
Department of Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

Tagging system for
the blog.matfyz.sk portal

(Diploma thesis)

Juraj Ďuďák

Thesis advisor: Mgr. Juraj Frank Bratislava 2011

62cf4fe1-369f-4f33-9b3d-0973fc369700

v

By this I declare that I wrote this diploma thesis

by myself, only with the help of the referenced lit-

erature, under the careful supervision of my thesis

advisor.

. .

vi

vii

I would like to thank my supervisor and consultant

for many suggestions and corrections, my family for

their support, my friends who helped me stay sane

and all the players of my tagging game. Special

thanks and congratulations to the best player, Dada

Halásová.

viii

Contents

1 Introduction 3

1.1 Motivation . 4

1.2 Contribution . 4

1.3 Outline . 5

2 Tagging 7

2.1 Formal definition . 8

2.2 Basic operations and similarities 9

2.2.1 Projection . 10

2.2.2 Distributional aggregation 11

2.2.3 Similarity . 12

2.3 Navigation . 12

2.4 Tag Clouds . 15

2.4.1 Inline tagclouds . 15

2.4.2 Tagclouds with arbitrary positions 16

2.4.3 Relational tagclouds 17

2.5 Properties of good tagging system 20

3 Blog portal 23

3.1 Ranking . 23

3.2 Technology overview . 24

ix

x CONTENTS

3.3 Portal architecture . 24

3.4 Data model . 27

3.5 Tag properties . 27

4 Tagging system overview 31

4.1 Our tagging system definition 32

4.2 System decomposition . 32

4.3 System use-cases and interfaces 34

4.4 Languages . 36

5 CloudMaker 37

5.1 Method getCloud . 38

5.2 Examples . 39

5.3 Making portlets . 40

6 Tagregator 43

6.1 Module overview . 43

6.2 Tag merging . 44

6.3 Queries . 46

7 Tagging game 49

7.1 Google Image Labeler . 49

7.2 Asociácie (Associations) . 50

7.3 Implementation . 51

7.3.1 Player identification 51

7.3.2 Pairing players . 52

7.3.3 Running game . 53

7.3.4 Word database . 53

7.4 Results . 54

8 Conclusion 59

Abstract

Collaborative tagging is widely used on the web and is well known to web de-

velopers, but mainly as a supportive way to categorise content and provide

minor navigation. We describe that tags provide much more information

and can be used to create full-feature navigation. When designing relational

tagbrowser for blog.matfyz.sk, we experienced many difficulties with old tag-

ging system design, so we designed a new system, with all the properties of

modern tagging tools, but also suitable for our portal. Expected properties

of the system were extensively studied and statistics were made to ensure

suitability of our system. Tagging system we created is very modular, with

modules capable of creating many sorts of tag-based navigation and deal-

ing with problems related to free-nature of tags. We also experimented with

ways of implementing tag suggestions, to aid users of portal to use more tags.

Resulting system is faster and easier to use than the old one, also provides

more possible navigation features.

Keywords: tag, tagging system, web application, tagcloud, folksonomy

1

2 CONTENTS

Chapter 1

Introduction

Tagging is a process is which we assign tags (keywords) to pieces of informa-

tion. Tag is a descriptive term that helps to define information value of object

it is assigned to. Nowadays, tagging is very popular, since it is strongly asso-

ciated with Web 2.0 and collaborative web applications, where large amounts

of data created by users have to be categorised. Using tagging, categorisation

and resource management is done by users themselves. Tagging is also very

important for machine processing; tags generated by users often describe

basic properties and semantics of the object. Tags create so called folkson-

omy [Mat04], a user generated informal taxonomy without strict hierarchical

structure. Folksonomy is defining relations, much like ontology. Ontology is

a formal description of things, their types, and relations in some domain of

interest [Sow00].

The main goal of tagging is resource management. We need content to be

easily searchable, processed by machine, and most of all browsable. Many

times users do not really know what they are looking for, in which case tags

can point them to category containing resources they are interested in (e.g.

some “recipe”).

Tagging is widely used on many different web portals, they form tagclouds

3

4 CHAPTER 1. INTRODUCTION

and are used for simple navigation and searching. Tagcloud is a list of tags

that visualises tag importance and other data, for example tag relations. But

tags provide much more information and many interesting visualisations can

be done.

1.1 Motivation

There are many papers on tagging [Mik05], [SAG06], [DL07], [MH07], [ZXS06],

but most of them take for example Flickr(www.flickr.com) data and work

with it offline, to demonstrate some techniques. Our goal was to develop

a tagging system, that will be actually used on real web portal. During

our work on relational tag browser for blog.matfyz.sk [ak09], we experienced

many problems associated with old tagging system design. Mainly all the

operations were too slow, and many tagclouds were precomputed a cached.

Also, the system was simple in design but very complicated to really under-

stand what it was doing. There were no IDs, tags were stored as strings

with complicated matching algorithms working with them. One whitespace

character makes two string different, but in case of tags, they are equal.

To be able to create relational tagcloud, we also introduced relations and

shortly after we discovered recent article [Mar09] explaining many different

similarity measures.

1.2 Contribution

Our goal was to create easy to use system, where many experimental tech-

nologies can be easily tested. Model of this system should come from theoret-

ical papers on tagging, but also from practical experience gained in previous

work. After extensive research about this problem we summarized all the

1.3. OUTLINE 5

properties of good tagging system, but also properties specific for our main

domain, blog.matfyz.sk portal. We have created very modular system that

consists of two parts, one dealing with problems with free nature of tags, the

other, core of our system, in responsible for generating tag based navigation.

This way we are easily able to alter system parts and try new technolo-

gies. Our idea was to evaluate all the queries, sort them according to their

frequency and design a system that minimizes time needed to serve most

frequent queries. We also experimented with way of creating relations be-

tween words that used game similar to Google Image Labeler [Goo07]. The

structure we have created is usable for tag suggestions, but with the data we

provided, more research can be done.

1.3 Outline

First chapter contains details of theoretical background of our problem. Here

we introduced model of tagging system and operations on this model, we

described forms of tag-based navigation and finally summarized important

properties of a good tagging system. Chapter 3 describes blog.matfyz.sk

portal, since it is necessary to understand design of this portal, to understand

our system design, presented in Chapter 4. Following chapters describe main

parts of this system, CloudMaker responsible for generating tagclouds and

Tagregator for dealing with tag related problems. Chapter 7 describes our

tagging game and presents results of this experiment.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Tagging

Tag is a non-hierarchical meta-data keyword assigned to a piece of informa-

tion (resource) in order to mark its semantics, information value, of describe

other personal aspects of the object. Tags are mainly created by users, in

order to help themselves, or other users to categorize some information, for

future reference, searching, or simply express personal opinion. The nature

of tags is their non-hierarchical structure, that makes them very useful to

use for example on the internet, where predefined hierarchies are almost im-

possible to make. We can look on an easy example of directories. Say Bob

works mainly in two main languages, Java and PHP. He works in school, but

also he has a job. He bought a new computer and is about to make a new

directory structure. But he finds it a little bit confusing, because he has 2

possible choices (Figure 2.1). He can choose any of those, with its own pros

and cons (navigation, performing batch operations). But this simple exam-

ple shows that hierarchies are often questionable, and large data hierarchies

hard to make. Tagging solves this problem, Bob can tag his project folders

with tags “work”, “school”, “PHP” or “Java”. Then when he wants to see

for example all his school projects made in PHP, he filters all projects and

selects only those with both “school” and “PHP” tags. Unluckily for Bob,

7

8 CHAPTER 2. TAGGING

Figure 2.1: Bobs dilemma: he has to choose from 2 different hierarchies, but

which one is better?

even tagging systems have their disadvantages.

Tagging is mainly collaborative process, and strongly depends on willingness

of users. It is time consuming for one user to tag all the data he wants to

work with, but many users can cooperate to achieve a common goal. But

this also bring another well known problem of tagging; usage of natural lan-

guage. Any word (in general any string) can be used as a tag, and thus users

can choose different words to describe common aspect. Synonyms and also

homonyms are also a part of a tagging systems and should be dealt with.

In this his work, a method partially solving this problem using canonical

representations is described.

2.1 Formal definition

To describe algorithms and components used in our tagging system, it is

necessary to give basic definition of tagging system properties and operations

on this system. Tagging system [Mik05] consists of users U = {u1, u2, ..., uk},

2.2. BASIC OPERATIONS AND SIMILARITIES 9

set of resources R = {r1, r2, .., rm} and a set of tags T = {t1, t2, .., tm}. The

process of tagging can therefore be defined as creating a triple a ∈ A, where

A is a set of annotations A ⊆ U ×R× T . This annotations create a tagging

system, which can be represented as a triparted hypergraph:

S = 〈V,E〉, V = U ∪R ∪ T,E = A

This special kind of graph also describes our intuition. As we can see on

Figure 2.2: Axes represent Users, Resources and Tags. Annotation is a single

point in this space.

Figure 2.2, it represents a 3-dimensional space (tagspace).

This tagging system is very simple and does not provide any information

about quality of resource, user or tag. In the tagging system implemented in

this thesis, author expanded the model and added strength of triplet associ-

ation.

2.2 Basic operations and similarities

We will use different kinds of operations borrowed from different fields to

work with our tagging system. Since our system consists of large quantities

10 CHAPTER 2. TAGGING

of triplets, in order to present them to user, we need to throw away some of

the information from the 3-dimensional model. There are many methods for

achieving this [Mar09], but we have chosen only a few, mainly because they

serve our purpose well. To demonstrate effect of our operations, we will use

sample dataset of triplets, written in he table below.

user resource tag

Alice XML markup

Alice XML web

Bob XML language

Bob Web 2.0 web

Cyril CSS language

Cyril XML language

2.2.1 Projection

Projection π is a operation from relational algebra, that is defined on rela-

tions. Suppose we have a n-ary relation, defined as follows:

R ⊆ C1 × C2 × . . .× Cn (2.1)

We will calls sets C1, C2 . . . Cn columns. Projection π selects only those

columns which we need:

πC1,C2...Ck
(R) = {(c1, c2 . . . ck) |∃ck+1, ck+2 . . . cn (c1, c2 . . . ck, ck+1 . . . cn) ∈ R}

(2.2)

Using projection on our sample data, thus calculating πresource,tag(S), we

obtain pairs of resources and tags.

2.2. BASIC OPERATIONS AND SIMILARITIES 11

resource tag

XML markup

XML web

XML language

Web 2.0 web

CSS language

This operation is very useful for different purposes, but mostly for searching,

when what we exactly need is a table of resource-tag pairs.

2.2.2 Distributional aggregation

Aggregation is an operation, which groups several data rows together and

creates a single value containing their count. There are basically 2 types

of aggregation, weighted by Shannon information (log odds), or very simple

direct aggregation. For example to create a system-wide tagcloud, all we

have to do is to aggregate across users and resources to obtain number of

usage for each tag. we will denote tag weight w(t).

w(t) =| {(u, r, t) | (u, r, t) ∈ S, u ∈ U, r ∈ R} | (2.3)

tag weight

language 3

web 2

markup 1

To make a tag cloud for a resource, we only need to aggregate across the

users. This time we will use log odds, to demostrate this technique. From

information theory, we know that information content I of an outcome of

random variable x can be enumerated using very simple formula

I(x) = log
1

P (x)
= − logP (x) (2.4)

12 CHAPTER 2. TAGGING

Where P is probability of random variable outcome x. In our case, we can

derive similar formula

wr(t) = − logP (t) = − log
| {(u, r, t) | (u, r, t) ∈ S, u ∈ U} |

| {(u, r, t′) | (u, r, t′) ∈ S, u ∈ U, t′ ∈ T} |
(2.5)

The final formula inside logarithm may look a bit complicated, but it is just

a fraction of annotations containing selected tag over all the annotations.

Aggregation is the main and most common method for creating tag naviga-

tion. In small scale (tagcloud of individual users) linear aggregation is better

choice since it preserves ratios of tag occurrences. On the other hand, in

large scale, logarithmic aggregation is good choice; it reduces large differ-

ences between tag weights.

2.2.3 Similarity

To make our 3-dimensional model of tagspace complete, we have to define

user-user, tag-tag and resource-resource relations. From all the possibilities

[Mar09] we have chosen matching similarity, which is defined as number of

common appearances. For example tags are related if they tag a common

resource, and the strength of relation is based on a size of set of resources

that are tagged with both tags.

σtag(t1, t2) =| {r | (u1, r, t1), (u2, r, t2) ∈ S, u1, u2 ∈ U} | (2.6)

2.3 Navigation

Our model of tagspace can be viewed as a 3-dimensional space, with relations

providing us distances for users, resources and tags. But when browsing for

content, user can look on the whole system, or choose user/resource/tag

he is interested in. This is a standard for almost every blog portal. For

every point selection we are able to visualize current space point, present

2.3. NAVIGATION 13

interesting content and use relations to give user further options for point

selection. According to current page, we can provide:

• User page

– list of related users - users using related tags

– list of resources created by selected user

– tagcloud consisting of user added tags, tag sizes are only measured

from user tags

• Resource page

– list of related resources according to related tags

– list of other resources created by author of selected resource

– tagcloud consisting of tags assigned to pivot resources

• Tag page

– tagcloud of tags related to selected tag

– list of resources tagged with selected tag

– list of users using selected tag

This way our user is not only browsing for resources, but he is also able to

find new interesting topics and authors.

Demonstration of this principle can be seen on Figure 2.3. This image shows

a page from blog.matfyz.sk portal. This is a page that is shown to users when

they read article. Note that tag navigation contains tags of this article, other

posts by this user, and related posts. This way we have provided many paths

to find new interesting content.

14 CHAPTER 2. TAGGING

Figure 2.3: Reading an article on blog.matfyz.sk portal. You can see tag

based navigation to the right.

2.4. TAG CLOUDS 15

2.4 Tag Clouds

Tag clouds are visual representations of tagspace, or a point in it. Usually

they are lists of words sorted alphabetically, and the importance of each tag

is shown with font size or color. [MH07] These typical tagclouds are common

part on many web sites and services, such as image sharing or blogging. But

when we look closer, we can distinguish more types of tagclouds, depending

on their visualisation.

2.4.1 Inline tagclouds

Inline tagclouds are the most simple and oldest kind of a cloud. They are only

a list of words, with a strength assigned to each of this words, to represent

importance.

On Figure 2.4 we can the effect of aggregation type on tag clouds. Both clouds

are generated using same data. Cloud on the left was created using linear

distributional aggregation, cloud on the left uses logarithmic distributional

aggregation. We can see that usage of logarithms help to make differences

smaller. As we will further explain, tag distribution is not linear. To create

such a cloud, we need to use aggregation of any kind to produce a list of

tags and their importance t. Then, it is very important to normalize these

importances, so that the final tagcloud has font sizes s in a certain range.

Say smin, smax are minimum and maximum font sizes in our cloud. We have

to find minimum and maximum importance tmin, tmax. Then, font size for

each tag si can be calculated easily:

si = smin +
(smax − smin) (ti − tmin)

tmax − tmin

Similarly, we can calculate a color from certain range to use as importance

visualisation.

16 CHAPTER 2. TAGGING

Figure 2.4: Example of inline tagclouds.

2.4.2 Tagclouds with arbitrary positions

Inline tags have one big disadvantage, each line is as high as the highest tag

in it, so sometimes we want to make tagclouds with arbitrary positions. Also,

we can use the extra dimension to present another aspect of tagclouds, such

as relations.

Tagclouds with arbitrary positions are much more difficult to generate than

ordinary inline clouds, where all the positions and line breaks are calculated

by browser. In fact, finding good position of tags often leads to NP-complete

problems such as rectangle packing [HK09]. Another problem is displaying

these clouds in a browser. In general, browsers were made for displaying

text, so these clouds have to be represented as HTML tables or divs with

CSS positioning. Also, we can export the tagcloud as an image. External

plugins, such as Flash are also possible choice. Another interesting option is

usage of Scalable Vector Graphics(SVG) [W3C10], a modern format based

2.4. TAG CLOUDS 17

on XML, developed by W3C. SVG has native support in most browsers and

there are also plugins for browsers without SVG support.

Figure 2.5: Tagcloud with arbitrary positions. This tagcloud from wikipedia

shows Web 2.0 themes

2.4.3 Relational tagclouds

Special kind of tagcloud with arbitrary positions is relational tagcloud. Apart

from tag importance, this type of tagcloud visualises relations between tags.

These relations help users to navigate by further exploring tagspace. Rela-

tions are visualised using distance between tags, or by displaying tagcloud as

a graph and using graph edges as relations between them. This graph kind of

tagcloud was developed and tested as a part of bachelor thesis [ak09]. Also,

for this work the model was reviewed and SVG was chosen to be the best

format. The main idea behind this graph generation is using force directed

layout. This algorithm uses physical modelling to iteratively find best graph

layout.

Given a graph G = (V,E), this approach deals vertices as electrically charged

particles, and edges as springs. Algorithm simulates dynamics of this sys-

tem over time. Since vertices are electrically charged, they repel each other

18 CHAPTER 2. TAGGING

Figure 2.6: Relational tagcloud rendered using SVG.

according to simplified Coulumb law

F =
q1q2
r2

Where q1, q2 are vertice charges and r is vertice distance. And with edges as

springs, they are contracting and pushing nodes closer to each other according

to Hooke’s law

F = kx

Where x is distance from equilibrium position, k is spring constant, in our

case same constant for all edges. This equations provide systems energy,

and constants have to be properly set up, so that there exists a equilibrium

between these forces. In every iteration, we have to calculate all the forces

2.4. TAG CLOUDS 19

that apply to vertices:

F (v) =
∑

v′∈V ;v′ 6=v

CoulombRepulsion(v, v′) +
∑

e∈E;v∈e
HookeAtraction(v, e)

where

CoulombRepulsion(u, v) =
charge(u) · charge(v)

distance(u, v)2

HookeAtraction(u, e) = weight(e) · (length(e)− baseLength(e))

This calculations result in running time O(V 2 + E) for one iteration. Iter-

Figure 2.7: Graph layout dynamics. Red dotted lines represent repulsive

forces, green lines represent spring forces.

ation means recalculating system dynamics over time, constant or variable,

and moving vertices according to forces. Number of iterations depend on

model, in this case, best solution was to stop simulation, when total kinetic

20 CHAPTER 2. TAGGING

energy was smaller than some ε.

All forms of tagclouds were used in tagging system described later in this

work, each one was selected for different purposes. Inline tagclouds are ideal

as a side-portlets, since they do not take much space. When more sophisti-

cated mean of navigation is needed, relation cloud is displayed.

2.5 Properties of good tagging system

Tagging, with its unhierarchical nature, is a very interesting choice for nav-

igation, since usually websites use tree like structures. In order for tagging

system to be a useful in means of navigation, it needs to follow 2 main prin-

ciples, proper fragmentation and proper clusterisation.

Property 1 Clusterisation needs users to reuse tags often, so that categories

created by tags are large enough, and they form a top level navigation

Property 2 Fragmentation needs users to use specific tags, that are not

reused often. Tag based navigation need to have small specific categories that

lead users to precise category they are interested in.

Figure 2.8 shows us categorization of resourses, assigned following tags:

resource tags

Cat animal, pet

Lion animal, africa

Hyena animal, africa, canine

Dog animal, pet, canine

Sunflower plant

As we can see, categories overlap and thus they can not be represented by

simple tree-like structure. But there are larger and smaller categories. Tags

like “animal” that cover a large set of concepts are useful to aim users to

2.5. PROPERTIES OF GOOD TAGGING SYSTEM 21

Figure 2.8: Clustering and fragmentation example.

topics they are interested in. Tag “animal” defines the largest category of

resources, that are somehow related and in a tagcloud, this tag would be the

larger than others, what is exactly what we are want to achieve, top-level

navigation with general tags. Smaller categories, can then guide user to very

specific categories using relational navigation. Further on, we will focus on

tag suggestion system, that will try to follow both of these principles and

suggest both tags from the folksonomy created by tags used within tagging

system, but also tags from external sources, so that users does not always

use the same tags, creating large categories without internal fragmentation.

22 CHAPTER 2. TAGGING

Chapter 3

Blog portal

To test and demonstrate algorithms associated with tagging, a whole new

tagging system was implemented on blog.matfyz.sk portal. Blog.matfyz.sk

is a school-project that is being developed and administered by students

and staff of Faculty. This portal is available for anyone, users only need to

register or use openID account to write articles. Moreover, several courses

use blogging and this portal as a supportive tool for teaching, therefore a

significant number of blog articles is created by students and there is even a

course in which students write their own blog layout using XSLT.

3.1 Ranking

Almost every blog portal uses ranking mechanisms to help users find good

content. An easy way is to take number of views as a quality measure, but

this favours authors that write many articles, even with lower quality, since

there is no way to say that article is bad, and it takes a longer time to

distinguish between good and bad. Another problem is sharing the article

as much as possible, so that users go to article and raise its rank without

even reading it. Very common way is to use scoring system, which allows

23

24 CHAPTER 3. BLOG PORTAL

users to evaluate an article they have read. There are different algorithms

[Koh08] to calculate scores of articles and also score of users - so called karma.

Portal uses Eigenrumor algorithm [TN06], which is based on Pagerank and

calculates both user karma and article score.

3.2 Technology overview

Portal is built on PHP [Gro] scripting language, extensively using object-

oriented programming. Mainly for academic reasons, many XML based tech-

nologies are used. Data is stored in Native XML Database Sedna [sed07],

which is a open-source project that is still under development, and data from

this portal help developers fix bugs. PHP is used to generate data, that is

then processed by XSL to produce final output. Furthermore, usage of XSL

allows users of webdesign course to make their own stylesheets. Whole sys-

tem is very modular and uses modules (pluggable components) to generate

both data and output style.

Part of the system responsible for calculating user and article rank is

written in C, to make it as fast as possible. Usage of javascript or other tech-

nologies that are not fully supported is limited, and there is always fallback

for users with browser without support of given technology.

3.3 Portal architecture

Since many students write their thesis and otherwise work on developing the

portal, it was necessary to rewrite blogportal code to make it more modular

and easy to manage. This reconstruction was done as a part of thesis [Rej10].

New system has a horizontal separation, and thus there are no “super” classes

responsible for too many functions of the portal.

The system’s core is a class called Controler, with only one purpose: gather

3.3. PORTAL ARCHITECTURE 25

data from the modules and display them to users. Controler has a list of many

different modules registered to it. Special kind of modules that are used in

this design are called portlets. Portlet contains code logic for several use

cases and provides interface for basic operations required by core (mainly for

output generation) [Rej10]. Each portlet implements interface called Portlet,

with 4 methods, all given the same set of parameters containing GET and

POST data. These required methods are:

• init - used for initializing all the necessary parts of the portlet, and

processing input

• getXML - this method is probably the most important in portlet. It

returns XML data that is all gathered by Controler. Typically, it is

divided into cases according to current page and provides all the data

needed from this portlet.

• getXSLList - this method provides XSL stylesheets needed to present

data returned from getXML. This method returns an array of stylesheets.

We need to make sure that our XSL template matches exactly the XML

we need. This is solved by wrapping the XML to ”module” element

with attribute name set to portlets name. XSL contains template that

matches exactly this node and everything works as planned.

• getXSLParams - apart from XSL stylesheet list, we can define pa-

rameters that will be given to XSL processor during transformation

Controler creates XML by gathering all the XML data from the portlets,

than loads all the necessary XSL stylesheets, sets up the processor and simply

writes the output of the transformation to user (Figure 3.1). Each part of the

system such as article, tagcloud, search bar is made as a portlet. But this also

brings some problems, mostly with code-sharing. In our case, this problem

was solved with another software engineering pattern called Singleton, as we

26 CHAPTER 3. BLOG PORTAL

will further describe in Chapter 4. The goal was to keep the system modular,

but without making previous mistakes - writing the same code more than

once.

Figure 3.1: Aplication flow

3.4. DATA MODEL 27

3.4 Data model

Portal uses Sedna, a Native XML Database, mostly because XML is natural

way to represent blog data [Koh08]. But this format was found not very

effective for working with tags, so a new data format was created for this

purpose. Data in Sedna is stored in aspect to user, each user node contains

basic information about the user, and users blog. Blog is basically a list of

articles written by user. Tags are associated with articles, which makes them

accessible for alternation, but displaying a whole-portal tagcloud took a lot

of time to compute and moreover calculating relations was very complicated

and time consuming.

For this particular task, relational database was a better solution, as we will

describe later.

3.5 Tag properties

To create a tagging system specially for this blog portal, we have to adjust

basic system properties according to current state of tags. We have made

following statistics on 28.1.2011 on a Slovak tags on blog.matfyz.sk portal.

To get a basic view on a size of the system, number of tags, resources are

necessary. To the date, there were 3529 published posts. Authors of articles

(resources) has assigned 2834 tags, so in average, 0.8 tag per post. But when

we look only on articles containing at least one tag (1218 articles) we get a

ratio of 2.33, what is more some users tend to add 20 or even more tags to

their articles. On Figure 3.2 we can see how many atricles there are with

given number of tags. Articles with 0 tags are not shown here. Some users

add up to 27 tags to their own articles. This statistic could be improved by

allowing all the users to tag resources, because some authors tend to forget

about tags, or even assign not very suitable tags.

28 CHAPTER 3. BLOG PORTAL

Figure 3.2: Number of posts with certain number of tags assigned to it. Up

to 27 tags were assigned to an article, but only 3 articles had more than 16

tags.

There were 966 unique tags in use, so average tag reuse was about 2.93,

a satisfying number, showing that tagclouds can be made on this data. To

choose from different aggregation methods, we can look on a distribution of

tag counts. Maximum of 291 uses was achieved for tag “matfyz” which is not

very surprising. Very interesting was a exponential distribution of tags, the

reason why it is good to use logarithmic aggregation methods for creating

tagclouds. Exponential distribution is also important because it shows that

with size of tag created categories, number of those categories decreases ex-

ponentially. This is the feature of tree-like navigations (if categories contain

at least 2 subcategories, tree size grows exponentially) and good thing is that

similar structure emerged in our system as well. Another interesting fact is

that this usage of tags like “matfyz”, that is assigned to almost a fourth

of all the articles with tags has made this tags almost useless for naviga-

tion. This is exactly the reason why we need to encourage users to add new

tags, not just reuse old tags. These statistics were taken in account when

we were designing the tagging system. Exponential distribution of tag is the

main reason for usage of logarithmic aggregation when creating portal-wide

3.5. TAG PROPERTIES 29

Figure 3.3: Tag reuse. y-axis is in logarithmic scale, so we can see the

exponential distribution. There were even tags that were used more than

100 times, but only 9 tags were used more than 30 times.

tagclouds.

30 CHAPTER 3. BLOG PORTAL

Chapter 4

Tagging system overview

Now, after we have introduced main aspects of tagging systems in general,

and also properties and technological background of blog.matfyz.sk, it is time

to summarize all the requirements and properties of tagging system we need:

• easy to use and fast way of generating tagclouds. As we discussed,

almost every page on the portal will have a tagcloud of some kind on

it. Cloud generation is the main goal of tagging system, thus we will

have to make it very fast.

• tag administration. Portal is not very large in scale, so we cannot

entirely rely on large quantity of tags and we will have to build admin-

istration of tags, where we can create canonical representations of tags,

stop tags, and also sometimes we will have to merge tags into one.

• tag suggestion. As we discussed, we will have to somehow motivate

users to use as many tags as possible and thus give us more data we

can process and create even better navigation.

• keep everything as modular as possible. Since many students develop

parts and modules for this portal, it is hard to keep everything working

together.

31

32 CHAPTER 4. TAGGING SYSTEM OVERVIEW

• introduce tag weight. Users and articles on the portal have score/karma

assigned to them, we need to have weighted tags as well. Using weighted

tags we can favour users with higher tag quality.

These few items served as guidelines when designing the system. We will

start explaining main parts of the system from top to bottom, also we will

describe their cooperation, since system parts work as black boxes. Their

internal implementation is described in chapters named after them. Firstly

we will describe expanded tagging system definition.

4.1 Our tagging system definition

Common definition of tagging system given in the beginning of Chapter 2

does not serve all the requirements we made. Here, all the tag associations are

taken as equal, but since our portal is rather smaller in scale, we distinguish

between users, and we want to have weighted associations. This can easily

be solved by expanding model from hypergraph to weighted hypergraph. All

the sets and graph stay the same, we only add a function W defined on set

of annotations W : A→ R+. This function tell us how important is this tag

association and all aggregation methods and similarities are expanded from

counting associations to summs of weights of associations. For simplicity,

we will often use weighted triplets or weighted annotations (u, r, t, w) where

(u, r, t) ∈ A and W ((u, r, t)) = w.

4.2 System decomposition

Tagging system that we described, has basically two logical functions. Out-

putting clouds and solving tag related problems. This was the main idea we

used when designing system modules. We implemented 2 modules Tagrega-

tor and CloudMaker. Tagregator is responsible for dealing with tag problems,

4.2. SYSTEM DECOMPOSITION 33

and CloudMaker has a structure with all these problems solved and is only

responsible for generating tag-based navigation. Modules were designed to

work as black boxes, which was not always possible, but the main idea was

to create universal classes that can be used with any project. With this in

mind we added third module Tagging responsible for communication of 2

main modules with the portal. Tagging is a singleton [EGV94] class, which

means there is always only one instance of it in processing. This was neces-

sary, because portal uses portlets, and to generate page, we often need more

that one tag-based portlet. This way all the portlets use the same instance

of Tagging system. In class constructor, Tagging creates instances of both

Tagregator and CloudMaker, so they also share singleton property of Tag-

ging.

Figure 4.1: Tagging system with its 2 modules

34 CHAPTER 4. TAGGING SYSTEM OVERVIEW

4.3 System use-cases and interfaces

We will discuss some basic use-case algorithms and describe implementation

details of whole system, with CloudMaker and Tagregator as black boxes,

with their input and output methods. Queries done within tagging system

can be sorted by their frequency:

1. generating clouds, filtering data

2. adding annotations, removing annotations

3. tag administration operations (merging tags, setting stopwords)

Number 1 is obvious, this is done each time user interacts with portal, num-

ber 2 has to be before number 3, because without new annotations, there is

no need to do administration operations.

Our system should serve most frequent operations as fast as possible, and

operations like tag administration can take up more time. Following this prin-

ciple, our CloudMaker will contain cached annotations, already processed by

Tagregator. After a administration operation (these are not very frequent),

we will re-cache CloudMaker data. This property also makes our system

a super-structure working over portals existing tagging system, since every-

thing works basically the same way as before, we only add extra functionality.

All the basic queries can be written as simple algorithms. As an example we

describe most common queries.

Inputting annotations:

Input: array of weighted annotations (u, r, t, w)

1. create array of tags from the annotations and give it to Tagregators

method getIDs, which result in array of canonical tag IDs

2. add annotations to CloudMaker using addTriplets, but instead of tag,

use tag ID returned from Tagregator

4.3. SYSTEM USE-CASES AND INTERFACES 35

Getting tagcloud:

Input: parameters of cloud to generate

1. use appropriate method of CloudMaker to get tag IDs and weights, in

most cases getCloud

2. create array of IDs and give it to Tagregators method getTags, which

result in array of canonical tags

3. make weighted tag array using matching canonical tags

Output: cloud data

Deleting or editing resources is done by CloudMakers method deleteResource

followed by addTriplets if necessary.

As we said only problem is tag administration. Changing name of canonical

tag is again cheap, since CloudMaker only stores IDs, but merging/stopping

tags require re-caching whole annotation database from raw structures (por-

tals xml database). Tests shown that this importing operation takes about

5 seconds, so there is no need to worry about this solution.

Reader may find interesting that we only store IDs in CloudMaker, which

may look as a waste of time, we need a extra operations after generating

tagcloud, but we actually save a lot. Tags in general are arbitrary strings, so

storing and operating over MySQL database would be both time and space

consuming. In our model, CloudMaker only stores IDs of users, resources and

tags. So after CloudMaker generates cloud data, class Tagging is responsible

for finding string representation and sorting result. This sorting operation is

very fast, since it only works with cloud, which has a maximum number of

items assigned (about 50 for usability).

36 CHAPTER 4. TAGGING SYSTEM OVERVIEW

4.4 Languages

Portal uses both Slovak and English language, so it was necessary to think

of language variants when designing the system. We completely separated

tags for both languages, and what is more, system automaticaly installs

when used on new language. Portal initializes Tagging class with parameters

including language as a string. When creating instances of both CloudMaker

and Tagregator, we create tables for chosen language, if they do not exist.

All the work is then done with tables for chosen language. This way it is

very easy to integrate our system even with other possible languages.

Chapter 5

CloudMaker

Cloudmaker is a system part responsible for generating tagclouds and rela-

tions of tags/users/resources. Main reason that led to developing this class,

was to only work with data that is relevant in process of tag-navigation. This

class was developed in a very abstract way, so that it can be used in another

projects. We do not give any limitations for users, resources or tags, they

can be IDs or strings, but in our case, we decided to use IDs, since strings

are not very good choice for computation.

In our extended model, annotations are weighted triplets, shortly written as

tuple (u, r, t, w). These annotations represent points in discreet 3 dimensional

space, with weight assigned to them. CloudMaker uses a mySQL database,

with only one table, containing these annotations. This data model is very

natural and easy to use. We abstract from all the other aspects of tagging

system, and only look on the hypergraph edges - annotations. This natu-

ral representation of data allows us to do our computations very straight-

forward. What is more, when we look on this system we can see that now all

parts are equal, we do not distinguish between users, resources or tags, they

are all equal parts of annotation. This property is very important, because

we are able to use same functionality for generating tagclouds, but also user

37

38 CHAPTER 5. CLOUDMAKER

Figure 5.1: Annotation with added strength. Database simply consist of

rows storing each single annotation.

“clouds” and resource “clouds”.

5.1 Method getCloud

Core of this module is a method called getCloud. This method is responsible

for retrieving weighted lists of users/resources/tags. In pseudo-code, header

of the method looks like

getCloud (data, method, viewUser, user, resource, tag, limit)

This method builds up mySQL query, that gives result with almost all the

properties we need. First, we will describe parameters used and then give

examples of parameters setting and resulting query.

• user, resource and tag parameters defining filters for selecting anno-

tations. These parameters can even be arrays, so we can select all

annotations with tag/resource/user set to given values.

5.2. EXAMPLES 39

• data is either user, resource or tag. After filtering annotations, we

group them along column data. This parameter tells the system what

kind of list we need.

• limit says how many items at most will our list contain.

5.2 Examples

Now to demonstrate these queries, let us look on basic examples, portal-wide

tagcloud and user tagcloud.

Portal-wide tagcloud is the most simple kind of tagcloud, we take all the

annotations, aggregate them and then take top lets say 50 tags. Our query

follows:

SELECT tag, SUM (strength) AS strength FROM annotations_sk

GROUP BY tag HAVING SUM (strength)>=1

ORDER BY SUM (strength) DESC LIMIT 0,50;

Making user tagcloud is very similar, we only add user filter:

SELECT tag, SUM (strength) AS strength FROM annotations_sk

WHERE user=[input user] GROUP BY tag HAVING SUM (strength)>=1

ORDER BY SUM (strength) DESC LIMIT 0,50;

We can easily imagine similar queries used to list all the users using given

tag etc.

After retrieving list of data, aggregated lineary, we can use other aggregation

method, by setting parameter method. We have implemented linear and

logarithmic aggregation, but other methods can be easily implemented as

well.

The most beautiful property of this system was found when rewriting code

for relational tagbrowser. This particular task requires some very specific

40 CHAPTER 5. CLOUDMAKER

data. For input tag, our task is to output graph consisting of tags with

strongest relations with input tag, but we also need relations between these

tags. Retrieving relations is very straightforward, when we use matching

similarity. Matching similarity is defined as number of common resources.

For input tag, our simple algorithm selects all resources tagged with input

tag:

SELECT resource FROM annotations_sk WHERE tag=[input tag];

And then calls getCloud to get tags from annotations filtered by this resource

list:

SELECT tag, SUM (strength) AS strength FROM annotations_sk

WHERE resource IN [list of resources] GROUP BY tag

HAVING SUM (strength)>=1 ORDER BY SUM (strength) DESC LIMIT 0,10;

Relations between chosen tags use the same algorithm, but we add tag filter

to retrieve only tags which we need.

5.3 Making portlets

Simplicity of our natural database model and universality of getCloudmethod

allows us to create all sorts of tag based navigation, filter users and resources.

This part of our system was developed as first, and became center of whole

system. Portal requires many different portlets containing tag navigation,

all these portlets were created within a day of programming and we even

suggested and created new portlets, for example related posts. Full feature

tag navigation introduced in bachelor thesis [ak09] looked like a very uneasy

task, since problems asociated with tagging rapidly slowed down develop-

ment. When we assume that data stored in CloudMaker is already processed

5.3. MAKING PORTLETS 41

and our only task is to visualy present this data, development becomes very

fast.

42 CHAPTER 5. CLOUDMAKER

Chapter 6

Tagregator

Free nature of tagging creates many problems, users think of the same key-

word, but write it differently. To deal with this problem, tag administration

system was developed for the portal [Fra09]. The idea of the system was

to assign canonical representations to tags and ability to merge tags. We

followed the main idea and designed a new module to use in our tagging

system.

6.1 Module overview

Main goal of this module is to assign canonical representations to tags. Op-

erations can be divided into 3 logical parts:

1. for given list of tags, our module returns list of canonical IDs, to be

stored in CloudMaker

2. for given list of canonical IDs, our module returns tags as strings

3. module has to provide interface for tagging administration, including

renaming tags, merging tags, splitting merged tags and hiding tags.

43

44 CHAPTER 6. TAGREGATOR

First two operations should be as fast as possible, these are performed very

often. The last one is done only by administrators and only once in a while,

so it can take up more time. Final design of this class uses only one table to

store data (Figure 6.1). Each tag is assigned a unique ID; its string value;

Figure 6.1: Data model of Tagregator

parentID, rootID for merging operations; visiblity flag and for future refer-

ence we added image link. In future we would like to introduce image tags,

but this also brings problems when generating cloud. Setting tag visibility is

very obvious and straight forward, merging and renaming tags is a bit more

complicated.

6.2 Tag merging

We have introduced tree-structures to memorize merging history. Using this

structure we can easily merge tags, but also we are able to undo this operation

by splitting tags and returning system to previous state. In order to create

this structure, for each tag we memorize ID of a parent tag, but also ID of

root tag, so that we can quickly find canonical representation of any tag.

Figure 6.2 demonstrates merging of tags . On part a) we can see situation

before merge. Part b) demonstrates situation after tag merge, where new

canonical representation of tag B is set to C. This operation also changes

canonical representation (rootID) of tags that has tag B as their current

canonical. Algorithms for tag merging and splitting can be easily written

6.2. TAG MERGING 45

Figure 6.2: Merging tags in Tagregator

down:

Merging A under B:

1. A.parentID = B.id

2. A.rootID = B.id

3. for each tag C with C.rootID == A.id set C.rootID = B.id

Splitting A from under B:

1. clear A.parentID

2. clear A.rootID

3. for each tag C in tree under A set C.rootID = A.id

As we can see, setting root ID is simple when we are merging tags (one

direct SQL update), but splitting requires us to traverse through whole tree

structure. This was considered and was not found as a problem, since spitting

46 CHAPTER 6. TAGREGATOR

operations are not very frequent, since they are only used to undo previous

wrong decisions when merging tags.

Renaming of tag is done by merging tag under new canonical tag, with our

desired name. This creates more entries in tags table, but keeps our system

simple to administer.

6.3 Queries

Presented solution tries to minimize time needed to perform queries, but also

make queries as easy as possible. As we discussed, most common operation

is getting names of canonical tags. Every time we are creating tagcloud,

CloudMaker returns array of tag IDs and it is necessary to look for their

string representations. This operation is done using only one simple SQL

select.

SELECT tag FROM tagregator_tags_sk WHERE id=[ID];

To get canonical ID for a tag (this is done when storing tags), we need to

perform at most three queries. We look into table containing tags for our

input tag. If we find no match, we perform second query, add input tag

to our database. We select details T for input tag, and we need to look if

T.rootID is set to different tag. If so, we select this canonical representation

of our tag, and make it our T . Last step is to look if tag is visible (T.visible).

If T.visible is true, we return ID of this tag. Else we return -1. This is

important property when working with arrays. As we wrote earlier, we give

Tagregator array of tags and it returns array of IDs to store in CloudMaker.

When some of the tags can be hidden, they are not added to final array.

This way we can directly add all the IDs to CloudMaker, hidden tags are

filtered here. Figure 6.3 demonstrates the algorithm. You can see that there

is a path that requires 4 queries, but it involves adding tag and than looking

6.3. QUERIES 47

for its canonical representation, which is clearly not possible, when we just

added the tag.

Apart from background for tag-based operations, we developed adminis-

tration panel to work with canonical representations of tags. Features are

very simple and follow operations we introduced, merging/splitting tags and

setting visibility. Our tag administration interface also features a possibility

to re-cache data in CloudMaker, which is necessary after performing admin-

istrative operations.

48 CHAPTER 6. TAGREGATOR

Figure 6.3: Tagregator getIDs operation. For an input tag, we need its

canonical ID

Chapter 7

Tagging game

To provide good tag suggestions for users, many systems are using existing

tag created folksonomy [ZXS06]. This approach is good for maintaining tag-

ging vocabulary of the system, but it does not further expand vocabulary.

To follow principles of the good tagging system, we will use an external pre-

computed ontology, and after user inputs a tag, we can suggest that he can

also use tags related to his tag from the ontology. This way, our tagging

system will expand in natural way, with ease of use.

For this specific task, we need a large corpus of words and their relations.

We designed a game, similar to Google Image Labeler, so that this ontology is

user generated. Our game is playable on http://apps.facebook.com/asociacie.

7.1 Google Image Labeler

In 2006, Google introduced a game, in which 2 players were connected ran-

domly, and they were shown a picture. Their goal was to type in a words

describing the picture. When players used common keyword to describe

the picture (without seeing their partners guesses), they were assigned some

points and new picture was generated. The game run for 120 seconds, and

49

50 CHAPTER 7. TAGGING GAME

users were also enabled to skip word, so that they can try as many words

as possible in the time limit. Generated this way, keywords were considered

good quality and were used for Google Image Search. The game was very

popular, and created a large database of tagged images. Tag quality varied,

users tried to simply tag the images with for example “x”, and when they

matched with their partner, they continued this way to achieve maximum

score, without creating any useful tags. Later, Google introduced new scoring

policy, the more specific keyword you use, the more points you get. Despite

many problems, this idea was a great example of human computation [vA07],

and deserves much attention for our work.

7.2 Asociácie (Associations)

Google used users to tag images for them, and when we further think about

their idea, it can be used for any kind of resource, even keywords. This way,

we created game called “Asociácie” (Associations), in which users are shown

a word and their task is to write a word that is somehow associated to this

word. Game was developed in flash and PHP, it was deployed on Facebook,

to use social features of this web to easily find new players for our game.

Game was tested only for Slovak language, since Slovak is the language on

which we focus in implementation part of this thesis. Also, there exist large

ontologies for English, but Slovak language is lacking enough good works of

this kind.

Game can be divided into several logical parts:

• welcome screen containing information about top scores, games and

game rules.

• queue of players waiting for game co-players.

• actual game divided into rounds (different words).

7.3. IMPLEMENTATION 51

• game results with sharing options. These results show game score and

also position in Top games. Later version of game also shows co-players

suggestions. This feature was requested by players.

7.3 Implementation

The core part of the system was written in PHP, with data stored in mySQL

database. PHP served for communication with database, which is crucial

in this type of application. Game client was written in Flash, Actionscript

version 3. We have decided to use Flash, to its asynchronous nature, and ease

of programming. Since we only had a provided web server, we were unable to

establish socket connection. Thus we had to look for a different way to create

real-time communication with server. This problem was solved using brute-

force, Flash client was periodically sending requests to PHP. Communication

was done using XML files, and GET parameters. Flash was simply requesting

URLs containing XML data.

7.3.1 Player identification

Since game runs as a Facebook application, players does not need to register,

they only need to give basic permissions this application. Players were stored

in mySQL database, there as a unique identifier we used their Facebook ID.

Early versions did not store player name, but API we used was rather slow,

so it was necessary to store player name. This name was updated each time

player started this application. This way we could easily create high-score

tables, start game etc. without having to use API.

52 CHAPTER 7. TAGGING GAME

Figure 7.1: Aplication states and flow

7.3.2 Pairing players

In order to start the game, it was necessary to find 2 players willing to play

and pair them up. Basic idea was to use a waiting for game queue, a database

table containing IDs of players that want to play the game. When a user

want to play a game, we look into this table: if it is empty we add this player,

else there is a co-player for him and after one extra check the game can start.

Later we realized that when a player is added to waiting for game queue a

leaves application (this often happens when no one is playing) he stays in

this queue and he is paired up, but the game can not start. This bug was

solved by using keep alive signals. In queue table, apart from user ID, we

also store a timestamp that says when was the last time user pinged server

that he is looking for partner. When we look into waiting for game queue,

7.3. IMPLEMENTATION 53

we first delete all players with old timestamp - players that started looking

for a co-player but left without success. After this step everything goes as

planned. When two players are paired up, we create a new game for them.

7.3.3 Running game

Game data are stored in database table Games. When creating new game

instance, we mark a timestamp, so that we can measure game time. We

select a word (details later) and than both players game clients call scripts

getGameData and sendWord. Script getGameData is called periodically, to

get time left, actual word, number of co-players suggestions and whether or

not co-player wants to skip actual word. Players own suggestions were send

using sendWord. All control mechanisms are server side, moreover as said

before, also time measurement is server side, and game runs until getGame-

Data returns that game has finished. After playing the game, players can

share their score on their Facebook profile, and thus spread the game some

more.

7.3.4 Word database

Words for games are stored in same database as players suggestions. Each

word is assigned unique id, status, number of uses as game word and number

of times players agreed to skip this word. Word status can be new, approved

or banned. When a player uses some word for the first time it is added to

database with status set to new. Then in administrator panel, admin can

change this status to approved, which means it can be used as a game word,

or banned, so that the word does not count anywhere.

54 CHAPTER 7. TAGGING GAME

Figure 7.2: Image of the running game

7.4 Results

First game was played on 27th October 2010, and by the day of writing

(1st February 2011) more than 600 games were played, creating many rela-

tions between keywords. Top players of the game have successfully guessed

about a thousand words. The corpus of words had 1683 different words,

and 9265 suggestions were made. To visualise this data, we used a library

called graphviz (http://www.graphviz.org/), especially a part called neatto,

that is capable of drawing graphs using spring layout, similar to algorithm

implemented for relational tagcloud. Taking in account all the relations, and

even a stronger part rendered not well-arranged graph, so we used only those

7.4. RESULTS 55

relations that at least 3 users assigned between words. Figures in the end of

this chapter show parts of this visualisation.

Tagging game is a partial success, the application worked well, only problem

was with getting players to play it. Huge disadvantage is that two players

are needed for this game, and since there were not as many players, you had

to find a co-player yourself. The structure we have created can be used for

tag suggestion, but it is not very large in scale, and thus it does not exactly

suite need of blog.matfyz.sk, which has a very specific domain. Articles are

mainly mathematics and computer science oriented and our general struc-

ture does not cover these topics well. Anyway, we consider this experiment

a success, we have created almost 10000 relations between words. We have a

lot of data that can be further analysed, and since users are from Facebook,

some details like gender or age can be used to create new interesting statistics.

56 CHAPTER 7. TAGGING GAME

Figure 7.3: Part of a graph created by players of our game. A Slovak speaking

user can see nice semantic relations between words.

7.4. RESULTS 57

Figure 7.4: Another part of a graph. We can see that even semantically very

different words can be connected by a path.

58 CHAPTER 7. TAGGING GAME

Chapter 8

Conclusion

In the first chapters we have introduced tagging as a modern way of navi-

gation on web-portals. We described tagging system and operations within

this system to give reader insight on the power of tagging.

Our main goal was to develop a tagging system for blog.matfyz.sk. Very much

afford was given to analysis of problem and design, since all the smaller goals

rely on quality of tagging system. We have studied modular design of this

portal and created application that fits this design requirements. Also, tag

properties of portal were studied, since proper distribution of tags is very

important for working tagging system. The system we have created is very

modular, easy to understand and provides many useful method that can be

used in further development. This is the most important feature of all, abil-

ity to alter or add system parts for testing new technologies.

In old tagging system, we worked directly with Sedna database, and each

time we wanted to create a tagcloud, it was necessary to find canonical rep-

resentations of tags and then aggregate them. This operation was very time

consuming, and poorly designed. Administration operations does not occur

very often, compared to tagcloud generation, and thus our solution which

uses precomputed tags is much more effective. All the tagcloud generation

59

60 CHAPTER 8. CONCLUSION

is now performed real time, even complicated operation, like list of related

tags needed for .

Our model of tagging system does not differentiate tags, users of resources.

All the parts are taken as equal, so by implementing functionality for tag-

clouds, we have done much more. We are able to create list of related re-

sources, cloud of users using related tags etc. The extension of standard

tagging system model allows us to use weighted tags, using which we are

able to measure quality of tag annotations. This way we can distinguish

between authors and readers tagging articles, but what is more we are able

to use weighted tags everywhere. Our future idea is a tagging tool allowing

users to add weighted tags for their articles, and that way really express cat-

egory or semantics of the data. For example article about web-application

AIS can be tagged with tags: “AIS” with weight 0.8, “web” with weight

0.1 and “browsers” with weight 0.1. This way we can really see that article

about browsers with “browsers” weight 0.7 is a more relevant resource for

tag “browsers” than our article about AIS.

Bibliography

[ak09] Juraj Ďuďák. Visualization of tagspace, 2009. Bachelor thesis.

[BGN08] Scott Bateman, Carl Gutwin, and Miguel Nacenta. Seeing things

in the clouds: the effect of visual features on tag cloud selections.

In Proceedings of the nineteenth ACM conference on Hypertext

and hypermedia, HT ’08, pages 193–202, New York, NY, USA,

2008. ACM.

[DL07] Owen Kaser Daniel Lemire. Tag-Cloud Drawing: Algorithms for

Cloud Visualization. 2007.

[EGV94] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. 1994.

[Fra09] Juraj Frank. Towards enhanced effectivity and usability of tag-

ging. Master’s thesis, Comenius University, 2009.

[Goo07] Google. http://images.google.com/imagelabeler/, 2007.

[Gro] The PHP Group. http://php.net/.

[Gru07] Thomas Gruber. Ontology of folksonomy: A mash-up of apples

and oranges. International Journal on Semantic Web Informa-

tion Systems, 3(1):1–11, 2007.

61

62 BIBLIOGRAPHY

[HH07] H. Shepherd H. Halpin, V. Robu. The Complex Dynamics of

Collaborative Tagging. In Proceedings of the 16th International

World Wide Web Conference, 2007.

[HK09] Eric Huang and Richard E. Korf. New improvements in optimal

rectangle packing. In Proceedings of the 21st international jont

conference on Artifical intelligence, pages 511–516, 2009.

[JS08] Michael Cardew-Hall James Sinclair. The folksonomy tag cloud:

when is it useful? In Journal of Information Science, volume 34,

pages 15–39, 2008.

[Koh08] Anton Kohutovič. blog.matfyz.sk - community blog portal. Mas-

ter’s thesis, Comenius University, 2008.

[Mar09] Benjamin Markines. Evaluating Similarity Measures for Emer-

gent Semantics of Social Tagging. Proceedings of the 18th inter-

national conference on World wide web, pages 641–650, 2009.

[Mat04] Adam Mathes. Folksonomies - Cooperative Classification and

Communication Through Shared Metadata. 2004.

http://www.adammathes.com/academic/

computer-mediated-communication/folksonomies.html.

[MH07] Mark T. Keane Martin Halvey. An Assessment of Tag Presen-

tation Techniques. 2007.

http://www2007.org/htmlposters/poster988/.

[Mik05] Peter Mika. Ontologies Are Us: A Unified Model of Social Net-

works and Semantics. Lecture Notes in Computer Science, Vol-

ume 3729/2005:522–536, 2005.

[Rej10] Martin Rejda. Modular Redesign of The blog.matfyz.sk Portal.

Master’s thesis, Comenius University, 2010.

BIBLIOGRAPHY 63

[RGMM07] A. W. Rivadeneira, Daniel M. Gruen, Michael J. Muller, and

David R. Millen. Getting our head in the clouds: toward eval-

uation studies of tagclouds. In Proceedings of the SIGCHI con-

ference on Human factors in computing systems, CHI ’07, pages

995–998, New York, NY, USA, 2007. ACM.

[SAG06] Bernardo A. Huberman Scott A. Golder. Usage patterns of

collaborative tagging systems. Journal of Information Science,

pages 198–208, April 2006.

[sed07] Sedna - native XML database. 2007.

http://www.modis.ispras.ru/sedna/.

[Sow00] John F. Sowa. Knowledge representation: logical, philosophical

and computational foundations. Brooks/Cole Publishing Co.,

Pacific Grove, CA, USA, 2000.

[TN06] FUJIMURA KO TANIMOTO NAOTO. The EigenRumor Al-

gorithm for Calculating Reputation of Information Resources

in Electronic Communities. IPSJ SIG Technical Reports,

2005(NO.3(DPS-121 GN-54)):37–42, 2006.

[vA07] Luis von Ahn. Human computation. In Proceedings of the 4th in-

ternational conference on Knowledge capture, K-CAP ’07, pages

5–6, New York, NY, USA, 2007. ACM.

[W3C10] W3C. http://www.w3.org/Graphics/SVG/, 2010.

[YHm06] Vı́ctor Herrero-solana A Yusef Hassan-montero. Improving tag-

clouds as visual information retrieval interfaces. In Meŕıda, In-

SciT2006 conference, 2006.

64 BIBLIOGRAPHY

[ZXS06] Jianchang Mao Zhichen Xu, Yun Fu and Difu Su. Towards the

Semantic Web: Collaborative Tag Suggestions. 15th Interna-

tional World Wide Web Conference, 2006.

Abstrakt

Kolaborat́ıvne tagovanie je dnes na webe vělmi rozš́ırené a známe webdizajné-

rom, ktoŕı ho však použ́ıvajú len na pomocnú kategorizáciu obsahu a druho-

radú navigáciu. V práci popisujeme silu tagovania, ktorá nám dáva omnoho

viac informácíı a umožňuje vytvorǐt plnohodnotnú navigáciu. Počas práce na

relačnom tagbrowsri pre blog.matfyz.sk sme zaznamenali věla problémov so

starým tagovaćım systémom, preto sme navrhli nový systém, so všetkými

vlastnosťami moderných tagovaćıch nástrojov a zároveň vhodný pre náš

portál. Požadované vlastnosti systému boli dôkladne preskúmané, takisto

boli nad databázou tagov urobené štatistiky na utvrdenie správnosti dizajnu

nového systému pre portál. Vytvorený tagovaćı systém je vělmi modulárny,

skladá sa z modulov na tvorbu rôznych druhov tagovej navigácie a na riešenie

problémov s vǒlným tvarom tagov. V práci experimentujeme s novým spô-

sobom sugescie tagov, č́ım chceme zvýšǐt počet tagov v systéme. Nami

vytvorený systém je výrazne rýchleǰśı a poskytuje nové možnosti navigácie

pomocou tagov.

Keywords: tag, tagovaćı systém, webová aplikácia, tagcloud, folksonómia

65

