
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Diacritics Restoration for Slovak Texts
Using Deep Neural Networks

Master thesis

2018
Marek Šuppa

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Diacritics Restoration for Slovak Texts
Using Deep Neural Networks

Master thesis

Study program: Informatics
Field of study: 2508 Informatics
Department: Department of Informatics
Thesis advisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2018
Marek Šuppa

85369506

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Marek Šuppa
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Diacritics Restoration for Slovak Texts Using Deep Neural Networks

Annotation: Diacritics restoration is a natural language processing problem, whose
importance is increasing, given the amount of text produced without diacritics
on venues such as social networks. Recent successes of Deep Recurrent Neural
Networks being used for a related task in Arabic suggest that these techniques
might also be useful in the context of Slovak language. Validation of this
hypothesis is the aim of this project.

Aim: 1. Examine the relevant literature on Natural Language Processing with special
focus on applicable Deep Learning techniques, as well as the state of the art
methods for diacritics restoration.
2. Assess the viability of a proposed model for diacritics restoration based on
Deep Neural Networks by implementing and evaluating it on a dataset based
on Slovak Wikipedia.

Literature: Belinkov Y., Glass J. (2015). Arabic diacritization with recurrent neural
networks. Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing.
Goldberg Y. (2015). A primer on neural network models for natural language
processing. arXiv preprint:1510.00726.

Supervisor: prof. Ing. Igor Farkaš, Dr.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 15.12.2016

Approved: 19.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

iii

I would like to thank everyone who might have in any way contributed to creation
of this thesis, most notably prof. Farkaš for giving me a chance to experience what life
in academia is really about in the end.

iv

Abstract

Diacritics restoration is a natural language processing problem, whose importance is
increasing, given the amount of text produced without diacritics on venues such as
social networks. Recent successes of Deep Recurrent Neural Networks being used for a
related task in Arabic suggest that these techniques might also be useful in the context
of Slovak language. Validation of this hypothesis is the aim of this project.

Keywords: deep learning, natural language processing, diacritics restoration

v

Abstrakt

Reštaurácia diakritiky je problém v oblasti spracovania prirodzeného jazyka, ktorého
doležitost rastie, vzhľadom na množstvo produkovaného textu bez diakritiky, napríklad
na sociálnych sieťach. Nedávne úspechy hlbokých neurónových sietí, ktoré boli použité
na podobnú úlohu v Arabčine naznačujú, že tieto techniky by mohli byť použiteľné aj
v kontexte Slovenčiny. Validácia tejto hypotézy je cieľom tohto projektu.

Kľúčové slová: hlboké učenie, spracovanie prirodzeného jazyka, reštaurácia diakri-
tiky

Contents

Introduction 1

1 Diacritics Restoration 3
1.1 Word-based Diacritics Restoration . 4

1.1.1 Baseline for word-based diacritics restoration 5
1.1.2 N-gram models . 6
1.1.3 Bayesian classifiers . 8
1.1.4 Other models . 9

1.2 Grapheme-based Diacritics Restoration 10
1.3 Diacritics Restoration using Deep Neural Networks 12

2 Deep Neural Networks for NLP 14
2.1 Neural Networks . 14

2.1.1 Biological Neural Networks . 14
2.1.2 Modeling Neural Networks . 15
2.1.3 Neural Networks as Graphs of Neurons 20
2.1.4 Modeling Neural Networks Mathematically 21
2.1.5 A Note on Representation Power 24

2.2 Feature Representation . 24
2.2.1 One Hot Representation . 25
2.2.2 Dense Vector Representation . 26
2.2.3 Embedding Layers . 26

2.3 Recurrent Neural Networks . 28
2.3.1 Defining Recurrent Neural Networks 28
2.3.2 Simple RNN . 30
2.3.3 LSTM . 31
2.3.4 GRU . 35
2.3.5 Independent RNN . 37

2.4 Training of Neural Networks . 37
2.4.1 Loss Functions . 37
2.4.2 Variants of Gradient Descent 38

vi

CONTENTS vii

2.4.3 Adaptive Learning Rate Algorithms 40
2.4.4 Training RNNs . 43
2.4.5 Other considerations . 45

3 DNNs for Diacritics Restoration 47
3.1 Existing Deep Neural Network Architectures for Diacritics Restoration 47
3.2 Our Proposed Model . 48

3.2.1 Encoder architecture . 48
3.2.2 Decoder architecture . 48
3.2.3 Implementation . 50

3.3 Evaluation . 50
3.3.1 Datasets . 50
3.3.2 Preprocessing, Training and Testing Regimes 51
3.3.3 Evaluation Metrics . 52
3.3.4 Results . 53
3.3.5 Analysis . 56

Conclusions 59

List of Figures

1.1 Diacritics in European languages with Latin based alphabets. [MN02] . 4
1.2 restoration of diacritics for the word ”mbũri” (goat in the Gĩkũyũ lan-

guage). Note that every character is considered in its own context.
[DPWDS07] . 11

1.3 An illustration of the topology of the network used in [BG15] 13

2.1 An illustration of a biological neuron [LKJ15] 15
2.2 An illustration of a mathematically modelled neuron [LKJ15] 16
2.3 An illustration of the output of the sigmoid activation function (y axis).

[LKJ15] . 17
2.4 An illustration of the output of the tanh activation function (y axis).

[LKJ15] . 18
2.5 An illustration of the output of the ReLU activation function (y axis).

[LKJ15] . 19
2.6 An illustration of a three-layer neural network comprised of two fully

connected and one output layer. Note that the number of layers does
not include the input layer. [LKJ15] . 21

2.7 An illustration of a three-layer neural network comprised of two fully
connected and one output layer. The input layer neurons are colored in
green, the output layer neurons in red and the hidden layers, onto which
a sigmoid non-linearity is applied, are colored in purple. [Gol15] 23

viii

LIST OF FIGURES ix

2.8 An illustration of the comparison between different feature representa-
tions. In both cases the following information is encoded: current word
is ”dog”; previous word is ”the”; previous part-of-speech tag is ’DET’. In
case of sparse feature vector (a), each feature, as well as combination
of features, is represented by a separate dimension. Feature values are
binary and the dimensionality of such a vector is very high. In case of
dense feature vector (b), the dimensionality is lower, as the resulting
feature vector consists of concatenated embeddings of both words and
part-of-speech tags and combinations of features are not explicitly en-
coded (except for specific positions of respective embedding vectors in
the resulting feature vector). [Gol15] 25

2.9 An illustration of the RNN architecture. [Gol15] 28
2.10 An illustration of the ”unrolled” RNN architecture. Note especially the

parameters θ which are shared across different time steps. [Gol15] . . . 29
2.11 An illustration of the deep RNN architecture. [Gol15] 30
2.12 An illustration of the bidirectional RNN architecture applied on the sen-

tence ”the fox jumped .”. Note that the illustration shows a single BiRNN
layer with a separate RNN for both forward and backward directions of
processing the input. [Gol15] . 31

2.13 An illustration of the LSTM architecture in forward direction. Note that
the red circles contain point-wise mathematical operations, yellow boxes
contain non-linearities associated with Neural Network layers and black
pathways signify the flow of information. [Ola15] 32

2.14 A visualization of the forget gate. [Ola15] 33
2.15 A visualization of the input gate. Note that the uppercase Ĉ in the

picture is functionally the same as ĉ we used in our descriptions. [Ola15] 34
2.16 A visualization of the computation of the new memory state. Note that

the uppercase Ĉ in the picture is functionally the same as ĉ we used in
our descriptions. [Ola15] . 34

2.17 A visualization of the computation of the new memory state. Note that
the uppercase Ĉ in the picture is functionally the same as ĉ we used in
our descriptions. [Ola15] . 35

2.18 A visualization of the GRU architecture. . [Ola15] 36
2.19 A visualization of fluctuation during training using the SGD algorithm. [Com17] 39
2.20 A visualization of the concept of teacher forcing. During train time

(left) the ground truth y(t−1) is provided to the network as an input,
whereas at test time (right), it receives its own past output o(t−1) as
input. [GBCB16] . 44

LIST OF FIGURES x

3.1 An illustration of the topology of the network used in [BG15] 48
3.2 An illustration of the attention mechanism [BCB14]. 49
3.3 A visualization of the embedding layer learned as part of training the

Diacritics Restoration model. 58

Introduction

Although it may not be obvious at the first sight, communicating via text is one of cru-
cial parts of human life in modern society. Whether through SMS, instant messaging,
social networks, email or combination thereof, we encode our thoughts in text-based
messages, which are then consumed by the receiving party. Especially with the advent
of always connected devices such as smartphones and tablets, this encoding happens
quickly, often times in a rush, without an expectation for further corrections. It is
therefore only natural that the process of encoding needs to be as efficient as possible.

While most European languages make use of diacritic marks (in fact as the authors
of [KDDV17] observe, out of 36 European languages, English is the only one which
does not contain diacritic marks), when it comes to efficient expressions of thoughts via
textual messages as described in the previous paragraph, diacritics marks are often not
used. Despite the fact that auto-correcting mechanisms alleviate the need for dealing
with this problem, we can only hypothesize that this may be due to the widespread
adoption on QWERTY/QUERTZ keyboards where typing diacritized characters poses
an additional hurdle, and the fact that the receiving party is generally capable of
extracting the encoded information even from text which contains only the ASCII
equivalents1 of characters with diacritic marks but is otherwise grammatically correct.

While the information extraction argument proposed in the previous paragraph
may hold in case of personal communication, it certainly comes along as problematic
when it comes to official communication: it is difficult to imagine that a document
written in a language that makes use of diacritic marks would be considered serious
if it did not contain a single diacritized character. Furthermore, most of the available
Natural Language processing tools expect grammatically correct text as its input.

Thus, a need for an automatic solution for diacritics restoration arises. Sadly, to
the best of our knowledge such system specifically for Slovak language does not exist
yet. Given promising results that were achieved by applying Deep Learning techniques
to this task, the aim of this thesis therefore is to

1. review related work with regards to Diacritics Restoration and Deep Neural Net-
works

1These are also sometimes referred to as ”latinized” equivalents.

1

LIST OF FIGURES 2

2. review recently proposed models for Diacritics Restoration that make use of Deep
Learning

3. propose a Diacritics Restoration model for Slovak texts

4. evaluate the proposed model on texts from Slovak Wikipedia

This thesis is structured as follows. The topic of Diacritics Restoration is first
discussed in Chapter 1, along with relevant related work in the area. In Chapter 2
we present an overview of Deep Learning methods and concepts with special focus on
Natural Language Processing applications. This chapter provides the necessary back-
ground for the next one, in which we describe the relevant diacritics restoration models
based on Deep Learning, propose our own alternative, evaluate it on two datasets com-
prised of Slovak texts and analyze its performance. The final chapter summarizes our
conclusions, discusses possible shortcomings of our proposed solution as well as the
used methodology, while providing an outlook for future work as well.

Chapter 1

Diacritics Restoration

Diacritics Restoration (sometimes also referred to as ”diacritization”, ”automatic dia-
critization”, ”unicodification” or ”deasciification”) is usually defined as ”the task of in-
serting missing diacritics in text produced in languages that have diacritically marked
characters in their orthography, but the diacritics are replaced with their corresponding
Latinized grapheme”[AH16]. This Latinization can be caused by various reasons. In
most cases, they are either technical (such as for instance the lack of a specific key-
board and thus difficulty in producing correctly diacritized characters[CK11], technical
requirements of transport protocols which are not able to work correctly with charac-
ters outside of the 8-bit ASCII character set, or difficulty in digitalizing resource-scarce
languages by scanning pages and extracting characters from resulting images using a
process generally called ”Optical Character Recognition” (OCR) [DPWDS07]) or socio-
logical (for example when the speed of transmitting a message is much more important
than their grammatical correctness or aesthetic value, such as in the case of social
media [üAE14]). Especially in the sociological case it can be easily seen that while hu-
mans are capable of interpreting latinized text and restore diacritics in real time while
reading, the stored text that constituted the transmitted message (and which will most
probably be used as input to other Natural Language Processing systems) misses a lot
of morphological, lexical and phonological information [DPWDS07] [AH16]. Due to
its indisputable importance in many real world applications of language technologies,
Diacritics Restoration is an essential component of bigger Natural Language Process-
ing systems whose end goal can range from Information Retrieval through Machine
Translation to Corpora Acquisition [MN02].

Diacritics Restoration is generally considered to be a well studied problem and to
some extend (especially in cases of specific languages for which appropriate lexicons
exist) one that is already solved. It is not uncommon for published work to report
accuracies that well exceed 90% [üAE14] [CK11].

As the authors in [AFNR12] note, however, while the diacritization problem can

3

CHAPTER 1. DIACRITICS RESTORATION 4

Figure 1.1: Diacritics in European languages with Latin based alphabets. [MN02]

be trivially solved when there is only one correct possibility in a dictionary for a given
word, there can be other more interesting cases in which the error gives rise to some
ambiguity (that is, for instance, that there are two correct sentences with different
meanings). In such case, it is difficult to solve this problem automatically, since a non-
trivial level of understanding of the composition of language and its inner-workings
(which seems to be a natural attribute of most humans) is required. It this therefore
obvious that models that provide very good results at tasks like language modeling are
then directly usable for this task.

Number of all words 1208949
Number of unique words 899702
Number of all ’clean’ words 856286
Words without alternations 515245
LexDif score 1.05

Table 1.1: A sample of the statistics report for a subset of Slovak Wikipedia dump. It
shows that since the number of words with alternations is considerably big, the problem
of Diacritics Restoration for Slovak language is far from trivial.

1.1 Word-based Diacritics Restoration

As noted above, most of the published work on diacritics restoration considers a word
to be an atomic unit of information which is then processed further. One of the first
works in this area (which already reported around 90% accuracy with a solid dictionary)
[Yar99] made use of this concept and utilized both N-gram models, Bayesian classifiers
and also a combination of both in the form of decision lists. Since then, many other

CHAPTER 1. DIACRITICS RESTORATION 5

methods have been proposed and successfully tested, most of which rely on dictionaries
and select among ambiguous words based on the context provided by other words that
surround them.

In the following subsections we introduce some of these methods along with the
results their respective authors report in the published works in order for the reader
to better asses their viability and usefulness.

1.1.1 Baseline for word-based diacritics restoration

As any other class of tasks that rely on statistical inference, in the case of word-based
diacritics restoration it is necessary to establish a simple baseline which is though to
be a standard every new (and presumably better, at least in some sense) method will
be compared against. The comparison with this baseline also allows one to comment
on the size of the improvement which was introduced by any new model.

An investigation in literature shows that the majority of tokens (or words in this
context) that are considered in the case of word-based diacritics restoration exhibit
only one variation in accented vs. non-accented version of the token. In other words,
in most cases there is no diacritics to be recovered. Moreover, when there is ambiguity
among restorable words, one of them is normally used more often and is thus though
to be dominant. This not only holds for European languages like Spanish and French
[Yar99], but also for languages like Māori[CK11].

Thus, the baseline algorithm for word-based diacritics restoration is usually formu-
lated as follows:

Given a dictionary D, select the most frequently occurring variant of word
w as the diacritized word.

Despite its simplicity, this baseline can achieve very solid results, when the metric
of overall accuracy is used. In [Yar99] the authors report 97,6% mean accuracy for
French and 98,7% mean accuracy for Spanish. Similarly, in [CK11] the authors report
97,11% accuracy for Māori. It needs to be noted, however, that while the accuracy of
these models may seem high, they still make errors. And when they do, it is exactly
in the ambiguous cases which should be considered most important by a model that is
trying to restore diacritics.

Furthermore, the note above suggests, that plain accuracy might not be the best
metric of assessing the quality of a diacritics restoration model in the word-based
context. Many other metrics are used as a result, most notably the diacritics restoration
error (error in words for which some diacritics was to be restored) and others, which
will be discussed in more detail in the following sections.

CHAPTER 1. DIACRITICS RESTORATION 6

1.1.2 N-gram models

The concept of a N-gram model is a very simple, yet quite powerful one. All one needs
to do is to recall the counts of each N words that were present in the training dataset.
At prediction time the word with the highest stored frequency given the words that
surround it will be chosen.

While there are a few technical details to be considered (such as the predicted word,
which can be located at different places: in between, at the end or even in front of the
words that constitute its context), this model is very straightforward to implement and
can lead to very good results, especially with well polished corpora which it can be
trained on. In the most general sense, the model is trying to model the probability
P (w|c) where w is the word currently considered and c is the context, which can be
defined in various ways ad described above. While the frequentest assumption described
above might not always hold, in practice it provides an acceptable approximation of
the true distribution.

More formally, we can define an n-gram language model as one that gives an ap-
proximate probability score for a word sequence W = w0w1 · · ·wm. This probability
can be obtained by considering local scores using n − 1 Markov chains over the word
sequence[Hif12], that is:

P (W) =
m∏
i=1

P (wi|wi−1
i−n+1)

In the special case of a bigram (that is, 2-gram), we get

P (W) =
m∏
i=1

P (wi|wi−1)

where P (wi|wi−1) can be estimated as

P (wi|wi−1) =
c(wi, wi−1)

c(wi−1)

where c(wi, wi−1) is the count of wi and wi−1 being spotted next to each other (in
that order) and c(wi−1) is the number of times the word wi−1 occurred in the text.

Inference (prediction of a proper diacritization) using this algorithm works as fol-
lows: all possible diacritizations are generated, and then the formula above is used to
score them. More formally, the problem of restoring diacritics using n-gram models
can be defined as a problem of choosing a word sequence H with the maximum model
score, given the sentence without diacritics, that is:

H = argmaxHP (H|W)

CHAPTER 1. DIACRITICS RESTORATION 7

One of the biggest issues with this method is that given its frequentest nature, it
may cause numerical issues in many places, since c(wi−1)) and c(wi, wi−1) may often
times be zero and thus cause the probability they out to estimate to either be zero,
or in the worst case trigger a division by zero error. The authors in [Hif12] deal with
these issues by utilizing a method called smoothing, which has dramatically improved
their results (word error rate reduction from 61% to 9.2%).

While modeling words directly may be the easiest way of setting up the model, upon
deeper consideration, one may decide to use a framework normally used in computa-
tional linguistics for Part of Speech tagging, and model only the distinctions necessary
to resolve the major accent ambiguities. In the case of Spanish for instance, this would
be -o/-ó or -ara/-ará for instance. Compared to the task of Part of Speech tagging,
one big advantage of this formulation of the task is that it does not require annotated
corpus data, which are usually hard to come by[Yar99].

This method would therefore transform the Spanish sentence

la posición anunció oficilamente que

into the following list of ”words”:

la/LA posicion/-IÓN anuncio/-Ó oficilamente/-MENTE que/QUE

Note that the forward slashes above were only added for better readability. A model
trained on this transformed data would then be used exactly as we described above.
Using this method, the authors in [Yar99] were able to improve the accuracy from 57%
(baseline) to as much as 97,8% in some cases.

Evaluation Metrics

As we mentioned earlier, simple accuracy many times does not fully capture the com-
plexity of the considered task, and is therefore quite hard to interpret correctly, espe-
cially when comparing two models of similar quality with their accuracies being well
over 90%. Some of the biggest issues with this metric could already be visible in the
context of the following baseline algorithm. Suppose that we have a dataset in which
one out of each 10 words has an ambiguous form. We train a model on this dataset,
which achieves 88% accuracy on the test set. Upon manual inspection of its errors we
notice that it associated more weight with forms which were used in a less ambiguous
way in the training set, hence inducing some bias. We thus arrive at a strange con-
clusion: we have a model that tries to actually restore diacritics but its performance
is worse than the baseline model that only copies its input to the output, as such a
model would like achieve accuracy close to 90%. It is therefore quite obvious that a
better metric is necessary.

CHAPTER 1. DIACRITICS RESTORATION 8

An alternative set of metrics that might be considered are precision and recall

which are defined as follows:

precision =
tp

tp+ fp

recall =
tp

tp+ fn

where tp is the number of true positives, fn is the number of false negatives and
fp is the number of false positives. These two metrics can be combined into a single
number metric called F1-score by taking their harmonic mean, that is:

F1 = 2 ∗ precision ∗ recall
precision+ recall

In practice the F1 score is regarded as much more robust measure of relevance
than accuracy, mostly due to the fact that it does not only take into the account the
mistakes made by a given model, but also the way in which these mistakes were made
(i.e. whether they were false positives or false negatives).

These metrics (most notably the F1 score) were used by the authors in [UBP+08]
where they utilized them in order to evaluate their unigram, bigram and trigram mod-
els, although in a different context (character level diacritics restoration).

1.1.3 Bayesian classifiers

Bayesian classifier are a class of classifiers which has been used for many practical tasks
of computational linguistics, such as word-sense disambiguation, authorship identifi-
cation or person-place classification of proper nouns [Yar99]. They have been shown
to be well suited for handling longer contexts, which was problematic with the mod-
els discussed above. In this section, we will discuss a specific member of this class of
classifiers: the Naive Bayes classifier.

Despite its name and naivete involved in its design, the Naive Bayes classifier is
widely used in various classification tasks and its use is not at all limited to the field of
Natural Language Processing. In the case of diacritics restoration, it was most notably
used for the Māori language [CK11].

It is based on the application of the Bayes’ theorem combined with an independence
assumption, which is assumed between its input features. Given class c and dependent
feature vectors x1 through xn, the Bayes’ theorem provides the following:

P (c|x1, · · · , xn) =
P (c)P (x1, · · · , xn|y)

P (x1, · · · , xn)

Using the naive assumption described above, which states that for every i

CHAPTER 1. DIACRITICS RESTORATION 9

P (xi|ci, x1, · · · , xi−1, xi+1, · · · , xn) = P (xi|c)

we obtain

P (c|x1, · · · , xn) =
P (c)

∏n
i=1 P (xi|y)

P (x1, · · · , xn)

Since we are considering a classification task and the denominator is constant, given
the input, we can simplify this into a separate classification rule:

c = arg max
c
P (c)

n∏
i=1

P (xi|c)

Since the considered probabilities are normally quite small and might pose issues
in computation, the following form is often used:

c = arg max
c

logP (c)
n∑
i=1

logP (xi|c)

The probability P (xi|c) is usually estimated in the same frequentest way as we
already described above. The other probability necessary P (c) is usually simply esti-
mated as

P (c) =
Nc

N
Where Nc is the number of words in a given class c in the training dataset, whereas

N is the number of all training examples. In order to fight against possible zero esti-
mates, the authors in [CK11] apply Laplacian smoothing to their probability estimates.

The final piece of information necessary before these models can be considered in
the classification task is the features that will be used at the time of inference. The
authors in [CK11] use n-grams that either precede or follow the target word. Moreover,
they introduce a convenient notation in order to better identify them. For instance
(-1, 3) means a trigram preceding the target word, (1, 2) indicates a bigram following
the target word and (-1, 1), (1, 1) describes a monogram on either side of the target
word. The authors of the aforementioned work went as far, as to combine five of these
features. Their final feature set therefore consists of (-1, 3), (-2, 2), (1, 2), (-1, 4),
(-2, 4). This combination of features, utilizing the Naive Bayes classifier, was able
to achieve 99,01% accuracy, which was a substantial improvement over the baseline
(97,11%).

1.1.4 Other models

While the previously described models constitute the backbone of diacritics restoration
techniques at word level, there are many other that can and were used for this task in

CHAPTER 1. DIACRITICS RESTORATION 10

the context of various languages. For instance, many previously used modes utilized
Part of Speech tagging [SD01], but due to unavailability of solid Part of Speech taggers
and a push for end-to-end1 solutions, these models were not frequently used in the past
few years. Moreover, other models utilize Conditional Random Fields [üAE14], specif-
ically tuned and constructed language models [AFNR12], and translation modeling
combined with language modeling [LEF16].

1.2 Grapheme-based Diacritics Restoration

As we described in the previous section, the word-based diacritics restoration is a task
that is not thought of to be very difficult and at the same time provides very good
results, even with quite simple models.

However, as noted in [MN02], most of these methods fall short when

1. Dictionaries in electronic forms are not available for the target language, or only
dictionaries of small sizes are publicly available. A specific situation happens
when the dictionary itself lacks diacritics, in that case its usefulness in the context
of diacritics restoration is very limited.

2. Morphological and/or syntactic analysis tools (such as Part of Speech tagger) are
not publicly available for the target language.

3. Size of the dataset on which the diacritics restoration model is to be trained is
small.

It is therefore obvious that word-based approach is in many ways limited. The au-
thors in [MN02] therefore proposed a model that utilizes information on the grapheme
(character), rather than word level. The basic premise is as follows: the local graphemic
context encodes enough information to solve this disambiguation problem [DPWDS07].
Such a problem can then be formulated as a machine learning task and solved using
well known machine learning tools.

In order to provide some more context, let us consider the differences between
rules learned by models that work on the word level, compared to those that consider
grapheme (character) as the most atomic unit of input. While on the word level the
model can for instance learn a rule like

” posicion should change to posición when it is a noun”

the grapheme-based model will learn something on the order of

”c followed by an i and preceded by whitespace should change to č”
1text-to-text, without any middle man, may be more appropriate

CHAPTER 1. DIACRITICS RESTORATION 11

We can see that the latter rules are much more general: they do not require a
specific word to be seen and will most probably require much less space in order to be
stored.

Figure 1.2: restoration of diacritics for the word ”mbũri” (goat in the Gĩkũyũ language).
Note that every character is considered in its own context. [DPWDS07]

Since the input space is different compared to word-based models, the features
used to train models in this context will be different too. We will illustrate this on the
example of restoration of diacritics for the word ”mbũri” (goat in the Gĩkũyũ language).

As we can see in Figure 1.3, for every class (grapheme, for instance ”ũ”) that is to
be predicted (the last column), there are eleven features. One of them is the character
we are currently changing (the middle column, for instance the character ”u”), the left
and the right context. In general, we say that the model has a context window of N
when the features constitute N characters from the left and N character from the right.
The authors of [MN02] did an exploration on what window size would be best suited
for this task and in the case of Romanian found that the bigger the window, the better,
with N = 5 being the optimum in this case. However, at some point the improvement
plateaus and increasing the window size brings diminishing returns. This therefore
suggests that window size is a hyperparameter we need to optimize our models over.
Moreover, the authors of this seminal work also investigated the relationship between
the size of the training dataset and the performance of the model. While the obvious
hypothesis has been confirmed (the more data the better – regardless of the size in
this case), the authors were able to show (again, in case of Romanian) that even when
using very small amounts of data (on the order of 100 examples) the proposed model
is already able to beat the baseline, which suggest that it generalizes very well.

The authors of [DPWDS07] tested this model’s ability to generalize on resource-
scarce languages. While for many Indo-Euroean languages a suitable textual data is
not publicly available, in case of many African languages considered in [DPWDS07] a
suitable dataset (at least in terms of size) is not available at all. In order to better
asses the difficulty of the diacritics restoration task, the authors also introduced so
called LexDif – ”lexical diffusion” metric. To compute this value, a list of all unique

CHAPTER 1. DIACRITICS RESTORATION 12

words is first extracted. Every word in this list is then latinized (its diacritics are
removed). As one would expect, multiple unique words will be latinized into the same
form. The value of LexDif is then computed by dividing the number of unique words
by the number of unique latinized words. This number therefore indicates the average
number of alternations that are to be disambiguated as part of the diacritics restoration
task – the higher the number, the more difficult the task, since we can only predict
single alternative for a given latinized word form.

Given the input features mentioned above, the models can be trained using many
different methods. In [MN02], the authors mention that they used an instance based
learning algorithm called TiMBL, while also comparing its performance with a specific
algorithm for training decision trees. While the decision trees provided similar results
and could also provide higher interpretability of the created models (by examining its
nodes/leaves), given its significantly higher running times, they decided against using
it. In [DPWDS07] the authors noted that although other machine learning algorithms
like Maximum Entropy Learning or Support Vector Machines (SVMs) are typically
able to outperform memory based learning on many Natural Language Processing
tasks, in this case they were not able to conclude that that would be the case. A
similar conclusion was reached by the authors of [KDDV17], where in the context of
Lithuanian text a Conditional Random Field classifier has been outperformed by a
standard count-based language model.

This does come as a surprise, since in the latest work on the topic to date [AH16]
test logistic regresion, SVMs and also Random Forests, which can be though of as of
a generalization of the C4.5 algorithm using boosting techniques. In this work the
authors were able to confirm the conclusions from earlier work on generalization and
window size, while also creating a model that is both very fast and very accurate, even
in context of very short messages from the social media.

1.3 Diacritics Restoration using Deep Neural Net-

works

Since Deep Neural Networks and Deep Learning in general has been taking the field of
Machine Learning by a storm, it was only a matter of time when the field of Diacritics
Restoration gets hit. The first work on this topic was [RASRR14], which utilized a
model called Deep Belief Network, to solve the classification task we described above.
While this model managed to achieve state-of-the-art performance at the time, it was
quickly surpassed by other works of similar type, such as for instance [BG15] and
[AGAS+15], both of which made use of a much more robust technique called Long-Short

CHAPTER 1. DIACRITICS RESTORATION 13

Figure 1.3: An illustration of the topology of the network used in [BG15]

Term memory (LSTM) and also designed the model to work end-to-end2. However,
since then many alternations of the LSTM model were proposed, which suggests that
there is still room for improvement, which is also suggested in the conclusion of the
aforementioned work. This was indeed realized in [Náp17], where the author tested
various architectures on both the word and character level, and evaluated them on
Czech texts.

Further discussion on the topic of Diacritics Restoration using Deep Neural Net-
works along with our contribution to this are can be found in Chapter 3.

2By that we here mean that text comes in on one side and goes out on the other, which is not
necessarily the case in other models that achieve near state of the art results by utilizing morphological
and other language-specific tools.

Chapter 2

Deep Neural Networks for Natural
Language Processing

In this chapter we provide an introduction to Neural Network models, with special
focus on their deep variants, and their usage in Natural Language Processing applica-
tions. Our goal here is not to provide a comprehensive survey, but rather to provide
background for the forthcoming discussions on the proposed models that are central to
the presented work.

2.1 Neural Networks

Although they are no longer primarily viewed as such, Neural Networks as a computa-
tional model has been introduced with the goal of modeling biological neural processes
that take place in the brain. The model itself has proven to be useful when applied
to vast amount of practical problems. While its further developments no longer took
inspiration just from its biologically inspired past, for the sake of completeness, we
provide a high-level overview of the biological system these networks were first tasked
with modeling.

2.1.1 Biological Neural Networks

As the name suggests, biologically inspired Neural Networks consist of neurons, which
are the basic building blocks of computation inside the brain. Around 86 billion of them
can be found in the human nervous system, connected with 1014 to 1015 synapses. Each
neuron receives input signal from its dendrites and passes forward its output signal
along a single axon. This axon later branches out and connects to other dendrites of
other neurons using synapses. When viewed computationally, the signal that travels
from the axons is multiplied by the synaptic strength of a given synapse. Synaptic
strength can then act as a learnable parameter that makes a single synapse act in

14

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 15

either excitory or inhibitory way, depending on whether a given synaptic strength
(also referred to as weight) is positive or negative. If the sum of signal received by a
single neuron reaches a certain threshold, this neuron can fire by sending a spike of
signal along its axon. In the computational view, the precise timing of this spike is
considered not to play a role, passing of information is mediated just by the frequency
of firing. The firing rate of a single neuron is then modeled by a so called activation
function, the output of which should represent the frequency of the output spikes along
its axon. The most usual choice for an activation function has historically been the
sigmoid function. It takes a real valued input (in this case a sum of neuron’s input
transformed by synaptic strengths of its input synapses) and produces a single real
valued output from the range of 0 to 1. An illustration of this model can be seen in
Figure 2.1.

Figure 2.1: An illustration of a biological neuron [LKJ15]

Before proceeding onto a discussion on technical details of the described computa-
tional model, let us first stress out that the model itself is very coarse. Modern neuro-
science recognizes many different types of neurons, dendrites are much more complex
than just a simple weight and the timing of spikes has been shown to be important,
which suggests that approximating information passing with just frequency may be in-
adequate. The computational model of neurons as described in detail in the upcoming
sections is therefore only loosely inspired by the biological processes that take part in
the brain. For further review we encourage the reader to consult [LH05] and [BHR14].

2.1.2 Modeling Neural Networks

Building upon the biological inspiration described in the previous section, we first
propose a mathematical model of a single neuron and then extend it to a so called
feed-forward neural network.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 16

Modeling a Single Neuron

We denote an input signal that is flowing to a given neuron along its i-th axon as xi in
mathematical notation. Furthermore, the i-th synapse’s weight is denoted as wi. The
sum of the input to a given neuron can thus be expressed as

∑
iwixi. A bias term b

is then usually added to this sum as well. Finally, a non-linear activation function f
is applied on the resulting sum. The of f(

∑
iwixi + b) is thus the output of a given

neuron’s computation. This model is visually illustrated in Figure 2.2.

Figure 2.2: An illustration of a mathematically modelled neuron [LKJ15]

Despite its simplicity, this model is very general, which seems to be a great extend
the reason for its success. Let us for instance consider that f(

∑
iwixi + b) can be

easily interpreted as a binary classifier that would model P (yi = 1|xi;w). Since the
probability of both classes needs to sum to one, the probability for the other class
would be P (yi = 0|xi;w) = 1 − P (yi = 1|xi;w). This interpretation along with so
called cross-entropy loss would lead to a binary Softmax classifier, which is also known
as logistic regression. In a very similar manner, one may decide to make use of the
max-margin hinge loss, the optimization of which would yield a binary Support Vector
Machine. These models also usually make use of regularization terms in their loss
functions, which improve their generalization capabilities by ensuring that no input
dimension alone greatly influences the overall output. In our biological view this could
be interpreted as gradual forgetting, since it would encourage the weights wi to stay
low at each parameter update.

In conclusion, the general nature of this model provides a simple yet effective frame-
work for expressing many Machine Learning models in a unified fashion. In the next
section we discuss one of its key parts: the so called non-linearities or activation func-

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 17

tions.

Activation Functions

Although the activation functions described in the following paragraphs differ, in prin-
ciple they all perform the same function: they take a single real number as an input and
performs a mathematical operation on this input. Note that as their name suggests,
the described functions are generally non-linear.

Sigmoid The sigmoid activation function is defined as

σ(x) =
1

1 + e−x

. Its interpretation is fairly simple: it takes a real number and ”squashes” it between 0
and 1. As we can see directly from the definition and also in Figure 2.3, this squashing
is most severe around the extremes: for very large negative numbers the function would
output 0, whereas for very large positive numbers it would output 1.

Figure 2.3: An illustration of the output of the sigmoid activation function (y axis).
[LKJ15]

As we mentioned before in Section 2.1.1, this function has been historically a very
common choice of non-linearity for neural networks, mostly because it can be viewed
as directly mapping to the concept of firing rate of a neuron. With this activation
function the neuron can model a wide range of firing rates: from not firing at all (0)
to firing at maximum capacity (1).

In recent years, however, this non-linearity has fallen out of favour. The most
important reason is that it saturates gradients at both extremes – the gradient there
would be very close to zero. The result is that almost no signal will flow through a
neuron in this case during training, since it effectively ”kills” the gradient. It should
also be noted that the exponential function that is used in this non-linearity is quite
computationally expensive.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 18

Tanh The tanh activation function is defined as

tanh(x) =
e2x − 1

e2x + 1

. It takes an input and transforms it into the range [-1, 1]. We also note that the the
tanh activation function is just a rescaled sigmoid, since tanh(x) = 2σ(2x) − 1. As
such, it suffers from many of the same issues as the sigmoid activation function. Still,
it is quite frequently used in NLP applications.

Figure 2.4: An illustration of the output of the tanh activation function (y axis).
[LKJ15]

Hard tanh In order to address the shortcomings of the tanh activation function, a
so called ”hard-tanh” activation function has been proposed. This function is simpler
and also faster to compute, as it only approximates the tanh function. It is defined as

hardtanh(x) =

−1 x < −1

1 x > 1

x otherwise

Rectifier Linear Unit (ReLU) The ReLU non-linearity has become very popular
in the past few years, especially in the context of Computer Vision. It is simply defined
as

relu(x) = max(0, x)

As we can see from the definition, this function is very easy to compute – it can be
implemented by essentially just thresholding any activation input at zero. It has been
found empirically that using this non-linearity has the potential to greatly accelerate
the convergence of training of networks that make use of this non-linearity – in [KSH12],
which is considered to be one of the most famous examples of this phenomena, it was

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 19

found to increase the convergence rate six fold when compared to networks that used
sigmoid or tanh activation functions.

Figure 2.5: An illustration of the output of the ReLU activation function (y axis).
[LKJ15]

One of the major downsides of the ReLU non-linearity is that nodes that make use
of it can also ”die”. A very large update of the weights associated with this node can
make it so that the node will not respond to any of the data points in the (training)
dataset. This effectively makes the node ”dead” as its weights lose their capacity to be
updated again during training.

Leaky ReLU This non-linearity attempts to fix the problem of ReLU described
above by ensuring that any node that uses this non-linearity is capable of responding
to any input it receives, albeit in a very small manner. It is defined as

lrelu(x) = 1(x < 0)(αx) + 1(x >= 0)(x)

where α is a small constant. While this non-linearity has been successfully used in
many published works, the results of its usage are not consistent across input domains
or considered problems.

Maxout The Maxout non-linearity is an example of an activation function that does
not follow the general form of f(wTx + b), but rather tries to generalize both ReLU
and Leaky ReLU into a single activation function. It is defined as

maxout(x) = max(wT1 x+ b1, w
T
2 x+ b2)

Note that in this formulation both ReLu and Leaky ReLU are a special case of this
non-linearity: in case of ReLU w1 = 0 and b1 = 0 for instance. Its disadvantage is the
number of weights, which need to be doubled in case of this non-linearity.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 20

Choosing the Right Non-Linearity To the best of knowledge of the author of
this document, there is currently no fundamental theory on what activation function
to choose for which use case of a given network. While the practitioners do provide valu-
able rules of thumb, such as ”ReLU units work better than tanh, and tanh works better
than sigmoid” [Gol15], they are also quick to point out that in specific cases even more
exotic functions, such as for instance the Cube activation function (that is cube(x) = x3)
or the tanh cube activation function (defined as tanhcube(x) = tanh(x)3), have been
found more effective in certain situations (see for instance [CM14] and [PGC15]). On
the other hand, we have non-linearities such as Maxout with interesting properties, but
increases in terms of model size.

The answer to the question ”which non-linearity should one choose” therefore seems
to be tightly connected with the problem one desires to solve. Looking at the recently
published literature in the field however, it seems that starting with ReLU and grad-
ually moving towards Leaky ReLU or Maxout if the number of ”dead” neurons is of
concern seems like a solid choice. When it comes to NLP applications specifically,
the tanh non-linearity seems to be worth trying out as well. Note that the biological
plausibility of activation functions other than sigmoid remains yet to be determined
– they were generally inspired by the need for solving an engineering problem rather
than the need for a better model of a biological process.

2.1.3 Neural Networks as Graphs of Neurons

As their name suggests, Neural Networks are modeled as a collection of neurons that
comprise a network. This network has further properties, namely that it is a direct
acyclic graph. Such a property ensures that information flows in a single way through-
out the network and that an infinite look in the forward pass through the network will
not occur. While in principle Neural Networks may not need any other property, for
ease of implementation they are usually organized in a number of layers, each of which
may have a specific function. In order to describe this concept in more concrete terms,
let us introduce one of the most common Neural Network layer: a fully-connected layer,
which is also known as a dense or affine layer.

Fully-connected Layer

A fully-connected layer is simply a layer that has pairwise connections from each of the
previous layer’s neuron to each of its neuron (hence the ”fully-connected” in its name),
while the neurons on the same layer are not connected to one another. An illustration
of an architecture that makes use of this layer can be seen in Figure 2.6. Note that
the fully-connected layers in this figure are labeled as ”hidden”. The notion behind this
label is that it is the part of the network that the end user of the network does not

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 21

Figure 2.6: An illustration of a three-layer neural network comprised of two fully
connected and one output layer. Note that the number of layers does not include the
input layer. [LKJ15]

have a direct access to. For a more in-depth discussion on what the hidden layers of a
fully-connected feed-forward network represent, see [TP89].

A network with the architecture described in Figure 2.6 is also sometimes referred
to as ”Artificial Neural Network” or ”Multi Layer Perceptron”.

Output Layer

The output layer is essentially a special case of a fully-connected layer, which does not
use an activation function1. The reason is fairly straightforward: the output values are
usually interpreted as either real valued outputs in the case of regression or class scores
in case of classification.

2.1.4 Modeling Neural Networks Mathematically

While the biologically inspired view of Neural Networks allows us to discuss many
related high level concepts without going into too much technical detail, it also prevents
us from providing a clear picture of how would a model like this be implemented, which
is a crucial prerequisite for further discussions. In this section we therefore provide a
description of previously introduced concept in mathematical notation which make it
easy to extend them in many ways and also provide a direct starting point for their
implementation.

Perceptron

The simplest type of a Neural Network is a perceptron. In terms of our previous
discussion, this is a neural network that only contains an input and an output layer.
In mathematical notation this can be expressed as

1Alternatively, we can say that it uses the linear identity activation function, that is id(x) = x.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 22

NNperceptron(x) = xW + b

where x ∈ Rdin , b ∈ Rdout , W ∈ Rdin×dout and din denotes the input dimensionality,
while dout denotes the output dimensionality. The W and b denote the weight matrix
and bias vector, respectively.

Multi Layer Perceptron

The simple network above can then be extended to a Multi Layer Perceptron by adding
a new layer which also makes use of a non-linear activation function. Its definition is
as follows:

NNMLP (x) = g(xW1 + b1)Wout + bout

where x ∈ Rdin , b1 ∈ Rd1 , bout ∈ Rdout , W1 ∈ Rdin×d1 , Wout ∈ Rd1×dout and din

denotes the input dimensionality, while dout denotes the output dimensionality. The
W1, Wout and b1, bout denote the weight matrices and bias vectors on the hidden
(1) and the output (out) layers respectively. The g function is a non-linear function,
which is applied in element-wise fashion and allows the model to represent complex
functions2.

In a very similar way we can also extend this network with another hidden layer:

NNMLP2(x) = g2(g1(xW1 + b1)W2 + b2)Wout + bout

For clarity, we may also decide to lay out this network in a layer-by-layer fashion:

h1 = g1(xW1 + b1)

h2 = g2(h1W2 + b2)

NNMLP2(x) = y = h2Wout + bout

Each of the aforementioned lines would be called a layer of a neural network. Note
that in the first two layers a non-linearity is applied after the linear transformation,
while the output layer does not contain a non-linearity. Note that is consistent with our
definition of the output layer in Section 2.1.3. Furthermore, it also directly represents
the neural network visualized in Figure 2.7, provided the sigmoid non-linearity is used
in place of both g1 and g2.

Given this layer representation, one of the differences between the visualization and
the mathematical representation is that the visualization omits the bias terms. This

2Without using it, the model would only be able to model linear transformations, as a sequence of
linear transformations in the end results in just a linear transformation.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 23

Figure 2.7: An illustration of a three-layer neural network comprised of two fully
connected and one output layer. The input layer neurons are colored in green, the
output layer neurons in red and the hidden layers, onto which a sigmoid non-linearity
is applied, are colored in purple. [Gol15]

is usually the case for clarity reasons, as the bias can be easily implemented as part
of weight matrices: instead of a bias term a layer will be augmented by a new neuron
that does not have any incoming connections and whose value is always 1.

Output Transformation

Specifically in the context of classification, the vector resulting from the output layer
operation is also transformed. Given its probabilistic interpretation, one of the most
commonly used transformations is the softmax transformation:

x = x1, ..., xk

softmax(xi) =
exi∑k
j=1 e

xj

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 24

The result of this transformation (which is once again applied element-wise on the
output vector) is a vector of real valued numbers that sum to one, which makes it
a probability distribution over k outcomes and thus a very important building block
for probabilistic modeling using Neural Networks. When this layer is applied to a
network without hidden layers, the resulting model is the same as a maximum-entropy
classifier, or so called multinomial logistic regression model. This further shows that
the generality of the basic building blocks of Neural Networks allow us to build models
commonly used in other areas of Statistical Inference or Machine Learning.

2.1.5 A Note on Representation Power

The NNMLP network described in previous sections has been found to be an univer-
sal approximator in [HSW89]. One may therefore wonder why would it be useful or
necessary to use more than one hidden layer. While the theoretical proof in the afore-
mentioned work states and proves that such a network exist, it does not specify its
parameters, nor does it say anything about the way in which these parameters may
be found. The reason why Neural Networks with multiple layers are used in practice
(and why did the term Deep Learning become commonplace) is that as the authors
of [LKJ15] say: ”they compactly express nice, smooth functions that fit well with the
statistical properties of data we encounter in practice, and are also easy to learn using
our optimization algorithms”.

2.2 Feature Representation

While we considered the input x in the previous sections for clarity reasons to be just
a vector of real values, especially in the context of NLP applications the representation
of the input is of specific interest. This is because when dealing with natural language,
the input x can represent various types of information, such as words, graphemes, part
of speech tags, entity labels or a vast array of other linguistic information. One of
the big changes the Deep Learning approaches for NLP brought to bare was to move
from representing the input data as a set of unique features, where each unique feature
would be represented by a specific dimension, but rather represent them using their
”embedding” into a d-dimensional vector space instead.

Building upon this idea, the general structure of a NLP model for a classification
task in this framework can be defined as follows:

1. Obtain a set of features f1, ..., fn that are thought to be relevant to the task at
hand.

2. For each feature obtain its representation in a d-dimensional vector space.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 25

3. Combine the vectors into an input vector representation x by concatenation,
summation, taking their element-wise average, max, mean or any combination of
these.

4. Provide the input vector x to a Neural Network.

Let us briefly discuss the differences between the two approaches to representing
the input features for Neural Networks. For a visualization of their differences, please
refer to Figure 2.8.

Figure 2.8: An illustration of the comparison between different feature representations.
In both cases the following information is encoded: current word is ”dog”; previous word
is ”the”; previous part-of-speech tag is ’DET’. In case of sparse feature vector (a), each
feature, as well as combination of features, is represented by a separate dimension.
Feature values are binary and the dimensionality of such a vector is very high. In
case of dense feature vector (b), the dimensionality is lower, as the resulting feature
vector consists of concatenated embeddings of both words and part-of-speech tags and
combinations of features are not explicitly encoded (except for specific positions of
respective embedding vectors in the resulting feature vector). [Gol15]

2.2.1 One Hot Representation

The one-hot representation is very similar to the well known ”bag-of-words” represen-
tation that is often times one of the simplest ways of representing linguistic structure

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 26

in NLP applications.
In this representation, each feature is assigned a specific dimension. The dimen-

sionality of the one-hot vector is the same as the number of distinct features. There
is no notion of similarity between features represented this way – the feature previous
word is ”neural” would be as dissimilar to the feature previous word is ”king” as the
feature previous word is ”queen”.

2.2.2 Dense Vector Representation

In this representation, each feature is assigned a d-dimensional vector. Similar fea-
tures will tend to have similar vectors – information should be shared between similar
features.

One of the direct advantages of dense vector representation is the input dimension-
ality: even the biggest d-dimensional embedding vectors are usually much smaller than
the shallow one-hot encoded sparse vectors, which are usually difficult to work with.
The main advantage of this type of representation is its improved generalization power.
If we assume that similar clues may provide similar results, it may also make sense to
make this similarity explicit in the input itself. More specifically, if we were building
a classifier which should respond in a specific manner to mentions of entities of noble
origin, it may make sense for it to share statistical strength between the features previ-
ous word is ”queen” and previous word is ”king”, which may in the end be represented
by similar dense input vectors.

Although there may be cases in which it makes sense to use one-hot encoding, the
majority of the recently published work makes use of dense representations. In many
of these works the procedure of creating the representation of input in a dense fashion
is generalized into so called ”Embedding Layers”, which actually make use of both of
these representations.

2.2.3 Embedding Layers

The motivation for Embedding Layers is that while the input vector x can be comprised
of multiple embedding vectors which can come from various sources, these embeddings
of input can also be explicitly made part of the network itself.

Let us introduce c(·), a function which maps feature inputs into input structure
suitable for the further parts of the Neural Network. Furthermore, let us introduce
function v(·), which provides an embedding vector for a given feature input. A very
common choice for the c(·) function is concatenation of embeddings of respective input
features:

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 27

x = c(f1, · · · , fn) = [v(f1); · · · ; v(fn)]

Assuming that the embedding vector representations of input features share the
same dimensions, another common option for c(·) is summation:

x = c(f1, · · · , fn) = v(f1) + · · ·+ v(fn)

Many recent works in this area refer to c(·) as part of the network and assume the
resulting vectors of the v(·) function to come from an ”embedding layer” (sometimes
also referred to as a ”lookup layer”), which is usually the first layer of the network.

Suppose we have a Neural Network architecture which is tasked with predicting
the part of speech tag of a given word. We would therefore like its input to consist
of the previous word, current word and the following word. In order to facilitate this,
we consider a vocabulary V of |V | words, where each of the words is represented by a
d-dimensional dense vector. The resulting collection of vectors can be represented by
an embedding matrix E of dimensionality |V |×d, where each row of this matrix corre-
sponds to an embedded word. Furthermore, let us us define fi as one-hot encoded vector
that represents the i-th word. We can then easily see that evaluating fiE produces the
embedded representation of the i-th vector: the aforementioned multiplication ”selects”
the corresponding row of the embedding matrix E.

This leads us to a natural choice for the v(·) function:

v(fi) = fiE

which then allows the input of the network to consist of just one-hot encoded
feature vectors. Note also that this choice also allows us to easily model a continuous
alternative to the so called bag-of-words representation, in which only the presence of a
given feature in the input matters. This continuous alternative, so called ”Continuous
Bag-Of-Words” (CBOW), in which the representations of respective words that can be
found in the ”bag” are summed together can be defined as:

CBOW (f1, · · · , fn) =
n∑
i=1

(fiE) = (
n∑
i=1

fi)E

The (
∑n

i=1 fi) part of the aforementioned definition then directly corresponds to the
bag-of-words representation of the input data.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 28

2.3 Recurrent Neural Networks

Up until now, our discussion on Neural Networks and their architectures assumed that
they work in a feed-forward fashion. When looking at natural language, however, we
can see that it is generally comprised of sequences: words are sequences of letters,
sentences are sequences of words, documents can be though of sequences of sentences.
As we pointed out, there are ways and techniques such as CBOW representation that
let us encode features of variable length, which may be sufficient for the considered
applications. However, this view ignores the sequentiality of language, namely that the
order of letters in a word does matter, as well as the order of words in a sentence or
the order of sentences in a document. The Recurrent Neural Networks (RNN), first
introduced in [Elm90], provide a framework for modeling sequences while focusing on
long term dependencies, which are of great importance when dealing with natural text.

Figure 2.9: An illustration of the RNN architecture. [Gol15]

2.3.1 Defining Recurrent Neural Networks

Any RNN architecture can be expressed using mathematical apparatus by defining its
two parts: the recursively defined function R that maps between the previous state of
the model and current input into the next state of the model, and the output function
O that takes as input the current state and outputs a output of the model. More
concretely we have

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 29

RNN(s0,x1:n) = s1:n,y1:n

si = R(si−1,xi)

yi = O(si)

where xi ∈ Rdin , yi ∈ Rdout and si ∈ Rdhid . Note that the functions R and O stay
the same and thus the model is ”forced” to keep track of the state of computation via
the state vector. A visualization of this general architecture can be found in Figure
2.9.

Given the recursive nature of the R function and given an input of finite length
(which is always the case with regards to NLP problems), this architecture can also
be ”unrolled” across different time steps. Visually this would result in the illustration
that can be found in Figure 2.10.

Figure 2.10: An illustration of the ”unrolled” RNN architecture. Note especially the
parameters θ which are shared across different time steps. [Gol15]

Multi-layer RNN

In much the same way as multiple feed-forward layers can be stacked one after another,
so can any RNN layer produce output that can be consumed by another RNN layer.
This layered architecture is also known as deep RNN. A visualization of this architecture
can be seen in Figure 2.11

While to the best of the knowledge of the author of this document there did not exist
at the time of its writing a plausible theory that would explain whether or how much
representational power do the additional layers add. It has been empirically observed,
however, that for some tasks adding further RNN layers improves the performance of
the resulting model.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 30

Figure 2.11: An illustration of the deep RNN architecture. [Gol15]

Bidirectional RNN

Another common variation of RNN models is to make them process the input in both
directions, making them bidirectional. It can be easily motivated when considering the
NLP task of predicting part-of-speech tags while giving the network plain words as the
input.Using a single RNN gives the model at time step t access to all previous words
from time 1 to time step t. However, given its task it may be beneficial for the model
to be able to refer to also consider words after time step t. A simple way of providing
this information would be letting the model process the input in reverse, from the end
to the beginning.

In order to facilitate this, a RNN layer is often times doubled: one RNN is used
for the forward (beginning to end) and one for the backward (end to beginning) pass
through the data. The final output is then computed as a concatenation of outputs of
both the forward and backward RNNs.

RNNs augmented in this way are usually denoted by the ”Bi-” prefix – it is therefore
not uncommon to find names such as BiRNN in the literature.

2.3.2 Simple RNN

The simplest RNN formulation (aptly named Simple RNN or Elman Network in honor
of its author) can be described as follows:

si = RSimpleRNN(si−1,xi) = g(xiW
x + si−1W

s + b)

yi = OSimpleRNN(si) = si

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 31

Figure 2.12: An illustration of the bidirectional RNN architecture applied on the sen-
tence ”the fox jumped .”. Note that the illustration shows a single BiRNN layer with
a separate RNN for both forward and backward directions of processing the input.
[Gol15]

where xi ∈ Rdin , si,yi ∈ Rdout , Wx ∈ Rdin×dout , Ws ∈ Rdout×dout , b ∈ Rdout and
g is a non-linear activation function – most commonly tanh or ReLU. One interest-
ing peculiarity to note is that while the state at time step i is computed as linear
combination of previous state and current input further trasnformbed by a non-linear
activation function, the output of this model is directly its state at time step i. This
output function is sometimes defined to be more complex (it may for instance utilize
further linear transformation and pass the result through another non-linearity), but
for clarity of representation we will not consider these further transformations to be
part of the RNN.

Despite its simplicity, SimpleRNN has been shown to provide very good perfor-
mance in Natural Language Processing tasks, specifically language modeling and se-
quence tagging.

2.3.3 LSTM

One problem the SimpleRNN defined above faces is the so called ”vanishing gradient”
problem. When training the network, the error signals (most commonly differences
between the predicted and true outputs, also referred to as gradients) decrease in mag-
nitude with the length of sequence through which the error signal needs to propagate
back. Given a sequence of sufficient length, the error signal may vanish completely,
hence the name ”vanishing gradient”.

The Long Short-Term Memory (LSTM) architecture has been introduced in [HS97]
to remedy this problem. Its basic idea is to augment the state of the network with a

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 32

sort of a ”memory cell”3 which is capable of preserving gradients over time. How much
gradients flow into this reservoir is controlled by a so called ”gates”, a term borrowed
from and very similar to gates in logical circuits.

st = RLSTM(st−1,xt) = [ct;ht]

ct = ct−1 � f + ĉ� i

ht = tanh(ct)� o

i = σ(xtW
xi + ht−1W

hi)

f = σ(xtW
xf + ht−1W

hf)

o = σ(xtW
xo + ht−1W

ho)

ĉ = tanh(xtW
xĉ + ht−1W

hĉ)

yt = OLSTM(st) = ht

where xt ∈ Rdin , st,yt ∈ [Rdout ;Rdout], Wx� ∈ Rdin×dout , Ws� ∈ Rdout×dout and
furthermore ct,ht, i, f ,o, ĉ ∈ Rdout . Note that the bias terms normally present in the
definition of the respective gates has been omitted for clarity. A visualization of this
model can be found in Figure 2.13.

Figure 2.13: An illustration of the LSTM architecture in forward direction. Note that
the red circles contain point-wise mathematical operations, yellow boxes contain non-
linearities associated with Neural Network layers and black pathways signify the flow
of information. [Ola15]

Let us attempt to describe the functionality of this model by first describing the
respective gates. Each of this gates make use of the sigmoid non-linearity, which allows
the model to learn parameters that affect how much should the current input affect
the current state and how much of the current state should actually be provided as

3Many authors in the literature use the term ”cell state”

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 33

the output at the current time step. The sigmoid non-linearity gives these gates a nice
representation: for each dimension of the considered state it provides a number from 0
to 1 which signifies how much of this dimension’s information should be discarded (0)
or preserved (1).

Candidate memory state ĉ Although the so called ”candidate memory state” ĉ is
not strictly a gate, we include it here as it is necessary for further discussions on the
function of the other gates.

As we can see in the definition above, the candidate state is computed from the
current input and previous state, after which the tanh non-linearity is applied.

Forget gate f The function of the forget gate is to control how much of the pre-
vious state should be ”forgotten” when computing the new memory state. A reverse
interpretation is also possible: the value of (1 − f) would determine how much of the
previous memory state should be retained. A visualization of this gate can be seen in
Figure 2.14.

Figure 2.14: A visualization of the forget gate. [Ola15]

Input gate i The input gate is responsible for the amount of information that the
current state receives from the previously computed candidate memory state, which is
in turn computed as a function of current input to the model. A visualization of this
gate can be seen in Figure 2.15.

Output gate o The output gate takes care of controlling what will the model’s
output at a given time step be, once again using current input and previous state as
its input.

Using these gates and other auxiliary computations, the two parts of an RNN, the
recursive function R and the output function O can be defined. Following the formalism

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 34

Figure 2.15: A visualization of the input gate. Note that the uppercase Ĉ in the picture
is functionally the same as ĉ we used in our descriptions. [Ola15]

introduced above, we will do so by discussing the function of memory state ct at time
t and hidden state ht at time t.

Memory state ct When computing a new memory state ct, the memory state of
previous time stamp ct−1 is multiplied by f , which has the effect of ”forgetting” parts
of the previous memory state that the model decided not to pay attention to at the
current time step. The result of ĉ � i is then added, which has the effect of only
including those parts of the candidate memory state in the new memory state which
were decided to be worth of including during the computation of the value of the input
gate i. A visualization of this process can be seen in Figure 2.16.

Figure 2.16: A visualization of the computation of the new memory state. Note that
the uppercase Ĉ in the picture is functionally the same as ĉ we used in our descrip-
tions. [Ola15]

Hidden state / output ht At this point the model makes a decision on what to
output (or what to put into its hidden state). This output is based on the new memory
state for the given time step t defined in the previous paragraph. The tanh non-linearity

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 35

is first applied, which pushes the values of the new memory state into the range [−1, 1].
The result is then multiplied by the value of the output gate o, which ensures that the
output only contains parts of the new memory state filtered by the tanh activation
function, which were decided to be of interest during computation of the output gate
o. A visualization of this process, along with the computation of the output gate o

can be seen in Figure 2.17.

Figure 2.17: A visualization of the computation of the new memory state. Note that
the uppercase Ĉ in the picture is functionally the same as ĉ we used in our descrip-
tions. [Ola15]

The LSTM model is currently generally considered to be the best performing RNN
architecture when it comes to applications of sequence modeling. This is especially in
the NLP context, where it is responsible for many of the state-of-the-art results. Given
its complexity, however, a set of alternative architectures have been proposed, the most
promising of which we describe in the following sections.

2.3.4 GRU

As we can see from the extensive discussion above, the LSTM model is quite complex.
This is not only problematic when it comes to analyzing its function but also practical
applications, since the LSTM architecture is quite computationally expensive.

To remedy these issues a new architecture called Gated Recurrent Unit (GRU) has
been proposed in [CVMG+14]. Compared to LSTM, this architecture also makes use
of gating mechanisms, while reducing the number of gates and the need for a separate
memory component. The full definition of the architecture can be found below:

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 36

st = RGRU(st−1,xt) = (1− z)� st−1 + z� ĥ

ĥ = tanh(xtW
xh + (ht−1 � r)Whh)

z = σ(xtW
xz + ht−1W

hz)

r = σ(xtW
xr + ht−1W

hr)

yt = OGRU(st) = st

where xt ∈ Rdin , Wx� ∈ Rdin×dout , Wh� ∈ Rdout×dout and furthermore z, r, st, ĥ ∈
Rdout . The crucial part of this architecture is the r gate which controls how much
of the previous state’s information gets incorporated into the proposed state update
vector h̃. The value of the current hidden state is then a combination of the previous
state and the proposed state update vector where the proportion of either of these is
determined by the value of (1− z) and z, respectively. We can note that while LSTM
used two gates to control the computation of a new state, the GRU architecture can
make do with just one gate z, replacing the other with z’s inverse. A visualization of
this architecture can be seen in Figure 2.18.

Figure 2.18: A visualization of the GRU architecture. . [Ola15]

Given the simpler nature of the GRU model, an obvious question to ask is whether
there is any price to be payed in terms of performance. While there are tasks when one
of these models is better than the other, it seems to be fair to say that their performance
is quite similar, with GRU performing a bit worse in general (see [GSK+17] for more
in-depth discussion on the topic). It is therefore of special interest when the size of the
model plays a bigger role than its final performance.

In [JZS15] the authors tested more than ten thousand RNN architectures with
the goal of finding one that would consistently outperform the LSTM architecture.
Although they were able to find architectures that worked better than the LSTM
architecture on some models, they failed to find one that would consistently beat the
LSTM and the GRU.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 37

Keeping this in mind, in the next section we describe Independent RNN, a new
architecture specifically designed in order to model long term dependencies, which are
often times found in natural language.

2.3.5 Independent RNN

The Independent RNN (IndRNN) architecture [LLC+18] has been recently introduced
as an alternative to other RNN alternatives as LSTM and GRU, which have issues
with long-term dependencies, and their complexity makes it difficult to interpret their
behaviour. The IndRNN can be described in a formalism we utilized so far as:

si = RIndRNN(si−1,xi) = g(xiW
x + si−1 � u + b)

yi = OIndRNN(si) = si

where xt ∈ Rdin , Wx ∈ Rdin×dout , si,u,b ∈ Rdout and � represents piece-wise mul-
tiplication. Although the definition of this architecture is very simple and surprisingly
similar to the SimpleRNN described above, the authors provide theoretical background
as to why does this formulation lead to robust training, while also pointing out how
can this model be effectively regulated, provided a suitable non-linearity g is used (the
authors suggest ReLU or tanh). Furthermore, the authors evaluate this architecture
on Natural Language Processing related tasks, such as Language Modeling, where this
model obtained the best results out of all of the considered RNN models.

2.4 Training of Neural Networks

Up until now we treated the described Neural Network architectures as if their param-
eters were already set. In this section we discuss how can these parameters be found
as well as other matters related to effective training of Neural Networks.

In essence, all of the training algorithms described below work by trying to minimize
a so called loss function over a specific dataset. They do so using a gradient-based
method in which they estimate the error over the dataset, compute the gradient with
respect to the error and move the parameters in the direction of the gradient. The
specifics of the respective algorithms are discussed in the following sections.

2.4.1 Loss Functions

The loss functions are an important part of Neural Network training regimes, as they
provide the numerical values which are then back-propagated truth the Neural Network
structure. In essence a loss function L(ŷ,y) returns a number which says how much

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 38

was the model wrong when it predicted ŷ when the ground truth output was y. In
our experiments we mostly use a specific example of the loss called the categorical
cross-entropy loss.

Categorical cross-entropy loss

The aim of the categorical cross-entropy loss is to measure the difference in similarity
between the distribution of ground truth y and predictions ŷ. It is particularly useful
when a probabilistic interpretation of the output of a network is desired. It is defined
as the cross entropy between the two distributions:

Lcross−entropy(y, ŷ) = −
∑
i

yi log(ŷi)

Note that this loss expects the outputs of the network to be transformed using the
softmax transformation described in Section 2.1.4 in order for it to have probabilistic
interpretation. This loss function can be used not only to train the network to produce
the one best output, but also to return the k best candidate outputs.

2.4.2 Variants of Gradient Descent

The Gradient Descent algorithm [LBOM98] can generally be found in three variants.
They differ in how much data is used for estimating the error – effectively trading
between accuracy of parameter updates and training speed.

Batch Gradient Descent

The Batch Gradient Descent, also known as Vanilla Gradient Descent, uses the full
dataset to compute the gradient of the cost function J with regards to the parameters
θ:

θ = θ − η · ∇θJ(θ)

where η denotes the learning rate, the size of the step we take in the direction of
the gradient.

The principal problem of this update method is the fact that going through the
whole dataset is required for the computation of the gradient. It can therefore be quite
slow, especially for large datasets. Furthermore, it may also not be feasible to use this
method when the size of the dataset is larger than the size of the available memory. On
the plus side, however, as the authors of [Rud16] note, it ”is guaranteed to converge to
the global minimum for convex error surfaces and to a local minimum for non-convex
surface”.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 39

Figure 2.19: A visualization of fluctuation during training using the SGD algo-
rithm. [Com17]

Stochastic Gradient Descent

Compared to Batch Gradient Descent the Stochastic Gradient Descent (SGD) does the
other extreme: it computes the gradient using just one training pair (x(i); y(i)):

θ = θ − η · ∇θJ(θ;x(i); y(i))

Such a formulation no longer suffers from memory issues when it comes to large
datasets and is usually much faster. Since the steps in the direction of the gradient are
taken very frequently (and sometimes redundantly), the training process can fluctuate
a lot in terms of the loss function at a given point in training, as shown in Figure 2.19.

Minibatch Gradient Descent

The Minibatch Gradient Descent combines both of the previously described algorithms
by computing the gradient using a mini-batch of n training pairs:

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n))

This has the benefit of reducing the variance of SGD and also allows for an efficient
implementation using highly optimized matrix optimizations that are available in many
Deep Learning frameworks.

When it comes to choosing the mini-batch size, common choices range from 50 to
256, but larger sizes can also be used.

Momentum

One of the biggest problems of the SGD algorithm is that in parts of the error surface
where it curves disproportionally more in mode dimension than any other the algorithm

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 40

tends to oscillate along these surfaces and only very slowly move towards the local
optimum.

One way of remedying that behaviour is the use of momentum [Qia99] – essentially
accumulating a small fraction of previous gradient along with the one computed for
the current time step:

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt

where the default value for the momentum term η is usually 0.9.
The function of this model can be compared to pushing a ball down a hill. Apart

from being pushed, it also gathers acceleration over time. However, such a ball would
have a hard time stopping in front of another hill on the other side of the valley.

Nesterov Accelerated Gradient

Nesterov Accelerated Gradient [Nes83] provides a way for the algorithm to be able to
anticipate any slopes it may run into along the way and thus be able to avoid them.

Using the momentum formulation above, we can see that at once we have the value
of vt, the parameters θ will be decreased by γvt−1. The term θ−γvt−1 then gives us an
approximation of what the derivative will look like after the current momentum update.
We can use this notion to take the gradient with regards to this ”approximation of the
future” which provides us with a sort of ”anticipatory capability”:

vt = γvt−1 + η∇θJ(θ − γvt−1)

θ = θ − vt

where the momentum term η is usually also set to the standard value of 0.9.

2.4.3 Adaptive Learning Rate Algorithms

A common problem with all of the training algorithms we mentioned up until now
is that they require the learning rate γ, a parameter which affects the training to a
great extend, to be set manually. Furthermore, this parameter is shared for all of the
considered parameters, regardless of their magnitude. These issues are addressed by a
class of algorithms that make use of an adaptive learning rate.

Adagrad

Adagrad [DHS11] tries to use a separate learning rate for each parameter. It does
so by keeping track of squares of gradients with regards to each specific parameter

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 41

during training. Let us denote Gt ∈ Rd×d, where the diagonal item i, i is the sum of
the aforementioned squares up until the t-th training step and gt,i = ∇θJ(θt,i). The
parameter update equation then becomes:

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

where ε is a very small number (for instance 10−8) that ensures that division by
zero issues are generally avoided. As the learning rate η no longer needs to be manually
optimized, it is usually set to a default value (such as 0.01) and not optimized further.

Adadelta

Despite being able to set specific weights per each considered parameter, the sum of
squares in the denominator of Adagrad turns out to be problematic, as this number
just increases with further training steps. With enough training steps this results in a
learning rate so small that no learning takes place.

Instead of keeping the sum of squares for the whole training sequence, Adadelta
[Zei12] only keeps track of a pre-defined number of training steps. Furthermore, it does
so by keeping the exponentially decaying average rather than a sum:

E[g2]t = γE[g2]t−1 + (1− γ)g2t

where γ would be once again set similarly as the momentum term to a number close
to 0.9. For clarity let us further rewrite the SGD update rule as:

∆θt = −η · gt,i
θt+1 = θt + ∆θt

The Adagrad update would the be:

∆θt = − η√
Gt + ε

� gt

Using the exponentially decaying average described above we get

∆θt = − η√
E[g2]t + ε

gt

Note that in the denominator the Root Mean Squared (RMS) error of the gradient
is actually computed. We can therefore instead write:

∆θt = − η

RMS[g]t
gt

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 42

The authors in [Zei12] note that the imaginary units of parameters and the result
of this parameter update rule differ4. To fix this, they define another exponentially
decaying average:

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2t

Its RMS can then be defined as

RMS[∆θ]t =
√
E[∆θ2]t + ε

At time step t, however, RMS[∆θ]t is not available yet, and thus it needs to be
approximated with RMS[∆θ]t−1. Using this term instead of the learning rate γ gives
us the Adadelta update equation:

∆θt = −RMS[∆θ]t−1

RMS[g]t
gt

θt+1 = θt + ∆θt

Adam

The Adaptive Moment Estimator (Adam) [KB14] also adaptively sets the learning rate
for each parameters. It also keeps the exponentially decaying average of past squared
gradients (denoted vt in this case). It also keeps the exponentially decaying average
of past gradients, which is very similar to what momentum does (this exponentially
decaying average will be fittingly denoted mt):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

As these decaying averages are initialized as zero-filled vectors, the authors note
that they are biased towards zero. In further computations they therefore use the
bias-corrected versions of these estimates:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

Using these values in the update rule similarly to the Adadelta’s one gives us the
Adam update rule:

4Note that the situation is the same in case of SGD, Momentum or Adagrad

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 43

θt+1 = θt −
η√
v̂t + ε

m̂t

The β1 and β2 parameters are generally set to the values proposed by the authors
in [KB14]: 0.9 and 0.999, respectively.

Despite the introduction of various training algorithms and the benefits of those
that make use of various regimes for adapting the learning rate, it is not always clear
which one to choose. As a default choice, the Adam algorithm is usually used, but it
may be worthwhile to try out other options, as many published works arrive at their
results using just the vanilla SGD.

2.4.4 Training RNNs

While the methods mentioned in this section are general and should work for any Neural
Network architecture, there are a few peculiarities worth discussing when dealing with
training of Recurrent Neural Networks. In this section we discuss two of those: the so
called Backpropagation Through Time and the concept of Teacher Forcing.

Backpropagation Through Time

Given their recursive definition, it may not be straightforward to see how can the RNNs
be trained using the procedures based on gradient descent which were described above.
By taking a closer look at Section 2.3.1 and especially at Figure 2.10, we can see that
once unrolled, they are just a very deep instance of a Neural Network, onto which the
gradient back-propagation algorithms described above can be applied.

Hence in order to train an RNN the following steps need to be followed:

1. Unroll the RNN in question along the provided input sequence.

2. Compute the loss from the point when error signal is available.

3. Back-propagate the error signal through the unrolled network.

In the literature this procedure is called back-propagation through time [Wer90].

Teacher Forcing

One of the core features of RNNs is the fact that they can process sequences, without
placing constraints on their origin or structure, provided the network can consume
them in an appropriate way. Let us consider Language Modeling for example, where
the task is to predict the next symbol (word) provided a sequence of previous symbols
(usually the sequence of past words of a given length). Suppose further that we would

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 44

like to train this model to finish a sentence, provided it receives a few words from its
beginning.

A simple architecture of a model dealing with this problem may be one in which a
specific number of words (context) is passed to the network and it is trained to predict
the next word. During train time, this process is obvious, as the ground truth contexts
are available from the training data. When we consider the test time, however, the
situation is a bit more problematic, as the true context is not directly available. A
common way of approximating the true context is to use the previous output of the
network. Put differently, at train time the network learns to make decisions from input
that is guaranteed to be ”correct” (since it comes from the training set), while at test
time it makes decisions based on its own output in the past. This concept is called
teacher forcing (inspired by a real-world metaphor) and is visually illustrated in Figure
2.20.

Figure 2.20: A visualization of the concept of teacher forcing. During train time (left)
the ground truth y(t−1) is provided to the network as an input, whereas at test time
(right), it receives its own past output o(t−1) as input. [GBCB16]

This approach is still quite problematic in practice, as during test time an error at a
single time step may affect all future predictions. As a results the authors of [BVJS15]
propose a scheduled sampling approach, in which the teacher forcing style of training
alternates with training that is similar to what happens during test time (the network
is tasked to learn to make good predictions even when its own previous outputs are
provided as input) according to a decay schedule.

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 45

2.4.5 Other considerations

When it comes to Neural Network training, there are a few concepts that are neces-
sary for it to be successful or actually viable. The following sections provide a short
descriptions of some of these concepts.

Initialization

As the authors of [Gol15] note, ”the magnitude of the random values has an important
effect on the success of training.” A popular scheme for initialization was introduced
in [GB10]. It is known as Xavier initialization after the first name of the first author
of that work. It proposes to initialize the weight matrix W ∈ Rdin×dout in the following
way:

W ∼ U [−
√

6√
din + dout

,

√
6√

din + dout
]

where U [a, b] denotes a randomly sampled value from the uniform distribution in
the range [a, b].

Shuffling

Given the nature of the discussed training algorithms, the order in which the network
receive its training examples has a potential to hamper its overall performance (by for
instance only focusing on important features from the first parts of the training set and
discarding all the others). It is therefore advised to shuffle the data before providing
it to the trained model.

Vanishing and Exploding Gradient

When dealing with deep networks during training, it is not uncommon for their gradient
to either vanish (become very small) or explode (become very large). The issue of
vanishing gradient has motivated the introduction of new models specifically designed
to counter this problem by assisting the gradient flow, such as the LSTM or GRU
models described in Section 2.3.3 and Section 2.3.4.

For dealing with exploding gradient a simple solution has been proposed in [PMB12]:
if the L2 norm of the gradients of all parameters in the network ĝ becomes higher than
a threshold, the following update is to be performed:

ĝ =
threshold

||ĝ||

CHAPTER 2. DEEP NEURAL NETWORKS FOR NLP 46

Regularization

Since deep neural networks have a lot of parameters, they are prone to overfitting the
training data. A simple but very effective and popular method called dropout proposed
in [SHK+14] provides a way of regularizing the network by randomly setting a propor-
tion of neurons in the network (or a specific layer) to 0. This has the effect of forcing
the network not to rely on specific weights and can also be interpreted as modeling
an ”ensemble of experts” inside a single network. This technique is often described
as one of the key factors in Deep Neural Network improvements on massive image
datasets [KSH12], especially when combined with the ReLU non-linearity [DSH13]. It
has, however, been used with great success in Natural Language Processing settings as
well, such as for instance in [IC14].

Chapter 3

Deep Neural Networks for Diacritics
Restoration

3.1 Existing Deep Neural Network Architectures for

Diacritics Restoration

The historically first work that utilized a Deep Neural Network for Diacritics Restora-
tion [RASRR14], which made use of Deep Belief Networks [Hin09], a predecessor of
deep architectures that are popular today. In this work the author’s approach included
processing a context of words as an input, while having separate modules for extract-
ing features form this input (such as for instance part-of-speech tags) which were then
merged together for the final prediction.

A different approach can be found in [BG15], where the author considers character-
level features and uses a Deep Neural Network architecture composed of embedding
layer, a set of bidirectional LSTM layers, followed by a softmax layer to produce the
final classification output. A visualization of this architecture can be seen in Figure
3.1.

A similar approach can also be found in [Náp17], where the author used both
character-based and word-based, as well as translation models for the task of diacritics
restoration. The character-based models presented in this work differ from the pre-
viously mentioned work mostly by modeling the task as a sequence labeling problem,
in which a model maps a sequence of input symbols to the same number of output
symbols.

In our work we decided to focus on character-based models for this task, which
are attractive mostly thanks to their simplicity and size. Furthermore, we consider
the task to be a sequence classification problem, in which the model produces a single
output (in our case a character) for a provided input sequence.

47

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 48

Figure 3.1: An illustration of the topology of the network used in [BG15]

3.2 Our Proposed Model

Our proposed model can be viewed as an encoder-decoder architecture, which is jointly
trained to predict the correct character, whose latinized version is included in the center
of the input sequence, with the other symbols in the sequence serving as its context.
The Encoder and Decoder parts of this model are described in greater detail in the
following sections.

3.2.1 Encoder architecture

The encoder part of the model first receives the input sequence as a sequence of num-
bers (IDs) which represent the respective input characters. These IDs are then passed
through an embedding layer described in Section 2.2.3 that produces a specific embed-
ding for each given ID. These embeddings are then processed by an RNN (as introduce
in Section 2.3.1), which produce an output for every input of the input sequence. These
outputs provide an encoded representation of the model’s input, which is then decoded
by the next part of the model.

3.2.2 Decoder architecture

The decoder architecture receives the encoding of created in the previous part of the
model and is tasked with generating a prediction off it. The principal task of the
decoder therefore is to transform the output in such way that the scores for each of
the considered output class can be computed and then transformed using the softmax

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 49

output transformation described in Section 2.1.4. In general, this is done by combin-
ing the encoded input sequence into an intermediary representation, onto which the
tanh non-linearity is then applied and the output is further transformed by a feed-
forward layer, which outputs class scores, that are transformed by the softmax output
transformation.

As the intermediary representation can be created in multiple ways, we describe
each one in greater detail in the following paragraphs.

Figure 3.2: An illustration of the attention mechanism [BCB14].

”Center only” This representation takes the whole encoded input Ei ∈ Rn×denc

where denc is the dimensionality of the output of the encoder’s RNN and outputs just
the encoding that represents the central symbol of the encoded input, that is the
encoding that belongs to the symbol at the bn

2
c+ 1 place in the input.

”Flatten” This representation takes the whole encoded input Ei ∈ Rn×denc and out-
puts a single ”flattened” vector e ∈ Rn·denc .

”Attention” The attention mechanism also receives the whole encoded input Ei ∈
Rn×denc . It then first extracts the central part of the encoded input as described in
the paragraph above. Using this paragraph a so called attention is computed over
the encoded input. This is done by using the central part of the encoded input as an

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 50

input to a small feed-forward neural network, which outputs a probability for each of
the n dimensions of the encoded input. Given this ”weight matrix”, the encoded input
Ei ∈ Rn×denc is summed into a single vector c ∈ Rdenc . The small network that provides
scores for each of the encoded input symbol representations is then jointly trained with
other parts of the model.

This concept is called ”attention” and was introduced in [BCB14] and was respon-
sible for great advances in the filed of Neural Machine Translation. A visualization of
this concept can be seen in Figure 3.2.

3.2.3 Implementation

The proposed model described in the previous section has been implemented using the
PyTorch [PGCC17] framework in the Python programming language [S+99]. Most of
the previously discussed and described components, such as the loss function, the Adam
optimizer, the fully connected layer and the SimpleRNN, LSTM and GRUmodules were
implemented using the stock implementation provided by the PyTorch framework.
A notable difference is the IndRNN architecture, which has been adopted from the
implementation located at https://github.com/StefOe/indrnn-pytorch to which
we added the bidirectional option, which this implementation did not provide.

In order to keep track of various experiments the sacred framework1 has been
used. Among other things, it provides an easy way for specifying hyper parameters
of the model from the command line. For visualization during training we used the
TensorBoard project, which curiously enough comes from a ”competing” framework
called TensorFlow [ABC+16], but can also be used without it thanks to a project called
tensorboardX2. For evaluation of the considered models we used helper functions from
the scikit-learn library [PVG+11] and for confusion matrix visualization we used the
pandas-ml library3. The implementation is available online at https://github.com/
mrshu/diaqres.

3.3 Evaluation

3.3.1 Datasets

To evaluate our proposed approach we used two datasets comprised of Slovak texts: a
Wikipedia dataset which was primarily used in training, and the Digital Corpus of the
European Parliament, which was mostly used for testing the generalization capability
of the models we trained.

1https://github.com/IDSIA/sacred
2https://github.com/lanpa/tensorboard-pytorch
3https://github.com/pandas-ml/pandas-ml

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 51

Wikipedia dataset

The Wikipedia dataset was obtained by from the Wikipedia dump service on the 20th
of January, 20184. The Wikipedia dump, however, does not include only Natural
Language, but also other information in Wikipedia Markup Language. In order for a
dataset like this to be useful in a Natural Language Processing setting, this markup
needs to be stripped.

This was done using a tool called wiki2text5. Furthermore, the text was lower-
cased, and all non-alphanumeric characters were removed. In the end this yields a
dataset of 35 613 022 words, out of which 1 194 781 are unique.

DCEP: Digital Corpus of the European Parliament

The second dataset we used was the Slovak part of the Digital Corpus of the Euro-
pean Parliament [HKV+14]. This dataset consists of texts produced at the European
Parliament which are mostly of administrative nature. The Slovak part of this dataset
consists of 21 841 documents, 4 281 697 sentences, 42 536 235 words and 713 273 unique
words. While this dataset is most often used for Machine Translation tasks, its Slovak
part provides an interesting dataset for the task of diacritics restoration as well.

When using this dataset for testing, it has been transformed using a similar cleaning
procedure as was described in the case of the Wikipedia dataset. For the purpose of
model training these datasets were split in 70:30 ratio between the training and the
test sets.

3.3.2 Preprocessing, Training and Testing Regimes

Preprocessing

While the input data has been cleaned to a great extend, the input text can still contain
characters that are not part of the Slovak alphabet. The preprocessing step therefore
replaces these characters with a special new character denoted <unk>.

Furthermore, the preprocessing step is responsible for reading in the text and cre-
ating training pairs for input windows of size n. Depending on whether teacher forcing
is to be applied or not, the input part of the pair is stripped of diacritics mark, whereas
the character (with diacritics) in the center of the window is assigned as the output
part of the training pair. It therefore follows that n needs to be an odd integer.

4https://dumps.wikimedia.org/skwiki/20180201/
5Which can be obtained from https://github.com/rspeer/wiki2text

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 52

Training

During one training step a mini-batch of size m is passed through the network. A
categorical cross-entropy loss (described in Section 2.4.1) is applied to predicted and
true outputs, and this loss is then optimized using the Adam optimizer (introduced in
Section 2.4.3). By default, the models were set up to be trained for three epochs (three
passes through the input data), but their training was also stopped early, when their
loss no longer seemed to improve. The learning rate was set to 0.002, while the weight
decay (which can be interpreted as the L2 penalty) has been set to 1.2× 10−6. At each
training step the weights were clipped (as described in Section 2.4.5) at 5.0.

We used mini-batches of size m ∈ {100, 128, 200, 500, 800, 1000, 1200, 2000, 8000},
mostly to balance out the size of the network with the throughout speed. As the
extremely large mini-batch size was only tested in case of a very small model and not
in the other cases6, we were unable to confirm the conclusions of [KMN+16], where the
authors conclude that large mini-batches lead to poor convergence.

All of the models were trained on an NVIDIA GeForce GTX 1080 GPU. The train-
ing time stemmed from a few hours to more than a week.

Testing

During testing, the same preprocessing procedure has been applied to the test data. A
mini-batch of m input windows of size n was then provided to the network as an input.
For each predicted distribution over all possible output characters the most probable
prediction was taken as the predicted output.

In case of a model for which the teacher forcing type of training has been considered,
for the first bn

2
c training steps we proceed in the same way as described above. In the

following steps the first bn
2
c inputs in the input window are replaced with already

predicted values from the model.

3.3.3 Evaluation Metrics

For evaluation, we used the F1 metric described in Section 1.1.2. It is defined as:

F1 = 2 ∗ precision ∗ recall
precision+ recall

where precision and recall are defined as

precision =
tp

tp+ fp

recall =
tp

tp+ fn

6The size of the model would prevent that, as it would not fit into the GPU memory.

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 53

Since we operate on character level, tp in for each character means that the predicted
character was indeed the correct one, fp means that this character was predicted, even
though a different character was the correct one and fn means that this character
was not predicted, even though it was the correct one according to our gold truth.
This metrics were computed for each considered output class (output character). To
compute a score for a given model the metric scores for each class were averaged, while
each class was weighted by its support (the number of true instances for a given class).

3.3.4 Results

In this section we present the results of our evaluation. In Table 3.1 we can see the
respective hyper parameters of our model, along with their possible values. Since
testing every single combination would require us to try 5760 combinations (which
would be computationally intractable in our conditions), we decided to test the effect
of each of the hyper parameters by changing just one of them while keeping the others
fixed. This approach is to some extend warranted by [GSK+17], where the authors
conclude that the hyper parameters of LSTM-based models seem to be independent of
one another.

hyperparameter type values
RNN type categorical RNN, LSTM, GRU, IndRNN
Use bidirectional model boolean True, False
RNN hidden layer dimension integer 50, 100, 200, 500
Number of RNN layers integer 1, 2, 3, 4, 6
Input embedding dimension integer 50, 100, 200
Input length integer 11, 21, 51, 101
Decoder type choice ”central only”, ”flatten”, ”attention”

Table 3.1: A listing of our model’s hyper parameters and their possible values.

Encoder Type

encoder type precision recall F1 score
RNN 0.859 0.917 0.885
LSTM 0.856 0.919 0.884
GRU 0.861 0.918 0.886
IndRNN 0.944 0.947 0.941

Table 3.2: A listing of results of evaluation of encoder types.

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 54

As we can see in Table 3.2, the newly proposed IndRNN architecture performed the
best compared to all of the other architectures, whose results are interestingly close to
one another. We hypothesize that this may be due to the other parameters being set
to values that were not favorable to the other architectures (namely input length was
set to 51 characters, the networks used two layers, 200 neurons in their hidden layer
and input embedding of 100 neurons).

Decoder Type

decoder type precision recall F1 score
”central only” 0.942 0.945 0.938
”flatten” 0.976 0.976 0.976
”attention” 0.978 0.977 0.977

Table 3.3: A listing of results of evaluation of decoder types.

As the Table 3.3 shows, the ”attention” and ”flatten” types of decoder produced
quite comparable results, with ”attention” being slightly better.

Input Length

input length precision recall F1 score
11 0.963 0.963 0.958
21 0.964 0.964 0.960
51 0.965 0.964 0.961
101 0.963 0.963 0.959

Table 3.4: A listing of results of evaluation of input length.

The evaluation of input length, the result of which you can see in Table 3.4, shows
that the differences between the respective input lengths are generally minimal. Fur-
thermore, it seems to show that increasing the input length does help, but impact of
this factor plateaus once the input is longer than 51 characters.

Use of Bidirectional Model

The general attitude towards the use of bi-directional models seems to be that they
generally help improve performance of models that make use of them. As we can see
in Table 3.5, we can confirm that in our case as well, noting that in our test the use of
bi-directional approach in our model substantially helped to improve its performance.

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 55

direction precision recall F1 score
single-directional model 0.942 0.945 0.938
bi-directional model 0.972 0.971 0.971

Table 3.5: A listing of results of evaluation of single-directional versus bi-directional
model.

hyperparameter type value
RNN type categorical IndRNN
Use bidirectional model boolean True
RNN hidden layer dimension integer 500
Number of RNN layers integer 2
Input embedding dimension integer 200
Input length integer 51
Decoder type choice ”attention”

Table 3.6: A listing of hyper parameters of our final model.

Final Model

We also evaluated other hyper parameters which are not discussed in further detail
here. In general, however, we can note that adding further layers helped, although
in the case of three and more layers the improvements were either negligible or the
model’s performance decreased. Increasing the model’s hidden layer and embedding
dimensions seems to help: in our tests the maximum values of 500 and 200 produced
the best results. In the end, we arrived at a set of hyper parameters that can be seen
in Table 3.6.

model dataset precision recall F1 score
baseline Wikipedia 0.853 0.917 0.881
baseline DCEP 0.851 0.917 0.881
our best model Wikipedia 0.987 0.989 0.988
our best model DCEP 0.985 0.986 0.986

Table 3.7: A listing of results of evaluation of our best model as compared to the
baseline.

As we can see in Table 3.7, our model not only managed to produce performance
which was significantly better than the baseline (a model that just copies its input to
the output), but also managed to generalize well across various datasets, as suggested
by the comparison on the Wikipedia and DCEP datasets. Let us stress out once again
that the model did not see the data from the DCEP dataset during training at all.

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 56

3.3.5 Analysis

In order to better understand how does the model work and why does it fail to produce
the correct prediction, we analyzed the cases in which it produced the wrong prediction
compared to the test set. We did so by taking a closer look at the input to the model
and also its predicted distribution over the possible output characters.

Our first observation is that in all considered cases the model correctly learned
which latinized characters map to which character with a diacritic mark. In other
words, when considering the ground truth could always be found in the top 37 most
probable predictions. While this is not an impressive feat in and of itself (as a simple
lookup table or an n-gram model might be easily able to do so as well), it suggests
that the model did try to solve the task of diacritics restoration.

input chych kosti lebky pozri s ev anatomia zidia v s

predicted distribution s: 0.89946985, š: 0.10027383, j: 0.00010318483
true output š

Table 3.8: First example of an error made by the model. The character that is to be
predicted is emphasized in a small black box in the first row. The top 3 most probable
choices from the output distribution are described in the second row.

Let us discuss some of the mistakes the model did at test time. Table 3.8 describes
a situation in which the model mistakenly predicted s in the word sev (without specific
meaning) whereas the correct prediction should have been š and the word would become
šev (suture). One may argue that this case is quite ambiguous, as even a native speaker
may wonder whether letters sev represent some sort of an abbreviation or šev (suture).

input metropolitnej oblasti gu s dan v izraeli v relativ

predicted distribution s: 0.8891944, š: 0.110016435, o: 0.00023678609
true output š

Table 3.9: Second example of an error made by the model. The character that is to be
predicted is emphasized in a small black box in the first row. The top 3 most probable
choices from the output distribution are described in the second row.

In the example in Table 3.9 the situation is even more complicated, as the model
is tasked with predicting whether the correct name of a metropolitan area in Israel is
gus dan or guš dan. It seems that an ambiguity of this type would be very difficult to

7Note that the choice of top 3 stems from the fact that in Slovak the characters a and o can
be mapped to two diacritized characters (that is á, ä and ó, ô, respectively) as we can also note in
Figure 1.1. Since the model needs to consider the two diacritized options and the possibility that the
character does not need to be diacritized, the top 3 most probable predictions need to be considered.

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 57

handle, even for a native speaker, as it requires knowledge of the name of a geographical
location.

input iniciativ sucasnej etiky c nosti konkretne jej aris

predicted distribution č: 0.6697172, c: 0.33018324, ŕ: 1.5026837e-05
true output c

Table 3.10: Third example of an error made by the model. The character that is to be
predicted is emphasized in a small black box in the first row. The top 3 most probable
choices from the output distribution are described in the second row.

The situation described in Table 3.10 shows a very intricate situation in which
the model is tasked with deciding whether to use cnosť or čnosť. Both of these
words mean virtue in Slovak and can be used interchangeably. We believe that we can
conclude that disambiguating this situation is difficult even for native speakers, as we
were able to find an instance of a question for the Ľ. Štúr Institute of Linguistics of
Slovak Academy of Sciences, in which a (presumably) native speaker asked which of
these two possible choices would be more fitting in the context of a bachelor thesis8.

In the interest of fairness, however, let us stress out that these examples were cherry-
picked, in order to better illustrate the difficulty these models run into when trying to
restore diacritics. They do not represent the majority of cases, in which the prediction
of the model was simply wrong without being ambiguous to the extend described in
the presented examples.

8https://jazykovaporadna.sme.sk/q/291/

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 58

Visualization of Learned Embeddings Given the interpretable nature of word
embeddings [TFD16], we visualized the weights using the t-SNE visualization technique
[MH08]. The result can be seen in Figure 3.3.

Figure 3.3: A visualization of the embedding layer learned as part of training the
Diacritics Restoration model.

While the vowels a, e, i, y and u were found to be close to one another, the vowel
o is notably missing. We also failed to find other examples of this phenomena (such as
for instance numbers).

Conclusions

In this work we provided an introduction to the field of Diacritics Restoration through
a discussion on published approaches that strive to deal with this problem. We further
provided an extensive introduction to the generally used architectural parts of Neural
Networks, with a special focus on Natural Language Processing. Finally, having an-
alyzed previously used Neural Network architectures that were used for this task we
introduced a new architecture and evaluated it on two datasets: the Slovak Wikipedia
dataset and the Digital Corpus of the European Parliament.

Our best model obtained an F1 score of 0.988 on the Slovak Wikipedia dataset, an
88% improvement over the baseline. Furthermore, the same model has been tested on
the Digital Corpus of the European Parliament, where it obtained a similar F1 score of
0.986, suggesting at it capability to generalize well across different text data domains.
As part of this work we also performed a comparison of various hyper parameters and
their effect at the performance of the model, as well as an analysis of the errors the
model made, thus providing better insight with regards to its performance and viability.

One of the most principled critiques of this work can be made on the basis of the
used encoder architecture. While various types of RNNs are certainly not a wrong
choice in a case like ours, there are other architectures to choose from, most notably
Convolutional Neural Networks (CNN). As the authors of a recent comparison study
note in [BKK18]: ”the preeminence enjoyed by recurrent networks in sequence modeling
may be largely a vestige of history”. It may therefore be worth further investigating
these architectures, as well as the self-attention based Transformer architecture from
an aptly named paper ”Attention is all you need” [VSP+17], which recently achieved
interesting results when applied in a diacritics restoration setting on world-level features
for texts in Yoruba language [Ori18]. In general, especially given recent successes in
Neural Machine Translation, it seems that it may be also worth investigating how
much does rephrasing the task of diacritics restoration from a sequence labeling one to
a machine translation one, in which the task would be to translate from distorted non-
diacritized text into grammatically correct one. Preliminary results featured in [Náp17]
and [PPLH17] seems to suggest that such a rephrasing may indeed be beneficial.

Furthermore, although we have investigated the effect of various hyper parameters
on the performance of our proposed models, utilizing the assumption from [GSK+17],

59

CHAPTER 3. DNNS FOR DIACRITICS RESTORATION 60

whose authors found that the LSTM hyper parameters were for the most part indepen-
dent from each other, this assumption may no longer hold in case of newly proposed
models or more convoluted architectures we utilized. Although as we noted a grid
search over the space of all hyper parameters may be computationally intractable in
our setup, the notion of ’shooting blind’ with the actual values of hyper parameters
may be remedied to a great extend by randomly sampling from the space of hyper
parameters, which would also give us a better notion of how their interaction affects
the final performance. On a related note, given recent progress on the effect of batch
size during training of Neural Networks (such as for instance [LLQL17] and [SKL17]),
it may be worth treating the batch size as a hyper parameter and including it in the
optimization process so that it is set in a principled way.

From the linguistics perspective, our approach at feeding the data into the model
seems to be questionable at best. Since we just sequentially split the data into input
windows, it can easily happen that the input sequence starts in the middle of the word
or just at its final character. It would be prudent to see whether ”better formed” input
may have any effect on the final performance.

Finally, although the goal of this thesis was the evaluate the proposed model on Slo-
vak texts, we only did that on Slovak texts that are of questionable quality (Wikipedia
dataset for instance contains a fair amount of text in other languages) or on Slovak
texts that come from a very specific domain (Digital Corpus of the European Parlia-
ment contains mostly texts of administrative nature, which in turn contains only a
subset of natural language Slovak native speakers use in ordinary communication). It
would therefore be of interest to test this model on Slovak texts that would be of better
(grammatical) quality and would also better represent natural language in general use.
Moreover, given the fact that the model was proposed with generality in mind and
during its design no hard choices in terms of biasing it towards Slovak language were
made, it would be interesting to evaluate it on texts written in other languages: all
that would need to change would be definition of the considered alphabet. We suggest
that these ideas be explored as part of future work.

Bibliography

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine learn-
ing. In OSDI, volume 16, pages 265–283, 2016.

[AFNR12] Jordi Atserias, María Fuentes Fort, Rogelio Nazar, and Irene Renau.
Spell checking in spanish: The case of diacritic accents. In LREC, pages
737–742, 2012.

[AGAS+15] Gheith A. Abandah, Alex Graves, Balkees Al-Shagoor, Alaa Arabiyat,
Fuad T. Jamour, and Majid A. Al-Taee. Automatic diacritization of
arabic text using recurrent neural networks. International Journal on
Document Analysis and Recognition (IJDAR), 18:183–197, 2015.

[AH16] Judit Acs and József Halmi. Hunaccent: Small footprint diacritic restora-
tion for social media. In Normalisation and Analysis of Social Media
Texts (NormSoMe) Workshop Programme, page 1, 2016.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Foundations and
trends R© in Machine Learning, 2(1):1–127, 2009.

[BG15] Yonatan Belinkov and James Glass. Arabic diacritization with recurrent
neural networks. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 2281–2285, 2015.

[BHM+16] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and
Catalin Ionescu. Using fast weights to attend to the recent past. In
Advances In Neural Information Processing Systems, pages 4331–4339,
2016.

61

BIBLIOGRAPHY 62

[BHR14] Nicolas Brunel, Vincent Hakim, and Magnus JE Richardson. Single neu-
ron dynamics and computation. Current opinion in neurobiology, 25:149–
155, 2014.

[BKK18] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling.
arXiv preprint arXiv:1803.01271, 2018.

[BM12] Herve A Bourlard and Nelson Morgan. Connectionist speech recognition:
a hybrid approach, volume 247. Springer Science & Business Media, 2012.

[BVJS15] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-
uled sampling for sequence prediction with recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 1171–1179,
2015.

[CK11] John Cocks and Te Taka Keegan. A word-based approach for diacritic
restoration in māori. In Australasian Language Technology Association
Workshop 2011, page 126, 2011.

[CM14] Danqi Chen and Christopher Manning. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 740–
750, 2014.

[Com17] Wikimedia Commons. File:stogra.png — wikimedia commons, the free
media repository, 2017. [Online; accessed 2-May-2018].

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[DPWDS07] Guy De Pauw, Peter WWagacha, and Gilles-Maurice De Schryver. Auto-
matic diacritic restoration for resource-scarce languages. In International
Conference on Text, Speech and Dialogue, pages 170–179. Springer, 2007.

[DSH13] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep
neural networks for lvcsr using rectified linear units and dropout. In

BIBLIOGRAPHY 63

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 8609–8613. IEEE, 2013.

[Elm90] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–
211, 1990.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and statistics, pages 249–
256, 2010.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[Gol15] Yoav Goldberg. A primer on neural network models for natural language
processing. arXiv preprint arXiv:1510.00726, 2015.

[GSK+17] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions
on neural networks and learning systems, 28(10):2222–2232, 2017.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups.
Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

[Hif12] Yasser Hifny. Smoothing techniques for arabic diacritics restoration. In
12th Conference on Language Engineering, pages 6–12, 2012.

[Hin09] Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

[HKV+14] Najeh Hajlaoui, David Kolovratnik, Jaakko Väyrynen, Ralf Steinberger,
and Daniel Varga. Dcep-digital corpus of the european parliament. In
LREC, pages 3164–3171, 2014.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554,
2006.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

BIBLIOGRAPHY 64

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[IC14] Ozan Irsoy and Claire Cardie. Deep recursive neural networks for com-
positionality in language. In Advances in neural information processing
systems, pages 2096–2104, 2014.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 2016-05-16].

[JZS15] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical
exploration of recurrent network architectures. In International Confer-
ence on Machine Learning, pages 2342–2350, 2015.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KDDV17] Jurgita Kapočiūtė-Dzikienė, Andrius Davidsonas, and Aušra Vidugirienė.
Character-based machine learning vs. language modeling for diacritics
restoration. Information Technology And Control, 46(4):508–520, 2017.

[KMN+16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[LBOM98] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–50.
Springer, 1998.

[LEF16] Nikola Ljubešic, Tomaz Erjavec, and Darja Fišer. Corpus-based diacritic
restoration for south slavic languages. In Proceedings of the Tenth In-
ternational Conference on Language Resources and Evaluation (LREC
2016). European Language Resources Association (ELRA)(may 2016),
2016.

[LH05] Michael London and Michael Häusser. Dendritic computation. Annu.
Rev. Neurosci., 28:503–532, 2005.

BIBLIOGRAPHY 65

[LKJ15] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Cs231n: Convolutional
neural networks for visual recognition. University Lecture, 2015.

[LLC+18] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Indepen-
dently recurrent neural network (indrnn): Building a longer and deeper
rnn. arXiv preprint arXiv:1803.04831, 2018.

[LLQL17] Chris Junchi Li, Lei Li, Junyang Qian, and Jian-Guo Liu. Batch size
matters: A diffusion approximation framework on nonconvex stochastic
gradient descent. arXiv preprint arXiv:1705.07562, 2017.

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

[MKB+10] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and San-
jeev Khudanpur. Recurrent neural network based language model. In
Eleventh Annual Conference of the International Speech Communication
Association, 2010.

[MN02] Rada Mihalcea and Vivi Nastase. Letter level learning for language in-
dependent diacritics restoration. In proceedings of the 6th conference on
Natural language learning-Volume 20, pages 1–7. Association for Com-
putational Linguistics, 2002.

[Náp17] Jakub Náplava. Natural language correction. 2017.

[Nes83] Yurii Nesterov. A method for unconstrained convex minimization prob-
lem with the rate of convergence o (1/kˆ 2). In Doklady AN USSR,
volume 269, pages 543–547, 1983.

[Ola15] Christopher Olah. Understanding lstm networks, 2015. URL
https://colah. github. io/posts/2015-08-Understanding-LSTMs, 2015.

[Ori18] Iroro Orife. Attentive sequence-to-sequence learning for diacritic restora-
tion of yor\ub\’a language text. arXiv preprint arXiv:1804.00832, 2018.

[PGC15] Wenzhe Pei, Tao Ge, and Baobao Chang. An effective neural network
model for graph-based dependency parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 313–322, 2015.

[PGCC17] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Py-
torch: Tensors and dynamic neural networks in python with strong gpu
acceleration, 2017.

BIBLIOGRAPHY 66

[PMB12] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding
the exploding gradient problem. CoRR, abs/1211.5063, 2012.

[PPLH17] Thai-Hoang Pham, Xuan-Khoai Pham, and Phuong Le-Hong. On the use
of machine translation-based approaches for vietnamese diacritic restora-
tion. arXiv preprint arXiv:1709.07104, 2017.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825–
2830, 2011.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algo-
rithms. Neural networks, 12(1):145–151, 1999.

[RASRR14] Mohsen AA Rashwan, Ahmad A Al Sallab, Hazem M Raafat, and Ahmed
Rafea. Automatic arabic diacritics restoration based on deep nets. ANLP
2014, page 65, 2014.

[RHW88] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1,
1988.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

[S+99] Michel F Sanner et al. Python: a programming language for software
integration and development. J Mol Graph Model, 17(1):57–61, 1999.

[SD01] Michel Simard and Alexandre Deslauriers. Real-time automatic insertion
of accents in french text. Natural Language Engineering, 7(02):143–165,
2001.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[SKL17] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t
decay the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017.

BIBLIOGRAPHY 67

[TFD16] Yulia Tsvetkov, Manaal Faruqui, and Chris Dyer. Correlation-based
intrinsic evaluation of word vector representations. arXiv preprint
arXiv:1606.06710, 2016.

[The16] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[TP89] David S Touretzky and Dean A Pomerleau. What’s hidden in the hidden
layers. Byte, 14(8):227–233, 1989.

[üAE14] K übra Adalı and Gülsen Eryigit. Vowel and diacritic restoration for
social media texts. In Proceedings of the 5th Workshop on Language
Analysis for Social Media (LASM)@ EACL, pages 53–61, 2014.

[UBP+08] Cătălin Ungurean, Dragoş Burileanu, Vladimir Popescu, Cristian Ne-
grescu, and Aurelian Dervis. Automatic diacritic restoration for a tts-
based e-mail reader application. UPB Scientific Bulletin, Series C,
70(4):3–12, 2008.

[VDWCV11] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy
array: a structure for efficient numerical computation. Computing in
Science & Engineering, 13(2):22–30, 2011.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 6000–6010, 2017.

[Wer90] Paul J Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[Yar99] David Yarowsky. A comparison of corpus-based techniques for restoring
accents in spanish and french text. In Natural language processing using
very large corpora, pages 99–120. Springer, 1999.

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

