
Univerzita Komenského v Bratislave

Fakulta Matematiky, Fyziky a Informatiky

Effective implementation

and testing of algorithms
(Diplomová práca)

Bc. Peter Pereš́ıni

Evidenčné č́ıslo: 13029f46-b464-4cff-abf5-c279e85fdcb0

Školitěl: RNDr. Michal Forǐsek, PhD. Bratislava, 2011

Univerzita Komenského v Bratislave

Fakulta Matematiky, Fyziky a Informatiky

Effective implementation

and testing of algorithms
(Diplomová práca)

Bc. Peter Pereš́ıni

Študijný program: Informatika
Študijný odbor: Informatika (4017)
Školiace pracovisko: Katedra Informatiky
Školitěl: RNDr. Michal Forǐsek, PhD.
Miesto a rok predloženia: Bratislava 2011

vii

I hereby declare that I wrote this thesis by myself, only with the
help of the referenced literature, under the careful supervision
of my thesis advisor.

. .

ix

I would like to thank to my advisor RNDr. Michal Forǐsek, PhD. for his
great advice and useful comments.

xi

Abstrakt

Názov práce: Effective implementation and testing of algorithms
Autor: Bc. Peter Pereš́ıni
Vedúci práce: RNDr. Michal Forǐsek, PhD.
Abstrakt: Práca sa zaoberá implementáciou efekt́ıvnych algoritmov. Dôraz implementácie
však nie je kladený na rýchlosť, ako obvykle, ale algoritmická a popisná zložitosť. Ciělom
práce bolo navrhnúť implementácie algoritmov, ktoré sú rýchlostne porovnatělné s bežnými
implementáciami a zároveň sa jednoducho ṕı̌su / pamätajú. Jedno možné použitie práce je
pri pŕıprave študentských t́ımov na súťaž ACM ICPC.
Kľúčové slová: Efekt́ıvne algoritmy, C++, STL, jednoduchá implementácia

xiii

Abstract

Title: Effective implementation and testing of algorithms
Author: Bc. Peter Pereš́ıni
Supervisor: RNDr. Michal Forǐsek, PhD.
Abstract: In the thesis we are implementing a set of various algorithms. The implementa-
tions try to minimize the descriptive complexity, while maintaining efficiency and correctness.
One intended application of the thesis is the preparation of future ACM ICPC teams. The
first part of the thesis is focused on enumerating possible problems and developing a frame-
work for automated testing of such implementations.
Keywords: Effective algorithms, C++, STL, simple implementation

xiv

Contents

1 Introduction 1

1.1 Thesis objectives . 4

1.2 Outline . 6

2 Typical errors and problems with implementations 7

2.1 Bad pseudocode . 7

2.2 Bad preconditions . 10

2.3 Coding errors . 11

2.4 Problems with integer numbers . 12

2.4.1 Representation of integral numbers . 12

2.4.2 Integer overflows . 14

2.4.3 Integer overflows in memory access context 17

2.5 Floating point problems . 24

2.5.1 Floating-point representation . 24

2.5.2 Problems with IEEE754 floats . 25

2.5.3 Summary . 27

2.6 Function call stack limitations . 28

2.7 Hardware errors . 31

3 Infrastructure 33

3.1 Programming language selection . 33

3.2 Testing infrastructure . 34

3.2.1 Testing framework . 34

3.2.2 Managing compilation of large codebase 35

3.2.3 Benchmarking . 36

3.3 Preconditions – asserts for inputs . 37

3.4 Design choices . 38

4 Our implementation 41

4.1 Math algorithms . 41

4.1.1 Modular arithmetics . 41

4.1.2 Modular inverse . 44

4.1.3 Primality testing . 45

4.1.4 Factorizing integers . 48

4.1.5 Binary search, root of a function, convex function minimum 49

4.1.6 Rational numbers . 50

4.2 Computational geometry . 50

4.2.1 General problems with geometry . 50

4.2.2 Line segment intersections . 52

4.2.3 Angle comparison . 52

4.2.4 Convex hull . 53

xv

xvi CONTENTS

4.3 Algorithms on strings/sequences . 54
4.3.1 String search . 54
4.3.2 Theoretical analysis of the rolling hash 56
4.3.3 Suffix arrays . 58
4.3.4 Longest common subsequence . 62
4.3.5 Minimal cyclic shift . 63

4.4 Balanced structures . 63
4.4.1 Interval trees and balanced data structures 63
4.4.2 Skiplist . 64

5 Conclusion 67

Source code of selected algorithms 69
.1 Benchmarking . 69
.2 Preconditions . 71
.3 Sample code – binsearch . 72
.4 Sample test – heap operations . 75

Chapter 1

Introduction

Algorithms are the basis of informatics, no one can argue about that. Therefore, it is only
natural that we need to implement them in our everyday life. But implementing algorithms
is not an easy task. There are numerous problems concerning implementation of well-known
algorithms. The reader interested in the most outstanding issues can consult chapter 2 where
we will go through several types of problems one can probably create, implementing even very
easy alogrithms. The conclusion of that chapter is that implementing good, efficient and most
importantly correct algorithms in current programming languages like C++ is really hard.
Therefore, the reader may wonder how one can obtain such good implementations from the
community.

We considered this question and the conclusion is that there are several different ways
how implementations of algorithms can be obtained or programmed easily:� Use an existing library. This is probably the most promising way how to obtain im-

plementation. One of the advantages of this method is that these implementations are
(usually) tested by many users. Also, implementations of most used algorithms are
highly optimized for concrete platforms. Thus well-known libraries that are tested by
many users seem to be the best solution for our problem of finding good implementation.

However, there are several drawbacks to this method. First of all, external libraries are
big. It may be painful to use them for small projects. As an example, imagine you want
to do a simple depth-first search. You may use the Boost graph library (http://www.
boost.org/doc/libs/1_45_0/libs/graph/doc/index.html) for this task. If you use
only this one simple search in your whole program, this may be hurting productivity
for several reasons.

First of all, you need to download the graph library itself, which depends on some
other Boost libraries and you will probably end up including several Boost libraries in
the project. This might add several thousand lines of code that needs to be compiled.
Moreover, the Boost graph library is highly templated and the compilation time will
be far greater than when compiling a simple algorithm. What is more, because of
templates, you cannot compile the library as a shared object and just link it to the
main project later - you will need to recompile everything each time you want to build
your project.1 Now, introducing a delay of several seconds to the compilation can slow
down your development even in order of magnitude, mainly if you are programming
with agile techniques and using a lot of instant unittesting. In a large project, which
will do a lot of operations on graphs, this is outweighted by the benefits of the library,
but for small projects it is an unnecessary complication.

The second drawback is that you need to update the library itself once in a while

1This is not necessarily true for newer languages like Java or C++0x.

1

2 CHAPTER 1. INTRODUCTION

(bugfixes, updates, ...). The last but not least drawback is that the library licence may
not suit you project, for example when you develop commercial applications.� Take a book or an article with pseudocode an rewrite it into actual code. At first sight,
this indeed seems to be a good solution. Pseudocode from articles and books is written
in a simple way, there are comments and explanations on how it works, even proofs of
correctness. So, you can rewrite the pseudocode and be happy that it is working. But
this is not necessarilly the case. Pseudocode may be formally proved, but it lacks “real
tests” because it cannot be tested. Thus you rely only on the author that made the proof
of correctness. Also, the pseudocode may be correct from the mathemathical point of
view, but it may fail on the hardware itself. There are numerous problems created when
rewriting something from pseudocode to a native implementation. They are listed in
chapter 2, but to give the reader a fast glimpse of them: representation of real numbers
and severe problems with them, memory consumption (recursive calls), paralellisation
(threading) issues, integer overflows/underflows, buffer overflows. Therefore, it is really
hard to rewrite pseudocode to a correct implementation. This thesis aims to do exactly
that.� Use the Internet as the source of solutions. In short – never believe sources that are not
thoroughly reviewed. The Internet is a medium with millions of solutions to millions of
situations. But the quality of contributions is often very questionable. If you need to use
the Internet, here is a recommendation: take the idea from the forum/post/whatever,
but implement it yourself and think twice before each step. Many people post only
partial solutions or solutions which do not work. Moreover, there are numerous solutions
with security concerns. So, stay away. A slightly better case is taking source code of
some opensource project and reusing it. But still – check if the code is well tested
before you consider including it in your project.

We will use a simple example to demonstrate the problems with believing internet fo-
rums. In our example, we needed an implementation of function isPrime which can take
an integer argument and will return a boolean – true if the supplied integer was prime
and false otherwise. We will look for an implementation in the Python language. To ob-
tain such implementation, you can search some big search engine for “python isPrime”.
The results, of course, may depend on your search engine and time of the search and
many other factors. For this example, we queried the Google search engine for http:

//www.google.sk/search?q=python+isprime and took the first result, which was in
time of this writing http://www.daniweb.com/forums/thread70650.html. The au-
thor of the thread asks a simple question

“I need a function that returns True or False if an integer n is a prime. Any
’high speed’ thoughts?”

We picked one of the replies:

“Our snippet examples give you a list of primes. You could get a list of primes
in the range of your numbers, and then see if your numbers are in it. For
simplicity sake you can use this small function ...”

with the source code shown in listing 1.1.

Our claim is that the code is written really poorly. To support this, we will look more
closely at it and try to explain its problems:

First of all, Python is a language without strict types. This means that you may pass
any type of variable as n. Now, the reader may wonder what happens if he/she calls the

3

Code Listing 1.1: Bad isprime() implementation in Python

1 # prime numbers are only d i v i s i b l e by un i ty and themse l ves
2 # (1 i s not cons i dered a prime number)
3

4 def i sp r ime (n) :
5 ’ ’ ’ check i f i n t e g e r n i s a prime ’ ’ ’
6 # range s t a r t s wi th 2 and only needs to go up the squareroo t o f n
7 for x in range (2 , i n t (n **0 .5) +1) :
8 i f n % x == 0 :
9 return False

10 return True
11

12 # t e s t . . .
13 print i sp r ime (29) # True
14 print i sp r ime (345) # False
15 print i sp r ime (8951) # True

function with a string or a list argument. The program will fail in some unpredictable
way. In the cases discussed above it will fail to compute the square root.

But there are more subtle errors: try to call isPrime with a floating-point value and
the function will work. This starts to be interesting – if you read the Python manual
about modular division, you can spot the sentence

“The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34
(since 3.14 equals 4*0.7 + 0.34.)”

So, the function will not fail and will return some unpredictable value.

This may seem to be ridiculous critique, but you may bet that sooner or later, someone
will call the function with a floating-point value 2 and he/she will be wondering why it
is not working correctly.

After we considered that the function is totally ignorant about the type of the argument
and that this ignorance may lead to undefined behaviour, we may continue listing the
problems, because this certainly is not the end of it. Even if we pass an integer to this
function, there is still plenty of room for mistakes. Try passing a negative integer and
the function will fail to compute the square root (and this is still the better case).

And finally, let us examine the function’s behaviour on valid inputs. Even if you are
really cautious and there is no call to the function with invalid arguments (which we
cannot believe unless you have a very simple 10-lines-of-code program), the result of
the function may be wrong. Try zero, and isPrime will return True. But zero surely is
not a prime. And the most obvious problem – the function documentation itself states
that 1 is not a prime. Try this function and see for yourself.

To summarize our objections to the function, here is an example of the bad function
calls:

>>> print isprime("aa")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in isprime

TypeError: unsupported operand type(s) for ** or pow(): ’str’ and ’float’

2In an untyped language, the type of the variable may easily change and after some math operations one
may end up with floating point instead of integer.

4 CHAPTER 1. INTRODUCTION

>>> print isprime(4.7)

True

>>> print isprime(-2)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in isprime

ValueError: negative number cannot be raised to a fractional power

>>> print isprime(0)

True

>>> print isprime(1)

True

So, as you can see, these few extremely simple lines of code have several serious flaws.
And this was only a few lines - try to copy one hundred lines of code and ask yourself
the question “Do I believe this code?”. The answer should be “never unless it is well
documented, well tested, I can see that the tests are covering corner cases, impossible
imputs, etc. ”

To summarize the ways of obtaining implementations: there are good sources like big
opensource libraries which are well tested, but there is a problem with their size, and sub-
sequent complications when the project uses only minimal functionality of the library. This
thesis therefore aims to fill this gap by providing correct implementations of simple and often-
used algorithms, which are thoroughly tested, well documented, and the reader may not fear
to copy/adjust the implementation.

1.1 Thesis objectives

The main goal of the thesis is to create a set of implementations of well-known algorithms.
The task itself seems to be quite easy, but we can assure the reader that it is a very hard
job. In the thesis, we needed to join algorithmic thinking with very deep knowledge of
programming languages and computer architecture. Moreover, it was needed to provide a
great deal of ingenuity to adapt the implementations to be as simple as possible, as error-free
as possible and very well documented. We can also note that people writing such algorithms
must know a variety of tips and tricks which cannot be found in standard textbooks for
programming courses.

In this section, we will gradually introduce the goals of the thesis. At first we will discuss
the testing infrastructure, then we will discuss the selection of the programming language for
the thesis.

Documentation

Any implementation which is not well documented is usually hard to maintain and there
is no one except the author of that code (or maybe even not the author) who understands
it. The goal of this thesis is the opposite. We wanted to create implementations which are
thoroughly documented, so that

1. everyone can understand the code well and can see what it is doing. This is important
because our goal is not to provide a complex library, rather we are writing a set of

1.1. THESIS OBJECTIVES 5

small programs, which everyone can take and rewrite from the paper to suit his/her
needs. Usually these algorithms will be adapted for specific tasks and there will be an
alternation of input/output representation like using arrays versus std::vector, a slightly
different computation, or reporting results in a slightly different format.

2. everyone can see algorithm invariants, preconditions and postconditions. This part
may be especially interesting for those who will read the next few chapters about
possible problems with architecture. In short, we will document (and check in the
code) for extra conditions so that the algorithm is guaranteed to be correct. Often,
this is underestimated in trivial implementations, as someone wants to have a quick
and dirty function in the smallest possible time. We think that properly checking for
overflows, bad inputs, invariants, etc. is a part of good programming practice and helps
other people when something goes wrong.

Error-free implementation

It may seem to be an easy job. As we said earlier – it actually is not. We noted in the
previous paragraph that the code should be robust enough to handle all corner cases. The
code should also handle invalid arguments and properly respond to them. It is much easier
to debug the code if you call the function with bad parameters and the function will instantly
fail/throw an exception. On the other side if the function will somehow work and it will fail
in some unpredictable manner hundreds of lines later, it will be a debugging nightmare. To
fulfill this objective, we analyzed the potential problems of the implementations and later we
were guided by that analysis. Note that this list might not be complete and we may have
missed some kinds of errors. These issues should be addressed with thorough testing.

Testing

The basis of the thesis lies in testing the written algorithms. We try to put the algorithms to
as extreme conditions as possible and see if they behave correctly. The functions, for example,
should check for invariants, corner conditions, report when they are unable to perform some
operations3 and so on. Moreover, we usually implement more than one algorithm computing
the same problem and we cross-check the implementations on various kinds of inputs.

The most important point of the testing is that it should be automated. The rationale
behind this is to enable the reader to� quickly reproduce the test. If someone tells you he/she has tested the code, will you

believe him/her? Of course not. The best way to be sure is to run automatic tests and
see for yourself that everything is fine. Also, if you are on some strange architecture,
a different compiler or some awkward hardware configuration, you need to test the
algorithms to see that nothing went wrong – maybe the author missed some of the
possible differences. An example of a such difference are various sizes of the int type
on different platforms, 32-bit versus 64-bit pointers, big-endian vs. little-endian, etc..� see what types of tests have been done. Looking at the testcases the reader can get
an impression about what has been actually tested. Moreover, if there are many tests
testing different kinds of corner cases, overflows, invalid inputs, ... the reader may
assume the correctness of the algorithm and gain trust in the implementation itself.� see the usage. The tests are probably the best documentation available – they show
the correct and incorrect usage of the algorithm, they show boundary conditions, prob-
lematic cases. The reader may therefore think about the limitations of the algorithm
and be cautious when using it.

3For example we passed too big arguments to them, or something went wrong during the computation

6 CHAPTER 1. INTRODUCTION

Benchmarking

Testing the algorithm validity is only one part of the testing. We also need to test the perfor-
mance of the algorithms, find bottlenecks, compare various (simple and easy to understand)
optimizations, compare different algorithms. Benchmarking is quite useful, because there are
usually more algorithms solving one problem and these algorithms differ in code complexity
and asymptotic time complexity. Therefore, it is very useful to know the expected perfor-
mance of various implementations for a wide range of input sizes – people wanting to compute
a specific task may then decide which algorithm to use. Usually, the asymptotically faster
algorithms are much harder to implement, have a bigger O constant and for reasonably small
inputs are often slower than the simple ones.

1.2 Outline

In the current chapter, we showed the motivation and the objectives of the thesis. Chapter
2 summarizes the potential problems of the implementations, considering hardware and soft-
ware limitations. Chapter 3 shortly discusses the target architecture and infrastructure we
set up before working on the implementations. Chapter 4 contains a comprehensive summary
of all algorithms we implemented, notes about potential problems in the implementations,
results of benchmarks, etc. The thesis results are summarized in chapter 5.

Chapter 2

Typical errors and problems with
implementations

There are many issues and problems which may arise during the implementation of the
algorithms. In this chapter we want to give the reader a comprehensive overview of the most
important problems. We will not consider and explain all of the possible errors/problems, as
this may end up with a list several times exceeding the supposed length of the thesis, and we
may still still omit some of them.

At the beginning of the chapter we will dig into problems caused by bad pseudocode or
by a lack of concentration. Later we will show the reader some of the more serious errors
connected with computer architecture. These are usually much harder to find and fix because
they are less-known, especially among inexperienced programmers. Finally, at the end of the
chapter we are discussing errors which may come from the hardware itself even when the
software is correct.

2.1 Bad pseudocode

Even when taking pseudocode from a peer-reviewed conference, one may not be one hundred
percent sure about its correctness. For example there may be printing issues like a missing
equals sign from the “≤” character. But more importantly, the pseudocode is not a real
implementation. The pseudocode was never compiled and ran as there is no compiler for
pseudocode. Thus we can state the fact that the pseudocode cannnot be tested on real in-
puts. Of course, it may be formally tested by specifying invariants and using some rigorous
mathematical method for proving its correctness. But usually the authors prove only the
invariants that are interesting for the sake of the problem they are solving. Moreover, the
core of the algorithm is more interesting and gets much more attention in the article than
corner cases. But in the real implementation we need the exact opposite. We need an im-
plementation which can handle any corner case. In fact, in real-world scenarios the special
cases and invalid input checks may form a large portion of the implementation itself.

Also, there are sometimes hidden dependencies in the pseudocode like advanced data
structures. The programmer needs to implement not only the algorithm from the pseudocode
but also many data structures that are “well-known”. But “well-known” does not mean that
they are easy to implement and that the programmer will not make errors there.1.

But back to the bugs in pseudocode. In the rest of this section we will present three
pseudocode examples. The first two were encountered during the actual implementation of
the thesis (and we spent several hours desperately trying to find the bug in our code instead

1In fact, if the underlying structures are well-known and used, they are probably available from standard
libraries

7

8 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

of the original pseudocode). The third example is taken from the article [O’N08] where the
authors explain that the “widely-known implementation of the Eratosthenes sieve in Haskell“
is in fact a completely different algorithm.

Corner cases

In the first example, we will discuss algorithm 3.1 from [Duv83]. The algorithm should find
the minimal cyclic shift of the supplied input word in linear time.

Figure 2.1: Duval’s minimal cyclic shift algorithm pseudocode

Input: a word string a_1,...,a_n of letters over A.

Output: the table M[l...n] according to (3.1).

{MINSUF: array [1...n] of integers; f[2...n]: array of integers}

begin: k:=0; j:=2; M[1]:=0; f[2]:=1;

while j <= n do begin

i:= k + f[j - k];

99: case "compare a_i::a_j" of

1 {a_i < a_j} : (M[j]:=k; i:=k+1; j:=j+1; f[j-k]:=i-k; goto 99)

2 {a_i = a_j} : (M[j]:=M[i]+j-i; i:=i+1; j:=j+1; f[j-k]:=i-k; goto 99)

3 {a_i > a_j} : (k:=M[i]+j-i;

if k=j-1 then begin M[j]:=k; j:=j+1 end)

endcase

endwhile

end

The problem with this pseudocode is in the goto 99 statement – the program may end
up with the variable j being n + 1, which is out of bounds. Probably the smallest input
showing this error is a = ‘xy‘. In the first iteration of the while cycle the variables i and j
are set to 1 and 2 respectively. The algorithm will take the first case of the switch and after
the goto 99 statement the state will be i = 1 and j = 3. Now we are out of bounds for the
comparison.

Moreover, the programmer may be clever and “optimize” the statement goto 99 into a
more readable form shown in the following figure:

Figure 2.2: “Optimized” goto 99 statement

while (j <= n) and (a_i <= a_j) do

if (a_i < a_j) then

...

else

...

fi

endwhile

This is probably easier to understand than the goto 99 syntax. This transformation of the
code also solves the mentioned out-of-bounds issue.2 The problem with this “optimization”

2Note that this optimization causes the side-effect of changing the behaviour of the algorithm, but one
cannnot figure this out unless he/she explicitly takes the out-of-bounds possibility into account!

2.1. BAD PSEUDOCODE 9

is that it will create a new error. To be more specific, the program may eventually step into
line 12 with j holding the value n + 1 and the assignment to M[n+1] is out of bounds again.

Print pixies

The second example of pseudocode containing an error is based on the article [BK03]. The
algorithm presented on page 66 shows how to verify that a given array is indeed a suffix array
of some sequence. In Theorem 2, the authors mention the SA[0,n) array, i.e. the array SA is

Figure 2.3: Karkäinnen’s suffix array verification pseudocode

for i=n-1 downto 0:

A[s[SA[i]]] = i

A[s[n-1]]++ // skip SA[i]=n-1

for i=0 to n-1:

if SA[i]>1:

c = s[SA[i] - 1]

check SA[A[c]] + 1 == SA[i]

A[c]++

indexed from 0 to n− 1. The algorithm itself (line 3) supports this claim. Hovewer, on line
5 the algorithm checks that SA[i] > 1 and then uses the character s[SA[i] -1]. So, the
original algorithm never reads the first character s[0] of the string s.

Indeed, the correct version of line 5 is if SA[i] > 0 or if SA[i] >= 1. We suppose the
authors of the article meant the second alternative and there was some “print pixie” which
dropped the equality sign.

Bad implementation of pseudocode

We borrow the third example from the article [O’N08]. The article shows that the widely-
spread functional programming implementation of “The Sieve of Eratosthenes”, which is
written in the programming language Haskell as

Figure 2.4: The Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p : xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

is not the Sieve of Eratosthenes. In fact, the algorithm is correct (it computes primes),
but its running time is even worse than trivial division! This is a nice example of how
implemention of pseudocode in a (functional) language may turn out to be wrong.

After these three examples, we may conclude that even algorithms written in pseudocode
or carefully implemented from pseudocode may contain serious flaws. These flaws are hard
to spot unless the careful reader reads the whole article and verifies each claim. Therefore
we conclude that it is really necessary to test the implementations, even when they are
implemented from simple pseudocode and the programmer believes he/she has not made any
error in the implementation.

10 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

Code Listing 2.1: Sorting real numbers with NaNs

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <algorithm>

4 #include <cmath>
5

6 double data [1 0] ;
7

8 int main () {
9 for (int q=0; q < 10 ; q++) data [q] = rand () %1000;

10 data [5] = sq r t (−1) ; // NaN
11 std : : s o r t (data , data + 10) ;
12 for (int q=0; q < 10 ; q++) {
13 p r i n t f (” index %d : value %l f \n” , q , data [q]) ;
14 }
15 }

2.2 Bad preconditions

Many algorithms require some properties to hold for their correctness. We may call all such
conditions preconditions of the algorithm. These preconditions may be trivial (argument
must be non-negative), or complex. For example, the binary search algorithm implemented
as std::lower bound and std::upper bound has a precondition that the input range should
be sorted. Many times, the algorithm itself cannot check the precondition itself, because the
checking would require more time than the operation itself. More algorithms of this kind are
operations on the heap where the heap property must be guaranteed before the operation
can start.

One of the complex preconditions required by many algorithms, especially algorithms
related to sorting, such as sorting itself (std::sort) or binary search trees (std::map,
std::set), is the presence of total ordering. Many people automatically assume total or-
dering for integers and real numbers. Moreover, ordering of more complex objects is usually
based on comparing several individual fields of the structure, thus implicitly relying on the
total ordering of the basic types.

The problem is that the assumption about the existence of total ordering of the basic
types is wrong. The culprits are floating-point numbers. The reader may wonder how it is
possible, that there exist two floating-point numbers which are not comparable. Indeed, no
such pair of numbers exists. But floating points consist not only from numbers but also from
special values. One such value is NaN – Not a Number. This value represents an error during
a computation, which can be the result of an invalid operation, for example the square root
of a negative number. The core of the problem with NaNs is that they are incomparable I.e.
all the following conditions are false: NaN < 0, NaN == 0 and 0 < NaN. The reader may see
that the property of total ordering is violated.

Now imagine we wish to sort an array of real numbers, but the value NaN was somehow in-
troduced into the array during previous calculations. We will show that the sorting algorithm
will fail to sort even the ordinary numbers (not only the NaN values).

Listing 2.1 contains a sample program which sorts real numbers. The input array contains
the result of a bad computation. Listing 2.2 shows the “sorted” output of the program. This
particular issue with floating-point numbers causes a lot of bugreports, one of them may be
found at http://gcc.gnu.org/bugzilla/show_bug.cgi?id=41448. The interesting part of
the bugreport is from a developer who states

“Basically when std::sort is given a type which is not totally ordered as required,
it tends to corrupt the memory immediately before and after the given array.”

2.3. CODING ERRORS 11

Code Listing 2.2: “Sorted” output

1 index 0 : value 383.000000
2 index 1 : value 777.000000
3 index 2 : value 793.000000
4 index 3 : value 886.000000
5 index 4 : value 915.000000
6 index 5 : value −nan
7 index 6 : value 386.000000
8 index 7 : value 421.000000
9 index 8 : value 492.000000

10 index 9 : value 649.000000

The report itself is closed as “this is not a bug” – and they are correct, the well-documented
precondition for std::sort is that the values are comparable by total ordering.

Thus, when using algorithms with complex preconditions one needs to double-check po-
tential problems.

2.3 Coding errors

One big category of errors in the implementation are coding errors. These coding errors come
from a lack of concentration of the programmer and may be simple typos. They may be hard
to track by hand, but there are good static analysis tools which can handle most of such
errors.

Variable name typos

In languages like Python, PHP or Javascript, you may mistype the name of a variable,
function or class. The classical example is

Code Listing 2.3: Typo in the variable name

1 my var iab le = 1 ;
2 p r in t my warialbe ;

These errors may be easy to find if they are made when “reading” the variable, because the
effect is usually an immediate error or warning and you know the line of code which contains
the problem. If the typo is made while writing into the variable, it is much harder to find.
A new variable will be created instead of storing content into the correct one. This may
introduce problems such as data corruption and other complications, especially in complex
code where there are many assignments and only one of them is a typo.

Conditional typos

This typo is probably most famous in the C and C++ context, although we have seen similar
problems in the PHP language. In all these languages, you may mistype ‘==‘ inside an if

block as an assignment ‘=‘, leaving no trace of the problem.

Code Listing 2.4: Typo – ‘=‘ in assignment instead of ‘==‘

1 i f (a = 1) { do something () }

12 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

Logical errors

Logical errors are usually bound to happen if the programmer is not concentrating on the task
and does not verify boundary conditions. This includes ‘>=‘ versus ‘>‘ in conditionals, ‘i++‘
versus ‘++i‘ in complex statements like j = array[++i], or wrong operator precedence ‘v

| mask << 3‘ vs ‘(v | mask) << 3‘, and many more.

Similar font characters problem

The most famous problem is between the letter ‘l‘ and the number ‘1‘. To make things even
worse, the letter ‘i‘, which is usually reserved for iterating loops also resembles the problematic
pair. With a bad font, it can be really hard to distinguish between them. Even when they
appear quite differently in the font rendering, the programmer may read the wrong character
if he/she is just scrolling through the code. The effect is that the programmer will get very
confused, because the program does completely different things than what he/she thinks it
does. To test your senses, try to find errors in the following code

Code Listing 2.5: Typo – ‘l‘ versus ‘1‘

1 long long int MAX = 111 l l ;
2 int i ;
3 int l ;
4 for (i=l ; i < MAX; i++) {
5 p r i n t f (” i : %d , l : %d\n” , i , 1) ;
6 }

The solution is to never use the letter ‘l‘ on its own. If the ‘l‘ is used as a variable name,
you may change it to something more appropriate. If the ‘l‘ is part of some other construct,
for example “long long” specifier to the integer constant in C/C++, usually you may write
it in capital letters. The reformatted code may look like this:

1 long long int MAX = 111LL ;
2 int i ;
3 int q = 0 ;
4 for (i=q ; i < MAX; i++) {
5 p r i n t f (” i : %d , q : %d\n” , i , 1) ;
6 }

2.4 Problems with integer numbers

Integer overflows are one of the most dangerous errors. They are logical errors created while
implementing a specific algorithm from pseudocode resulting from a lack of precision. In
this section, we will briefly introduce the problems with standard integer types and propose
solutions trying to mitigate most of these errors. But before we can proceed, we need to
introduce the representation of integers in the current computer architecture.

2.4.1 Representation of integral numbers

Unsigned numbers

Any unsigned integer number can be written in the form

∞∑

i=0

bi2
i, ∀i : bi ∈ {0, 1}.

2.4. PROBLEMS WITH INTEGER NUMBERS 13

Numbers bi are called bits and they are represented in computers as the presence/absence
of electric charge. But computers do not have infinite memory and the sum is cut at some
point. If we use the first n bits, i.e. we use bits corresponding to numbers 20 (the lowest bit)
up to 2n−1 (the highest bit), we can represent any integer number from zero up to 2n − 1.
The values of n used in current computer architectures are 8, 16, 32 and 64. Because of the
limited range of unsigned numbers, computations may “overflow” or “underflow”. In the case
of overflow, the result is truncated to contain only last n bits. In case of underflow (i.e. a
negative result), the resulting negative number −x is represented by the same number as if
we calculated the representation of 2n−x. The representation of unsigned numbers for n = 8
is showed in figure 2.6

Signed numbers

Negative numbers are in mathematics represented by prefixing them with the special character
(the minus sign). However, on modern computers, there is no such special symbol. Therefore
it is needed to represent signed numbers only in binary code. There are several widespread
representations which can be used, and we will discuss them here.

Sign and magnitude

The basic solution for signed numbers consists of reserving one bit (often the most significant
bit of the number) to hold the sign instead of the value. Usually the value 0 of the sign bit
means positive numbers and 1 means negative numbers. The remaining part of the number
represents the magnitude (absolute value) of the number.

Consider for example 8-bit numbers. Then the value ‘−47‘ is represented as 1 (minus sign)
and another 7 bits holding the value 47, i.e. together 10101111. This approach is somewhat
similar to that used in mathematics, i.e. writing sign symbol and then the magnitude.

One of the drawbacks of this method is that the number zero can be represented in
two different ways – either as +0 or −0. This may add additional complexity when using
comparisons. Also, math operations with such numbers are more complicated, because one
needs to determine the resulting sign and the operation. For example, addition of two such
numbers is addition if the signs are equal (++ and −−), but it is subtraction in case of
different signs (+− and −+).

Nowadays the idea of storing the sign bit separately is used mainly for floating point
numbers and we will discuss that later in this chapter.

Excess-N method

This is the second easiest method. Sometimes it is also called biased representation as it uses
a fixed number N as a biasing value. The value of the excess-N representation is shifted by
N with respect to the unsigned representation. I.e. signed zero is represented as unsigned
N , and −N is represented as unsigned zero.

The excess-N representation is used primarily for the exponent of floating-point numbers.

The problem with this method is again efficiency of computations. After each addition
we need to adjust the number by N . In case N is a power of two this can be implemented in
hardware easily. But multiplication and division are more tedious. And probably the biggest
drawback is that these numbers are incompatible with the unsigned representation – the
representation of positive numbers in excess-N representation is different from the unsigned
representation.

14 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

One’s complement

To overcome the problem with representing the sign and the magnitude and with using
both addition and subtraction depending on the signs of the numbers, another method was
developed. Basically, we will “flip” the range of negative numbers. This is done by doing
logical negation (not) on all bits of the magnitude.

For example let us take the number −47. The representation of 47 is 0101111, and
therefore the one’s complement is 11010000.

To add two numbers in this system one needs to do conventional addition with a single
modification – at the end one must add any resulting carry bit back to the result. The reason
for this is the presence of −0, which is different from +0.

The example of such computation is on figure 2.5

binary decimal

11111110 -1

+ 00000010 +2

------------ ---

1 00000000 0 <-- not the correct answer

1 +1 <-- add carry

------------ ---

00000001 1 <-- correct answer

Figure 2.5: One’s complement example

Two’s complement

The two’s complement representation is the standard representation of signed integral num-
bers. The problem with two different representations of zero value (and thus the problem
with addition of carry in one’s complement) is solved by shifting the negative range so that
−0 will be shifted out and the smallest(in magnitude) negative value will be −1. This num-
ber will be represented as a vector of all 1’s. The two’s complement representation is very
convenient. For example, to add two signed numbers, one may use the same algorithm as for
the unsigned representation. Multiplication is a bit trickier, but it can be done by negating
the numbers and doing positive multiplication or by specialized algorithms.

One potential problem with the two’s complement is that it can store a non-symmetrical
range. The number represented by only its most significant bit (In 8-bit case the representa-
tion 10000000, i.e. -128) does not have its positive counterpart. We will discuss this problem
later.

2.4.2 Integer overflows

The most known errors related to the limited integer representation of numbers are integer
overflows. They emerge when the program is trying to do math operations resulting in a
number that does not fit into the required type. Let’s start with a basic example:

Code Listing 2.6: Integer Overflow

1 int c = 50000;
2 c = c * c ;
3 p r i n t f (”%d\n” , c) ;

When the code is compiled and ran, it outputs a suspiciously looking negative number
−1794967296. The correct result 2500000000 won’t fit into signed integer type and is trun-
cated.

2.4. PROBLEMS WITH INTEGER NUMBERS 15

Binary unsigned representation two’s complement
00000000 0 0
00000001 1 1
00000010 2 2

. . .
01111110 126 126
01111111 127 127

10000000 128 -128
10000001 129 -127
10000010 130 -126

. . .
11111110 254 -2
11111111 255 -1

Figure 2.6: Two’s complement representation

Sometimes, integer overflows are hard to notice. The following code tries to iterate over
all values of unsigned char.

Code Listing 2.7: Overflow

1 unsigned char c = 0 ;
2 while (c <= 255) {
3 do something () ;
4 c++;
5 }

The problem is, however, that the comparison is always true due to the limited range of the
data type and that the loop will run forever. To be more precise, (unsigned char) 255 +

(unsigned char) 1 == 0. A good compiler will issue a warning though.

When we are talking about overflows, we need to mention also underflows, which are
basically the same type of problem but in the other direction. A popular code may look like
this:

Code Listing 2.8: Unsigned underflow

1 for (unsigned int i = 0 ; i < n ; i++) {
2 i f (i − 1 < 10) {
3 do something () ;
4 }
5 }

and it does not work for i == 0. This suggests that “if (i - 1 < j)” is not equivalent to
“if (i < j + 1)”. You may wonder why someone would use unsigned int in the loop. The
answer is, that you may not notice that the type is unsigned, consider for example size t.

Another complication is that the negative value range of signed integers is bigger by one
than the positive range (because zero is in the positive range). This may create strange and
unexplicable behaviour:

Code Listing 2.9: Unary minus overflow

1 int c1 = −2147483647;
2 int c2 = −2147483648;
3 p r i n t f (”%d %d\n” , c1 , −c1) ;
4 p r i n t f (”%d %d\n” , c2 , −c2) ;

with the output

16 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

-2147483647 2147483647

-2147483648 -2147483648

Moreover, we can conclude that “if (c == -c)” is not equivalent to “if (c == 0)” (but
it is equivalent to “if (2 * c == 0)”).

Not-so-evident owerflows

The typical problem with limited ranges is that they can overflow. People are usually con-
sidering that integers may overflow in math operations. If you have math-heavy code, you
will probably check for overflows and nasty corner-cases. But the question is – do you always
think about this issue? Well – let’s take a quiz. Consider the following code of the binary
search algorithm:

1 u in t b in s e a r ch (int value , u in t s tar t , u in t end) {
2 while (end > s t a r t + 1) {
3 u in t middle = (s t a r t + end) / 2 ;
4 i f (array [middle] > value) {
5 l e f t = middle ;
6 } else {
7 r i gh t = middle ;
8 }
9 }

10 }

Do you see the possible problems? There are two obvious errors that are hidden in this code.
The first one is “What if someone calls binary search with start == MAX UINT?”. You
may say that this is a nasty input and that the function is not supposed to handle invalid
intervals. Well, the function should warn about wrong input.

But there is a more serious problem – the algorithm does not work even for valid ranges.
Consider calling bin search(47, 3000000000u, 4000000000u), which is a valid range of a
billion integers. The value of middle in the first computation certainly won’t be 3500000000u.
Clearly, the algorithm will not work correctly. But be frank, have you ever considered this
as a potential problem with binary search? No? It cannot be ignored it as the four billion
integer array used for binary search may be quite common in a few years. You may see an
example of our well-documented overflow-checking implementation in appendix 3.

Integer conversions

Converting between signed and unsigned integers and between types of various lengths may
also cause problems, especially in C and C++, as these conversions are done automatically
based on types of operands.

These rules may even be different for various languages. Take for example the Pascal
language:

Code Listing 2.10: Pascal type conversion

1 var i : integer ;
2 j : i n t64 ;
3 begin

4 readln (i) ;
5 j := i + i ;
6 writeln (j) ;
7 end .

Which gives the output

Input : 2000000000

Output: 4000000000

2.4. PROBLEMS WITH INTEGER NUMBERS 17

But now, consider the same program in C:

Code Listing 2.11: C type conversion

1 #include <s t d i o . h>
2 int main () {
3 int i ;
4 long long int j ;
5 s can f (”%d” , &i) ;
6 j = i + i ;
7 p r i n t f (”%l l d \n” , j) ;
8 }

and the output is

Input : 2000000000

Output: -294967296

Now, you see that the result of i + i overflows.
This can be pushed up further. Consider the following program:

1 #include <s t d i o . h>
2 int main () {
3 int i ;
4 long long int j = 4000000000 l l ;
5 s can f (”%d” , &i) ;
6 i f (j − 2 * i == 0) {
7 p r i n t f (” j − 2 * i = 0 equal \n”) ;
8 } else {
9 p r i n t f (” j − 2 * i = 0 nonequal\n”) ;

10 }
11 i f (j − i − i == 0) {
12 p r i n t f (” j − i − i = 0 equal \n”) ;
13 } else {
14 p r i n t f (” j − i − i = 0 nonequal\n”) ;
15 }
16 }

The output is of course a bit unexpected:

Input : 2000000000

Output: j - 2 * i = 0 nonequal

j - i - i = 0 equal

The problem here is operator precedence: in the first case, we compute “int 2 * int i”
with int result and then “long long int j - int tmp” with long long int result. In the
second case, however, the computation “long long int j - int i” produces a long long

int temporary and continues with “long long int tmp - int i” resulting in long long

int. Based on this fact, it is obvious, that j - 2 * i is not equivalent to j - i - i.

2.4.3 Integer overflows in memory access context

Memory access is traditionally done with either pointers into the memory or a combination
of a pointer to the array and index of the element in the array. Both of these methods rely
on pointers fitting into some integral type.

As we will show in this chapter, doing so may introduce hidden problems. We will start
with the following program:

Let’s see what the problem is. Suppose we are working on a 32-bit machine. The function
resize has signature resize(size t size), where size t is defined as unsigned 32-bit
integer. You may see that the conversion from the negative integer −1 to a positive unsigned

18 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

1 #include <vector>
2

3 int compute vec tor s i z e () {
4 // hard computation
5 return −1;
6 }
7

8 int main () {
9 std : : vector<char> v ;

10 v . r e s i z e (compute vec tor s i z e ()) ;
11 }

int of size around 4 ∗ 109 is made. The program will crash instantly on today’s 32-bit
computers, because you cannot allocate such a big amount of memory. But suppose we have
a 64-bit architecture with 8GB of RAM and you will use this legacy 32-bit compiled code.
Now, the program is able to allocate the required memory3. We may see that the presented
inherently buggy code will run without any complaint on today’s hardware. And this is the
real problem of the situation. You may end up with a program eating several gigabytes of
memory and you have no idea what happened.

This is not only the case for memory allocation. Now that we have considered problems
of int conversion to 32-bit size t, we can continue to put up more examples of this sort.

The other very interesting example is adapted from [LeB08]. It shows that type conversion
between pointer-distance type ptrdiff t and unsigned int can behave quite differently on
different platforms:

1 void as sume shor t e r than (
2 int* p t r s t a r t ,
3 int* ptr end ,
4 unsigned int count)
5 {
6 i f (ptr end − p t r s t a r t < count)
7 return true ;
8 else

9 throw ArrayS izeError () ;
10 }

The code checks that the array represented by its starting and ending pointer is smaller
than specified size. Suppose some programmer will forget the correct order of the arguments
and pass the pointers in the opposite order.

In that case ptr current > ptr max and the result of ptr max - ptr current is a neg-
ative number of type ptrdiff t. Before the comparison it is automatically cast to (a quite
big) uint32 and if count is reasonably small, the code will correctly throw an error.

Of course, the analysis we just completed is missing some important bits. First of all, it
will not work for very big values of count. For now we will ignore this particular problem.
The problem which will catch our eye is 32- vs. 64-bit compilation. The problem starts
with the following observation: C++ does not fix size of types. On 32-bit systems, int

and ptrdiff t are both usually 32 bits long and the program itself works. But with 64-bit
architecture, there are notable differences between these types, and they are not standardized.
There exist even differences between compilers/platforms.

3This is not entirely true, on Linux one process may allocate at most 3GB of RAM. The same limit can be
reached also on Windows if you tweak boot settings with parameter “/3GB”. So, the resize(-1) is somewhat
impossible to reach. But this can be “fixed” by calling resize(-2000000000)

2.4.
P
R
O
B
L
E
M
S
W

IT
H

IN
T
E
G
E
R

N
U
M
B
E
R
S

19

data model short int long long long pointers/size t sample OS

LLP64/IL32P64 16 32 32 64 64 Microsoft Windows (X64/IA-64)

LP64/I32LP64 16 32 64 64 64 Most Unix and Unix-like systems, e.g. Solaris, Linux, and Mac OS X

ILP64 16 64 64 64 64 HAL Computer Systems port of Solaris to SPARC64

SILP64 64 64 64 64 64 Unicos

Figure 2.7: Size of integer types on different platforms

20 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

We have adapted the table shown in figure 2.7 from [Wik11] to show the reader the various
platforms and the sizes of different integer types on them.

Now, let us discuss what the program does in the first model. We have “if (ptr max -

ptr current < count)”, which is typed as “if (ptrdiff t < unsigned int)”. The left
side is 64-bit, right side is only 32-bit, so it is up-cast to 64 bits too. So we have “if (small

negative int64 < small positive int64)”. And our array of negative size will pass the
function. This may be considered as a serious flaw.

The problems with memory will not end here. We may move a bit further. Consider a
pointer somewhere into the memory. The type of pointers in C/C++ is uintptr t. Suppose
that we have two pointers and calculate their difference. The resulting type is ptrdiff t,
which is signed. Oops, somehow we may overflow. Now, in normal situations, this is not a
problem as it is pointed out in http://www.cplusplus.com/reference/clibrary/cstddef/

ptrdiff_t/.

“ptrdiff t: Result of pointer subtraction

This is the type returned by the subtraction operation between two pointers. This
is a signed integral type, and as such can be casted to compatible fundamental
data types.

A subtraction of two pointers is only granted to have a valid defined value for
pointers to elements of the same array (or for the element just past the last in
the array).

For other values, the behavior depends on the system characteristics and compiler
implementation.”

But as we said earlier, the Internet is a very bad source of knowledge. In this case, the site
http://www.cplusplus.com is wrong. For the purpose of this thesis, we looked up the exact
specification of the C++ language (current C99 draft, [c9905]) with the following result:

“When two pointers are subtracted, both shall point to elements of the same
array object, or one past the last element of the array object; the result is the
difference of the subscripts of the two array elements. The size of the result is
implementation-defined, and its type (a signed integer type) is ptrdiff t defined
in the <stddef.h> header. If the result is not representable in an object
of that type, the behavior is undefined. In other words, if the expressions
P and Q point to, respectively, the i-th and j-th elements of an array object, the
expression (P)-(Q) has the value i-j provided the value fits in an object
of type ptrdiff t.”

There are several ways how to allocate and use arrays in C++. We had examined the
most prominent ones for the presence/absence of the problem with pointer difference overflow.
Our experimental results are summarized based on allocation type:� static allocation: Static allocation is a basic type of allocation. The allocated memory

may reside in the global scope, or may be a part of a function call, then it resides inside
the stack.

The validity of allocation of too big arrays can be checked with this simple code:

1 #include <s t d i o . h>
2

3 const unsigned int Mi = 1000000;
4 char data [2500 * Mi] ; // 2.5GB of memory
5

6 int main () {

2.4. PROBLEMS WITH INTEGER NUMBERS 21

7 p r i n t f (” I ’m running ok”) ;
8 }

for which the compilation just fails:

>g++ alloc.cpp -m32

alloc.cpp:4: error: overflow in array dimension

So in this case, we are safe.� C malloc (or similar): The malloc function can allocate arbitrarily large chunks of
memory (up to size size t or the OS limit). malloc however does not return “an array
of objects”, but rather a continuous block of the memory. Thus, we may consider it to
be normal behaviour that pointer difference will not work correctly.� C++ operator new[]: The operator new is used for C++ style of allocation. Its advan-
tage over C style malloc is that new takes the size of array as an argument (as opposite
to the total allocated size in malloc, which was often used as malloc(sizeof(Type)

* count)). Also, new returns the correct pointer type, not void*. Another advan-
tage is that failure to allocate memory results in std::bad alloc exception instead of
returning a NULL value. We consider this to be good practice, as programmers often
forget to check return values of functions for failures. There is also a big difference in
semantics. While malloc only allocates memory, operator new[] allocates memory and
calls constructors for the objects.

The operator new, however, internally uses malloc, and therefore is susceptible to the
same pointer-overflow problem.

1 #include <s t d i o . h>
2

3 int main () {
4 const unsigned int Mi = 1000000;
5 unsigned int s = 2900 * Mi ;
6 char* x s t a r t = new char [s] ; // a l l o c a t e 2.9G of memory
7 char* x end = x s t a r t + s ;
8 p r i n t f (”ok , ptr i s %x , end ptr i s %x \n” , x s t a r t , x end) ;
9 i f (x end − x s t a r t < 0)

10 p r i n t f (”BAD! we have array which doesn ’ t f i t in to p t r d i f f t \n”) ;
11 }

which will result in

>g++ new_alloc.cpp -m32 && ./a.out

ok, ptr is 4a752008, end ptr is f74f9d08

BAD! we have array which doesn’t fit into ptrdiff_t� C++ std::vector: We have already shown that malloc() and operator new[] may
return arrays longer than the maximal pointer difference. One may wonder what about
basic STL structures like vector.

STL’s vector is a robust replacement for manual allocation of (variable-sized) arrays.
We may therefore assume that it will be safe to use in different scenarios. But this
assumption is again wrong. Of course, now we cannot blame vector only because it
can allocate more than 2GB of memory. The point is, you are not using pointers

22 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

anymore. Instead of pointers, the std::vector::iterator class is used. However,
std::vector::iterator is in this case implemented just by using plain pointers.

To prove that the std::vector’s iterators are susceptible to integer overflows (or
equivalently that std::iterator traits<std::vector<> >::difference type is not
enough to store difference of iterators), we found a simple example of a failing program.
Our main result in this area is an example of a well-tested implementation which may
fail. The example we uses STL’s binary search algorithm std::lower bound, which is
implemented in the following style:

1 template<typename ForwardIterator , typename Tp>
2 Forward I t e rator lower bound (
3 Forward I t e rator f i r s t , Forward I t e rator l a s t ,
4 const Tp& va l)
5 {
6 typedef typename i t e r a t o r t r a i t s < ForwardIterator > : : d i f f e r e n c e t y p e
7 DistanceType ;
8

9 DistanceType l e n = std : : d i s t an c e (f i r s t , l a s t) ;
10

11 while (l e n > 0) {
12 . . .
13 }
14 }

We exploited the len > 0 test and produced the following (counter)example:

1 #include <s t d i o . h>
2 #include <algorithm>

3 #include <vector>
4

5 const unsigned int Mi = 1000000;
6

7 int main () {
8 std : : vector<char> vect (2500 * Mi) ;
9 p r i n t f (” vec tor a l l o c a t ed , f i l l i n g with data\n”) ;

10 for (unsigned int i = 0 ; i < vect . s i z e () ; i++)
11 vect [i] = i / 10 / Mi ;
12

13 std : : vector<char> : : i t e r a t o r i t =
14 std : : lower bound (vect . beg in () , vect . end () , 10) ;
15

16 p r i n t f (” found value %d at p o s i t i o n %u\n” ,
17 (int) (* i t) , (unsigned int) (i t − vect . beg in ())) ;
18 }

The output of the program compiled both for 32-bit and 64-bit architecture is shown
below.

>g++ -m32 vector.cpp && ./a.out

vector allocated, filling with data

found value 0 at position 0

>g++ -m64 vector.cpp && ./a.out

vector allocated, filling with data

found value 10 at position 100000000

The bigger problem is that the same error may show up even when the result fits into
ptrdiff t. The problem arises from the computation itself – if we allocate 750 000 000

2.4. PROBLEMS WITH INTEGER NUMBERS 23

integers, the difference of two memory addresses will still be negative. But this difference is
used in the intermediate computation – to obtain the difference of int* pointers, the raw
difference of those two pointers must be obtained first and the result must be divided by the
length of the int type. Therefore, it is not surprising that the result will overflow in the first
stage and then it will be divided by 4. To summarize our results – the allocation of >2GB
of memory in 32-bit applications may result in overflows at several places.

Moreover, the same problems affect filesystems – if you use 32-bit variables for seeking in
the file you will fail to seek in files greater than 4GB of data. Nowadays such files are quite
common, consider for example images of DVD discs.

What can be done

There are numerous examples very similar to these described here. One must be very careful
when rewriting code from pseudocode to real implementation. If you do not consider integer
overflows, it is almost certain that some disaster will happen. Probably the best example is
the launching of the Arianne 5 rocket on June 4-th, 1996, which exploded 40 seconds after
start. The bug was caused by integer overflow when converting from a 64-bit floating-point
number to a 16-bit integer [LIO96].

To fix most of the errors, one should consider using “safe int” implementations. These
integers are relatively slow, but they will signal any overflow/underflow in case it occurs. We
recommend using Microsoft’s SafeInt implementation available at [Mic].

But using SafeInt in each situation can be very tedious and slow. Therefore, there are
other tricks we came up with.

First of all, there is the power of the C++ templating engine. C++ templates are basically
processed by a preprocessor. This means that they are like macros and are extremely flexible.
You may define templates of one class with totally different implementations, or, for that
matter, with totally different sets of functions/members.

One nice feature of templates is that the compiler cannot automatically cast between
types when there is an ambiguity.

For example template template <typename T> T std::max(T a, T b) used in code as
std::max(int, unsigned int) will not compile, because the compiler cannot decide if to use
max(int, int) or max(unsigned int, unsigned int) version. This is somewhat similar
to function overloading, but more convenient.

So, the first trick we developed for safe coding is using a combination of templates and
std::numeric limits.

In this case the implementation is specially tailored for the type the caller used. Thus, the
caller cannot make a mistake by wrong conversion. The biggest set of the problems solved
with this way is “downcasting” to a smaller type. For example function int max(int a,

int b) in plain C may be called with long long int arguments, but the function template

<typename T> T max(T a, T b) will be called with correct arguments each time (and we
also get an additional check for type mismatch between arguments).

In this way, we can solve all “downcasting” issues, except the ones that will be returned
from the function. There isn’t any good method to disallow return-value downcasting though.

The second trick, which we came up with while studying signed-vs-unsigned examples
and problems with vectors, arrays and pointers, is that basically if you use unsigned values,
you probably will not need the higher half of them. Like in the vector example, you probably
never want to allocate more than 2GB of data. In that case, let us just assume that anything
above this limit is considered “out of range” and we should issue the error. Of course, there
are some valid reasons why to use full unsigned values (like using bitmasks / bit operations,
...), but in the general case, it is much easier to disallow potentially dangerous stuff and if
people really need the missing one bit, they probably know exactly what the potential pitfalls

24 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

01000000000000000000000001111100

sign exponent (8-bit) fraction (23-bit)

=2 * (1.01) = 0.15625
-3

2 10

Figure 2.8: 32-bit floating point number representation

are and how to avoid them. Therefore, we propose to limit all unsigned integers only to the
signed part.

2.5 Floating point problems

The current representation of floating-point numbers is based on the IEEE-754 standard
[iee85]. At the beginning, we will introduce the standard itself, and later we will dig into the
problems which may arise from this representation.

2.5.1 Floating-point representation

The IEEE-754 standard defines several types of floating point number representations. The
various types differ by size. The standard requires availability of 32-bit (single-precision)
numbers. The 64-bit (double precision), ≥ 43-bit (single-extended precision) and ≥ 79-bit
(double-extended precision) are optional. All these types share a common structure, the
difference is only in the number of bits used to store the exponent/mantissa and the bias of
the exponent. A curious reader may consult the summary table specifying the parameters of
these IEEE-754 types in figure 2.9.

Generally, an IEEE-754 floating-point number consist of three parts – the sign bit, the
exponent and the mantissa. A graphical representation of a 32-bit (single precision) number
is available in figure 2.8.� the sign bit determines the resulting sign of the number and it is a single bit with 0

meaning positive numbers and 1 negative.� the exponent contains the location of the radix point. The exponent is stored in excess-
N form (biased representation). In 32-bit and 64-bit precisions the bias is set to 2n−1−1
where n is the number of bits of the exponent.� the fraction is the part of the mantissa without its first bit. The first significant bit of
the mantissa is not stored but rather it is determined from the exponent.

There are several possible combinations of exponent and fraction values:� exponent = 0 and fraction = 0. The resulting number is ±0 depending on the sign
bit.� exponent = 0, fraction > 0. Such numbers are called denormalized numbers/sub-
normals, because the missing bit of the mantissa is set to zero. These numbers al-
lows to store small numbers around zero. The value of such numbers is value =
(−1)sign ∗ 2exponent−bias ∗ (0.fraction)� 0 < exponent < MaxExponent. These are ordinary numbers. The hidden bit of the
mantissa is set to 1 and their value is value = (−1)sign ∗ 2exponent−bias ∗ (1.fraction)

2.5. FLOATING POINT PROBLEMS 25

single single extended double double extended

fraction bits 24 ≥ 32 63 ≥ 64

biased exponent max 127 ≥ 1023 1023 ≥ 16383

biased exponent min -126 ≤ −1022 -1022 ≤ 16382

exponent bias 127 unspecified 1023 unspecified

exponent bits 8 ≥ 11 11 ≥ 15

format width (bits) 32 ≥ 43 64 ≥ 79

Figure 2.9: Summary of IEEE-754 floating-point formats� exponent = MaxExponent and fraction = 0. These are infinities, i.e. their value is
value = (−1)sign ∗ ∞� exponent = MaxExponent and fraction 6= 0. These are NaNs – Not a Numbers.
They represent “errors” during computations.

2.5.2 Problems with IEEE754 floats

Equality test

The equality test is one of the most basic tests in programs. It turns out, however, that you
cannot test floating-point numbers for equality. The problems arise from rounding errors.

The example code is [2.12] with output [2.13].

Code Listing 2.12: Rounding test

1 #include <s t d i o . h>
2

3 int main () {
4 double a = 1.0 / 3 . 0 ;
5 i f (1 . 0 == 3.0 * a) {
6 p r i n t f (” round OK\n”) ;
7 } else {
8 p r i n t f (” rounding problems !\n”) ;
9 }

10 }

Code Listing 2.13: Rounding does not work

1 rounding problems !

In the code, the number obtained by division by three and multiplication back is not the
same number as the original one. This may seem trivial to the reader, but there is something
more about this problem. The original output was compiled with g++. Now, try to compile
it with g++ -O2 and the result [2.14] is quite different.

Code Listing 2.14: Rounding works with compiler optimizations

1 round OK

The problem of computer optimizations changing results will be discussed later.
According to [GS05] the results of equality tests can behave differently under different

compiler optimizations. We will discuss this later when discussing the x87 floating-point unit,
but to get a glimpse:

26 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

Code Listing 2.15: Equality test

1 #include <s t d i o . h>
2

3 int main () {
4 double a = 3 . 0 , b = 7 . 0 , c ;
5 c = a / b ;
6

7 i f (c != a / b) {
8 p r i n t f (” something went wrong with comparison \n”) ;
9 }

10 }

Code Listing 2.16: Equality does not hold

1 something went wrong with comparison

We can see that testing for equality of two values can be problematic even when we use
exactly the same computations.

Rules of associativity

As a starter, consider double x = (a + b) - b. In normal mathematic, this is equivalent
to x=a. In floating point arithmetic this is not necessarily the case, for example if a = 1 and
b = 10100, the result of the full expression is 0 and the result of the optimized is 1. Thus the
order of summation is very important. Further discussion about the effects of changing the
order of summations can be found in [Hig93].

The compiler may introduce many problems while optimizing code. There is one impor-
tant place when a change in summation order may occur. It is called “vectorization” and
it is an optimization for the SSE unit. The SSE unit may perform the same operation on
multiple arguments in one instruction. Thus the compiler may wish to exploit this behaviour
and increase the speed of the program. Consider the following program which was borrowed
from [Mon08]:

1 double s = 0 . 0 ;
2 for (int i =0; i<n ; i++) {
3 s = s + t [i] ;
4 }

If n is even, the program may be rewritten as

1 double sa [2] , s ; sa [0]= sa [1]= 0 . 0 ;
2 for (int i =0; i<n/2 ; i++) {
3 sa [0] = sa [0] + t [i *2+0];
4 sa [1] = sa [1] + t [i *2+1];
5 }
6 s = sa [0] + sa [1] ;

Now, the numbers are summed up in completely different order and thus the optimization
may give completely different results, especially when we are summing numbers of different
magnitudes or many positive and negative numbers.

x87 fpu extended precision problems

Current processors use x87 floating point unit with 80-bit registers (long double in C++).
We will use several examples from [Mon08] to demonstrate various problems with optimisa-
tions.

1 double v = 1E308 ;
2 double x = (v * v) / v ;
3 p r i n t f (”%g %d\n” , x , x==v) ;

2.5. FLOATING POINT PROBLEMS 27

Compiled with gcc under Linux, this code will print the value 1014. Note however, that
according to the IEEE-754 standard, the operation of v ∗ v should result in +∞ and the
division won’t affect this. However, the calculations are done in extended 80-bit precision
and they won’t overflow there. To test this hypothesis, the authors of [Mon08] forced storing
the variables by -ffloat-store compilation parameter and indeed the result was ∞. This
same example can be pushed up further:

1 double foo (double v) {
2 double y = v * v ;
3 return (y / v) ;
4 }
5 main () { p r i n t f (”%g\n” , foo (1E308)) ;}

We explicitly requested the storage of the result of v ∗ v. But still, the compiler may re-use
the value of y already stored in the register to perform additional division. Again, the result
of the computation is different for different compilation options.

The authors of the article moreover tried to experiment with another setting. When
calling the functions, you need to store the variable and you can’t reuse anything in the
registers.

1 static inl ine double f (double x) {
2 return x/1E308 ;
3 }
4 double square (double x) {
5 double y = x*x ;
6 return y ;
7 }
8 int main (void) {
9 p r i n t f (”%g\n” , f (square (1E308))) ;

10 }

The calling convention is to return the floating-point values in x87 registers. But before calling
the function f, the result needs to be pushed onto the stack and converted into a double.
However, in case we inline the function f, there is no pushing on the stack and the value is
passed directly in the x87 register. Thus, the act of inlining a function may change the results.
Actually, the gcc compiler does not inline functions when invoked without optimizations, but
it will inline the marked function with the -O2 switch.

The most annoying “feature” of x87 fpu optimizations is the fact that they are not debug-
gable. Consider for example that you will add a single printf call to show the variable before
the problematic code. The compiler needs to save the value to memory due to the function
call. Even more, the compiler is forced to re-load the value from the memory, because the
register value may change during the printf call. After the call the compiler will use the
double for next calculations and the results are different. Just adding the debug code will
change the behaviour of the program and it will not fail now.

Double rounding

The authors of [Mon08] suggest that sometimes, rounding from type A to type B and then
rounding type B to type C can yield different results than direct rounding from A to C. The
reader may wish to read the mentioned article for more information.

2.5.3 Summary

Using floating-point numbers in algorithms is very tricky. For example, there are no simple
equality tests. The authors of [Daw06] tried to find a correct solution, but their solution is
quite complex and it exploits the memory representation of the floating values (which is not

28 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

very good for portability). Our recommendation is to avoid floating point numbers as much
as possible. For example in banking applications floating-point numbers are never used and
the values are stored as integers – the account balance in cents.

2.6 Function call stack limitations

One of the problems with recursive functions is that they take a lot of space on the stack.
This may not seem as a problem because we have plenty of memory. But there are situations
when you cannot use so much memory. The notable ones are� Linux stack size limit : In Linux there is a default for maximum stack size that an

application can have. The default is usually set to 8MB. This is far less than the size
of the available memory.� threading : When programming parallel computations, programmers usually use threads.
The advantage of threads is that they are much lighter than processes and thus are eas-
ier to switch. But using threading may impose its limits. The previously mentioned
limit of the available stack size may be giant when compared with the stack limit for
each thread. For example, the default stack limit for one thread on Linux is 2MB.
Good practice in large projects is to limit the stack even more. In such a scenario you
cannot use recursion much and the only way around is to simulate recursion on the
heap instead of the stack. That might be quite a complex task depending on the type
of the problem.

To introduce the problem, let us start with the explanation of what a function call stack
looks like. There are different calling conventions and each of these conventions has a different
scheme of the stack. In this thesis we will discuss the x86 cdecl calling convention, because
it is the most common calling convention used by C compilers.

The x86 cdecl convention for calling a function is this: First the caller pushes the func-
tion arguments onto the stack. The arguments are pushed onto the stack from right to left.
This enables support for functions with a variable number of arguments. After the parame-
ters have been pushed onto the stack, the 4 or 8 byte pointer (depending on the type of the
architecture) to the return address is pushed onto the stack. Now the function is ready to
be called and the call instruction is used. The function itself stores any local variables on
top of the stack. Returning from the function is done via the ret instruction, and after that
the caller is responsible for cleaning the stack (removing the return address and arguments).
The whole process is shown in figure 2.10.

A quick calculation tells us that if we have two (4 bytes long) integers to store as function
parameters plus one local integer variable, we will need (on a 32-bit architecture) 16 bytes
of stack. These are however really the minimal requirements. In real-world code there are
usually more variables. Moreover there are complications like C++ exception handling,
destruction of classes, etc. Also note that the compiler may increase the stack frame size for
better speed (aligning data structures at the word boundary usually helps). For example,
the gcc compiler needs to have stack frames aligned to 16 bytes. Therefore the function may
occupy more space on the stack than is strictly needed.

To determine whether the real-world scenario of running out of the stack is possible, we
have written some very simple programs:

2.6. FUNCTION CALL STACK LIMITATIONS 29

0xFFFFFFFF

0x00000000

local variables
b
o
tt
o
m

to
p

top of the stack

(a) Start state

0xFFFFFFFF

0x00000000

local variables

b
o
tt
o
m

to
p

argument 2

argument 1

return address

top of the stack

(b) Function call

0xFFFFFFFF

0x00000000

local variables

b
o
tt
o
m

to
p

argument 2

argument 1

return address

local variables

top of the stack

(c) In the function

Figure 2.10: Function call stack visualization

1 #include <s t d i o . h>
2

3 void r e c u r s i v e (int value) {
4 p r i n t f (”%d\n” , value) ;
5 r e c u r s i v e (value + 1) ;
6 }
7

8 int main () {
9 r e c u r s i v e (0) ;

10 }

The example above consists of a simple function call which takes one integer argument.
We may wonder how many recursive calls can a program achieve:

>ulimit -s

8192

>g++ stack1.cpp && ./a.out

261923

261924

Segmentation fault

>g++ stack1.cpp -O2 && ./a.out

infinite execution

The second line of the output shows that we have 8MB of stack available for our program.
When compiled without any optimizations, the function can be nested approximately 260 000
times. This corresponds to 32 bytes for each invocation. The same example compiled with
advanced optimizations turns out to run indefinitely – the tail recursion was optimised to a
simple loop.

Let us consider a more complicated scenario, we selected depth-first search as a good
candidate.

30 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

1 #include <s t d i o . h>
2 #include <vector>
3

4 std : : vector<int> edges [3] ;
5 bool v i s i t e d [3] ;
6 int count ;
7

8 int r e c u r s i v e (int vertex , int parent) {
9 // f o r co r r e c t DFS uncomment f o l l ow i n g l i n e

10 // v i s i t e d [v e r t e x]= true
11 i f (v i s i t e d [v e r t ex])
12 return 0 ;
13

14 p r i n t f (”%d\n” , count++);
15

16 int ch i l d c oun t = 0 ;
17 for (std : : vector<int > : : i t e r a t o r i t = edges [v e r t ex] . beg in () ;
18 i t != edges [v e r t ex] . end () ; ++i t) {
19 i f (* i t == parent) continue ; // i gnore reversed edge
20 r e c u r s i v e (* i t , v e r t ex) ;
21 ch i l d c oun t++;
22 }
23 return ch i l d c oun t ;
24 }
25

26 int main () {
27 edges [0] . push back (1) ;
28 edges [1] . push back (2) ;
29 edges [2] . push back (0) ;
30 r e c u r s i v e (0 , −1) ;
31 }

The corresponding outputs are shown below:

>g++ stack2.cpp -m64 && ./a.out

130917

130918

Segmentation fault

>g++ stack2.cpp -m64 -O2 && ./a.out

174557

174558

Segmentation fault

>g++ stack2.cpp -m32 && ./a.out

174574

174575

Segmentation fault

>g++ stack2.cpp -m32 -O2 && ./a.out

130902

130903

Segmentation fault

In the case of a simple DFS one invocation of the recursive function takes 48 or 64 bytes of the
stack. The funny thing is that optimizations for 32-bit architecture and 64-bit architecture
have opposite effects.

2.7. HARDWARE ERRORS 31

Based on these observations we may say that even when the function is using very limited
local storage, it cannot do much more than 100 000 recursive calls (on Linux with the default
settings). Moreover, this will get a lot worse if we start using classes/bigger structures as
local variables to that function. And the compiler optimizations may also produce a waste
of some space because of stack frames alignment or other optimizations for speed.

The 100 000 recursive calls limit may be a problem for some algorithms. We showed that
DFS may get into trouble, especially on large graphs which are almost paths. But DFS is
not the only one. Therefore we may conclude that some algorithms need to be prepared for
such situations and use their own stack (allocated on the heap, not on the stack area).

2.7 Hardware errors

A special kind of program errors are hardware errors. This thesis does not deal with the
problematics of hardware errors, but nevertheless we thought it would be for the best to
include the basic examples.

Even when the software is completely correct, there are times when hardware fails in
some way. Such errors may be hard to spot. But there are applications for which such small
failures may be critical and there is a need for some type of a detection/recovery. Even when
the application is not critical but the task size is extremely large, these kinds of errors can
cause big problems because the probability of their occurrence on large-scale computations
is quite high. There are several examples of hardware errors from the past which we want to
mention.

In 1994 Intel processors contained a bug in the hardware table used for floating-point
division [Int04]. The result was that around 1 out of 9 ∗ 109 random floating point divisions
resulted in an answer that was wrong starting at the 12-th binary place (4-th decimal place).
This particular bug was found by Thomas Nicely during number-theoretic computations.

Another type of hardware errors is corruption of data. Memory databanks hold small
electric charge. This charge may be changed if a high-energy particle strikes the chip. Thus
computers working in an environment with high radiation levels (or the cosmos) have a much
higher chance of bit-flipping. But cosmic radiation is quite intensive even on ground level
and it cannot be shielded (unless you want to hide your computer below several meters of
lead).

Back around year 2000, the memory chips did not have ECC (error correcting codes) and
during processing of big amount of data the errors were showing up. Jeff Dean from Google
company in his presentation [Dea11] said that “Sort 1 TB of data without parity: ends up
‘mostly sorted‘. Sort it again: ‘mostly sorted‘ another way”. Of course much has changed
since then and ECC memories are available now, but the lesson learned still holds. Huge
amounts of data need to be protected by error correction codes. If you want to know more
about memory errors, you may wish to read a nice whitepaper [mem].

But the memory is not the only possible medium in which errors may occur. Consider
hard drives. Dust or other tiny particles may settle on the disk’s plate and create problems.
Hard drives, however, contain checksums and error-correcting codes. Thus the chance of a
real non-recoverable error is really small. But while the average capacity was growing steadily
over last few years, the non-recoverable error rate increased more sluggishly.

In the following lemma we estimated the probability of encountering a read error while
reading the whole disk:

Lemma 2.7.1 Let p ≪ 1 be a probability of a read error resulting in a non-recoverable bit.
Let n be the number of bits of the hard disk. If we assume independence of read errors, the
probability of reading the whole disk without an error is approximately e−np.

32 CHAPTER 2. TYPICAL ERRORS AND PROBLEMS WITH IMPLEMENTATIONS

Proof: If we assume that read errors are independent, we can model the situation using
Poisson distribution

f(k, λ) =
λke−λ

k!

where f(k, λ) is expected probability of k events when the expected number of events is λ.
In our case we are asking for the probability of no errors(k = 0) and λ = pn. Thus, the final
probability is

f(0, np) =
(np)0e−np

0!
= e−np

2

In the case of current hard drives, the error rate for 250GB disks is said to be less than
p = 10−14. Suppose that you own a RAID5 array with four 250GB disks. In case of a failure
of one drive, you need to read the 750GB in order to reconstruct the failed drive. This leaves
np = 10−14 ∗8∗750∗109 = 0.06. Thus the probability of a non-recoverable read error during
the reconstruction is e−0.06 = 0.94. In 6% of cases you won’t be able to recover. These figures
may be more striking for even bigger disk sizes.

Chapter 3

Infrastructure

3.1 Programming language selection

The programming language which we used for this thesis is C++. In this section we will
briefly discuss this decision and possible alternatives.

The programming language C++ is an object-oriented language which evolved from the
programming language C and thus it is a procedural programming language.

C++ is currently one of the most widespread programming languages in the world. There
are numerous compilers for many different architectures available. Also, the compilers use
very tight optimizations and the C++ performance is still outstanding compared to other
languages.1

One major advantage of C++ over other new languages is the compatibility with C. C++
can be linked with C libraries without any problem, and there are millions of C libraries out
there. This is the main reason why it is still widely used.

C++ is a complicated programming language. Though it is quite old, it posesses very
useful concepts like macro preprocessing and especially templating, which is more powerful
than in any other language we know. Also, there are numerous syntactic rules and many ways
to write the same code. Some of these cases are more complicated, confusing or “magic”.
Therefore in this thesis we will try to use only the basic features of the language and we won’t
try really advanced constructs such as multiple inheritance and similar. In this way, the code
written in C++ will also be somewhat portable to Java, C# or PHP (although some things
will be done completely differently because of different standard libraries and different data
structures available). So, writing code in C++ is an ideal choice for this thesis.

The basic building block of C++ programs are algorithms and data structures from
the Standard Template Library (from now only STL), which is a highly templated and
general set of data structures, helpers and various simple algorithms. As an example set
of STL content, there are data structures like vector (i.e. variable length array), stack,
queue, priority queue, map/hash map, set. From algorithms there is sort, binary search
(lower bound, upper bound), next permutation, set union, copy, for each and many
more. From this point of view, STL is a very good opponent for any standard library of
modern languages.

In this thesis, we won’t reimplement STL – we will do exactly the contrary – we will try
to use STL and its concepts to make our implementations more adjustable and portable.

1Although Java with JIT compilation has comparable running times.

33

34 CHAPTER 3. INFRASTRUCTURE

3.2 Testing infrastructure

3.2.1 Testing framework

Testing is an important part of programming practice. There are many ways how to test
a piece of software. For this thesis we needed an automated, easy to run and easy to use
testing framework. We therefore invested some time to learn about different variants of
testing frameworks available. The summary of our selection is written in this section.

At first, we would like to introduce the reader to the problematics of testing. Software
testing can be categorized into two broad categories - manual and automatic testing. How-
ever, there is no strict boundary between these two - there are tools than can help automating
manual testing, or sometimes automatic tests need manual intervention. For testing of al-
gorithms, the fully automated way is preferred. As for the tests themselves, we may view
them as small pieces of code which can check some specified functionality of a program/
class/function. The smaller and more isolated tests are, the better the chance of finding and
isolating the defects in the code. Therefore, the ideal testing framework allows us to write
many small tests for classes and functions. The testing framework should also handle as much
repeating constructs as possible. This helps the programmer/tester to concentrate more on
the test itself. For example, instead of writing

1 int main () {
2 int r e s u l t = my fun c t i on ca l l (42) ;
3 i f (r e s u l t != 47) {
4 p r i n t f (”The t e s t f a i l e d − expected value 47 but %d returned ” , r e s u l t) ;
5 }
6

7 try {
8 my fun c t i on ca l l (−1) ;
9 } catch (std : : ex cep t ion e) {

10 p r i n t f (”The t e s t f a i l e d − the re was an unexpected excep t ion !\n”) ;
11 }
12 }

it is much more natural and much more convenient to write

1 TEST(MyFunctionTest) {
2 EXPECT EQUALS(47 , my fun c t i on ca l l (42)) ;
3

4 EXPECTNOTHROW(my fun c t i on ca l l (−1)) ;
5 }

Googletest

There are plenty of unit testing frameworks achieving those goals available for the C++
language. To name a few - “C++test”, “cppUnit”, “QtTest”, “UnitTest++” and many
more. Our selection was Google C++ testing framework called “googletest”. We selected
this framework mainly because of its ease of use. The framework allows to easily to set-up
small unittests that are discovered automatically by the framework. This is a very useful
feature as requiring manual registration of tests would probably introduce the chance of
forgetting to register newly written tests.

Googletest can easily create test functions or even test classes. There is support for more
advanced features as well. Moreover there are a lot of custom assertions available (EXPECT EQ,
EXPECT LESS, EXPECT THROWS, ...). For advanced testing, there is Google Mocking Frame-
work, which enables users to test interactions between classes. Overall, the Googletest frame-
work is easy to use and fast to set-up and we decided that it would be the best choice.

3.2. TESTING INFRASTRUCTURE 35

For a testing framework, it is desired that tests can be run easily. In case of googletest,
this means that you need to compile the testfile and run the binary (which can be automated
by a Makefile). Also, the framework should provide nice and easy-to-understand output. To
demonstrate the capabilities of googletest, we included the test output of one selected test
run:

Running main() from gtest_main.cc

[==========] Running 3 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 3 tests from ModInvTest, where TypeParam =

[RUN] ModInvTest.invalidInit

[OK] ModInvTest.invalidInit (1 ms)

[RUN] ModInvTest.small

modular_inverse_precomputed_unittest.cpp:24: Failure

Value of: m.getInverse(4u)

Actual: 4

Expected: 4747u

Which is: 4747

[FAILED] ModInvTest.small, where TypeParam = and GetParam() = (0 ms)

[RUN] ModInvTest.consistency

[OK] ModInvTest.consistency (2155 ms)

[----------] 3 tests from ModInvTest (2156 ms total)

[----------] Global test environment tear-down

[==========] 3 tests from 1 test case ran. (2156 ms total)

[PASSED] 2 tests.

[FAILED] 1 test, listed below:

[FAILED] ModInvTest.small, where TypeParam = and GetParam() =

1 FAILED TEST

Moreover, the output of the test run itself is colorized (green for passed tests and red for
failed) and thus it is even more readable than our example. Therefore, it is really easy to
recognize the failed conditions and figure out the failed test scenarios. The curious reader
may look in appendix at listing 4 which shows one of the many unittests from this thesis.

3.2.2 Managing compilation of large codebase

In large projects there are many source code files distributed around several directories and
the user needs to (re)compile several of them. The main problem is dependencies – to
compile one specific target, other targets need to be built first. Also, the compiler is usually
supplied with complex commandline of various options. In the linux environment, there
is a program called “make” which tries to solve this problem. The programmer writes a
“Makefile” which is basically a script describing how to compile each target and what are
the dependencies between targets. However, as the project grows, the Makefiles are harder
to maintain. Therefore, there is a need for building infrastruture that is more advanced
than Makefile. There are several such “build frameworks” available and they can take over
the whole task of maintaining the dependencies and compilation command lines. The basic
choices for C++ language are for example GNU autotools or cmake. We believe that for
a medium project as this thesis is, these tools are too heavy-weight. Therefore our choice
was to write a very simple Makefile-creating platform in the Python language. This decision
turned out to be very useful, as now we can automatically create Makefiles with “test” and

36 CHAPTER 3. INFRASTRUCTURE

“benchmark” rules and so on, automatically compiling and running the whole set of tests or
benchmarks without any additional complications. The source code of this Makefile generator
and the generated Makefiles can be found in the electronic attachment.

3.2.3 Benchmarking

Besides a testing framework, we also needed some way of benchmarking code. In practice it
was easier to provide our own solution with one simple macro over finding some complicated
way how to benchmark the results. Now we will discuss this solution and the problems with
it.

There are several problems related to benchmarking. For example, there is an issue about
what to measure. There are several available metrics and neither of them is superior. The
short list may begin with� CPU instruction count Measuring instruction count can provide the best estimate of the

performance, but it may miss some other important aspects that are determining overall
performance. For example, the instruction count cannot take into account memory
cache misses and I/O operations. Another problem is the benchmark overhead which
in this case isn’t negligible.� Total elapsed time Provides the best possible estimate on user-experienced performance.
The drawback is that the measurements may be noisy as the operating system may be
allocating resources to other programs, which may disturb the benchmarking.� Processor time Provides the best possible estimate of the running time of the benchmark
not depending on other processes. On the other hand, the total running time of the
benchmark may depend not only on the time the process spent using the CPU. If the
process does a lot of I/O operations, the processor time will be only a fraction of the
real time and there will be a lot of waiting for the hard drive.

In this thesis, we decided to measure the total running time. The main reason behind this
is that it is easily available on all platforms. On the other hand it is hard to get information
about CPU instructions or processor time, especially if we want the program to be portable
to many platforms. To mitigate the problem with the noisy measurements, we conducted
an experiment on the noisiness of the results and set the “minimal benchmark time” to be
1.5 seconds. After this time, the fluctuations between several runs of the same benchmark
were relatively small for our purposes. Note that we are not aiming to optimize programs to
the last instruction, the purpose of our benchmarks is to compare algorithms with usually
different asymptotic time.

Another complication with the benchmarks is that their speed on different machines is
quite different. Therefore, it is impossible to “time” benchmarks by specifying the number of
iterations to be performed. To mitigate this problem, we created the AUTO BENCHMARK macro,
which runs the benchmark for at least the specified minimum running time. When measuring
fast functions/constructs it is important to have as little benchmarking overhead as possible.
The one notably slow operation is getting the system time. Therefore we decided to have a
benchmarking macro with “exponential growth” of the iterations count between time-tests.
This solution is very flexible and produces benchmark time that runs at least the specified
minimum time and at most three times as long. Moreover, the benchmarking overhead in
the inner loop is practically zero. The implementation of our benchmarking macro can be
seen in appendix 1.

The last complication with benchmarking is the code optimization done by a compiler.
Sometimes it is indeed hard to write a benchmark which will run the whole code. Especially
if a major part of the tested functionality is provided in the header files (and this is true for

3.3. PRECONDITIONS – ASSERTS FOR INPUTS 37

our thesis, mainly because we are using a lot of templates, which must be placed in header
files), the compiler may use aggressive optimizations. One such optimization is that if a
function does not have side effects and the return value is not used, it is virtually “useless”
and the call can be skipped. Of course, this may happen in the benchmark itself – usually,
you are not using the return values of the functions you are benchmarking. Or, if you call the
function with constant arguments and the function does not have side effects, the compiler
may cache the result and skip the next function call. The compiler may even decide to
optimize out unnecessary loops and so on. Therefore, when benchmarking, it is important to
check whether the benchmark is still valid, or if the compiler did a very good job optimizing
the code and removed a significant part of it.

The other possibility is to benchmark the unoptimized code, but this is not necessarily
the best solution. For example, the STL std::vector data structure is several times slower
than ordinary C arrays without optimizations, but it is almost identically fast when used
with -O2 optimizations. Thus, the characteristics of the unoptimized and optimized code
may vary dramatically between various algorithms and the benchmark will not give reliable
metrics.

3.3 Preconditions – asserts for inputs

As we discussed earlier, a function should check its input values. This is especially needed
when bad parameters may put the program into an undesirable state like rewriting a part of
memory which was not supposed to be manipulated. Even functions without bad side-effects
should check their arguments, because the faster the error is discovered, the easier it is to
trace and fix the bug.

Thus each function/class in our implementation checks all its arguments for any values
that are out of normal. Functions should also check for values that would produce overflows
or other errors. The number of such checks is therefore quite big and therefore we needed a
way to easily check the code and not introduce too much bloat to it. We considered several
possibilities for the implementation of preconditions.� manual if-then check and returning of the “error” value:

1 const double E BAD SQRT=−1;
2 double s q r t (double x) {
3 i f (x < 0) {
4 return E BAD SQRT;
5 }
6 }� manual if-then check and throwing an exception:

1 double s q r t (double x) {
2 i f (x < 0) {
3 throw std : : inval id argument (”Square root o f negat iv e number”) ;
4 }
5 }� use existing assert macro:

1 double s q r t (double x) {
2 a s s e r t (x >= 0) ;
3 }

38 CHAPTER 3. INFRASTRUCTURE

Neither of these possibilities was good enough for us. The first option is bad because
programmers never bother to check return values of functions. It would be better to throw
an error or to halt the execution as the assert macro does.

Manual check is a quite good solution but there is the problem with its verbosity. You
need three lines of code to check a single condition. You may try to fit everything onto one
line, but it is still quite verbose and the line will be long.

The disadvantage of an assert macro is that it will instantly halt the program and there
is no way how to recover from this. This makes it impossible to catch the error in the
program itself. But the program may want to recover. For example in a simple application
such as a calculator, entering square root of -1 should report an error to the user and allow
for correction and not halt the whole program. The same reason applies for testing – you
cannot test whether the code fails in cases when it should fail, because an assert will just kill
the program.

We therefore propose a solution called a Preconditions class. Preconditions is a class
with many useful functions for checking the input values. The basic usage is

1 double s q r t (double x) {
2 Precond i t i on s : : check (x >= 0 , ”Square root o f negat iv e number”) ;
3 }
4 }

The Preconditions class itself checks the expression for validity and reports an error by
throwing std::invalid argument exception in case the expression does not hold. This way,
the coding overhead is as little as possible. Moreover, the statement itself suggests that it
is checking the pre-conditions of the algorithm and thus is distinguished from the ordinary
checks. The programmer may even use the Preconditions as a documentation of the function
inputs.

The best part is that the most used checks can be implemented in the Preconditions

class to simplify the checking even more. For example instead of checking the range [0, right)
by Preconditions::check((x >= 0) && (x < right)) or using two separate checks, we
implemented a simple function Preconditions::checkRange(x, 0, right).

We hope that this checking of preconditions helps the programmer to write safe and
simple code and that other projects will adapt it too. To see the implementation, consult
appendix 2

3.4 Design choices

There were several nontrivial design choices made during the implementation of the algo-
rithms from this thesis. We will discuss the most important ones now.� Passing output parameters: There are several ways how to pass output parameters of

functions. The basic solution is to return the output in the result. This is of course
the preferred way. But sometimes this cannot be done. For example, if the resulting
structure is too big to be copied, returning the whole object may cause memory and
performance problems. Therefore, there is a need for other way of returning objects.
The two most simple solutions of passing a modifiable argument to the function are
sending a reference of the parameter or sending the pointer to the parameter itself. The
two methods may be used in following way:

3.4. DESIGN CHOICES 39

1 int doMagic1 (const vector<int>& input , vector<int>& output) ;
2 int doMagic2 (const vector<int>& input , vector<int>* output) ;
3

4 vector<int> input ;
5 vector<int> output ;
6 doMagic1 (input , output) ;
7 doMagic2 (input , &output) ;

The benefit of the first method over the second is that the compiler verifies that the
reference is a pointer to the actual variable. Thus the programmer cannot accidentally
pass a wrong reference. The second method is not checking the correctness of the pointer
and if a programmer calls the function with bad parameters like doMagic2(input,

NULL), the function will fail.

The benefit of the second alternative is that the programmer will see the difference
between the normal variables and possible output variables. In other words, see-
ing that the function needs a pointer means that the function can manipulate with
the object (unless the pointer is const). On the other hand, if the programmer sees
doMagic1(variable1, variable2), he/she cannot guess if the two passed vectors will
be changed or not. Thus he/she must check the signature of the function. This may
be very dangerous, especially if it is not very clear if the variable is used only as input,
only as output or both as input and output.

From these two approaches, we therefore prefer the second one as it explicitly differen-
tiates between input and output variables.� Alternative/replaceable subalgorithms: A much harder design problem is how to im-
plement algorithms with alternative sub-algorithms. For example the Miller-Rabin
algorithm for primality testing uses an algorithm for fast modular exponentiation. We
can go even deeper. Fast modular exponentiation uses an algorithm for fast modular
multiplication as a subroutine.

The design problem is how to make these sub-algorithms replaceable. The standard
solution is the design pattern called Command or Strategy, which aims to provide
exactly this kind of functionality. However, the problem is that these patterns usually
work with a hierarchy of classes. This enables the possibility of highly-customizable
sub-algorithms. The cost for these design patterns is the code overhead. If we use the
mentioned patterns, we need to instantiate a lot of objects. In our example of primality
testing algorithm, the class instance of fast modular exponentiation must be created
before and then we need to pass this class instance to the algorithm itself. And again,
for the exponentiation we need to instantiate a multiplication first and then pass it to
the algorithm.

Thus we searched for another type of solution and we were inspired by STL library.
Basically we use the mentioned design patterns, but not in the classical class represen-
tation. Instead, we use C++ templates to do the “instantiation” and there is no need
for real instantiation. The disadvantage of this method is that the algorithm cannot
be replaced on the fly during program run – the sub-algorithms are inserted into the
code in compiling phase. The second disadvantage is that templates cannot provide
such level of type checking as class hierarchy. Indeed, you may pass a totally different
algorithm as the parameter of the template and the program will usually fail to compile
with very user-unfriendly error messages. But there are some standard ways how to
mitigate this and it will be much easier to do in the upcoming C++0x standard. The
basic usage is shown in the next figure.

40 CHAPTER 3. INFRASTRUCTURE

1 // a l gor i thm wi th a sub−a l gor i thm
2 template <class PowerModImpl>
3 class PrimesFast {
4 // implementation , can use PowerModImpl : : f unc t i on s
5 }
6

7 // ” d e f a u l t ” vers i on o f a l gor i thm
8 typedef PrimesFast <math : : powermod : : PowermodExtended> PrimesFast ;
9

10 // usage
11 PrimesFast : : i sPr ime (5) ;
12 PrimesFast <MyPowermodImpl> : : i sPr ime (7) ;

General guidelines

The general guidelines for our codebase are� Use only limited features of C++: The C++ language is very expressive and there are
many ways of writing code in it. We try to use the smallest and well known core of the
language and try to avoid using bizarre extensions.� Use consistent code style: The style of the code is important. It is much easier to read
code with consistent naming conventions. The indenting conventions are important as
well. Our coding style guide is based on the [Goo] with the exception of the naming
convention which is Java-style.� Document anything nontrivial : Documentation is important. If something is not trivial
at the first glance, there should be explanation about what it does. Usually, there
are many hidden presumptions and it is not easy to understand them. Even more,
documenting nontrivial pieces of code helps the reader to understand the problems.� Test for invalid inputs: As we have discussed earlier, if the input is invalid, the function
should report a problem with the arguments.� Test corner cases: Algorithms should be tested for corner cases – empty inputs, too
small inputs, too big inputs, etc.� Test standard inputs: The implementation should be tested on a wide range of different
inputs. The best way is to cross-check with another implementation on some large
random sample of inputs.

Chapter 4

Our implementation

4.1 Math algorithms

4.1.1 Modular arithmetics

Many discrete-math algorithms use calculations “modulo m”. Formally, they compute oper-
ations on numbers a, b belonging to some ring X. The standard operations include:� addition/subtraction� multiplication� exponentiation� greatest common divisor (not the modular operation, but it is useful for many algo-

rithms working with modular arithmetics)� modular inverse

In this section, we will briefly discuss problems with modular arithmetic and our imple-
mentations.

Modular addition and subtraction

The standard modular addition code in C++ is

1 r e s u l t = (a + b) % modulo

The problem we have already discussed several times is that the computation may over-
flow. However, if a and b were from the range [0,m), overflow may occur only if m is bigger
than half of the type’s maximum value. Thus, overflow may be checked very easily. There is
a bigger issue with subtraction. The Standard code

1 r e s u l t = (a − b) % modulo

does not work in this case. The problem is, that if a < b, the result of the computation is
negative. If the basic type of variables a and b is unsigned, overflow occurs. If the basic type
is signed, there is still an error in the result – the remainder of the division will be negative.
Thus, the code needs to be fixed in one of the following ways:

1 r e s u l t = ((a − b) % modulo + modulo) % modulo
2 r e s u l t = (a − b) % modulo ; i f (r e s u l t < 0) r e s u l t = r e s u l t + modulo ;

If we assume, that a, b are normalized to range [0,modulo) before this operation (probably
because they are results of previous modular operations), we can use following simplification

1 r e s u l t = (modulo + a − b) % modulo

41

42 CHAPTER 4. OUR IMPLEMENTATION

Modular multiplication

The integer overflow error is more evident in the context of modular multiplications. For
the computations to be correct, the intermediate result before division should be enough to
hold the whole multiplication. In practice, this means that the size of the intermediate result
should be twice of the size of variables a and b. If the underlying variables are 32-bit integers,
this may be done easily by using 64-bit computations. But beware of the following buggy
code:

1 i n t 3 2 t a , b ;
2 // This i s a bug , as the c a l c u l a t i o n i s done in 32 b i t s
3 // and then converted to 64 b i t s !
4 i n t 6 4 t r e s u l t = a * b ;

Because of lack of 128-bit integers, there is also a problem with 64-bit numbers mod-
ular arithmetic. In the thesis, we implemented standard modular multiplication and also
implementation which can compute up to 63-bit modular arithmetic. The basis of the imple-
mentation lies in emulating modular multiplication by a series of shifts and additions (like in
actual multiplication), but performing the modulo operation at each intermediate stage. If
we limit the size of the numbers to 64−t bits, we may use remaining t free bits in intermediate
calculations and thus we may multiply by t-bits sized blocks. The running time is Θ(64−t

t)
and the algorithm may be fine-tuned depending on the number of free bits. Also, we provide
another implementation, which can compute modulo of 63-bit numbers (i.e. t = 1), but it is
highly optimized. The major optimization is the conversion of the slow remainder calculation
with a fast conditional if statement and subtraction.

Our work consists of the following implementations:� Naive 32-bit modular multiplication using 64-bit variables

+ requires two 64-bit operations

− cannot handle 64-bit arguments

◦ see the class MultmodSimple implemented in math/powermod/multmod simple.h� (64 − t)-bit modular multiplication

− requires 2 ⌈64−t
t ⌉ multiplies/divisions

+ can handle (64 − t)-bit arguments

◦ see the class MultmodExtended<t> implemented in
math/powermod/multmod extended.h� 63-bit optimized version

+ requires no multiplication/division and at most 3*64 additions/subtractions.

+ can handle 63-bit arguments

◦ see the class MultmodOpt implemented in math/powermod/multmod extended.h

Fast exponentiation

There are occasions when you need to compute the b-th power of element a belonging to
ring X, i.e. we need to compute ab ∈ X = a ∗ a ∗ · · · ∗ a. There are two rings in which this
computation is very common: Zm – the ring of all integers modulo m and Mn(R) – the ring
of all n× n matrices over an arbitrary ring R.

The basic solution is to repeatedly multiply b times, which takes linear time (in b). This
is very inefficient especially for very large values of b. An example of an algorithm which

4.1. MATH ALGORITHMS 43

needs fast exponentiation can be Pollard’s rho factorization method, RSA encryption/de-
cryption, finding modular inverse over prime field, fixed point of matrix multiplication (if the
multiplication is convergent).

But before we can continue the discussion of faster algorithms, we must warn the reader:
Do not implement algorithms from this section when you are working with cryptography
and/or security. Many of the algorithms have a serious flaw called “timing attack”. The
attacker can deduce some secret variables used during the computations by measuring the
execution time of the algorithm on different inputs. For more information about timing
attacks, you can consult [Koc96].

There are basically two major implementations – one which computes the result going
from the most significant bits of b, the other from the least significant bits. These algorithms
may be further improved by minimizing the number of required multiplications. We have
implemented the second of the algorithms.� computation from least-significant bits.

+ simple, running time O(log b)

◦ uses modular multiplication algorithm

◦ see the class Powermod <MultmodImplementation> implemented in
math/powermod/powermod.h

There are the following common problems with implementations of modular exponentia-
tion:� integer overflows (the same problems as for modular multiplication)� x0 (mod m) = 1, but there exists the special case x0 (mod 1) = 0. We can demonstrate

this on a simple implementation:

1 powermod(x , n , mod) {
2 r e s u l t = 1 ;
3 for (i = 0 ; i < n ; i++) r e s u l t = (r e s u l t * x) % mod
4 return r e s u l t
5 }

The correct fix is either checking for mod == 1 or using result = 1 % mod . This
special case was found by my supervisor and I am thankful to him for that.

Greatest common divisor

Greatest common divisor is the standard textbook algorithm. In fact, the textbooks usually
use the recursive version, but there is also an optimized version using only a loop.

Problems of common implementations are:� usually implementations do not check for negative values of arguments. The output in
that case might be negative, which is incorrect� signed range – even if authors checks for negative values and switch the sign of ar-
guments or function result, overflow might occur during this sign change (see section
2.4.2).

44 CHAPTER 4. OUR IMPLEMENTATION

This thesis contains several variations of gcd algorithms� using STL’s gcd()

− gcd() does not check sign of the operands

+ we check for all overflows and sign problems

+ time O(log n)

+ easy to implement

– see the function gcd implemented in math/gcd/gcd.h� extended Euclidean algorithm using recursion

◦ classical textbook implementation

+ computes the values a, b, such that ax + by == gcd(x, y).

+ we check for overflows and sign problems

+ time O(log n)

– see the class ExtendedGCD implemented in math/gcd/extended gcd.h� extended Euclidean algorithm using loops

◦ optimized version which avoids recursion

+ computes the values a, b, such that ax + by == gcd(x, y).

+ we check for overflows and sign problems

+ time O(log n)

– see the class ExtendedGCDLoop implemented in math/gcd/extended gcd loop.h

4.1.2 Modular inverse

There are several algorithms for computing modular inverses. For the implementation we
picked up the following: precomputation of the whole table in linear time, using Fermat’s
little theorem ap−2 ≡ a−1 (mod p) and using extended gcd algorithm. The summary of their
properties is in the following list:� Precomputation of whole table

◦ time O(n), memory O(n)

+ easy to implement

+ fast if we need to store the whole table anyway

− works only for primes

◦ see the class ModularInversePrecomputed implemented in
math/modular inverse/modular inverse precomputed.h� Using Fermat’s little theorem

◦ time O(log n), memory O(1)

− more complex (especially for 64-bit numbers), needs fast exponentiation

− works only for primes

− a bit slower than others

◦ see the class ModularInverseFermat implemented in
math/modular inverse/modular inverse fermat.h

4.1. MATH ALGORITHMS 45� Using extended Euclidean algorithm

◦ time O(log n), memory O(1)

+ simple

+ can work also for non-prime modulus as long as the inverse exists

+ quite fast in practice

◦ see the class ModularInverseGcd implemented in
math/modular inverse/modular inverse gcd.h

Precomputation Fermat GCD

p = 48611 19ms 134ms 46ms

p = 195413 93ms 626ms 203ms

p = 888061 460ms 3140ms 1020ms

p = 15485863 9.5s 61.8s 21.5s

p = 982451653
range 106 . . . 2 ∗ 106

- 4.9s 1.3s

Figure 4.1: Time to compute inverses of all numbers modulo p

Based on the benchmarks shown in figure 4.1, we recommend to use Extended Euclidean
algorithm for modular inverse implementation as it is simple to implement and mainly because
it can work also with modulus that is not a prime number. If you need to compute the
whole table and it should be computed very fast, you may consider also using linear-time
precomputation algorithm, which is twice as fast and relatively simple to implement too.

4.1.3 Primality testing

In this section we will discuss algorithms for primality testing and enumeration of primes.
We start with the basics which everyone should know:

Definition 4.1.1 A positive integer p is prime iff x|p implies x = 1 or x = p. Specially, 1
is not a prime.

Lemma 4.1.1 An integer p ≥ 2 is prime iff p is not divisible by any number from {2, 3, 4, . . . ,
√
p}

In this thesis, we implemented several primality-testing algorithms.� standard algorithm based on definition 4.1.1 of primality

− time: O(N)

+ easy to implement

◦ see the class PrimesSlow implemented in math/primes/primes slow.h� optimization of the previous algorithm that tests up to
√
n based on lemma 4.1.1

− time: O(
√
n)

+ easy to implement

◦ see the class PrimesBasic implemented in math/primes/primes basic.h� deterministic variant of the Miller-Rabin primality test

◦ based on [Jae93], [PSSSW80], [ZT03]

46 CHAPTER 4. OUR IMPLEMENTATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

se
c

(1
06 q

ue
rie

s)

N

O(n)
O(sqrt(n))

Miller-Rabin

(a) O(n) on large inputs

 0

 10

 20

 30

 40

 50

 60

 70

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

se
c

(1
06 q

ue
rie

s)

N

O(n)
O(sqrt(n))

Miller-Rabin

(b) O(
√
n) vs Miller-Rabin

 0

 2

 4

 6

 8

 10

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

se
c

(1
06 q

ue
rie

s)

N

O(n)
O(sqrt(n))

Miller-Rabin

(c) Miller-Rabin

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

se
c

(1
06 q

ue
rie

s)

N

O(n)
O(sqrt(n))

Miller-Rabin

(d) Logarithmic scale

Figure 4.2: Benchmark of different isPrime() implementations

+ implementation works up to 231 (when using standard modular exponentiation)
or up to 3.4 ∗ 1014 if using PowermodExtended

+ time for integers up to 231: O(log n), for bigger integers O(log2 n)

− harder to implement

◦ see the class PrimesFast<PowermodAlgorithm> implemented in
math/primes/primes fast.h

The first two algorithms are rather trivial to implement, the Miller-Rabin is a bit trickier.
To help the reader decide which algorithm is best suited for him/her (the compromise of
difficulty of implementation versus performance), we have done some benchmarks as you
may see in figure 4.2.

From these benchmarks, we can conclude that the O(n) implementation is practically
useless, as O(

√
n) is much faster on all inputs and the difference between the implementations

is minimal. However, usage of the Miller-Rabin algorithm may be a good idea, if you are going
to do a lot of computations of numbers exceeding 107. For smaller numbers, the decision is
solely whether you need very fast (and a bit complicated) implementation.

While implementing these algorithms, there are few standard implementation errors you
should look out for:� general

– not checking whether the input is nonnegative

– 1 is a special case and must be handled

4.1. MATH ALGORITHMS 47� O(
√
n) algorithm

– using (int) sqrt((double)n) as upper limit may not give correct results. Sqrt
calculation is usually done at the processor instruction level and there is no guar-
antee that it won’t miss the last significant bit. On current processors it will work
though.

– using (int) sqrt((double)n) + 1 as upper limit tries to solve the above prob-
lem, but introduces a new special case: 2.

– using sqrt((double) n) generally does not work on platforms where integer is
64 bits long, because the conversion to double will lose some digits. Using long

double may help, but this type may not be available on all platforms.� Miller-Rabin

– implementation of powermod (integer overflows)

However, primality testing algorithms are not the only ones you may use. There is a big
family of algorithms with the purpose of enumerating all primes up to some fixed number n.
These algorithms are usually called “sieves” and we implemented some of them:� Eratosthenes sieve

◦ classical implementation of the algorithm

+ time O(n log log n), memory N bits

◦ see the class EratosthenesBasic implemented in
math/prime sieve/eratorsthenes basic.h� Optimized Eratosthenes sieve

+ time O(n log log n), memory N/2 bits

+ implementation of the Eratosthenes sieve which stores and calculates with only
odd numbers, thus achieving faster speed and smaller memory footprint.

◦ see the class EratosthenesOptimized implemented in
math/prime sieve/eratorsthenes optimized.h� Segmented Sieve

+ time O(n log log n), memory O(
√
n) (however, primes are not stored, only printed

out)

◦ implementation of the sieve from [BH77].

◦ useful for computing some statistics on primes, not intended to be queryable.

+ can be easily parallelized.

◦ see the class SegmentedSieve implemented in
math/prime sieve/segmented sieve.h

We considered several other algorithms for sieving, the nice list can be found in the paper
[Sor92]. Some of these algorithms are linear and some run even in o(n). However, the results
of this paper suggest that there is no big speedup in reality and probably it is not worth
implementing unless you need super-fast sieving.

48 CHAPTER 4. OUR IMPLEMENTATION

4.1.4 Factorizing integers

After considering primality testing, another great mathematical task involving primes is
integer factorization. The goal of integer factorization is to factor the input into set of
several primes. A nice list of factorizing algorithms may be found in [Bar04], although the
article omits fast algorithms like quadratic sieve or even general number sieve. For this thesis,
we selected the following three algorithms:� naive factorization by trial division

− running time O(
√
n).

◦ see the class FactorizeNaive implemented in math/factorize/factorize naive.h� Pollard-rho method

◦ implementation based on [Pol75]

+ running time O(n1/4).

− needs a fast isPrime() implementation

◦ see the class FactorizeWithOracle<OraclePollard> implemented in
math/factorize/factorize with oracle.h, math/factorize/oracle pollard.h� Pollard-rho method with Brent’s cycle detection

◦ implementation based on [Pol75], [Bar04]

+ running time O(n1/4).

− needs a fast isPrime() implementation

◦ see the class FactorizeWithOracle<OracleBrent> implemented in
math/factorize/factorize with oracle.h, math/factorize/oracle brent.h

The usual problems with O(n1/4) algorithms are� special cases – for example n = 4 cannot be factored with these algorithms, because
there is no cycle of convenient length� similarly, primes cannot be factored and the algorithms may loop on them.� algorithms must try several times to randomize the advance() function, otherwise they
might loop with small probability

To help the reader decide if he/she needs to implement a naive method or one of the more
complex algorithms, we benchmarked the implementations on sets of numbers. The results
of the benchmark may be found in figure 4.3

Although the Pollard factorization method is asymptotically a lot faster than the naive
method, the practical experiments showed that the overhead is quite big. The Pollard method
was faster starting with n = 108. In fact, the difference even for n = 109 is sufficiently small.
Thus, our recommendation is that to factor anything which will fit into 32-bit integer, you
can use the naive method. Factorization of bigger integers could be more challenging and
that would indeed require implementation of Pollard, Brent or Shanks. One of the surprises
is that Brent’s method is actually slower than Pollard’s. This is consistent with the article
[Bar04] but it is contradiction with Brent’s original article.

If the reader needs to factor numbers which are much bigger (say 64 bits and more),
we would recommend implementing the Quadratic Sieve method, or even better using some
well-tested implementation.

4.1. MATH ALGORITHMS 49

Figure 4.3: Benchmark of different factorize implementations

 0

 500

 1000

 1500

 2000

<10000

10000

1e5
1e6

1e7
1e8

1e9
1e10

1e11
1e12

1e13
1e14

se
c/

10
6 q

ue
rie

s

N

Naive
Brent

Pollard

(a) Asymptotic behaviour

 1

 10

 100

 1000

 10000

 100000

<10000

10000

1e5
1e6

1e7
1e8

1e9
1e10

1e11
1e12

1e13
1e14

se
c/

10
6 q

ue
rie

s

N

Naive
Brent

Pollard

(b) Log-scale

4.1.5 Binary search, root of a function, convex function minimum

Binary search is a classic algorithm that may be found in STL. The problem is that the
provided implementation is bogus, see section 2.4.2 for more information about integer over-
flows during binary search. Thus, we provide our own implementation, which checks for these
problems.� lower bound()

◦ finds first position where element can be inserted

+ time O(log n)

+ checks for possible overflows

◦ see the function lower bound implemented in math/binsearch/int binsearch.h� upper bound()

◦ finds last position where element can be inserted

+ time O(log n)

+ checks for possible overflows

◦ see the function upper bound implemented in math/binsearch/int binsearch.h

But binary search algorithm in sorted arrays is not the only application of binary search.
You may use binary search to find the root of a function. This is usually slower than finding
root by the Newton’s method, but it does not need to compute function derivatives. In
practice, it is usually enough to use binary search. Also, there is a ternary-search modification
for finding the minimum of a convex function.

We provide an implementation of two methods� root() of a smooth function.

– classical binary search

+ time O(log(range/precision))

+ does not loop forever

− does not guarantee the required precision� convex min() – minimum of a convex function.

– ternary seach

50 CHAPTER 4. OUR IMPLEMENTATION

+ time O(log(range/precision))

+ does not loop forever

− does not guarantee the required precision

For the actual code, see the class FunctionBinsearch implemented in
math/binsearch/function binsearch.h .

The complications with the implementations are� the required precision of the result cannot be achieved. This may happen if we require
high precision, but the results are big and thus the difference between two consecutive
floating-point numbers is bigger than precision. Moreover, the code while (right -

left > precision) may loop forever.� precision of the function result itself may be limited. If the function we are interested in
is complicated, it may happen that the results will not be correct to all available decimal
places. This may violate the preconditions, for example convex function ax2 + bx may
not be convex when computed in floating-point numbers.

4.1.6 Rational numbers

For other algorithms, notably the Gaussian elimination and geometric algorithms, rational
numbers are needed (if we want perfect results). Thus, we needed to implement such numbers.

The general problem with rational numbers is their tendency to overflow. Even when we
start with decent small numbers up to 100, after several multiplications/divisions and then
additions of fractions, we can reach the limits of integers very fast. Thus, the major problem
with the implementations is overflow-checking. The number of such overflow-checks in the
implementation is enormous. We therefore decided to use a well tested third-party library
for that purpose. We used SafeInt library from [Mic] This library checks integer overflows
by defining a new type SafeInt<T> which encapsulates integer of type T. Using the SafeInt

class, the code of rational numbers is more or less straightforward. Special care should be
taken to the tests themselves, however. They should check that the Rational class is using
SafeInt in a correct manner and that we are throwing exceptions on all types of overflows.

If the reader is interested in our implementation, he/she may see the class Rational<IntegerType>
implemented in math/rational/rational.h

4.2 Computational geometry

4.2.1 General problems with geometry

The major problem with geometry is the “real-number” character of it. Many mathematically
correct formulas are encountering severe problems when used in computer’s floating-point
arithmetics. For more information, see section 2.5 of this thesis. We will go through the
same problems and show them in a geometric context.

Line representation

The classical representation of the line in form

y = ax + b

for some constants a, b may cause trouble with precision. First of all, there is no convenient
way how to represent a vertical line. Moreover, the line is usually entered in a form of two
points, rather than the parameters a, b. And the computation of a and b from the point

4.2. COMPUTATIONAL GEOMETRY 51

representation involves division. During this division, small rounding errors may occur and
the computation is generally very unstable with near-vertical lines.

Angle comparison

Another very problematic geometry task is angle comparison. Angle comparison is used in
several sweep-line geometric algorithms in the stage of sorting the points around some center
by increasing angle. Moreover, in several of these algorithms, the order of the points is very
important and if there are small discrepancies between the sorted angles, the algorithm may
produce different results.

The straightforward way is to use atan2 function1 to get the angles and after that sort
the angles. Note that the sorting stage can be problematic too, see section 2.2 for that.

But let us talk about the angle comparison again. Program [4.1] with its output [4.2] may
suggest that the angles are indeed problematic around the x-axis.

Code Listing 4.1: Angle comparison

1 #include <s t d i o . h>
2 #include <math . h>
3

4 int main () {
5 p r i n t f (”%l f %l f \n” ,
6 atan2 (0 . 0 , −1.0) ,
7 atan2 (−0.0 , −1.0)) ;
8 }

Code Listing 4.2: Angle comparison output

1 3.141593 −3.141593

The explanation of such behaviour may be found in the manual of the function atan2.
The manual suggests that the result greatly depends on the sign of the operands. We may
quote the manual of the function atan2:

special values:� atan2(+-0, -0) returns ±π.� atan2(+-0, +0) returns ±0.� atan2(+-0, x) returns ±π for x < 0.� · · ·

We may see that the result in case of zero arguments is “random”, depending on the sign
of the argument. But we cannot guarantee the correct sign of the argument, especially after
several floating-point operations. Moreover, the function atan2 might have problems with
infinite arguments and other special cases. And finally, the result of atan2 will probably be
calculated in extended precision and thus comparison during sorting may yield other results
than comparison after sorting.

Solution of the problems

The major problem with geometry computations is the presence of division operation, which
may produce extremely high numbers when dividing by numbers close to zero. The same
applies for functions with discontinuities like atan2.

1Function atan2(y, x) returns an angle φ between the point (x, y) and the x-axis.

52 CHAPTER 4. OUR IMPLEMENTATION

Most of the problems can be solved though. If the task itself can be specified with only
integer arguments, almost all computations can be done in integers as well and we may get
rid of the problems. Even in case we must use floating-point numbers, the solution discussed
here will probably end up with higher precision.

The key point is to change the representation of the line or line segment. There exists
an amazingly natural representation – we may represent a line or line segment as two points
(endpoints in case of a segment and any two points in case of a line). The question now is
how to implement other operations with lines.

First of all, there is the question of intersection. In the ax + b representation, the in-
tersection of lines could be calculated very easily. Now, the problem is more challenging. If
we ask for the point of intersection, the answer can’t fit into integer numbers and it would
be needed to implement rational numbers or use floating-points (with the knowledge that
the result might be rounded). But if we ask only the question “do the lines/line segments
intersect?”, we may calculate the exact answer with only integers.

We can represent points as “vectors” from point (0, 0) to point (x, y). And we already
know the two useful operations on vectors - scalar product and cross product. Now, if we
assume that we are dealing with 2D geometry, the cross product is exactly determined. We
may use these two simple operations (which need only multiplication and addition) for many
simple questions. A positive dot product means that the angle of two vectors is less than 180
degrees. A positive cross product means that the second vector is on the right (seen by the
observer directed by first vector). And so on. The cross product may be used to determine
the area of a triangle in much more stable way than the Heron’s formula. Even the angle
comparison may be done with these two products.

Overall, the cross and dot product are the basis of computational geometry and have
many uses.

4.2.2 Line segment intersections

Determining whether line segments intersect may be a quite difficult task. Even if we are
using exact integer arithmetics the implementation is hard to get right. The problem arises
from many special cases. To show the reader the complexity of this problem we compiled a
list of various types of two line segments intersection types. This list is shown in figure 4.4.

The reader may see that instead of two simple cases – the segments intersect or do
not intersect, we must deal with much more complicated ones. Tangency is one of the
problems. But the most problematic cases are overlaps. And even the overlaps are of different
types. Therefore to exactly classify the type of the intersection we need to check many
possibilities and the implementation is a bit complicated. We provide the following functions
in geometry/two d/intersect.h:� bool pointOnLine(Point, Line)� bool pointOnLineSegment(Point, LineSegment)� IntersectType intersectLineLineSegment(Line, LineSegment)� IntersectType intersectLineSegmentLineSegment(LineSegment, LineSegment)

4.2.3 Angle comparison

We have implemented a reliable angle comparison function. This function uses only multi-
plications and additions/subtractions. Thus, in integer arithmetics it is exact. Moreover, in
floating-point arithmetics it is more precise than the transcendental atan2 function. We have
also implemented a fast function which can determine the quadrant of the point, in a very
elegant way using an array of constants.

4.2. COMPUTATIONAL GEOMETRY 53

(c) Basic non-intersect (d) Basic non-intersect 2 (e) Basic intersect

(f) Tangency 1 (g) Tangency 2 (h) Tangency 3

(i) Parallel

(j) Overlap 1 (k) Overlap 2

Figure 4.4: Line segment intersecion cases� quadrant detection

+ elegant implementation

◦ see the function getQuadrant implemented in geometry/two d/angle.h� angle comparison

◦ see the function angleLess implemented in geometry/two d/angle.h

4.2.4 Convex hull

One of the basic problems in geometry is finding a smallest convex superset of points. Such
set is called convex hull. We decided to implement a reasonably fast algorithm for this task.
The algorithm is called Monotone Chain Convex Hull and it constructs the upper and lower
half of the convex hull separately.� Monotone Chain convex hull

◦ time O(n log n), memory O(n)

+ easy to write (almost no special conditions or cases in implementation)

◦ returns points of convex hull in sorted order

+ removes any unnecessary points from the hull (duplicates, points lying on the
edges)

◦ see the class ConvexHull<T> implemented in geometry/two d/convex hull.h

In this implementation, there are no particular issues, but the reader may try to implement
some of the other algorithms like Divide and Conquer or Graham Scan algorithms to see a
big amount of corner cases and special scenarios.

54 CHAPTER 4. OUR IMPLEMENTATION

4.3 Algorithms on strings/sequences

4.3.1 String search

String matching is probably the most important string problem. There are plenty of algo-
rithms that can search for patterns. For the thesis we selected two well known algorithms
KMP and Rabin-Karp and less known but extremely fast suffix arrays.� Knuth-Moris-Pratt

◦ implementation based on [KMJP77]

+ fast, time O(n + p)

+ deterministic

◦ see the class Kmp implemented in strings/search kmp/kmp.h� Rabin-Karp

◦ implementation based on [KR87]

− probabilistic

+ time O(n + p) if false positives are allowed (with small probability)

− worst-case O(np) if the check for false positives is in place

◦ see the class RabinKarp implemented in strings/search rabin karp/rabin karp.h� Suffix array search

◦ implementation based on [MM90]

+ very fast for fixed text after building the suffix array

+ time O(log p)

− building the suffix array is relatively hard to implement

◦ more on suffix arrays in section 4.3.3

Common problems with these implementations are� special cases – pattern of length 1 may cause buffer overflow in some implementations
of KMP� KMP might be a bit tricky to get it right, especially the automata backlink to epsilon
state� bad hashing function for Rabin-Karp algorithm – see next section

We recommend implementing the KMP algorithm for almost any occasion. The Rabin-
Karp algorithm is slow because the hash function computation involves several arithmetic
operations (versus fast memory lookups in KMP) and it may produce false positives (if not
checked). Rabin-Karp might be a good idea only in case one needs to match several patterns
of the same length. In that case, it is probably easier to implement than Aho-Corasick (a
generalization of KMP to more patterns). The suffix arrays are extremely fast, if they are
pre-built for a specific text, but their building is quite complex to implement. The reader
may consult section 4.3.3 for more information about possible algorithms for building suffix
arrays.

4.3.
A
L
G
O
R
IT

H
M
S
O
N

S
T
R
IN

G
S
/S

E
Q
U
E
N
C
E
S

55

Testcase KMP RabinKarp Suffix array build1 suffix array search

100000 random letters, small patterns 1.3ms 25ms 120ms 0.007ms

106 digits of pi, small patterns 15ms 300ms 2.6s 0.007ms

bible, small patterns 64ms 1.1s 36s 0.008ms

bible, big patterns 240ms 2s 36s 0.009ms

16MB apache logs, small patterns 210ms 4.2s 150s 0.01ms

60MB of human genome, 0 small matches 0.9s 15s 1400s 0.01ms

60MB of human genome, 500000 small matches 0.9s 17s 1400s 9ms

60MB of human genome, 500000 small matches 0.9s 17s 1400s 9ms

60MB of human genome, 650000 long matches 0.9s 17s / 630s2 1400s 42ms

100MB PHP source code tar, long patterns 1.3s 26s 2200s 1ms

1 – using our O(n log2 n) implementation of Manber-Myers idea, see the section 4.3.3. Note that there are much faster implementations available.
2 – with checks for false positives

Figure 4.5: String search benchmark

56 CHAPTER 4. OUR IMPLEMENTATION

4.3.2 Theoretical analysis of the rolling hash

In the Rabin-Karp algorithm [KR87], the concept of a rolling hash function is used. Basically,
a rolling hash function is a hash function for a window of fixed length over the input. The
concept of the rolling hash is shown on the figure 4.6. The basic property of the rolling hash

a b r a c a d a b r a

Window = 6

a b r a c a

 b r a c a d

 r a c a d a

 a c a d a b

 c a d a b r

 a d a b r a

Hash 1-6

Hash 2-7

Hash 3-8

Hash 4-9

Hash 5-10

Hash 6-11

Figure 4.6: Rolling hash

is that there is is an easy way to recompute the hash when moving the window by one. This
property makes it useful to detect fixed-size patterns in the text.

The math definition of the Rabin-Karp rolling hash is

hstart,len(x) =

start+len−1∑

i=start

clen−1−ix[i] (mod m) (4.1)

For the Rabin-Karp algorithm to be as fast as possible, there is an effort to maximize
speed. The original Rabin-Karp algorithm is based on rolling hash modulo a random prime
number p and under these conditions, it is guaranteed that the expected number of collisions
is small.

In this part of the thesis, we theoretically examine the possibility of skipping the modulo
p part and using overflows in integer arithmetics to do the modulo. This is considered to be
a good optimization as we do not need to calculate the modulo operation, and also we do
not need an extended data type (previously, if the hash was 32-bit long, we needed 64-bit
operations during the computation). This variation of the rolling hash function has not been
theoretically examined yet and some people errorneously believe that it is safe to use such
modulo [DJ97].

The problem with the “optimization” is that the original average-case analysis of the
collisions in [KR87] does not hold.

Bad behavior of rolling hash using modulo 2n

In this section we will present our analysis of the rolling hash function computed modulo 2n.
We will start with the following lemma

Lemma 4.3.1 Let {x[i]}, {y[i]} be two sequences of the same length for which the rolling
hash function collides. Then the hash of the sequence {x[i] − y[i]} and the hash of the null
sequence (of the same length) collides too.

The result of this lemma is that we just need to find collisions of sequences with the null
sequence. In other words, we need to find only sequences with a zero hash value.

Lemma 4.3.2 Let constant c in the rolling hash function be even and m = 2n. Then the
rolling hash of two sequences of same length collides iff the rolling hash of their last n char-
acters collides.

4.3. ALGORITHMS ON STRINGS/SEQUENCES 57

Proof: We know that cn = 0 (mod m) because with each multiplication the number of
ending zeroes in binary representation of ci increases at least by one. 2

We can see that setting c even results in very undesirable behaviour as we are completely
ignoring almost everything from the sequences itself.

Moreover, the probability of a collision is also higher than it should be. At least, with c
even, the hash function cannot have an odd result in 50% of cases as the parity of the result
is dependent on the parity of the last character in the sequence. If c is divisible by a greater
power of two, that may further increase the probability of a collision. The exact same thing
holds for the value of sequence elements itself – if they are divisible by some power of two,
they contribute with fewer bits to the final hash and the probability of finding a collision
(with the zero sequence) is again increasing.

We have seen that even values of c have big undesired effects and therefore should be
avoided. The usual solution is thus to avoid even values and use only odd values (which are
coprime to m). This approach turns to contain problems as well.

Our main result about odd values of c is formulated in the following theorem:

Theorem 4.3.1 Let m = 2n. If (k + 1)(k + 2) ≥ 2n, then then there exists a sequence of
length 2k over values xi ∈ {−1, 1} with the zero hash value for any odd value of c.

The fact that the collision exists is self-evident, because hash function
is much longer than the length of the hash itself. The interesting part
is, that we need only plus/minus one. But the most important fact is
that this is a collision for any c and that the sequence is extremely
easy to construct. Also, the constructed sequence will have some quite
interesting properties.
The consequence of this is that even when we use randomization of
constant c to avoid collisions, bad adversary can supply a sequence
which will have many collisions. This is especially important in case
we are relying on the fact that collisions are improbable and we do not
check for false positives in the algorithm to provide linear worst-case
time.

Proof: The basis of our proof lies in the following algebraic identities:

1 − c = 1 − c

1 − c2 = (1 − c)(1 + c)

1 − c4 = (1 − c2)(1 + c2) = (1 − c)(1 + c)(1 + c2)

1 − c8 = (1 − c4)(1 + c4) = (1 − c)(1 + c)(1 + c2)(1 + c4)

...

1 − c2
k

= (1 − c)(1 + c)(1 + c2) · · · (1 + c2
k
−1)

The reader may have noticed that because c is odd, all expressions in parentheses are even.
If we now take the expression

(1 − c)(1 − c2) · · · (1 − c2
k

) (4.2)

we have multiplication of even numbers. The count of even numbers in the result is 1 + 2 +
3 + ... + (k + 1) = (k + 1)(k + 2)/2. Therefore for k such that (k + 1)(k + 2) ≥ 2n we get

58 CHAPTER 4. OUR IMPLEMENTATION

hash = 0.

Moreover, the expression 4.2 is defined quite nicely as a recurrent sequence:

x1 = (1)

x1..2 = (1,−1) = (x1,−x1)

x1..4 = (1,−1,−1, 1) = (x1..2,−x1..2)

x1..8 = (1,−1,−1, 1,−1, 1, 1,−1) = (x1..4,−x1..4)

...

x1..2k+1 = (x1..2k ,−x1..2k)

2

In real-world scenario, n = 32 or n = 64. Taking the second as an example, we have
11 ∗ 12 > 2 ∗ 62 and thus k = 10 is sufficient. To summarize our result – we have sequence of
length 1024 which collides with zero-sequence for arbitrary odd c.

High probability of shorter collision sequences

Our results can be improved even more.

Suppose we consider setting k = 6. In that case, the hash of a sequence of length 2k = 64
will lose (k+1)∗(k+2)/2 = 28 bits of security. For n = 32 this may be a pretty big loss. But
in fact, this analysis is only the “best-case” analysis. If we assume that (for fixed c) amongst
(k + 1) ∗ (k + 2)/2 even numbers around one half is divisible by 4, one fourth is divisible by
8, etc. we will come to the result that expected number of zeroes at the end of the hash is
(k + 1) ∗ (k + 2) − 1. Thus for k = 7 a collision will occur with high probability.

To sum up – we have found a nice recursively defined sequence of length 128, for which
there is a collision with the zero sequence for almost all c. The variant of the rolling hash
without using modular division by a prime number is therefore not resistant against collisions
and should be avoided in Rabin-Karp algorithm.

4.3.3 Suffix arrays

While Knuth-Moriss-Pratt, Aho-Corasick and Rabin-Karp algorithms both preprocessed the
pattern and then could be used to search for a pattern in the text, some problems require the
opposite way. If the text is fixed, but there may be many patterns, it would make sense to
preprocess the text into some structure and use that structure for faster searches later. The
example of such scenarios is DNA sequencing – we want to preprocess the whole big sequence
and then there will be many online queries for localising parts of the sequence.

There are several structures that support such operations, for example suffix trees, suffix
arrays and some special types of indexes. In this section we will discuss the suffix arrays
which are easier to implement and less memory-intensive than suffix trees.

Suffix arrays were first introduced by Udi Manber and Gene Myers in [MM90] as a simple
replacement for suffix trees. After this paper there were several improvements made and
many of the searching problems today rely on this structure.

Currently, there exist several different algorithms for creating suffix arrays from the string
in linear time, but such are quite complicated. Moreover, the difference in running times of
various algorithms may differ significantly [Mor10]. After consulting implementations on page
[NW09] the decision was made to implement the simplest O(n log n) algorithm from article
[MM90]. Another very nice implementation can be found in the article [KSB06]. We did not

4.3. ALGORITHMS ON STRINGS/SEQUENCES 59

reimplement this algorithm, as the algorithm in the electronic attachment to the article is
quite great. In fact, if you are looking for a nicely-written and moderately fast suffix array
implementation with small memory footprint, that implementation would be great for you.

If you need a bleeding-edge fast algorithm, consult [Mor10], as this implementation is
very well tuned and extremely fast.

In the thesis we implemented three algorithms for constructing a suffix array.� naive implementation

− running time O(n2 log n) worst-case

+ uses 4n bytes of memory

+ if the data contains relatively short longest common prefixes, the algorithm may
be relatively fast

− the problem is that the worst-case may be reached with real datasets (DNA se-
quences with lots of unknown bases)

+ very easy to implement

◦ see the class NaiveSuffixArray implemented in
strings/suffix array naive/naive.h� O(n log n) by Manber Myers

◦ This is the implementation of the (first ever) suffix array construction from the
article [MM90]

+ O(n log n) worst case

− uses 12n bytes of memory (according to the article, this can be further reduced to
8n bytes of memory, but the article is not very clear about how to implement it)

◦ see the class ManberMyers implemented in
strings/suffix array myers/manber myers.h� O(n log2 n) modification of Manber Myers idea

◦ The previous algorithm used count-sort to sort the data, this algorithms takes the
idea from there, but uses standard sorting function from STL.

+ O(n log2 n) worst-case

− uses 16n bytes of memory

+ slightly less complicated to implement than Manber-Myers

◦ see the class ManberMyersLog2 implemented in
strings/suffix array log2/manber myers log2.h

The results of benchmarks are in figure 4.7. Based on the results of the benchmark, we can
conclude that the naive suffix array implementation is quite fast, if the text is not degenerated
and does not have long common prefixes. It is a very good choice if you need a simple and
relatively fast algorithm and you know that the data does not have long common prefixes. The
O(n log2 n) version seems to be faster than O(n log n) for the big inputs, probably because
of smaller cache-miss count. Overall, our implementations are several times slower than fast
suffix array implementations running in linear time. Thus, we recommend using our suffix
array implementations only on smaller sequences (maximum of several megabytes) or when
you need to build the suffix array only once in a while and you do not care for additional
time.

60
C
H
A
P
T
E
R

4.
O
U
R

IM
P
L
E
M
E
N
T
A
T
IO

N

data file size
time (sec)

Naive MM MM n log2 n BK LS YM

Alphabet – A..Z repeated many times 30 000 12.83 0.08 0.05 - - -

Random – 105 random characters 100 000 0.16 0.08 0.31 - - -

Pi – 106 digits of number π 1 000 000 1.72 1.81 4.36 - - -

Factbook – Text of The World Factbook 1992 2 473 400 5.48 12.11 13.81 - - -

Bible – Text of the bible 4 047 392 9.47 22.91 23.39 - - -

E.Coli – Genome of E.Coli 4 638 690 11.66 31.84 29.66 - - -

Apache logs – server logs 16 780 691 82.1 90.4 123.2 24.9 21.9 5.1

Chromosome Y – human genome 60 561 044 > 5hours 806 598 102 203 16.3

PHP – tar of source codes 93 655 040 1460 1038 797 121 184 31.0
Shortcuts: MM – Manber Myers, BK – Burkhardt Karkkäinnen, LS – Larsson Sadakane, YM – Yuta Mori

Figure 4.7: Benchmarks of various suffix array implementations

4.3. ALGORITHMS ON STRINGS/SEQUENCES 61

data file results

File Size Avg. LCP max LCP Naive Kasai Manzini

random.txt 1000000 2.12 5 < 0.1s < 0.1s < 0.1s

pi.txt 1000000 5.31 12 < 0.1s 0.34s 0.5s

bible.txt 4047392 13.97 551 0.83s 1.4s 2.4s

world192.txt 2473400 22.01 559 0.45s 0.8s 1.3s

E.coli 4638690 17.38 2815 1.1s 1.9s 3s

alphabet.small 30000 14975 29974 2.1s < 0.1s < 0.1s

access.log 16780691 103.89 1422 10.7s 4.4s 8.8s

chrY.fa 60561044 7808302.5 30599949 > 5hours 18.4s 29.3s

php-5.3.5.tar 93655040 1370.4 230400 615s 26s 63s

Figure 4.8: LCP array calculation

Longest Common Prefix

Suffix array search and several other algorithms that query the suffix array may be improved
with additional information about the suffixes. This information is called longest common
prefix (LCP) and it is an array of sizes of prefixes of every two adjacent suffixes in the
suffix array. There are simple, but sophisticated algorithms for LCP computation and we
implemented the following of them� naive LCP computation

+ easy to implement

− worst-case O(n2) (Θ(L) where L is sum of LCP array).

+ no additional memory needed

◦ see the class LCPNaive implemented in strings/suffix array lcp naive/lcp naive.h� fast computation by Kasai et al.

◦ implementation based on [LKL+06]

+ time O(n)

− 4n bytes of additional memory needed

◦ see the class LCPKasai implemented in strings/suffix array lcp kasai/lcp kasai.h� fast computation by Manzini

+ enhancement of previous algorithm for less memory

◦ implementation based on [Man04]

+ time O(n)

+ O(σ) bytes of additional memory needed

◦ see the class LCPKasai implemented in
strings/suffix array lcp manzini/lcp manzini.h

The recommended implementation is Kasai’s algorithm, because it is easy and fast. If
you need an implementation of LCP calculation with tight memory limitations or you are
processing very big sequences, the improvement made by Manzini might be a good idea.

62 CHAPTER 4. OUR IMPLEMENTATION

Checking

After building the array or reading it from some storage, it is good to check its consistency.
The trivial algorithm checks suffixes in the same way as naive LCP computation, thus the
running time is worst-case O(n2). There is however a very simple and effective algorithm
available. We implemented it in order to check the consistency of our own suffix array
algorithms.� fast suffix array checking

◦ based on paper [BK03]

+ simple and fast

+ time O(n)

◦ see the class SuffixArrayChecker<T> implemented in
strings/suffix array check/suffix array check.h

4.3.4 Longest common subsequence

One of the standard problems in string/sequence matching is determining the longest com-
mon subsequence of two sequences. The algorithm may be also used to determine the edit
distance between strings or to align two strings. The LCS problem can be solved by dynamic
programming in quadratic time, there is however a complication with memory, because it too
is quadratic. Hirschberg in [Hir75] introduced a trick how to decrease this memory just to
linear. There are other optimizations (mainly reducing the running time by log n), but they
are impractical, as the speedup is not so big and they are quite complex. In the thesis, we
implemented the basic algorithms:� dynamic programming (returns only length)

◦ simple

◦ running time O(nm)

+ memory O(n + m)

– see the class LCS implemented in strings/lcs/lcs.h� dynamic programming (returns also subsequence)

◦ simple

◦ running time O(nm)

− memory O(nm)

– see the class LCS implemented in strings/lcs/lcs.h� Hirschberg’s algorithm (returns also subsequence)

◦ based on [Hir75]

◦ running time O(nm)

+ memory O(n + m)

– see the class LCSHirschberg implemented in strings/lcs/lcs hirschberg.h

We strongly recommend to use the first implementation, if possible, because it is straight-
forward. In case the reader really needs also the subsequence and not only its length, the
decision depends solely on the sizes of sequences. Hirschberg’s algorithm is quite useful for
n,m > 5000.

4.4. BALANCED STRUCTURES 63

4.3.5 Minimal cyclic shift

In case of cyclic sequences, it is usually important to compare them effectively. The problem
with basic comparison is that there are n possible rotations of the string that need to be
taken into account. One convenient way how to solve this problem is “normalizing” the
sequences. The natural normalized representation of a cyclic sequence is such a rotation that
is lexicographically minimal. It is therefore crucial to be able to compute such rotation very
fast. For this purpose, we implemented algorithms from [Duv83] which are solving this and
similar problems. The reader may wish to see the class Duval implemented in
strings/cyclic/duval.h .

If the reader wants to implement Duval’s algorithms, we have a warning for him/her. We
have found (and mentioned earlier in section 2.1) that pseudocode from the original paper
has several buffer overflows/out-of-bounds errors.

4.4 Balanced structures

4.4.1 Interval trees and balanced data structures

Interval trees

In algorithm competitions, there is a big need of data structures that can do some operations
on whole intervals. Such data structures are usually variants of the Interval Tree – a binary
tree representing intervals. In such trees, “statistic” operations like sum over the whole
interval or maximum over it can be done efficiently in O(log n) time. Some of the interval
trees can even support data-altering operations on whole intervals efficiently. These structures
are however tightly tied for their purpose and cannot be easily generalized. In this thesis, we
implemented two very efficient versions of simple interval trees which can update one position
and query whole interval.� Simple interval tree

◦ computes maximums over intervals

+ can set/update one value in O(log n) time

+ can query interval [x, y) in O(log n) time

+ implementation without recursion

◦ see the class SimpleMaxTree implemented in interval trees/simple/simple max.h� Fenwick interval tree

◦ computes sum/maximum over intervals

◦ based on [Fen94]

+ can set/update one value in O(log n) time

+ can query interval [0, x) (or [x, n) depending on the variant of the implementation)
in O(log n) time

+ extremely easy to implement, implementation takes only several lines

+ very fast in practice

◦ see the class FenwickTree implemented in interval trees/fenwick/fenwick.h

Our recommendation is to write Fenwick tree if it is possible. It does not possess the
full power of interval trees as it can only query ranges with one fixed end, but this is in
many cases sufficient. This disadvantage is, however, greatly overshadowed by its simplicity
– the core of the algorithm takes only a few lines and there is almost no room for a mistake.
Moreover, the algorithm is extremely fast, as can be seen in figure 4.9

64 CHAPTER 4. OUR IMPLEMENTATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 100
1000

1e4
1e5

1e6
1e7

se
c/

10
6 q

ue
rie

s

size

Simple
Fenwick

Figure 4.9: Benchmark of interval trees

4.4.2 Skiplist

One of the most useful data structures available in STL is std::set. A set can hold a set
of items, storing them in a balanced Red-Black tree. The advantage of the set is the time
complexity needed by various operations. Operations like insert, delete and find all run in
O(log n) where n is the size of the set. These operations are quite useful, but the std::set

is missing two important operations, which are sometimes required. They are� find k-th element� inverse of k-th element. Given an element (iterator), return the position in the set.

Both of these functions can be implemented in Red-Black tree in O(log n) but the imple-
mentation of the tree is difficult. Therefore we provide an alternative data structure called
skiplist, which is a randomized data structure with all operations expected to be O(log n).

Our implementation supports the following functions, all in O(log n)� insert(value)� find(value)� erase(iterator)� kth(position)� xth(iterator)� iterator functions: begin(), end(), iterator++, iterator--

Thus, we provide a full alternative for std::set with additional functions. The comparison
of std::set and Skiplist is available in figure 4.10. Based on these results, we may conclude
that our implementation is roughly 3 times slower and takes 2.5 times more memory than
std::set. But the presence of the new functions may prove useful in some cases. For details
see the class Skiplist implemented in balanced structures/skiplist/skiplist.h

4.4. BALANCED STRUCTURES 65

operation (2.5 ∗ 106 elements) set skiplist

memory per element, 64-bit 44 bytes 108.2 bytes

memory per element, 32-bit 20 bytes 52.3 bytes

insert random 10s 37s

delete random 11s 55s

insert ascending 9s 14s

delete ascending 3s 11s

insert descending 8s 7s

delete descending 2s 20s

find 9s 36s

kth N/A 15s

xth N/A 3s

Figure 4.10: Skiplist benchmark

66 CHAPTER 4. OUR IMPLEMENTATION

Chapter 5

Conclusion

The goal of the thesis was to create a set of implementations of various algorithms. We
fulfilled this goal by providing a rich set of algorithms which are well-documented. The
different algorithms are tested against each other and tested for special cases. Moreover, we
tried to minimize the descriptive complexity and optimize performance. In the thesis, we
also created a comprehensive list of potential problems and issues. The list helped us with
the implementation task and we hope it will help other programmers as well – it should be
a good reminder of what can go wrong with implementations. We hope that the listing of
the attached programs will help programmers to learn how to write robust error-free code
and that it will help ACM contestants by providing a set of well-tested and easy to write
algorithms needed in this competition. Thus we conclude that the thesis fulfills all the goals.

But our work should not end here. We recognize that there are many useful algorithms not
covered in the thesis. The future work should therefore include a variety of new algorithms.
Also, in the future we should improve the existing implementations – there is still plenty
of issues which need to be addressed (many tests for special cases, better documentation of
some algorithms, introducing new tricks to reduce descriptive complexity).

67

68 CHAPTER 5. CONCLUSION

Source code of selected algorithms

.1 Benchmarking

Code Listing 1: benchmark.h

1 #ifndef HBENCHMARK
2 #define HBENCHMARK
3

4 /**
5 * @f i l e con ta ins BENCHMARK and AUTOBENCHMARK macros
6 */
7

8 #include <l im i t s>
9 #include ” co l o r . h”

10 #include ” u t i l s / t imer / t imer . h”
11 #include ” u t i l s / s t a t i c a s s e r t / s t a t i c a s s e r t . h”
12

13 namespace u t i l s {
14 namespace benchmark {
15

16 /**
17 * Minimum time (in seconds) f o r benchmark
18 * to have usedu l r e s u l t s .
19 *
20 * Note : curren t implementat ion o f benchmark i s us ing
21 * system timer to determine running time .
22 * This have the b e s t r e s o l u t i o n o f 16ms and may
23 * w i l d l y change , the presen t cons tan t i s
24 * con s e r va t i v e f o r r e l i a b l e benchmarking
25 */
26 const double MIN BENCHMARK TIME = 1 . 5 ;
27

28 /**
29 * @param times How many t imes the t e s t was run
30 * @param run t ime sec Run time o f the t e s t in seconds
31 * @param f un c t i o n s t r s t r i n g con ta in ing the name
32 * o f the f unc t i on and arguments
33 */
34 void printBenchmarkResults (
35 long long int times ,
36 double run t ime sec ,
37 const char* f u n c t i o n s t r)
38 {
39 bool isLongEnough = run t ime sec > MIN BENCHMARK TIME;
40

41 c o l o r : : Color c o l o r = isLongEnough ? co l o r : :CYAN : co l o r : : PINK ;
42 double avg t ime sec = run t ime sec / t imes ;
43 double t ime s p e r s e c = 1 / avg t ime sec ;
44

45 c o l o r : : c o l o rP r i n t f (co lo r ,
46 ”BENCHMARK: time %6.2 l f s avg . time %10.5 l fms ”

69

70 SOURCE CODE OF SELECTED ALGORITHMS

47 ”%12.5 l f t imes /ms , %10 l l d x %s \n” ,
48 run t ime sec , avg t ime sec *1000 , t ime s p e r s e c /1000 , times , f u n c t i o n s t r) ;
49 }
50

51

52 /**
53 * Macro f o r benchmarking code .
54 *
55 * The benchmark runs s p e c i f i e d \a t imes the code
56 * and p r i n t s n i c e l y formatted repor t to s t dou t .
57 * Usage :
58 * <code>
59 * BENCHMARK(100 , my funct ion ()) ;
60 * </code>
61 * c a l l s 100 t imes func t i on my funct ion .
62 *
63 * Note : ” f unc t i on ” does not need to be the funct ion ,
64 * in f ac t , i t may be sequence o f s ta tements o f event the {} b l o c k .
65 *
66 * @warning Sometimes compi l er op t im i zes out par t s o f you code !
67 *
68 * @param times number o f t imes the \a code shou l d be run
69 * @param code code tha t shou l d be run
70 *
71 */
72 #define BENCHMARK(times , code) { \
73 STATIC ASSERT(std : : numer i c l im i t s<typeo f (t imes) > : : i s i n t e g e r , ””) \
74 : : u t i l s : : t imer : : Timer t imer = : : u t i l s : : t imer : : Timer () ; \
75 for (typeo f (t imes) q = 0 ; q < t imes ; q ++) { \
76 code ;\
77 } \
78 : : u t i l s : : benchmark : : printBenchmarkResults (\
79 times , t imer . e l ap s ed t ime s e c () , #code) ; \
80 }
81

82 /**
83 * Macro f o r benchmarking the code
84 * .
85 * The benchmark runs the code s e v e r a l t imes depenging
86 * on the speed o f execu t i on and p r i n t s n i c e l y formatted repor t to s t dou t .
87 * Usage :
88 * <pre>
89 * AUTOBENCHMARK(my funct ion ()) ;
90 * </pre>
91 * c a l l s the f unc t i on my funct ion f o r approximate ly
92 * \a MIN BENCHMARKTIME seconds .
93 *
94 * Note : This macro uses e xponen t i a l decay to guess the co r r e c t
95 * number o f i t e r a t i o n s , and so tha t ins t rumenta t i on i s not b i g .
96 *
97 * @warning Sometimes compi l er op t im i zes out par t s o f you code !
98 *
99 * @param code code tha t shou l d be run

100 */
101 #define AUTOBENCHMARK(code) { \
102 : : u t i l s : : t imer : : Timer t imer = : : u t i l s : : t imer : : Timer () ; \
103 long long int t imes = 0 ; \
104 int i = 0 ; \
105 while ((t imer . e l ap s ed t ime s e c () < : : u t i l s : : benchmark : :MIN BENCHMARK TIME)

&& \
106 (i < std : : numer i c l im i t s<long long int > : : d i g i t s)) { \
107 long long int t = 1LL << i ; \
108 for (long long q = 0 ; q < t ; q ++) { \

.2. PRECONDITIONS 71

109 code ; \
110 } \
111 t imes += t ; \
112 i++; \
113 } \
114 : : u t i l s : : benchmark : : printBenchmarkResults (\
115 times , t imer . e l ap s ed t ime s e c () , #code) ; \
116 }
117

118 } // namespace benchmark
119 } // namespace u t i l s
120 #endif

Example output:

1 BENCHMARK: time 1 .20 s avg . time 12.00000ms 0.08333 times /ms , 100
x SegmentedSieve : : f indPr imes (1 * Mi , &c)

2 BENCHMARK: time 1 .18 s avg . time 118.00000ms 0.00847 times /ms , 10
x SegmentedSieve : : f indPr imes (10 * Mi , &c)

3 BENCHMARK: time 1 .21 s avg . time 1210.00000ms 0.00083 times /ms , 1
x SegmentedSieve : : f indPr imes (100 * Mi , &c)

.2 Preconditions

Code Listing 2: int binsearch.h

1 #ifndef H PRECONDITIONS
2 #define H PRECONDITIONS
3

4 #include <stdexcept>
5 #include <s t d i o . h>
6 #include ” u t i l s / b ranch pred i c t / b ranch pred i c t . h”
7

8 // Note : Precond i t i ons i s in g l o b a l namespace !
9 /**

10 * Precond i t i ons i s a h e l p e r c l a s s con ta in ing s t a t i c methods t ha t
11 * can check the v a l i d i t y o f f unc t i on arguments (f unc t i on pre−cond i t i on s) .
12 * In case there i s a f a i l u r e , Precond i t i ons w i l l throw an
13 * s t d : : i nva l i d argument error .
14 *
15 * Note : Do not overuse the throwing / ca tch ing e x c ep t i on s . Fa i l ed p r e cond i t i on s
16 * are running much s l ower because o f branch p r ed i c t i on and s l owness o f
17 * e x c ep t i on s .
18 */
19 class Precond i t i on s {
20 public :
21 /**
22 * Checks whether the expres s i on i s t rue
23 *
24 * @param express i on va lue t ha t i s expec ted to be t rue
25 *
26 * @throws inva l i d argument i f expres s i on i s f a l s e
27 */
28 static void check (bool exp r e s s i on) {
29 Precond i t i on s : : check (expre s s i on , ” Precond i t i on f a i l e d ”) ;
30 }
31

32 /**
33 * Checks whether the expres s i on i s t rue
34 *
35 * @param express i on va lue t ha t i s expec ted to be t rue

72 SOURCE CODE OF SELECTED ALGORITHMS

36 * @param message o f the thrown expec t i on i f case o f f a i l u r e
37 *
38 * @throws inva l i d argument i f expres s i on i s f a l s e
39 */
40 static void check (bool expre s s i on , const char* message) {
41 i f (UNLIKELY(message == NULL)) { // s e l f −check
42 throw std : : inval id argument (”message shoudn ’ t be NULL”) ;
43 }
44

45 i f (UNLIKELY(! exp r e s s i on)) {
46 throw std : : inval id argument (message) ;
47 }
48 }
49

50 /**
51 * Check tha t index i s in range [0 , s i z e)
52 *
53 * Warning : never ever o v e r r i d e t h i s t emp la te f o r us ing
54 * two d i f f e r e n t types − i t may end up wi th
55 * nasty r e s u l t s because o f ca s t i n g l i k e
56 * checkRange (unsigned int , i n t) and check w i l l be done in i n t s !
57 *
58 * @throws inva l i d argument in case o f an error
59 */
60 template <typename T>
61 static void checkRange (T index , T s i z e) {
62 // Note : convers ion o f zero to T i s requ i red !
63 Precond i t i on s : : checkRange (index , (T) 0 , s i z e) ;
64 }
65

66 /**
67 * Check tha t index i s in range [low , high)
68 *
69 * @see warnings f o r checkRange (index , s i z e) implementat ion
70 *
71 * @throws inva l i d argument in case o f an error
72 */
73 template<typename T>
74 static void checkRange (T index , T low , T high) {
75 Precond i t i on s : : check (low < high , ”Bad range ! ”) ;
76 Precond i t i on s : : check (index >= low , ” Index out o f range”) ;
77 Precond i t i on s : : check (index < high , ” Index out o f range”) ;
78 }
79

80 /**
81 * Checks t ha t po i n t e r i s not NULL.
82 *
83 * @throws inva l i d argument in case o f an error
84 */
85 template<typename T>
86 static void checkNotNull (const T* ptr) {
87 Precond i t i on s : : check (ptr != NULL, ”Var iab le can ’ t be nu l l po in t e r ! ”) ;
88 }
89 } ;
90

91 #endif

.3 Sample code – binsearch

Code Listing 3: preconditions.h

.3. SAMPLE CODE – BINSEARCH 73

1 #ifndef H MATH BINSEARCH INT BINSEARCH
2 #define H MATH BINSEARCH INT BINSEARCH
3 /**
4 * @f i l e Contains lower bound and upper bound
5 * f unc t i on s s im i l a r to s t d : : l ower bound and s t d : : upper bound
6 */
7 #include ” u t i l s / p r e c ond i t i on s / p r e c ond i t i on s . h”
8 #include ” u t i l s / s t a t i c a s s e r t / s t a t i c a s s e r t . h”
9 #include <stdexcept>

10

11 namespace math {
12 namespace b in search {
13

14 /**
15 * Finds the middle o f the range <i> [l e f t , r i g h t) </i>
16 *
17 * Middle i s de f i ned as <i> f l o o r ((l e f t + r i g h t) / 2) </i>
18 *
19 * @precondi t ion \a T i s i n t e g r a l type
20 * @precondi t ion <i> (r i g h t− l e f t) </i> i s r ep r e s en t a b l e in type \a T
21 *
22 * @param l e f t s t a r t o f the i n t e r v a l
23 * @param r i g h t f i r s t index a f t e r the end o f the i n t e r v a l
24 *
25 * @returns midde o f the i n t e r v a l
26 */
27 template <typename T>
28 T range midd le (T l e f t , T r i gh t) {
29 STATIC ASSERT(std : : numer i c l im i t s<T> : : i s i n t e g e r ,
30 ”T should be o f i n t e g r a l type ”) ;
31 Precond i t i on s : : check (l e f t < r i gh t , ” I nva l i d range”) ;
32 T len = r i gh t − l e f t ;
33 i f (l en <= 0) {
34 throw std : : o v e r f l ow e r r o r (”Too b ig range ! ”) ;
35 }
36 return l e f t + len / 2 ;
37 }
38

39 /**
40 * Find f i r s t index in array range <i> [l e f t , r i g h t) </i>
41 * where the va l ue may be i n s e r t e d w i thou t v i o l a t i n g the order ing
42 *
43 * Note t ha t the d e f i n i t i o n i s same as
44 * ‘ ‘ index o f f i r s t e lement which i s >= va lue ’ ’
45 * excep t t ha t the r e s u l t i s <i> r i g h t </i> i f no such va lue e x i s t s
46 *
47 * Example :
48 * <pre>
49 * a = 1 1 2 2 2 3 5
50 * l b (1) = ˆ
51 * l b (2) = ˆ
52 * l b (4) = ˆ
53 * l b (6) = ˆ (==r i g h t)
54 * </pre>
55 *
56 * @precondi t ion so r t ed array
57 * @precondi t ion \a SizeType i s i n t e g r a l type
58 * @precondi t ion <i>(r i g h t− l e f t)</i> w i l l f i t i n t o type \a SizeType
59 *
60 * @param l e f t s t a r t o f the i n t e r v a l
61 * @param r i g h t index a f t e r the end o f the i n t e r v a l
62 *
63 * @returns index o f the b insearched va lue

74 SOURCE CODE OF SELECTED ALGORITHMS

64 *
65 */
66 template <typename ValueType , typename SizeType>
67 SizeType lower bound (ValueType po l e [] , SizeType l e f t , SizeType r igh t ,

ValueType value)
68 {
69 STATIC ASSERT(std : : numer i c l im i t s<SizeType > : : i s i n t e g e r ,
70 ”SizeType should be o f i n t e g r a l type ”) ;
71 Precond i t i on s : : check (l e f t <= r igh t , ” I nva l i d range ”) ;
72 i f (l e f t == r i gh t) {
73 return l e f t ;
74 }
75 i f (std : : numer i c l im i t s<SizeType > : : i s s i g n e d) {
76 // Checks f o r s i gned va l u e s over f l ow .
77 // Note t ha t r i g h t − l e f t == 0 could be a l s o caused by over f l ow !
78 i f (r i gh t − l e f t < 0) {
79 throw std : : o v e r f l ow e r r o r (”Too b ig range ! ”) ;
80 }
81 }
82 while (r i gh t − l e f t > 0) {
83 SizeType middle = range midd le (l e f t , r i gh t) ;
84 i f (po l e [middle] < value) {
85 l e f t = middle + 1 ;
86 } else {
87 r i gh t = middle ;
88 }
89 }
90 return l e f t ;
91 }
92

93 /**
94 * Finds l a s t p o s i t i o n from range <i>[l e f t , r i g h t) </i>
95 * where the va l ue may be i n s e r t e d w i thou t v i o l a t i n g order ing
96 *
97 * Note t ha t the d e f i n i t i o n s i s the same as
98 * ‘ ‘ index o f f i r s t e lement t ha t i s g r ea t e r than va lue ’ ’
99 * excep t t ha t the r e s u l t i s <i> r i g h t </i> i f no such va lue e x i s t s

100 *
101 * Example :
102 * <pre>
103 * 1 1 2 2 3 5
104 * ub (6) ˆ (== r i g h t)
105 * ub (2) ˆ
106 * ub (1) ˆ
107 * ub (0) ˆ
108 * </pre>
109 *
110 * @precondi t ion <i> (r i g h t− l e f t) </i> shou l d f i t i n t o ValueType
111 * @precondi t ion \a SizeType shou l d be i n t e g r a l type
112 *
113 * @param l e f t s t a r t o f the i n t e r v a l
114 * @param r i g h t index a f t e r the end o f the i n t e r v a l
115 *
116 * @returns index o f the b insearched va lue
117 */
118 template <typename ValueType , typename SizeType>
119 SizeType upper bound (ValueType po l e [] , SizeType l e f t , SizeType r igh t , ValueType

value) {
120 Precond i t i on s : : check (l e f t <= r igh t , ” I nva l i d range ”) ;
121 i f (l e f t == r i gh t) {
122 return l e f t ;
123 }
124 i f (std : : numer i c l im i t s<SizeType > : : i s s i g n e d) {

.4. SAMPLE TEST – HEAP OPERATIONS 75

125 // Checks f o r s i gned va l u e s over f l ow .
126 // Note t ha t r i g h t − l e f t == 0 could be a l s o caused by over f l ow !
127 i f (r i gh t − l e f t <= 0) {
128 throw std : : o v e r f l ow e r r o r (”Too b ig range ”) ;
129 }
130 }
131 while (r i gh t − l e f t > 0) {
132 SizeType middle = range midd le (l e f t , r i gh t) ;
133 i f (value < po le [middle]) {
134 r i gh t = middle ;
135 } else {
136 l e f t = middle + 1 ;
137 }
138 }
139 return l e f t ;
140 }
141

142 } // namespace b insearch
143 } // namespace math
144 #endif

.4 Sample test – heap operations

Code Listing 4: heap unittest.cpp

1 #include ”heap . h”
2 #include ” g t e s t / g t e s t . h”
3

4 namespace heap {
5 TEST(HeapOperations , l e f t) {
6 EXPECTTHROW(l e f t (0) , s td : : inval id argument) ;
7 EXPECT EQ(2 , l e f t (1)) ;
8 EXPECT EQ(4 , l e f t (2)) ;
9 EXPECT EQ(6 , l e f t (3)) ;

10 EXPECT EQ(8 , l e f t (4)) ;
11 EXPECT EQ(10 , l e f t (5)) ;
12 EXPECT EQ(12 , l e f t (6)) ;
13 EXPECT EQ(14 , l e f t (7)) ;
14 }
15

16 TEST(HeapOperations , r i gh t) {
17 EXPECTTHROW(r i gh t (0) , std : : inval id argument) ;
18 EXPECT EQ(3 , r i gh t (1)) ;
19 EXPECT EQ(5 , r i gh t (2)) ;
20 EXPECT EQ(7 , r i gh t (3)) ;
21 EXPECT EQ(9 , r i gh t (4)) ;
22 EXPECT EQ(11 , r i gh t (5)) ;
23 EXPECT EQ(13 , r i gh t (6)) ;
24 EXPECT EQ(15 , r i gh t (7)) ;
25 }
26

27 TEST(HeapOperations , parent) {
28 EXPECTTHROW(parent (0) , std : : inval id argument) ;
29 EXPECTTHROW(parent (1) , std : : inval id argument) ;
30

31 EXPECT EQ(1 , parent (2)) ;
32 EXPECT EQ(1 , parent (3)) ;
33

34 EXPECT EQ(2 , parent (4)) ;
35 EXPECT EQ(2 , parent (5)) ;
36

76 SOURCE CODE OF SELECTED ALGORITHMS

37 EXPECT EQ(3 , parent (6)) ;
38 EXPECT EQ(3 , parent (7)) ;
39

40 EXPECT EQ(4 , parent (8)) ;
41 EXPECT EQ(4 , parent (9)) ;
42

43 EXPECT EQ(5 , parent (10)) ;
44 EXPECT EQ(5 , parent (11)) ;
45

46 EXPECT EQ(6 , parent (12)) ;
47 EXPECT EQ(6 , parent (13)) ;
48

49 EXPECT EQ(7 , parent (14)) ;
50 EXPECT EQ(7 , parent (15)) ;
51 }
52

53 TEST(HeapOperations , s i b l i n g) {
54 EXPECTTHROW(s i b l i n g (0) , std : : inval id argument) ;
55 EXPECTTHROW(s i b l i n g (1) , std : : inval id argument) ;
56

57 EXPECT EQ(3 , s i b l i n g (2)) ;
58 EXPECT EQ(2 , s i b l i n g (3)) ;
59

60 EXPECT EQ(5 , s i b l i n g (4)) ;
61 EXPECT EQ(4 , s i b l i n g (5)) ;
62

63 EXPECT EQ(7 , s i b l i n g (6)) ;
64 EXPECT EQ(6 , s i b l i n g (7)) ;
65

66 EXPECT EQ(9 , s i b l i n g (8)) ;
67 EXPECT EQ(8 , s i b l i n g (9)) ;
68

69 EXPECT EQ(11 , s i b l i n g (10)) ;
70 EXPECT EQ(10 , s i b l i n g (11)) ;
71

72 EXPECT EQ(13 , s i b l i n g (12)) ;
73 EXPECT EQ(12 , s i b l i n g (13)) ;
74

75 EXPECT EQ(15 , s i b l i n g (14)) ;
76 EXPECT EQ(14 , s i b l i n g (15)) ;
77 }
78

79 TEST(NextPowerOfTwo , badInput)
80 {
81 EXPECTTHROW(nextPowerOfTwo(0) , std : : inval id argument) ;
82 }
83

84 TEST(NextPowerOfTwo , over f l ow)
85 {
86 EXPECTTHROW(nextPowerOfTwo(
87 std : : numer i c l im i t s<s i z e t > : :max()) ,
88 std : : o v e r f l ow e r r o r) ;
89

90 EXPECTTHROW(nextPowerOfTwo(
91 std : : numer i c l im i t s<s i z e t > : :max() / 2 + 2) ,
92 std : : o v e r f l ow e r r o r) ;
93

94 EXPECTNOTHROW(nextPowerOfTwo(
95 std : : numer i c l im i t s<s i z e t > : :max() / 2 + 1)) ;
96

97 EXPECTNOTHROW(nextPowerOfTwo(
98 std : : numer i c l im i t s<s i z e t > : :max() / 2)) ;
99 }

.4. SAMPLE TEST – HEAP OPERATIONS 77

100

101 TEST(NextPowerOfTwo , powersOfTwo)
102 {
103 EXPECT EQ(1 , nextPowerOfTwo (1)) ;
104 EXPECT EQ(2 , nextPowerOfTwo (2)) ;
105 EXPECT EQ(4 , nextPowerOfTwo (4)) ;
106 EXPECT EQ(8 , nextPowerOfTwo (8)) ;
107 EXPECT EQ(16 , nextPowerOfTwo(16)) ;
108 EXPECT EQ(32 , nextPowerOfTwo(32)) ;
109

110 EXPECT EQ(1u<<10, nextPowerOfTwo(1u<<10)) ;
111 EXPECT EQ(1u<<20, nextPowerOfTwo(1u<<20)) ;
112 EXPECT EQ(1u<<30, nextPowerOfTwo(1u<<30)) ;
113 }
114

115 TEST(NextPowerOfTwo , powersMinusOne)
116 {
117 EXPECT EQ(4 , nextPowerOfTwo (3)) ;
118 EXPECT EQ(8 , nextPowerOfTwo (7)) ;
119 EXPECT EQ(16 , nextPowerOfTwo(15)) ;
120 EXPECT EQ(32 , nextPowerOfTwo(31)) ;
121

122 EXPECT EQ(1u<<10, nextPowerOfTwo((1u<<10) − 1)) ;
123 EXPECT EQ(1u<<20, nextPowerOfTwo((1u<<20) − 1)) ;
124 EXPECT EQ(1u<<30, nextPowerOfTwo((1u<<30) − 1)) ;
125 }
126

127 TEST(NextPowerOfTwo , powersPlusOne)
128 {
129 EXPECT EQ(4 , nextPowerOfTwo (3)) ;
130 EXPECT EQ(8 , nextPowerOfTwo (5)) ;
131 EXPECT EQ(16 , nextPowerOfTwo (9)) ;
132 EXPECT EQ(32 , nextPowerOfTwo(17)) ;
133 EXPECT EQ(64 , nextPowerOfTwo(33)) ;
134

135 EXPECT EQ(1u<<11, nextPowerOfTwo((1u<<10) + 1)) ;
136 EXPECT EQ(1u<<21, nextPowerOfTwo((1u<<20) + 1)) ;
137 // t h i s must be unsigned !
138 EXPECT EQ(1u<<31, nextPowerOfTwo((1u<<30) + 1)) ;
139 }
140

141 TEST(NextPowerOfTwo , random)
142 {
143 unsigned int t e s t d a t a [] [2] = {
144 {804334813 , 1073741824} ,
145 {7888 , 8192} ,
146 {327463 , 524288} ,
147 {436 , 512} ,
148 {4706125 , 8388608} ,
149 {13721806 , 16777216} ,
150 {0 , 0}
151 } ;
152 for (int i = 0 ; t e s t d a t a [i] [0] != 0 ; i++) {
153 EXPECT EQ(t e s t d a t a [i] [1] , nextPowerOfTwo(t e s t d a t a [i] [0])) ;
154 }
155 }
156

157 }

78 SOURCE CODE OF SELECTED ALGORITHMS

Bibliography

[Bar04] C. Barnes. Integer factorization algorithms. Oregon State University, 2004.

[BH77] Carter Bays and Richard H. Hudson. The segmented sieves of eratosthenes and
primes in arithmetic progressions to 1012. BIT NUMERICAL MATHEMATICS,
17(2):121–127, 1977.

[BK03] Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construc-
tion and checking. COMBINATORIAL PATTERN MATCHING, Lecture Notes
in Computer Science, 2676/2003:55–69, 2003.

[c9905] Iso/iec 9899:tc2 (c99 standard), May 6 2005.

[Daw06] Bruce Dawson. Comparing floating point numbers. http://www.

cygnus-software.com/papers/comparingfloats/comparingfloats.htm,
2004-2006. Online accessed 11.1.2010.

[Dea11] Jeff Dean. Building software systems at google and lessons learned. http://www.
stanford.edu/class/ee380/Abstracts/101110-slides.pdf, November 2011.
Online accessed 13.4.2011.

[DJ97] Ellard Daniel J. S-q course book. http://www.eecs.harvard.edu/~ellard/

Q-97/HTML/root/node43.html, July 1997. Online accessed 10.4.2011.

[Duv83] Jean Pierre Duval. Factorizing words over an ordered alphabet. Journal of
Algorithms, 4(issue 4):363–381, December 1983.

[Fen94] Peter M. Fenwick. A new data structure for cumulative frequency tables. Soft-
ware: Practice and Experience, 24:327–336, 1994.

[Goo] Google. Google code style guide. http://code.google.com/p/

google-styleguide/.

[GS05] Brian J. Gough and Richard M. Stallman. An introduction to gcc - for the gnu
compilers gcc and g++. http://www.network-theory.co.uk/docs/gccintro/
gccintro_70.html, August 2005. Online accessed, 11.1.2010.

[Hig93] NJ Higham. The accuracy of floating point summation. SIAM Journal on
Scientific Computing, 1993.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(Issue 6):341–343, June 1975.

[iee85] Ieee standard for binary floating-point arithmetic, 1985.

[Int04] Intel. Fdiv replacement program. statistical analysis of floating point flaw: In-
tel white paper. http://www.intel.com/support/processors/pentium/sb/

CS-013007.htm, Jul 2004. Online accessed 11.4.2011.

79

80 BIBLIOGRAPHY

[Jae93] Gerhard Jaeschke. On strong pseudoprimes to several bases. mathematics of
computation, 61:915–926, October 1993.

[KMJP77] D.E. Knuth, J.H. Morris Jr, and V.R. Pratt. Fast pattern matching in strings.
SIAM journal on computing, 6:323, 1977.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. ADVANCES IN CRYPTOLOGY — CRYPTO ’96, Lecture
Notes in Computer Science, 1109/1996:104–113, 1996.

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31:249–260, March 1987.

[KSB06] Juha Käarkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix
array construction. Journal of the ACM (JACM), 53(6), November 2006.

[LeB08] David LeBlanc. Ptrdiff t is evil. http://blogs.msdn.com/b/david_leblanc/

archive/2008/09/02/ptrdiff-t-is-evil.aspx, September 2008. Online ac-
cessed 19.1.2011.

[LIO96] J. L. LIONS. Ariane 5 flight 501 failure. Technical report, 1996. Online accessed
26.2.2010 http://www.di.unito.it/~damiani/ariane5rep.html.

[LKL+06] Gad Landau, Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and
Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays
and its applications. 2089:181–192, 2006. 10.1007/3-540-48194-X 17.

[Man04] Giovanni Manzini. Two space saving tricks for linear time lcp array computation.
3111:372–383, 2004. 10.1007/978-3-540-27810-8 32.

[mem] Soft errors in electronic memory – a white paper. http://www.tezzaron.com/

about/papers/soft_errors_1_1_secure.pdf.

[Mic] Microsoft. Safeint library. http://msdn.microsoft.com/en-us/library/

dd570023.aspx.

[MM90] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. In SODA ’90 Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, 1990.

[Mon08] David Monniaux. The pitfalls of verifying floating-point computation. ACM
Transactions on Programming Languages and Systems, 30, 2008.

[Mor10] Yuta Mori. Sais - an implementation of the induced sorting algorithm. http://
sites.google.com/site/yuta256/sais, 2008-2010. Online accessed 4.12.2010.

[NW09] Micha l Nowak and Dawid Weiss. jsuffixarrays: Suffix arrays for java. http:

//labs.carrotsearch.com/jsuffixarrays.html, 2008-2009. Online accessed
17.2.2011.

[O’N08] Melissa E. O’Neill. The genuine sieve of eratosthenes. Journal of Functional
Programming, October 2008. Published online by Cambridge University Press 9
http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf.

[Pol75] J. M. Pollard. A monte carlo method for factorization. BIT Numerical Mathe-
matics, 15:331–334, 1975. 10.1007/BF01933667.

BIBLIOGRAPHY 81

[PSSSW80] Carl Pomerance, J. L. Selfridge, and Jr Samuel S. Wagstaff. The pseudoprimes
to 25 ∗ 109. Mathematics of Computation, 35(151):1003–1026, July 1980.

[Sor92] Jonathan Sorenson. An introduction to prime number sieves. Technical report,
University of Winsconsin-Madison, 1992.

[Wik11] Wikipedia. 64-bit — wikipedia, the free encyclopedia, 2011. [Online; accessed
18-April-2011].

[ZT03] Zhenxiang Zhang and Min Tang. Finding strong pseudoprimes to several bases.
ii. Math. Comp., 72:2085–2097, 2003.

