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Abstrakt

SAT solvery sú univerzálny nástroj pre hľadanie riešení boolovských problémov spl-
niteľnosti. V minulosti boli používané aj na kryptografické problémy, ako napríklad
hľadanie vzoru hašovacích funkcií alebo kľúča prúdových šifier. Avšak tieto prístupy a
riešenia nie je možné ľahko upraviť a opätovne využiť. Taktiež vyžadujú značnú prácu
pri tvorbe programov, ktoré vytvárajú požadované SAT inštancie.

Na odstránenie týchto problémov sme v našej práci vytvorili knižnicu pre jednoduché
modelovanie SAT inštancií. Sústredili sme sa špeciálne na rôzne problémy súvisiace s
kryptografickými hašovacími funkciami, ale vytvorená knižnica je dostatočne všeobecná
a je ju možné použiť aj na iné účely.

S pomocou tejto knižnice sme vytvorili modely pre niekoľko kryptografických hašo-
vacích funkcií. Ďalej sme testovali niekoľko SAT solverov, optimalizácií a heuristík
a porovnávali sme ich efektivitu. Okrem iného sme využívali logický minimalizér
Espresso na redukciu veľkosti inštancií, a tiež vlastné poradie vetvenia pri ohodno-
covaní premenných s pomocou upraveného SAT solveru.

Kľúčové slová: SAT, kryptografia, hašovacie funkcie, heuristiky
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Abstract

SAT solvers are a universal tool for finding solutions to boolean satisfiability prob-
lems. In the past they have also been used for cryptographic problems, such as finding
preimages for hash functions or obtaining the key for stream ciphers. However these
solutions are not easily reusable or modifiable and require significant effort to produce
the programs that create the SAT instances.

To avoid these issues we create a modeling library that allows simple creation of
SAT instances. While we focus specifically on various problems related to cryptographic
hash functions, the library is generic enough that it can be used for other purposes as
well.

Using this library we create models for several cryptographic hash functions. Vari-
ous SAT solvers, optimizations and heuristics are evaluated on these models to compare
their performance. These include the use of the Espresso logic minimizer to reduce the
instance size, forcing custom variable branching order with help of modified SAT solvers
and others.

Keywords: SAT, cryptography, hash functions, heuristics
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Introduction

SAT solvers are programs for finding solutions to instances of boolean satisfiability
problems, which consist of boolean variables and clauses. Using backtracking and
various heuristics these programs explore the space of all possible truth assignments of
the variables and look for one which leads to all clauses being satisfied. Since the SAT
language is NP -complete, SAT solvers can be used to model and solve any problem
which itself is in the NP class.

This is not only a theoretical observation – SAT solvers are commonly used in a
wide variety of areas including formal program verification, model checking or finding
solutions to difficult problems such as routing connections in microchips.

Cryptographic hash functions are functions that are easily computable but which
are computationally hard to invert. The process of finding an input to hash function
that produces a desired output is called a preimage attack.

There are several works that use the power of SAT solvers to solve instances mod-
eling such preimage attacks. These instances were created by special handcrafted
programs which generated the required variables and clauses based on some input
parameters.

However this approach requires the creation of such programs, a process which is
both time consuming and error-prone. Furthermore, once such a program is created
for one hash function, it is not easily modifiable for a different one and much of the
work needs to be repeated.

We propose a solution based on operator overloading and dynamic typing (features
of the Python programming language) which allows modeling problems for SAT with
minimal work. We create a library for this purpose that can be used together with
off-the-shelf implementations of hash functions available online. As we demonstrate,
only minimal changes to such implementation are required to turn them into programs
capable of generating SAT instances.

While this automatic and transparent process is very convenient, it gives us less
control over the generated instances which might lead to inefficiencies. To help re-
duce them we implement some optimizations and also evaluate whether they are even
required.
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CHAPTER 1
Background

1.1 SAT solvers
SAT solvers (shortened from satisfiability) are programs which take a boolean satisfia-
bility problem and find a solution or solutions to this problem. The problem, which we
will call an instance, consists of a number of variables and boolean clauses composed
of these variables. The solution, if it exists, is an assignment of truth values to the
variables such that the clauses are satisfied. If no such assignment exists the instance
is called unsatisfiable.

Most modern SAT solvers expect input in conjunctive normal form in which all
clauses are disjunctions of literals (a literal is either a variable or a negation of a
variable) and the instance is a conjunction of such clauses. Thus all clauses must be
true, and in each clause at least one literal must be true in order for the instance to
be satisfied. As the name suggests this is a normal form, which means every boolean
expression can be converted to an equivalent one that satisfies these requirements. Thus
we will from now on only consider such instances without loss of generality.

By modeling a decision problem as a SAT instance we can take advantage of the
advanced optimizations and heuristics employed by modern SAT solvers. Examples of
such uses in practice include formal program verification [5, 6], model checking [4, 24]
or even routing of connections in microchips [29, 30].

1.1.1 Implementation

Since SAT is an NP -complete language [7] and assuming P ̸= NP we can not in general
find solutions in deterministic polynomial time. A simple exponential time algorithm
is to try every possible boolean truth assignment. To remember which assignments
have been tried and which have not we can implement this algorithm as a recursive
backtracking, where for every input variable we try in turn both possible values. This
will only require linear memory to implement in terms of number of variables.

2



1. Background 1.1. SAT solvers

While there are no known algorithms that perform asymptotically better in the
worst case, we can still improve on this simple exponential time algorithm significantly
by avoiding paths that are guaranteed to lead to a conflict – a clause in which all
literals have been assigned to false.

DPLL algorithm

First such improvement is the DPLL algorithm (Davis-Putnam-Logemann-Loveland,
[8, 9]) which enhances the naïve backtracking algorithm by first applying two rules at
each step of the recursion:

Unit propagation
We will call a clause a unit if it only contains one unassigned literal. If the clause
is already satisfied we can ignore it during further search. Otherwise it can only
be satisfied by assigning the necessary value to the remaining literal. This means
there will be no branching for this literal and thus the search time will be reduced
by avoiding the obviously wrong choice.

Pure literal elimination
We will call a literal pure if its variable only occurs in the formula with a single
polarity (that is, always negated or always non-negated). All pure literals can be
assigned the required value to make all clauses containing them true and these
clauses can then also be ignored during further search.

After these rules are applied we continue as before by picking an unassigned variable
and trying both possible truth value assignments recursively. These two simple rules
will help to reduce the search space the algorithm has to look through and thus reduce
the total running time.

Conflict-Driven Clause Learning

It can happen that after some partial assignment of variables there is already a conflict
and it is not possible to extend this assignment to a satisfying one. However, the
DPLL algorithm will continue to explore the entire search subspace. With conflict-
driven clause learning (CDCL, [20, 40]) we can avoid this by the use of implication
graph and learnt clauses.

The implication graph is a directed graph in which vertices are variables with their
assignment. These will be marked as either decision or forced.

At first we start with an empty implication graph and execute the DPLL algorithm.
Every time we make an arbitrary decision (the recursive step in the algorithm) we will
add a decision vertex representing this variable and the assignment we have chosen
into the graph. Every time either of the two rules of the DPLL algorithm forces some

3



1. Background 1.1. SAT solvers

assignment of a variable we will add a forced vertex into the graph, with edges from
every vertex that is a part of this forced choice.

For example, with clause (x ∨ y ∨ z) and with partial assignment x = 0, y = 0 the
unit propagation rule will force the assignment of z = 1. We will add this as a forced
vertex, with edges from both x = 0 and y = 0.

When we add an vertex to the graph for some variable but this variable is already
present with the opposite assignment we have found a conflict. Now comes the part of
CDCL which speeds up this search – we will find all the decision vertices (variables)
that are responsible for this conflict. Let us call them x1, . . . , xk with assignments
v1, . . . , vk. From this we can build a learnt clause L:

(x1 = v1 ∧ · · · ∧ xk = vk)⇒ ⊥

⊥ ⇒ (x1 = v1 ∧ · · · ∧ xk = vk)

⊤ ⇒ (x1 = v1 ∨ · · · ∨ xk = vk)

L := (x
(v1)
1 ∨ · · · ∨ x

(vk)
k )

The notation x(v) is used to represent x if v = 1 and x if v = 0. Symbols ⊤ and ⊥
represent tautology and contradiction, respectively.

We can now add this learnt clause L into the list of clauses we have to satisfy, since
not satisfying L is guaranteed to lead to a conflict. In the next step of the backtracking
algorithm we will not return only a single level up from the recursion (that is, removing
the assigning of just a single variable) but all the way back until we reach the first point
where one of the conflicting variables was assigned a value.

This method is used in all modern SAT solvers and improves their performance
significantly over the DPLL algorithm [40].

1.1.2 Interfacing with SAT solvers

Since our work depends on providing a suitable input to SAT solvers we will briefly
describe the widely supported DIMACS CNF format1 which we use. Later in section
3.3.1 we will describe augmenting this format for optimization purposes.

The file begins with a line in form
p cnf vars clauses

where vars and clauses are the number of variables and clauses in this instance, re-
spectively.

The following lines are in the form
v1 v2 . . . vi 0

1As in the case of JPEG, the acronym refers to the institute that created the format – the Center
for Discrete Mathematics and Theoretical Computer Science.

4



1. Background 1.2. Cryptographic problems

and each represents a single clause consisting of a disjunction of literals v1 through vi.
Each literal vi is an integer between 1 and vars for a variable in positive polarity or an
integer between −1 and −vars for negative polarity.

The output of a SAT solver for a satisfiable instance is a list of vars numbers. For
every 1 ≤ vi ≤ vars either vi or −vi is present in the list, indicating the polarity of the
i-th variable in some satisfying assignment.

1.2 Cryptographic problems
We make use of SAT solvers to find solutions to instances which represent a crypto-
graphic primitive. The variables represent the inputs, outputs and the internal state
of the primitive. The clauses describe the behavior of the primitive as a relation be-
tween the variables. Solutions to such instances are pairs of inputs and corresponding
outputs.

By placing additional restrictions on the possible solutions (by introducing more
clauses) we can find a truth assignment that gives us the desired inputs and outputs
to the cryptographic primitive. With a stream cipher this can mean finding the secret
key (input) by restricting the output to observed keystream. With hash functions this
can mean reversing the output for a preimage attack or finding two different inputs
with the same output (a collision).

In our work we will focus specifically on hash functions, which we describe in more
detail in the following section.

1.2.1 Hash functions

A hash function is designed to reduce a long input message into a shorter, fixed-length
digest (short from message digest, also called hash). The computation in this direction
is often designed to be fast and efficient. However, a cryptographic hash function should
further have the property that it is infeasible to compute it in the opposite direction –
that is, given a digest to find a message.2

By infeasible (or hard) we mean that the computation should take time exponential
to some parameters of the hash function and its input, and thus is not practical for
sufficient input sizes.

More precisely, hash function h is a function h : X → Y where X is the (potentially
unbounded) set of input messages and h(x) ∈ Y = {0, 1}n is an n-bit message digest.
For a more formal discussion of hash functions (which is beyond the scope of our work)
we refer the reader to [36].

The properties which we require these functions to have are:

2Not the message, since there might be multiple input messages that have the same digest.
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1. Background 1.2. Cryptographic problems

Preimage resistance: Given a digest d it is hard to find a message m such that
h(m) = d.

Second preimage resistance: Given a message m1 it is hard to find a message
m2 ̸= m1 such that h(m1) = h(m2).

Collision resistance: It is hard to find messages m1,m2 such that h(m1) = h(m2)

and m1 ̸= m2.
Most modern hash functions have multiple rounds in which the state is modified

using a round function. Starting from the initial state (usually some constant) a part of
the input message (with some form of padding) is processed and a new state produced.
This is repeated until the whole input has been processed and the final state is then
used to produce the digest.

Reduced hash functions and partial attacks

The expected time to find a preimage for actual hash functions as used in practical
cryptography is usually so large we couldn’t obtain a solution in a reasonable time. For
this reason we will be working with reduced instances of hash functions – modifications
that are similar but easier to attack. To create such reduced instances we can simply
lower the number of rounds used in the computation.

Similarly, finding a full preimage where all the output digest bits are fixed to a
certain value could take a long time. Instead we will focus on partial preimage attacks,
where only a certain number of output digest bits are fixed.

The SHA hash functions

We will briefly describe two hash functions on which we focus in our work and to whose
internals we will be referring later.

SHA-1, short for Secure Hash Algorithm [31] is a widely used hash function based
on the Merkle-Damgård construction [26] with output digest size of 160 bits. The
internal state consists of five 32-bit words h0, . . . , h4 which are first initialized to some
constant values.

After padding3 the message to a length that is multiple of 512 bits, it is processed
in chunks of that same size. Each chunk is broken into 16 32-bit words W0, . . . ,W15.
From those 64 additional words W16, . . . ,W79 are created by extending the chunk:

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 (16 ≤ i < 80) (1.1)

where ≪ means cyclic left shift on 32-bit words and ⊕ means bitwise exclusive or.
These words are then processed in 80 rounds, during which a set of five 32-bit round

words A,B,C,D and E are updated. These are first initialized to the current values

3Details of the padding are not important for our purposes and can be found in the specification.
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1. Background 1.2. Cryptographic problems

of h0 through h4 to make the result of every chunk depend on all previous chunks as
well.

In each round i, first the values f and k are computed based on the round number.
Then T is computed as

T = (A ≪ 5) + f + E + k +Wi

where addition is performed modulo 232.
Finally, the five round words are updated as follows

E ← D D ← C C ← B ≪ 30 B ← A A← T

The value of k is one of four constants, depending on the value of ⌊ i
20
⌋ (that is,

one value for rounds 0 to 19, another for rounds 20 to 39 and so on). Similarly, f is
computed by one of four round functions:

f0 = Ch(B,C,D) = (B ∧ C)⊕ (B ∧D)

f1 = f3 = B ⊕ C ⊕D

f2 = Maj(B,C,D) = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D)

f = f⌊ i
20

⌋

After the last round the values of the round words are added to the current state
(modulo 232). Once all chunks have been processed this way the resulting state is the
output digest.

SHA-3 is a recently standardized [11] hash function family based on the Keccak
family [3] that won the selection competition against fifty other candidates. It is based
on a sponge construction which allows the output digest size to be variable.

We will specifically focus on the variant SHA-3-512 which has 1600-bit state up-
dated in 24 rounds (divided into five steps called θ, ρ, π, χ and ι) and produces a 512-bit
digest. The state is represented as a 5× 5 matrix S of 64-bit words.

We will describe the steps θ and χ in little more detail since we will be referring to
them later in section 4.3.2. In the θ step an auxiliary array C is filled as follows:

Ci = Si,0 ⊕ Si,1 ⊕ Si,2 ⊕ Si,3 ⊕ Si,4 (0 ≤ i < 5)

This is then used, along with two additional arrays B and D to compute the new values
of the state S in the χ step:

Ai,j = Bi,j ⊕ (Bi+1,j ∧Bi+2,j) (0 ≤ i, j < 5)

7



1. Background 1.3. Encoding

The most important difference compared to SHA-1 is that not the whole state is
used for output. Instead it is divided into two parts: the 576-bit bitrate and 1024-bit
capacity, and only the bitrate part is used for the output while the capacity part stays
hidden.

The sponge construction then works in two phases – absorbing and squeezing. Dur-
ing absorbing, chunks of the padded input message are xored with the state and the
24 rounds are performed until the message is fully processed. Afterwards the bitrate
part of the state is used for the output digest. If it is not long enough another series of
24 rounds is performed on the whole state and the resulting bitrate part is appended
to the digest and so on until the desired length is reached.

This flexible design allows arbitrary output digest sizes for specific applications. It
also makes reversing the process harder, since the entire output state is not known.

1.3 Encoding
The most important step when using SAT solvers for any problem is the encoding of
the model to a suitable instance. In case of cryptographic problems this previously (see
section 1.4) required significant effort of either generating the SAT instance by hand,
or by first translating the model to a more suitable form and then using existing tools
to generate the instance.

In our work we created a library [33] which automates large parts of this process.
This makes it easier, faster and less error-prone. To achieve this we made use of boolean
circuit representation to translate almost unmodified implementations of cryptographic
primitives to SAT instances transparently.

1.3.1 Boolean circuits

The cryptographic primitive we want to encode into a SAT instance can be thought
of as a boolean circuit – a DAG (directed acyclic graph) in which vertices are boolean
operators (gates, such as the AND gate, XOR gate and so on). The edges represent flow
of values from one gate to another. Inputs are special vertices that have no incoming
edges. Outputs are also special vertices that have exactly one incoming edge and no
outgoing edges.

Given this representation the simplest way to encode this as a CNF formula would
be to take each output vertex and recursively expand it in the following way: At first
we start with an output vertex v encoded as (v). This will have one incoming edge
from a gate vertex g with inputs x1, . . . , xk. We will encode this as g(x1, . . . , xk) where
g is the appropriate boolean operation of the gate – for example, if the output vertex
is connected to an AND gate this would be (x1 ∧ · · · ∧ xk).

8



1. Background 1.3. Encoding

Now we repeat this process recursively, expanding each gate node until the encoding
only refers to the input vertices. The resulting encoding has to be converted into
conjunctive normal form and can then be solved with any SAT solver.

However, this approach produces very large output formula with many clauses.
Since we are recursively expanding each vertex until we reach the input vertices, large
subgraphs which are referenced (connected by an outgoing edge) multiple times will
needlessly be repeated in the output encoding. The total length of the formula then
can be exponential in the size of the input circuit.

1.3.2 Tseitin transformation

To reduce the number of clauses of the resulting encoding we can use the Tseitin
transformation [42]. Instead of generating a large number of clauses when expanding
the circuit we will add a new variable for each vertex.

Each gate vertex can then be encoded as a boolean function with constant number
of clauses using only variables corresponding to gates (or inputs) that are connected via
an incoming edge. The following table shows how to encode the most common boolean
gates with two inputs A and B. Variable C refers to the new variable representing this
gate in the encoding.

AND A ∧B (C ∨ A ∨B) ∧ (C ∨ A) ∧ (C ∨B)

OR A ∨B (C ∨ A ∨B) ∧ (C ∨ A) ∧ (C ∨B)

XOR A⊕B (C ∨ A ∨B) ∧ (C ∨ A ∨B)∧
(C ∨ A ∨B) ∧ (C ∨ A ∨B)

Other binary gates such as NAND can be encoded similarly. In case of multiple
inputs we can either extend this encoding or replace the n-ary gates with multiple
binary ones.

This encoding produces formula with linear number of variables and linear length
with respect to the size of the boolean circuit, if we limit it to unary and binary gates.

1.3.3 Arithmetic gates

Most cryptographic algorithms make heavy use of arithmetic operations, such as mod-
ular addition. These usually work on variables of some fixed size, for example 32-bit
integers.

The n-bit variable can be represented using n binary variables in the SAT instance.
However, these operations can not be performed on individual bits like in the case of
boolean operators. We need to introduce additional helper variables that will represent
the carry bits during the addition operation.

This can be thought of as taking the boolean circuit for a binary adder with carry
(either ripple-carry or lookahead-carry), composed of several full-adder circuits. These
can then be encoded using the Tseitin transformation.

9
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However, for simplicity we extend our model of boolean circuits to support modular
addition nodes directly. When encoding these nodes to CNF we use the additional carry
variables and output the clauses required to model a binary adder.

1.4 Related work
The idea of using SAT solvers for cryptographic problems was first introduced in [23].
The authors designed an encoding of the DES (Data Encryption Standard) symmetric
cipher and created a program to generate instances. However the work is very specific
to DES and modifying the tool for a different cipher would require significant changes.

The first attempt to simplify this process can be found in [18] where operator
overloading (see section 2.2.1) in the C++ language is used. Our library also makes
use of this feature with the additional advantage that we use a dynamic programming
language (Python) and therefore require smaller changes to existing code. Additionally
their work uses only simple Tseitin transform without additional optimizations, and
the code for the tool is not available.

Another work which automates the generation of instances makes use of the Verilog
hardware description language4 [28]. After writing the cryptographic primitive in this
language a free, but proprietary, compiler is used to generate equations which are then
turned to a CNF instance. Since Verilog is quite a niche language most cryptographic
primitives do not have implementations available. Additionally the toolkit itself is also
not publicly available.

An in-depth analysis of SHA-1 preimage attacks was done in [32]. The instances
were generated using a custom, hand-built 1000-line C++ program. The experiments
investigated the speed of various SAT solvers, effects of preprocessing and simplifying
the instance and various heuristics.

4HDLs describe the behavior of logic circuits. They are used for programming FPGAs or designing
ASICs.
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CHAPTER 2
Modeling library

The works mentioned in previous chapter created their models for various cryptographic
problems mostly by hand. While the results obtained are interesting, they are hard to
reproduce by others. Also this approach does not help to solve similar problems (like
using a different hash function instead), as a new model would have to be created from
scratch.

To address these issues we provide an easy to use and reusable library for modeling
SAT instances. While the library can be used for modeling any problem we specifically
focus on making modeling cryptographic problems as simple as possible. In this chapter
we will state our goals for this library, describe its design and inner functionality. We
will also show examples of its use.

2.1 Goals
The main goals of our library are as follows:

Existing implementation reuse: In order to simplify the modeling of cryptographic
primitives as much as possible we want to allow reuse of existing implementations. Most
commonly used primitives – such as hash functions, block and stream ciphers and others
– have widely available implementations in all popular programming languages.

The library should therefore allow using these implementations with only minor
changes. In addition to saving time this also makes the modeling less error-prone as
we can build upon a well tested implementation.

Output abstraction: The library should take care of generating the output in proper
format for some SAT solver. With solvers that support advanced features, such as XOR
clauses, it should be possible to take advantage of them.

11



2. Modeling library 2.2. Our approach

Model parsing: After successfully solving the instance with a SAT solver we obtain
a model in form of a satisfying variable assignment. The library should be able to load
this model and map the truth assignment back to variables defined by the user. This
makes it easy to extract for example the colliding messages out of the model.

2.2 Our approach
To achieve the goals stated in previous section we take advantage of a technique called
operator overloading. This is a feature present in many programming languages. For
our library we have decided to use the Python language which also supports it. Python
has the additional advantage that it is very popular and therefore has implementations
of virtually all commonly used cryptographic primitives.

2.2.1 Operator overloading

As the name suggests, operator overloading allows us to overload (override) existing be-
havior of operators in some programming language. While the feature is only syntactic
sugar (which means it does not allow us to do anything more than would be possible
without it; it just simplifies the syntax) it not only greatly increases the readability of
the code, but also allows us to reuse existing implementations as we will show.

The reason this feature is useful in our library is that we can change the type of some
variables in existing code without having to change anything else. For example, we can
take an implementation of some hash function and change the type of all variables
from the built-in integers to our new data type. Without operator overloading this
could would not be possible, since operators such as addition or bit shift would not be
defined for our new type by the language. With operator overloading however we can
provide these definitions ourselves.

Our library provides a new data type BitVector that supports all the operations as
the built-in integer type. Since Python uses dynamic typing it is sufficient to change
the types of the constants used by the cryptographic primitive implementation. All
other variables are a result of operations on these constants and will therefore have the
proper type.

2.2.2 Boolean circuit creation

The difference between the built-in integer type and BitVector is that while the inte-
ger variable only holds one given value, our type instead stores how its value can be
obtained from other variables.

12



2. Modeling library 2.3. Using the library

More specifically, each time an operation is applied to one or more operands (vari-
ables of type BitVector or constants) the result is another instance of type BitVector
which stores these operands. That means that the output of some cryptographic prim-
itive is not a single value but instead a boolean circuit representation. The circuit will
form a directed acyclic graph.

2.2.3 Instance generation

Once we have the boolean circuit for a model we can then take this representation and
output a SAT instance using the Tseitin transformation described in section 1.3.2.

The order of clauses in the output is irrelevant, however since the circuit forms a
DAG we can process it in topological order. For every node (representing an operator
applied to one or more operands) we first assign numbers to all required variables. This
is because the DIMACS input format (described in section 1.1.2) used by most SAT
solvers uses integers to refer to variables.

In most cases we have one variable for every bit of the vector. However, an addition
node needs additional carry variables. On the other hand, for a negation node we
don’t need to introduce additional variables, as we can simply use the variables already
assigned to the operand with reversed polarity. Similarly for cyclic bit shift we can
reuse existing variables but with different ordering.

Once all variables have been assigned integer values we pass through all the nodes
again. This time we generate the clauses which model the operator behavior. The
number of clauses required depends on the operator and the bit width of the BitVector
node.

2.2.4 Solving and working with solution

After the model has been turned into an instance we can run a SAT solver on this
generated list of clauses and wait for it to terminate. If the instance is satisfiable the
solver will find a satisfying truth assignment and output it as truth values for all the
variables. The library will load, parse and store this data for later use.

We can then easily query any of the BitVector variables for its value. The mapping
from variables to integer labels will be used to find the appropriate assignment and to
reconstruct the value of the node.

2.3 Using the library
We will demonstrate the use of our library on two examples. The first one is very
simple and shows the entire process from start to finish. The second example shows a
real-world use case – modifying existing SHA-1 implementation to use our library for
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instance generation. We compare this modified implementation to a hand-crafted one
from a previous work.

2.3.1 Simple example

Suppose we wish to find solutions to the boolean equation X = A∧ (B⊕C). We begin
with importing the modeling library and defining the input variables A,B and C as
1-bit vectors:

1 from instance import *
2 A, B, C = BitVector(1), BitVector(1), BitVector(1)

Next, we can write the expression in the same way as we normally would. The
resulting variable X will also be of type BitVector and will store the boolean circuit
representing this expression:

3 X = A & (B ^ C)

Now we can create a new instance, generate it using the variables we are interested
in and solve it using any SAT solver using the DIMACS standard. Afterwards the
satisfying assignment is easily accessible through the variables. In this case we will
simply print it out:

4 instance = Instance()
5 instance.emit([X])
6 instance.solve(['minisat'])
7

8 print([q.getValuation(instance) for q in [A, B, C, X]])

The output might look like [[False], [False], [False], [False]], which is
indeed a valid solution to our equation. However, suppose we wish the result X to be
true. We can add this additional constraint by setting

4 X.bits = [True]

before generating and solving the instance. Now we obtain the output [[True],
[False], [True], [True]] which is another valid solution with the additional prop-
erty that the value of X is true.
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The entire program is less than ten lines long and very straightforward. We will use
the same two concepts – replacing input variables with BitVector and adding additional
constraints – in the next example.

2.3.2 SHA-1 example

We begin with a standard SHA-1 implementation based on one available online [1]. We
extended it to support reduced instances. Here we show the most important parts of
this code:

1 # Round functions and constants
2 fs = [lambda a, b, c, d, e: (b & c) | (~b & d),
3 lambda a, b, c, d, e: b ^ c ^ d,
4 lambda a, b, c, d, e: (b & c) | (b & d) | (c & d),
5 lambda a, b, c, d, e: b ^ c ^ d]
6 K = [0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6]
7

8 def sha1(message, rounds = 80):
9 # Initialization

10 h0, h1, h2, h3, h4 = 0x67452301, ..., 0xC3D2E1F0
11 # (omitted) Message padding
12 for pos in range(0, len(message), 64):
13 # (omitted) Prepare message chunk W
14 A, B, C, D, E = h0, h1, h2, h3, h4
15 for i in range(rounds):
16 F = fs[i//20](A, B, C, D, E)
17 k = K[i//20]
18

19 T = (leftrotate(A, 5) + F + E + k + W[i]) & 0xFFFFFFFF
20 A, B, C, D, E = T, A, leftrotate(B, 30), C, D
21 h0 = (h0 + A) & 0xFFFFFFFF
22 # ...
23 h4 = (h4 + E) & 0xFFFFFFFF

To modify this code to use our library and produce a SAT instance we need to
perform only a few small changes. First of all, we need to convert all constants to
BitVector objects of the appropriate size:
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6 K = [intToVector(x) for x in [0x5A827999, ...]] #
10 h0, h1, h2, h3, h4 = [intToVector(x) for x in [0x67452301, ...]]

Next we replace the leftrotate function with the CyclicLeftShift provided by our
library1. Since addition on 32-bit BitVector objects is automatically done modulo 232

we can remove the unnecessary and mask:

15 for i in range(rounds):
16 F = fs[i//20](A, B, C, D, E)
17 k = K[i//20]
18

19 T = CyclicLeftShift(A, 5) + F + E + k + Mvec[i]
20 A, B, C, D, E = T, A, CyclicLeftShift(B, 30), C, D
21 h0, h1, h2, h3, h4 = h0+A, h1+B, h2+C, h3+D, h4+E

As we can see the changes required are minimal and trivial to perform. For brevity
we have omitted details such as message padding – the full source code can be found in
the attachment [33] in file samples/sha1_instance_test.py. It also includes additional
constraints on the output bits to find (partial) preimages. After obtaining a solution
the message is extracted and hashed using a reference implementation to ensure its
validity.

2.3.3 Comparison to existing work

In [32] a custom program of about 800 lines is used to generate instances for preimage
attacks on SHA-1. Our implementation using the modeling library we created is about
ten times shorter. It also includes verification of the solution, unlike in Nossum’s work
where two additional programs are required to parse and verify the SAT solver output.

In addition to requiring much less code to be written our approach is also much
more readable. Compare the code for the innermost loop where one of the four SHA-1
round functions is computed, shown in figure 2.1.

For clarity and fairness of comparison we modified our version of the code slightly
to avoid Python specific features such as lambda functions which make our code even
shorter. It is clear that our approach leads to much more readable code and is easier
to write.

1Since Python does not provide an operator for cyclic left shift we can’t use operator overloading
in this case.

16



2. Modeling library 2.3. Using the library

(a
)

In
st

an
ce

ge
ne

ra
tin

g
to

ol
fro

m
[3

2]

1
if

(i
>=

0
&&

i
<
20
)
{

2
fo
r
(u

ns
ig
ne
d
in
t

j
=
0;

j
<
32
;
++

j)
{

3
cl

au
se
(-

f[
j]
,
-b
[j
],

c[
j]
);

4
cl

au
se
(-

f[
j]
,

b[
j]
,

d[
j]
);

5
cl

au
se
(-

f[
j]
,

c[
j]
,

d[
j]
);

6 7
cl

au
se
(f
[j
],

-b
[j
],

-c
[j
])
;

8
cl

au
se
(f
[j
],

b[
j]
,
-d
[j
])
;

9
cl

au
se
(f
[j
],

-c
[j
],

-d
[j
])
;

10
}

11
}
el
se

if
(i

>=
20

&&
i
<
40

)
{

12
xo

r3
(f
,

b,
c,

d)
;

13
}
el
se

if
(i

>=
40

&&
i
<
60

)
{

14
fo
r
(u

ns
ig
ne
d
in
t

j
=
0;

j
<
32
;
++

j)
{

15
cl

au
se
(-

f[
j]
,

b[
j]
,

c[
j]
);

16
cl

au
se
(-

f[
j]
,

b[
j]
,

d[
j]
);

17
cl

au
se
(-

f[
j]
,

c[
j]
,

d[
j]
);

18 19
cl

au
se
(f
[j
],

-b
[j
],

-c
[j
])
;

20
cl

au
se
(f
[j
],

-b
[j
],

-d
[j
])
;

21
cl

au
se
(f
[j
],

-c
[j
],

-d
[j
])
;

22
}

23
}
el
se

if
(i

>=
60

&&
i
<
80

)
{

24
xo

r3
(f
,

b,
c,

d)
;

25
}

(b
)

A
da

pt
ed

ve
rs

io
n

of
ou

r
in

st
an

ce
ge

ne
ra

tin
g

co
de

1
if

0
<=

i
<
20
:

2
f
=
(b

&
c)

|
(~

b
&

d)
3
el
if

20
<=

i
<
40
:

4
f
=

b
^

c
^

d
5
el
if

40
<=

i
<
60
:

6
f
=
(b

&
c)

|
(b

&
d)

|
(c

&
d)

7
el
se

:
8

f
=

b
^

c
^

d

Fi
gu

re
2.

1:
C

om
pa

ris
on

of
co

de
fo

r
co

m
pu

tin
g

th
e

SH
A

-1
ro

un
d

fu
nc

tio
ns

.

17



2. Modeling library 2.3. Using the library

For example, for the choice round function used in first 20 rounds we simply use
the definition provided in the standard (see section 1.2.1). On the other hand, a set of
six clauses to encode this function had to be found and used in the referenced work.

As we will discuss in section 3.2, our approach does lead to a less efficient encoding
(in terms of number of variable and clauses in the resulting instance). However, as
experiments in 4.3 demonstrate, this does not have any measurable effect on the solving
time. Moreover, we added expression optimization support to our library that can be
used to reduce the instances and in the case of the choice function does in fact lead to
an even more efficient encoding using just four clauses.

2.3.4 The N-Queens problem

As we have stated previously, even though we have so far focused on hash functions,
our library is generic enough to be used for other problems. We demonstrate this with
the following simple example – solving the famous N-Queens problem.

In this problem we have a chessboard of size N ×N and the task is to place upon
it N queens such that no two of them threaten each other.

First of all we define the parameter N and declare the board, which we will represent
as N rows, each one being an N -bit vector. True bits will mean a queen is placed there,
false bits will represent empty squares.

7 N = 8
8 board = [BitVector(N) for _ in range(N)]

Now we need to enforce the necessary constraints. We begin with the rule that
there must be at least one queen in every row (which follows easily from the problem
statement). We can model this in the following way: we take the binary or of every
cyclic rotation of the row. If there is at least one true bit anywhere in the row, all bits
of the result will be true, otherwise all will be false. We can then force all the bits of
the result to be true.

12 for row in board:
13 rot = FalseVector(N)
14 for i in range(N):
15 rot |= CyclicLeftShift(row, i)
16 rot.bits = [True]*N

Next we need to make sure there is at most one true bit in each row, which we do
in a similar way. Suppose there are two true bits in the row separated by k false bits.
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If we take the binary and of the row and the cyclic left shift of the row by k bits we
will obtain a vector with one true bit. Since we do not know the value of k we will take
the binary or of all such vectors for all values of 0 < k < N :

20 for row in board:
21 rot = FalseVector(N)
22 for i in range(1, N):
23 rot |= row & CyclicLeftShift(row, i)
24 rot.bits = [False]*N

We will do a similar trick to make sure there is at most one queen on every diagonal.
We omit the code here for brevity.

Lastly we need to make sure there is precisely one queen in every column. However
since we already have rules to enforce precisely one queen in every row, it is enough to
ensure at least one queen in every column:

38 row_or = FalseVector(N)
39 for row in board:
40 row_or |= row
41 row_or.bits = [True]*N

Full source code for this sample is available in the attachment (see appendix A)
in file samples/nqueens.py. The output of the program shows the solution as a board,
with the symbol # representing a queen:

$ python3 test_nqueens.py
Number of variables: 5384
Number of clauses: 12104
CPU time : 0.008 s
SATISFIABLE

...#....

.#......

......#.

..#.....

.....#..

.......#

....#...
#.......
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Even large instances, with values of N around 50, can be solved in just a few seconds
using this program.

2.4 Hash function toolkit
In addition to the modeling library we also provide a simple command line interface
for generating custom instances called HashToolkit. It allows us to specify the hash
function, number of rounds and input message length. Additionally the output digest
bits can individually be set to either true, false or r – the same as a randomly generated
reference digest.

In this example we find a 10-round 64-bit preimage on SHA-1, where the first eight
bits are equal to a reference message and next eight bits are equal to the hexadecimal
byte 0f :

$ python3 hashtoolkit.py -h sha1 -l 64 -r 10 \
-o 'rrrrrrrr00001111' -s 'minisat'

...
SATISFIABLE
Reference message: b'\x06)\xeaVqz\xe1\x8a'
Reference digest: 44c79c8b97df9297a4f551b3d14ec9aafe296a32

Message length 64 bits
Message bytes: b'NQ\xdbd\x8a\x06\x98\xde' rounds: 10
Message digest: 440f7115cc0483f042885b32247fe5eab998a8b4

Collisions can also be found using this tool. Supported hash functions are MD5,
SHA-1 and SHA-3-512. More details about the tool and usage instructions can be
found in appendix B.
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CHAPTER 3
Optimizations

Modern SAT solvers use many advanced optimizations and heuristics to improve the
solving time. However these are usually designed for general problem instances. With
additional knowledge about a specific problem we can try to come up with better
heuristics which lead to decrease of solving time.

In this chapter we will describe several optimizations that we implemented and
evaluated. Some of these involve a simple change in output instance generation, others
involve changes to the SAT solvers themselves.

3.1 Merging operators
Since all operators in the Python programming language are either unary or binary so
are all the nodes in the created boolean circuit. Writing an expressions such as X =
A & B & C & D will result in the boolean circuit shown in figure 3.1(a) since the and
operator is left-to-right associative.

A simple recursive algorithm can be used to walk over the boolean circuit in reverse
topological order and merge such structures into a single n-ary node. At each step, if
one or both of the operands of some boolean operator node are nodes of the same type,
they can be merged together to a single node. After repeating this procedure for the
whole tree we obtain the result shown in figure 3.1(b).

We implemented such optimization in our library and modified the clause generation
code to support arbitrary arities. This is a simple optimization that can reduce the
number of variables and clauses required to encode the given model as a SAT instance.
Next we describe a more advanced method that can optimize not just sequences of
identical operators but arbitrary expressions.
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Figure 3.1: Comparing the effect of operator merging on the boolean circuit resulting
from the expression X = A & B & C & D.

3.2 Expression encoding
The automatic and transparent conversion from unmodified source code to SAT in-
stance via operator overloading and boolean circuits may lead to suboptimal encoding
of various expressions. For example, the choice round function in SHA-1

Ch(x, y, z) = (x ∧ y)⊕ (x ∧ z)

leads to an encoding with three variables and ten clauses (three clauses for each and
gate and four for the xor gate) if we apply the Tseitin transformation directly:

(a ∨ x) ∧ (a ∨ y) ∧ (a ∨ x ∨ y) Left AND gate
(b ∨ x) ∧ (b ∨ z) ∧ (b ∨ x ∨ z) Right AND gate

(c ∨ a ∨ b) ∧ (c ∨ a ∨ b) ∧ (c ∨ a ∨ b) ∧ (c ∨ a ∨ b) XOR gate

A better encoding using just six clauses and one variable is shown in [32]:

(a ∨ x ∨ y) ∧ (a ∨ x ∨ z) ∧ (a ∨ y ∨ z)

∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ z) ∧ (a ∨ y ∨ z)

In fact, it is possible to encode this expression with just four clauses and one
variable:

(a ∨ x ∨ y) ∧ (a ∨ x ∨ z) ∧ (a ∨ x ∨ z) ∧ (a ∨ x ∨ y)

To solve this issue we provide an expression optimization function in our library.
Any n-ary expression can be wrapped using this function to replace the standard Tseitin
encoding with a (potentially) smaller one, in terms of number of extra variables and
clauses required.
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1 # Unoptimized expression
2 f = (b & c) | (~b & d)
3

4 # Optimized using Espresso
5 choice = OptimizeExpression(lambda b, c, d: (b & c) | (~b & d))
6 f = choice(b, c, d)

First we evaluate the expression on all 2n possible inputs to generate a truth table.
It is then processed using an external truth table minimization tool Espresso [37], which
generates a list of clauses that can be used to encode the expression.

When this expression is used anywhere in the model a node is created in the boolean
circuit representation. It behaves like any other node and can be used in further
expressions, however during instance generation the optimized list of clauses is used
instead of the naïve Tseitin encoding.

Using this optimization on the SHA-1 choice round function does indeed lead to
the minimal encoding with just four clauses as shown above. Similarly, some steps of
the SHA-3 hash function can be wrapped and optimized in this way. Both of these
optimizations are further described and evaluated in section 4.3.

3.3 Branching order
The most important heuristic in a SAT solver is the decision which unassigned variable
to pick next. A bad order might assign randomly picked values to many variables before
some conflict is found and the search tree depth will be quite high. This in turn leads
to an increased solving time. On the other hand a good heuristic would pick variables
in an order that causes many propagations and with an unsatisfiable assignment leads
to conflicts quickly.

The branching order is picked by a heuristic in the SAT solver, which does not have
additional knowledge about what these variables represent and how they relate to each
other. By extending the input file format and the variable picking algorithm we can
provide our own (partial) variable branching order.

3.3.1 Implementation

We added a new input line type to the DIMACS CNF file format. A line in the form
b v 0

means that variable v should be branched on first. When multiple such lines are
provided the order of branching is the same as the order of these lines in the input file.
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Using this we can provide a list of any number of variables in the order we want them
to be picked for assignment.

We modified the popular MiniSat solver [12] to be able to parse and store this
list. Then we modified the selection of next branching candidate to first pick all these
variables in the specified order. Once all have been assigned we fall back to the standard
branching order algorithm.

We also made similar changes to the CryptoMiniSat solver [41], which is based on
MiniSat. However since we got better performance from using MiniSat only this solver
was used for further evaluation.

We have also added support for this feature to our modeling library. Before the
boolean circuit is transformed to a set of CNF clauses and written to a file, the user
can specify arbitrary branching order using variables defined in the model of the cryp-
tographic primitive:

1 instance.assignVars(all_variables)
2

3 for var in variables_for_branching:
4 instance.branch(var)
5

6 instance.emit(all_variables)
7 instance.solve(['minisat'])

24



CHAPTER 4
Experiments

In this chapter we describe various experiments that were performed to evaluate the
effectiveness and necessity of optimizations described in the previous chapter. These
experiments compare the time required to solve particular instances across two or more
variants. Each variant can be either a modification to the instance itself (by changing
the way it is generated), or the instance can be unchanged but rather the behavior of
the SAT solver itself is modified.

4.1 Methodology
Since the running time of a SAT solver is not deterministic it is not enough to simply
perform a single run for every instance. In fact, given the same instance and the
same SAT solver the running time can differ significantly, even by several orders of
magnitude. This is because the random heuristic decisions can sometimes find the
satisfying assignment by ”luck” and other times keep exploring unsatisfiable parts of
the search space for a long time. Multiple samples therefore have to be gathered and
sound statistical methods used to discover patterns in this noisy data.

Sampling procedure

To counter the high variability in time even for one instance we will solve each instance
several times.

Additionally, not all instances for particular parameters (such as number of rounds)
are equally hard. For example, reduced hash functions with significantly lower number
of rounds than the full hash function do not behave sufficiently as random functions.
Some output digests might be significantly less likely to be produced than others, or
might not be even be possible. When we are performing a partial preimage attack by
fixing several digest bits to be equal to a reference digest (obtained by first hashing a
random message) some instances might have fewer solutions than others.
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4. Experiments 4.1. Methodology

For this reason we also perform all such experiments on multiple instances that have
identical parameters but the random reference messages are independently generated.

Censoring

Sometimes we might obtain an instance that takes very long time to solve. To ensure
that experiments finish in a reasonable time it is common to enforce a time limit and
abort all computations that exceed it. Since in such cases we can not know the true
running time we must discard these aborted measurements.

Data sets with such discarded measurements are called censored. They make statis-
tical analysis complicated if not impossible, since even trivial statistics such as mean
can not be computed without knowing the true censored values.

For this reason we avoided censoring in our experiments. While we did have a
time limit in place, all experiments that contained censored runs were discarded and
not considered for analysis. To obtain valid experiments we either increased the time
limit or reduced some of the parameters (such as number of rounds or length of the
preimage) until we got a configuration that finished without any censoring.

Statistical analysis

For plots of solving time versus some parameter of the instance the most useful statistic
is the mean. It shows the general trend in behavior and the rate with which the time
increases. However it is by itself unreliable since the random variability can affect it
significantly.

For this reason we also include 95% confidence intervals in our plots. By performing
more and more repetitions and obtaining more samples we can reduce the size of those
intervals and obtain reliable results.

It is important to note that standard techniques for computing means and confi-
dence intervals require either normal distribution of the data, or at least some knowl-
edge about the distribution. With SAT solving times we have neither – although the
solving times for some cryptographic instances have been shown [2] to have a log-normal
distribution we would still have to verify this assumption for our data sets.

Instead we use the BCa bootstrap procedure [10] for calculating means and confi-
dence intervals that does not require any knowledge or assumptions about the distri-
bution.

To evaluate the effect of some optimization on the running time we need a statistical
procedure to decide if there is a significant difference in the running time distribution
or if all differences can be attributed to chance. Since experiments can have varying
parameters (such as number of rounds) and for each parameter combination we run
multiple independent samples a pairwise sample comparison is required. There are
several such procedures, such as the Student’s t-test or the Tukey’s test.
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4. Experiments 4.2. Merging operators

However, both of those make assumptions about the underlying distributions which
are not met in our case. For that reason we use the rather less known Games-Howell
procedure [16] which does not require these assumptions.

Both used procedures are implemented by the R statistical computing language
[35]. Availability of implementations was also a factor when deciding on methodology
– using a tested implementation greatly reduces the chance of errors.

4.2 Merging operators
First we will describe the effects of the operator merging optimization described in
section 3.1. Since it is less versatile and powerful than the Espresso expression opti-
mization described in the next section we will only evaluate it on one hash function,
the SHA-1.

While there is a place in the SHA-3 hash function that could benefit from operator
merging (the θ step, where exclusive or of five values is computed), the method used
in section 4.3.2 is also faster. This is because the whole boolean circuit does not have
to be traversed and modified.

As for SHA-1 there are two places that can benefit from this optimization. First
one is the computation of the extended chunk (1.1 in section 1.2.1). Here four values
are combined using exclusive or. Second is the majority round function where three
values are again combined using exclusive or.

On a full 80 round SHA-1 instance this reduces the number of variables from 43 232
to 37 216 and increases the number of clauses from 212 463 to 220 655. The reduction
in number of variables is quite significant and could be thought to make solving faster.

However, after measuring the running time to find an 8-bit preimage with both
with and without this optimization and performing the Games-Howell procedure gives
us a very high p-value of 0.43. Therefore we can’t reject the null hypothesis that any
difference in running times between these variants is not due to chance.

From this we conclude that this operator merging optimization is neither helpful
nor required, at least in cases such as cryptographic hash functions where repeated use
of the same operator is rare.

4.3 Expression encoding evaluation
In this section we discuss the effect of expression encoding optimizations described
in section 3.2. We performed this experiment on two hash functions, the SHA-1 and
SHA-3.
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4. Experiments 4.3. Expression encoding evaluation
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Figure 4.1: Mean running time and 95% confidence intervals for 8-bit preimage attack
on SHA-1 without optimizations (black) and using Espresso minimization for rounds
functions (red).

4.3.1 SHA-1 analysis

We evaluated the effectiveness of this optimization on preimage attacks on SHA-1 using
the unmodified Tseitin encoding and using the Espresso optimizer on both the choice
and majority round functions.

This reduces the number of clauses required for a full 80 round instance by about
ten thousand from approximately 210 thousand in the unoptimized case. Similarly
the number of variables is reduced by about four thousand from approximately 43

thousand.
We measured the running time of finding an 8-bit preimage for 32-bit input mes-

sage. The preimage bits were obtained by hashing random messages to ensure a solu-
tion would exist even for instances with reduced number of rounds. We repeated the
experiment multiple times for a total of 5670 samples for each variant.

Figure 4.1 shows the mean running times for both instances without optimizations
and for ones using Espresso minimization. As we can see the effect of this optimization
is quite small and the running times appear to be identical.

Using the Games-Howell post hoc test on instances with more than 20 rounds (to
reduce the effect of randomness when measuring very short time intervals) we do obtain
a mean time improvement of t = 1.6 seconds however at a fairly high significance level
of p = 0.12 which does not give us enough evidence to reject the hypothesis that this
optimization leads to no improvement.

4.3.2 SHA-3 analysis

We performed a similar experiment for the SHA-3 hash function, finding an 8-bit preim-
age on 32-bit message where the preimage bits again came from randomly generated
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4. Experiments 4.3. Expression encoding evaluation

Optimizations Time Number of Optimizations Time
χ step θ step Mean Clauses Variables χ step θ step t p

Off Off 7.5 717 865 243 904 Off On 3.21 < 0.01
On Off 0.52 0.95
On On 2.11 0.15

Off On 8.5 828 927 220 864 On Off 3.63 < 0.01
On On 0.98 0.75

On Off 7.4 605 805 167 104 On On 2.56 0.05
On On 8.2 716 867 144 064

Table 4.1: Pairwise comparison of four SHA-3-512 optimization combinations using
the Games-Howell procedure. Only measurements for more than 12 rounds were used
to avoid randomness in timing, for a total of n = 949 samples per strategy. Numbers
of clauses and variables are given for the full 24 round instances. Times are given in
seconds.

messages. We considered two possible optimizations in the round function and tested
four variants – all combinations of turning on or off these two optimizations. A total
of 2000 samples was collected for each variant.

The first optimization was minimizing the expression x⊕(y∧z) in the χ step, which
is used to fill the 5× 5 state matrix S in each round.

The second optimization was in the θ step, where the C vector is filled using an
exclusive or of five different values. Without optimization this leads to four extra
variables and 16 extra clauses. Using the Espresso minimization will lead to 32 clauses
but only one extra variable.

Using the Games-Howell procedure again we obtain the pairwise comparison shown
in table 4.1.

We can see that the xor optimization – which reduces the number of variables but
requires twice as many clauses – in fact leads to higher solving time (mean difference
t = 3.21) at significance level of p < 0.01. Thus the default behavior is more efficient.
On the other hand, from the high p-value of 0.75 we can’t reject the hypothesis that
optimizing the χ step makes no difference at all.

4.3.3 Discussion

Even with large number of samples to eliminate the intrinsic randomness in SAT solving
times we were unable to reject hypotheses that the tested optimizations do not lead to
an improvement. From this we conclude that they do not provide significant benefits.

While our library provides this optimization feature to users as we saw in our
measurements it is not necessary to use it. Therefore minimal changes to existing, off-
the-shelf implementations of hash functions (without the need to identify expressions
with non-optimal Tseitin representation) are sufficient to match the hand-optimized
instances such as in [32].
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Figure 4.2: Violin plot showing the ratios distribution of solving time for the none and
r0-S-x-y strategies.
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Figure 4.3: Violin plot showing the ratios distribution of number of conflicts for the
none and r0-S-x-y strategies.

4.4 Branching order evaluation
For branching order optimization described in section 3.3 we again used the SHA-1
and SHA-3 hash functions for evaluation.

4.4.1 SHA-1 analysis

We tested this optimization on an 8-bit preimage attack on full 80 rounds. We compared
the default MiniSat behavior to strategies where the variables corresponding to the
value F of the round function were branched on first. We first tested all 80 possible
rounds – that is, for every 0 ≤ i < 80 we tested a branching order strategy where the
value of F from the i-th round was branched on first.

While with the default behavior these instances were solved in just a few seconds
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4. Experiments 4.4. Branching order evaluation

(with a mean time of 2.7 s) all strategies with i ≥ 5 had instances which took more
than two minutes to solve, after which we aborted the computation. As described
in the methodology section of this chapter, we wish to avoid censoring for various
reasons. Therefore only the default strategy and strategies with 0 ≤ i < 5 were further
evaluated.

For these strategies we collected n = 256 samples each. We observed the biggest
difference in mean solving time between the strategy with i = 3 and i = 4 which
took 2.6 s and 3.1 s to solve on average respectively. However the variance in running
time is too high and performing the Games-Howell pairwise test on this data gives no
statistically significant results. In fact even for the two strategies mentioned here the
significance level is p = 0.22.

Therefore we can’t reject the hypothesis that this kind of optimization does not
lead to faster solving times.

4.4.2 SHA-3 analysis

For SHA-3-512 we tested various branching orders on 8-bit reference preimage attack
with number of rounds ranging from 1 to 24 (the maximum for this hash function). For
every number of rounds 10 different instances were generated and each was solved 10
times, for a total of 100 samples per round per strategy. We compared the following
branching order strategies:

none: No branching order was specified. This is the default unmodified MiniSat
behavior.

r0-S-x-y: The S matrix from the first round is branched on first, in column-major
order.

r0-S-y-x: Same as previous one, but in row-major order.
rlast-S-x-y and rlast-S-y-x-: Same as previous two, but the S matrix from the

last round is used instead.
The figures 4.2 and 4.3 show violin plots of the distribution of ratios of the solving

time and the number of conflicts. Each violin also show the mean, median and extreme
values.

From these plots we see that while the ratios for the number of conflict are mostly
below 1 (meaning that the r0-S-x-y strategy leads to fewer conflicts), the time ratios
are often higher than 1.

The Games-Howell procedure (figure 4.2) confirms these findings, with the mean
difference for number of conflicts between the none and r0-S-x-y strategies of t = 17

at significance level p < 0.01. However, for the solving time the high p-value does not
let us reject the hypothesis that any difference is due to chance. Note that once again
only samples for more than 12 rounds (out of maximum of 24) were included to avoid
the strong effect of randomness for instances that solve in very short time.
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Strategy Time Conflicts Strategy Time Conflicts
Mean t p t p

none 7.8 731 r0-S-x-y 0.65 0.97 17 < 0.01
r0-S-y-x 0.58 0.98 17 < 0.01
rlast-S-x-y 0.18 > 0.99 958 > 0.99
rlast-S-y-x 0.03 > 0.99 958 > 0.99

r0-S-x-y 7.5 250 r0-S-y-x 0.07 > 0.99 0 < 0.01
rlast-S-x-y 0.83 0.92 17 < 0.01
rlast-S-y-x 0.68 0.96 17 < 0.01

r0-S-y-x 7.5 250 rlast-S-x-y 0.76 0.94 17 < 0.01
rlast-y-x 0.60 0.97 17 < 0.01

r0-last-x-y 7.8 731 rlast-S-y-x 0.15 > 0.99 0 > 0.99
r0-last-y-x 7.8 731

Table 4.2: Pairwise comparison of various branching order strategies for SHA-3-512
using the Games-Howell procedure. Only measurements for more than 12 rounds were
used to avoid randomness in timing for a total of n = 480 samples per strategy. Times
are in seconds.

The r0-S-y-x strategy behaves the same as r0-S-x-y – the number of conflicts for
every instance is identical and the differences in time are negligible. On the other hand
the strategies starting with the last round’s S matrix lead to the same behavior as not
providing any branch ordering at all (the none strategy).

Similar experiments were performed with the auxiliary vectors and matrices B,C

and D with the same results – enforcing branching order did not lead to better solving
times.

4.4.3 Discussion

The fact that these branching orders do not change the solving time significantly must
mean that either their choice does not lead to any forced assignments and conflicts
(which is highly unlikely) or that the default MiniSat heuristic is also picking them for
branching first. The second case means that this optimization is unnecessary and that
the default SAT solver heuristic is sufficient in this case.
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Conclusion

We have created a library for modeling various problems as SAT instances that can
then be solved with SAT solvers. While the library is fairly universal, we have specif-
ically focused on cryptographic problems such as modeling preimage attacks on hash
functions. To simplify this use case we make use of operator overloading and dynamic
typing that allows the use of our library with existing implementations with minimal
changes.

Previous works in this area used handwritten code to generate instances of a spe-
cific hash function that were not easily modifiable. On the other hand, this allowed
them to optimize the resulting instances by reducing the number of variables and
clauses required compared to a naïve Tseitin transformation. To also benefit from such
optimizations in our library, we added an option to optimize specific expression and
evaluated the effects of such optimizations.

While we found that the optimized instances can be smaller (in terms of number of
variables and clauses) and lead to fewer conflicts, the solving time was not improved in
any statistically significant way. This leads us to conclude that these optimizations are
not required and therefore the minimal changes to existing implementations mentioned
above are sufficient to create a reasonable instance.

We then modified the MiniSat solver to see if overriding the default branching order
heuristic with the help of additional information about the problem structure will lead
to speed improvements. However, same as with previous optimizations, we found that
only the number of conflicts was reduced in this way. From this we conclude that the
existing heuristics employed by modern solvers behave reasonably on these instances
and therefore using any supported off-the-shelf solver is sufficient.

Our work can provide basis for future research in several ways. Firstly, while
we have focused on preimage attacks on hash functions, different problems could be
easily modeled using our library, which we release with full source code and several
usage samples. We believe our approach would prove successful in all areas where SAT
solvers have been used previously and even problems not related to cryptography could
benefit from the ease of use of our library.

Furthermore, more optimizations of the resulting instance could be implemented
and evaluated. And lastly, the HashToolkit command line tool could be extended to
support more hash function, attack modes and so on.
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APPENDIX A
Library

The library we developed is available at

https://github.com/lacop/master-thesis-code

or on the CD attachment [33].

The attachment includes:

Modeling library library/instance.py
The most important part of the library, used to model boolean circuits, solve
them using SAT solver and read the solutions.

Optimizations library/optimizations.py
Implementation of the operator merging (section 3.1) and the Espresso expression
minimization (section 3.2) optimizations.

HashToolkit hashtoolkit.py, hashes.py
The HashToolkit command line tool (appendix B).

Samples samples/
Sample implementations of several hash functions.

Statistics and plots statistics/
Code used for statistical analysis and to generate plots in this text.
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APPENDIX B
HashToolkit

The HashToolkit command line tool can be used to generate, solve and verify (partial)
preimage or collision attacks on hash functions. Supported hash functions are MD5,
SHA-1 and SHA-3-512.

Input and output bits can be individually set to arbitrary values. Output bits can
additionally be set to be the same as a randomly generated reference digest.

Moreover, the length of the input message and number of rounds can also be cus-
tomized. Any SAT solver that supports the DIMACS format (section 1.1.2) can be
used for solving.

For more details about all the commands line options run the tool with the --help
flag.
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