
COMENIUS UNIVERSITY

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OF APPLIED INFORMATICS

BRATISLAVA, SLOVAKIA

Transformational Semantics
and Implementation

of Evolving Logic Programs

Master’s Thesis

Martin Slota
author

João Alexandre Leite, MSc., PhD.
doc. PhDr. Ján Šefránek, PhD.

advisors

BRATISLAVA MAY 2007

Transformational Semantics
and Implementation

of Evolving Logic Programs

Master’s Thesis

Martin Slota

COMENIUS UNIVERSITY

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OF APPLIED INFORMATICS

BRATISLAVA, SLOVAKIA

Study Programme: 2508800 Informatics

João Alexandre Leite, MSc., PhD.
doc. PhDr. Ján Šefránek, PhD.

BRATISLAVA, MAY 2007

Declaration

I hereby declare that this thesis is my own work, only with the help of

the referenced literature and under the careful supervision of my thesis

advisors.

Bratislava, May 2007 Martin Slota

Copyright c© 2006 – 2007 Martin Slota.

Permission is granted to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no Invariant Sections, no Front-

Cover Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled “GNU Free Documentation License”.

4

Acknowledgements

A very big thanks goes to my advisors João Alexandre Leite and Ján Še-

fránek for their supervision and priceless help with this work.

I would also like to thank my parents and my brother for their gentle

guidance, patience and support ever since I was born.

Last but not least, my thanks goes to Martin Baláž, Peter Klimo, Michal

Malý and Jozef Šiška for their questions and ideas.

5

Abstract

Over the years, logic programming has proved to be a good and natu-

ral tool for expressing, querying and manipulating explicit knowledge in

many areas of computer science. However, it is not so easy to use in dy-

namic environments. Evolving logic programs (EVOLP) are an elegant and

powerful extension of logic programming suitable for multiagent systems,

planning and other uses where information tends to change dynamically.

This work characterizes EVOLP by transforming it into an equivalent

normal logic program. The proposed transformation is further examined

and used to design and write the first freely available, extensible and

reusable implementation of EVOLP under the evolution stable model

semantics.

Keywords: Logic Programming, Stable Model Semantics, Evolving Logic

Programs, Transformational Semantics, Implementation

6

Preface

In the last years, a lot of effort has been invested in finding a language suit-

able for specifying and programming the evolution of knowledge bases

represented as logic programs. Such a language could be used to declara-

tively program intelligent agents and multiagent systems. Evolving logic

programs (EVOLP) is one of the languages developed for this purpose and

unlike its predecessors, it is just a simple, yet powerful extension of tradi-

tional logic programming.

The aim of this work is to examine the possibilities of implementing

EVOLP under the stable model semantics. First, we focused on defining

a sound and complete transformation that would produce an equivalent

normal logic program for any given evolving logic program (a so-called

transformational semantics). Then we used the transformation to imple-

ment propositional EVOLP and tried to face the problems with introducing

variables into the language.

The result is a partial implementation of EVOLP with variables. It has

been designed with maintainability, extensibility, and reusability in mind.

In Chap. 4 we sketch what needs to be done to finish the support for vari-

ables. The implementation can also be extended with other practical fea-

tures, e.g. support for weight constraints, arithmetic predicates and strong

negation.

Bratislava, May 2007 Martin Slota

7

Contents

1 Introduction and Motivation 11

1.1 Logic Programming and Intelligent Agents 11

1.2 The Roadmap . 12

2 Preliminaries 14

2.1 Logic Programs . 14

2.1.1 Syntax . 14

2.1.2 Semantics . 16

2.2 Dynamic Logic Programs . 19

2.2.1 Transformational Semantics 21

2.3 Evolving Logic Programs . 23

3 Transformational Semantics for EVOLP 26

3.1 Definition . 26

3.2 Soundness . 30

3.3 Completeness . 40

3.4 Size of the Transformed Program 48

3.4.1 Lower Bound . 48

3.4.2 Number of Assertable Rules 49

3.4.3 Upper Bound . 53

3.4.4 Conclusion . 54

4 Implementation of EVOLP 57

4.1 Propositional Evolving Logic Programs 57

4.2 Transformation into an Equivalent DLP 59

8

CONTENTS

4.3 Grounding of an Evolving Logic Program 60

4.4 Optimizations in the Implementations 63

5 Conclusion and Future Work 64

References 65

Definition Index 68

GNU Free Documentation License 70

Abstrakt (slovenský) 81

9

List of Figures

2.1 Semantics of EVOLP (without events) 23

4.1 Implementation of EVOLP using the transformation 58

10

Chapter 1

Introduction and Motivation

1.1 Logic Programming and Intelligent Agents

Construction of intelligent agents is one of the main matters of artificial in-

telligence. Such agents should be capable of operating independently in

a partially observable environment that may change unexpectedly. There-

fore, they need to be able to update their model of the world according to

the changes that take place in them and around them.

Logic programming showed as a good tool for both symbolic knowl-

edge representation and hypothetical reasoning. Much research in the last

decade has been devoted to finding a good way of updating knowledge

represented by logic programs. A sequence of logic programs where each

program is an update of the preceding programs was called a Dynamic

Logic Program (DLP). Finding a suitable semantics for DLPs became the

first step on the path to using logic programming in agent systems. Quite a

number of semantics with different properties were introduced. We will

only mention the Dynamic Stable Model semantics [1, 2, 3, 4] that was

later improved and called Refined Dynamic Stable Models [5, 6, 7]. This

is also the semantics used throughout this work. For a more comprehen-

sive overview of semantics for DLPs see [8, 9].

Although dynamic logic programming provides a way of updating a

logic program by another logic program, it still doesn’t tell us how we

should construct these programs. Update languages like LUPS [10, 11], EPI

11

Introduction and Motivation 1.2 The Roadmap

[12], KUL and KABUL [8] were developed for the purpose of incrementally

constructing a sequence of logic programs. Each of them specifies special

types of rules for adding and deleting logic programming rules from pro-

grams in the sequence. Evolving Logic Programs (EVOLP) [13] also comes

from this line of work, but while its predecessors were getting more and

more complicated as more constructs were being added, EVOLP is a sim-

ple, yet powerful extension of traditional logic programming. Syntactically,

evolving logic programs are just generalized logic programs. Semantically,

they allow for arbitrary updates of the program by adding new rules to

it, both by self-updates and by updates from the environment (through

events).

1.2 The Roadmap

We believe EVOLP is an interesting language with a neat idea behind it and

as such it is worth implementing. An implementation running under the

well-founded semantics has been available for quite some time [14]. But an

implementation of the evolution stable model semantics from the papers

about EVOLP appears only in [15, 16] and only for a limited constructive

view of propositional EVOLP.

The aim of this work is to examine the problems with implementing

EVOLP and providing a freely available and reusable implementation of

EVOLP under the evolution stable model semantics. The first steps lead to

defining the transformational semantics for EVOLP, i.e. a sound and com-

plete transformation that turns an arbitrary evolving logic program into

an equivalent normal logic program. The proposed transformation is then

used to implement propositional EVOLP and practical problems with in-

troducing variables are examined and partially resolved.

The remainder of this work is structured as follows:

Chapter 2 – Preliminaries: This Chapter presents the syntax and seman-

tics of logic programs, dynamic logic programs and evolving logic

programs. It only contains the definitions and theorems needed later

in the work. We also take a look at the transformational semantics

12

Introduction and Motivation 1.2 The Roadmap

for DLPs [17] because our transformational semantics for EVOLP is

based on it.

Chapter 3 – Transformational Semantics for EVOLP: Here we define the

transformational semantics for EVOLP and prove that it is sound and

complete with respect to the evolution stable model semantics. We

also infer the lower and upper bounds for the size of the transformed

program.

Chapter 4 – Implementation of EVOLP: This Chapter contains a descrip-

tion of the implementation based on the defined transformation. It

also presents the problems with variables in EVOLP and proposes

some solutions.

Chapter 5 – Conclusion and Future Work: In the last Chapter we sum up

this work and sketch some direction of future research.

On the last two pages there is a “Definition Index” containing concepts

and notation introduced throughout this work together with the numbers

of pages where they are defined.

13

Chapter 2

Preliminaries

This Chapter contains a collection of definitions and theorems that we will

use subsequently. In Sect. 2.1 we briefly introduce the syntax and semantics

of generalized logic programs and formulate some related propositions and

theorems. We only consider a propositional language.

Dynamic logic programs (DLPs) are presented in Sect. 2.2. Special at-

tention is paid to the transformational semantics for DLPs from [17] be-

cause our transformational semantics for EVOLP proposed in Chap. 3 is

based on it.

Section 2.3 contains the definition of evolving logic programs.

2.1 Logic Programs

This section contains some definitions and theorems from the wide area of

logic programming. For a more thorough overview see [18, 8]. We will start

off by defining the syntax of propositional logic programs.

2.1.1 Syntax

Definition 2.1 (Atoms and literals). Let L be an arbitrary denumerable set

of propositional atoms (a language). An atom of L is any A ∈ L. A de-

fault literal over L is an atom of L preceded by a “not” representing default

negation. A literal over L is either an atom of L or a default literal over L.

14

Preliminaries 2.1 Logic Programs

The set of all literals1 is denoted by L∗, i.e. L∗ = L ∪ {notA | A ∈ L}.
Let L be a literal. If L is a default literal notA, then notL denotes the

atom A. Similarly, if L is an atom A, then notL denotes the default literal

notA.

Definition 2.2 (Rules). A rule r over L is an ordered pair (H(r), B(r)) where

H(r) (dubbed the head of the rule) is a literal over L and B(r) (dubbed the

body of the rule) is a finite set of literals over L. A rule with an empty body

is called a fact.

A rule r = (L0, {L1, L2, . . . , Ln}) is usually written as

L0 ← L1, L2, . . . , Ln. (2.1)

We say a literal L appears in a rule (2.1) iff the set

{L,notL} ∩ {L0, L1, . . . , Ln}

is non-empty. Two rules r, r′ are conflicting, denoted by r 1 r′, iff H(r) =

notH(r′).

A definite rule over L is a rule containing only atoms of L. A normal rule

over L is a rule with an atom in its head.

Definition 2.3 (Generalized logic program). A generalized logic program over

L is a set of rules over L. We say a literal L appears in a generalized logic

program P iff L appears in some rule of P .

Definition 2.4 (Normal logic program). A normal logic program over L is a

set of normal rules over L.

Definition 2.5 (Definite logic program). A definite logic program over L is a

set of definite rules over L.

Remark. Every definite logic program is also a normal logic program. Every

normal logic program is also a generalized logic program.

1in the remainder of the text, the words “over L” will be dropped for the sake of read-
ability where it is clear from the context which L we are talking about (just like here)

15

Preliminaries 2.1 Logic Programs

2.1.2 Semantics

First we will define a model-theoretic semantics of definite logic programs.

Subsequently we will use this semantics to define the stable model seman-

tics of generalized logic programs.

Definition 2.6 (Interpretation). By an interpretation over Lwe mean any set

of atoms I ⊆ L. Given an interpretation I we define

I−
def= {notA | A /∈ I} ,

I∗
def= I ∪ I− .

An atom A is true in an interpretation I , denoted by I |= A, if A ∈ I , and

false otherwise. A default literal notA is true in I , denoted by I |= notA,

if A /∈ I , and false otherwise. A set of literals B is true in I , denoted by

I |= B, iff each literal in B is true in I .

Definition 2.7 (Model). Interpretation M is a model of a generalized logic

program P iff for every rule r ∈ P the following condition holds: if M |=
B(r), then M |= H(r).

Definition 2.8 (Minimal model). A minimal model of a generalized logic pro-

gram P is every model M of P such that no I (M is a model of P .

Theorem 2.9 (Least model of a definite logic program). Let P be a definite

logic program. Then P has a unique minimal model. This model is called

the least model of P .

Remark. The least model is generally considered to be a good semantics for

definite logic programs because it minimizes the set of atoms inferred by

the program and all the other models are supersets of the least model.

Now let’s take a look at how we can compute the least model.

Definition 2.10 (Immediate consequence operator). The immediate conse-

quence operator is for every definite logic program P and every interpreta-

tion I defined as

TP (I) def= {A | (∃r ∈ P)(H(r) = A ∧B(r) ⊆ I)} .

16

Preliminaries 2.1 Logic Programs

Proposition 2.11 (Monotonicity of the immediate consequence operator).

The immediate consequence operator is monotone, i.e. for every definite

logic program P and all interpretations I1, I2 such that I1 ⊆ I2 it holds that

TP (I1) ⊆ TP (I2)

Proof. Follows easily from the definition.

Theorem 2.12. Let P be a definite logic program, M0 = ∅ and Mi+1 =

TP (Mi) for every i ∈ N2 . Then the least model of P is 3

⋃
i<ω

Mi .

Example 2.13. Let’s take the set of atoms L = {tired, sleepy,hungry,happy}
and construct the definite logic program P over L:

P : sleepy← tired. (2.2)

tired← . (2.3)

happy← sleepy,hungry. (2.4)

These rules can be interpreted as follows: Rule (2.2) says that if I’m tired,

then I’m also sleepy. Rule (2.3) says I’m tired. Rule (2.4) says that if I’m

sleepy and hungry, I’m happy (because usually I eat too much before going

to sleep and then I don’t sleep very well). We can construct the least model

M of P according to Thm. 2.12:

M0 = ∅ ,

M1 = TP (M0) = {A | (∃r ∈ P)(H(r) = A ∧B(r) ⊆ ∅}

= {tired} ,

M2 = TP (M1) = {A | (∃r ∈ P)(H(r) = A ∧B(r) ⊆ {tired}}

= {tired, sleepy} ,

M3 = TP (M2) = . . . = M2 ,

2N is the set of all natural numbers, including 0
3ω is the first limit ordinal, for more details see [18]

17

Preliminaries 2.1 Logic Programs

and thus

M =
⋃
i<ω

Mi = ∅ ∪ {tired} ∪ {tired, sleepy} ∪ {tired, sleepy} ∪ . . .

= {tired, sleepy} .

The following example shows that a normal logic program doesn’t al-

ways have a least model and some of its minimal models can be “better”

than the others:

Example 2.14. Let L = {write_thesis, tired}. We can construct the following

normal logic program over L:

P : write_thesis← not tired. (2.5)

The interpretation of rule (2.5) is: If I have no evidence that I am tired, then

I will continue writing the thesis. This program has 3 models, in particular

M1 = {write_thesis} ,

M2 = {tired} ,

M3 = {write_thesis, tired} .

Only M1 and M2 are minimal. We can also see that M2 is not constructive

– P contains no rule that could infer tired. On the other hand, M1 is the

most natural consequence of the program – we cannot infer tired, so we

can use the rule (2.5) to infer write_thesis. Those minimal models that are

constructive in this sense are called stable. Their definition follows.

Definition 2.15. Let S be a set of rules and literals over L. By least(S) we’ll

denote the least model of the definite logic program P over L∗ that consists

of exactly these rules:

1. all rules from S 4,

2. the rule (L← .) for each literal L ∈ S.
4please note that although S can contain any rule, the rules in P are really definite be-

cause the language of P is L∗ = L ∪ {notA | A ∈ L}

18

Preliminaries 2.2 Dynamic Logic Programs

Definition 2.16 (Stable model). We say that an interpretation M is a stable

model of a generalized logic program P iff

M∗ = least
(
P ∪M−) .

Proposition 2.17. Let P be a generalized logic program, M its stable model

and A an atom. Then

A ∈M ⇐⇒ (∃r ∈ P)(H(r) = A ∧M |= B(r)) .

Proof. From Def. 2.16 and Thm. 2.12 we have that

M∗ =
⋃
i<ω

Mi

where M0 = ∅ and Mi+1 = TP∪M−(Mi) for every i ∈ N.

Now let A ∈ M . Then A ∈ M∗ and therefore some i ∈ N exists such

that A ∈Mi+1. This means that a rule r ∈ P exists such that H(r) = A and

B(r) ⊆Mi ⊆M∗. So M |= B(r) and r is the rule we search for.

For the converse implication let’s take some rule r ∈ P such that H(r) =

A and M |= B(r). This means that B(r) ⊆ M∗ and from the monotonicity

of the immediate consequence operator we have that for some i ∈ N it must

hold that B(r) ⊆Mi. Therefore A ∈Mi+1 ⊆M∗ and thus A ∈M .

2.2 Dynamic Logic Programs

Syntactically, a dynamic logic program is simply a sequence of generalized

logic programs. Semantically, the rules in each program of the sequence are

preferred over rules from preceding programs.

Now we will introduce the syntax and the refined dynamic stable

model semantics for DLPs (as it is defined in [7]). It is an improved version

of the dynamic stable model semantics that can be found in [8].

19

Preliminaries 2.2 Dynamic Logic Programs

Definition 2.18 (Dynamic logic program). A dynamic logic program over

L (DLP) is a sequence of generalized logic programs over L. Let

P = (P1, P2, . . . , Pn) be a DLP. We use ρ(P) to denote the multiset of

all rules appearing in the programs P1, P2, . . . , Pn and P i (1 ≤ i ≤ n) to

denote the i-th component of P , i.e. Pi.

Definition 2.19 (Default assumptions). Let P be a dynamic logic program

and I an interpretation. Then

Def(P, I) def= {notA | (@r ∈ ρ(P))(H(r) = A ∧ I |= B(r))} .

Definition 2.20 (Rejected rules). Let P be a DLP of length n, I an interpre-

tation and j ∈ {1, 2, . . . , n}. Then:

Rejj(P, I) def=
{

r ∈ Pj
∣∣∣ (∃k, r′

) (
k ≥ j ∧ r′ ∈ Pk ∧ r 1 r′ ∧ I |= B(r′)

)}
,

Rej(P, I) def=
n⋃

i=1

Reji(P, I) .

Definition 2.21 (Refined dynamic stable model, [7]). Let P be a DLP and

M an interpretation. M is a (refined) dynamic stable model5 P iff

M∗ = least([ρ(P) \ Rej(P,M)] ∪Def(P,M)) .

Remark. The defined semantics is a generalization of the stable model se-

mantics, i.e. the stable models of a generalized logic program P are the

same as the dynamic stable models of the DLP P = (P). We can also see

an analogy with the definition of stable models: ρ(P)\Rej(P,M) plays the

role of P and Def(P,M) the role of M−.

5in the remainder of this work we will always work with the refined dynamic stable
model semantics but for the sake of readability we will drop the word “refined” everywhere

20

Preliminaries 2.2 Dynamic Logic Programs

Example 2.22. Consider the following two generalized logic programs:

P1 : tired← . (2.6)

drink_coffee← tired. (2.7)

write_thesis← not tired. (2.8)

P2 : not tired← . (2.9)

Rule (2.6) states that I’m tired. The other two rules in P1 define what I will

do depending on whether I’m tired or not. The rule (2.7) in P2 states I’m

not tired (any more).

P1 has exactly one stable model: M1 = {tired,drink_coffee}. The dy-

namic logic program P = (P1, P2) has exactly one dynamic stable model:

M2 = {write_thesis}. To verify that M2 is really a dynamic stable model of

P we need to check the following (according to Defs. 2.19, 2.20 and 2.21):

Def(P,M2) = {notdrink_coffee} ,

Rej(P,M2) = {tired← .} ,

M∗
2 = {write_thesis,not tired,notdrink_coffee}

= least




drink_coffee← tired.

write_thesis← not tired.

not tired← .

 ∪ {notdrink_coffee}

 .

2.2.1 Transformational Semantics

The transformational semantics for EVOLP that we will define in Chap. 3

is based on the transformational semantics for DLPs defined in [17]. On an

example we will show how the transformation works.

Example 2.23. Let’s take a DLPP = (P1, P2) where P1 and P2 are defined as

in Ex. 2.22. If we use the transformation from [17], we will get the following

normal logic program:

P : tired− ← not rej(0, tired−). (2.10)

drink_coffee− ← not rej(0,drink_coffee−). (2.11)

21

Preliminaries 2.2 Dynamic Logic Programs

write_thesis− ← not rej(0,write_thesis−). (2.12)

tired← not rej(1, tired). (2.13)

drink_coffee← tired,not rej(1,drink_coffee). (2.14)

write_thesis← tired−,not rej(1,write_thesis). (2.15)

tired− ← not rej(2, tired−). (2.16)

rej(0, tired−)← . (2.17)

rej(0,drink_coffee−)← tired. (2.18)

rej(0,write_thesis−)← tired−. (2.19)

rej(1, tired)← . (2.20)

rej(0, tired−)← rej(2, tired−). (2.21)

So what happened with the input program? The first big change is that all

default literals were turned into new atoms. The reason is that in dynamic

logic programming the set Def(P,M) may be smaller than M− (its counter-

part in the stable model semantics), so we have to treat the default literals

differently. In order to simulate the set of defaults, we add the rules (2.10)

to (2.12). The next four rules (2.13) to (2.16) are just rewritten rules of the

original programs. Now you must be asking: What are those “not rej(. . .)”

literals good for? They are employed as guards that either allow or disal-

low the use of each rule. And the remaining five rules (2.17) to (2.21) infer

the correct rej(. . .) literals, also based on the original rules.

The program P has a unique stable model:

M = {write_thesis, tired−,drink_coffee−,

rej(1, tired), rej(1, tired−), rej(1,write_thesis−)} .

M directly corresponds to the dynamic stable model M2 = {write_thesis}
of the dynamic logic program P .

22

Preliminaries 2.3 Evolving Logic Programs

Figure 2.1: Semantics of EVOLP (without events)

Evolution stable model

P

M1

P2

M2

P3

M3

Pn

Mn

P2 = {r | assert(r) ∈M1}

P3 = {r | assert(r) ∈M2}

Pn = {r | assert(r) ∈Mn−1}

2.3 Evolving Logic Programs

Evolving logic programs (EVOLP) can be seen as an extension of gener-

alized logic programs. They can contain rules that add a new rule to the

program in case they are fired. The newly added rule can also be of this

type, so some rules can be added at the beginning and some only after the

first set has been added. We can say the program evolves in steps. These

steps are called evolution steps. In the semantics, the new rules after each

evolution step are collected in a separate program and dynamic logic pro-

gramming is used to prefer the rules that were added later.

In order to be usable in dynamic environments, there must also be some

way of adding information coming from outside of the program. Other-

wise an agent written in EVOLP would be unable to receive information

from its sensors or to communicate with other agents. Therefore, after each

evolution step an evolving logic program (called event) is added to the set

of most recently added rules. The event can contain an arbitrary set rules

that may even change or completely reprogram the behaviour of the agent.

Now we will define the syntax and semantics of EVOLP as it is defined

in [13]. The semantics (with events excluded) is also illustrated in Fig. 2.1.

Definition 2.24 (Extended language). Let L be a set of propositional atoms

(not containing the predicate assert/1). The extended language LA is a min-

imal set of propositional atoms such that L ⊆ LA and assert(r) ∈ LA for

every rule r over LA.

23

Preliminaries 2.3 Evolving Logic Programs

Definition 2.25 (Evolving logic program). An evolving logic program over L
is a (possibly infinite) set of rules over LA.

Definition 2.26 (Event sequence). An event sequence over L is a sequence of

evolving logic programs over L.

Definition 2.27 (Evolution interpretation and its evolution trace). An evo-

lution interpretation of length n of an evolving program P over L is a finite

sequence I = (I1, I2, . . . , In) of interpretations over LA. The evolution trace

associated with an evolution interpretation I of P is the sequence of pro-

grams (P1, P2, . . . , Pn) where

P1 = P and Pi+1 = {r | assert(r) ∈ Ii} for all i ∈ {1, 2, . . . , n− 1} .

Definition 2.28 (Evolution stable model given an event sequence). An

evolution interpretation M = (M1,M2, . . . ,Mn) with evolution trace

(P1, P2, . . . , Pn) is an evolution stable model of an evolving program P given an

event sequence (E1, E2, . . . , En) iff for every i ∈ {1, 2, . . . , n}Mi is a dynamic

stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei).

Example 2.29. Consider the following evolving logic program:

P : write_thesis← not tired. (2.22)

drink_coffee← tired,notno_coffee. (2.23)

make_coffee← tired,no_coffee. (2.24)

assert(tired← .)← write_thesis. (2.25)

assert(not tired← .)← drink_coffee. (2.26)

P could be a program of a simple agent (e.g. Mary) who is trying to write a

thesis. Mary can do 3 things: write the thesis, drink coffee or make coffee.

She also relies on a sensor that sends the fact (no_coffee← .) as an event in

case she runs out of coffee.

The meaning of the rules is as follows: Rule (2.22) says Mary’s writing

the thesis as long as she’s not tired. Rules (2.23) and (2.24) say what she

does when she’s tired – depending on whether she has coffee she either

24

Preliminaries 2.3 Evolving Logic Programs

drinks it or makes some more. Rules (2.25) and (2.26) specify whether she

will be tired in the next evolution step. If she’s writing the thesis, she will

get tired. In case she’s drinking coffee, the tiredness will wear off. If she’s

making coffee, no change will take place.

The following table shows the evolution of P (given the sequence of

events that are also present in the table):

Time Program Event Model

1 P ∅
{write_thesis,

assert(tired← .)}

2 {tired← .} ∅
{tired,drink_coffee,

assert(not tired← .)}

3 {not tired← .} {no_coffee← .}
{no_coffee,write_thesis,

assert(tired← .)}

4 {tired← .} {no_coffee← .}
{tired,no_coffee,

make_coffee}

5 ∅ ∅
{tired,drink_coffee,

assert(not tired← .)}

6 {not tired← .} ∅
{write_thesis,

assert(tired← .)}

We start off with P and an empty event and compute the first model. It

says Mary’s writing her thesis, and in the next step she should get tired.

We infer the second program from the model, add another empty event

and compute the second model. Now Mary is tired and drinks coffee. In

the next step the sensor starts complaining that there’s no more coffee, but

Mary doesn’t really care. She’s not tired, so she’s writing the thesis. In

the fourth step she’s tired again, and, as there is still no coffee, she makes

some. This makes the sensor stop complaining in the fifth step and Mary,

still tired, drinks coffee again. In the sixth step she continues writing her

thesis again. . .

For more examples see [19, 20, 21].

25

Chapter 3

Transformational Semantics for

EVOLP

A quick and convenient way of implementing some new language is to

transform the input program (written in that language) into an equivalent

program written in some already implemented language. As for declara-

tive languages, it is much easier to formally define such transformations

and prove they are sound and complete.

This Chapter introduces a similar transformation for EVOLP. It takes an

evolving logic program and a sequence of events as input and outputs an

equivalent normal logic program. In Sect. 3.1 we define the transformation

and explain how it works. Sections 3.2 and 3.3 contain proofs of soundness

and completeness of the transformation. In Sect. 3.4 we infer the lower and

upper bounds for the size of the transformed program and deduce some of

its implications.

3.1 Definition

In this Section we will define a transformation which turns an evolving

logic program P together with an event sequence E of length n into a nor-

mal logic program PE over an extended language. We will prove later that

the stable models of PE are in one-to-one correspondence with the evolu-

tion stable models of P given E .

26

Transformational Semantics for EVOLP 3.1 Definition

The transformation is essentially a multiple parallel usage of a similar

transformation for DLPs introduced in [17] and illustrated in Ex. 2.23. First

we need to define the extended language over which we will construct the

resulting program:

LT
def=
{
Aj , Aj

neg

∣∣ A ∈ LA ∧ 1 ≤ j ≤ n
}

∪
{
rej(Aj , i), rej(Aj

neg, i)
∣∣ A ∈ LA ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j

}
∪{u} .

Atoms of the form Aj and Aj
neg in the extended language allow us to com-

press the whole evolution interpretation (consisting of n interpretations

over LA, see Def. 2.27) into just one interpretation over LT . Atoms of the

form rej(Aj , i) and rej(Aj
neg, i) are needed for rule rejection simulation. The

atom u will serve to formulate constraints needed to eliminate some un-

wanted models of PE .

To simplify the notation in the transformation’s definition and the fol-

lowing sections, we’ll use the following conventions: Let L be a literal over

LA, B a set of literals over LA and j a natural number. Then:

• If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.

• If L is a default literal notA, then Lj is Aj
neg and Lj

neg is Aj .

• Bj = {Lj | L ∈ B}.

• We will say that L trans-appears in PE iff Lj or Lj
neg appears in PE .

Definition 3.1. Let P be an evolving logic program and

E = (E1, E2, . . . , En)

an event sequence. By a transformational equivalent of P given E we mean

the normal logic program PE = P 1
E ∪P 2

E ∪ . . .∪Pn
E over LT , where each P j

E

consists of these six groups of rules:

27

Transformational Semantics for EVOLP 3.1 Definition

1. Rewritten program rules. For every rule (L← body .) ∈ P it contains

the rule

Lj ← bodyj ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← body .) ∈ Ej it contains

the rule

Lj ← bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← body .) over LA and all i,

1 < i ≤ j, such that (assert(r))i−1 is in the head of some rule of P i−1
E

it contains the rule

Lj ← bodyj , (assert(r))i−1,not rej(Lj , i).

4. Default assumptions. For every atom A ∈ LA such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules) it also

contains the rule

Aj
neg ← not rej(Aj

neg, 0).

5. Rejection rules. For every rule of P j
E of the form

Lj ← body ,not rej(Lj , i).1 (3.1)

it also contains the rules

rej(Lj
neg, p)← body . (3.2)

rej(Lj , q)← rej(Lj , i). (3.3)

where:

(a) p ≤ i is the largest index such that P j
E contains a rule with the

literal not rej(Lj
neg, p) in its body. If no such p exists, then the

rule (3.2) is not in P j
E .

1The set body contains literals from the original body of the rule in translated form and
in case it is an assertable rule it also contains a literal of the form (assert(r))i−1 – later we
will call this literal the assertion guard of the rule.

28

Transformational Semantics for EVOLP 3.1 Definition

(b) q < i is the largest index such that P j
E contains a rule with the

literal not rej(Lj , q) in its body. If no such q exists, then the rule

(3.3) is not in P j
E .

6. Totality constraints. For all i ∈ {1, 2, . . . , j} and every atom A ∈ LA
such that P j

E contains rules of the form

Aj ← bodyp,not rej(Aj , i).

Aj
neg ← bodyn,not rej(Aj

neg, i).

it also contains the constraint

u← notu,notAj ,notAj
neg.

Each P j
E contains rules for simulating the “j-th DLP” from the defini-

tion of evolution stable model (Def. 2.28). For the simulation we use the

transformational semantics from [17]. We also rewrite all atoms from the

original rules as a new set of j-indexed atoms. The DLP looks like this:

(P, P2, P3, . . . , Pj−1, Pj ∪ Ej) .

However, we don’t know the exact contents of P2, P3, . . . , Pj . What we

know are the rules in P and Ej . The first two groups of rules in P j
E (rewrit-

ten program rules and rewritten event rules) contain their rewritten forms.

The group of assertable rules contains all rules that can possibly occur in

P2, P3, . . . , Pj . Each of these rules also has an atom of the form (assert(r))i−1

in its body. This is its assertion guard, and it assures the rule is only used in

case it was actually asserted. Assertion guards are also the only connection

between the rules of P j
E and the rules in P 1

E ∪ P 2
E ∪ . . . ∪ P j−1

E .

The default assumptions are defined similarly as in [17], and they have

the same function – they simulate the set of defaults (Def. 2.19).

Rewritten program rules, rewritten event rules, assertable rules and de-

fault assumptions also contain a default literal of the form not rej(Lj , i) in

their bodies – we will call this literal the rejection guard of the rule and i the

29

Transformational Semantics for EVOLP 3.2 Soundness

level of the rule. Together with the rejection rules, the rejection guard pro-

vides a means of rejecting a rule by a higher level rule, similarly as in the

set of rejected rules defined in Def. 2.20. A body of a rewritten program

rule, rewritten event rule or an assertable rule without the assertion and

rejection guards is called its guardless body.

Rejection rules are responsible for inferring the correct rej(Lj , i) atoms.

The first kind of rules introduces the rejection of the next less or equally

preferred rule with a conflicting literal in its head. The second kind of rules

takes care of propagating the rejection to even less preferred rules with the

same head.

Totality constraints are important in the case that equally preferred

rules reject each other and no rule with higher priority resolves their

conflict. An interpretation causing such situation is not a dynamic sta-

ble model (more details can be found in [7]) and totality constraints are

needed to eliminate the superfluous stable models of PE originating from

such situations.

In the following two Sections we will prove the defined transformation

is sound and complete.

3.2 Soundness

In this Section we will prove the defined transformation is sound, i.e. ev-

ery stable model of the transformed program corresponds to an evolution

stable model of the original evolving logic program. Therefore, we will

assume P is an evolving logic program, E = (E1, E2, . . . , En) is an event

sequence, N is a stable model of PE ,

Mi = {A ∈ LA | Ai ∈ N} for all i ∈ {1, 2, . . . , n} (3.4)

and (P1, P2, . . . , Pn) is the evolution trace associated to the evolution inter-

pretation (M1,M2, . . . ,Mn), i.e.

P1 = P and Pi+1 = {r | assert(r) ∈Mi} for all i ∈ {1, 2, . . . , n− 1} .

30

Transformational Semantics for EVOLP 3.2 Soundness

Using this notation, formulation of the soundness property boils down to:

(M1,M2, . . . ,Mn) is an evolution stable model of P given E . According to

the definition of evolution stable model (Def. 2.28), this holds iff each Mi

is a dynamic stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei). Hence we choose

one arbitrary but fixed j ∈ {1, 2, . . . , n}, prove that Mj is a dynamic stable

model of P = (P1, P2, . . . , Pj−1, Pj ∪ Ej) and the property will follow.

We will need a number of auxiliary propositions to prove this. To make

their formulation (and also the formulation of their proofs) simpler and

more comprehensible, we will use the notation introduced in Sect. 3.1 and

in the previous paragraphs and also the following definitions:

• Rewritten rules are all rewritten program rules, all rewritten event

rules and all assertable rules such that their assertion guard is true

in N .

• A rewritten rule is unrejected iff its rejection guard is true in N .

• As N is a stable model of PE , we can use Def. 2.16 and Thm. 2.12 to

obtain:

N∗ =
⋃
i<ω

Ni

where N0 = ∅ and Ni+1 = TPE∪N−(Ni) for all i ≥ 0.

• We can use Thm. 2.12 once again to get

least([ρ(P) \ Rej(P,Mj)] ∪Def(P,Mj)) = R =
⋃
i<ω

Ri

where R0 = ∅ and Ri+1 = T[ρ(P)\Rej(P,Mj)]∪Def(P,Mj)(Ri) for all i ≥ 0.

According to Def. 2.21, Mj is a dynamic stable model of P iff M∗
j = R. This

equality will be proved in Lemma 3.9. But first we will show some basic

properties of N in Lemmas 3.2 and 3.3 and introduce a relation between N

and Mj in Lemma 3.4. Then we will show how rewritten rules correspond

to rules of P in Lemmas 3.5 and 3.6. Lemma 3.7 will reveal a correspon-

dence between default assumptions and the set of defaults. Lemma 3.8

shows that j-indexed literals in N correspond to literals in R.

31

Transformational Semantics for EVOLP 3.2 Soundness

Lemma 3.2. Let L be a literal over LA and k ∈ {0, 1, . . . , j}. rej(Lj , k) ∈ N

holds iff some i ∈ {k, k + 1, . . . , j} exists such that PE contains rules of the

form 2

Lj ← bodyp,not rej(Lj , k).

Lj
neg ← bodyn,not rej(Lj

neg, i).

and N |= bodyn.

Proof. First let’s assume rej(Lj , k) ∈ N . Then from Prop. 2.17 it follows that

PE contains some rule

r = (rej(Lj , k)← body .)

such that N |= body . This must be one of the two kinds of rejection rules:

1. If r is of the form (3.2), then a look at the definition of rejection rules

tells us that the rules we search for must also be in PE .

2. If r is of the form (3.3), then body is of the form rej(Lj , k1) where k <

k1 ≤ j. As body is true in N , we can use Prop. 2.17 again to find a rule

of PE of the form

rej(Lj , k1)← body1.

such that N |= body1. Two cases are possible again. In the first the

proof ends and in the second we get an index k2 such that k1 < k2 ≤ j

and rej(Lj , k2) ∈ N . If the second case would occur forever, we would

get an infinite increasing bounded sequence of natural numbers k <

k1 < k2 < . . . ≤ j, which is not possible. Hence after a finite number

of iterations the first case must occur, and the proof ends.

Now to the converse implication. Let k = k1 < k2 < . . . < ks ≤ i be all

indices such that PE contains a rule of the form

Lj ← body t,not rej(Lj , kt).
2Similarly as before, the set bodyp contains literals from the original body of the rule in

translated form, and in case it is an assertable rule, it also contains its assertion guard. The
same holds for the set bodyn.

32

Transformational Semantics for EVOLP 3.2 Soundness

where t ∈ {1, 2, . . . , s}. From the definition of rejection rules (Def. 3.1) we

have that PE contains the rule

rej(Lj , ks)← bodyn.

and also the rules

rej(Lj , kt)← rej(Lj , kt+1).

for all t ∈ {1, 2, . . . , s− 1}. The claim now follows by s times applying

Prop. 2.17.

Lemma 3.3. The following holds for every atom A ∈ LA such that it trans-

appears in PE :

Aj ∈ N ⇐⇒ Aj
neg /∈ N .

Proof. First let’s assume Aj ∈ N . Proposition 2.17 implies that PE contains

some rule of the form

Aj ← bodyp,not rej(Aj , i).

such that N |= bodyp and rej(Aj , i) /∈ N . If r is any rule of PE with Aj
neg in

its head, then it must be of the form

Aj
neg ← bodyn,not rej(Aj

neg, k).

We will consider two cases:

a) If k ≤ i, then from Lemma 3.2 we have that rej(Aj
neg, k) ∈ N .

b) If k > i, then, as rej(Aj , i) /∈ N , we can use Lemma 3.2 to get N 6|=
bodyn.

Both cases imply that the body of r is false in N . Hence there is no rule of

PE with Aj
neg in its head and a body true in N and from Prop. 2.17 it follows

that Aj
neg /∈ N .

We will prove the converse implication by contradiction. Suppose Aj /∈
N and at the same time Aj

neg /∈ N . Let s be the highest index such that PE

33

Transformational Semantics for EVOLP 3.2 Soundness

contains a rule

Aj ← bodys,not rej(Aj , s).

such that N |= bodys. If no such rule is in PE , let s = −1. Similarly let t be

the highest index such that PE contains a rule

Aj
neg ← body t,not rej(Aj

neg, t).

such that N |= body t. As A trans-appears in PE , there is always at least one

such rule between the default assumptions, so t is defined in all cases and

t ≥ 0. Let’s consider two situations again:

a) s ≥ t: If rej(Aj , s) /∈ N , then Aj would be (by Prop. 2.17) in N . So

rej(Aj , s) ∈ N and Lemma 3.2 implies that PE contains a rule

Aj
neg ← bodyu,not rej(Aj

neg, u).

such that N |= bodyu and u ≥ s. According to the way t was con-

structed we also have u ≤ t ≤ s. Thus u = s. But then it can’t be that

Aj , Aj
neg /∈ N , because PE contains a totality constraint forbidding this

– a contradiction with the assumptions.

b) s < t: If rej(Aj
neg, t) /∈ N , then Aj

neg would be (by Prop. 2.17) in N . So

rej(Aj
neg, t) ∈ N and from Lemma 3.2 we get that PE contains a rule

Aj ← bodyv,not rej(Aj , v).

such that N |= bodyv and v ≥ t. According to the way s was con-

structed we also have v ≤ s < t, which is a contradiction.

Lemma 3.4. Let B be a set of literals over LA which trans-appear in PE .

Then

Mj |= B ⇐⇒ N |= Bj .

Proof. Let L ∈ B. If L is an atom A, then

Mj |= L⇐⇒ A ∈Mj
(3.4)⇐=⇒ Aj ∈ N ⇐⇒ N |= Lj .

34

Transformational Semantics for EVOLP 3.2 Soundness

If L is a default literal notA, then

Mj |= L⇐⇒ A /∈Mj
(3.4)⇐=⇒ Aj /∈ N

Lemma 3.3⇐=====⇒ Aj
neg ∈ N ⇐⇒ N |= Lj .

Lemma 3.5. PE contains a rewritten rule of level i with Lj in its head and a

guardless body bodyj iff

(L← body .) ∈ P i .

Proof. Let PE contain a rewritten rule r∗ of level i with Lj in its head and a

guardless body bodyj . Let r = (L← body .). We will consider three cases:

1. If r∗ is a rewritten program rule, then by Def. 3.1 we have r ∈ P1.

2. If r∗ is a rewritten event rule, then by Def. 3.1 we have r ∈ Pj .

3. If r∗ is an assertable rule, then i ∈ {2, 3, . . . , j} and its assertion guard

(assert(r))i−1 is true in N . By (3.4) we have assert(r) ∈ Mi−1, and

thus r ∈ P i.

For the converse implication let r = (L ← body .) ∈ P i for some i ∈
{1, 2, . . . , j}. We will consider three cases again:

1. If r ∈ P , then PE contains a rewritten program rule with Lj in its head

and the guardless body bodyj by the definition.

2. If r ∈ Ej , then PE contains a rewritten event rule with Lj in its head

and the guardless body bodyj by the definition.

3. If r ∈ Pi and i > 1, then assert(r) ∈ Mi−1 and by (3.4) we have

(assert(r))i−1 ∈ N . Hence by Prop. 2.17 PE must contain a rule with

(assert(r))i−1 in its head and by Def. 3.1 it must also contain the as-

sertable rule

Lj ← bodyj , (assert(r))i−1,not rej(Lj , i).

35

Transformational Semantics for EVOLP 3.2 Soundness

Lemma 3.6. PE contains an unrejected rewritten rule with Lj in its head

and a guardless body bodyj iff

(L← body .) ∈ ρ(P) \ Rej(P,Mj) .

Proof. Let PE contain an unrejected rewritten rule of level i with Lj in its

head and a guardless body bodyj . Then by Lemma 3.5 we have

r = (L← body .) ∈ P i .

We will continue by contradiction – let’s assume r ∈ Reji(P,Mj). Then

some k ∈ {i, i + 1, . . . , j} exists such that Pk contains a rule

notL← bodyn.

and Mj |= bodyn. Then by Lemma 3.4 we have N |= bodyj
n and by

Lemma 3.5 we have that PE contains a rewritten rule with Lj
neg in its

head and the guardless body bodyj
n. Hence from Lemma 3.2 it follows

that rej(Lj , i) ∈ N , which is a contradiction with the assumption that r is

unrejected. Therefore r ∈ P i \ Reji(P,Mj).

For the converse implication let r = (L← body .) ∈ P i \ Reji(P,Mj) for

some i ∈ {1, 2, . . . , j}. By Lemma 3.5 we have that PE contains a rewritten

rule r of level i with Lj in its head and the guardless body bodyj . We need

to prove that r is unrejected. Assume it is rejected, i.e. N 6|= not rej(Lj , i).

Then rej(Lj , i) ∈ N and from Lemmas 3.2, 3.5 and 3.4 it follows that r ∈
Reji(P,Mj) which is a contradiction with the assumption. Hence r is unre-

jected.

Lemma 3.7. Let A be an atom of LA that trans-appears in PE . Then

notA ∈ Def(P,Mj)⇐⇒ not rej(Aj
neg, 0) ∈ N− .

Proof. According to the definition of default assumptions, PE must contain

36

Transformational Semantics for EVOLP 3.2 Soundness

a default assumption of the form

Aj
neg ← not rej(Aj

neg, 0).

because A trans-appears in PE . We will prove both implications indirectly.

First let’s assume notA /∈ Def(P,Mj). Then some rule r = (A ←
body .) ∈ ρ(P) exists such that Mj |= body . PE contains a corresponding

rewritten rule r∗ (Lemma 3.5) and we also have N |= bodyj (Lemma 3.4).

Now we can use Lemma 3.2, the existence of r∗ and of the default as-

sumption mentioned earlier to conclude that rej(Aj
neg, 0) ∈ N . Hence

not rej(Aj
neg, 0) /∈ N−.

For the converse implication let’s assume not rej(Aj
neg, 0) /∈ N−. Then

rej(Aj
neg, 0) ∈ N and we can use Lemma 3.2 to find a rule r of PE of the form

Aj ← body , rej(Aj , i).

such that N |= body . P i must contain a corresponding rule with A in

its head and its body true in Mj (Lemmas 3.5 and 3.4). Hence notA /∈
Def(P,Mj).

Lemma 3.8. For every literal L over LA such that it trans-appears in PE the

following holds:

Lj ∈ N ⇐⇒ L ∈ R .

Proof. In order to prove the first implication, we will prove

(∀i ∈ N)(Lj ∈ Ni =⇒ L ∈ Ri)

by induction on i:

1◦ N0 = ∅, so the claim holds.

2◦ We assume that

Lj ∈ Ni =⇒ L ∈ Ri

37

Transformational Semantics for EVOLP 3.2 Soundness

holds for all L trans-appearing in PE and prove

Lj ∈ Ni+1 =⇒ L ∈ Ri+1 .

If Lj ∈ Ni+1, then PE must contain some rule r∗ = (Lj ← body .) such

that body ⊆ Ni. This means that all guards in the body of r∗ are true in

N (because Ni ⊆ N). If r∗ is a default assumption, then by Lemma 3.7

we get L ∈ Def(P,Mj) ⊆ Ri+1. Otherwise it must be an unrejected

rewritten rule, and, according to Lemma 3.6, the corresponding rule

r ∈ ρ(P) \ Rej(P,Mj) has L in its head. Moreover, by the induction

hypothesis we have that the body of r is a subset of Ri, so L ∈ Ri+1.

By another induction on i we will prove

(∀i ∈ N)(L ∈ Ri =⇒ (∃k ∈ N)(Lj ∈ Nk))

from which the converse implication follows.

1◦ R0 = ∅, so the claim holds.

2◦ We assume that

L ∈ Ri =⇒ (∃k ∈ N)(Lj ∈ Nk)

holds for all L that trans-appear in PE and prove

L ∈ Ri+1 =⇒ (∃k ∈ N)(Lj ∈ Nk) .

If L ∈ Ri+1, then [ρ(P) \Rej(P,Mj)]∪Def(P,Mj) must contain some

rule r = (L← body .) such that body ⊆ Ri. Two situations are possible:

(a) If L ∈ Def(P,Mj), then by Lemma 3.7 we have not rej(Lj , 0) ∈
N− ⊆ N1. So the body of the default assumption for Lj is satis-

fied in N1 and Lj ∈ N2.

(b) If r ∈ P i \ Reji(P,Mj) for some i ∈ {1, 2, . . . , n}, then PE con-

tains an unrejected rewritten rule r∗ with Lj in its head and the

guardless body bodyj (Lemma 3.6). For each literal X ∈ body we

38

Transformational Semantics for EVOLP 3.2 Soundness

can use the inductive assumption to find a natural number kX

such that Xj ∈ NkX
. Let k1 = max {kX | X ∈ body}.

If the rule r∗ has an assertion guard in its body, then it must be

true in N because r∗ is a rewritten rule. Hence some k2 ∈ N must

exist such that the assertion guard is true in Nk2 . If it has no such

guard, let k2 = 1.

Now let k = max {k1, k2}. The rejection guard of r∗ is true in

N− ⊆ Nk because r∗ is unrejected. Hence from the monotonicity

of the immediate consequence operator (Prop. 2.11) it follows

that the whole body of r∗ is true in Nk. Thus Lj ∈ Nk+1.

Lemma 3.9. Mj is a dynamic stable model of P .

Proof. Mj is a dynamic stable model of the dynamic logic program P iff

M∗
j = R. Let L be a literal over LA. Two situations are possible:

1. If L doesn’t trans-appear in PE , then it cannot appear in ρ(P) (if it

appeared in a rule r ∈ ρ(P), then it would trans-appear in the rule of

PE corresponding to r). So L ∈ {A,notA} and notA ∈ Def(P,Mj)

and hence notA ∈ R. We also have A /∈ R as the program [ρ(P) \
Rej(P,Mj)]∪Def(P,Mj) doesn’t contain any rule with A in its head.

Furthermore, Aj doesn’t appear in PE , so by Prop. 2.17 we have Aj /∈
N . Hence A /∈ M∗

j and also notA ∈ M∗
j . Taken all together, we

proved

L ∈M∗
j ⇐⇒ L ∈ R .

2. If L trans-appears in PE , then:

L ∈M∗
j ⇐=====⇒Mj |= L

Lemma 3.4⇐=====⇒ N |= Lj ⇐⇒ Lj ∈ N

Lemma 3.8⇐=====⇒ L ∈ R .

Theorem 3.10 (Soundness). M = (M1,M2, . . . ,Mn) is an evolution stable

model of P given E .

Proof. Follows by applying Lemma 3.9 for each j ∈ {1, 2, . . . , n}.

39

Transformational Semantics for EVOLP 3.3 Completeness

3.3 Completeness

In this Section we will prove the defined transformation is complete, i.e.

every evolution stable model of the original evolving logic program corre-

sponds to a stable model of the transformed program. Therefore, we will

assume P is an evolving logic program, E = (E1, E2, . . . , En) is an event

sequence,M = (M1,M2, . . . ,Mn) is an evolution stable model of P given

E , (P1, P2, . . . , Pn) is the evolution trace associated toM and

Pi = (P1, P2, . . . , Pi−1, Pi ∪ Ei) for all i ∈ {1, 2, . . . , n} .

In order to prove that the transformation is complete, we have to find a

stable model of PE corresponding toM. First let’s define an interpretation

N corresponding toM:

N = {Li | i ∈ {1, 2, . . . , n} ∧Mi |= L ∧ L trans-appears in PE}

∪ {rej(Li, k) | 1 ≤ k ≤ i ≤ n ∧ (∃r ∈ Rejk(Pi,Mi))(H(r) = L)}

∪ {rej(Ai
neg, 0) | i ∈ {1, 2, . . . , n} ∧ notA /∈ Def(Pi,Mi)} .

(3.5)

The rest of this section is devoted to proving that N is a stable model of PE .

The following definitions will be used throughout the proofs3:

• A rewritten rule is every rewritten program rule, rewritten event rule

and every assertable rule of PE with its assertion guard true in R.

• A rewritten rule is unrejected iff its rejection guard is true in R.

• Let j ∈ {1, 2, . . . , n}. As Mj is a dynamic stable model of Pj , we can

use Def. 2.21 and Thm. 2.12 to get

M∗
j =

⋃
i<ω

Mj,i

where Mj,0 = ∅ and Mj,i+1 = T[ρ(Pj)\Rej(Pj ,Mj)]∪Def(Pj ,Mj)(Mj,i).

3please note that a part of this notation was already defined in Sect. 3.2, but those defi-
nitions were only valid for that Section and the following definitions are slightly different

40

Transformational Semantics for EVOLP 3.3 Completeness

• According to Thm. 2.12 we also have

least
(
PE ∪N−) = R =

⋃
i<ω

Ri

where R0 = ∅ and Ri+1 = TPE∪N−(Ri) for all i ≥ 0.

According to Def. 2.16 N is a stable model of PE iff

N∗ = R .

We will prove this equality in three steps:

1. The first step is also the most difficult. For every literal L over LA and

every j ∈ {1, 2, . . . , n}we will prove

Lj ∈ N ⇐⇒ Lj ∈ R

by complete induction on j. The inductive hypothesis will be used

in many places, so it is formulated here once and for all: Let j ∈
{1, 2, . . . , n}. Then for every literal L over LA the following holds:

(∀i ∈ {1, 2, . . . , j − 1})(Li ∈ N ⇐⇒ Li ∈ R) . (3.6)

2. Next we will prove that for every literal L over LA, every j ∈
{1, 2, . . . , n} and every i ∈ {0, 1, . . . , j} it holds that

rej(Lj , i) ∈ N ⇐⇒ rej(Lj , i) ∈ R .

3. The last thing we have to take care of is that none of the totality con-

straints are broken, i.e. we have to prove

u /∈ R .

The preparation phase is now over, we can step forward to the proofs.

The first 5 lemmas are a prelude to the proof of the first step.

41

Transformational Semantics for EVOLP 3.3 Completeness

Lemma 3.11. Assume (3.6) holds. PE contains a rewritten rule of level i

with Lj in its head and a guardless body bodyj iff

(L← body .) ∈ P i
j .

Proof. Let PE contain a rewritten rule r∗ of level i with Lj in its head and a

guardless body bodyj . Let r = (L← body .). We will consider three cases:

1. If r∗ is a rewritten program rule, then by Def. 3.1 we have r ∈ P1
j .

2. If r∗ is a rewritten event rule, then by Def. 3.1 we have r ∈ Pj
j .

3. If r∗ is an assertable rule, then i ∈ {2, 3, . . . , j} and its assertion guard

(assert(r))i−1 is true in R. Then by (3.6) we have (assert(r))i−1 ∈ N

and by (3.5) we have assert(r) ∈Mi−1. Hence r ∈ P i
j .

For the converse implication let r = (L ← body .) ∈ P i
j for some i ∈

{1, 2, . . . , j}. We will consider three cases:

1. If r ∈ P , then PE contains a rewritten program rule of level i with Lj

in its head and the guardless body bodyj by the definition.

2. If r′ ∈ Ej , then PE contains a rewritten program rule of level i with

Lj in its head and the guardless body bodyj by the definition.

3. If r ∈ Pi and i > 1, then assert(r) ∈ Mi−1 and by (3.5) we have

(assert(r))i−1 ∈ N . By (3.6) we get (assert(r))i−1 ∈ R. Hence PE must

contain a rule with (assert(r))i−1 in its head and by Def. 3.1 it must

also contain the assertable rule

Lj ← bodyj , (assert(r))i−1,not rej(Lj , i).

42

Transformational Semantics for EVOLP 3.3 Completeness

Lemma 3.12. Assume (3.6) holds. PE contains an unrejected rewritten rule

with Lj in its head and a guardless body bodyj iff

(L← body .) ∈ ρ(Pj) \ Rej(Pj ,Mj) .

Proof. Let PE contain an unrejected rewritten rule r∗ of level i with Lj in its

head and a guardless body bodyj . Then by Lemma 3.11 we have

r = (L← body .) ∈ P i
j .

It is left to prove that r is not a member of the set Reji(Pj ,Mj). As r∗ is

unrejected, we know that not rej(Lj , i) ∈ R. The only source of default

literals in R is N−, so not rej(Lj , i) ∈ N−. Therefore rej(Lj , i) /∈ N and

by (3.5) we have that no rule of Reji(Pj ,Mj) has L in its head. Thus r /∈
Reji(Pj ,Mj).

For the converse implication let r = (L← body .) ∈ P i
j \Reji(Pj ,Mj) for

some i ∈ {1, 2, . . . , j}. By Lemma 3.11 we have that PE contains a rewritten

rule r∗ with Lj in its head and the guardless body bodyj . Now we need to

prove that r is unrejected. Assume it is rejected, i.e. not rej(Lj , i) /∈ R. Then

not rej(Lj , i) /∈ N− and thus rej(Lj , i) ∈ N . Then by (3.5) we have that

Reji(Pj ,Mj) contains some rule with L in its head. Moreover, according

to the definition of Reji(Pj ,Mj), some k ∈ {i, i + 1, . . . , j} must exist such

that Pk
j contains a rule with notL in its head and its body satisfied in Mj .

But according to the very same definition, this implies r ∈ Reji(Pj ,Mj), a

contradiction with the assumption.

Lemma 3.13. Let A be an atom of LA that trans-appears in PE . Then

notA ∈ Def(Pj ,Mj)⇐⇒ not rej(Aj
neg, 0) ∈ R1 .

Proof. Assume notA ∈ Def(Pj ,Mj). Then according to (3.5) we have

rej(Aj
neg, 0) /∈ N . This implies not rej(Aj

neg, 0) ∈ N− ⊆ R1.

On the other hand, if not rej(Aj
neg, 0) ∈ R1, then it must be the case that

not rej(Aj
neg, 0) ∈ N−. But this implies rej(Aj

neg, 0) /∈ N and by (3.5) we get

notA ∈ Def(Pj ,Mj).

43

Transformational Semantics for EVOLP 3.3 Completeness

Lemma 3.14. Let L be a literal over LA. If (3.6) holds, then

(∀i ∈ N)(L ∈Mj,i ∧ L trans-appears in PE =⇒ (∃l ∈ N)(Lj ∈ Rl)) .

Proof. We will prove by induction on i:

1◦ For i = 0 the claim trivially follows from Mj,0 = ∅.

2◦ We assume the claim holds for i, i.e. if L is a literal over LA, then

L ∈Mj,i ∧ L trans-appears in PE =⇒ (∃l ∈ N)(Lj ∈ Rl) .

We will prove the claim for i + 1. So let’s assume L ∈ Mj,i+1 and

L trans-appears in PE . Then there is some rule r = (L ← body .) ∈
[ρ(Pj) \ Rej(Pj ,Mj)] ∪ Def(Pj ,Mj) such that body ⊆ Mj,i. Let’s con-

sider two cases:

(a) If r is a default assumption, then body is empty and L is a default

literal notA. PE must also contain a default assumption of the

form

Aj
neg ← not rej(Aj

neg, 0).

because L trans-appears in PE . Moreover, by Lemma 3.13 we

have not rej(Aj
neg, 0) ∈ R1. Hence Aj

neg ∈ R2.

(b) If r ∈ ρ(Pj) \ Rej(Pj ,Mj), then by Lemma 3.12 there must be

some unrejected rewritten rule r∗ of PE with Lj in its head and

the guardless body bodyj . We can apply the inductive assump-

tion for each literal in body and take the maximum p of all the

indices we get. From the monotonicity of the immediate conse-

quence operator (Prop. 2.11) we have bodyj ⊆ Rp.

If r∗ has an assertion guard, then let q ∈ N be such that the as-

sertion guard belongs to Rq. Otherwise let q = 1.

Now let s = max{p, q}. As r∗ is unrejected, its rejection guard

is also true in R1 ⊆ Rs. We can use Prop. 2.11 again and infer

Lj ∈ Rs+1.

44

Transformational Semantics for EVOLP 3.3 Completeness

Lemma 3.15. Let L be a literal over LA. If (3.6) holds, then

(∀i ∈ N)(Lj ∈ Ri =⇒ L trans-appears in PE ∧ (∃l ∈ N)(L ∈Mj,l)) .

Proof. We will prove by induction on i:

1◦ For i = 0 the claim trivially follows from R0 = ∅.

2◦ We assume the claim holds for i, i.e. if L is a literal over LA, then

Lj ∈ Ri =⇒ L trans-appears in PE ∧ (∃l ∈ N)(L ∈Mj,l) .

We will prove the claim for i + 1. So let’s assume Lj ∈ Ri+1. Then

there is some rule r∗ ∈ PE with Lj in its head and its body satisfied in

Ri. Hence the first part of the proof is done – L trans-appears in PE

because PE contains a rule with Lj in its head. To prove the second

proposition, let’s consider two cases:

(a) If r∗ is a default assumption, then L is a default literal notA and

r∗ is of the form

Aj
neg ← not rej(Aj

neg, 0).

and not rej(Aj
neg, 0) ∈ R1. So by Lemma 3.13 we have notA ∈

Def(Pj ,Mj), and thus notA ∈Mj,1.

(b) If r∗ is not a default assumption, then it must be an unrejected

rewritten rule of PE . Let its guardless body be bodyj . Then by

Lemma 3.12 we have

(L← body .) ∈ ρ(Pj) \ Rej(Pj ,Mj) .

We can apply the inductive assumption for each literal in

bodyj and take the maximum p of all the indices we get.

From the monotonicity of the immediate consequence oper-

ator (Prop. 2.11) we have body ⊆Mj,p. Hence L ∈Mj,p+1.

45

Transformational Semantics for EVOLP 3.3 Completeness

Lemma 3.16. Let L be a literal over LA and j ∈ {1, 2, . . . , n}. Then

Lj ∈ N ⇐⇒ Lj ∈ R .

Proof. We will prove by complete induction on j.

1◦ The basis can be inferred from the inductive step with j = 1.

2◦ We assume (3.6) holds and prove

Lj ∈ N ⇐⇒ Lj ∈ R .

First let Lj ∈ N . Then Mj |= L and L trans-appears in PE . So some

i ∈ N exists such that L ∈ Mj,i and by Lemma 3.14 we have Lj ∈ Rl

for some l ∈ N. Hence Lj ∈ R.

On the other hand, if Lj ∈ R, then some i ∈ N exists such that Lj ∈ Ri.

Thus by Lemma 3.15 L trans-appears in PE and L ∈ Mj,l for some

l ∈ N. This implies Lj ∈ N .

Lemma 3.17. Let L be a literal over LA, j ∈ {1, 2, . . . , n} and i ∈
{0, 1, . . . , j}. Then

rej(Lj , i) ∈ N ⇐⇒ rej(Lj , i) ∈ R .

Proof. We know that rej(Lj , i) ∈ N holds iff Reji(Pj ,Mj) contains a rule r1

with L in its head. This in turn holds iff some k ∈ {i, i + 1, . . . , j} exists

such that Pk
j contains a rule r2 = (notL ← body .) such that Mj |= body .

Furthermore, by Lemma 3.11 and Lemma 3.16 this holds iff

PE contains a rewritten rule r∗2 with Lj
neg in its head

and the guardless body bodyj and bodyj ⊆ R.
(3.7)

Now let’s assume rej(Lj , i) ∈ N . Then (3.7) holds and according to the

46

Transformational Semantics for EVOLP 3.3 Completeness

definition of rejection rules, PE must also contain the rules

rej(Lj , i1)← body∗.

rej(Lj , i2)← rej(Lj , i1).

rej(Lj , i3)← rej(Lj , i2).

...

rej(Lj , is)← rej(Lj , is−1).

where k ≥ i1 > i2 > . . . > is = i and body∗ contains all literals in bodyj and

the assertion guard of r∗2 if it has one. As bodyj ⊆ R and r∗2 is a rewritten

rule, there must be some p ∈ N such that body∗ ⊆ Rp. Hence we have

rej(Lj , i1) ∈ Rp+1, rej(Lj , i2) ∈ Rp+2, . . . , rej(Lj , i) ∈ Rp+s ⊆ R.

For the converse implication let’s assume rej(Lj , i) ∈ R. Then

rej(Lj , i) ∈ Rp for some p ∈ N, so PE contains some rejection rule r∗3

with rej(Lj , i) in its head and its body satisfied in Rp−1. We will consider

two cases:

1. If r∗3 is of the form (3.2), then a look at the definition of rejection rules

tells us that (3.7) is satisfied. Thus rej(Lj , i) ∈ N .

2. If r∗3 is of the form (3.3), then its body is of the form rej(Lj , i1) where

i < i1 ≤ j. As rej(Lj , i1) ∈ Rp−1, PE must contain a rejection rule

with rej(Lj , i1) in its head and its body satisfied in Rp−2. Two cases

are possible again. In the first the proof ends and in the second we

get an index i2 such that i1 < i2 ≤ j and rej(Lj , i2) ∈ Rp−2. If the

second case would occur forever, we would get an infinite increasing

bounded sequence of natural numbers i < i1 < i2 < . . . ≤ j, which

is not possible. Hence after a finite number of iterations the first case

must occur.

Lemma 3.18. It holds that

u /∈ R .

Proof. We will prove by contradiction. Assume u ∈ R. Then for some atom

47

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

A of LA that trans-appears in PE we have

notAj ,notAj
neg ∈ R .

This implies

notAj ,notAj
neg ∈ N−

so we have

Aj , Aj
neg /∈ N .

But then by the definition of N we have both Mj 6|= A and Mj 6|= notA,

which is not possible.

Theorem 3.19 (Completeness). N is a stable model of PE .

Proof. Follows from Lemmas 3.16, 3.17 and 3.18.

3.4 Size of the Transformed Program

We now know the transformation defined in Def. 3.1 is sound and com-

plete. But we also want to know something about its computational com-

plexity because we want to use it to write an implementation of EVOLP.

The rules for generating the transformed program are quite simple, so the

algorithm performing the transformation will also be reasonably simple.

What really matters is the number of rules of the transformed program.

The more rules there will be, the longer it will take to generate them and

perform any further processing.

In this Section we will derive both a lower and an upper bound for the

number of rules of the transformed program. We will assume P is a finite

evolving logic program and E = (E1, E2, . . . , En) is a sequence of finite

events. First let’s take a look at the lower bound.

3.4.1 Lower Bound

We know the transformed program PE contains n|P | rewritten program

rules and
∑n

j=1 |Ej | rewritten event rules. So a very simple lower bound

48

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

for |PE | is:

|PE | ≥ n|P |+
n∑

j=1

|Ej | . (3.8)

Equality can be achieved only if P = E1 = E2 = . . . = En = ∅. Otherwise

PE will also contain some extra default assumptions and rejection rules.

3.4.2 Number of Assertable Rules

In order to derive an upper bound for |PE |, we will first need to make an

approximation of the number of assertable rules. Let A be the set of all

assertable rules in PE . We will define the sets A1, A2, . . . , An−1 and prove

that each Aj contains a rule r iff P j
E contains some rule with (assert(r))j in

its head. The motivation for this is that in case it is true, then

|A| =
n∑

j=1

(n− j)
∣∣Aj

∣∣ (3.9)

because each rule r ∈ Aj will generate n− j assertable rules, one in each of

P j+1
E , P j+2

E , . . . , Pn
E . The mentioned definition and proof follow:

Definition 3.20. Let E0 = ∅. Then

A1
def= {r | (∃r1 ∈ P)(H(r1) = assert(r))} , (3.10)

for all i ∈ {2, 3, . . . , n− 1}

Ai
def= {r | (∃r1 ∈ Ai−1)(H(r1) = assert(r))}

∪ {r | (∃r2 ∈ Ei−1)(H(r2) = assert(r1) ∧H(r1) = assert(r))}
(3.11)

and for all j ∈ {1, 2, . . . , n− 1} also

Aj
def=

j⋃
i=1

Ai ∪ {r | (∃r1 ∈ Ej)(H(r1) = assert(r))} . (3.12)

Remark. Let j ∈ {1, 2, . . . , n}. Each assertable rule in P j
E is fully deter-

mined by its assertion guard, i.e. if we know that it has the assertion guard

49

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

(assert(r))i−1 and r = (L← body .), then the assertable rule must be:

Lj ← bodyj , (assert(r))i−1,not rej(Lj , i).

We will make use of this fact in order to make some formulations simpler.

Lemma 3.21. Let i ∈ {1, 2, . . . , n− 1} and r ∈ Ai. Then for all j ∈ N such

that i < j ≤ n the set P j
E contains an assertable rule with the assertion

guard (assert(r))j−1.

Proof. We will prove by induction on i.

1◦ Let r ∈ A1. Then some rule r1 ∈ P exists such that H(r1) = assert(r).

Let j ∈ N be such that 1 < j ≤ n. Then P j−1
E must contain a rewritten

program rule with (assert(r))j−1 in its head and therefore P j
E must

contain an assertable rule with the assertion guard (assert(r))j−1.

2◦ We assume the claim holds for i and prove it for i + 1. Let r ∈ Ai+1

and let j ∈ N be such that i + 1 < j ≤ n. Two cases are possible:

(a) Some rule r1 ∈ Ai exists such that H(r1) = assert(r). By the

induction hypothesis we have that P j−1
E contains an assertable

rule with the assertion guard (assert(r1))j−2. This rule has

(assert(r))j−1 in its head. Hence P j
E contains an assertable rule

with the assertion guard (assert(r))j−1.

(b) Some rule r2 ∈ Ei exists such that H(r2) = assert(r1) and

H(r1) = assert(r). Then P i
E contains a rewritten event rule with

(assert(r1))i in its head. Hence P j−1
E will contain an assertable

rule with the assertion guard (assert(r1))i and (assert(r))j−1 in

its head. Therefore P j
E must contain an assertable rule with the

assertion guard (assert(r))j−1.

Lemma 3.22. Let j ∈ {1, 2, . . . , n− 1} and r ∈ Aj . Then P j
E contains a rule

with (assert(r))j in its head.

Proof. Assume that r ∈ Aj . Two cases are possible:

50

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

a) r ∈ Ai for some i ∈ {1, 2, . . . , j}. Then by Lemma 3.21 we have that

P j+1
E contains an assertable rule with the assertion guard (assert(r))j .

Hence P j
E must contain a rule with (assert(r))j in its head.

b) Some rule r1 ∈ Ej exists such that H(r1) = assert(r). Then P j
E con-

tains a rewritten event rule with (assert(r))j in its head.

Lemma 3.23. Let j ∈ {1, 2, . . . , n− 1} and let r be a rule over LA. If P j
E

contains a rule with (assert(r))j in its head, then r ∈ Aj .

Proof. We will prove by complete induction on j.

1◦ The basis can be inferred from the inductive step with j = 1 (the third

case doesn’t have to be examined because P 1
E contains no assertable

rules).

2◦ We assume the proposition holds for all i ∈ {1, 2, . . . , j − 1} and

prove it for j. Let’s consider three cases:

(a) If P j
E contains a rewritten program rule r∗1 with (assert(r))j in

its head, then P contains a rule r1 such that H(r1) = assert(r).

Hence r ∈ A1 ⊆ Aj .

(b) If P j
E contains a rewritten event rule r∗1 with (assert(r))j in its

head, then Ej contains a rule r1 such that H(r1) = assert(r).

Hence r ∈ Aj .

(c) If P j
E contains an assertable rule with (assert(r))j in its head, then

it must be of the form

(assert(r))j ← bodyj , (assert(r1))i−1,not rej((assert(r))j , i).

where r1 = (assert(r) ← body .) and i ≤ j. So P i−1
E must con-

tain a rule with (assert(r1))i−1 in its head and by the induction

hypothesis we have r1 ∈ Ai−1. Two cases are possible again:

i. r1 ∈ Ah for some h ∈ {1, 2, . . . , i− 1}. Then r ∈ Ah+1 ⊆ Aj .

ii. Some rule r2 ∈ Ei−1 exists such that H(r2) = assert(r1). We

also have H(r1) = assert(r). So r ∈ Ai ⊆ Aj .

51

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

Theorem 3.24. Let j ∈ {1, 2, . . . , n− 1} and let r be a rule over LA. P j
E

contains a rule with (assert(r))j in its head iff r ∈ Aj .

Proof. Follows directly from Lemmas 3.22 and 3.23.

Now we can make an approximation of |A|. According to (3.10), (3.11)

and (3.12) we have for all j ∈ {1, 2, . . . , n− 1}

|Aj | ≤ |P |+
j−1∑
i=1

|Ei| ,

∣∣Aj

∣∣ ≤ j|P |+ |Ej |+
j∑

i=1

(j − i)|Ei| .

Furthermore, by (3.9) we have

|A| =
n∑

j=1

(n− j)
∣∣Aj

∣∣ ≤ n∑
j=1

(n− j)

(
j|P |+ |Ej |+

j∑
i=1

(j − i)|Ei|

)

= |P |
n∑

j=1

j(n− j) +
n∑

j=1

(n− j)|Ej |+
n∑

j=1

(n− j)
j∑

i=1

(j − i)|Ei| .

(3.13)

First let’s solve the first sum:

n∑
j=1

j(n− j) = n

n∑
j=1

j −
n∑

j=1

j2 =
n2(n + 1)

2
− n(n + 1)(2n + 1)

6

=
n(n + 1)(3n− 2n− 1)

6
=

n3 − n

6
.

(3.14)

The third sum can be simplified as follows:

n∑
j=1

(n− j)
j∑

i=1

(j − i)|Ei| =
n∑

i=1

|Ei|
n∑

j=i

(n− j)(j − i)

=
n∑

i=1

|Ei|
n−i∑
j=1

j((n− i)− j) .

The inner sum is the same as the one in (3.14), just with n − i instead of n.

52

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

Hence this holds, too:

n∑
j=1

(n− j)
j∑

i=1

(j − i)|Ei| =
n∑

i=1

|Ei|
(n− i)3 − (n− i)

6
. (3.15)

So by (3.13), (3.14) and (3.15) we have

|A| ≤ |P |n
3 − n

6
+

n∑
j=1

(n− j)|Ej |+
n∑

i=1

|Ei|
(n− i)3 − (n− i)

6

= |P |n
3 − n

6
+

n∑
j=1

|Ej |
(n− j)3 + 5(n− j)

6
.

(3.16)

We can also put some extra restrictions on the input program and then

look at the number of assertable rules. For example, if we disallow nested

asserts (i.e. a rule within an assert atom must not contain assert atoms),

then we have |A1| ≤ |P | and |Aj | = 0 for all j ∈ {2, 3, . . . , n− 1}. Hence∣∣Aj

∣∣ ≤ |P |+ |Ej | for all j ∈ {1, 2, . . . , n− 1} and

|A| ≤
n∑

j=1

(n− j)(|P |+ |Ej |)

= |P |n
2 − n

2
+

n∑
j=1

(n− j)|Ej | .

(3.17)

3.4.3 Upper Bound

We already know the number of rewritten program rules and rewritten

event rules in the transformed program. We also have an upper bound

for the number of assertable rules. Now we need to deal with the default

assumptions, rejection rules and totality constraints.

How many default assumptions can there be? Both P and the events

are finite so only a finite set of atoms from LA can be used in them. Let this

set be LP,E . Each atom in this set can generate up to n default assumptions.

Each rewritten program rule, rewritten event rule and assertable rule

can generate at most 2 rejection rules. Two of these rules are needed to

generate a totality constraint.

53

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

Taken together, we have

|PE | ≤
7
2

n|P |+
n∑

j=1

|Ej |+ |A|

+ n|LP,E | . (3.18)

If we use the approximation of |A| (3.16) we get the following inequality:

|PE | ≤
7
2

n|P |+
n∑

j=1

|Ej |

+ |P |n
3 − n

6
+

n∑
j=1

|Ej |
(n− j)3 + 5(n− j)

6

+ n|LP,E |

which can be further simplified to

|PE | ≤
7
2

|P |n3 + 5n

6
+

n∑
j=1

|Ej |
(

(n− j)3 + 5(n− j)
6

+ 1
)+ n|LP,E |

and by using the big-oh notation we get

|PE | = O
(
n3|P |

)
+

n∑
j=1

O
(
(n− j + 1)3|Ej |

)
+ n|LP,E | . (3.19)

In case of programs without nested asserts we can use (3.17) to derive

|PE | ≤
7
2

|P |n2 + n

2
+

n∑
j=1

(n− j + 1)|Ej |

+ n|LP,E | ,

or, equivalently,

|PE | = O
(
n2|P |

)
+

n∑
j=1

O((n− j + 1)|Ej |) + n|LP,E | . (3.20)

3.4.4 Conclusion

The lower bound (3.8) for |PE | implies that an implementation of EVOLP

based on this transformation is not feasible usable for large values of n. For

54

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

example, an agent running for a long time and frequently receiving events

from its environment would soon reach a point at which its memory would

be too small for the transformed program. In such situations, a different

approach would be needed.

One possibility is to make an incremental implementation that always

computes 1 dynamic stable model and constructs the next program in the

sequence, just as it is drawn in Fig. 2.1. This approach was also used in the

implementation mentioned in [15, 16]. Such an implementation has to deal

with more details which can be both good and bad, depending on what we

want to use it for. It brings more control over what is being computed and

solves the problem with huge transformed programs when n is large. On

the other hand, more control is also a source of more problems.

A typical situation that arises after each step is this one: We already

have the program sequence (P1, P2, . . . , Pj) and we compute the dynamic

stable models Mj,1,Mj,2, . . . ,Mj,nj of the DLP P = (P1, P2, . . . , Pj ∪ Ej).

Now we need to choose the model according to which we will construct the

program Pj+1. The easiest situation is when the sets {r | assert(r) ∈Mj,i}
are equal for all i ∈ {1, 2, . . . , nj} because we only have one choice for Pj+1.

But in general each of these sets can be different, so we can have exponen-

tially many candidates. Moreover, if nj = 0, then we have to backtrack and

try a different candidate for one of P2, P3, . . . , Pj . If many of the possible

program sequences lead to such a dead end, we may have to try all the bad

choices before we find some evolution stable model. This is illustrated in

the following example:

Example 3.25. Consider this evolving logic program:

P : assert(a← .)← not assert(b← .).

assert(b← .)← not assert(a← .).

and the sequence of events En = (E1, E2, . . . , En), E1 = E2 = . . . = En = ∅.
P given En has 2n evolution stable models with 2n−1 different evolution

55

Transformational Semantics for EVOLP 3.4 Size of the Transformed Program

traces. Now let En+1 = (E1, E2, . . . , En+1) where

En+1 : c← a.

not c← a.

P given En+1 has only two evolution stable models that share a common

evolution trace. The incremental implementation may have to generate

all 2n−1 evolution traces in order to find the correct one whereas the

transformation-based implementation could find the two models much

more quickly.

The good news regarding the transformation-based implementation is

that, according to (3.19), the size of the transformed program depends on

the size of the input program, size of events and n only polynomially. So

the transformation can be performed in polynomial time and for small val-

ues of n the transformed program will be of reasonable size (comparing to

the size of input). Furthermore, if we use only (or mostly) rules without

nested asserts, (3.20) implies that we can lower the power of n that |PE |
grows with. So for experimental use and especially for cases when n is not

too large and we want to compute all evolution stable models or any evo-

lution stable model (i.e. if we don’t want to influence the order in which

the models are computed), the transformation-based implementation is a

good choice and, once we have the definition of the transformation, it is

also easier to write and test.

56

Chapter 4

Implementation of EVOLP

The transformational semantics for EVOLP together with an ASP solver

can be used to implement EVOLP. Figure 4.1 shows how we can do this –

first we take an evolving logic program and a sequence of events as input

and use the transformation to produce an equivalent normal logic program.

Then we use the ASP solver to find the stable models of the normal logic

program and reconstruct the evolution stable models of the original input.

4.1 Propositional Evolving Logic Programs

We decided to write the implementation in Java1. First we wrote a pro-

totype to see if everything works as expected. It supports 2 ASP solvers:

Smodels2 and DLV3. It has two frontends, a web form4 and a command

line interface5. Both of these interfaces can be used to enter an evolving

logic program and compute some or all its evolution stable models.

Parts of the prototype were later used to write a more extensible and

modular implementation. It currently contains:

• classes for parsing and creating object models of logic programs, dy-

namic logic programs and evolving logic programs,

1http://java.sun.com/
2http://www.tcs.hut.fi/Software/smodels/
3http://www.dbai.tuwien.ac.at/proj/dlv/
4runs at http://www.ii.fmph.uniba.sk/∼slota/evolp-prop-prototype/
5downloadable from http://slotik.medovnicek.sk/2006/thesis/results/

57

http://java.sun.com/
http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.ii.fmph.uniba.sk/~slota/evolp-prop-prototype/
http://slotik.medovnicek.sk/2006/thesis/results/

Implementation of EVOLP 4.1 Propositional Evolving Logic Programs

Figure 4.1: Implementation of EVOLP using the transformation

Evolving logic program Events Evolution stable models

Transformation

Normal Logic Program

ASP Solver Stable models

Model Transformation

• classes for computing their stable models,

• a set of developer-friendly classes.

Sources are licensed under GPL6. They are provided with standard Java

documentation (javadoc) and a set of tests. Although it is far from a com-

plete test set, it tests the main functionality of the core classes. Support

for DLV has been dropped for now and the implementation has only one

frontend – a web form7.

The current implementation of parser has extended capability. Parsing

of variables and function symbols is supported. Computing (dynamic) sta-

ble models of (dynamic) logic programs with variables and function sym-

bols is supported in case they can be grounded using lparse, i.e. variables

and symbols satisfy the condition that each variable is (also) bound by

some domain predicate. The implementation of DLPs is available through

another web form8.

As for EVOLP, variable support is more difficult to implement and the

implementation is not finished yet. In Sect. 4.3 we’ll show what problems

there are and propose some solutions. But first we need to take a look at an

alternative transformation for EVOLP.
6http://www.gnu.org/licenses/licenses.html#GPL
7runs at http://www.ii.fmph.uniba.sk/∼slota/evolp-prop/
8runs at http://www.ii.fmph.uniba.sk/∼slota/dlp/

58

http://www.gnu.org/licenses/licenses.html#GPL
http://www.ii.fmph.uniba.sk/~slota/evolp-prop/
http://www.ii.fmph.uniba.sk/~slota/dlp/

Implementation of EVOLP 4.2 Transformation into an Equivalent DLP

4.2 Transformation into an Equivalent DLP

As we were facing the problems with variables we discovered the follow-

ing: First we can transform the evolving logic program into an equivalent

dynamic logic program. Then we can continue with the transformation from

[17] to obtain an equivalent normal logic program. This makes the whole

transformation easier to imagine, implement and debug. The definition of

the transformation into an equivalent DLP follows:

Definition 4.1. Let P be an evolving logic program and

E = (E1, E2, . . . , En)

an event sequence. Furthermore, let Aj be for all j ∈ {1, 2, . . . , n− 1} de-

fined as in (3.12) and LD
T = {Aj | A ∈ LA ∧ 1 ≤ j ≤ n}. By a dynamic trans-

formational equivalent of P given E we mean the dynamic logic program

PP,E = (P1, P2, . . . , Pn) over LD
T consisting of exactly these rules:

1. Rewritten program rules. For every rule

(L← body.) ∈ P

P1 contains the rules

L1 ← body1.

L2 ← body2.

...

Ln ← bodyn.

2. Rewritten event rules. For all j ∈ {1, 2, . . . , n} and every rule

(L← body.) ∈ Ej

Pj contains the rule

Lj ← bodyj .

59

Implementation of EVOLP 4.3 Grounding of an Evolving Logic Program

3. Assertable rules. For all j ∈ {1, 2, . . . , n− 1} and every rule

r = (L← body.) ∈ Aj

P j+1 contains the rules

Lj+1 ← bodyj+1, (assert(r))j .

Lj+2 ← bodyj+2, (assert(r))j .

...

Ln ← bodyn, (assert(r))j .

The proofs of soundness and completeness of this transformation

haven’t been written yet, but they should be just simplified versions of the

proofs for the original transformation. The new transformation essentially

postpones the addition of default assumptions, rejection rules and totality

constraints. It can be performed as soon as we know the contents of the

sets A1, A2, . . . , An−1. With a propositional language it is easy to construct

them. But when the input program contains variables, we need to do

something more.

4.3 Grounding of an Evolving Logic Program

The next example shows that sometimes we also want to assert a rule that

is partially grounded, i.e. some of the variables appearing in the rule are

instantiated and some are not:

Example 4.2. Consider the following program:

c(1)← .

assert(a(X, Y)← b(Y))← c(X).

What rule do we expect to be asserted in the second program? We probably

want the variable X to get instantiated with 1 and Y should stay a variable

and get grounded later when its time comes. So the desired rule to be

60

Implementation of EVOLP 4.3 Grounding of an Evolving Logic Program

asserted is:

a(1, Y)← b(Y).

Alternatively, we could instantiate Y with all possible terms appearing in

the program. But then we need to find the list of all terms before ground-

ing the program. With function symbols this can get complicated. Either

we write a separate grounder for this or we disallow the use of variables in-

side function symbols. Moreover, we should also include terms that could

appear later in the evolution of the program because the rule will also be

asserted into further DLPs. Most probably we would generate a lot of un-

necessary grounded atoms in the models, and hence also unreachable rules

in the further programs.

Another possibility is to say that such rules are not allowed, i.e. force

the programmer to always bind all variables with a domain predicate.

However, this removes some expressivity of the language. The first ap-

proach of asserting a partially grounded rule looks like the best alternative.

The proposed solution can be implemented as follows:

1. Ground those variables inside an assert(·) in a head of a rule that also

appear in that rule’s body.

2. Protect the other variables by transforming them into constants.

However, this brings another issue worth considering:

Example 4.3. Let’s take following program:

assert(a(X)← b(X))← .

b← assert(a(1)← b(1)).

In case we encode X as a constant enc_X, b will not be true in the model. If

we would like it to be there we need to add the rule

assert(a(1)← b(1))← assert(a(enc_X)← b(enc_X)). (4.1)

to the transformed program. The question whether b should really be in

the model is left open.

61

Implementation of EVOLP 4.3 Grounding of an Evolving Logic Program

So if we transform the variables into constants, they will not match the

ordinary constants in asserts appearing in rule bodies. This can be solved

by using the unification algorithm to find out when an atom with an en-

coded variable is more general than some other atom used in the body of

some rule. In case such a pair is found, a rule like (4.1) is added to the

transformed dynamic logic program.

Now to a different problem:

Example 4.4. Consider the rule:

assert(X)← says(joe, X). (4.2)

In order for it to be of some use to us, the second argument of says/2 should

always be a rule. Or at least there should be the possibility to put a rule

there. We believe it is not a good idea to mix rules with ordinary terms

because it can make things rather messy and we don’t see any good use for

a predicate that can have both an ordinary term and a rule as argument on

the same position.

Therefore, we need to divide the variables into two groups – rule vari-

ables and ordinary variables. We also see that the rule variable X must be

grounded before we know what set of rules can be generated into the next

evolution steps by the rule (4.2).

One way of grounding the rule variables is to perform a step-by-step

grounding where each single step looks as described below:

1. We already have a partially constructed PP,E that contains all rules

with heads labeled by some i ∈ {1, 2, . . . , j − 1} and also the sets

A1, A2, . . . , Aj−1.

2. Hence we know the rules of PP,E with their heads labeled by j. We

can add them to our partially constructed PP,E and ground it using

lparse.

3. Aj+1 now consists of those rules r for which PP,E contains a rule with

(assert(r))j in its head.

62

Implementation of EVOLP 4.4 Optimizations in the Implementations

The current implementation already does this sort of grounding. But it

doesn’t handle variables inside heads of asserts correctly – it doesn’t bind

any of them with the variables in the rule’s body. It also doesn’t sort out

the problem from Ex. 4.3 and doesn’t check whether the programmer con-

sistently used the predicates, i.e. it allows an input program like

p(const)← .

assert(X)← p(X).

that would result in asserting a constant const which doesn’t make much

sense. The incomplete implementation is also available through a web

form9.

4.4 Optimizations in the Implementations

All implementations mentioned in this Chapter include an optimization

that prevents the generation of unnecessary default assumptions and rejec-

tion rules. The formal definitions could also be simplified in this manner,

but then they would get more complicated and it would be more difficult to

work with them in the proofs. And although we haven’t proved that these

optimizations are safe to perform, the proofs should be easy to write given

that we already proved the original transformation is sound and complete.

As an example let’s take the transformed program from Ex. 2.23. The

optimized implementation would not generate the default assumptions

(2.11) and (2.12). Consequently, the rejection rules (2.18) and (2.19) would

also be dropped. Moreover, the rejection rule (2.21) would be removed be-

cause rej(2, tired−) doesn’t appear in the head of any rule.

9runs at http://www.ii.fmph.uniba.sk/∼slota/evolp-var/

63

http://www.ii.fmph.uniba.sk/~slota/evolp-var/

Chapter 5

Conclusion and Future Work

We have defined a transformational semantics for evolving logic programs

and proved that it is sound and complete. We also examined the effective-

ness of the transformation and identified situations in which it is practically

applicable. Properties of transformation-based implementations of EVOLP

were compared with an incremental approach to the implementation. We

also presented an implementation of evolving logic programs that relies on

the defined transformation.

Future work can be devoted to improvements and extensions of the

existing implementation. In particular, variable support needs to be fin-

ished, including the proof that the transformation from Def. 4.1 is sound

and complete. In order to be practically usable, the implementation should

also support weight constraints, arithmetic predicates and strong negation.

The number of rules of the transformed program could also be optimized

in certain situations.

64

References

[1] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, Halina

Przymusinska, and Teodor C. Przymusinski. Dynamic logic program-

ming. In A. Cohn, L. Schubert, and S. Shapiro, editors, Procs. of the

Sixth International Conference on Principles of Knowledge Representation

and Reasoning (KR’98), pages 98–111. Morgan-Kaufmann, June 1998.

[2] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, Halina

Przymusinska, and Teodor C. Przymusinski. Updates of logic pro-

grams by logic programs. In IIS’98: Seventh International Symposium on

Intelligent Information Systems (Former WIS Series), pages 98–111, June

1998.

[3] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, Halina

Przymusinska, and Teodor C. Przymusinski. Dynamic logic program-

ming. In M. Falaschi J. L. Freire and M. Vialres-Ferro, editors, Procs.

of the 1998 Joint Conference on Declarative Programming (AGP’98), pages

393–408, July 1998.

[4] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, Halina

Przymusinska, and Teodor C. Przymusinski. Dynamic updates of

non-monotonic knowledge bases. The Journal of Logic Programming,

45(1-3):43–70, September/October 2000.

[5] José Júlio Alferes, Federico Banti, and Antonio Brogi. A principled

semantics for logic program updates. In Brewka and Peppas, editors,

Nonmonotonic Reasoning, Action, and Change (NRAC’03), 2003.

65

REFERENCES

[6] José Júlio Alferes, Federico Banti, Antonio Brogi, and João Alexandre

Leite. Semantics for dynamic logic programming: a principle-based

approach. In V. Lifschitz and I. Niemelä, editors, Procs. of the Seventh

International Conference on Logic Programming and Nonmonotonic Reason-

ing (LPNMR-7), pages 8–20. Springer-Verlag, 2004.

[7] José Júlio Alferes, Federico Banti, Antonio Brogi, and João Alexandre

Leite. The refined extension principle for semantics of dynamic logic

programming. Studia Logica, 79(1):7–32, 2005.

[8] João Alexandre Leite. Evolving Knowledge Bases – Specification and Se-

mantics. PhD thesis, Universidade Nova de Lisboa, July 2002.

[9] Martin Homola. Various semantics are equal on acyclic programs. In

J. A. Leite and P. Torroni, editors, Procs. of the 5th International Workshop

on Computational Logic in Multi-Agent Systems (CLIMA V), pages 78–95.

Springer, 2004.

[10] José Júlio Alferes, Luís Moniz Pereira, Halina Przymusinska, and

Teodor C. Przymusinski. LUPS – a language for updating logic pro-

grams. In M. Gelfond, N. Leone, and G. Pfeifer, editors, Procs. of the 5th

International Conference on Logic Programming and Nonmonotonic Reason-

ing, pages 162–176. Springer, 1999.

[11] José Júlio Alferes, Luís Moniz Pereira, Halina Przymusinska, and

Teodor C. Przymusinski. LUPS – a language for updating logic pro-

grams. Artificial Intelligence, 138(1&2), June 2002.

[12] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. A

framework for declarative update specifications in logic programs. In

IJCAI’01, pages 649–654. Morgan-Kaufmann, 2001.

[13] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Mo-

niz Pereira. Evolving logic programs. In S. Flesca, S. Greco, N. Leone,

and G. Ianni, editors, Proceedings of the 8th European Conference on Logics

in Artificial Intelligence (JELIA’02), pages 50–61. Springer-Verlag, 2002.

66

REFERENCES

[14] Implementations of logic programs updates,

http://centria.di.fct.unl.pt/∼jja/updates/.

[15] João Alexandre Leite and Luís Soares. Enhancing a multi-agent system

with evolving logic programs. In K. Inoue, K. Satoh, and F. Toni, ed-

itors, Pre-Procs. of the 7th International Workshop on Computational Logic

in Multi-Agent Systems, (CLIMA VII), pages 207–222, 2006.

[16] João Alexandre Leite and Luís Soares. Adding evolving abilities to a

multi-agent system. In K. Satoh K. Inoue and F. Toni, editors, Procs.

of the 7th International Workshop on Computational Logic in Multi-Agent

Systems (CLIMA VII). Springer-Verlag, 2007. To appear.

[17] Federico Banti, José Júlio Alferes, and Antonio Brogi. Operational

semantics for DyLPs. In C. Bento A. Cardoso and G. Dias, editors,

Progress in Artificial Intelligence, Procs. 12th Portuguese Int. Conf. on Ar-

tificial Intelligence (EPIA’05), pages 43–54. Springer, 2005.

[18] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Prob-

lem Solving. Cambridge University Press, New York, NY, USA, 2003.

[19] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Mo-

niz Pereira. An evolving agent with evolp. In P. Rullo N. Leone, ed-

itor, Procs. of APPIA-GULP-PRODE’03 Joint Conf. on Declarative Pro-

gramming (AGP’03), pages 205–216, September 2003.

[20] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Mo-

niz Pereira. An evolvable rule-based e-mail agent. In S. Abreu, editor,

Progress in Artificial Intelligence, Procs. 11th Portuguese Int. Conf. on Ar-

tificial Intelligence (EPIA’03). Springer, December 2003.

[21] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Mo-

niz Pereira. An evolving agent with evolp. In M. Klusch, S. Ossowski,

A. Omicini, and H. Laamanen, editors, Procs. of the 7th International

Workshop on Cooperative Information Agents (CIA’03), pages 281–297.

Springer-Verlag, 2003.

67

http://centria.di.fct.unl.pt/~jja/updates/

Definition Index

Aj , 27

Aj
neg, 27

assertable rule, 28

assertion guard, 29

atom, 14

B(r), 15

default assumption, 28

default assumptions, 20

definite logic program, 15

Def(P, I), 20

dynamic logic program, 20

semantics, 20

syntax, 20

transformational semantics, 21

dynamic stable model, 20

event sequence, 24

evolution interpretation, 24

evolution stable model, 24

evolution trace, 24

evolving logic program, 23

semantics, 24

syntax, 23

extended language, 23

fact, 15

generalized logic program, 15

guardless body, 30

H(r), 15

immediate consequence operator, 16

interpretation, 16

LA, 23

language, 14

least model, 16

least(P), 18

level, 30

literal, 14

appears, 15

Lj , 27

LT , 27

minimal model, 16

model, 16

N, 17

normal logic program, 15

P i, 20

rej(Aj , i), 27

rej(Aj
neg, i), 27

rejected rules, 20

rejection guard, 29

rejection rule, 28

68

DEFINITION INDEX

Rejj(P, I), 20

Rej(P, I), 20

rewritten event rule, 28

rewritten program rule, 28

rewritten rule, 31, 40

ρ(P), 20

rule, 15

definite, 15

normal, 15

rule body, 15

rule head, 15

stable model, 19

totality constraint, 29

trans-appears, 27

transformational equivalent, 27

unrejected rule, 31, 40

69

GNU Free Documentation

License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other

functional and useful document “free” in the sense of freedom: to assure

everyone the effective freedom to copy and redistribute it, with or without

modifying it, either commercially or noncommercially. Secondarily, this

License preserves for the author and publisher a way to get credit for their

work, while not being considered responsible for modifications made by

others.

This License is a kind of “copyleft”, which means that derivative works

of the document must themselves be free in the same sense. It complements

the GNU General Public License, which is a copyleft license designed for

free software.

We have designed this License in order to use it for manuals for free

software, because free software needs free documentation: a free program

should come with manuals providing the same freedoms that the software

70

GNU Free Documentation License

does. But this License is not limited to software manuals; it can be used for

any textual work, regardless of subject matter or whether it is published as

a printed book. We recommend this License principally for works whose

purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be distributed

under the terms of this License. Such a notice grants a world-wide, royalty-

free license, unlimited in duration, to use that work under the conditions

stated herein. The “Document”, below, refers to any such manual or work.

Any member of the public is a licensee, and is addressed as “you”. You

accept the license if you copy, modify or distribute the work in a way re-

quiring permission under copyright law.

A “Modified Version” of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifications

and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section

of the Document that deals exclusively with the relationship of the pub-

lishers or authors of the Document to the Document’s overall subject (or

to related matters) and contains nothing that could fall directly within that

overall subject. (Thus, if the Document is in part a textbook of mathematics,

a Secondary Section may not explain any mathematics.) The relationship

could be a matter of historical connection with the subject or with related

matters, or of legal, commercial, philosophical, ethical or political position

regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles

are designated, as being those of Invariant Sections, in the notice that says

that the Document is released under this License. If a section does not fit

the above definition of Secondary then it is not allowed to be designated

as Invariant. The Document may contain zero Invariant Sections. If the

Document does not identify any Invariant Sections then there are none.

71

GNU Free Documentation License

The “Cover Texts” are certain short passages of text that are listed, as

Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-

ument is released under this License. A Front-Cover Text may be at most 5

words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable

copy, represented in a format whose specification is available to the gen-

eral public, that is suitable for revising the document straightforwardly

with generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and

that is suitable for input to text formatters or for automatic translation to a

variety of formats suitable for input to text formatters. A copy made in an

otherwise Transparent file format whose markup, or absence of markup,

has been arranged to thwart or discourage subsequent modification by

readers is not Transparent. An image format is not Transparent if used for

any substantial amount of text. A copy that is not “Transparent” is called

“Opaque”.

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML

or XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples

of transparent image formats include PNG, XCF and JPG. Opaque for-

mats include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or

processing tools are not generally available, and the machine-generated

HTML, PostScript or PDF produced by some word processors for output

purposes only.

The “Title Page” means, for a printed book, the title page itself, plus

such following pages as are needed to hold, legibly, the material this Li-

cense requires to appear in the title page. For works in formats which do

not have any title page as such, “Title Page” means the text near the most

prominent appearance of the work’s title, preceding the beginning of the

body of the text.

A section “Entitled XYZ” means a named subunit of the Document

72

GNU Free Documentation License

whose title either is precisely XYZ or contains XYZ in parentheses follow-

ing text that translates XYZ in another language. (Here XYZ stands for

a specific section name mentioned below, such as “Acknowledgements”,

“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”

of such a section when you modify the Document means that it remains a

section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice

which states that this License applies to the Document. These Warranty

Disclaimers are considered to be included by reference in this License, but

only as regards disclaiming warranties: any other implication that these

Warranty Disclaimers may have is void and has no effect on the meaning

of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-

mercially or noncommercially, provided that this License, the copyright no-

tices, and the license notice saying this License applies to the Document are

reproduced in all copies, and that you add no other conditions whatsoever

to those of this License. You may not use technical measures to obstruct

or control the reading or further copying of the copies you make or dis-

tribute. However, you may accept compensation in exchange for copies. If

you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and

you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the Doc-

ument’s license notice requires Cover Texts, you must enclose the copies

in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover

Texts on the front cover, and Back-Cover Texts on the back cover. Both

73

GNU Free Documentation License

covers must also clearly and legibly identify you as the publisher of these

copies. The front cover must present the full title with all words of the title

equally prominent and visible. You may add other material on the covers in

addition. Copying with changes limited to the covers, as long as they pre-

serve the title of the Document and satisfy these conditions, can be treated

as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,

you should put the first ones listed (as many as fit reasonably) on the actual

cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy a

computer-network location from which the general network-using public

has access to download using public-standard network protocols a com-

plete Transparent copy of the Document, free of added material. If you use

the latter option, you must take reasonably prudent steps, when you begin

distribution of Opaque copies in quantity, to ensure that this Transparent

copy will remain thus accessible at the stated location until at least one year

after the last time you distribute an Opaque copy (directly or through your

agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to give

them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document un-

der the conditions of sections 2 and 3 above, provided that you release the

Modified Version under precisely this License, with the Modified Version

filling the role of the Document, thus licensing distribution and modifica-

tion of the Modified Version to whoever possesses a copy of it. In addition,

you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from

that of the Document, and from those of previous versions (which

74

GNU Free Documentation License

should, if there were any, be listed in the History section of the Docu-

ment). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-

sponsible for authorship of the modifications in the Modified Version,

together with at least five of the principal authors of the Document

(all of its principal authors, if it has fewer than five), unless they re-

lease you from this requirement.

C. State on the Title page the name of the publisher of the Modified Ver-

sion, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent

to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giv-

ing the public permission to use the Modified Version under the terms

of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to

it an item stating at least the title, year, new authors, and publisher of

the Modified Version as given on the Title Page. If there is no section

Entitled “History” in the Document, create one stating the title, year,

authors, and publisher of the Document as given on its Title Page,

then add an item describing the Modified Version as stated in the

previous sentence.

J. Preserve the network location, if any, given in the Document for pub-

lic access to a Transparent copy of the Document, and likewise the

network locations given in the Document for previous versions it was

75

GNU Free Documentation License

based on. These may be placed in the “History” section. You may

omit a network location for a work that was published at least four

years before the Document itself, or if the original publisher of the

version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-

serve the Title of the section, and preserve in the section all the sub-

stance and tone of each of the contributor acknowledgements and/or

dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their

text and in their titles. Section numbers or the equivalent are not con-

sidered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not

be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or

to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-

dices that qualify as Secondary Sections and contain no material copied

from the Document, you may at your option designate some or all of these

sections as invariant. To do this, add their titles to the list of Invariant Sec-

tions in the Modified Version’s license notice. These titles must be distinct

from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains

nothing but endorsements of your Modified Version by various parties–for

example, statements of peer review or that the text has been approved by

an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and

a passage of up to 25 words as a Back-Cover Text, to the end of the list of

Cover Texts in the Modified Version. Only one passage of Front-Cover Text

and one of Back-Cover Text may be added by (or through arrangements

76

GNU Free Documentation License

made by) any one entity. If the Document already includes a cover text for

the same cover, previously added by you or by arrangement made by the

same entity you are acting on behalf of, you may not add another; but you

may replace the old one, on explicit permission from the previous publisher

that added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or imply

endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released un-

der this License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the Invariant

Sections of all of the original documents, unmodified, and list them all as

Invariant Sections of your combined work in its license notice, and that you

preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and

multiple identical Invariant Sections may be replaced with a single copy.

If there are multiple Invariant Sections with the same name but different

contents, make the title of each such section unique by adding at the end

of it, in parentheses, the name of the original author or publisher of that

section if known, or else a unique number. Make the same adjustment to

the section titles in the list of Invariant Sections in the license notice of the

combined work.

In the combination, you must combine any sections Entitled “History”

in the various original documents, forming one section Entitled “History”;

likewise combine any sections Entitled “Acknowledgements”, and any sec-

tions Entitled “Dedications”. You must delete all sections Entitled “En-

dorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-

ments released under this License, and replace the individual copies of this

77

GNU Free Documentation License

License in the various documents with a single copy that is included in the

collection, provided that you follow the rules of this License for verbatim

copying of each of the documents in all other respects.

You may extract a single document from such a collection, and dis-

tribute it individually under this License, provided you insert a copy of this

License into the extracted document, and follow this License in all other re-

spects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or dis-

tribution medium, is called an “aggregate” if the copyright resulting from

the compilation is not used to limit the legal rights of the compilation’s

users beyond what the individual works permit. When the Document is

included in an aggregate, this License does not apply to the other works in

the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies

of the Document, then if the Document is less than one half of the entire ag-

gregate, the Document’s Cover Texts may be placed on covers that bracket

the Document within the aggregate, or the electronic equivalent of covers if

the Document is in electronic form. Otherwise they must appear on printed

covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing In-

variant Sections with translations requires special permission from their

copyright holders, but you may include translations of some or all Invari-

ant Sections in addition to the original versions of these Invariant Sections.

You may include a translation of this License, and all the license notices in

the Document, and any Warranty Disclaimers, provided that you also in-

clude the original English version of this License and the original versions

78

GNU Free Documentation License

of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer,

the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-

cations”, or “History”, the requirement (section 4) to Preserve its Title (sec-

tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-

cept as expressly provided for under this License. Any other attempt to

copy, modify, sublicense or distribute the Document is void, and will auto-

matically terminate your rights under this License. However, parties who

have received copies, or rights, from you under this License will not have

their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions

will be similar in spirit to the present version, but may differ in detail to

address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If

the Document specifies that a particular numbered version of this License

“or any later version” applies to it, you have the option of following the

terms and conditions either of that specified version or of any later version

that has been published (not as a draft) by the Free Software Foundation. If

the Document does not specify a version number of this License, you may

choose any version ever published (not as a draft) by the Free Software

Foundation.

79

GNU Free Documentation License

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of

the License in the document and put the following copyright and license

notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to

copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any

later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled

“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts

being LIST.

If you have Invariant Sections without Cover Texts, or some other com-

bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of free

software license, such as the GNU General Public License, to permit their

use in free software.

80

Abstrakt

V priebehu svojho vývoja sa logické programovanie ukázalo byt’ dobrým a

prirodzeným nástrojom na formuláciu, dotazovanie a manipulovanie sym-

bolovo vyjadrených znalostí v mnohých aplikačných oblastiach informati-

ky. Avšak použitel’nost’ týchto prostriedkov je v dynamických prostrediach

podstatne obmedzená. Evolučné logické programy (EVOLP) sú elegant-

ným rozšírením logického programovania, ktoré je vhodné pre multiagen-

tové systémy, plánovanie, či iné použitie, v ktorom sa informácie dynamic-

ky menia.

Táto práca sa zaoberá transformáciou, ktorá l’ubovol’ný evolučný lo-

gický program transformuje na ekvivalentný normálny logický program.

Navrhnutú transformáciu d’alej využíva na naprogramovanie prvej vol’-

ne dostupnej, rozšíritel’nej a znova použitel’nej implementácie sémantiky

evolutívnych stabilných modelov pre EVOLP.

Kl’účové slová: logické programovanie, sémantika stabilných modelov,

evolučné logické programy, transformačná sémantika, implementácia

81

	Cover page
	Title page
	Declaration
	Acknowledgements
	Abstract
	Preface
	Contents
	List of Figures
	1 Introduction and Motivation
	1.1 Logic Programming and Intelligent Agents
	1.2 The Roadmap

	2 Preliminaries
	2.1 Logic Programs
	2.1.1 Syntax
	2.1.2 Semantics

	2.2 Dynamic Logic Programs
	2.2.1 Transformational Semantics

	2.3 Evolving Logic Programs

	3 Transformational Semantics for EVOLP
	3.1 Definition
	3.2 Soundness
	3.3 Completeness
	3.4 Size of the Transformed Program
	3.4.1 Lower Bound
	3.4.2 Number of Assertable Rules
	3.4.3 Upper Bound
	3.4.4 Conclusion

	4 Implementation of EVOLP
	4.1 Propositional Evolving Logic Programs
	4.2 Transformation into an Equivalent DLP
	4.3 Grounding of an Evolving Logic Program
	4.4 Optimizations in the Implementations

	5 Conclusion and Future Work
	References
	Definition Index
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

	Abstrakt (slovenský)

