming languages register a sharp rise of users recently. These
languages become more and more popular and therefore, there is a need of appropriate
support for the programmers. Our main goal is to propose and to implement a solution
that would be able to infer the types in the programs written in a certain dynamic
language.

Majority of the dynamic languages is dynamically typed. That means, there are only
a few rules regarding the dealing with types. With a great power comes a great
responsibility. On the other hand, due to the strict rules of a usual static language
it is relatively easy to provide a type control in IDE already during writing a source
code. This control is very similar to that one executed during a compilation. A type
error in the dynamically typed languages is detected by the period of runtime what
presents a potential danger. For this reason, we want to come up with a solution that
would be able to detect such a dangerous (smelling) code by the time of writing a
program.

For our implementation, Python 3 was chosen from the family of the dynamic pro-
gramming languages. Nowadays, Python is a very attractive language also for an
educational activity. That means the increased number of beginners for whom a
powerful code analysis would be helpful.

A relatively small Python community gives us a hope that the related solutions will
provide us a space for improvements or even to come up with a completely new
approach in this field.

In chapter 1, the basics of a type inference problem are explained and important
features of Python and dynamic languages are introduced. Chapter 2 is dedicated to
the related solutions and to their faults in type inference. Afterwards, we propose our
ideas of a solution and the certain parts of the implementation. In the last chapter
(chapter 4), our solution is compared with the existing projects already analysed in
chapter 2.

1

1
Overview of the problem

Our thesis is focused on the dynamic languages. We take a closer look at the pos-
sibilities of how to infer a type of object in the programs written in the dynamic
programming languages.

The dynamic programming languages are a class of the high-level programming lan-
guages and the difference between them and the static programming languages is
significant, but the border between both of them is not strictly defined. The common
features of a dynamic language include the eval function, the functional program-
ming, the reflection, etc. Most of the dynamic languages are also dynamically typed.
In the dynamic programming languages, many common programming behaviours are
executed at the runtime which on the contrary the static programming languages
perform during the compilation. One of the behaviours is a type system.

In programming languages, a type system is a set of rules that assign a type to
the various constructions such as the variables, the expressions, the functions or the
modules the computer programs are composed of. The main intention of a type
system is to reduce the bugs of the computer programs by defining the interfaces
among the different parts of the computer program. Afterwards, it is checked whether
the parts are connected consistently. This checking may be executed statically (at
compilation), dynamically (at runtime), or it can be performed as a combination of
static and dynamic approaches (dynamically typed).

In the dynamic programming languages, an object is just some container, of which
nothing is known, neither required. The variables in such languages are bound to this

2

1.1. HOW TO INFER A TYPE OF AN OBJECT

container (as shown in Figure 1.1).

NAME

OBJECT

TYPE

is of

NAME

OBJECT

TYPE

TYPE

is of must match

Figure 1.1: Dynamic vs. static languages

One of the main features is a dynamic addition of the attributes. This can be done
in two ways:

• to add an attribute to an existing instance of an object

• to add an attribute directly to an object

As a consequence in the second case, all instances created from the altered object will
consist also of the previously added attributes to the object.

1.1 How to infer a type of an object

When speaking about a type inference, there are mainly two possible ways how to
realize it:

• a static approach

• a dynamic approach (to run the code and see)

In the static approach, the dynamics of a certain language is ignored and the specific
rules are applied for inferencing the type. A dynamic approach means that a source
code is executed and the result is analysed. At the first glance, it is clear that we do

3

1.1. HOW TO INFER A TYPE OF AN OBJECT

not want to ignore the dynamics when a dynamic programming language was chosen
for some reasons. Why to give up the advantages provided by a certain dynamic
language?

The idea of running the whole code does not seem safe and appropriate as well.
What may happen? Let’s consider a Python program that may cause the side effects,
e.g. working with a database. In this case, each dynamic analysis, when willing to
determine a type of an object, changes the entries in the database. That would be
an unwanted surprise for a user of such a tool.

We would like to propose a better approach that would fit somewhere between the
static and the dynamic approach. It should combine the safety of the static analysis
and the power of the dynamic analysis. For the purposes of the type inference, it
is possible to choose a technique of the extending syntax of a non-statically-typed
language with an additional non-mandatory information on the object’s types and
domains. We have made a short review of the purposes in passing the additional
information.

An extending of the syntax of a programming language is a significant intervention.
Let’s consider the following example in the Python-like syntax:

def fun(str x, bool y, int z):
...
...

This extended syntax of Python is not a valid Python program anymore. This change
requires a lot of further work like an implementation of a new Python interpreter.
A type inference would be more powerful thanks to this additional information, but
the users of this tool would have to use also a customized Python interpreter when
running this modified source code. Moreover, it seems like a step back to a static
programming language. Therefore, this approach does not seem to be a proper one.

Learning from the previous not suitable approach, our second idea was to pass an
extra information in the comments/docstrings. We avoided to a change in the syntax
of the programming language that is a significant advantage in the comparison with
the previous idea. The following example is again in the Python-like language:

1 class A:

4

1.2. FORMULATION OF THE PROBLEM

2 def bar (s e l f) :
3 return ” bar ”
4 ”””
5 type (obj=A)
6 type (R=s t r)
7 ”””
8 def fun (obj) :
9 return obj . bar

10
11 a=A()
12 x=fun (a)

A format of the additional information is not important at this moment. On the
line 5 there is an extra information for the function fun. This notation means that
the argument obj is of a type A. The line 6 defines the return type of fun. This
example shows a class definition A and the function definition fun and afterwards a
creation of the instance a and passing it as an argument to the function fun. Without
the ability to infer types meaningfully and with the additional information, it would
be very risky to rely on such an approach. For instance, we would not know that
variable x is of type str in the further possible source code. Therefore, there is a
need to implement firstly the tool for the type inference and afterwards, to take into
consideration the possibility of the additional information that would help us in some
very complex programming constructions. These observations form the main aim of
this thesis.

The goal is to suggest and to implement a powerful tool that will be able to infer
a type of the objects in the complex programs written in the dynamically typed
language.

1.2 Formulation of the problem

The main aim of our thesis is to propose a solution that would be able to infer a type
of the objects and on the basis of the inference’s results the possible sources of errors
could be reported. Our vision is that such a tool could be a main part of a plugin

5

1.3. PYTHON

for now undefined editor. This plugin would be a great support for the programmers
using it in a combination with the given editor. However, this is not our part of work
and therefore, we remain to focus on the tool of the type inference.

The idea of a suitable plugin solution and a communication between the plugin and
the editor and much more is suggested and implemented in the thesis of my colleague,
Bc. L’ubomı́r Žák [1]. Moreover, these two works create together a working solution
of a plugin for the editor VIM. The name of the common solution is pynfer.

As a first step, we have to choose a certain dynamic language, the programs of which
will be analysed by our tool. The next important decision is to choose the right
programming language for the implementation of this tool. This choice is introduced
in chapter 3. For now, we want to select a suitable dynamic language. After long a
consideration of pros and cons, we have decided for a dynamic programming language
Python. The reasons are as follows:

• Python is becoming more a more popular

• Python is used for the educative purposes

• Python’s community is still relatively small

• a vision of a possibility to make a contribution in this area

The following section is devoted to the basics of Python.

1.3 Python

Python is a programming language [2] easy to learn and suitable for a widespread
use. Moreover, a Python code is easy to read and write. Python is a very expressive
language in comparison with e.g. Java or C++ . This means that a Python program
usually has less lines of a source code than an equivalent program in the previously
mentioned programming languages.

Python as a dynamically typed language can be used for programming in the object-
oriented, procedural and functional style. Python is provided with a very complex

6

1.3. PYTHON

standard library. This fact allows us to do such things as to download a file from
Internet, to unpack a compressed archive file and to create a web server with just a
few lines of code. In addition, there is also a lot of third party libraries providing
a more powerful and sophisticated functionality than the standard library (NumPy,
PLY) [3].

Python is a multi-platform language. In general, the same Python program can run
on Windows and Unix systems such as Linux and Mac OS X. It is simply done by
copying the files of the certain program/project to the target machine. On the other
hand, it is possible to create the Python programs that use the specific platform
functionality. However, this is rarely needed because the Python’s standard library
and most of the third-party libraries are fully and transparently multi-platform.

In the following section, we would like to explain the basics of the certain details in
Python. Afterwards, the Python’s modul AST is introduced.

1.3.1 Python scoping

In our thesis, scoping is a very important part. It is necessary to understand the
rules of scoping in Python [4]. When a name is used in a program, Python creates,
changes, or looks up the name in a namespace. Simply defined, the namespace is a
place where the names live.

In Python, everything related to the names and the scope classification happens at an
assignment time. The names in Python come into existence when a value is assigned
firstly to the name. Besides, they must be assigned before they are used. Because the
names are not declared before, Python uses the location of the assignment of a name
to bind it to a particular namespace. That means that the place where the value is
assigned to the name, determines the namespace for the name, called the scope of
the visibility.

For instance, functions add an additional namespace to the programs to minimize the
potential of the collisions among variables of the same name. The default rule says:
all names assigned inside a function are associated with that function’s namespace,
and no other. The meaning is:

7

1.3. PYTHON

• a name assigned inside a definition of a function is seen by the code within that
definition. It is not possible to refer to such a name from an outside function.

• a name assigned inside a definition of a function can not collide with the vari-
ables outside the definition, even if the same names are used elsewhere. A name
X assigned outside the definition is a completely different variable from a name
X assigned inside the definition.

When writing about the name’s assignments, the variables may be assigned in three
different places that correspond to three different scopes:

• If a variable is assigned inside a definition of a function, it is local to that
function.

• If a variable is assigned in an enclosing definition of a function, it is non-local
to the nested functions.

• If a variable is assigned outside all definitions, it is global to the entire file.

This approach is called a lexical scoping. The reason is that the variable scopes are
determined entirely by the locations of the variables in the source code, not by the
function calls.

In general, the Python’s name-resolution scheme is called the LEGB rule (named
after the scope names):

• The name assignments create or change the local names by default.

• The name references search at most four scopes: local (L), then the enclosing
functions if any (E), then global (G) and the built-in scope (B). Python stops
at the first place where the name is found (Figure 1.2). If the name is not found
during this search, an error is reported.

• The name declared in the global and non-local statements maps the assigned
name to the enclosing module and the function scopes, respectively (the local
scope is the same as the global scope).

8

1.3. PYTHON

Built-in Python

Global (module)

Enclosing function locals

Local (function)

Figure 1.2: Encapsulating of the scopes - Built-in Python (The names preassigned in
the built-in names module: open, range, TypeError...), Global (The names assigned
at the top-level of a module file, or declared global in a definition of a function
within the file), Enclosing function locals (The names in the local scope of any and
all enclosing functions from inner to outer), Local (The names assigned in any way
within a function and not declared global in that function)

This section introduces the most important rules that will be useful for us in chapter 3
by proposing our own solution. In the following section a useful module from Python
of the standard library is introduced.

1.3.2 Python AST module

The shortcut AST means an abstract syntax tree. An abstract syntax tree is a tree
representation of the abstract syntactic structure of the source code written in a
certain programming language. Each kind of a node denotes some specific construc-
tion of a given programming language. This syntax is abstract in the sense of not
representing every detail in the real syntax of the programming language.

The Python AST module [5] is a library that allows to obtain the AST of a source
code written in the programming language Python. In other words, it is possible to
inspect and to modify the Python code using the AST module. This module has a
lot of the node kinds. These can be divided into the following groups:

• Literals

9

1.3. PYTHON

• Variables

• Expressions

• Statements

• Control flow

• Function and class definitions

Almost in each node, there is an information about the context in which a certain
node is located. The context may be Store, Load or Del. Depending on the context,
a behaviour of a certain program may be changed.

The literals are a group of the nodes that is responsible for dealing with the constants
in the AST. This module supports following kinds:

• ast.Num, ast.Str, ast.Bytes

• ast.List, ast.Tuple, ast.Set, ast.Dict

• ast.Ellipsis

The variables are the nodes dealing with the names in Python. There two types of
the names (simple and starred):

• ast.Name

• ast.Starred

The expressions are a big category of the nodes that encapsulate all the work with the
expressions in Python. The main node is ast.Expr. Within this node, all operations
are executed. The kind of the operations may be recognized by a nested node of the
operation. The possibilities as follows:

• ast.UnaryOp

• ast.BinOp

10

1.3. PYTHON

• ast.BoolOp(op,values)

• ast.Compare

• ast.Call

• ast.IfExp

• ast.Attribute

• ast.comprehension

• ast.Subscript

Each one of the listed kind of the nodes consists of many various nested nodes. These
nodes help to specify the source code sufficiently. As an example, we can take a closer
look at the bool operation. The possible nested nodes for the operation are ast.And
and ast.Or.

The group of the statements consists of:

• ast.Assign

• ast.AugAssign

• ast.Print

• ast.Raise

• ast.Assert

• ast.Delete

• ast.Pass

• ast.Import, ast.ImportFrom, ast.alias

The next group responds to a control flow in the Python program:

• ast.If

• ast.For, ast.While

11

1.3. PYTHON

• ast.Break, ast.Continue

• ast.TryFinally, ast.TryExcept

• ast.ExceptHandler

The last but not least, there is a group composed of the nodes dealing with the
function and the class definition:

• ast.FunctionDef, ast.Lambda

• ast.ClassDef

• ast.arguments

• ast.Return, ast.Yield

• ast.Global, ast.Nonlocal

Such a powerful tool creates a perfect structure of a given Python source code. As
we will see in chapter 3, the structure of the AST is very important for our solution.
In the following chapter 2, the related solutions are introduced and a motivation is
formulated as well.

12

2
Related works and motivation

This chapter is devoted to the related solutions in our field of work. We attempt to
describe the logical part of other tools and to show the weak places by a demonstration
on the short code snippets. In the last chapter 4, our solution is compared with the
works already analysed in this chapter.

2.1 Related works

We have to admit that only the open source solutions were chosen. There are two
main reasons why we have made such a decision. We could not afford to buy every
software which might have a possible relation to our work. The second point is that
we wanted to describe the logical part of each solution. Moreover, it is more likely to
be able to take a look into the open source projects than into the licensed projects.

In the next few subsections four chosen solutions are introduced.

2.1.1 Pydev

As the first solution, the Pydev project [6] is presented. Pydev is a Python IDE for
Eclipse, which may be used in the Python, Jython and IronPython development. It
is not a big surprise that this tool is implemented in a programming language JAVA.
The first release is dated on 1st of October 2004 [7]. Pydev includes a lot of the

13

2.1. RELATED WORKS

functionality and according to the community forums it is one of the most used in
the combination with the editor Eclipse.

The main functionality provided by Pydev:

• Code completion

• Type hinting

• Code analysis

• Code completion with auto import

• Go to definition

• Refactoring

• Debugger

• Code coverage

Our solution has an ambition to be a valuable tool in the field of the error detecting
and the code completion. Therefore for our purposes, we analysed mainly the possi-
bilities of the code completion, the type hinting and the code analysis. Pydev can be
placed to the group of the tools that work as the statical analysis.

The code completion in Pydev provides the context-sensitive completions and offers
a lot of settings to be personalized. In their approach, it is important to have the
Python interpreter configured in order to make the code completion to work. In the
case of builtins, Pydev communicates with the Python shell, therefore a firewall can
prevent the code completion from working if it is blocking the communication from
Eclipse to the shell.

The code analysis provides an error finding in the Python programs. According to
the project page, it should find the common errors such as the undefined variables,
the unused variables and the imports, the unresolved imports, etc. For each category
of errors it is possible to set the priority of the error from the most important (Error)
to less significant (Warning). The last but not least option is to ignore the given type
of error. Moreover, if you do not care about some Python files in your project, Pydev

14

2.1. RELATED WORKS

provides you an option to add the Python comment in form ”#@PydevCodeAnaly-
sisIgnore” to the arbitrary Python file. As a result, the code analysis will skip the
chosen file.

The code analysis and the code completion are significantly limited by the static
analysis and can not detect a lot of common mistakes. Pydev has an answer also to
this issue, but it can make the life of a programmer uncomfortable. In some cases, the
special signs (flags) may be added to the code to provide the additional information
for the code analysis. As a result, it may look as follows:

class Struct:
’’’Attributes passed in constructor.
@DynamicAttrs
’’’
def __init__(self, *entries):

self.__dict__.update(entries)

The example above shows the usage of the flag @DynamicAttrs, which indicates
the dynamic attributes in a class. As a consequence, the code analysis will not
complain about the undefined variables when accessing any attribute from the class.
Unfortunately, this is the only supported flag type.

The same idea of passing the additional information is used for the purpose of the code
completion and it is called a ”type hinting”. For this purpose, Python docstrings are
used by the commenting types with the Sphinx/Epydoc format. Below is an example
of providing the type-hints using the Sphinx format:

class MyClass:
def method(self, test):
’:type test: TestCase’ #Parameter type of ’test’

’:rtype unittest.TestCase’ #Return type of ’method’

for unit in test:
’: :type unit: GUITest’ #Local variable
unit. #Appropriate code completion

15

2.1. RELATED WORKS

As you can see, if you want to rely on the correctness of the code analysis and the
code completion, you have to expend not exactly a small amount of effort to hold
the additional information up to date. Furthermore, in some cases you do not want
to specify the type of a variable because the part of the code is suitable for various
objects. In the example bellow without an extra-information there are common errors
absolutely ignored and the code completion malfunctioned:

class MyClass:
def __init__(self):

self.z=4
def method(self,x):

return x

m = MyClass()
print(m.www) #No error indication
y = m.method("test")
y. #No autocomplete options

These results show us a big space suitable for the improvement and provide the
motivation for our work. The whole summary of the existing solutions and the code
analysis properties is stated in the following section called Motivation (2.2). Now we
will continue with the analysis of the tool named Pylint.

2.1.2 Pylint

Pylint [8] as a tool checks errors in the Python code, tries to enforce a coding standard
and looks for the possible semantic errors. This tool is completely implemented in
the programming language Python. Pylint was created in 2003 at Logilab [9], that
funded Sylvain Thénault to lead its development up to now. It is possible to integrate
Pylint with many editors (e.g. Eclipse, Vim etc.) or to use it as a single tool. This
solution provides a wide range of the functionality listed bellow:

• Coding standard

16

2.1. RELATED WORKS

• Editor integration

• Error detection

• Refactoring

• UML diagrams

• Extensibility

In this case, the main part of our interest is the error detection. For our purposes, it is
sufficient and more practical to use Pylint as a single tool. Under Linux distributions
like Ubuntu, Debian etc. it is really easy to install Pylint (also on Windows, OS X).
Afterwards you get a powerful tool which is callable from a command line (Terminal)
with many optional arguments. The optional arguments help to configure and to
personalize requirements of each user. Of course, there is a possibility to edit/create
.pylintrc file where you can set all your preferences and configurations. Below, you
can see a short example of disabling the warning messages caused by the relative
imports and *args,*kwargs support:

Brain-dead errors regarding standard language features
W0142 = *args and **kwargs support
W0403 = Relative imports
disable-msg=W0142,W0403

Pylint belongs to the class of the tools which are using the static approach. As we
have seen before, the static analysis makes nearly impossible to detect the type errors,
the undefined variables, etc. To be more specific, it would need a large effort to detect
e.g. the type errors properly (even the common type errors). This solution executes
in-depth analysis of the abstract syntactic trees.

According to the specification, the error detection in Pylint should be a very strong
tool. It checks if the declared interfaces are truly implemented, if the modules are
imported and it supports many more error’s messages. At this point, we would like
to test Pylint on a small code snippet:

17

2.1. RELATED WORKS

class A:
def __init__(self):

self.x=4
self.y=10

def decorate(self):
self.decorated=’Hello World’

a=A()
print(a.x)
print(a.y)
print(a.www) # warning showed, OK
a.z=10
print(a.z) # no warning showed, OK
print(a.w) # no warning showed, ERROR
a.w=20
print(a.decorated) #no warning showed, ERROR
print(len(a)) # len(a) does not make sense, however, no warning showed

The result of the Pylint’s analysis is a disappointment. Despite the propositions stated
on the website of the project, this tool could not properly analyse the simple (though
not a trivial one) example above. What probably does Pylint? A dynamic addition
of an attribute to an object is detected without any problems. Also a reading context
of a such dynamically added attribute is processed properly. What is the issue for
Pylint in this example? Almost certainly Pylint does not know in what sequence will
be these statements executed and in some cases it can not determine which statements
are executed. This is a very important observation, which can be used later on by
the proposing of our solution.

The feature called the extensibility helps Pylint to understand things which Pylint
does not know how to resolve them. The aim of this feature is to allow a registration
of the functions that will be called after a module has been parsed. When running
Pylint against the code using some favourite framework, you should expect a lot of
the false positives because of the ’black magic’ or whatever else. There are also places
in the Python standard library where a dynamic code can cause the false positives
in Pylint. The solution is that you can define a special plugin for Pylint [10]. We

18

2.1. RELATED WORKS

present the following example:

import hashlib

def hexmd5(value):
""""return md5 checksum hexadecimal digest of the given value"""
return hashlib.md5(value).hexdigest()

def hexsha1(value):
""""return sha1 checksum hexadecimal digest of the given value"""
return hashlib.sha1(value).hexdigest()

Pylint reports an error because of a non-existent member md5 and sha1 for module
hashlib. The solution provided by Pylint is the following:

from logilab.astng import MANAGER
from logilab.astng.builder import ASTNGBuilder

def hashlib_transform(module):
if module.name == ’hashlib’:
fake = ASTNGBuilder(MANAGER).string_build(’’’

class md5(object):
def __init__(self, value): pass
def hexdigest(self):

return u’’
class sha1(object):

def __init__(self, value): pass
def hexdigest(self):

return u’’
’’’)

for hashfunc in (’sha1’, ’md5’):
module.locals[hashfunc] = fake.locals[hashfunc]

def register(linter):
"""called when loaded by pylint --load-plugins, register our tranformation
function here

19

2.1. RELATED WORKS

"""
MANAGER.register_transformer(hashlib_transform)

Pylint provides us a powerful feature. As you can see, we have to write a fake python
implementation by documenting the prototype of the desired class. The question is
whether the ratio of the expended effort and the benefits we get is reasonable. Despite
these facts, it is a very interesting idea to deal with the similar problems. We can
learn from that and reconsider this approach by the proposing of our solution.

In the next subsection, the next Pythonic tool Pyflakes is analysed.

2.1.3 Pyflakes

Pyflakes [11] is a tool implemented in a programming language Python. The first
release of Pyflakes is dated on 23th October 2006 . The installation of Pyflakes is
really easy just like with Pylint. There is a possibility to use Pyflakes as a single
tool in Console or to integrate it with favourite IDE. It is focused on identifying the
common errors quickly without executing a Python code (the static analysis). Its
primary advantage over Pychecker is the speed of checking. This solution does not
control a code style, the refactoring possibilities and other features provided by two
previous projects. There are two primary categories of errors reported by Pyflakes:

• the names, which are used, but not defined or used before they are defined

• the names, which are redefined without having been used

These errors may occur when you have forgotten an import, mistyped a variable name,
defined two functions with the same name and so on. Pyflakes works by parsing the
source file, not importing it, so it is safe to use it on modules with side effects. As
far as we know, this project does not provide such the rich configuration possibilities
as Pydev or Pylint.

The best way how to determine the power or abilities of a tool is to pass some testing
code through it. Consider the following example:

import whatever #non-existent module, correctly reported

20

2.1. RELATED WORKS

class Car(object):
def __init__(self, fuel, price):

self.fuel = fuel
self.price = price

def addFeature(self, feature):
self.feature = feature

a = Car(100,20000)
b = Car(100) # wrong number of arguments, nothing reported
print(a.price) # no error reported, correct
print(a.feature) # non-existent attribute, nothing reported
a.addFeature(’radio’)
print(a.color) #non-existent attribute, nothing reported
a.color=’black’
a.speed = x #non-existent variable x, correctly reported

The result is unsatisfactory. Two trivial cases are correctly detected but other com-
mon mistakes are again not recognized. The dynamical adding of an attribute to an
object or a class definition is not correctly processed in Pyflakes as well as in Pydev
and Pylint. All of these projects are working on the similar principle (talking about
the error detection). Therefore, it is very probable that the source of this limitation is
the static analysis. In the conclusion of this analysis, we have to admit that Pyflakes
seems to be the weakest tool we have analysed till now.

Now, Pychecker will be analysed as the last related work. In this part another ap-
proach of detecting the errors in the Python programs will be experienced.

2.1.4 Pychecker

Pychecker [12] finds the problems that are typically caught by a compiler in the less
dynamic languages like C++, Java. Pychecker was born in 2001 but the last commit
is dated on 8th of January 2011 [13]. Till the year 2003, new releases were published
regularly but since then it occurred only very rarely. Despite this fact, Pychecker is
very interesting for our purposes because it uses the dynamic analysis. This chosen

21

2.1. RELATED WORKS

project has the same installation possibilities like Pylint. We prefer using Pychecker
as a single tool without an integration with editor.

The dynamic analysis is a strong approach. As we have discussed in the previous
section 1.1, it is not a suitable tool for a project using the modules with the ’side
effects’ or dangerous constructions. The next interesting point is what Pychecker is
able to detect by running the given Python program. Does it work sophistically? Is
this tool able to detect multiple afterwards following errors? Let’s consider a following
dummy example as an input for Pychecker:

x=5
while(x):

print("I am not going to stop!!!")
x=y

It is not hard to guess what just happened. Pychecker executes the infinite loop and
it depends only on the operating system when this checking of the code is going to
stop. Moreover, we do not get any information on the uninitialized variable y at the
end of the input. On the other hand, the previous example was not a very common
mistake made by a programmer. For this reason, one meaningful example without
the side effects is considered:

def computeGrade(score):
if score >= 80:

grade = ’A’
elif score >= 70:

grade = ’B’
elif score >= 55:

grade = ’C’
elif score >= 50:

grade = ’Pass’
else:

grade = ’Fail’
return grade

22

2.2. MOTIVATION

grade = computeGrade(50)
bonus = 10
grade = grade + bonus #grade is not a int, correctly reported
computeGrade(89,66) # too many arguments, nothing reported

It comes out that only the first occurrence of an error is reported because the source
code is executed only once until the Python interpreter returns an error exception.
That is not handy, because we do not get the next error message till we repair/rewrite
the wrong code placed before. The advantage is that if Pychecker does not complain
about the given code, the code is not going to fail during the runtime.

In the next section we show the reasons of our work. Our motivation is strongly
connected with not sufficient results of the current related works.

2.2 Motivation

This part is devoted to the mistakes made by the related solutions. We demonstrate
the failures of other projects on the short code snippets. For each snippet we explain
errors made by each solution if there are any. At the end of this section it should be
clear what the current state in this field of the problem is. Moreover, this analysis
provides us the main goals for our solution.

Consider the following class definition A:

1 class A:
2 def i n i t (s e l f) :
3 s e l f . x=4
4 s e l f . y=10
5 def decorate (s e l f) :
6 s e l f . decorated=’ He l lo ’

The following statements are:

7 a=A()
8 print (a . x)
9 print (a . y)

23

2.2. MOTIVATION

10 print (a .www)

The variable a is an instance of the class A. Class A does not have any method/at-
tribute www. Only Pychecker and Pylint correctly reported an error on the line 10.
In the following statements we exclude Pychecker because it is not able to report
more than one semantic error in one analysis. The next statements are focused on
the dynamical attribute addition:

11 a . z=10
12 print (a . z)
13 print (a .w)
14 a .w=20

The attribute z is dynamically added to the variable a. As it was expected, none of
the related solutions reported an error on the line 12. The sequence of statements on
the line 13,14 are twisted. None of the projects raised an error on the line 14.

15 print (a . decorated)
16 print (len (a))

On the line 15 we try to load the value of the attribute decorated. This attribute
was not added on previous lines (neither the method decorate of A was not called)
and therefore an error should be reported. Line 16 does not make any sense. The
instance of the class A does not define a method len . None of the chosen solutions
has reported an error in both cases.

17 print (i [3])
18 i=3
19 print (i . x)
20 print (i [2])

Three errors are located in this piece of a code. On the line 17 we try to index
variable i that is even not defined. All remaining tools reported an error. Afterwards
the variable i is defined as an integer. Only Pylint reported correctly an error on
the line 19 because of a non-existent attribute x. The last error (integers does not
support indexing) was not reported by any solution. In the next part we take look
at the collections:

24

2.2. MOTIVATION

21 l s t =[a , a , a]
22 b=l s t [0]
23 b .www

The variable b is a. Despite this fact, the tools did not reported error on the line 23.
The information about b being a is lost because of working with the list. A similar
problem occurs when dealing with the dictionaries. None of the tools reported an
error on the line 23. The similar simulation for the collection tuple:

24 b , bb , bbb = (a , a , a)
25 b .www

Only Pylint was able to detect that variable b refers to an instance a of the class A.
Therefore Pylint reported an error on the line 25 because of a non-existent attribute
www. This observation gives us hope that at least Pylint performs working with the
tuples correctly. What about the operations on tuples?

26 (, , b)=(a , a)+(a ,)
27 b .www
28 b=(a , a , a) [0 : 3]
29 b .www

Even the slightest manipulations with a tuple destroy this kind of information. As a
result, Pylint and also all other three projects are not able to determine correctly the
kind of the variable b and do not report the evident error on the line 27. In the next
statement the variable b is redefined as the tuple. Nevertheless, an error on the line
29 is obvious, none of the tools reported a warning to that. Let’s consider the last
example. We defined the average function as follows:

30 def avg (x , y) :
31 return (x+y)/2
32 c=avg (1 , ’ Johny ’)
33 c=avg (2 , 4)
34 c .www

The passing of the arguments to the function avg on the line 32 does make an error
because of adding int and string on the line 31. Unfortunately, the chosen solutions
did not report anything. A variable c on the line 33 is clearly kind of int. At least

25

2.2. MOTIVATION

Pylint was able to detect an error on the line 34. In addition, if the line 33 is dropped,
only Pylint did report an error. At a first glance it may look like a fault. But the
opposite is true. The Python interpreter stops before assigning some value to the
variable c. A logical solution is to consider the variable c in the following statements
as some special any type. Therefore in this special case the reporting of no error on
the last line seems to be a good approach.

In this chapter we wanted to show/analyse the weakness of the related solutions.
Despite the fact that Pylint looks like the most powerful tool among others, there
are still many possibilities how improve it. We will consider all of these troubles by
proposing our own solution (tool).

26

3
Proposed solution and implementation

This chapter is devoted to the introduction of our ideas in the context of a proposing
solution. At first we will summarize the problem definition.

3.1 Problem definition

Our aim of the work is to come up with a way of how to determine a type of a
variable in some Python code. As we have seen in chapter 2, the static analysis and
the dynamic analysis have both some advantages and disadvantages. In general, the
static analysis is more useful and safe for the users (programmers). On the other
hand, the dynamic analysis provides the most accurate result as an exchange for
safety and running the whole given code while checking it. Moreover, it may cause
the unpleasant side effects if working with a database for instance.

Prior proposing our solution, we present our choice of a programming language in
which this project will be implemented. We have decided for Python. The reasons
are as follows:

• the useful modules like PLY, AST implemented in Python

• a plugin for VIM may consist of a Python code

• a consistency of our solution and the second part [1]

• a possibility to learn a new technology

27

3.2. SYMBOLIC EXECUTION

In chapter 1, we have mentioned that our tool in the combination with the work
of our colleague L’ubomı́r Žák [1] forms a complex plugin customized for the editor
VIM. In the context of the final product (pynfer), the input for our tool is a retrieved
AST from the second part of the solution. For the purposes of the presentation only
of our work, we process the input in the following way. The assumption is that the
given source code is syntactically correct. The certain AST is retrieved by the Python
AST modul (section 1.3.2) from the given source code. Dealing with a syntactical
non-valid source code is solved also in the second part.

The working name of our tool is the Type Inference. In the following text, our tool
can be also referenced by the name Type Inference .

3.2 Symbolic execution

In this part, an idea of a symbolic execution is introduced. The symbolic execution is
placed somewhere between the static and the dynamic analysis. The dynamic analysis
without the need to run the whole code would be a very applicative solution. In the
symbolic execution, the Python interpreter will be simulated, but:

• instead of the variables only the type will be used

• the standard library will be replaced by a mock implementation (does not have
any side effects and returns the correct types)

• if it is not possible to determine the next steps of the Python program, the
non-determinism will be used

In other words, we do not care about the values in the variables but we do care about
the types of the variables. If giving a suitable advice to a programmer is not possible
because of the given program’s complexity, a non-deterministic advice will be used
(in the section 3.2.4 explained). Because of simulating the Python interpreter, we
have to copy the functionality of Python scope explained in the first chapter (section
1.3.1). The corner-stone of our implementation is composed of two main objects
which represent the given source code: Typez and Scope.

28

3.2. SYMBOLIC EXECUTION

3.2.1 Typez

The Typez is an object that represents all types within the Type Inference. Each
instance of Typez has a reference on its current scope. The Scope (3.2.2) may con-
tain the additional information or belonging methods/functions/attributes for a given
Typez instance. This object supports the following methods:

• resolve a symbol - a function to look up a Typez instance corresponding to the
given symbol with a possibility to choose a mode of resolving, either straight
(search only in the scope of self) or a class mode that searches in the scope of
self and cascades to a class type and its parents with respect to the class
and bases attributes

• resolve a class - a function that answers True if and only if self is descendent of
a class with a given name, otherwise it returns None

• resolve attributes - a function that returns a list of all possible attributes/func-
tions for self (a code completion purpose)

The process of resolving a symbol has to follow the rules of the multiple inheritance
in Python [14]. The only rule necessary to explain the semantics is the resolution rule
used for the class attribute references. That is depth-first, left-to-right. Consider the
following class definition:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

Thus, if an attribute is not found in DerivedClassName, it is searched in Base1, then
(recursively) in the base classes of Base1, and only if it is not found there, it is
searched in Base2, and so on.

29

3.2. SYMBOLIC EXECUTION

3.2.2 Scope

The Scope is an object based on a collection dict (a data structure dictionary). This
object is responsible for the mapping symbols to the Typez. To be able to simulate
the Python scoping (explained in the section 1.3.1), a reference to the encapsulated
scope (the parent scope) is included. The Scope supports the main following function:

• resolve a symbol - a function to look up a Typez instance corresponding to the
given symbol with a possible straight mode that searches only in self and a
cascade mode that cascades to the parents of self

The result of the application of these classes may look as follows:

a=1+2 #What is a?

The variable a in our internal representation:

a=Typez(
kind : int

node : AST.num
value : default_value
Scope (
....

)
)

What does the Type Inference figure out? It knows that a is an integer and does
not know the value because it uses the mocked implementation of the standard li-
brary (introduced in the section 3.2.5). For a better understanding, let’s analyse the
following instance:

class A(object):
def __init__(self):

self.name="example"

30

3.2. SYMBOLIC EXECUTION

o=A()
o.a=5
o.b=’Hello’

A variable o is represented as:

o=Typez(
kind : obj
node : None
value : None
Scope (
’a’ : Typez(kind : int, Node : AST.num, value : 5)
’b’ : Typez(kind : str, Node : AST.str, value : ’Hello’)
’__class__’ : Typez(kind : class, Node : AST.ClassDef...
)

)

It means that the variable o is some object and all required information like the
dynamically added attributes, a type etc. are stored in the Scope.

3.2.3 Mechanism of symbolic execution

In this section, a mechanism of the symbolic execution is explained. As we have
defined earlier in the section 3.1, the input for the Type Inference is an AST. A
externs is a Python file which consists of all basic knowledge for our tool. There are
defined all features of the standard library (in the perfect case).

In general, the externs is processed prior each execution in the same way as the input
AST. The only difference is that the AST of the externs needs to be created and it
is not retrieved as in the case of the input code. In this case, we have to do it on our
own. The complete processing has the following steps:

1. proceed the externs by the AST Python module

2. the gained AST is analysed by the Type Inference (the process of learning the
basic knowledge)

31

3.2. SYMBOLIC EXECUTION

3. the AST of the given code (input) is analysed by the Type Inference (the process
of checking the input code)

4. supplying the results - a list of errors, warnings

The review above is a brief introduction to the data flow in our solution but it does
not describe the core of the symbolic execution. This type of the execution is used in
the steps 2 and 3. How does the Type Inference analyse an abstract syntactic tree?
For a better idea of our concept it is useful to get familiar with the AST. Consider a
Python program consisting only of one simple statement:

a = 1

The string representation of the AST module’s result is:

Module(body=[
Assign(targets=[

Name(id=’a’, ctx=Store()),
], value=Num(n=1)),

])

A more complex instance of a Python program, consisting of a class definition ex-
tended by two decorators (dec1, dec2) and three basis, is :

@dec1
@dec2
class foo(base1, base2, metaclass=meta):

pass

The AST string representation according to the code above is as follows:

Module(body=[
ClassDef(name=’foo’, bases=[

Name(id=’base1’, ctx=Load()),
Name(id=’base2’, ctx=Load()),

32

3.2. SYMBOLIC EXECUTION

], keyword=
keyword(arg=’metaclass’, value=Name(id=’meta’, ctx=Load())),

], starargs=None, kwargs=None, body=[
Pass(),

], decorator_list=[
Name(id=’dec1’, ctx=Load()),
Name(id=’dec2’, ctx=Load()),

]),
])

The functionality of the AST module is described in chapter 1 (section1.3.2). For
our purposes the examples above should provide the possibility for the readers to
understand the semantic and describing power of the AST. The mechanism of the
symbolic execution works as follows:

1. starts by processing the AST node Module

2. the Type Inference processes each AST node in the body of the Module

3. the Type Inference recursively processes the given AST node (depth-first-search)

For the purposes of a recursive analysis an object Parser was created.

3.2.4 Parser

The object Parser is able to proceed the majority of the AST nodes using already the
presented objects Typez (3.2.1) and Scope (3.2.2). A function for almost each kind of
the AST node is implemented. These functions are so called handlers for one specific
kind of the AST node. During the recursive analysis, each AST node is proceeded
by the proper handler. A handler performs only the minimum amount of the work
that belongs to a specific type of the AST node. Afterwards the remaining work is
delegated to the nested nodes and if needed the answers from the nested nodes are
also collected and evaluated in the parent node. More precisely, the whole idea is to
dispatch the work to the exec <ast node name>functions, the exec name functions
are doing only minimum amount of a job to cover the execution of the specific piece

33

3.2. SYMBOLIC EXECUTION

of the code correctly, recursively using the eval code to evaluate the values of their
child nodes. Except the large number of handlers, Parser implements these following
methods:

• eval code - is the main method of the Parser that executes a code under the
certain node within the given scope. It returns a return value of the code.

• eval in root - is the same method as the above, but automatically takes the
scope as the root scope, which parent is an extern scope (the extern scope
represents the externs, the highest possible scope).

• warn - is a method for creating the error reports consisting of an error message,
a certain AST node and a symbol of error.

There is not enough time and space to present all the ideas hidden behind certain
handlers but the most interesting were chosen. In the following, the details of a
certain AST node processing is described.

Processing of collections

In Python, there are four basic collections: dictionary (dict), set, list and tuple. In
our solution, the same idea is used for the first three of them. When an AST node
is of kind ast.List, ast.Set or ast.Dict proceeded, a new appropriate object Typez
including a type information of the collection is created. How do we represent all the
data within the data structure? There are two possible ideas:

1. to store all elements

2. to store only one representative of all elements

The advantage of the first approach is obvious. It would be possible to simulate
all operations on the collections correctly despite the fact that the Type inference is
interested only in the types of instances (objects). On the other hand, a dangerous
program would cause the great issues in this kind of approach. The risks are for
instance an infinite loop, in which the element is appended to the list or using a big

34

3.2. SYMBOLIC EXECUTION

amount of a memory only because of the analysis. In our solution, the second idea
is preferable, because only the type of one element is known. In addition, it is not
a usual case that the programmer loads the collections with the different types of
elements (except tuple, discussed later). Therefore for the collections set and list only
a representative (object Typez) is stored. In case of the dict, we have to store two
types, the Typez for key and value.

Why is it not a good idea to implement a tuple in the same way? The reason is the
wrong assumption about loading the collections with elements of the same type. It
is quite common to use a tuple like this:

def findKeyByValue(value,data):
for k,v in data.items():

if v==value
return (k,v)

return None

d = {1:’item1’, 2:’item2’, 3:’item3’}
res_pair = findKeyValue(’item2’,d)

As we can see, a usage of a dictionary almost every time requires a tuple loaded with
the different types of elements. Therefore, in our implementation the size of a tuple
is set to the magic number 5 for a reason of being able to analyse correctly at least
the simple usage of the pairs, the triples, etc.

Processing of class and function definitions

When a class or a function is defined, the Type Inference needs to remember the
name of a new class or function. When a Python program is executed by the Python
interpreter, a definition of a function is just stored under its name in a scope. On
the other hand, a definition of a class is not only stored under its name, but it
is also executed (so the interpreter knows what functions are implemented in the
certain class). For this reason, the Type Inference does not analyse the definitions of
the functions till the certain function is really called in the given Python program.
Thanks to the evaluating of the class definition it is possible to store the docstring of

35

3.2. SYMBOLIC EXECUTION

the class in the object Typez according to the class definition. That is not a necessity,
but a nice feature of our tool for the code completion.

Processing of if condition

An if condition is a very strong tool. Our possibilities of the evaluating condition are
limited by the knowledge of the variable’s type. In this programming construction we
want to determine if the body of a condition is in the runtime executed or the else
branch is executed. Let’s have a look at our motivating example:

def makeDecision(x):
if x>0:

return ’positive number’
else:

return 0

result = makeDecision(5)

In other cases, it may be sufficient to evaluate both branches. But especially in this
example, running function makeDecision with another argument would change the
type of the variable result. Therefore, the following rules for evaluating the condition
were defined:

1. if the condition is simple (the values of arguments are known), then evaluate
the appropriate branch.

2. if the condition is too complex, throw a coin with value one on the top and zero
on the bottom. If the value one is on the top, evaluate the body of if branch,
otherwise evaluate else branch.

3. The Type inference knows always to evaluate the expressions correctly in fol-
lowing form: isinstance(x,y), x is None. In other cases the coin may be used.

The ability to evaluate isinstance and is None as exactly as the Python interpreter,
rises from our correct information on a type competence. Throwing a coin is nothing

36

3.2. SYMBOLIC EXECUTION

else than introducing the nondeterminism to our solution. This clearly means that
our analysis for the same input AST may report various sets of errors every time
during the run.

Encapsulating Parser

Because of the nondeterminism, there is a need to make reports of errors more deter-
ministic. It does not look user friendly, when two analysis on the same input report
the various errors. In spite of the fact that we are not able to remove the randomness
completely, a suitable solution for this issue is proposed. The Parser is encapsulated
by a new object FinalParser.

The FinalParser is an object that runs the instance of the Parser with the same
inputs many times. The count of iterations is defined in advance. Actually, the
count is configured by a user. It depends on the user preference between speed and
exactness. In the following text, the number of iterations is denoted as X for a better
readability. When the FinalParser is finished, there are X possibly different sets of
the problems generated by the Parser. At first, a Warning as a new kind of error
is introduced. In our terms since now, Warning is an error with a lower priority. It
may be an error or just a programmer is more clever than the Type inference. The
first poor attempt to distinguish the errors that arise always and rarely was following.
When an error arises in every set of the problems then it is reported as an Error.
Otherwise as a Warning. This approach leads us into the issues. Let’s consider the
following instance:

x = ... #x is a number, value is unknown for Type inference
if x>50:

print(y)
else:

print(z)

As a result, the FinalParser would return two warnings, because of undefined vari-
ables y and z. In the evaluation of the condition, the nondeterminism was used,
because the value of variable x was lost during the analysis. Therefore the tossing of
a coin decides what branch will be evaluated. As a result, the two obvious errors are

37

3.2. SYMBOLIC EXECUTION

reported as the warnings only because of the nondeterminism. The mistake is that
we do not require the visiting of a certain place of the code/AST . Therefore even if
the error is reported every time when the Type Inference is checking the certain place
in the code/AST, this error is reclassified as a Warning. For this reason, the final
algorithm is based on monitoring of the visited AST nodes. After each iteration, the
following steps are executed:

1. if the current error was not reported in the previous iterations and the AST node
has been already visited in the previous iterations, then this error is reclassified
as a Warning and added to the list of warnings if not already in the list.

2. if the current error was not reported in the previous iterations and the AST
node has not been already visited in the previous iterations, then this error
remains as an error and the AST node is marked as visited.

This algorithm helps us to eliminate a changing of the set of errors and warnings.
Of course, the possibility that some error just vanishes is still here but with the
appropriate number of iterations it is reasonably small. The only weakness is that an
error may be reclassified to a warning or vice versa, for the same input.

After each running of the Parser’s instance, the current state of the scope is stored for
the purpose of the code completion. The code completion requires an ability to stop
the analysis in a certain part of AST. The reason is demonstrated in the following
example:

1 class Demo:
2 def i n i t (s e l f) :
3 s e l f . x = 5
4 d = Demo()
5 d .
6 d . y = ’ t e s t ’
7 d .

In the context of the code completion, it is a big difference whether the code comple-
tion on the target instance d is called before the line 6 or after it. The breakpoint
defines a line number before which the execution has to stop. Therefore the state of
the scopes is equal to a given place in the input code. Afterwards in each of the X

38

3.2. SYMBOLIC EXECUTION

scopes, the certain target of the code completion is resolved and results are united
into one list of the options without a multiple occurrence.

The object FinalParser encapsulates all the functionality of our tool. The installation
and manual guide is in the part Appendix of this thesis. The number of the iterations
is set to the default value 20.

3.2.5 Standard library

As we have seen in the section 2.1.2 of chapter 2, the standard library of Python has
a wide range of the features. In our project we denote the built-in functions as the
externs. In the externs, everything is placed what needs to be implicitly defined. As
it was declared, our implementation is a mock one. A short sample of working with
the numbers (generally) in the mocking notation:

class num(object):
def __add__(self,x):

if isinstance(x,num):
return TypeContainer(num)

else:
return TypeError(x)

def __div__(self,x):
if isinstance(x,num):

return TypeContainer(num)
else:

return TypeError(x)

The mocking class num is created. In our solution, this object represents all numbers
and it handles the operations called on them. In this example, the num class is very
limited. Only the operations add and div are defined. What will happen if
the operation mul is invoked in the input code? Our tool will report an error
based on the non-existing function in the context of the class num. On the other
hand, consider a case in which a defined operation is called correctly. In this specific

39

3.3. SUMMARY OF THE IMPLEMENTATION

instance, the argument x is validated whether it belongs to the right class type. If yes,
a special class TypeContainer is a container that encapsulates the return type of the
given function. If not, a special class TypeError contains a source of the mistake and
later an error report will be generated in the Parser (3.2.4). With this approach, the
Type Inference is taught how to proceed the statements from the standard library.
More specifically, we teach the Type Inference what types do return the functions
and what arguments are of the appropriate types. The appropriate types are those
which Python interpreter does not evaluate in the body of the given function as an
error. As it is written in the example above, the num can be added only together
with another num. Otherwise a type error is reported because of argument x.

3.3 Summary of the implementation

To summarize this chapter, we proposed the idea of our solution and briefly presented
the parts of the implementation. We have to admit, that some kinds of the AST nodes
are not implemented in an absolutely precise way in the sense that the processing
of the certain nodes could be more exact (closer to the behaviour of the Python
interpreter). Furthermore, there is still an ongoing process of implementing more and
more features from the standard library of Python.

40

4
Results

This chapter is dedicated to the results of our tool. We present the examples of using
our solution and afterwards the Type Inference is compared with the related projects
analysed in chapter 2.

4.1 Demonstrating the functionality

The Type Inference supports a wide range of the constructions in Python and is able
to detect the various types of errors. In various cases a detection of an undefined
variable (name) is not of the same difficulty. As we have seen in chapter 2, for
example in some cases, the solutions were able to report a certain kind of error but
on the other hand, no error was reported in a more complex example. Therefore the
concrete samples are not bounded to the concrete demonstration of the functionality.
The aim is not only to show what errors are able to be detected by the Type Inference,
but also what does the Type Inference know about the type of the variables. This is
possible thanks to our approach of resolving the symbols described in the part 3.2.3.
For this reason, the various short code snippets are shown and the result of our tool is
discussed. During programming of our solution, a large number of tests was created
and they describe the functionality very precisely. Therefore, the code snippets are
inspired by them.

At first, we will summarize the main functionality of our project. The main function-
ality is meant in the field of the error reporting. In our opinion, the main contribution

41

4.1. DEMONSTRATING THE FUNCTIONALITY

of our work is the ability to infer types of the variables. The following kinds of error
are supported:

• Name is not defined (undefined variable)

• Object does not support indexing

• Need more than ’x’ values to unpack

• Too many values to unpack

• Object is not iterable

• Iterator : does not support next method

• Bad number of arguments

• Unexpected keyword argument

• Multiple arguments for keyword argument

• Unsupported operand type

• Non-existent function (class)

• Exceptions must derive from object Exception

• Non-existent attribute

• Unhandled raise of exception

In the next part a few code snippets are presented as a demonstration of the error
detection and the type inference. The first example is focused on the non-existent
classes:

1 class A:
2 def i n i t (s e l f , x , y) :
3 s e l f . x = x
4 s e l f . y = y
5 class B:
6 pass

42

4.1. DEMONSTRATING THE FUNCTIONALITY

7
8 a = A(1 ,2)
9 b = B()

10 c = C()
11 d = D()

Our solution reports an error on the lines 10 and 11 because of the non-existent
function. In addition, the variables c and d are referenced in our solution as any
type. Therefore any further work with them would not raise an error. In the following
example we will take a look at the non-existent attributes:

1 class A:
2 def i n i t (s e l f , x , y) :
3 s e l f . x = x
4 s e l f . y = y
5 a = A(3 ,4)
6 a . x = a . z
7 a . z = a . x
8 a .w = a .w
9 a . y = a . z

10 a . t = t
11 t = a . u

The Type inference reports the following errors based mainly on the non-existent
attribute: on the line 6 the non-existent attribute z, on the line 8 the non-existent
attribute w, on the line 10 the name t is not defined and on the line 11 the non-existent
attribute u. The next example refers to working with the functions as attributes (class
closure):

1 class A:
2 def i n i t (s e l f , x) :
3 s e l f . x = x
4 def ge t x (s e l f) :
5 return s e l f . x
6 a = A(’ t e s t ’)
7 getx = a . ge t x

43

4.1. DEMONSTRATING THE FUNCTIONALITY

8 g e t x c l a s s 1 = A. ge t x
9 g e t x c l a s s 2 = A. ge t x

10 x1 = getx ()
11 x2 = g e t x c l a s s 1 ()
12 x3 = g e t x c l a s s 2 (a)

Two different cases of a storing method in a variable were properly evaluated in our
solution. For this reason, one error was reported on the line 11 because of a missing
instance of A in the function call. In the next code snippet, it is shown that the Type
Inference is able to proceed an inheritance in the proper way.

1 class A:
2 def i n i t (s e l f) :
3 pass
4 def ge t x (s e l f) :
5 return s e l f . x
6 class B(A) :
7 def i n i t (s e l f) :
8 pass
9 def ge t y (s e l f) :

10 return s e l f . y
11 b = B()
12 b . x = ’ john ’
13 b . y = 4
14 x = b . ge t x ()
15 y = b . ge t y ()

The Type Inference is able to resolve the methods get x, get y for instance b of the
class B. Moreover, it knows that x is of the type string and y of the type number.
The next example is demonstrating the proceeding of the arguments in a function
call. Three types of the passing arguments are considered: positionals, keywords and
defaults.

1 class A:
2 def i n i t (s e l f , x , y = 1 , z = True) :
3 s e l f . x = x

44

4.1. DEMONSTRATING THE FUNCTIONALITY

4 s e l f . y = y
5 s e l f . z = z
6 a = A(” t e s t ” , z = 1 , y = True)
7 x = a . x
8 y = a . y
9 z = a . z

10 b = A(” t e s t ”)
11 x1 = b . x
12 y1 = b . y
13 z1 = b . z
14 c = A(” t e s t ” , z = 1)
15 x2 = c . x
16 y2 = c . y
17 z2 = c . z
18 d = A(z = 1 , b = 2 , y = 3)
19 e = A(1 , z = 1 , x = True)

As we can see in the example above, the class A has a constructor with two optional
arguments. Five different instances (a,b,c,d,e) of the class A were created with various
callings of the constructor. The creation of instance a on the line 6 is done by
one positional argument and two keyword arguments. No error is reported and our
solution disposes of an information on the variables x (type string), y (type bool) and
z (type number). The instance b is created by calling the constructor of the class A
only with one positional argument. That is a correct statement because of the two
optional arguments and therefore the variable x1 is a string, y1 is a number and z1
is a bool. The instance c is a result of the combination of the positional and keyword
arguments. Our solution determined also the correct types of the variables x2, y2
and z2. On the line 18, an error was reported correctly because of the unexpected
keyword argument b. On the line 19 an error arised from the reason of the multiple
arguments for the argument x.

To sum up, the functionality of the Type Inferencer was briefly introduced. Our
solution has more features in the sense of the error detection. For the purpose of
meeting all the functionalities, we recommend to look into the source code of our
project (located in Appendix). The best documentation is the source code. There

45

4.2. COMPARISON WITH EXISTING SOLUTIONS

is possible to find the test file, in which it is easy to deduct all the features. In the
conclusion of this chapter, our project is compared with the related solutions.

4.2 Comparison with existing solutions

This section is dedicated to the comparison of our solution with the already existing
projects. In the section above, we demonstrated that our ideas and the implementa-
tion really works in the practice. In the following text we want to show a contribution
of the Type Inference to a current state in the field of the study. When comparing
many tools, a process of marking the results is needed. To compare this, a bench-
marking is described bellow and afterwards the behaviour of all chosen solutions is
measured and the results presented.

4.2.1 Benchmarking

The goal of a benchmarking is to rate fairly each of the chosen projects when analysing
a given input code. Our assumption is that we are able to define correctly the expected
errors in the short samples of a Python program. Afterwards, the following rules are
applied:

• the number of the expected errors is the maximum number of the points for a
sample

• if a tool reports an error on the right line with a suitable reason, then it gets 1
point

• if a tool reports an error in the clearly correct part of the code, then it looses 1
point

• if a tool reports a warning (of lower importance than error) in the code that is
not explicitly harmful, then it looses 0.5 point

• if a tool reports a warning (of lower importance than error) instead of an error,
then it gets only 0.5 point

46

4.2. COMPARISON WITH EXISTING SOLUTIONS

Such an approach guarantees us to choose the most exact tool that is able to detect a
smelling code in the programs. In the following part the results of the ’competition’
are summarized.

4.2.2 Results and samples

In our comparison every chosen project analysed the given input code. Due to the
benchmarking we are able to mark each analysis and to evaluate global ranking of
tested solutions at the end. For this purpose we have designed 8 code snippets
consisting of the various constructions. The aim was to cover a big range of the
possible cases in Python.

The source code of the samples and the concrete results of a certain tool are possible
to find in the Appendix. The explanation should not be necessary because a lot of
the constructions were already analysed. The results are as follows:

Inputs - max points Pyflakes Pylint Pychecker Pydev TypeInf
sample1 - 13p 1 5 1 1 13
sample2 - 4p 1 1 1 1 3
sample3 - 2p 0 1 1 0 2
sample4 - 1p 0 0 1 0 1
sample5 - 2p 0 1 1 0 1
sample6 - 1,5p 0 0 1 0 1
sample7 - 3p 0 2 1 0 2,5
sample8 - 2p 0 1 0 0 2
sum/28.5b 2 11 7 2 25,5

Figure 4.1: Table of results

As we can see, our solution in the field of the error analysis defeated all other chosen
projects. We are very proud of this result and we hope that our solution will be
released for the public use in the near future. The only limitation in writing these
samples for this chapter was choosing the already implemented functions/objects from
the standard library. The reasons are mentioned in the section 4.3 of this work.

The disadvantage of our solution is that it does not provide such a wide range of the
functionality like e.g. Pylint. This means that the best practise would be to use also
Pylint for the purposes of controlling the code style together with our project. This

47

4.3. POSSIBILITIES OF IMPROVEMENT

would provide a complex analysis of the Python programs with the suitable advices
and it would be especially applicable for the beginners in the Python programming.

4.3 Possibilities of improvement

Our results are very encouraging and motivating for the further work. On the other
hand, it is our responsibility to showthe weak places of our solution and to state the
possible aims for further improvements. Currently, our solution is mainly limited by
the externs. In the externs, only a subset of the standard library is implemented.
That means that the Type Inference does not cover all the features of the standard
library in the sense of knowing the names and the return types of the functions.
Therefore, in the current state our project may generate the false errors. On the
other hand, for the purposes of our thesis we would like to emphasise that building
the suitable mock version of the builtins is a long time run. That is not because of
our incorrect approach, but it requires a lot of the manual work that is definitely
doable. For instance, Pylint (2.1.2) has various problems with processing of all the
features from the standard library. Please take into consideration that this tool has
been existing for more than 10 years.

The second goal for the future plans is to add more features. There are still few kinds
of the AST nodes, in which the process of executing could be improved. Nowadays,
our solution is not able to proceed the imports correctly. This upgrade would increase
the applicability of our solution in the complex Python programs. Despite the fact
that the Type Inference is missing this kind of the functionality, it is already a strong
tool prepared for the meaningful usage. We hope that we will be able to publish our
project pynfer in few months.

48

Conclusion

In our thesis, the problem of the inferencing types in dynamically typed languages was
were dealt. A tool that is able to detect the possible errors in the Python programs
was proposed and implemented. The term of the symbolic execution was introduced
as a core idea of our solution.

The symbolic execution is a trade-off between the static and the dynamic approach
in the type inference (for more details see section 1.1). We combined the safety of
the static analysis with the power and the accuracy of the dynamic analysis. As a
result, we got a powerful approach with a big potential. The demonstration of the
correctness of our ideas was made by the implementation of this solution in Python.

At this point, it is suitable to summarize the results of this thesis. Our tool provides
a wide range of the error detection in the given source code. In the last chapter, the
specific functionality is demonstrated on the various code samples. Moreover, the
result of our thesis is compared with the already existing projects that were analysed
in chapter 2. This comparison showed the power of our tool and in the discipline of
the error detection beated the other chosen solutions. Therefore, we would like to
release our project in the near future.

The future plans are clearly defined in the last chapter. The main goal is to be able to
handle as many features of the Python standard library as possible. As we explained
in chapter 2, it is doable, but it requires a lot of time. Even though the various
versions of the solutions were being released in the last ten years they are not able to
proceed all the standard library. It would be very interesting to take a closer look at
the following question. How could be this process of learning the features from the
standard library improved?

49

Bibliography

[1] L. Zak, “Integration of text editor with code-analysing tool,” Master’s thesis,
University of Comenius, Bratislava, Slovakia, 2014.

[2] Python, http://www.python.org/

[3] M. Summerfield, Programming in Python 3: A Complete Introduction to the
Python Language. Pearson Education, 2009.

[4] M. Lutz, Learning Python. Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
5 ed., 2013.

[5] T. Kluyver, “Green tree snakes - the missing python ast docs,” 2012, http:
//greentreesnakes.readthedocs.org/

[6] PyDev, http://www.pydev.org/

[7] PyDev, http://www.pydev.blogspot.com/

[8] Pylint, http://www.pylint.org/

[9] Logilab, http://www.logilab.org/project/pylint

[10] Logilab, http://www.logilab.org/blogentry/78354

[11] Pyflakes, http://www.pypi.python.org/pypi/pyflakes/0.8.1

[12] PyChecker, http://www.pychecker.sourceforge.net/

[13] PyChecker repository, http://www.pychecker.sourceforge.net/

[14] Python, “Multiple inheritance.” http://www.docs.python.org/release/1.5/
tut/node66.html

[15] Python3 documentation, http://docs.python.org/3/

50

http://www.python.org/
http://greentreesnakes.readthedocs.org/
http://greentreesnakes.readthedocs.org/
http://www.pydev.org/
http://www.pydev.blogspot.com/
http://www.pylint.org/
http://www.logilab.org/project/pylint
http://www.logilab.org/blogentry/78354
http://www.pypi.python.org/pypi/pyflakes/0.8.1
http://www.pychecker.sourceforge.net/
http://www.pychecker.sourceforge.net/
http://www.docs.python.org/release/1.5/tut/node66.html
http://www.docs.python.org/release/1.5/tut/node66.html
http://docs.python.org/3/

Appendix

The zipped folder appendix.zip is located on the enclosed CD. Inside the the folder
are located two folders named as pynfer and samples. For the purposes of demon-
strating the functionality only of our part (Type Inference), we prepared a special
approach. Otherwise, we recommend to try out the whole solution located in the
GitHub repository. There are also all necessary instructions for the installation in
combination with editor Vim.

Please follow the next steps for the installation of the Type Inference:

1. Make sure that Python 3 is installed on the current computer. It is possible
to check it by typing Python3 in the console. The additional information on
installation is possible to get on the website of Python [2].

2. Unzip the folder named appendix.zip and copy the nested folder pynfer to the
arbitrary location.

3. Run the Python file RunAnalysis.py located in the project /pynfer/tool/. The
program RunAnalysis.py takes as an argument the Python file that has to be
checked. The second argument is optional and it determines the count of the
iterations that our tool has to perform. It should be the trade-off between the
speed and the accuracy (more precisely in the section 3.2). The default value
is set to 20. The command for the terminal may look as follows:

python3 RunAnalysis.py sample.py 10
python3 RunAnalysis.py sample.py

The result printed in the terminal may look as follows:

python3 RunAnalysis.py sample.py
Following errors were detected:
Line 10 - E - Non-existent attribute - x
Line 15 - W - Unsupported operand type - y

If the input code is not syntactically valid, the result is following:

51

https://github.com/pynfer/pynfer

python3 RunAnalysis.py sample.py
sample.py contains syntactical errors!

In the folder samples, there are examples used in comparison with the related solutions
in the section 4.2. For each involved solution and each code snippet, there is one file
that describes exactly the behaviour. For instance, files named sample1 pylint.py and
sample1 pyflakes.py describe the behaviour of two different tools on the same input
code. These files can be also used as the testing examples in the instructions above.

	Introduction
	Overview of the problem
	How to infer a type of an object
	Formulation of the problem
	Python
	Python scoping
	Python AST module

	Related works and motivation
	Related works
	Pydev
	Pylint
	Pyflakes
	Pychecker

	Motivation

	Proposed solution and implementation
	Problem definition
	Symbolic execution
	Typez
	Scope
	Mechanism of symbolic execution
	Parser
	Standard library

	Summary of the implementation

	Results
	Demonstrating the functionality
	Comparison with existing solutions
	Benchmarking
	Results and samples

	Possibilities of improvement

	Conclusion
	Bibliography
	Appendix

