
SINGLE AGENT ANSWERING SYSTEM

an Intelligent Agent approach to Question Answering

A MASTER THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

COMENIUS UNIVERSITY IN BRATISLAVA

supervisor:

doc. PhDr. Ján Šefránek, CSc

Štefan Konečný

May 2010

Abstract

In this thesis we present a novel approach to Question Answering. We look on this task

from perspective of an Intelligent Agent, which strives to discover in its environment facts

relevant to the question it has been asked. Through the interaction with its environment -

the Wikipedia online encyclopedia - it can acquire new facts and modify the relevance of

the facts it already knows .

We also uncover some problems connected with this new approach and suggest solu-

tions to overcome them. Of the connection functions and value functions we have designed,

exponential connection function coupled with maximum or tresholded average seem to be

the most viable. However further evaluation and research on this functions is still necessary.

We hope that work may provide inspiration for other Agent and Multi Agent Systems,

capable to answer Relationship Questions and also other complex questions categories.

ii

Acknowledgement

I would like to express my gratitude towards my supervisor Ján Šefránek, who provided

me with unprecedented academic freedom and support when I have needed it the most.

I would also like say i big Thank You to my Mom, as well as the rest of my family for

their ceaseless support.

I owe a lot of to my Employers Michiel Munneke and Michiel Banneke, for providing

me with holiday to write this work, and all the friend and colleagues who have done my

work meanwhile

Many thanks belongs to people on which work I have built upon Katrin Erk and Sebas-

tian Padó for Shalmaneser, Simone Ponzetto for Wikirelate! and Nils Reiter for FrameNet

API. Without their work, my work wold not be possible.

And thanks to You God, for all the inspiration and blessings.

iii

List of Algorithms

1.1 SAAS lifecycle . 5

3.1 Discovering WFs in a parsed sentence . 15

3.2 Detecting WFs in a plain sentence . 17

3.3 Best Snippet selection . 21

4.1 Transfer of Relevance . 27

4.2 Detailed SAAS life cycle . 29

iv

List of Tables

2.1 Test set topics . 9

3.1 WFs extracted from “What is the position of Egyptian President Mubarak

with respect to the Coptic Christians ?” 14

4.1 An example of TaM initialization . 23

5.1 Distribution of WFs in a final TaM based on word length 30

5.2 Number of pages visited . 32

5.3 TaM Enhancement vs. not Enhancement 33

5.4 Topic 8 - Case study . 33

v

List of Figures

2.1 SALTO in action, including Framenet annotation 10

3.1 The Parse tree of our example sentence displayed by the Salto tool 13

4.1 The Covering Node and DOA . 25

vi

Contents

Abstract ii

Acknowledgement iii

1 Introduction 1
1.1 The Traditional Question Answering Approach 2

1.2 The Intelligent Agent approach . 3

2 Used Data and Technologies 7
2.1 Corpus . 7

2.2 The Test Data . 8

2.3 Shalmaneser . 9

2.4 Framenet API . 10

3 Using Wikipedia Knowledge 11
3.1 WikiFacts . 11

3.2 Discovering WikiFacts for KB . 13

3.3 Finding WFs in plain sentence . 16

3.4 Assigning values . 17

3.5 Selection of the Best Snippets . 19

4 Relevance assignment and propagation 22
4.1 Automatic TaM initialization . 22

4.2 Semi-automatic TaM initialization . 24

vii

4.3 Transfer of Relevance . 24

4.4 The detailed view on SAAS life Lifecycle 28

5 Experiments 30
5.1 The length of WFs . 30

5.2 Evaluation of experiments. 31

6 Conclusion 35

A Setting up the Wiki database 37
A.1 Data . 37

A.2 Hardware and System Configuration . 38

A.3 Setting up MediaWiki . 38

A.4 Dumping the Database . 39

A.5 Polishing the Mediawiki . 41

B Setting up Shalmaneser 43
B.1 Obtaining the Software and Licensing Issues 43

B.2 Minor problems . 44

B.2.1 The missing ’IN/that’ POS tag . 44

B.2.2 Serialization errors . 45

C The Test Topics 47

Bibliography 49

Abstrakt 51

viii

Chapter 1

Introduction

Of all the epithets given to the current age, the ’Information Era’ is one of the most prevalent

ones. Without any doubt the quantity of information or produced nowadays is larger then

ever before. This poses a natural challenge of how to find the needed information in the

ever growing pile of data.

While the common search engines succeed to fulfill needs of the majority of their users,

they have their limitations. As they are mostly based on keyword queries, they force the

user to come up with a suitable query. Although this task is simple in most of everyday

situations, the more abstract or complex the information need of the user becomes the

harder it gets. In most of the cases the success or failure of the search depends on whether

the information is worded similarly to the keywords the user typed in as his query.

The ambition of Question Answering (QA) is to alleviate the user of this problem. The

user should be able formulate his information need as a simple question and receive an

relevant answer, as if he would ask an omniscient human being. The QA system should

take care of all the rest, that is, it should understand the information need, identify the

proper context, take into account different phrasing of the possible answers, split a complex

question into a simpler ones and aggregate the partial answers (possibly originating from

different sources) into the final one.

Of course QA is an an area of a vivid scientific research and non of the state of art

systems is close to the ideal. In this work we introduce the Single Agent Answering Sys-

tem (SAAS). We take a different a perspective to the QA task, compared to a Traditional

1

CHAPTER 1. INTRODUCTION 2

QA systems (we define this notion specifically in the upcoming section). Instead of merely

identifying a passage in a document, which is the most relevant to the asked question, we

attempt to build a partial word model relevant to the question. That is we try to identify the

relevant entities involved in the question as well as their properties and relations between

them. To achieve this goal we pursue an iterative process of detecting entities seemingly

relevant to the topic, obtaining more information about them and update our knowledge ac-

cordingly to what we have learned. Our intention is to converge to a Knowledge Base con-

taining relevant entities and relevant information about and connecting them. The system

was designed specifically for answering relationship question which inquire about relations

between two and more entities.

While the performance of our system is far behind the ideal QA system, as well as the

current best performing QA systems, it offers a fresh perspective to the underlying topic

and identifies some caveats connected to the new approach. It also proposes some partial

solutions to them and evaluates their impact.

1.1 The Traditional Question Answering Approach

Although such a claim involves a great deal of simplification, most of the QA systems we

are aware of exhibit a strong common pattern. Before we describe it in more detail, let us

introduce a trivial question on which we shall exemplify the process:

Who is the current president of the US?

A Traditional system as we understand it would perform the following steps:

• Identify relevant query terms. This the same step all users do facing a search engine.

The most likely outcome is ’US’, ’president’, ’US president’. Most of the system

will enhance the query with synonyms and different phrasing variation to get higher

recall and may end with a Boolean query resembling this one:

(’current’ OR ’present’ OR ’contemporary’) AND ... AND (’president’ OR

.... OR ’head of state’) AND ... AND (’US’ OR ’UNITED STATES’ ... OR

’USA’)

CHAPTER 1. INTRODUCTION 3

• Perform question analysis. As it is a ’who?’ question, we know for sure that the

answer involves a person. We can thus try to detect names in answer candidate, by

identyfing capitals and common first names. Some system also construct a pattern for

the answer candidate, by applying some grammatical transformations to the question

such as:

The president of the US is [?].

[?] is the president of the US.

And if their find an answer candidate (sentence) which fits the pattern the pro-

claim the expresion which fills

[?] to be the answer.

• Cast a query to your corpus (for instance web) and retrieve the set of most relevant

documents

• Split the document into smaller textual units (sentences or snippets) and evaluate their

relevance. Some of the common measures are the number of keywords the sentence

contains, whether or how close it matches a given answer pattern.

• Order the sentences or snippets according to the measure used above. Identify an

answer from the sentence (in our case find the name)

• Return the answer. This could be the answer extracted from the most valued text unit,

or the most frequent one.

1.2 The Intelligent Agent approach

As already stated we shall model QA as an intelligent agent task. We shall adapt the

following definition of agent for our purposes [Wooldridge and Jennings (1995)] :

An agent is a computer system that is situated in some environment and that is

capable of autonomous action in this environment in order to meet its delegated

objectives.

CHAPTER 1. INTRODUCTION 4

More specifically for our SAAS agent the following holds:

environment - is a local copy of the Wikipedia online encyclopedia

action - is searching the environment for the information, which it deems to be most rele-

vant to the question1

objective - retrieve the most the relevant information to the question

Thus or agent receives an question and start to search Wikipedia for the answer. First it

analyzes the query and an complies into a Target Knowledge Base (or Target Model, TaM),

which should contain all the relevant facts and ascribes a weight to them according to their

relevance. Afterward the agent should select the most promising fact (the most relevant

one) and explores it further by retrieving the Wikipedia page to which this fact is linked

to. Next it is searches the page2 for connections between facts in its Knowledge and other

facts (which may or may not be in his Knowledge). Depending on the on the strength of the

connection and relevance of the known fact it links to (in the case of a connection between

two known facts we consider only the more relevant one), a new fact may be added to the

Knowledge, or the relevance of a known fact may be increased. In fact the agent has two

separate Knowledge Bases (KBs) the TaM described above, and a Topic Model (ToM).

Both of them fulfill the same purpose and have essentially the the same functionality. The

difference lies in the fact that while Target TaM gathers only facts strongly relevant to the

question itself, whether the ToM stores facts about the question area, which may be only

loosely related the particular question. The reason behind maintaining a ToM, is to gather

more general information about the question and entities involved in it, in hope that it may

lead us to the specific answer in the long run. Facts are assigned to the Knowledge Bases

(KB, we shall use Knowledge and Knowledge Bases as an umbrella terms encompassing

both Target and Topic Model) according to their relevance. As the relevance can be gained

through a connection with a more relevant fact, a fact from ToM may be ’promoted’ to the

1Strictly speaking most of our queries are not questions, they are rather touples of declarative sentences
describing the questioners (mostly refereed to as Analyst) interest. Therefore it would be more suitable to
use the term topic for them. We shall ref fer to them as questions nonetheless, in order to avoid to confusion
with the Topic Model.

2actually due to the complexity of the processing, we process only a set of most promising snippets

CHAPTER 1. INTRODUCTION 5

Algorithm 1.1 SAAS lifecycle

i n i t i a t e t h e T a r g e t Model
w h i l e ! s t o p C r i t e r i o n n

w <− b e s t n e x t page (knowledge)
s n i p p e t s <− b e s t s n i p p e t s (w)
new c o n n e c t i o n s <−p r o c e s s (s n i p p e t s)
knowledge <− u p d a t e (knowledge , new c o n n e c t i o n s)
o u t p u t <− e v a l u a t e (s n i p p e t s , t a r g e t knowledge)

do w h i l e
r e t u r n s o r t e d o u t p u t

TaM, if its relevance increases due to newly discovered connections. Note that because

of the way we transfer relevance (see Chapter 4), this only possible, if it has a strong

connection to a fact already residing in the TaM. After the KB is updated (that is both TaM

and ToM), the agent assigns relevance to a set of best promising snippets3 (according to the

updated TaM) and stores them as anoutput (the snippets). Then the next most promising

fact is chosen (take note that the updated knowledge may influence which one it is) and

the whole procedure is iterated until a stopping criterion is met. We currently use a one

hour timeout as our stopping criterion. An ordered list of snippet descending according to

relevance is returned as output.

For now the largest difference between SAAS and a traditional system is that SAAS

uses (more advanced) knowledge models, capable of deducing relevance of facts from the

context. Because SAAS is mainly data driven this may be both an advantage and disadvan-

tage, depending of quality of the data provided. As we shall see SAAS is quite easily ’lead

astray’ by an improperly initiated TaM falsely assigning high relevance to irrelevant facts.

This effect of convergence to a local optimum (that is we converge to a Knowledge Base

which assigns high value to facts related to the question but not the most related ones) or

in entirely wrong direction (when the unrelated terms have much higher relevance than de-

sirable, drifting). In fact the whole experimental part of thesis is devoted to avoid drifting,

and evaluates the different method we have proposed to avoid this phenomenon.

3these are the same snippets which were selected for processing

CHAPTER 1. INTRODUCTION 6

This thesis shall proceed as follows. In the next chapter (Chapter 2) we shall intro-

duce the data and software resources we use, that is the Wikirelate! [Strube and Ponzetto

(2006),Ponzetto and Strube (2007, 2006)] framework to access the Wikipedia, our question

test set and the parser we use process the snippets Shalmaneser [Erk and Pado (2006a)].

Next we shall explain how we represent Knowledge and how we use it (Chapter 3). Sub-

sequently we present how the initial TaM is created and how the relevance is assigned and

transferred in our representation of Knowledge (Chapter 4). In the experimental section

(Chapter 5)we present the output of our system, and address how our attempts to avoid

drifting influence it. Than we conclude our work in the conclusion (Chapter 6).

Chapter 2

Used Data and Technologies

2.1 Corpus

SAAS uses a local copy of Wikipedia as its solely corpus. The leading QA conference

in English language, the Text REtrieval Conference, has used the AQUAINT corpus for

the Relationship task in 2005 [M.Voorhees and T.Dang (2006)], and Complex ’Relation-

ship’ Question in 2006[Dang et al. (2006)]. In 2007[Dang et al. (2007)] AQUAINT2 and

Blog06[CraigMacdonald and IadhOunis (2006)] were used for the Complex ’Relationship’

Question. As a result, all the systems which run on a similar test data as SAAS, run on

a very different corpus. As in all mentioned task the QA Systems must provide evidence

for their answer (the test snippet has to be in the corpus), it would make the comparison

between our system and of theirs very hard.

The main reason why we opted for Wikipedia was that it has freed us from the In-

formation Retrieval aspects (finding the document relevant to the query) present in the

Traditional Systems. Thanks to the Wikirelate! [Ponzetto and Strube (2007)] framework

we could easily access the local copy of Wikipedia database through a java API, and have

not had to take care of indexing and managing the corpus ourselves. On the negative sized

we could only look up articles by title name and could not use full text queries (although

Wikirelate! handles redirects, so we are redirected to the appropriate page). As Wikirelate!

provide us only with text strings representing raw and clean text of the page, we had to

7

CHAPTER 2. USED DATA AND TECHNOLOGIES 8

develop the classes representing unit of text (sentences, sections, snippets and the overall

page structure) ourselves, on the top of the API.

While Wikipedia is not usually used as a primary QA corpus, it was successfully used in

an array of NLP (Natural Language Processing) tasks such as detecting synonymy [MacK-

innon and Vechtomova (2007)], Named Entity disambiguation [Bunescu (2006)] and Se-

mantic relatedness[Gabrilovich and Markovitch (2007)]. Wikirelate! itself was developed

to detect semantic relatedness [Strube and Ponzetto (2006)] as well and later it was used

for correference resolution [Ponzetto and Strube (2006)] . In [Ahn et al. (2004)] Wikipedia

was used as an topic model for the ’other’ task. In this task the system is asked a series

of questions about a topic and subsequently it is asked for other relevant information about

that query (which was not asked for yet). However in this case the topic model is just a set

of sentences occurring in the same article and they do not identify the facts associated with

the topic the way that we do.

As I final remark, Wikipedia is not well suited for all possible topics. Because it as an

encyclopedia at first place it may be not useful to answer question about recent events, fash-

ion trends and public opinions, as its strives to provide objective,neutral and high quality

information. Also because of its encyclopedic nature it contains less redundancy as a news

wire corpus or the web. Therefore, especially for a very specific topic, it is very important

to find the right article covering the topic, as the searched information may not be repeated

somewhere else.

2.2 The Test Data

Since the very beginning, SAAS was designed for answering relationship questions. The

Relationship Task was introduced to TREC in 2005 and continued in 2006 and 2007 under

the name Complex ’Relationship’ Task. We have chosen this task as it explicitly calls

for topic modeling and requires more topic ’understanding’ as the factoid task. Creation

of an appropriate test set is not trivial, as the relations should not be neither trivial neither

impossible to find. By adding together the relationship question from the three TREC tasks,

we have obtained a test set of 86 (one of the 2007 questions was not used in TREC, as the

answer could not be found in the corpus. However the required information was present in

CHAPTER 2. USED DATA AND TECHNOLOGIES 9

Table 2.1: Test set topics
Topic Count Topic Count Topic Count

Military - terrorism 17 Economics 13 Politics 12
Drug trafficking 7 Science 4 Music 2

Smug ling 6 Health 11 Criminal 2
People Trafficking 5 International relations 7 Total 86

Wikipedia, even twice, once on the page of each person it relates). The topics covered in

the test set are described in Table

Unfortunately due to time constraints, we could fully evaluate our experiments on eight

topics only.

2.3 Shalmaneser

Shalmaneser (Shallow Semantic Parser)[Erk and Pado (2006a)] is one of the key compo-

nents as the parse it produces are essential for propagating the relevance values. Shal-

maneser is written in Ruby and binds together various language processing tools such as

Collins parser [Collins (1997)] for parsing, Treetagger [Shmid] for lemmatization and TNT

[Brants (2000)] for part-of-speech tagging. Because of its nature of using already available

tools, its design is modular and easy to modify. We took advantage of this, when we re-

moved the Fred and Rosy components. Both components are used to annotate the sentences

with FrameNet elements (Fred identifies the Frames and Rosy their Frame Elements). We

do not use this features for now, and their removal resulted in a noticeable speed up, from 11

minutes 37 seconds to minute and half (on 60 sentences). While Framenet relations may be

very useful, as their provide more specif relations as pure syntax, performance issues open

up the question whether they are suitable to use for our purposes. Shalmaneser can process

plain text, Salsa/TigerXML[Erk and Pado (2006b)], or FrameNet LU XML and produces

its output in SalsaTigerXML. SalsaTigerXML is an enhancement of TigerXML[A.Mengel

and W.Lezius (2000)] which is an xml format to annotate sentences with syntactic infor-

mation (and Salsa adds the semantic information). Both formats can be conveniently dis-

played through the SALTO tool[A.Burchardt (2006)], which serves also as annotation tool

CHAPTER 2. USED DATA AND TECHNOLOGIES 10

Figure 2.1: SALTO in action, including Framenet annotation

for them. All the parse trees displayed in this work are generated by SALTO. SALTOs GUI

is depicted in Figure

2.4 Framenet API

Although we do not use the Framenet features, we have used Nils Reiter’s [Reiter (2007)]

Framenet API to access the syntactic trees in Salsa. We have extended the TreeNode classes

from this API into bidirectional (maintain the child parent link as well) ones and their form

the basis of all our tree based algorithms as Algorithm 3.1.

Chapter 3

Using Wikipedia Knowledge

In this chapter we shall discuss how SAAS acquires information from Wikipedia, and how

this knowledge is used to assign numerical values (called weight and temperature) to sen-

tences and snippets. We also discuss the process of selecting the best snippets(in terms of

highest temperature) for further processing. Thus this chapter covers the following topics

1. Definition of WikiFacts (WF)s

2. Extracting WFs from sentences

3. Assigning numerical values to sentences

4. Selection of snippets for further processing based on their temperatures.

Details of assigning relevance values to WFs and modifying it based on connections to

other WFs are covered in the next chapter.

3.1 WikiFacts

WikiFacts (WFs) are the most elementary unit of knowledge we deal with. The KBs are

basically nothing, but a collection of WikiFacts. An WF is comprised of:

• address of a Wikipedia article (in normal and lemmatized version)

• a positive real number value - the relevance

11

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 12

• some helper flags for instance followable, visited, inTarget...

All the processing is based on WFs and their relevance values. Plain sentences (as opposed

to parsed ones, for which we also have access to their parse trees) are assigned a value

which we call temperature which is based solely on the amount of WikiFacts that the sen-

tence contains (we have experimented with various aggregation functions for this purpose

as we shall discuss in Section 3.4). Based on this property, snippets of text are selected

for parsing (their temperature is simple the average of the temperature of sentences they

contain). When assigning or modifying relevance of an WF only connections to other WFs

are considered and the final weight assigned to an output snippet is also dependent only on

how many and how relevant TaM WikiFacts it covers.

WikiFacts fall into two categories: followable WFs and knowledge WFs. While the fol-

lowables represent WikiPages, we may like to visit to gain further knowledge, the knowl-

edge merely link a word with a relevance value. Whether the fact is followable depends on

the following rules:

1. WF which’s address is a multiple word expression is followable

2. None of WFs which’s address is in the stop word list is followable

3. Any WF which’s address corresponds to an adjective, adverb or verb is not followable

4. WF which’s address corresponds to a noun is followable

5. Single word expressions of any other word class are not considered WF candidates.

That is only an adjective, adverb, noun, verb or a multiple word expression can be a

WF.

Following these rules ’Red tide’ (algal bloom) is a followable WF (multiple word), ’red’

is a knowledge WF (adjective) and tide would be also a followable WF (noun). We have

selected the eligible word classes based on their function in language, as they mostly rep-

resent entities (nouns), their properties (adjectives), relations between entities (verbs) and

the properties of these relations. On the other hand stop words (connectives, pronouns,

articles,...) convey little meaning and therefore we ignore them. To identify the word class

we use the Part of Speech (POS) Tag assigned by the Shalmaneser parser.

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 13

Figure 3.1: The Parse tree of our example sentence displayed by the Salto tool

All WFs not yet contained in the KB, have zero relevance. New WFs are added to KB

only when this default value is increased through the Transfer of Relevance (described in

section 4.1), which means that the new WF is strongly syntactically connected to a known

WF (already in the KBs). This process (the transfer) thus requires syntactic information

and the ability to find WFs in the (parsed) sentence. To assign temperature to sentences we

resort to a simpler process for detection of WFs, to increase its speed and due to the lack

of full syntactic structure (as we do not have parse tree of the sentence yet). We discuss the

both procedures next, starting with the one running on parsed sentences.

3.2 Discovering WikiFacts for KB

As already stated, the WF are added to the KB’s based on information obtained from the

parse tree. For the sake of clarity, we shall exemplify our method on the following sentence:

What is the position of Egyptian President Mubarak with respect to the

Coptic Christians ?

The parse tree of this is displayed in Figure 3.1

The WFs are discovered through a bottom-up recursive algorithm iterating over the

tree nodes. We create list of WF candidates (Candidate List - CL) for each node and

the candidate list of the root node becomes the list of WFs for the whole sentence. For

the leaf nodes (terminals, representing words in the sentence), the CL can either contain

the word itself or is empty, if the word does not belong to an appropriate word class as

discussed in the rules above. For a given non-leaf nod N, we first get the CLs of its children

and merge them into an initial CL for N. Subsequently we look for (multiple word) WFs,

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 14

Table 3.1: WFs extracted from “What is the position of Egyptian President Mubarak with
respect to the Coptic Christians ?”

WF address Wiki page Followable
Position Position yes

Egyptian President President of Egypt yes
President_Mubarak Hosni Mubarak yes

With_respect_to Dependent and independent variables yes

which’s composing words have been covered by different children of N. To this end we

first retrieve the list of all words covered by any child of N (the Covered Words Set(CWS)

of N, the set of all words which are descendant of N in the tree structure) in the order

they have appeared in the sentence. Next we apply a sliding window of decreasing length

(ranging from the size of CWS of N to the size of the least CWS of some child of N) and

if all the words in the window form a title of an Wikipedia page (and these words belong

to CWS’s of at least two different children), this multiple word expression is added into

the CL of N. Whenever such a merged candidate is discovered, all WFs which were in the

CLs of children (of N) involved in that expression are removed from the CL of N. The

following scheme (Algorithm 3.1) presents a more concise representation of the procedure

just described:

While the description of the procedure is quite complex, its purpose is quite simple:

1. we want to obtain the most specific WFs possible, as we believe they are more dis-

criminative (our only indicator of specificity is the number of words involved)

2. we want to avoid unnecessary computation, therefore we consider only set of words

linked by syntax (belonging to the same subtree)

3. additionally, we may discover multiple word WFs which are syntactically linked yet

spatially separated in the sentence.

Following the procedure, we will find WFs enumerated in Table 3.1 in the example sen-

tence.

Note that because we pursue generality, WFs ’Egyptian’,’President’,’Mubarak’ are not

included, as they form a part of a multiple word expression. The absence of ’Coptic’,

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 15

Algorithm 3.1 Discovering WFs in a parsed sentence

i f N i s a l e a f node r e p r e s e n t i n g a word :
i f N i s n o t i n s topword l i s t and has t h e r i g h t word c l a s s

t h e CL of N i s t h e word i t s e l f
o t h e r w i s e

CL of N i s empty

i f N i s a non− l e a f node
c r e a t e an empty CL f o r N

f o r each c h i l d C of N
add i t s CL t o t h e CL of N
add t h e CWS of C t o CWS of N

s t a r t w i th window w c o v e r i n g t h e whole CWS of N

r e p e a t
s l i d e t h e window w t h r o u g h CWS of N

i f t h e s e q u e n c e s o f t h e words i s :
c o m p l e t e l y c o v e r e d by w
and forms a name of wik i a r t i c l e
and t h e s e words do n o t be l on g t o t h e CWS
of t h e same c h i l d o f N

t h e n
add t h i s s e q u e n c e s t o t h e CL of N

remove from CL of N t h e members o f CL of any
c h i l d which has c o n t i b u t e d a word t o s
(t h r o u g h i t s CWS)

d e c r e a s e t h e s i z e o f w, u n t i l i t r e a c h e s
t h e s i z e o f t h e minimal CWS among
t h e c h i l d r e n o f N

i f N i s t h e r o o t node
i t s CL i s l i s t o f a l l WFs found i n t h e s e n t e n c e

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 16

’Christians’ and ’Coptic Christians’ is also noticeable, and these WF candidates were dis-

carded during the merging of ’with respect to’. The case of ’with respect to’ also illustrates

that the WFs may link to pages which are quite unexpected the title given.

As a final notice, we prefer to use lemmatized addresses whenever possible (we ob-

tain the lemmas from the parsing tree). That is instead of ’Coptic Christians’ we would

use ’Coptic Christian’, instead of ’Oyster’s’ we use ’Oyster’ and so on. Obviously this

not always possible, for instance we cannot use ’arm traffick’ in place of ’arms traffick-

ing’. Therefore for each followable WF we check whether there exists an article for the

lemmatized version for its address and we use it if it does.

The advantage of lemmatization is that it enables to one WF yield match on multiple

word forms, so that ’universities’ matches with lemmatized ’university’ and ’exported’

with ’export’. We also remove the possessive suffix (’s, so we use ’Cuba’ and not ’Cuba’s’)

whenever possible. To capitalize on the both operations we need to perform them on the

both ends, that is we need to create the lemmatized representation in the KB and need the

lemma of the word which we try to match to WF in KB. In practice for each word we look

up its lemma first and if there is no match we try again with the word itself.

3.3 Finding WFs in plain sentence

As for their parsed counterparts, we would like to be able to assign a set of WFs to plain

sentences. Based on the set we will calculate the temperature of the sentence and optionally

select it for further syntactic processing. As the computation of temperature is essentially

a preprocessing step, the detection of WFs it is based upon has to be reasonably faster. It is

basically a simplified version of Algorithm 3.1. The two main differences are:

1. We set an upper limit to the size of the window to 5, and we decrease it until it reaches

one

2. We completely ignore any structure in the sentence and treat it as an (ordered) list of

words

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 17

Algorithm 3.2 Detecting WFs in a plain sentence

i n i t i a l i z e an empty CL f o r t h e s e n t e n c e

s t a r t w i th window w of s i z e 5

r e p e a t
s l i d e t h e window w t h r o u g h t h e s e n t e n c e

i f t h e s e q u e n c e o f words i s :
c o m p l e t e l y c o v e r e d by w
and forms a name of wik i a r t i c l e
and none o f t h e words i s marked
used i n a WF of s i z e g r e a t e r
t h e n t h a t o f w

t h e n
add t h i s s e q u e n c e t o t h e CL

mark a l l words as used i n a WF
of t h e s i z e w

d e c r e a s e t h e s i z e o f w, u n t i l i t r e a c h e s 1

Once again, we would like to find the most specific WFs, and as a consequence if a se-

quence s in CL none of its (non trivial) subsequences is. The CL can still contain overlap-

ping sequences of the same length though. In our previous example sentence ’President’

and ’Mubarak’ still would not make it to the CL , because of the ’President Mubarak’ and

’Egyptian President’ which are both present (in the CL). This time the CL also contains

’Coptic Christians’, as we do not consider syntactic relations.

As we have not access to the word lemmas in this setting, we apply stemming instead,

using the Snowball Stemmer [Porter (2001)]. We also remove the possessive suffix.

3.4 Assigning values

Now as we are able to obtain WFs contained in a sentence, we can introduce a mechanism

how to assign value on them. All we need to do is to retrieve the values of the WFs

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 18

contained in the sentence and aggregate them together. If some of the WF is not in KB yet,

it is ignored. We assign two different kind of values to the two different kinds of sentences:

temperature to the plain sentences and weight to the parsed sentences. Both are internally

represented by a non negative real number and serve a different purpose. While weight

ought to represent the relevance of the sentence given the question and considers TaM WFs

only, temperature can be understood as an indication of the relevance (weight) and takes

into account WFs from both ToM and TaM. The aggregation functions we use are the same

for both, namely

• a simple sum of all facts contained in the relevant KB(s)

• a maximum of all facts contained in the relevant KB(s)

• a thresholded sum, which sums only WFs, which’s value exceeds a set threshold.

Currently we use the average value of all facts contained in ToM as the threshold for

temperature and average of TaM for weight.

Formally for a given Knowledge Base K and list of candidate WFs C (obtained from the

sentence following the described procedure), we can define the three aggregation functions

formally as:

agrsum(C,K) = ∑
w∈C

value(w,K) (3.1)

agrmax(C,K) = max
w∈C

value(w,K) (3.2)

agrthreshold(C,K) = ∑
w∈C,w≥threshold(K)

value(w,K) (3.3)

where

threshold(K) = ∑w∈K value(w,K)
|K|

(3.4)

and value(w,K) represents the value/relevance assigned to WF w in the Knowledge

Base K. To wrap it up, there are the following differences between temperature and weight:

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 19

• the different way we obtain C

• the different K:

– K = TaM∪ToM for temperature

– K = TaM only for weight

• and the different purpose of use

There are two base classes of sentences which may yield high one. The sentences from the

first class obtain their value from few highly relevant WFs, while the other one aggregates

it from many WFs of lesser relevance. The avgmax considers the first class only, while

the avgthreshold strives to achieve that only reasonably relevant facts are considered. The

avgsum does not perform discrimination, and makes possible for a sentence to score high

even though it contains only (many) low relevance facts.

The next largest unit of text we handle are text snippets. Snippets are small sets of

sentences, in our experiments two to five sentences long. The value (both weight and tem-

perature) of a snippet is calculated as an simple average of the the values of the sentences

it contains. Formally for a snippet S and Knowledge Base K :

value(S,K) = ∑s∈S agr∗(candidates(s),K)
|S|

(3.5)

here s stands for sentence, agr∗ can be replaced by any aggregation functioned intro-

duced above and candidates represents a procedure of obtaining WFs for a given sentence.

3.5 Selection of the Best Snippets

Once again, our snippet selection procedure is straightforward. This is partially design

feature, as it is still part of the prepossessing before parsing (and has to be fast). It exhibits

two features worthy of notice

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 20

• it respects the Wikipedia page structure. That is the best snippets are selected based

on the sections of the Wikipedia article, and the (snippet) Candidate Lists of subsec-

tions are merged to obtain a single CL for their super section

• it allow certain flexibility in the size of returned snippets

The whole algorithm is governed by two parameters: the (desired) snippet size (size) and

the (maximum) number of snippets returned (per Wiki page and its section, denoted by

count). In the base case (the section does not contain subsections) we simply look at se-

quences of consecutive sentences of size in the interval [
⌊ size

2

⌋
,size] (preferring the longer

ones), and return the (at most) count ones with highest value/average as defined in Equation

3.4. In the recursive case (section with subsections) we first retrieve a CL for the text pas-

sages not included in any subsection, next we retrieved the CL for the subsections, merge

them all into one list and select the at most count of them with the highest value as the

output. The complete process is described in algorithm 3.3

We select snippets of consecutive sentence in order to maintain some context. As SAAS

is data driven, the sentences in the context can lead us to discovery of new related WFs and

thereby improve our KB. Our experiments with Shalmaneser shown as that we can parse

around 30 sentences in reasonable time. Originally we have used values 3 for count and 10

for size. However it has often happened that the a large snippet has contained only one WF

with high value. To avoid this we use the setting count 6, size 5. Note that this still enables

us to select larger snippets by selecting to shorter ones next to each other. By using the

structure of Wikipedia it very likely that the selected sentences speak about the same topic

and are closely related (as their belong to the same section).

CHAPTER 3. USING WIKIPEDIA KNOWLEDGE 21

Algorithm 3.3 Best Snippet selection

i f t h e s e c t i o n does n o t c o n t a i n s u b s e c t i o n s
i n i t i a l i z e and empty CL

r e p e a t
r e p e a t

move i n d e x i from t h e b e g i n i n g of t h e s e c t i o n
t o i t s t h e end

j = t h e c o u n t o f s u b s e q u e n t s e n t e n c e s which a r e
n o t used by any s n i p p e t a l r e a d y i n CL

i f j >(s i z e −1)
c a l c u l a t e t h e t h e a v e r a g e o f s i z e s e n t e n c e s

s t a r t i n g wi th i and c o n s i d e r i t a c a n d i d a t e
f o r s e l e c t i o n

e l s e i f j >(s i z e /2−1)
c a l c u l a t e t h e t h e a v e r a g e o f j s e n t e n c e s
s t a r t i n g wi th i and c o n s i d e r i t a c a n d i d a t e
f o r s e l e c t i o n

u n t i l t h e end of s e n t e n c e i s r e a c h e d or
t h e r e a r e no s u i t a b l e c a n d i d a t e s a v a i l a b l e

add t h e b e s t c a n d i d a t e from t h i s i t e r a t i o n t o t h e CL

u n t i l we have c o u n t c a n d i d a t e o r we c o u l d n o t f i n d a
c a n d i d a t e i n t h e p r e v i o u s i t e r a t i o n

r e t u r n CL

e l s e i f s e c t i o n does c o n t a i n s s u b s e c t i o n s

p a r e n t CL = g e t b e s t s n i p p e t s from t h e t e x t
o u t o f a l l s u b s e c t i o n

f o r a l l s u b s e c t i o n s
add your b e s t s n i p p e t s CL t o t h e
p a r e n t CL

s e l e c t a t most c o u n t b e s t s n i p p e t s
from p a r e n t CL as t h e CL f o r t h i s s e c t i o n

Chapter 4

Relevance assignment and propagation

In the previous chapter we have described how we discover new WikiFacts and how we can

use the relevance values of the known facts to assign values to sentences and snippets. In

order to start up the system, two additional mechanisms necessary. The first one initializes

the (target) KB while other one is necessary to propagate relevance from the known facts

to the newly discovered ones. This topics will be covered in this chapter. We will first

describe two approaches to initiate the TaM, one is automatic and other is semi-automatic

and uses human tagged data to enhance the automatic one. Next we shall proceed towards

the relevance propagation mechanism and conclude with a full summary of our system.

4.1 Automatic TaM initialization

To initiate TaM we have to do perform two different tasks identify a initial set of WFs and

assign an initial relevance value to them. The task of discovering WFs was extensively

covered in the previous chapter. Thus we will just run the parser on the question sentences

and use Algorithm 3.1. We have considered two features, which may indicate relevance of

the discovered WFs:

• the number of words contained in the address. The intuition behind this measure is

that the more words an expression contains the more specific it is.

22

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 23

Table 4.1: An example of TaM initialization
WF weight

Cuba 200
Angola 200

The_end 133
Combat_support 133

Presence 66
Role 66

Modern 66
Significant 66

• the frequency of a WFs in the topic sentences. The more relevant the WF is to the

topic, the more often it will appear.

Formally we assign an initial weight w to a WF f for the topic T based on the following

formula:

w(f ,T) = lengt(f)∗ (2∗ count(f ,T)−1) (4.1)

Thus we count every but the first occurrence of f in T twice and value f proportionally

to the number of words it contains. We obtain the final weight w∗ by normalizing the

weights obtained from Expression 4.1

w∗(f ,T) =
w(f ,T)

∑ f∈T w(f ,T)
∗bank

Bank is an normalization constant to which value of all WFs from the initial Target base

should add. Currently we use 1000. Albeit simple, the algorithm produces quite reasonable

outputs. For instance for the following topic

The analyst is interested in Cuba’s modern role in Angola . Despite the end of

combat support , is Cuba still a significant presence in Angola ?

the KB from Table 4.1 is produced. It obviously helps a lot when a topic is longer and more

descriptive as we have more information to work with. Some shorter topics, such as

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 24

Are there U.S. counter-drug efforts taking place in Ecuador ?

provide us very little information to work with. Take note that while it correctly identi-

fies the most important terms (’Cuba’, ’Angola’) it also assigns high value to an arbitrary

expression (’The end’) as well as fairly generic terms (’role’,’modern’). We have also om-

mited by purpose terms, which are characteristic to the way the questions in our datased

were phrased. For the purpose of TaM initiation the words ’Analyst’,’interested’,’like’ and

’know’ were ignored.

4.2 Semi-automatic TaM initialization

Our test topics were obtained from three different TREC Tasks, the 2005 Relationship

tasks and ciQA (complex interactive Question Answering) tasks from TREC 2006 and

2007. The latter two provide additional information by labeling the entities involved in the

relation. We decided to use this information in some of our experiments. The procedure

for enriching the TaM is following:

1. First we run the automatic initialization

2. Then we take the entity information from the ciQA data, and distribute the bank

evenly among all the provided entities.

3. This new WFs are added to TaM. If the TaM already contained some of them, their

values are simply overwritten.

4.3 Transfer of Relevance

The knowledge is always transferred from the more relevant fact (head) to the less relevant

one (child). The child can only gain relevance, if its connection to the head is strong

enough. The head does not loose any of its relevance and is not influenced by the procedure.

The strength of the the connection depends on a parse tree property which we call the

Difference of Ancestry(DOA). First each of the WFs is associated with a non terminal

node N (its covering node) in the parse tree, which fulfills the two following properties:

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 25

Figure 4.1: The Covering Node and DOA

The covering node for ’Israeli Goverment’ is marked by a green C (child), Palestinian
National Authority is covered by the NPB marked with the red H (head). The only different
ancestor between the head and the child is the NP next to the yellow A. Thus the DOA is
exactly one.

1. Each word in the WF is a descendant of N

2. For none of the children of N the previous property holds. That is the words from

WF are descendants of at least two different children of N.

Let us illustrate this on a concrete example of parsing tree in Figure4.1

The covering nodes for the WFs could be obtained by a simple bottom-tree searching

algorithm. However this is not necessary as we can mark the nodes already in the WF

detection procedure described in the previous chapter. Let us define DOA formally. First

we will need the notion of ancestry set, which is exactly what it sounds like: the set of all

ancestor for the given parse tree T and a node N. Thus for a parse tree T , a head H and

child C we define DOA as

ancestry(N,T) = {set o f all ancestrorso f N inT} (4.2)

DOA(H,C) = |ancestry(H)\ancestry(C)| (4.3)

Thus siblings node have the least DOA, namely 0. The two covering nodes from our

example have a DOA of 1 (where ’Palestinian National Authority’ is the head). The DOA

of ’exist’ and H would be 2 and so on. The intuition behind this measure is straight for-

ward, siblings have most in common as they are linked together by their parent. The more

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 26

different parents nodes H has, the weaker the connection between H and C becomes. Note

that DOA is asymmetric, that is:

DOA(H,C) 6= DOA(C,H)

The reason for this is that we regard H as the source of the knowledge. As H and its

sibling are in some sense arguments of their parent, the relevance of H has direct influence

on the siblings. As the distance from H to the ’least common parent’ (LCP) increases, the

connection becomes more uncertain. This is partly because of more nodes sharing the same

distance to H that C does, and it is unclear which of them is more connected to C than the

others. However C may by embedded in a more complex structure and thus its distance

to LCP may not be that indicative. We adopt the assumption the child WF represents the

whole subtree under C, as it is the least subtree where the WF is in its completeness. If

there are multiple WFs covered by C, the process is repeated for each one of them, and

each one is suggested the same value. This is once again a crude simplification, but the

relevance is essentially transferred to C, and we do not now any way have to decided which

of the WFs under C is more important than the others.

Based on DOA, multiple functions for transferring knowledge are possible, they should

obviously decrease with DOA though. We have investigated two transfer functions a linear

one and an exponential one. Also note that each node in the tree has some connection to

every other node (in the worst case it goes through the root node). Therefore we would like

our transfer function to decrease fast with the increase of DOA, so we do not assign a lot of

relevance to a node based on an arbitrary connection. To reinforce this we set the transfer

function to 0, whenever DOA is greater then 5 (we came up with this value by looking onto

the parsed test trees. Obviously a more sophisticated approach would be helpful). Thus our

two transfer functions are defined as follows.

trans f erlin(w f ,C) =
w f

DOA(H,C)+1
i f DOA(HC)≤ 5

trans f erexp(w f ,C) =
w f

2DOA(H,C) i f DOA(HC)≤ 5

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 27

Algorithm 4.1 Transfer of Relevance

f o r a g i v e n p a r s e d s e n t e n c e s
f o r WF f from s

i t e r a t e ove r a l l WFs g from s
such t h a t w_g< w_f
c a l c u l a t e d DOA(f , g)
w_g ’= t r a n s f e r (w_f , g)
i f w_g’ >w_g

u p d a t e w_g t o w_g ’

trans f erexp(w f ,C) = trans f erlin(w f ,C) i f DOA(HC) > 5

where w f is the value of the WF fact f which is covered by H.

None of these functions is cumulative. That is a WF g may set its value to wg =

trans f er∗(w f ,C) based on its position to w f in the tree or keep its old value. Its value

does not increase for each more relevant node w f it is associated with. This has multiple

advantages such as the convergence to a certain value (instead of increasing infinitely by

finding new connections or being connected to the same facts in different sentences), and

the guarantee that an fact with a high weight occurred sometimes very close to some highly

relevant (most likely TaM) fact.

On the other hand, an additive transfer function would strengthen the connection with

repeated co-occurrence, which can also indicate relevance. However we would have be

cautious to prevent that myriad of connections to irrelevant facts out weight few connec-

tions to highly relevant facts. Because of the mentioned complications, the design of an

additive function remains out of our reach for now and we use just the non additive ones.

The transfer functions are applied to the parsed sentences in the following manner (Al-

gorithm 4.1)

Based on such updates f may be moved from ToM to TaM, if the w f exceeds the

average weight of all fact from TaM (in the time of addition, after next updates of TaM

the average may increase and f may find itself bellow the threshold again, but remains in

TaM nonetheless). Subsequently f may influence the the final evaluation of the returned

snippets.

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 28

4.4 The detailed view on SAAS life Lifecycle

As we have discussed all the necessary details by now, we may present a more detailed

version of Algorithm 1.1

CHAPTER 4. RELEVANCE ASSIGNMENT AND PROPAGATION 29

Algorithm 4.2 Detailed SAAS life cycle

u n t i l t h e t e r m i n a t e c o n d i t i o n i s met
s e l e c t t h e f o l l o w a b l e WF f

wi th t h e h i g h e s t w_f from KBs

r e t i e v e t h e a r t i c l e a
c o r r e s p o n d i n g t o f

e x t r a c t t h e s e c t i o n
s t r u c t u r e o f a

c a l c u l a t e t h e t e m p e r a t u r e
f o r each s e n t e n c e o f a

r e t r i e v e t h e c o u n t s n i p p e t s
from a and p a r s e them

d e t e c t t h e WFs i n p a r s e d s e n t e n c e s
c a l c u l a t e t h e c o n n e c t i o n s
ad new WFs and u p d a t e v a l u e s

o f t h e e x i s t i n g one based on
c o n n e c t i o n s

a f t e r a l l s n i p e t s have been p r o c e s s e d
move t h e t h e WFs e x c e e d i n g
t h e t r e s h o l d from ToM t o TaM

c a l c u l a t e t h e v a l u e o f t h e
p a r s e d s n i p p e t s based on TaM

r e t u r n t h e e v a l u a t e d s n i p p e t s

back t o t h e s t a r t o f t h e c y c l e

Chapter 5

Experiments

Before we discuss the results of our experiments themselves we should devoute some time

to discussion on the length of WFs retrieved

5.1 The length of WFs

The reader may remember that in Algorithm 3.1 we resort to a pretty exhaustive search. At

the root node we start with the window covering the whole sentence and decrease its size

until we reach the size of the least CWS among its children. Naturally the question arises

whether such an approach is necessariy, as it is extremely unlikely that an WF will cover

the whole sentence. In fact the distribution of WFs in the final ToM follows the pattern

obvious in the Table5.1

While the values differ from run to run, the trend remains the same among all experi-

ments performed. There is a couple of hundreds one word WFs, tens of two word WFs and

Table 5.1: Distribution of WFs in a final TaM based on word length
Length Frequency Length Frequency

1 119 4 1
2 24 5 1
3 6 >6 0

Total 151

30

CHAPTER 5. EXPERIMENTS 31

towards the length 5 or 6 the frequency is zero. This would justify usage of a maximum

windows size of value five in Algorithm 3.1. We have run some preliminary experiments

with this setting but did not experience a noticeable speed up (in terms of number of page

visited before time out). It seem to be the cases, that although the search of WFs is ex-

haustive, the operations it performs are lightweight compared to parsing of sentences. The

latter operation has more influence on the performance as the prior one.

5.2 Evaluation of experiments.

All experiments discussed here were performed with the following joint parameters:

• timeout = 1 hour

• snippet size = 5 (minimal 2)

• snippet count = 6

Thus we have varied the:

• aggregation function (max, sum , sum threshold)

• connection function (linear or exponential)

• usage of initial TaM enhancement

Unfortunately our system did not perform well enough to be evaluated in terms of precision,

recall or F meassure. In any of the measures the system would score 0. The reason for this,

is that while the system could find facts relevant to one or another entity (as well as same

related to some words not relevant), it has never managed to find snippets connecting them.

However it is fair to note that it had very limited possibilities, as it could visit only very few

pages as detailed in Table expressing the number of tables visited per run and per topic.

There seem to be some trends visible from Table 5.2, in the top half (topics originating

from TREC 05, no enhancement possible) the linear function visits considerable less pages

than the exponential ones, while in the bottom (Enhanced topics) the difference is less

apparent.

CHAPTER 5. EXPERIMENTS 32

Table 5.2: Number of pages visited
lMax lSum lTr eMax eSum eTr

2 5 5 5 8 8 9
5 6 6 6 9 9 11
7 4 5 5 10 8 9
8 4 4 5 8 7 8

26 5 7 3 9 8 8
29 4 8 8 8 8 8
32 5 5 6 6 6 6
38 8 8 8 8 8 9

The columns represent the various experiment settings, the prefixes ’l’ and ’e’ represent
the two connection functions while the suffixes represent different aggregation values. Last
four topics (26-34) where run on topics enabling TaM Enhancement, which was used in all
the experiment. The first four topics do not provide enhancement information.

In fact this is attributed to the topics themselves. Topics 32 and 38 covers connection

of pharmaceutical companies to universities and psychological and emotional problems

connected to obesity. Both topics are extensively covered in Wikipedia and each run re-

turns articles highly relevant to some of the subtopics (pharmaceutical industry controver-

ies’,’university’,’statistical testing’ and ’psychology’,’obesity’ respectively). Most likely

all of the runs can discover early on the same set of relevant articles and extract the same

relevant data from them, which smoothes out the difference between the runs. This hypoth-

esis is also supported by the fact that in both topics the first pages visited provide the most

relevant snippets.

In topic 29 the same is the case, but for a diametrically different reason. The topic is

concerned with human trafficking from China to US. However it uses the ’human cargo’ ex-

pression to describe this process, and the Wikipedia article with this name refers to a Cana-

dian documentary series (the lMax run performs so poorly because it picks up ’Canada’)

about people trafficking. With this valuable link gone, SAAS starts to investigate the econ-

omy, history and geography of this countries and adds ’Russia’ as another big word player.

Only the two exponential runs (eSum and eTr) maintain some connection to the original

question and investigate the topic of ’transport’.

CHAPTER 5. EXPERIMENTS 33

Table 5.3: TaM Enhancement vs. not Enhancement
Topic LinEnh LinNo ExpEnh ExpNo

26 7 8 8 8
29 8 10 8 10
32 5 6 6 8
38 8 8 8 10

Investigating the effect of TaM enhancement for sum aggregating function.

Table 5.4: Topic 8 - Case study

The truth is that when not using enhancement we can process more pages then when

we do (See Table 5.3). However as the most relevant snippets are discovered early on, it

does not influence the snippets returned.

We cannot explain the reason of this for now. However a starking performance differ-

ence between linear and exponential function can be observed in some TREC 2005 (which

seem to be harder than the other ones based on our results) topics . We will exemplify on

Topic 7 investigating the links of Colombian businessman to AUC paramilitaries (see Table

5.4).

The case study shows that the linear function tends to drift away because of the word

’evidence’ used in the question. The exponential ones are also influenced by this, but

manage to keep more focus on ’bussines’ and ’Colombia’. Also the linear max setting

seems to avoid drifting, by focusing on ’bussines’ and ’paramilataries’. This behavior of

lin max was not observed in other drifting topics, but the exponential functions perform

consistently better in drifting topics than the linear ones. Specifically max exp and max

threshold outperforms the exp sum. Also these to functions happen to be the only one

which discover Cuba’s (historical) involvement in Angola in Topic 8 which is the only

connections discovered between two entities involved.

We assume that exponential functions are less prone to drift then linear, because the are

more conservative by the value transfer, and do not promote weakly connected facts that

CHAPTER 5. EXPERIMENTS 34

easily than the linear ones. To this end they also assign greater importance to DOA distance

between head and child in the connection.

Chapter 6

Conclusion

In this thesis we have presented a novel perspective on the field of Question Answering.

Instead of viewing it as a task of searching text passages in documents, we transform it to

the task of an Intelligent Agent accumulating knowledge. To this end it builds a sophisti-

cated Word Model, which it uses to detect promising sources of new valuable information.

During the process of building a Knowledge Base - Word Model for the topic it also gathers

facts relevant to the question. Thus it is consistently seeking for new areas and perspectives

on the areas already investigated.

We have called this agent a Single Agent Answering system, and it interacts with the

environment of Wikipedia, the online encyclopedia. By interacting with Wikipedia it gains

new information about the topic and may reconsider the relevance of already known facts.

To achieve this, we have developed a mechanism to obtain knowledge from Wikipedia in

the form of WikiFacts and assign relevance value to them. We have also designed a mech-

anism to transfer the relevance among WFs based on their syntactic connections occurring

in Wikipedia. Multiple function for governing both mechanisms were designed.

While the system behaves reasonably, it performs poorly. One reason for this is that as

an data driven system, it may require more time to gain a good KB. We have also observed

the problem of ’drifting’, which is the phenomenon when general facts receive artificially

high connection, based on rather arbitrary connections. We have discovered that the ex-

ponential connection function is less prone to this behavior than the linear one. Also the

35

CHAPTER 6. CONCLUSION 36

exponential connection function coupled with thresholded sum and maximum aggregation

function, tends to outperform exponential connection sum aggregation function setting.

Thus we have laid a solid base in further research in (Multi) Agent based questioning

system. However a lot of work needs to be done to find better connections and aggregation

functions, as well as running more experiments on the existing ones.For know SAAS is far

behind the state of art QA systems, but the use of stochastic search, Multi Agent methods,

or simple more time may or may not change it.

Appendix A

Setting up the Wiki database

A.1 Data

In our experiments we use local copy of the Wikipedia database. This decision enables us

to use WikiRelate! as an interface to Wikipedia. Our extensive usage of Wikipedia, espe-

cially in checking for WikiFacts as described in 3, makes the usage of the ’live’ Wikipedia

impractical, if not impossible. Due to the frequency of our requests, we would probably get

black listed by Wikipedia very soon, while with local copy the verification of WFs boils

down to checking a database entry.

All reported results were achieved on the data dump from 26.10.2010 available from

h t t p : / / download . wik imed ia . o rg / en wi k i /

As this site lists only a couple of most recent dumps, the dump we have used is not available

there anymore. We however do not depend on the specific version and any other version

may be used (though the wikisimilarity.properties file in Wikirelate/config/ has to be mod-

ified). In the case of using an another version all the time and disc space usage estimates

may be quite inaccurate. Of all the files available in the dump, only two are needed:

• enwiki-your_version_date-pages-articles.xml.bz2 - this archive contains the database

of articles and needs to be dumped to the MediaWiki mySQL database (by default

called wikidb) following the process described bellow

37

APPENDIX A. SETTING UP THE WIKI DATABASE 38

• enwiki-20091026-categorylinks.sql.gz - builds up the category structure upon the

pages. This file is imported to the wikidb after pages-articles have been dumped.

Note that dumping/importing both files is necessary for Wikirelate! to run, which in turn

provides the Wikipedia back end for SAAS. Also take into account that while the two

files were only 5.3GB a 0.54GB respectively, the populated database will take up around

53.8GB (it is possible to reduce this amount by about 5GB by not building up the indexes,

see bellow).

A.2 Hardware and System Configuration

All experiments discussed in this work, as well as the setup described bellow, were run

on Fujitsu Siemens Amilo Pa 1538 notebook equipped with a Turion 64 X2 TL-50 dual

core processor and 2GB of memory. The operation system used was Ubuntu 9.10 (Karmic

Koala). Thus the steps describe in this setup should work on this version without problems,

and may require some modifications on other versions of Ubuntu and/or other Debian dis-

tributions.

A.3 Setting up MediaWiki

First you will have to install MediaWiki, which will set up the database for the Wikipedia

data and provide a web browser based front end to access your local Wikipedia copy

(we recommend only viewing, see A.4). As MediaWiki depends on the LAMP stack

(Linux,Apache,mySQL,PHP), we need to set it up first. 1 In Karmic Koala the LAMP

stack can be installed by running

sudo t a s k s e l i n s t a l l lamp−s e r v e r

Other methods of installation are discussed at

h t t p s : / / h e l p . ubun tu . com / community / ApacheMySQLPHP

1Windows users may consider to follow the instructions at http://www.blindedbytech.com/2006/08/31/how-
to-install-wikipedia-for-offline-access/

APPENDIX A. SETTING UP THE WIKI DATABASE 39

Upon finishing the installation of LAMP, you may proceed to install the MediaWiki as

described at

h t t p : / / www. mediawik i . o rg / w ik i / Manual : I n s t a l l i n g _ M e d i a W i k i _ o n

_Ubuntu_7 . 1 0 _v ia_GUI_and_Synap t i c

We would recommend you to follow the instruction on the above website an keep the

default database settings. After the MediaWiki setup is successfully finished, you may

proceed to dump the database.

A.4 Dumping the Database2

There are many ways how to dump the wiki data into wikidb. We have used the method

using the MWDumper (the third party released from the page below) as described at

h t t p : / / www. mediawik i . o rg / w ik i / Mwdumper

In our case the dumping took about 86 hours, with the settings we shall describe bellow. It

is also possible to do it “over night” (in 12 hours or less), if you remove both auto incre-

ments and indexes, but we have decided to keep the indexes for the sake of faster database

access. It would be also possible to dump the database without indexes and recreate them

afterwards, but this would take lot of time (possibly even more than the time spared at

dumping) and disc space. We also did not restore the auto increment fields, as we do not

intend to modify the data. Therefore we do not recommend to modify the wikidb data as it

may bring the database into an inconsistent state. The following settings have proven to be

necessary for a successful dump:

1. MediaWiki tables should use CHARACTER SET=binary, which should be the case

by default

2. Use default-character-set=utf8, this is already included in the query we provide

2based on: http://www.mediawiki.org/wiki/Mwdumper; http://www.blindedbytech.com/2006/08/31/how-
to-install-wikipedia-for-offline-access/; http://arunxjacob.wordpress.com/page/3/;
http://getsatisfaction.com/luci/topics/wikipedia_dump_woes;

APPENDIX A. SETTING UP THE WIKI DATABASE 40

3. Make sure you use Sun’s java instead of the default gcj java in Ubuntu, this can be

done by running

sudo upda te−a l t e r n a t i v e s −−c o n f i g j a v a

and choosing Sun Java provided that is installed

4. Increase the java heap size, already done in the provided query

j a v a −Xms128m −Xmx1000m

5. Modify the mySQL’s my.cnf file and increase max_allowed_packet to

max_a l lowed_packe t =32M

Be aware that there are multiple my.cnf files each with different priority, so make

sure that change does really take place.

6. Most importantly you have to assure that the following tables are empty before the

dump: page, revision, text. This is NOT the case by default. If you do not delete

those pages the dumping will crush at the very end.

All this being done you can launch the MWDumper from a separate terminal window by

calling

j a v a −Xms128m −Xmx1000m − j a r mwdumper . j a r

−−f o r m a t = s q l : 1 . 5 enwiki −20091026−pages−a r t i c l e s . xml . bz2 |

mysql −−d e f a u l t−c h a r a c t e r−s e t = u t f 8 −u w i k i u s e r −p wik idb

Than just use the GUI to connect to the wikidb and select the file import (the pages-articles

one). You can check your progress by tracking the number of dumped pages, in our case it

was a bit more then 9 216000.

The following changes in my.cnf may speed up the process a bit

1. # S e t b u f f e r poo l s i z e t o 50−80% of your computer ’ s memory

i n n o d b _ b u f f e r _ p o o l _ s i z e =256M

i n n o d b _ a d d i t i o n a l _ m e m _ p o o l _ s i z e =20M

APPENDIX A. SETTING UP THE WIKI DATABASE 41

2. # S e t t h e l o g f i l e s i z e t o a b o u t 25% of t h e b u f f e r poo l s i z e

i n n o d b _ l o g _ f i l e _ s i z e =64M

i n n o d b _ l o g _ b u f f e r _ s i z e =8M

3. Disable the log_bin, should be the case by default

4. Remove the auto increments (and indexes if you dare, see the comment at the begin-

ning of this section).

After done all of this, we can import the categories by calling

mysql −u w i k i u s e r −p password wik idb <

enwiki −20091026− c a t e g o r y l i n k s . s q l . gz

Now you might access your MediaWiki through your web browser. You might receive

blank pages and will probably see a lot of markup characters. These issues are resolved in

the next section.

A.5 Polishing the Mediawiki3

If you receive a blank page, the chances are that there was an PHP error which was not

displayed correctly. This can be fixed by adding the following line to your MediaWiki’s

LocalSetting.php

e r r o r _ r e p o r t i n g (E_ALL) ;

i n i _ s e t (’ d i s p l a y _ e r r o r s ’ , 1) ;

d e f i n e (’MW_NO_OUTPUT_BUFFER’ , 1) ;

The error will be most likely related to a low memory limit. The following setup has

worked fine with us

i n i _ s e t (’ memory_l imi t ’ , ’50M’) ;

To suppress the displaying of MediaWiki markup characters, you will need the to install

some MediaWiki extensions, which are available at
3based on: http://swingleydev.com/blog/?tag=linux; http://www.gossamer-

threads.com/lists/wiki/mediawiki/184140

APPENDIX A. SETTING UP THE WIKI DATABASE 42

h t t p : / / www. mediawik i . o rg / w ik i / C a t e g o r y : E x t e n s i o n s

You can search them through the search edit box, and each extension contains an installa-

tion guide (consist mostly of copying the extension file and editing the LocalSetting.php).

We recommend the following ones to install

1. ParserFunctions

2. Cite

3. CategoryTree

4. WikiHero

Now your local copy should closely resemble the live Wikipedia, apart from the absence of

images.

Appendix B

Setting up Shalmaneser

B.1 Obtaining the Software and Licensing Issues

As already described in Chapter 2, Shalmaneser [Erk and Pado (2006a)] can be downloaded

from the project website1 and can be used and developed free of charge for non commer-

cial purposes. Although its modular design enables users to plug in their own modules, we

decided to use the provided custom components and pre trained classifiers. Thus we have

Collins parser [Collins (1997)] for parsing, Treetagger [Shmid] for lemmatiztion and TNT

[Brants (2000)] for part-of-speech tagging. While these software components are available

roughly under the same conditions as Shalmaneser itself, in the case of TNT some com-

plications occur. In order to obtain the source code you have to fax a license agreement

to Thorsten Brants (the author of TNT). As the provided fax address seems to refer to his

former workplace, we would advise you to contact him at his email address provided at

the project webpage.2 The Shalmaneser team is well aware of this bottleneck and plans

to switch to TreeTagger and OpenNLP MAXENT(instead of TNT and Mallet [McCallum

(2002)]) in their next release. Despite of their willingness to share the most current (not of-

ficial) version with us, it was not fully functional at the time of writing this thesis. However

we would like to encourage you to get in touch with authors of Shalmaneser if you run into

complications with obtaining TNT or any other difficulties. We were also unable to use the

1http://www.coli.uni-saarland.de/projects/salsa/shal/index.php?nav=download
2http://www.coli.uni-saarland.de/~thorsten/tnt/

43

APPENDIX B. SETTING UP SHALMANESER 44

newer versions of Mallet (2.0.5 at the time of writing) and would therefore suggest you to

use version 0.4 might you experience the same.

B.2 Minor problems

B.2.1 The missing ’IN/that’ POS tag

It may happen that the Collins parser encounters the ’IN/that’ POS tag in its input. As the

parser’s grammar does not know such a tag, this will result in the following error:

F r p r e p : P a r s i n g

. . .

Loaded grammar p a r s e r : s e n t e n c e . c : 1 1 2 :

c o n v e r t _ s e n t e n c e : A s s e r t i o n ‘0 ’ f a i l e d .

Abor ted F r p r e p : P o s t p r o c e s s i n g SalsaTigerXML d a t a

W r i t i n g / home / p i s t i k / . s h a l m a n e s e r /1266784815 _84597 / f r p r e p /

0 . xml

. / Pkg / C o l l i n s I n t e r f a c e . rb : 1 2 7 : i n ‘ e a c h _ s e n t e n c e ’ :

E r r o r : p r e m a t u r e end of p a r s e r f i l e ! (R u n t i m e E r r o r)

from . / Pkg / TabFormat . rb : 1 0 8 : i n ‘ e a c h _ s e n t e n c e ’

from . / Pkg / C o l l i n s I n t e r f a c e . rb : 1 1 3 : i n ‘ e a c h _ s e n t e n c e ’

To get around this, it is sufficient to edit the sentence.c file in Collins parser’s program

directory and put

i f (! (t >=0)){

i f (! s t r c mp (" IN / t h a t " , s e n t e n c e −>t a g s [i])) {

s t r c p y (s e n t e n c e −>t a g s [i] , " IN ") ;

t = f ind_word (s e n t e n c e −>t a g s [i] ,& n t _ l e x) ;

f p r i n t f (s t d o u t , " changed IN / t h a t %s t a g %s \ n " ,

s e n t e n c e −>words [i] , s e n t e n c e −>t a g s [i]) ;

}

}

APPENDIX B. SETTING UP SHALMANESER 45

immediately in front of

i f (! (t >=0)){

f p r i n t f (s t d o u t , "TAG %i %s n o t found \ n " ,

i , s e n t e n c e −>t a g s [i]) ;

a s s e r t (0) ;

}

Afterward it is necessary to rebuilt the Collins parser by running its Makefile (residing also

in the program directory). It should not be necessary to set up Shalmaneser again.

B.2.2 Serialization errors

You are also likely the encounter the following the error message, if you try to use the

pre-trained classifiers for ROSY.

j a v a . i o . I n v a l i d C l a s s E x c e p t i o n :

edu . umass . c s . m a l l e t . ba se . p i p e . T a r g e t 2 L a b e l ;

l o c a l c l a s s i n c o m p a t i b l e :

s t r e a m c l a s s d e s c s e r i a l V e r s i o n U I D = −8390758647439705273 ,

l o c a l c l a s s s e r i a l V e r s i o n U I D = −461155063551297878

a t j a v a . i o . O b j e c t S t r e a m C l a s s .

i n i t N o n P r o x y (O b j e c t S t r e a m C l a s s . j a v a : 5 6 2)

a t j a v a . i o . O b j e c t I n p u t S t r e a m .

readNonProxyDesc (O b j e c t I n p u t S t r e a m . j a v a : 1 5 8 3)

. . .

The problem is that the provided classifiers are in fact serialized java classes, whose seri-

alVersionUID does not match with the currently expected ones. An easy remedy is to force

the local classes to use the saved UIDs by adding the line

s t a t i c f i n a l l ong s e r i a l V e r s i o n U I D = −8390758647439705273L ;

into the Mallet class

edu . umass . c s . m a l l e t . ba se . p i p e . T a r g e t 2 L a b e l

APPENDIX B. SETTING UP SHALMANESER 46

and

s t a t i c f i n a l l ong s e r i a l V e r s i o n U I D = −267039365988380085L ;

into

edu . umass . c s . m a l l e t . ba se . p i p e . TokenSequence2Fea tu reSequence

Following this modification you will have to both rebuild Mallet (run its Makefile) and

setup Shalmaneser again(rerun setup.rb and apply the Mallet patch).

Appendix C

The Test Topics

Topic 2

The analyst is concerned with arms trafficking to Colombian insurgents . Specifically ,

the analyst would like to know of the different routes used for arms entering Colombia and

the entities involved .

Topic 5

The analyst is interested in the South American drug cartel’s ability to launder money

. Specifically , the analyst would like information on ties between the cartels and banks in

Liechtenstein .

Topic 7

The analyst is looking for links between Colombian businessmen and paramilitary

forces . Specifically , the analyst would like to know of evidence that business interests

in Colombia are still funding the AUC paramilitary organization .

Topic 8

The analyst is interested in Cuba’s modern role in Angola . Despite the end of combat

support , is Cuba still a significant presence in Angola ?

Topic 26

What evidence is there for transport of smuggled VCDs from Hong Kong to China?

The analyst is particularly interested in knowing the volume of smuggled VCDs and also

the ruses used by smugglers to hide their efforts.

Topic 29

47

APPENDIX C. THE TEST TOPICS 48

What evidence is there for transport of human cargo from China to the (U.S.)? The

analyst wants to know if there is evidence of transporting human cargo from China to the

(U.S.) and where the ships arrive in the (U.S.)

Topic 32

What financial relationships exist between drug companies and universities? The an-

alyst is concerned about universities which do research on medical subjects slanting their

findings, especially concerning drugs, towards drug companies which have provided money

to the universities.

Topic 38

What effect do psychological or emotional problems have on obesity? The analyst

would like to know if obesity, when not genetic, is triggered by deep-seated emotional

problems or depression. Specifically, does the problem vanish when the underlying cause

has been determined?

Bibliography

A. A. S. a. M. A.Burchardt, K.Erk. Salto a versatile multi-level annotation tool. In Pro-

ceedings of LREC 2006, 2006.

D. Ahn, V. Jijkoun, G. Mishne, K. MÃŒller, M. de Rijke, and S. Schlobach. Using

wikipedia at the trec qa track. In Proceedings of TREC 2004, 2004.

A.Mengel and W.Lezius. An xml-based encoding format for syntactically annotated cor-

pora. In Proceedings of LREC 2000, 2000.

T. Brants. Tnt a statistical part-of-speech tagger. In Proceedings of ANLP 2000, 2000.

R. Bunescu. Using encyclopedic knowledge for named entity disambiguation. In In EACL,

pages 9–16, 2006.

M. Collins. Three generative, lexicalised models for statistical parsing, 1997.

CraigMacdonald and IadhOunis. The trec blog06 collection : Creating and analysing a

blogtest collection. Technical report, Department of Computing Science, University of

Glasgow, 2006.

H. T. Dang, J. Lin, and D. Kelly. Overview of the trec 2006 question answering track. In

In Proceedings of the Text REtrieval Conference, 2006.

H. T. Dang, D. Kelly, and J. J. Lin. Overview of the trec 2007 question answering track. In

TREC, 2007.

K. Erk and S. Pado. Shalmaneser - a flexible toolbox for semantic role assignment. In

Proceedings of LREC 2006, 2006a.

49

BIBLIOGRAPHY 50

K. Erk and S. Pado. A powerful and versatile xml format for representing role-semantic

annotation. In Proceedings of LREC 2004, 2006b.

E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based

explicit semantic analysis. In In Proceedings of the 20th International Joint Conference

on Artificial Intelligence, pages 1606–1611, 2007.

I. MacKinnon and O. Vechtomova. Complex interactive question answering enhanced with

wikipedia. In TREC, 2007.

A. K. McCallum. Mallet: A machine learning for language toolkit.

http://mallet.cs.umass.edu, 2002.

E. M.Voorhees and H. T.Dang. Overview of the trec 2005 question answering track. In

Proceedings of the Fourteenth Text REtrieval Conference(TREC2005), 2006.

S. P. Ponzetto and M. Strube. Exploiting semantic role labeling, wordnet and wikipedia for

coreference resolution. In HLT-NAACL, 2006.

S. P. Ponzetto and M. Strube. An api for measuring the relatedness of words in wikipedia.

In ACL, 2007.

M. F. Porter. Snowball: A language for stemming algorithms.

http://snowball.tartarus.org/texts/introduction.html, 2001.

N. Reiter. Framenet api. http://www.cl.uni-heidelberg.de/trac/FrameNetAPI, 2007.

H. Shmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings of

NeMLaP 1994.

M. Strube and S. P. Ponzetto. Wikirelate! computing semantic relatedness using wikipedia.

In AAAI, 2006.

M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 10(2):115–152, 1995.

Abstrakt

V tejto diplomovej práci sme predstavili inovatívny prístup k Question Answering-u. Poz-

eráme sa na túto úlohu z perspektívy Inteligentného Agenta, ktorý sa usiluje vo svojom

prostredí nájst’ informácie dôležité k zodpovedaniu otázky, ktorá mu bola položená. Vd’

aka svojej interakcií s prostredím - internetovou encyklopédiou Wikipédiou - môže agent

nadobodnút’ nové poznatky alebo prehodnotit’ dôležitost’ už známych faktov.

Tiež sme odhalili niektoré problémy spojené s týmto prístupom a navrhli sme postupy

ako ich riešit’. Z funkcí spojenia a funkcí hodnotenia ktoré sme navrhli sa exponenciálna

funkcia spojenia spojená s maximovou hodnotovou funkciu alebo hodontovou funkciou

medzného priemeru javia ako najživotaschopnejšie. Stále je však potrebný d’al’ší výskum

a vyhodnotenie týchto funkcii

Dúfame že touto prácou podnietime vznik d’al’ších Agentových a Multi Agentových

systémov, schopných zodpovedat’ otázky týkajúce sa vzt’ahov medzi entitami, ako aj iné

zložité triedy otázok.

51

	Abstract
	Acknowledgement
	Introduction
	The Traditional Question Answering Approach
	The Intelligent Agent approach

	Used Data and Technologies
	Corpus
	The Test Data
	Shalmaneser
	Framenet API

	Using Wikipedia Knowledge
	WikiFacts
	Discovering WikiFacts for KB
	Finding WFs in plain sentence
	Assigning values
	Selection of the Best Snippets

	Relevance assignment and propagation
	Automatic TaM initialization
	Semi-automatic TaM initialization
	Transfer of Relevance
	The detailed view on SAAS life Lifecycle

	Experiments
	The length of WFs
	Evaluation of experiments.

	Conclusion
	Setting up the Wiki database
	Data
	Hardware and System Configuration
	Setting up MediaWiki
	Dumping the Databasebased on: http://www.mediawiki.org/wiki/Mwdumper; http://www.blindedbytech.com/2006/08/31/how-to-install-wikipedia-for-offline-access/; http://arunxjacob.wordpress.com/page/3/; http://getsatisfaction.com/luci/topics/wikipedia_dump_woes;
	Polishing the Mediawikibased on: http://swingleydev.com/blog/?tag=linux; http://www.gossamer-threads.com/lists/wiki/mediawiki/184140

	Setting up Shalmaneser
	Obtaining the Software and Licensing Issues
	Minor problems
	The missing 'IN/that' POS tag
	Serialization errors

	The Test Topics
	Bibliography
	Abstrakt

