
Comenius University in Bratislava

Faculty of Mathematics, Physics and

Informatics

Visual navigation of mobile robot
Master’s Thesis

2013 Bc. Ondrej Mikuláš

Comenius University in Bratislava

Faculty of Mathematics, Physics and

Informatics

Visual navigation of mobile robot
Master’s Thesis

Study Program: Informatics
Branch of Study: 9.2.1 Informatics (2508)
Department: Department of Computer Science
Supervisor: RNDr. Andrej Lúčny PhD.

Bratislava, 2013 Bc. Ondrej Mikuláš

66678552

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Ondrej Mikuláš
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English

Title: Visual navigation of mobile robot

Aim: The main goal is design of mobile robot control (notebook on two wheeled gear
equipped with camera), which operates in bureau premises. Robot processes
image from camera and generate non-colliding actions performed by the gear.
The recommended approach to the robot control is based on the multi-agent
modeling of mind.

Literature: Davies, E.R.: Machine Vision, Elsevier, 2004
Publikácie školiteľa

Keywords: computer vision, cognitive vision, artificial cognitive system, robotics

Supervisor: RNDr. Andrej Lúčny, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 08.10.2010

Approved: 25.10.2010 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

66678552

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Ondrej Mikuláš
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický

Názov: Vizuálna navigácia mobilného robota

Cieľ: Cieľom práce je navrhnúť riadenie mobilného robota (notebook s kamerou
na podvozku), ktorý operuje v kancelárskych priestoroch. Robot spracúva
obraz a vydáva podvozku nekolízne pokyny. Odporúčaný prístup k riadeniu je
založený na multiagentovom modelovaní mysle.

Literatúra: Davies, E.R.: Machine Vision, Elsevier, 2004
Publikácie školiteľa

Kľúčové
slová: počítačové videnie, kognitívne videnie, umelý kognitívny systém, robotika

Vedúci: RNDr. Andrej Lúčny, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 08.10.2010

Dátum schválenia: 25.10.2010 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

I hereby confirm that I have independently com-
posed this Master thesis and that no other that
the indicated aid and sources have been used.

. .

i

Acknowledgements

First of all, I am deeply grateful to my supervisor Dr. Andrej Lúčny for his valuable
help and guidance during the development of my thesis. I also thank Milan Plžík for
helping me with the linux driver for chassis of the mobile robot. Last, but not least,
I am really grateful to my family, who has supported me and helped me during my
studies. A special thanks goes to you all of my friend, you mean very much to me.

Ondrej Mikuláš

ii

Abstrakt

Autor: Bc. Ondrej Mikuláš
Názov práce: Vizuálna navigácia mobilného robota
Univerzita: Univerzita Komenského v Bratislave
Fakulta: Fakulta matematiky, fyziky a informatiky
Katedra: Katedra informatiky
Vedúci diplomovej práce: RNDr. Andrej Lúčny PhD.
Rozsah práce: 48 strán
Dátum: máj 2013

V tejto práci sme sa venovali vizuálnej navigácii mobilného robota. Naša práca
využíva Agent-Space architektúru [Lúčny, 2004], ktorá je vhodná na simuláciu živých
systémov. Demonštrujeme, že navigácia môže byť realizovaná aj pomocou obyča-
jnej kamery a jednoduchých aktuátorov, bez použitia ďalších senzorov. Využili sme
vlastnosť architektúry, ktorá nám umožňuje kombinovať viacero jednoduchých sprá-
vaní do komplexného systému v ktorom spolupracujú.

Celkovo naša práca vyústila v aplikáciu, ktorá realizuje navigáciu v rovnej chodbe
a v križovatke chodieb.

Kľúčové slová: počítačové videnie, kognitívne videnie, umelý kognitívny systém,
robotika

iii

Abstract

Author: Bc. Ondrej Mikuláš
Title: Visual Navigation of mobile robot
University: Comenius University in Bratislava
Faculty: Faculty of Mathematics, Physics and Informatics
Department: Departement of Computer Science
Supervisor: RNDr. Andrej Lúčny PhD.
Number of Pages: 48
Date: May 2013

In this thesis we study visual navigation control of mobile robot. We are using
Agent-Space architecture [Lúčny, 2004] that is considered to be suitable for simu-
lation of living systems. In our work we demonstrate, that navigation control can
be realized by using ordinary camera and actuators with no additional sensors. We
used feature of this architecture which enables combination of several behaviors to
complex system in which they cooperate.

Overall our work resulted in application which perform navigation in the straight
corridor and in the junction of corridors.

Keywords: computer vision, cognitive vision, artificial cognitive system, robotics

iv

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Our Goal . 2
1.3 Outline . 2

2 Related Work 3

2.1 Control Architectures . 3
2.1.1 Hierarchical architectures . 4
2.1.2 Behavior-based architectures 4
2.1.3 Hybrid Architectures . 5

2.2 Agent-Space architecture . 6
2.2.1 Structure . 6
2.2.2 Advantages and Disadvantages 9
2.2.3 Biological Relevancy . 11

3 Methods from computer vision 13

3.1 Detection of vanishing point . 13
3.1.1 Detection of line segments. 14
3.1.2 Estimation of the vanishing point. 16

3.2 Matching between two images . 18
3.2.1 Feature point detection . 19
3.2.2 Feature point description and matching 19
3.2.3 Homography operation . 20

3.3 Limits of computer vision methods 20

4 Our approach to visual navigation 22

4.1 Environment . 22
4.2 Navigation control . 22

v

CONTENTS vi

4.3 Navigation in straight corridor . 23
4.4 Navigation in junctions of corridors 25

4.4.1 Problem . 25
4.4.2 Initiation of behavior . 26
4.4.3 Method for finding vanishing point in junction 27
4.4.4 Correction of rotation . 29

4.5 Properties of the navigation control 31

5 Implementation and results 33

5.1 Mobile robot specification . 33
5.2 Implementation details of Navigation control 34
5.3 Experimental results . 35

5.3.1 Straight corridors . 36
5.3.2 Junctions of corridors . 37

5.4 Limitation of navigation control . 41

6 Conclusion 43

Bibliography 45

List of electronic attachments 48

Chapter 1

Introduction

The problem of building mobile robot, which navigates in its environment is very
difficult. There are many problems that need to be solved like design and construc-
tion of robot, selection of sensors, control architecture. Then one needs to create
control mechanism and select proper navigation techniques. It is almost impossible
to create a robot which operates in all kinds of environments. One must choose a
specific environment and design a robot according to conditions present in it.

1.1 Motivation

We found motivation for our thesis in nature. Almost all moving creatures in nature
have some kind of a navigation system, which enables them moving in an environ-
ment without a collision. We would like to build a navigation control and try to
simulate navigation systems in nature. Therefore we decided not to use artificial
sensors which are common in many navigation systems. We are using just visual
information from ordinary camera. We want to create a “mind” which would realise
this navigation.

We can probably say that nobody knows how exactly mind works and from
which parts it is composed of. There are many models of mind which are inspired
by experiments in psychology, cognitive science and other areas. We are focusing on
one, where mind is composed from agents and complex behavior is achieved by their
cooperation. This model is described in Minsky’s well-known book [Minsky, 1986].
We can assume that navigation control in living creatures is not monolytical, but
distributed.

1

CHAPTER 1. INTRODUCTION 2

1.2 Our Goal

In this thesis we focused on internal structure which realises navigation. We are
not trying to build flawless navigation or use best available technologies. Instead,
we are trying to build it using specific Agent-Space architecture [Lúčny, 2004] that
is considered to be suitable for building complex systems as navigation of robot
is. This architecture has biological relevance and is suitable for simulation of living
systems.

During work on this thesis we were not using typical components widely used in
mobile robotics, such as precise motors or high-quality cameras. These are used for
boosting performance in order to simplify navigation control. We want to demon-
strate that navigation control can also be performed with the low quality camera
and actuators.

The other reason why we chose the Agent-Space architecture is its succesful
employment in several areas:

• Pedestrian recognition

• Industrial sphere - complex control of monitoring systems

• Biological simlation of animals behavior.

We will describe Agent-Space architecture in further chapters. We hope that our
result will be good enough to allow the architecture to be used for building visually
navigated systems.

1.3 Outline

This thesis is composed of several parts. In chapter 2 there is a classification of
control architectures and description of Agent-Space architecture. In chapter 3
there are described methods and algorithms from computer vision, which we used
in the navigation control. Our approach to the visual navigation control which is
realised by Agent-Space architecture is in chapter 4. Implementation details and
experimental results, which we get using our navigation control are in chapter 5.

Chapter 2

Related Work

In this chapter, works related to the thesis are mentioned. Visual navigation is
source of countless research contributions from domain of control and vision. In
[Bonin-Font et al., 2008] there is general classification of navigation techniques. We
can classify our approach as mapless indoor navigation by decentralized multi-agent
control system.

Our approach is original, thus it is difficult to compare it with other approaches.
As we mentioned in chapter 1, we are using low quality components and developing
the system based just on the information from an ordinary camera (no Kinect cam-
era, or industrial cameras). It is not related to systems which are using artificial
landmarks for navigation or state-of-the-art hardware components. We focused on
system which can be found in living system, where complicated tasks are performed
with the simple actuators.

As far as we know there were no attempts to create navigation control using
Agent-Space architecture. This architecture has connection to behavioral architec-
tures, especially it enables the use subsumption architecture. In the following there
is classification and description of control architecture taken from [Busquets, 2003].
Agent-Space architecture and its features are explained in section 2.2

2.1 Control Architectures

A robot which is working in unknown environment has to be able perceive environ-
ment, reason about it and select proper action to achieve goals. The way in which
this process is done is defined by the control architecture.

The main difference between architectures proposed in the past years relies on

3

CHAPTER 2. RELATED WORK 4

whether they are more deliberative or reactive. We can identify three main ap-
proaches: hierarchical architectures, behavior-based architectures and hybrid archi-
tectures.

2.1.1 Hierarchical architectures

These architectures are also named deliberative control architectures. They are
based on top-down methodology, where problem is decomposed to set of modules,
sequentially organized. Information from the perception module is sent to mod-
elling module, which kept an internal model of the environment. It initiates the
planning module, which using internal model for selecting action. Response to the
environment is implemented in execution module, which select proper commands
for actuators.

This architecture is used especially in the environment which are known and
where robot is created for special purpose (e.g. industrial robots in factories with
marked paths, or for robots which are using map of environment for navigation).
However, when the task is performed in unknown, unpredictable environment, they
fail to succeed, as the planning is usually out of date during execution of action
chosen by planning module.

2.1.2 Behavior-based architectures

Behavior-based robotics [Arkin, 1998] appeared in the 1980s in response to the tra-
ditional hierarchical approach. Brooks proposed to tightly couple perception to ac-
tion, and thereby provide a reactive behavior that could deal with any unpredicted
situation the robot may encounter.

Behavior-based robotics is a bottom-up methodology, inspired by biological stud-
ies, where a collection of behaviors acts in parallel to achieve independent goals. The
overall architecture consists of architecture consists of several behaviors reading the
sensory information and sending actuator commands to a coordinator that combines
them in order to send a single command to each actuator as shown in Figure 2.1.

The most representative of such architectures are Brooks’ subsumption architec-
ture [Brooks, 1986] , Maes’ action selection [Maes, 1989] and Arkin’s motor schemas
[Arkin, 1989]. Since then, a many other architectures have been proposed.

Subsumption architecture: The Subsumption architecture, designed by Rodney
Brooks [Brooks, 1986], was the first of the Behavior-based architectures. In

CHAPTER 2. RELATED WORK 5

 Behavior 1

 Behavior 2

 Behavior n-1

 Behavior n

C
oordinator

Sensors

A
ctuators

Figure 2.1: Behavior-based architecture

this architecture each behavior is represented as a separate layer, having direct
access to sensory information. These layers are organized hierarchically, and
higher levels are allowed to subsume, hence the name, lower ones. Competitive
mechanism based on priority are used there.

The hierarchical organization permits an incremental design of the system, as
higher layers are added on top of an already working control system, with no
need of modifying the lower levels.

The main strengths of this architecture are its incremental design methodology,
which makes it easy and intuitive to build a system, its hardware retargetabil-
ity and the support for parallelism since each layer can run independently and
asynchronously.

This architecture has limitation, since connections between layers are hard-
wired, so they cannot be changed during execution, thus not allowing on-the-
fly adaptability of the system to changes in the environment.

In [Lorigo et al., 1997], autonomous vision-based obstacle avoidance system
is proposed. The system consists of three independent modules which are
reactive and store no information about obstacles. It is rather using the images
directly. Median method is used for fusion information from modules. This
system draws from the behavior-based subsumption architecture approach for
combining routines.

2.1.3 Hybrid Architectures

Although it has been widely demonstrated that behavior-based architectures effec-
tively produce a robust performance in dynamic and complex environment, they
are not always the best choice for some tasks. Sometimes the task to be performed

CHAPTER 2. RELATED WORK 6

needs robot to make some deliberation and keep a model of the environment. But
behavior-based architectures do avoid this deliberation and modeling. Thus, a com-
promise between these two completely opposite views must be reached. This is what
hybrid architectures achieve.

In these hybrid architectures there is a part of deliberation, in order to model the
world, reason about it and create plans, and a reactive part, responsible of executing
the plans and quickly reacting to any unpredicted situation that may arise.

There are several approaches based on multi-agent systems which use fuzzy logic
for combination outputs of several agents and using hybrid architecture. Busquets’s
approach [Busquets et al., 2003] applies decentralized multi-agent systems, where
agents bids for action and action with highest bid is performed. Broadcast of infor-
mation is decentralized, not hierarchical. This approach use also fuzzy logic about
angles and distances to perform localization. In this approach are used also ar-
tificial landmarks in environment. Opposite to our solution authors aren’t using
subsumption architecture. Agents here have no hierarchy.

Next approach [Ono et al., 2004] used additional infrared sensors. Authors used
blackboard as central repository for all shared information. For localization authors
used fuzzy logic. Next approaches [Innocenti et al., 2008] and [Olajubu et al., 2011]
used fuzzy logic and multi-agent approach as well.

2.2 Agent-Space architecture

As we mentioned in Chapter 1 we build navigation using Agent-Space architecture.
This architecture was proposed in [Lúčny, 2004] as architecture for building com-
plex systems. This architecture is based on multi-agent system and is one of the
architectures where modules communicate with each other.

We chose this architecture, because it is suitable for real-time software engineer-
ing. Next reason is, that it has biological relevancy. There are principles which we
can build on during building navigation control. These principles are described in
further parts.

2.2.1 Structure

Control system consists of reactive agents, which communicate indirectly through
communication tool called space. It is blackboard like communication, which the

CHAPTER 2. RELATED WORK 7

agents employ for mutual data exchange.

Space

Space contains data organized in entities, called blocks. All the agents have access
to these blocks and can read data from and write data into them. The read and
write operations are services provided by the space for agents. Agents access to
blocks through their names. Agent A cannot send message directly to the agent
B, but can leave message in some block in the space and agent B can read that
message. This operation is shown in Figure 2.2. Once data are written in block, the
agent, which wrote the data, loses control of it. Other agents can read it or even
rewrite it.

agent B agent A

block

writeread

Figure 2.2: Communication between agent A and agent B.

Write operation rewrites data written during previous write operation. On the
other hand, read operation does not take data from the block. The agent, which
writes the data can specify validity of the data. They can be valid for some particular
time, or they can be written in block forever. When validity of a block expires, data
stored in it disappears and the block becomes empty.

This architecture does not require any special form of data which are stored in
space. Agent, which reads the data must know the type of the data written in the
block.

The read and write operations are not the only services provided by space. Other
important service is to enable agent, which is writing the data, to specify the priority
of data. Priority serves as mechanism for protection of data. Data written in the
block with higher priority are not changed by the agent, which writes a data to the
block with lower priority.

CHAPTER 2. RELATED WORK 8

Very important service provided by space is agents ability to register trigger
within the block. When the block is changed, all agents who registered trigger in
the block are woken up from its sleep. However trigger is not inevitable mechanism
for waking up an agent from sleep. Agents can regularly read block content after
employing a timer.

Reactive agents

All the application codes are concentered in relatively small and simple processes
called reactive agents. A reactive agent after initialization performs endless cycle
sense - select - act to reach relatively simple goal. Situation is better pictured in
Figure 2.3.

1. sense
2. select
3. act

sl
ee

p

initialization

Figure 2.3: Lifetime of the reactive agent.

This cycle is still in operation at given frequency and there is pause (sleep) after
each course of the cycle.

• In the sense phase the reactive agent reads data from the space.

• In the select phase the reactive agent selects the action to achieve certain goal.

• In the act phase the reactive agent writes the calculated data back into space.

The agent has two options to be woken up from sleep. It can have trigger registered
in the particular block and after change of block, it is woken up. Second option is
that agent has timer which notifies him after specified period of time. Courses of
individual agents are not synchronized and vary from agent to agent.

Agents presented in Agent-Space architecture are reactive. The response of such
agents is a pure reaction to the state of space in sense phase. These agents are

CHAPTER 2. RELATED WORK 9

stateless and internally are holding no data from the previous cycle. Abilities of such
agents are very poor when they are isolated. On the other hand we can combine
these agents and reach complex behavior.

2.2.2 Advantages and Disadvantages

Agent-Space architecture brings both advantages and disadvantages. In this part
are described its basic features and their effect on real-time engineering.

No deadlocks

Systems which use Agent-Space architecture are absolutely resistant to deadlocks.
No process can be blocked endlessly, because non-blocking message passing is es-
tablished. There is guarancy of not getting stuck just for building modules, not
for overall system. A robot controlled by such a system can still get stuck in its
environment where it operates.

Data flow

In Agent-Space is used non-traditional way of data exchange (Figure 2.4). Neither
the producer nor the consumer knows who is on the other side. They know the block
only. It differs from traditional ways of data exchange, where a producer sends data
to consumer, or consumer requests data from the producer (client-server). This

producers consumers consumers consumers

producer producer

Agent-Space traditional client-server

Figure 2.4: Data flow

allows better distribution of codes related to application domain into individual
processes.

CHAPTER 2. RELATED WORK 10

Recovery from errors

Special type of data flow enables restart any agent whenever it is requires, without
any impact on other agents. This feature is crucial for recovery, when an agent
crashes. In this situation one needs just start crashed agent again.

The system can be easily started in spite of the fact that other agents, it was
communicating with, have not started yet.

Decentralization

There is no scheduling program which specifies whether an agent has to act and
when. Agents are completely autonomous. Their cooperation is not defined explic-
itly in their code, but emerges from interaction among agents.

This architecture is suitable for development of decentralized systems, since there
are no agents with exclusive position. Such as “control agents” or “upper agents”.
However it is possible to create central control system using this architecture, but
it is not natural. The main disadvantage of the decentralization is, that we lose
perfect control over the system. It makes system very hard to debug. On the other
hand we are able to handle most of details locally without any overall plan.

Data inconsistency and redundancy

It is usual, that change of block has influence on many other blocks indirectly (via
other agents). It takes some time to spread change of the block through system.
During the propagation of change, local inconsistency takes it place. However after
some time, the blocks become stable again and their data are mutually consistent.

Redundancy appears when an agent must regularly check whether the change
in the source has appeared. It can execute plenty of instructions to produce none
behavior.

Ability to modify

The phase of development is very important during building complex system. This
architecture intends to simplify developer’s job, even at expenses caused by opera-
tional disadvantage like redundancy. Ability to modify is crucial during incremental
development. Each phase of incremental development can be recognized as a modi-
fication.

CHAPTER 2. RELATED WORK 11

System can be easily extended using new agents and connecting them to already
implemented ones. These new agents will read values from blocks from older version
(Figure 2.5).

old version

new version

Figure 2.5: Modification by adding new agents.

2.2.3 Biological Relevancy

We chose Agent-Space architecture, because its features have similarity with living
systems.

Hierarchy

In nature we can observe hierarchy between its building parts. Agent-Space archi-
tecture has ability to express hierarchy within system. It can express an agent as a
multi-agent system of lower description level. This is crucial for building hierarchical
systems which contain several levels. The key concept is substitution of an agent
acting in space by such a group of agents (Figure 2.6). There must be agent which
provides mapping between blocks in higher-level and lower-level.

Activity

It is typical for living systems, that they don’t stop their activity in special or critical
conditions. They still act in some way. Hence their response to such condition is not
necessarily reasonable, they still act in some way. Systems based on Agent-Space
architecture have the same attribute. In environment in which they were tested,

CHAPTER 2. RELATED WORK 12

read write

Figure 2.6: Realization of hierarchy.

they act reasonable, but in unknown environment they don’t throw exception or get
stuck.

Decentralization

In living systems we can observe parallelism. If we damage living system in some
way, it is still active. Our hypothesis is, that in there are no central modules in living
systems which wake up other modules to activity. We think that all part of system
are active, but effect on behavior is suppressed for some of them. This property is
very common in Agent-Space, especially when the agent rewrites data in some block
with higher priority and previous data with lower priority are deleted.

Chapter 3

Methods from computer vision

In this chapter we describe the methods of computer vision that we used in our
work. Our goal is to create navigation control in the indoor office environment. We
are using methods which have good response in this environment. The following
methods are explained in this chapter:

• detection of line segments

• detection of vanishing point

• matching between images

Most of the computer vision algorithm are taken from [Davies, 2012]. When the
other source was used, it is written explicitly.

3.1 Detection of vanishing point

In the navigation control we used vanishing point for navigation in the straight cor-
ridor. The simplest definition is that a vanishing point is a point in the image plane
to which parallel lines of the scene seem to converge (Figure 3.1). This point cor-
responds to the three-dimensional direction in space. There can be more vanishing
points in the image, and also vanishing point can be out of the image plane, or even
situated in infinity.

From now on, when we say that robot is adjusting its position according to
the vanishing point detected in the image, we mean that it is adjusting its position
according point where lines parallel with corridor meet. When the corridor is straight

13

CHAPTER 3. METHODS FROM COMPUTER VISION 14

Figure 3.1: Vanishing point in straight corridor.

and the image is taken from the center of it, the vanishing point of the corridor lies
in the center column of the image.

The detection of vanishing points is usually carried out in two stages. At first,
all lines are located in the image. Afterwards lines passing through common points
are selected. These points are interpreted as vanishing points.

3.1.1 Detection of line segments.

As we already mentioned, we are performing navigation in indoor corridors. In this
environment lines and line segments are ubiquitous. Lines and line segments which
we want use for the vanishing point detection are parts of edges. We use the term
edge for a set of points in the image, where brightness changes sharply. These are
typically organized as a set of curved line segments. Examples of edges are shown
in Figure 3.2. These are edges which were used for line segment detection. We do
not assume the presence of particular edge type in the images. Rather we are using
general method for the edge detection. Typical edges in corridors are baseboard
lines between the floor and the wall (usually thin black stripe was present there
(Figure 3.2a, 3.2b, 3.2d)). Other edges which were used for line segment detection
were between side cabinets and wall (Figure 3.2e).

CHAPTER 3. METHODS FROM COMPUTER VISION 15

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Examples of edges in corridors.

Canny edge detector

Since images acquired from camera are noised, we used Gaussian blurring to reduce
noise from the image in preprocessing. Than we converted image to grayscale and
applied Canny edge detector [Canny, 1986]. It involves a number of stages of pro-
cessing. The Canny edge detector provides evidence for each pixel, whether it is the
edge or not (Figure 3.3b). Output from Canny edge detector is used as the input
for following method which finds lines segments.

Progressive Probabilistic Hough transform

The Hough transform provides detection of lines (Figure 3.3c). The main advantage
of using Hough transform is that it is tolerant of gaps in lines affected by noise in
the image.

The Hough transform is not a fast algorithm for line detection in large images.
It can also detects only infinite lines that pass through the whole image. For our
purposes the finite line segments are better. Therefore we are using evidence from
Canny edge detector as an input for PPHT 1 [Matas et al., 2000], which is the faster
variant of Hough transform. Line segments detected by PPHT are shown in Figure
3.3d. Another advantage of line segments to lines is that, lines present in corridors
contain usually many gaps, caused by doors, or perpendicular corridors. These line

1Progressive Probabilistic Hough transform

CHAPTER 3. METHODS FROM COMPUTER VISION 16

segments are used for estimation of the vanishing point.

(a) Original Image (b) Canny edge detector evidence

(c) Straight lines by Hough transform (d) Line segments by PPHT

Figure 3.3: Detection of line segments.

3.1.2 Estimation of the vanishing point.

After acquisition of line segments we used robust vanishing point estimator proposed
in [Nieto and Salgado, 2010]. This estimator can detect multiple vanishing points,
and offer trade-off between accuracy and efficiency being able to operate in real time
for video sequences.

The key element of this approach is a robust scheme based on MLESAC2 al-
gorithm [Torr and Zisserman, 2000], which is extension to RANSAC3 algorithm
[Fischler and Bolles, 1981]. RANSAC is an iterative method to estimate param-
eters of a mathematical model, from a set of observed data, which contains outliers.
In our case outliers are line segments, which are not meeting in vanishing point.
RANSAC proceeds iteratively in the two main steps. First, minimal sample subset
is randomly selected in order to generate a hypothesis of the vanishing point (2
line segments). Afterwards consensus subset of line segments is selected according

2Maximum Likelihood Estimator Sample and Consensus
3Random Sampling and Consensus

CHAPTER 3. METHODS FROM COMPUTER VISION 17

hypothesis, these are line segments which distance from hypothesis vanishing point
is under error threshold δ.

These two steps are repeated until the probability of finding better consensus
set is below the convergence threshold. MLESAC algorithm defines a more accurate
system for estimation of consensus set.

Figure 3.4: Removing of lines with predefined slope.

In order to find the vanishing point suitable for tracking we removed all horizontal
and vertical line segments, which slope is in the range [−10◦, 10◦] ∪ [80◦, 100◦] as
shown in Figure 3.4. These line segments correspond to horizontal or vertical edges
of doors, windows or floor. We consider them as the outliers for estimation the
vanishing point of corridor. Then we applied the algorithm for vanishing point
estimation with the remaining line segments. Algorithm divides the line segments
to inliers, which meets in vanishing point and outliers which are remaining line
segments that were not used for vanishing point estimation.

(a) Detected line segments. (b) Horizontal and vertical lines are re-

moved from vanishing point estimation.

Figure 3.5: Response of algorithm for detection of vanishing point.

All detected segments are shown in Figure 3.5a. They have different colors
according to which vanishing point they converge. It is output of the algorithm

CHAPTER 3. METHODS FROM COMPUTER VISION 18

described above. In this case 3 vanishing points are detected. Vanishing point for
blue segment lies in infinity. Vanishing point for green segments lies in the upper left
corner and vanishing point for red segments is in the middle. In this case vanishing
point for corridor (red) is not computed properly, because of presence of horizontal
green segments.

After removal of all horizontal and vertical line segments vanishing point for
corridor is found in better place and can be used for navigation (Figure 3.5b).
Outliers which have not been used for the vanishing point estimation are not present
in this image.

3.2 Matching between two images

In this section we describe method, which is used, when we need to find position of
one image within another. During navigation robot decides at one place to rotate
by 90◦ to the side in order to find the vanishing point in perpendicular corridor. If
it does not find it, it rotates back to position, in which it initiated rotation. Since
we are not using precise motors, robot will not return to the same position after
second rotation. We need to adjust its direction. We did it by image matching.

The robot scans reference image from camera, before it starts to rotate. After
second rotation it scans next image and compares it with the reference image. Since
camera is not moving on the robot, the robot can adjust its direction according to
information extracted from these 2 images.

At first we detect feature points in both images. These points are representing
distinctive locations in the image such as corners or blobs. When the images are
overlapping, the same feature can be found in both images. Matching between the
same features is realised using descriptors. Descriptors are usually vectors in eu-
clidean space, which represent the area around a feature point. In the next phase,
descriptors from the references image are matched to the descriptors from the sec-
ond image. After matching phase we have evidence about pairs of points, which
correspond (Figure 3.6c).

Matrix of projective transformation can be computed from this information.
Then we can localize the reference image within the second image by transform-
ing corners of the reference image by projective transformation. Example of the
reference image and the image taken after rotations is in Figure 3.6a and 3.6b.

CHAPTER 3. METHODS FROM COMPUTER VISION 19

(a) Reference image (b) Image taken after 2 rotations (to the

right side and back).

(c) Position of the reference image within the image after rotations.

Figure 3.6: Matched feature points and projective transformation.

3.2.1 Feature point detection

We are using SURF4 detector for detecting features in the images [Bay et al., 2008].
SURF detector has property of repeatability. The repeatability expresses the re-
liability of a detector for finding the same physical interest points under different
viewing conditions. SURF detector is scale- and rotation-invariant detector, there-
fore is suitable for detecting same features in the reference image and the image
after rotations.

3.2.2 Feature point description and matching

The first step of the descriptors computation consists of fixing a reproducible orien-
tation based on information from a circular region around the feature point. Then
square region is aligned to the selected orientation. Finally the SURF descriptor is
extracted from it.

Matching between descriptors is performed by the approximate algorithm pro-
posed in [Muja and Lowe, 2009]. It is nearest-neighbors search among descriptors.

4Speeded-Up Robust Features

CHAPTER 3. METHODS FROM COMPUTER VISION 20

It uses search in randomized kd-trees. Since it is approximate algorithm (not ex-
act), there can be false matches between descriptors of feature points, which do not
correspond.

3.2.3 Homography operation

Homography, or projective transformation in 2-dimensional plane is transformation,
where straight lines in image are preserved (they remain straight after transforma-
tion). It can be described by the equation ~p′ = H~p, where H is 3 × 3 matrix of
homography, ~p is homogeneous coordinate of the point from reference image and
~p′ is homogeneous coordinate of the point from the image plane transformed by
homography. It can be rewritten to the form,

x′

y′

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x

y

1

where elements of matrix H are arbitrary real numbers. Homogeneous coordinate
of the point (x, y)T corresponds to triple (xZ, yZ, Z), where Z 6= 0. Homogeneous
coordinates remains unchanged by multiplying by the common factor.

Matrix H can be computed, when at least 4 pairs of (non-collinear) points be-
tween referenced and transformed image exists. There can be also outliers, pairs
of points, which were not matched correctly. We are using robust RANSAC algo-
rithm [Fischler and Bolles, 1981] in order to find homography matrix in presence of
outliers.

Once the homography matrix is found, we can find coordinates of corners of the
reference image in the transformed image. Then we can decide, whether robot needs
rotate to the left, or to the right in order to adjust its direction.

3.3 Limits of computer vision methods

We decided to use rather robust methods, which are not restricted to particular
environment, such as presence of specific color in the image or artificial landmarks.
Some of the methods, which we used for image processing has parameters which
affect their performance.

The Canny edge detector contains a number of adjustable parameters, which can
effect computation time and effectiveness of the algorithm. Size of the Gaussian filter

CHAPTER 3. METHODS FROM COMPUTER VISION 21

can be adjusted in smoothing phase before application of the Canny edge detector.
Smaller filter cause less blurring and allow detection of small, sharp line. A larger
filter causes more blurring and allow detection of larger, smoother edges. The Canny
edge detector uses also two thresholds for filtering and tracking edges. We used
constant settings of these parameters, which worked well in testing corridors.

Image matching method is based on localising and matching feature points be-
tween images. When the reference image and the image after rotation didn’t contain
distinctive features, homography matrix was not computed. Therefore position of
robot was not adjusted. It happened when these images were uniform, such as blank
wall.

More specialized methods can be used to support general robust methods. Con-
trol architecture, which we used enables to combine several methods. Where one
method fails other can succeed.

Chapter 4

Our approach to visual navigation

In this chapter we present details of navigation control. We are using Agent-Space
architecture described in section 2.2 and methods from computer vision described
in chapter 3. This architecture helped us overcome problems regarding combination
of multiple behaviors. We implemented several agents and created hierarchy among
them.

4.1 Environment

We decided to build navigation control according conditions, which are present at our
university campus. There are lot of long straight corridors, which are perpendicular
to each other. These corridors are connected through T-junctions and L-junctions
as shown in Figure 4.1.

Figure 4.1: T-junction and L-junction.

4.2 Navigation control

The navigation control is split into two layers. The lower-level layer serves for
navigation in straight corridors and the upper-level layer serves for navigation in

22

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 23

junctions of corridors.

4.3 Navigation in straight corridor

For navigation in straight corridors we used presence of vanishing point in the images
acquired from the camera. Vanishing point is detected in these corridors using
method described in 3.1. Consequently movement of robot can be adjusted according
position of vanishing point in acquired images. Algorithm which is used for this
behavior is following. If the vanishing point is detected in the center column of
the image, robot is moving forward. If the vanishing point is detected right from
that column, robot is heading to the left wall and needs to rotate to the right until
vanishing point will be again in that center column. In the same manner robot needs
to rotate to the left when the vanishing point is on the left side of the center column
(it is heading to the right wall). Figure 4.2 shows all three situations.

robot robot robot

Acquired image:

Heading of robot in corridor:

Position of vanishing point with respect to central column:

Figure 4.2: Navigation of robot in straight corridor.

In corridors, the vanishing point is located in the upper part of the image. It
is in the center of the image, when the optical axis of the camera is pointing at it.
Therefore we used the following dimensions for the center column. Its width is 1/10
of the image width and its height is 3/4 of the image height.

Realisation of this behavior for adjusting direction of the robot is straightforward.
It is realised by three modules with the following characteristics.

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 24

• ImageGrabber module reads image from camera and stores it.

• CorridorNavigation module gets images from ImageGrabber module. Then
it computes the coordinates of the vanishing point and stores it. Accord-
ing position of vanishing point in the image it generates the command to
MotorControl module.

• MotorControl module gets commands from other modules and sends it di-
rectly to chassis.

Camera ChassisImage
Grabber

Motor
Control

Corridor
Navigation

Figure 4.3: Modules of navigation in a straight corridor.

Scheme for this navigation is shown in Figure 4.3. The camera and actua-
tors(motors) are shown as diamonds and modules are shown as rectangles. This
is general scheme and can be realised in many ways.

We can easily implement it using Agent-Space architecture as shown in Figure
4.4. Modules used in general schema are substituted by groups of agents. From now
on, each group of agents in schemes which corresponds to particular behavior is in
the ellipse.

Camera Chassis

CameraRead VanishingPoint VanishingPoint
Control

SteerControl

INPUT VP CORRECT_VP STEER

read

write

Figure 4.4: Realisation of navigation in straight corridor using Agent-Space archi-
tecture.

Agent CameraRead reads images from camera and stores them to block INPUT.
Agent VanishingPoint reads in each course image from block INPUT and com-

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 25

putes coordinates of the vanishing point. It stores them to block VP. Coordinates
of the vanishing point are read by agent VanishingPointControl, which generates
command for chassis according position of vanishing point in the image. It stores this
command to block STEER. VanishingPointControl also stores information whether
the vanishing point was in the center column into block CORRECT_VP. When
the robot did not move forward for certain time it means that it lost the vanishing
point. This information can be used by agents in the higher-level of the hierarchy
for initiation another behavior.

Finally agent SteerControl reads commands from block STEER and sends
them to chassis. It is called periodically by timer. If there are no data stored in
that block, it sends default command to stop a movement of the robot. Commands
which can be sent directly to chassis are described in section 5.1.

4.4 Navigation in junctions of corridors

We want to create behavior for movement of the robot in junctions. We consider it as
the upper-level behavior comparing to a movement in a straight corridor. Generally
it consists of the three phases:

1. Movement in the first corridor.

2. Entering the junction of corridors.

3. Movement in the second corridor.

4.4.1 Problem

Reasonable behavior for the second phase is stopping in the center of the second
corridor and rotate until facing the end of it. Although it sounds easy it is not. We
can’t perform the simple operation of stopping in the center of a corridor. We don’t
have sensors or methods which can tell the robot information about distance from
the wall into which robot is heading. Still we can create method which solves this
problem. This method will work reasonably in junctions, where vanishing point can
be detected in second corridor.

Traversing through junction begins with navigation in the corridor. We can use
method described in the previous section. Problem arise when the robot lost the
vanishing point, which was used as main source of knowledge about the corridor.

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 26

It happens before the end of the corridor, because the vision range of the robot is
limited. Situation is shown in Figure 4.5.

robot

vision range

Figure 4.5: Corridor in which is robot situated is not longer visible and vanishing
point can’t be detected.

The robot stops after losing of vanishing point. This is the place, where we must
initiate other method for finding vanishing point in next corridor.

4.4.2 Initiation of behavior

We have information about the last vanishing point, which was used for moving
forward. It is stored in the block CORRECT_VP. In Agent-Space we can create
an agent, who can observe this block and when there was no update for certain time
it initiates behavior of groups of agents. Realization of this behavior in Agent-Space
is shown in Figure 4.6.

Agent VanishingPointCounter reads from block CORRECT_VP informa-
tion, whether detected vanishing point was used for moving forward (it lies in the
center column of the image). If it was, VanishingPointCounter initialize counter
to certain value T and writes it to block COUNTER. In each course it reads value
from this block and decreases it by one, if the value read from CORRECT_VP

was false.
If VanishingPointCounter reads false value in T consecutive courses, value in

block COUNTER will be 0. Afterwards it writes value ACTIV E into block
DIRECTION_FINDER_ACTIVITY. It means that in T courses robot doesn’t
move forward, because vanishing point was not in the center column. It initiates

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 27

COUNTER

CORRECT_VP

read

write

Vanishing
PointCounter

DIRECTION_FINDER_
ACTIVITY

Figure 4.6: Initiation of activity by VanishingPointCounter.

behavior for entering the junction in order to navigate later in perpendicular corri-
dor.

4.4.3 Method for finding vanishing point in junction

As we already said, we assume that the robot stops before the junction of corridors,
because it lost the vanishing point. After losing information about it, robot needs
to find next one in another corridor. Afterwards it can apply the behavior created
before and move in the corridor without collision.

This behavior for navigation in straight corridor is never stopped, but commands
to chassis sent by agents on lower-level of hierarchy are suppressed by the commands
sent by agents on upper-level hierarchy. It is performed by writing data to block
STEER with higher priority.

We want robot to move forward and periodically check, whether the vanishing
point can be detected when it rotates to the left or right side.

First robot rotates by 90◦ to the right, then it checks, whether vanishing point
is present in the center column. If it is, robot starts to follow it. If it is not, it will
return back to starting position by rotating 90◦ to the left. Similarly it checks the
left side by rotating 90◦ to the left. If there is not vanishing point present in the
center column, it will return to starting position again. Otherwise it starts to follow
it. After that robot moves forward for short period of time and checks both sides
again. It repeats this behavior until it is inside the junction. There it checks left
and right side again and select one, where vanishing point is present.

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 28

We can implement this behavior using Agent-Space architecture and combine
it with with the navigation in straight corridor. Agents DirectionFinder and
VanishingPointChecker are used for realisation of the behavior. This upper-layer
behavior combined with lower-layer behavior for navigation in straight corridor is
shown in Figure 4.7.

Camera Chassis

CameraRead VanishingPoint VanishingPoint
Control

SteerControl

INPUT VP CORRECT_VP STEER

read

write

COUNTERVanishingPoint
Counter

DIRECTION_FINDER_
ACTIVITY

DirectionFinder

DIRECTION_FINDER_
PHASE

VanishingPoint
Checker

CORRECT_VP_
EXISTED

Figure 4.7: Agent-Space scheme for upper-level and lower-level behavior.

Agent DirectionFinder: In the each course it reads value from
DIRECTION_FINDER_ACTIVITY. If value ACTIV E is stored there,
it will perform its activity, otherwise it is passive and its course ends. It
works in phases. InDIRECTION_FINDER_PHASE it stores its current
phase. In the beginning of each course it reads its current phase. On the end
of the course it updates its phase. One reason for storing the phases externally
is requirement of the Agent-Space on agents to be pure reactive.

In phase 0 it initiates its behavior and sends command to chassis for turning

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 29

right with validity 9 seconds. It is sufficient time to turn by 90◦ to the right
side. During phase 1 robot rotates to the right. On the end of phase 1 it checks
whether the block CORRECT_VP_EXISTED contains value true. It is
information whether vanishing point was detected within last 3 seconds and
can be used for navigation (presence in the center column). This value is
updated by VanishingPointChecker.

If the value is true, DirectionFinder deactivate itself by writing the value
PASSIV E into DIRECTION_FINDER_ACTIVITY and update its
phase to phase 0. It means that vanishing point was found in perpendicular
corridor and robot starts to follow it. If the vanishing point was not de-
tected during rotating (false is read from CORRECT_VP_EXISTED),
it changes its phase to phase 2 and sends command to chassis for rotating to
the left.

In the phase 3 DirectionFinder turns left by 90◦. At the end of the phase
3 it checks whether vanishing point is present. If it is, it switches to phase 0,
otherwise in phase 4 it turns back. Afterwards in phase 5 it sends command
for moving forward and then switches back to phase 0 for repetition of this
behavior.

DirectionFinder deactivate itself only after phase 1, or after phase 3, when
vanishing point was detected again.

Agent VanishingPointCecker: This Agent has trigger registered in block
VP_CORRECT. After change in this block it is woken up from sleep and
writes value true in block CORRECT_VP_EXISTED with validity of 3
seconds. This value tells DirectionFinder, that within 3 seconds was detected
vanishing in the center column and can be used for navigation.

4.4.4 Correction of rotation

Rotating by 90◦ and back will not return robot to the same position as it was before
rotation, since the robot is not using precise motors. We found time needed to rotate
robot 90◦ to side by trial and error method. If we want robot to proceed forward in
direction it was moving before, we need to adjust robot heading. Before the robot
initiates rotation to the side it can save the reference image. Later it can compare
it with the image acquired after rotation.

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 30

We can find position of the reference image within the image obtained after
rotation. It is performed by detecting feature points and computing homography
operation between these two images. This method is described in section 3.2.

Agent DirectionFinder, described in previous section needs to adjust its head-
ing after phase 2 and phase 4, when it returns to starting position after rotations.
There it wakes up groups of agents which do correction of position.

This behavior can be combined with the one we created before. We have imple-
mented group of agents which realise the behavior for correction of heading of the
robot. Realisation of it in Agent-Space is shown in Figure 4.8

Camera Chassis

CameraRead VanishingPoint VanishingPoint
Control

SteerControl

INPUT VP CORRECT_VP STEER

read

write

COUNTERVanishingPoint
Counter

DIRECTION_FINDER_
ACTIVITY

DirectionFinder

DIRECTION_FINDER_
PHASE

VanishingPoint
Checker

CORRECT_VP_
EXISTED

REFERENCE_
IMAGE

ReferenceImage
Saver

Matcher MATCHER_
ACTIVITY

Correction

CORRECTION

Figure 4.8: Rotation correction behavior with other behaviors in Agent-Space.

Agent ReferenceImageSaver : It reads value from block CORRECT_VP and
from block SAVE_IMAGE (it is not shown in the scheme). Value from
SAVE_IMAGE tells it, whether it can save any image.
When the value from CORRECT_VP and SAVE_IMAGE is true, it
saves the current image from INPUT in to block REFERENCE_IMAGE.

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 31

Agent Matcher : It has trigger, which wakes him up. Its activity is controlled
by value in block MATCHER_ACTIVITY. If the value is PASSIV E
agent is doing nothing in the course. Otherwise it perform following activity.
It reads reference image from REFERENCE_IMAGE and current image
from INPUT. Then it finds the feature points in both of them and find
homography matrix H among them.

If matrix H exists, Matcher takes image of corners of reference image and find
their position in the current image. If these points lies left from the corners
of current image, Matcher sends command to chassis for rotating right, which
is valid for short period of time. If these points lies on the right side it sends
command to chassis for rotating left, which is valid for short period of time.
If some command for correction was sent, it stores value true in the block
CORRECTION with validity of that command.

If matrix H does not exist, or images of corners are projected to degenerated
shape, it sends no command to chassis for correction. If no adjustments of
rotation was made, it wakes up DirectionFinder immediately.

Agent Correction : This agent is activated by Matcher, when it sends command
to chassis. This agent is checking validity of that command and if it is not
valid anymore, it wakes agent DirectionFinder up.

It is performed by reading value from the block CORRECTION. If it reads
true from there, it starts its activity. When the value false is read from there
after reading true value in previous course, it wakes DirectionFinder up by
writing true into DIRECITON_FINDER_ACTIVITY.

4.5 Properties of the navigation control

We built navigation control incrementally and created complex behavior. Addition
of new behavior was not big problem, since not many modifications needed to be
made in previous agents.

Agent-Space architecture provided sufficient tool for creating different agents
behaviors as counter agent, or agent which operates in phases. We did not feel
big restriction, while we were building navigation control using it. On the other
hand its features were useful, especially for propagation of images between agents

CHAPTER 4. OUR APPROACH TO VISUAL NAVIGATION 32

or combination fast modules such as vanishing point estimation and slow modules
such as image matching.

The biggest advantage of using this architecture we have found in possibility
to upgrade existed navigation control by adding new behavior realised by another
group of agents. For instance, we can add agents which are specialized for detection
of landmarks such as door or agents which can find obstacle in vision range.

Chapter 5

Implementation and results

In chapter 4, we have described structure and methods of navigation control we have
developed. In this chapter we present implementation details and results which we
have got using proposed approach.

5.1 Mobile robot specification

The mobile robot which we used consists of a laptop, an ordinary USB camera and
a battery powered chassis. Our mobile robot is shown in Figure 5.1. The laptop
which run navigation control had Intel Core i5 3210M Ivy Bridge processor and 8

GB memory.

Figure 5.1: Different views on the mobile robot.

We used Logitech Webcam Pro 9000, which was connected to laptop through
USB port. The resolution of the image acquired from the camera was 800 × 456

pixel. Optical axis of the camera was tilted to be parallel to the longitudinal corridor

33

CHAPTER 5. IMPLEMENTATION AND RESULTS 34

axis (it preserved horizontal lines during rotation).
The chassis consisted of 2 motor-driven wheels on front and 1 support rear wheel.

Motors were taken from LEGO RCX set. The motors were operated with 4-channel
relay. This relay is part of the chassis and initiates rotation of particular wheels
into any direction at constant speed depending on the command sent to it. Table
5.1 shows direction of rotation of the wheels initiated by relay, when particular
command was sent to chassis.

command left wheel right wheel

LEFT backward forward
RIGHT forward backward

FORWARD forward forward
STOP none none

Table 5.1: Command sent to chassis and direction of rotation of the wheels

Chassis was connected to laptop through USB port. It was operated through
native linux VCP1 driver.

5.2 Implementation details of Navigation control

We implemented navigation control in C++ language under Linux platform. It is
console application which is using library with Agent-Space architecture implemen-
tation and image processing library.

Figure 5.2: OpenCV logo

In our navigation control we are using several meth-
ods from computer vision. We used open-source library
OpenCV2 which contains implementation of many meth-
ods and algorithms from domain of computer cision. We
did most of the development using OpenCV 2.4.3, later
we used version 2.4.4. On the end of development version
2.4.5 was released. We used its C++ interface.

For Agent-Space architecture we used open source im-
plementation available on web 3. We fixed bugs there and

1Virtual COM Port
2http://opencv.willowgarage.com/
3http://www.agentspace.org/download.html

http://opencv.willowgarage.com/
http://www.agentspace.org/download.html

CHAPTER 5. IMPLEMENTATION AND RESULTS 35

modified it to run under Linux environment. It is library, which contains framework
for further implementation of agents. Agents and space are implemented there as
threads, which run parallel. The core of the library are the Pthreads (POSIX
threads), which serve as API for creating and manipulating threads. Pthreads are
wrapped in C++ objects for simplification of their usage.

Library with Agent-Space implementation provided just the interface for imple-
mentation. We designed and created all agents by ourselves. In addition to the
agents described in chapter 4 we implemented other support agents. We created
agents for reading and writing images from file. These can be used for testing with
previously acquired images. We created also agent which displayed images of se-
lected blocks on screen which was helpful during testing. These agents were easily
employed within existed system. Addition of other agents in implementation is easy
because the agents are independent. They can affect other agents only throuh the
space.

For illustration when we need to run the navigation system with the images
from file-system we need just replace agent CameraRead by the agent PNGread. This
agent reads images from file and writes them to block INPUT. Other agents can
not observe difference, that image in this block is not acquired from the camera.

5.3 Experimental results

We did all of the experiments with the mobile robot in the corridors at university
campus. Tests have been performed in the corridors illuminated by the natural light
or by artificial light from the neon lamps. The corridors in which we have tested
the navigation control are shown in Figure 5.3.

We used OpenCV driver for grabbing images from the camera. For now, this
driver has not enabled change of camera parameters such as gain or exposure during
run. Therefore we set all camera parameters before run. This resulted in worse
performance of line segment detection, when robot moved in corridor to places,
where light has lower intensity. It happened during testing in corridors illuminated
by artificial light source. Some parts of the corridor were lighted with lower intensity
than others.

CHAPTER 5. IMPLEMENTATION AND RESULTS 36

Corridor A; width=1.6m Corridor B; width=1.6m

Corridor C; width=1m Corridor D; width=1.8m

Figure 5.3: Corridors used for testing the navigation control with their width.

5.3.1 Straight corridors

In the straight corridor the robot used navigation method based on position of the
detected vanishing point in the image. We tested mobile robot in the 2 different
scenarios:

• Scenario 1: Corridor A illuminated by natural light

• Scenario 2: Corridor B illuminated by natural light

The robot followed the vanishing point in both scenarios and kept almost con-
stant distance from the side walls. It was moving forward and adjusted its direction,
when the vanishing point was not detected in the center column.

Detected vanishing points in the consequent images from the camera does not
have necessarily the same coordinates. The first reason is that robot is moving and
the consequent images are taken from different place. The second reason is that

CHAPTER 5. IMPLEMENTATION AND RESULTS 37

PPHT (section 3.1.1) can detect different line segments in the consequent images
and it affects the estimation of the vanishing point.

Detected vanishing point does not need to correspond with the only true van-
ishing point of the corridor. Some line segments which were used for the vanishing
point estimation do not need to point in the vanishing point. This is because the
vanishing point estimator does not consider them as an outliers and includes them
in the computation. It results in biased position of the vanishing point. Despite of
this fact the overall performance of navigation in straight corridor was solid.

We can probably say that the best method for non-colliding navigation in straight
corridor without additional sensors is following the center line of the corridor, be-
cause distance from both side walls is biggest. Method which we proposed resulted
in behavior where robot was following line and didn’t change its direction to move
in the center of the corridor. We tried to initiate navigation control from 3 differ-

Figure 5.4: Different positions of the robot within the corridor.

ent places within corridor(left, center, right) 5.4. The robot was following the line
towards detected vanishing point in each case.

5.3.2 Junctions of corridors

We have tested performance of the navigation in the T-junction of corridors in 2

different scenarios:

• Scenario 1: T-junction of corridor C and corridor B illuminated by natural
light.

CHAPTER 5. IMPLEMENTATION AND RESULTS 38

• Scenario 2: T-junction of corridor D and corridor B illuminated by artificial
light source.

In the both scenarios, the robot first navigated using proposed method for navigation
in the straight corridor until it lost the vanishing point. Afterwards, the behavior
for finding a vanishing point in a perpendicular corridor was initiated.

Scenario 1

Different stages during navigation through junction of corridors are shown in Figure
5.5.

The robot passed through several stages during navigation through T-junction
of corridors C and B:

1. The robot is initiated in the corridor C and detects the vanishing point in the
center column.

2. The robot has lost the vanishing point and behavior for finding the vanishing
point has been initiated.

3. The robot is rotated 90◦ to the right.

4. The robot is rotated back to the original direction.

5. The robot is rotated 90◦ to the left.

6. The robot is rotated back and adjusts its direction by matching between the
reference image and the current image.

7. The robot advances further and haven’t found the vanishing point on the right
side.

8. The robot is rotated back to the original direction.

9. The robot is rotated 90◦ to the left. It has not found vanishing point there. It
rotates back and advances further to the junction.

10. The robot is in the junction and initiates the rotation by 90◦ to the right.

11. The robot has found the vanishing point in the corridor B.

12. The robot follows the vanishing point in the corridor B.

CHAPTER 5. IMPLEMENTATION AND RESULTS 39

stage 1 stage 2 stage 3 stage 4

stage 5 stage 6 stage 7 stage 8

stage 9 stage 10 stage 11 stage 12

Figure 5.5: Different stages during navigation of the robot in the Scenario 1.

The robot adjusts its position at the stage 6 by matching the reference image
with the current image (Figure 5.6). In this case it adjusts the direction by short
rotation to the right side, since before initiation rotation in order to find vanishing
point in the stage 2 it was heading to the center of the corridor. In stage 6 it is
heading slightly to the left wall.

CHAPTER 5. IMPLEMENTATION AND RESULTS 40

Figure 5.6: Matching between 2 images.

Scenario 2

In this scenario the robot performed navigation in the T-junction of the corridors
D and B illuminated by artificial light. The robot passed through several stages
(Figure 5.7).

stage 1 stage 2 stage 3 stage 4

stage 5 stage 6 stage 7 stage 8

stage 9 stage 10 stage 11 stage 12

stage 13 stage 14 stage 15 stage 16

Figure 5.7: Different stages during navigation of the robot in the scenario 2.

• The robot navigates in the corridor D.

• The robot has lost vanishing point in the stage 2 in the corridor D.

CHAPTER 5. IMPLEMENTATION AND RESULTS 41

• In the stages 3, 5, 7 and 9 it looks for the vanishing point on the right side.

• In the stages 4, 6, 8 and 10 it looks for the vanishing point on the left side.

• The robot has found the vanishing point in the stage 10 in the corridor B. It
navigates using behavior for navigation in straight corridor.

• The robot has lost vanishing point in the stage 12 and initiates behavior for
finding vanishing point.

• The robot looks for the vanishing point on the right side in the stage 13.

• The robot looks for the vanishing point on the left side in the stage 15.

• Int the stage 16, the robot continues to move forward. In the next stage it will
look for the vanishing point on the right side.

The robot was already in the junction of corridors in the stage 9. It did not find
the vanishing point on the right side, because the corridor B was not illuminated
enough to detect line segments for the estimation of the vanishing point. On the
other hand the robot found it on the left side and continued to navigate there.

5.4 Limitation of navigation control

Experiments which we performed were successful. The robot navigated through
corridors without collision. Several simple behaviors realised by agents cooperated
to reach complex goal. On the other hand, there are still limits in navigation control
which we proposed.

The robot navigated in straight corridors without problems when it could de-
tect line segments in acquired image. We have used constant settings of camera
parameters. When the robot entered dark areas, it failed to find line segments,
and to detect vanishing point. Next limit is that detection of vanishing point was
sometimes biased by presence of line segments detected on sides (such as windows).
Proposed method for vanishing point estimation gives the same priority to all line
segments. Method which gives more priority to line segments detected between wall
and floor could help.

In the navigation through junction of corridors the robot looks for vanishing
point in perpendicular corridor by rotation to the right and to the left side. After

CHAPTER 5. IMPLEMENTATION AND RESULTS 42

rotation it adjusts its direction by image matching method proposed in section 3.2.
It could fail to find the homography matrix, when there is not enough pairs of
matched feature points between the images.

In this case another group of agents realising the different method for feature
point detection could success and extends the previous method.

Chapter 6

Conclusion

In this work we proposed original approach to visual navigation control of mobile
robot. We tried to simulate navigation control in the living organisms. In order to do
that we used just visual information from camera for navigation control. Additional
sensors were not used.

We used specific Agent-Space [Lúčny, 2004] architecture which has biological
relevancy and is suitable for building complex system. This architecture provided
us sufficient tool for building navigation control.

The mobile robot which we used for performing navigation had ordinary camera
and simple actuators. Problems with combination of several behavior to complex
system were solved by using the Agent-Space architecture. We used several meth-
ods from computer vision. These methods had different computational demands.
Agent-Space enabled us to combine faster less accurate methods with slower precise
methods, which supported the overall behavior.

Future work will be toward improvement of robustness of the proposed naviga-
tion control with respect to various environment conditions (light intensity, shadows,
presence of particular objects in scene). Since the architecture which we used pro-
vides technique for combining several behaviors, we suggest add more specialized
methods to proposed one. Where one general method fails, specialized method can
work well. It will result in overall robustness of the system.

Our work resulted in navigation control which was tested in several corridors at
our university campus. Mobile robot was capable to navigate in straight corridors
and in junction of corridors.

Our contribution to the open source community is that we fixed bugs in previ-
ous implementation of Agent-Space architecture and published our code for further

43

CHAPTER 6. CONCLUSION 44

development1.

1It can be found at http://www.agentspace.org/NotebookNavigation

http://www.agentspace.org/NotebookNavigation

Bibliography

[Arkin, 1989] Arkin, R. C. (1989). Motor schema-based mobile robot navigation. I.
J. Robotic Res., 8(4):92–112.

[Arkin, 1998] Arkin, R. C. (1998). Behavior-Based Robotics. MIT Press.

[Bay et al., 2008] Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Computer Vision and Image Understanding,
110(3):346 – 359. <ce:title>Similarity Matching in Computer Vision and Multi-
media</ce:title>.

[Bonin-Font et al., 2008] Bonin-Font, F., Ortiz, A., and Oliver, G. (2008). Visual
navigation for mobile robot: a survey.

[Brooks, 1986] Brooks, R. (1986). A robust layered control system for a mobile
robot. Robotics and Automation, IEEE Journal of, 2(1):14–23.

[Busquets, 2003] Busquets, D. (2003). A multiagent approach to qualitative naviga-
tion in robotics. PhD thesis, Universitat politècnica de Catalunya.

[Busquets et al., 2003] Busquets, D., Sierra, C., and De Màntaras, R. L. (2003).
A multiagent approach to qualitative landmark-based navigation. Autonomous
Robots, 15(2):129–154.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–
698.

[Davies, 2012] Davies, E. R. (2012). Computer and Machine Vision. Academic
Press. Fourth Edition: Theory, Algorithms, Practicalities.

45

BIBLIOGRAPHY 46

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395.

[Innocenti et al., 2008] Innocenti, B., López, B., and Salvi, J. (2008). Integrating
individual and social intelligence into module-based agents without central coor-
dinator. In Proceedings of the 2008 conference on STAIRS 2008: Proceedings of
the Fourth Starting AI Researchers’ Symposium, pages 82–93, Amsterdam, The
Netherlands, The Netherlands. IOS Press.

[Lorigo et al., 1997] Lorigo, L., Brooks, R., and Grimson, W. (1997). Visually-
guided obstacle avoidance in unstructured environments. In IEEE Conference on
Intelligent Robots and Systems, pages 373–379.

[Lúčny, 2004] Lúčny, A. (2004). Building complex systems with agent-space archi-
tecture. Computing and Informatics, 23:1001–1036.

[Maes, 1989] Maes, P. (1989). The dynamics of action selection. In Proceedings of the
11th international joint conference on Artificial intelligence - Volume 2, IJCAI’89,
pages 991–997, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Matas et al., 2000] Matas, J., Galambos, C., and Kittler, J. (2000). Robust de-
tection of lines using the progressive probabilistic hough transform. Computer
Vision and Image Understanding, 78(1):119 – 137.

[Minsky, 1986] Minsky, M. (1986). The Society of Mind. Simon & Schuster, New
York.

[Muja and Lowe, 2009] Muja, M. and Lowe, D. G. (2009). Fast approximate nearest
neighbors with automatic algorithm configuration. In In VISAPP International
Conference on Computer Vision Theory and Applications, pages 331–340.

[Nieto and Salgado, 2010] Nieto, M. and Salgado, L. (2010). Real-time robust esti-
mation of vanishing points through nonlinear optimization. In Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, volume 7724 of So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.

[Olajubu et al., 2011] Olajubu, E. A., Ajayi, O. A., and Aderounmu, G. A. (2011).
A fuzzy logic based multi-agents controller. Expert Syst. Appl., 38(5):4860–4865.

BIBLIOGRAPHY 47

[Ono et al., 2004] Ono, Y., Uchiyama, H., and Potter, W. (2004). A mobile robot
for corridor navigation: a multi-agent approach. In Proceedings of the 42nd annual
Southeast regional conference, ACM-SE 42, pages 379–384, New York, NY, USA.
ACM.

[Torr and Zisserman, 2000] Torr, P. H. S. and Zisserman, A. (2000). MLESAC: A
new robust estimator with application to estimating image geometry. Computer
Vision and Image Understanding, 78:138–156.

List of electronic attachments

Following data are in the enclosed DVD:

• Electronic version of thesis

• Source code of the navigation control

• Videos2 with robot navigation in different scenarios

2More videos can be found at https://www.youtube.com/results?search_query=

NotebookNavigation

48

https://www.youtube.com/results?search_query=NotebookNavigation
https://www.youtube.com/results?search_query=NotebookNavigation

	Introduction
	Motivation
	Our Goal
	Outline

	Related Work
	Control Architectures
	Hierarchical architectures
	Behavior-based architectures
	Hybrid Architectures

	Agent-Space architecture
	Structure
	Advantages and Disadvantages
	Biological Relevancy

	Methods from computer vision
	Detection of vanishing point
	Detection of line segments.
	Estimation of the vanishing point.

	Matching between two images
	Feature point detection
	Feature point description and matching
	Homography operation

	Limits of computer vision methods

	Our approach to visual navigation
	Environment
	Navigation control
	Navigation in straight corridor
	Navigation in junctions of corridors
	Problem
	Initiation of behavior
	Method for finding vanishing point in junction
	Correction of rotation

	Properties of the navigation control

	Implementation and results
	Mobile robot specification
	Implementation details of Navigation control
	Experimental results
	Straight corridors
	Junctions of corridors

	Limitation of navigation control

	Conclusion
	Bibliography
	List of electronic attachments

