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Chapter 1

Introduction

G.B. Shaw: “If you have a good brain, devote yourself to statistics.

If not, devote yourself to politics or theater.”

Real biological networks are able to make decisions (Mitchell T., 1997). We will show

that this behavior can be observed even in some simple architectures of biologically

plausible neural models (Pavlasek et al., 2003). The great interest of this thesis is also

to contribute to methods of statistical decision theory by giving a lead how to evolve

the neural networks to solve miscellaneous decision tasks.

In particular, we want our networks to solve decision making task over spike (temporal)

trains. As an illustration of practical utilization consider the following: We have a

source input with a sequential access to it and our goal is to decide whether the input

data satisfy the given constraints, such as ‘Is the data–set from a Poisson distribution?’.

Network architectures can be also used for comparative decision making: we have two

sequential inputs and we are to decide, which one is more frequent, more variable or

regular. Not all of these problems have the statistical hypothesis testing algorithms that

give us an answer at a chosen significance level according to the features of the input

set (Schervish, 1995).

We present and demonstrate a method that deals with this type of tasks. It is based

on developing and evolving an artificial, but biologically plausible, tasks–specific neural

network. After the evolution, the evolved network is taken as a decision maker and its

output is taken as a decision. A beneficial feature of simple plausible models is that we

can uncover and explore the information processing.
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Unfortunately, the construction of a NN with a given task is not obvious even for the

well defined optimization problems (Hopfield and Tank, 1985). That is why we use

an evolution to do it for us. Using a genetic algorithm as a replacement for back

propagation does not seem to be competitive with the best gradient methods, but it

promising when gradient or error information is not available (Schaffer et al., 1992). The

difference between the classic statistical and this approach is that we obtain an adaptive

decision tool: the network can respond faster to simpler inputs. Such an information

processing is not (besides the learning phase) computationally hard. For these reasons,

this approach also deserve an attention of real–time controllers constructors (Pham and

Liu, 1995).

Of course, all the desired properties must affect a fitness function, an optimality quanti-

fier of a concrete NN in a population of NNs. (Kvasnicka et al., 2000) The better decision

maker is evaluated with a higher fitness — an ability to survive and breed. Thus the

“better genes” are spread into the population (hopefully) providing a better generation

(Mitchell M., 1998). After evolution, the best NN in the population is supposed to be

good enough for decision maker for the given task.

In the next chapter we will provide a framework of this thesis: the chosen NN model

and the probabilistic distributions for the input data. When using genetic algorithms

to evolve the required NN, we have to consider the chromosome coding, direct/indirect

coding, select the model parameters that will be subject to evolution, evaluation of the

chromosome, the fitness function, the way of the crossover and the type of the genetic

algorithm. We offer a detailed description of the used methods in chapter 2 and 3. The

results on the selected tasks are presented in chapter 4. Conclusions and indications for

further work are given in chapter 5.
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Chapter 2

Methods

This chapter provides an overview of used methods. Evolution and genetic algorithms

are entered into details separately in chapter 3.

2.1 JASTAP Model

2.1.1 Why this model?

The reason why we have chosen this model is its biological plausibility. It is a spiking

neuron model and it respects physiological aspects of a biologically realistic neuron.

Next, it is better configurable than the standard NN models. Moreover, it can describe

the ability of the human brain to make decisions. In other words, with this model we

will show how can a simple “wetware” solve some statistical problems. The results have

shown that in some cases we are able to decode what does the evolved network do.

2.1.2 Description

A brief description of JASTAP model follows. The details can be found in (Janco et al.,

1994). Every JASTAP model is an artificial NN, which consists of JASTAP neurons

(neuroids1) as the basic elements. A neuron is described with:

1 we will use the term “neuron” when referring to the modeling element as well
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Methods 2.1 JASTAP Model
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Figure 2.1: Postsynaptic potential

. set of synapses The neuron is interconnected with its environment by one or

more synaptic inputs and a single output (axon). The output can be connected

with one or more neuron synapses in the network.

For each synapse we consider:

– input — can be internal (connected with axon of other neuron) or external

(from the outer environment)

– shape of PSP2 prototype — the waveform evoked by a spike arriving at

a synapse is described by

PSP(t) = k ·
(
1− e

− t
t1

)2

· e−
2t
t2 (2.1)

The waveform inter alia emulates whether the synapse is located on a soma or

on a dendritic tree. Parameters t1 and t2 can vary from synapse to synapse.

They determine the potential decay. Redman and Walmsley (1983) mention

t1 = 0.3 ms and t2 = 2.7 ms as shown in figure 2.1. As the neuron carries

out the time–and–space summation of the input potentials, more moderate

decay can cause3 more sophisticated information processing. Therefore, we

used t1 up to 5 ms and t2 up to 15 ms (figure 2.1).

– latency — the time delay of the synaptic transmission and the axonal

conduction.

2 postsynaptic potential
3 one should take into account the time discretization during simulation
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Methods 2.1 JASTAP Model

– synaptic weight — a value from 〈−1, 1〉. This number represents the

strength of the synaptic input. We distinguish an excitatory PSP from a

synapse with a positive SW4 and an inhibitory PSP from a synapse with a

negative SW.

– plastic changes — Depending of the synapse type, SW can be influenced

by some mechanisms, for instance Hebbian learning or heterosynaptic presy-

naptic mechanism. We do not use this feature of the model in this work,

because the learning during information processing phase is not our goal.

. instantaneous membrane potential — a quantity within the 〈−1, 1〉 range,

determined as the sum of PSPs limited by the non–linear function (figure 2.2)

MP(t) =
2

π
· atan

(∑
synapses

PSP(t)
)

(2.2)
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0
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2
π
· atan(x)

Figure 2.2: Limiting non–linear function

. threshold — θ, a value from 〈0, 1〉 — determines the limit for firing

. spike frequency — the spike frequency is restricted by the absolute refractory

period. This is managed by setting minimum Imin and maximum Imax inter–spike

interval for the firing pattern. However, for statistical purposes we usually do not

want to exclude a number of sets of inputs because of their biological implausibility.

Hence we put Imin = 1 ms for the lowest and Imax = 10 ms for the highest value.

The actual inter–spike interval Ia is determined as:

Ia = Imax − (Imax − Imin) ·
2

π
· atan

(
MP− θ

1−MP

)
(2.3)

The spike frequency condition does not allow the neuron to fire sooner, even if the

MP exceeds the threshold.
4 synaptic weight
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Methods 2.2 Inter–Spike Distribution

2.1.3 Input Processing

To simulate the information processing in a JASTAP model we simultaneously (in each

step, for each neuron) do the following:

1. detect whether a spike is present on each synapse

2. with the corresponding weight and latency calculate the actual action potential

3. summarize the potentials from the synapses and calculate the instantaneous MP

4. determine whether the potential exceeds the threshold

5. fire — if the spike frequency conditions allows neuron to do so

2.2 Inter–Spike Distribution

For NN tasks we have used data input patterns similar to real data flows in CNS5 in

the way, that the lengths between successive occurrences of the spikes are modeled as

the events of a random variable. Koch (1998) points out that Gamma and double log–

normal distributions are very similar to inter–spike intervals distribution observed in the

brain. We have chosen the Gamma distribution for our inputs because of large diversity

of its instances. Generated inputs will be subject to decision making process performed

by NN.

2.2.1 Gamma Distribution

Definition 1. A random variable Z has the Gamma distribution, if the probabilistic

density function of Z is

f(z) =
zα−1e−

z
β

βαΓ(α)
α, β > 0, z ≥ 0, and we denote it as G (α, β)

α is so–called shape parameter due to the changes of α significantly modify the shape

of the distribution function. If Y is from G (α, 1), then Z = βY is from G (α, β). Thus

β has the scaling property. α and β together define one–to–one particular Gamma

5 central nervous system
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Methods 2.2 Inter–Spike Distribution
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Figure 2.3: Gamma distributions: the probabilistic density functions for various cvs and isis

distribution. However, for our purposes it is better to define it with other pair of

parameters: the coefficient of variation and the mean value (here labeled as an isi —

mean inter–spike interval).

Definition 2. The coefficient of variation is defined as the ratio of the standard devia-

tion to the mean: cv = σ/µ = σ/isi.

Since for G (α, β)

σ2 = αβ2, µ(Z) = isi(Z) = αβ and consequently cv(Z) =
1√
α

(2.4)

we can use G
(
c−2
v , isi · c2

v

)
given cv and isi.

2.2.2 Algorithms

We used Gamma distribution generators GS∗ and GKM1 from Fishman (1996). These

generators use a combination of the acceptance–rejection, composition and inverse trans-

form methods.

Algorithm GS∗

The algorithm generates Z ∈R G (α, 1) for 0 < α < 1:

b← α/e + 1

while not success
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Methods 2.2 Inter–Spike Distribution

U ←R (0, 1〉
Y ← bU

if Y ≤ 1 then

Z ← Y 1/α

W ←R − ln (0, 1〉
if W ≥ Z then success

else

Z ← − ln
(
(b− Y ) /α

)
W1 ←R (0, 1〉
W ← W

1/(α−1)
1

if W ≥ Z then success

return βZ

Inverse transform method for α = 1

From definition 1 after plugging α = 1 in, we get f(z) = e−z/β/β — the exponential

distribution with the mean β. So we can use the inverse transform method to generate

it from the uniform distribution, by taking U ∈R U (0, 1〉. By inverting the distribution

function for exponential distribution we get that X = −β ln U has the exponential

distribution with the mean β. This is fast to compute and therefore it is the most

commonly used method.

Algorithm GKM1

Generates Z ∈R G (α, 1) for 1 < α:

a← α− 1

b←
(
α− 1/ (6α)

)
/a

m← 2/a

d← m + 2

while not success

XP ←R (0, 1〉
Y P ←R (0, 1〉
V ← bY P/XP

if mXP − d + V + 1/V ≤ 0 then success

if m ln XP − ln V + V − 1 ≤ 0 then success

return βaV
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Methods 2.3 Statistical Decisioning and Binary Decisions

2.2.3 Exponential Distribution and Poisson Process

The gamma distributions provide a multitude of different types of distributions. One of

the special cases is when cv → 0 or α→∞. Then we get a “random” variable with each

drawn equal to isi. Another special case mentioned above occurs when cv = 1. Then

the Gamma distribution reduces to the exponential one. The number of spikes generated

over a fixed time interval by exponential distribution has the Poisson process property

because during generation there is no dependence on preceding events at all and so the

events themselves are statistically independent. When the mean firing rate isi is fixed,

as in our case, we call it a homogeneous Poisson process. The Poisson process generates

every sequence of n spikes with equal probability. The random variable obtained as

a number of spikes during the fixed time has the Poisson distribution. The Poisson

process is simple to generate and matches data on neural response activity (Dayan and

Abbott, 2001).

2.3 Statistical Decisioning and Binary Decisions

An important use of mathematical statistics is its ability to make decisions in the sit-

uations of incomplete information. We will describe the efficiency of such decisions by

the means of statistical decision theory (Schervish, 1995).

Suppose that we observe data X1,X2, ... taking values in a sample space X . For all

i = 1, 2, ..., the data Xi have a stochastic nature — they originate from a probability

distribution Pi defined on the set X . Moreover, we assume that the distributions Pi do

not occur arbitrarily, but exhibit a stochastic behavour given by the prior distribution

π on the set P of all probabilities on X . That is, some of the distributions of the data

are more probable, while others can be highly unlikely.

Our general aim is to construct a decision device that uses the information contained

in each Xi to decide whether the distribution Pi has or does not have a given property

of interest. More formally, we partition the set P of all distributions on X into two

disjoint subsets P0, P1 and consider hypothesis H0 : Pi ∈ P0 vs. H1 : Pi ∈ P1. Hence,

from the point of view of the statistical decision theory, we intend to find a decision rule

δ : X → {0, 1} assigning a value “accept H0” or “accept H1” to any X ∈ X .

To construct a meaningful decision rule, we need to specify the loss (or benefit) resulting

13



Methods 2.4 Decisioning with Neural Networks

from the wrong (resp. right) decision. To do this, we usually define a loss function

L : P× {0, 1} → R. While the loss function can have many different forms, we use the

simplest, and most natural loss function for the binary decision problems: L(P, δ) = 0

iffP ∈ Pδ and L(P, δ) = 1 iff P /∈ Pδ. In words, we assign the loss 0 to the right and

the loss 1 to the wrong decision. When using NN, we also have to define the loss for

“no decision” response (see fitness function in 3.5).

Under this setup, any decision rule δ can be characterized by a mean loss given by:

L(δ) = E (L (P, δ (X))), where E is the operator of expectation (mean value) and is

taken with respect to P ∼ π and X ∼ P . A natural aim is to construct a decision rule

δ∗ ∈ ∆ that minimizes expected loss, that is L(δ∗) = minδ∈∆ L(δ).

Notice that the random variable L(P, δ(X)) has Bernoulli 0−1 distribution, which means

that L(δ) = p
(
P /∈ Pδ(X)

)
. Therefore, minimization of the expected loss is equivalent

to minimization of the probability of wrong decision.

In mathematical literature, the set of possible decision rules usually contains any func-

tion, in purely mathematical meaning, assigning decisions to data. This is appropriate

in the case that we do not specify the actual calculation of the decision. Nevertheless, if

we want to perform decision making by a real device, we are always limited to decision

rules from some space ∆ restricted by all possible designs of the device. For example,

if we intend to use a NN as a decision device, we are limited by the architecture and

possible functional states of the network (see 3.1.2).

We give an example pertaining to the NNs decision making: The data Xi can be a vector

representation of the spike arrival times and the prior distribution π represents frequency

with which various modes of spiking (probability distributions Pi) occur. Next, the set

of distributions P0 can be the set of all distributions that generate mean interspike

distance less than a critical value tθ. Thus, in this example, we want to construct a

decision device: a NN δ ∈ ∆, which decides whether the (asymptotic) mean firing rate

is lower or higher than 1/tθ. The aim is to minimize probability of wrong decision. The

set ∆ represents the set of all plausible NN with a prescribed architecture.

2.4 Decisioning with Neural Networks

NN models have been successfully used in many domains: function approximation clus-

tering, and various classification tasks (Navrat et al., 2002). They can discover statistical

14



Methods 2.4 Decisioning with Neural Networks

regularities in input patterns and encode them on the output (Kohonen, 1997).

However, NNs do not have explicitly determined decision making. Neural paths in the

human brain could be better described as a continual information flow than a collection

of decisions. As we want to interpret neural activity as a simple decision — mostly as a

binary decision — we have to find a way how to decode this activity into a statement.

We use this method: Some neurons in the network are designated as the output neurons.

When any of the output neurons fire, we take it as a hot–spot network decision. The

meaning of the decision is task–dependent. Thereafter we can stop the simulation in

progress, because the subsequent activity has no impact on the final decision.

In simple decision making, we are asking a network about the selected property of the

input, in particular whether some parameter of the input pattern is below/above the

given value. On the other hand, in comparative decision problems, a network is given

two inputs and the problem to decide is to select which of them has the higher/lower

value of the selected parameter.

15



Chapter 3

Evolution

As well as in other models of NNs we can more or less accurately design a network

topology to be able to solve/decide a given problem. Nevertheless, the network (struc-

ture) has many parameters to configure in order to get a specific instance of the network

topology. Since there are many parameters, searching for the best configuration rides

into multidimensional optimization. While the space to explore is enormous, we have

to take into account discretization and stochastic methods. Seeing that the backprop-

agation algorithm cannot be straightforwardly1 in this model, we have chosen genetic

algorithms as a network optimization, search space exploration and parameter. GAs are

also easier to reconcile with biological learning.

3.1 Coding

3.1.1 Feature Coding

Each entity of the proposed model has several features to set up. We will discuss the

necessity of their optimization:

synapse

. weight — very important parameter, high weight tells us whether the input

1 However, we are aware of the possibility for spiking neuron models to adopt the BP algorithm (Bohte
et al., 2002).

16



Evolution 3.1 Coding

from a specific source can by itself overcome the threshold or, on the other side,

extremely low one signalizes that the input and therefore the whole connection is

negligible and useless.

. latency — this parameter is important for time–related functions. Precise ad-

justments of time delays can superpose the PSPs from the different synapses with

special time patterns.

. shape of PSP — can be very well configured by setting t1 and t2 parameters of

the waveform as defined in equation 2.1. As we have mentioned above, a slower

decay of the PSPs results in more superpositions of the MPs in the neighboring2

synapses. Although evolving accurate values for t1 and t2 for each synapse can be

helpful, it also expands the search space. The results of our first experiments have

shown that the slower decay the better evolved strategies in general. Thus we

decided to leave the PSP decay as slow as possible with respect to the boundaries

of biological plausibility.

neuron

. threshold — together with the synaptic weights indicate the character of the

summation properties

. spike frequency — However Imin and Imax value can also be evolved, it have

not brought any significant improvements. Despite the fact that enabling higher

rates in the firing frequency is also useful in time–dependent actions, the same

effect can be achieved by leaving 〈Imin, Imax〉 interval wide and let evolution to set

up the thresholds/weights values to obtain an appropriate firing rate.

3.1.2 Chromosome

Even though we have chosen the features to evolve, we definitely do not want to search

the whole (−∞,∞) interval, because only narrow domains are (biologically) admissible.

With respect to JASTAP model definition limits we will search in boundaries described

in table 3.1, defining in such a way a ∆ set (the search space for the NNs, see 2.3).

2 synapses connected to the same neuron

17



Evolution 3.1 Coding

feature min value max value

synapse weight −1 1

synapse latency 0 ms 40 ms

synapse waveform t1 value 5 ms

synapse waveform t2 value 15 ms

neuron threshold 0 1

minimal neuron firing period 1 ms

maximal neuron firing period 10 ms

Table 3.1: Parameter boundaries used for evolution

We decided not to evolve a NN topology and for this reason we will not encode it into

the chromosome. It is up to us which bits and in what order represent a particular

parameter value. In order to fulfill requirements of an effective crossover (3.3), we will

encode the parameters corresponding to the same entity (synapse, neuron) together

(Kvasnicka et al., 2000). The reason is that the “good units” of the chromosome would

be rather preserved and transferred en block during the recombination process.

3.1.3 Precision

Although all values are real numbers, in computer–like neuronal modeling we are forced

to work with the discretization and the binary representation of real values. We use

binary coding for the chromosomes.

First of all, real NNs work naturally in fluent time. This cannot be achieved with the

model and the JASTAP designers recommend to use 0.5 ms as a time step.

Moreover, weights, latencies and thresholds cannot be coded and searched through the

whole bounded interval. For this reason we uniformly chose some values (we use 26 to

210 different values) within a permitted interval. As the values are chosen uniformly, it

suffices to code only the “position” in the gridded interval. With a binary vector of k

bits we can code 2k different values. Suppose we have a vector ~v = (vk−1vk−2 . . . v0),

vi ∈ {0, 1}, for i = 0, 1, . . . , k− 1 and pmin and pmax are the lower and upper bounds for

the parameter p. Then the actual value is calculated as

18



Evolution 3.1 Coding

x = pmin +
pmax − pmin

2k − 1

(
k−1∑
i=0

vi2
i

)
(3.1)

No one disputes the fact that such a discretization reduces the precision. However, after

the time–discretization, the values of latencies are only integer numbers. Furthermore,

one can easily see that some combinations of a threshold and the corresponding synaptic

weights have a similar effect. For example: without the limiting function we could divide

the threshold and weights by two to get exactly the same behavior. Another interesting

point is that in most cases the adjacent values of the thresholds have a similar effect. As

an illustration: Many low values of the threshold will pass along any kind of the input

activity in the same way.

3.1.4 Gray Code

A Gray code is a common technique used in genetic algorithms to flatten the fitness

function surface. A standard binary coding faces the Hamming barrier problem: a bit

flipped during a mutation can radically change the coded value. A beneficial property

of a Gray code is that every bit–flip changes the coded value by +/− 1. This is useful

in many stochastic optimization techniques and it is also convenient for a seed–based

population creating (3.2.2).

How to transform a standard code to a Gray code?

Let ~v = (vk−1vk−2 . . . v0) is the binary vector in a standard binary code. We can obtain

the same number in a binary Gray code ~g = (gk−1gk−2 . . . g0) as follows3:

gk−1 = vk−1 (3.2)

gi = vi+1 ⊕ vi i = 0, 1 . . . k − 2

How to transform a Gray code to a standard code?

The inverse transformation to the previous can be achieved by:

3 ⊕ denotes the binary XOR function
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Evolution 3.2 Initial Population

vk−1 = gk−1 (3.3)

vi =
k−i⊕
j=1

gk−j =

(
k−i−1⊕
j=1

gk−j

)
⊕ gi = vi+1 ⊕ gi i = 0, 1 . . . k − 2

3.2 Initial Population

3.2.1 Random Population

The most simple way to introduce an initial population into evolution is to generate

a random one. After we calculate the chromosome size, we randomly choose a corre-

sponding number of bits for each individual.

3.2.2 Noising the Seed

To refine a semi–result rather than evolve a new one, we can use it as a seed to generate

an initial population for the next evolution. If we expect that the best solution is “near”

the seed, we can noise it to spread the values over the fitness surface.

The bit–flipping is used to noise the seed chromosome. We define the largeness of spread,

by choosing the probability p and we flip each bit in chromosome with that probability.

It is to be recognized that:

. p = 0 remains the chromosome unchanged

. p = 0.5 is similar to random population: results do not depend on the seed

. p = 1 inverts the chromosome

We can generalize this seeding method in the way what “amounts” of generated chromo-

somes and how “far” away from the seed they appear. We take p as a random variable

and define a density function for it. In the process of a population creation we choose

a probability p for each new chromosome according to the density function and then

with such probability flip each bit of the seed. For example (figure 3.1 (a)) we wish to

have some new chromosomes near the seed but also a substantial part of new generation

enough away (to avoid a fall into a local extreme). Noising the seed with a parameter
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Evolution 3.3 Crossover

p is the a special case (figure 3.1 (b)). All this techniques can be used in chromosome

mutation (3.4).

0 0.2 0.4 0.6 0.8 1

(a) a example of p.d.f. for the seed

10.5p

(b) standard p–mutation

Figure 3.1: Seed techniques

With the usage of a Gray coding to code the chromosomes we can at average expect

that the coded number units (thresholds, weights and latencies) in chromosomes will be

p× size (where size is length of number unit) bits away from the seed (in the terms of

Hamming distance).

3.3 Crossover

Crossover is a genetic operator used to recombine the pair of chromosomes in order to

vary generation in the evolution process. As genetic algorithms are an analogy to the real

evolution process, a crossover is an analogy to the real biological crossover occurring in

reproduction. In stochastic optimization we use it to speed up the searching process. If

we eliminate the crossover, the most of genetic algorithms would reduce to hill–climbing

heuristics. The idea behind the following principles is that aggregated “good” features

of the particular entities can be interchanged during recombination and thereby afford

opportunity to create “better” (in the terms of fitness function) chromosomes.

3.3.1 Crossover Techniques

One Point Crossover In this technique one crosspoint is randomly chosen within the

size of the parent chromosomes. Then the crossing chromosomes swap the corresponding

parts after the crosspoint.
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Evolution 3.5 Mutation

Multi–Point Crossover Multi–point crossover is a generalized case of the previous

one. In the recombination, a selected number of crosspoints are chosen uniformly within

the chromosome size and then the corresponding parts allocated by the crosspoints are

alternately left by and swapped.

3.4 Mutation

Mutation is another genetic operator and reflects the biological mutation during the

reproduction. As an artificial metaphor, we use the bit–flipping on each descendant of

the recombination with chosen probability pmut as in the “noising the seed” technique

in 3.2.2.

Mutation helps genetic algorithm to avoid local minima. In the earlier phases of the

evolution it helps to find better chromosomes, in latter ones we use it to tune the details.

3.5 Fitness Function

In all our simulations a network had to make the true/false hot–spot decisions. As an

evaluation of the efficiency we used the same approaches in the fitness definition. The

fitness functions as defined here play the role of the cost function, the opposite of the

loss function as defined in 2.3. Let qt denotes ratio of the correct answers from “true”

case and qf denotes the ratio of the correct answers from the “false” one: qt +qf ∈ 〈0, 1〉.
If the network does not respond within the assigned time, it is taken as an incorrect

answer. Let us also suppose that the amount of the “true” and “false” tests is the same.

. overall ratio fitness — figure 3.2 (a) — we evaluate each network with

1/(1 + ε− qt − qf ) giving more fitness to better networks.

. one–side minimum fitness — figure 3.2 (b) — previous fitness function often

led evolution to local minimum of 50% of the correct answers (qt = 0.5, qf = 0

and vice versa) so one of the solutions is to prefer such networks that give correct

answers in both ways: 1/(1 − min (qt, qf )) − 1. Notice that in this manner we

prefer the networks with the balanced ratios even if the overall ratio is lower.

. combined fitness — figures 3.3 (a) and (b) — the previous fitness definition
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Figure 3.2: Fitness functions

suffers from the fact that the zero–response networks4 are evaluated with same fit-

ness as the “half–response” ones. To avoid the problem we combined two previous

fitnesses by a linear combination with emphasis to one–side minimum.
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Figure 3.3: Fitness functions

. fitness with speed preferences — a faster decision maker is definitely a

better network. However, the correct decision is the higher priority. While we

4 the networks without any responses or with incorrect decisions
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Evolution 3.6 Algorithm

want to obtain the general decision makers, we generate new tests in each evolution

step. That causes differences (in absolute numbers) of correct responses. As the

speed–related preferences are consequently difficult to apply, we do not include it

into the fitness expression.

3.6 Algorithm

We use common genetic algorithm as follows. Chromosomes are chosen for recombi-

nation by roulette–wheel rule. We have tried two methods for selection to the next

population: (1) all the new chromosomes replace the old generation and (2) the best

chromosomes from the old and recombined generation are selected to the new one. The

fact, that in method (2) best individuals are preserved, suggests to use pcross close or

equal to 1. Anyway, we have achieved better results with method (2), see 4.4.

P ← random population

for # tests

evaluate each chromosome in P with fitness

Pdesc ← ∅
while |Pdesc| < |P |

quasi–randomly5 chose 2 chromosomes χ1, χ2 from P

if r ∈R 〈0, 1〉 < pcross then

(χ1,χ2)← Ocross(χ1, χ2)

χ1 ← Opmut
mut (χ1)

χ2 ← Opmut
mut (χ2)

Pdesc ← Pdesc ∪ {χ1, χ2}
(1) P ← Pdesc

(2) evaluate each chromosome in Pdesc with fitness

(2) P ← the |P | best chromosomes from P ∪ Pdesc

5 by the roulette–wheel rule
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Chapter 4

Decision Problems

4.1 More Frequent Input

The foremost problem to analyze is the rate decision making over spike trains. We

claim without a doubt that this decision is present in bio–networks. The abilities related

to this kind of decision making in human neurophysiology include: when listening to

sound, which ear is closer; when two points on one’s body are pressed, which one is

more painful, and so on. With this in mind, a successful “brain” must demonstrate an

efficient performance, when we consider rate coding as an information processing.

Evolution and results of this task have the straightforward applications. First of all,

there are applicable in theoretical statistical theory and statistical hypothesis testing of

Gamma distributions. Equally important is its utilization in real–time controlling.

Formally, we compare two isis by testing hypothesis H0: isi1 < isi2 (more frequent input

is the one with the lower isi) against alternative H1: isi1 ≥ isi2. Actual definition of

P0, P1 and π depends on the selected problem. For instance, if we compare two Poisson

processes with the fixed isis and with the equal chances to occur then

P = P0 ∪P1, P0 = {P0} , P1 = {P1} and π : p(P0) = p(P1) =
1

2
,

where, for example, P0 is defined in the way that the interspike intervals of the spikes

arriving to the first input are from G (1, isi1) and the other ones are from G (1, isi2) and

P1 is defined in like manner.
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Decision Problems 4.1 More Frequent Input

4.1.1 Theoretical Strategies

We depict some strategies to solve the problem. First, we describe the copy machine

strategy with the success ratios over 50%. This strategy is really simple. Hence we can

disregard the products with lower ratios as the not intelligent. Contrary, we will discuss

the event counting strategy regarding this as the high–intelligent one. In general, this

strategies will frame the results we obtain.

Copy Machine

A copy machine strategy appears first to evolve in this task. It is based on the as-

sumption that the a frequent input produces an event earlier than a less frequent one.

However, this is not necessarily the best strategy unless the coefficient of variation is

zero. To determine the efficiency of this strategy, we take the two inputs from an ex-

ponential distribution and calculate whether this strategy provides a correct decision.

This is if and only if a random event from more frequent input is smaller than the other

one. So we have:

X ∼ E (λ) Y ∼ E (γ) µ(X) = λ µ(Y ) = γ λ < γ (4.1)

As the inputs are independent and the probability density function is f(x) = e−x/λ/λ,

we get:

P [X < Y ] =

∞∫
x=0

∞∫
y=x

e−
x
λ

λ

e−
y
γ

γ
dydx =

1

λγ

∞∫
x=0

e−
x
λ

 ∞∫
y=x

e−
y
γ dy

 dx =

=

[
a = −y

γ

]
=

1

λ

∞∫
x=0

e−
x
λ


− x

γ∫
a=−∞

eada

 dx =
1

λ

∞∫
x=0

e−
x(λ+γ)

λγ dx =

=

[
b = −x(λ + γ)

λγ

]
=

γ

λ + γ

0∫
b=−∞

ebdb =
γ

λ + γ
=

1

1 + λ
γ

(4.2)
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Decision Problems 4.1 More Frequent Input

lower isi higher isi ratio

30 ms 40 ms 57.14 %

20 ms 40 ms 66.67 %

10 ms 40 ms 80.00 %

20 ms 30 ms 60.00 %

10 ms 30 ms 75.00 %

10 ms 20 ms 66.67 %

Table 4.1: Copy machine strategy efficiency, cv = 1

0

1

1

Thus the ratio of correct decided sets depends only on the λ/γ ratio.

Efficiency of the copy machine strategy is shown in table 4.1 on se-

lected input trains. The function of the copy machine strategy can

be performed by a trivial NN with two neurons connected to both

inputs and also taken as the outputs of the network (see right image). Both synapses

in the NN should have the same latency and neuron thresholds and the corresponding

synaptic weights should be set up in the way that every event is passed along (zero

thresholds and positive weights satisfy the condition).

Event Counting

An event counting strategy is based on a spike counting during the given period. It is

likely the best possible strategy using the sequential observation of an input pattern. So

we may consider it the upper bound for our NNs. It works as follows: During the given

time period it counts the events (spikes) on the both inputs. After the time elapsed,

it makes the decision that the more frequent input is the one with the more events

observed. If the numbers of events are equal, it votes, for example, for the first input.

We know that if N is the number of spikes within interval 〈0, T 〉 with independently

exponentially distributed inter–spike intervals with mean isi equal to µ the N has the

Poisson distribution N ∼P(T/µ):

NX ∼P(µλ) NY ∼P(µγ), µλ = T/λ and µγ = T/γ; λ < γ µλ > µγ (4.3)
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Decision Problems 4.1 More Frequent Input

lower isi higher isi ratio

30 ms 40 ms 72.45 %

20 ms 40 ms 94.51 %

10 ms 40 ms 99.99 %

20 ms 30 ms 83.97 %

10 ms 30 ms 99.91 %

10 ms 20 ms 98.83 %

Table 4.2: Event counting strategy efficiency after 300 ms, cv = 1
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(a) A–network
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(c) C–network

Figure 4.1: Network topologies

According to this notation, the probability of correct decision is

P = P [NX > NY ] +
1

2
P [NX = NY ]

P [NX > NY ] = e−λ−γ

∞∑
n=0

∞∑
m=n+1

λn

n!

γm

m!

P [NX = NY ] = e−λ−γ

∞∑
n=0

λn

n!

γn

n!
= e−λ−γJ0(2

√
λγ) (4.4)

Table 4.2 shows calculated probabilities of the correct decisions on selected isis.
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(d) D–network

Figure 4.2: Network topologies

4.1.2 Network Topologies

We present our results of the evolution on four network topologies. (figure 4.1 and 4.2).

All four are symmetrical, due to symmetric nature of the problem. The difference

between A and B network is in the recurrent loop connections of the input neurons.

In C network, we added a “hidden”1 layer. The design of the D network is taken from

(Pavlasek et al., 2003), the first mention of JASTAP’s capability to cope with rate

decision problems.

4.1.3 Results

Interspike intervals

We regard the 10 – 40 ms isis as an appropriate and plausible input for the networks.

To exhibit model properties we have chosen 10 ms, 20 ms, 30 ms and 40 ms as the fixed

isis for mutual comparison. To determine whether one network could be efficient in

decision making of various rates we tried to evolve an individual which is able to decide

random rates from 〈10 ms, 40 ms〉.
1 in the terms of multi–layer perceptrons (Rumelhart et al., 1986)
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lower isi higher isi copy A B C D event

30 ms 40 ms 57.14 % 60.12 % 62.18 % 59.03 % 61.31 % 72.45 %

20 ms 40 ms 66.67 % 88.11 % 87.56 % 87.67 % 81.32 % 94.51 %

10 ms 40 ms 80.00 % 99.81 % 99.65 % 99.25 % 99.58 % 99.99 %

20 ms 30 ms 60.00 % 66.92 % 71.52 % 69.65 % 67.27 % 83.97 %

10 ms 30 ms 75.00 % 99.35 % 99.19 % 99.14 % 98.08 % 99.91 %

10 ms 20 ms 66.67 % 95.04 % 92.74 % 94.12 % 91.75 % 98.83 %

〈10 ms, 40 ms〉 60.223% 66.66 % 66.68 % 68.48 % 65.75 % 79.684%

Table 4.3: Different network topologies (A, B, C, D — 4.1.2) compared with the theoretical
strategies (copy and event columns). The best strategies among the evolved is underlined.

Evolved with pmut = 0.05, pcross = 1 and 1 crosspoint — 300 ms, cv = 1.

Set up

All the following experiments were conducted with a population of 200 individuals in

two phases of 200 steps. After the first phase of the evolution, the best individual

was depicted and used as a seed with p = 0.05 for the next (fine–tuning) phase. This

was meant as a supplement of the BP or other gradient–based methods. The maximal

response time was set to 300 ms as an approximation of the biological response time. To

evaluate the individuals in the population we used the combined fitness (see 3.5) with

50 tests. At the end of the evolution, we evaluated all with 103 tests and picked up the

best. Tables show the efficiency ratio2 of the winners evaluated with 104 tests.

Different topologies

Table 4.3 shows the comparison between the different network topologies (4.1.2) and

the theoretical strategies (4.1.1) on the same input data sets and evolution parameters.

As we expected, none of the results overcame the event strategy. On the other hand,

all networks evolved to better than the copy one. The best results for the fixed isis

were achieved with A and B–networks. In a more complex problem, when the isis were

chosen randomly, the C–network dominated. One can easily see that the B–network

2 The best fitness does not necessarily mean the best ratio. Fitness applied here reflects also the
balance of correct responses (as defined in 3.5)

3 tested on the simple network (4.1.1), 106 tests
4 106 tests
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crosspoints 1 2 5 3 1 3

pcross 1 0.5 1 0.9 0.7 0.9

pmut 0.05 0.1 0.005 0.01 0.05 0.01

lower isi higher isi type (2) type (2) type (2) type (2) type (1) type (1)

30 ms 40 ms 59.03 % 60.78 % 62.45 % 63.26 % 59.43 % 61.49 %

20 ms 40 ms 87.67 % 83.17 % 85.76 % 83.79 % 75.43 % 80.87 %

10 ms 40 ms 99.25 % 99.06 % 98.12 % 99.69 % 98.87 % 99.59 %

20 ms 30 ms 69.65 % 70.94 % 61.73 % 58.45 % 65.44 % 66.93 %

10 ms 30 ms 99.14 % 97.97 % 98.72 % 92.81 % 94.99 % 98.35 %

10 ms 20 ms 94.12 % 92.18 % 91.58 % 94.25 % 91.38 % 87.66 %

〈10 ms, 40 ms〉 68.46 % 68.10 % 72.00 % 67.30 % 60.45 % 68.17 %

Table 4.4: Different evolution parameters: C–network, cv = 1

can be hardwired to perform exactly same behavior as the A. The same relation exists

between B and C–networks. Although this A v B v C relation, proposed results do

not follow it due to suboptimal products of the evolution and also the larger search

space in the more complex C and D–networks. We decided to use the C–network for

further simulations to observe more sophisticated strategies. We also achieved better

results with this structure with the different evolution parameters as shown in table 4.4

and decided to use parameters in column 1 for the rest of our experiments.

Evolution process

Evolution curves are shown in figures 4.3 (a) and (b). Nondecreasing tendency is caused

by elitism–like selection in GA. The limited number of tests causes that calculated fitness

is only an approximation. We can observe a slow, but permanent improvement. At the

beginning of the fine–tuning phase, the average ratio and fitness dropped down due to

a seed procedure, but recovered back in tens of generations.

Interpretation

Figure 4.4 (b) shows the evolved network for 10 vs. 30 ms decision making and fig-

ures 4.4 (d) and (e) how does this network deal with the both types of given inputs

31



Decision Problems 4.1 More Frequent Input

0

20

40

60

80

100

0 50 100 150 200

fit
ne

ss
es

an
d

ra
ti

os

generation

(a) First phase: ends with 85.4 % ratio (fitness 11.0) for the best.
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(b) Second (fine–tuning) phase: ends with 89.71 % ratio (fitness 12.9) for the best.

Figure 4.3: Evolution curves: best and average ratio and fitness per generation task: decision
making of the isi 10 vs. 20 ms, cv = 1. Fitnesses and ratios were evaluated with 103 test in

each step.
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lower isi higher isi cv = 0.02 cv = 0.1 cv = 0.5 cv = 16 cv ∈R 〈0, 1〉
30 ms 40 ms 100.00 % 100.00 % 77.17 % 63.26 % 73.29 %

20 ms 40 ms 100.00 % 100.00 % 98.07 % 87.67 % 95.61 %

10 ms 40 ms 100.00 % 100.00 % 99.99 % 99.69 % 99.85 %

20 ms 30 ms 100.00 % 99.96 % 90.78 % 70.94 % 87.62 %

10 ms 30 ms 100.00 % 100.00 % 99.94 % 99.14 % 99.77 %

10 ms 20 ms 100.00 % 100.00 % 99.85 % 94.25 % 98.60 %

〈10 ms, 40 ms〉 98.02 % 92.51 % 78.15 % 72.00 % 66.01 %

Table 4.5: More frequent input: Comparison of results for different cvs, 300ms

(20 vs. 30 ms and 30 vs. 20 ms) when the decision is successful. During the evolution

process this network developed two information paths and let them to compete each

other. Shown individual primarily concentrates on exciting more activity in 20 ms train.

Although some events in 30 ms path can overcome the thresholds (4.4 (d)–1 at about

100 ms), competing ensures that such activity is diminished. No over–threshold activity

is apparent at the middle layer (neurons 2 and 3), and at the output layer, potentials are

the whole time above/below zero. Hence these layers represent the degrees of confidence

that the decision is correct.

Various variations

Next experiments (table 4.5) compare the complexity of the problem with respect to

regularity. For fixed cvs we chose the values 0.02, 0.1, 0.5 and 1. cv = 0.02 reflects

the noise in almost regular input. In last column, cv was uniformly chosen from 〈0, 1〉
interval for both inputs. Results have clearly shown that the more regular input the

easier problem to decide. For the fixed regular inputs an evolution gets individuals with

100 % accuracy5 (for cv = 0.02 even after 4–6 generations). In cv = 1 case table display

the best results for different evolution parameters (see table 4.4).

5 This is not surprising regarding the copy machine strategy.
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Figure 4.4: Evolved network with displayed thresholds, weights and latencies: Network (b)
contains information paths: 0—2—4 and 1—3—5, competing connections: 0 → 1, 1 → 0,
0 → 3, 1 → 2, 2 → 3 3 → 2, 2 → 5 and 3 → 4, (d) and (e) display information processing.
Inputs from synapses are plotted in increasing order after extern input for neurons 0 and 1.
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Strategies

Besides the time–and–space summation, our studies of the evolved results have revealed

several interesting strategies to help networks to decide. In some cases the network does

not even use one of the inputs. Next strategies can be found in the most of evolved

results.

. information paths As one can see in the examples, the evolution built the

information paths mostly like 0—2—4 vs. 1—3—5 in figure 4.4 (b) and 0—3—4

vs. 1—2—5 in figure 4.5 (a) or sometimes the special ones like 0—2—4 vs. 1—2—5

in figure 4.5 (b)

. competing The information paths are competing each other. Competing is main-

tained with the negative weights and sometimes also with the minimal latency

corresponding to the mutual connection of the paths. It is especially beneficial

when cv → 1, because the networks have to count the events over longer time to

be accurate.

. handling redundancy Look at the figure 4.5 (b). We could take out the

neuron number 3 without a difference, its potential cannot exceed the threshold

in given conditions. Only one synapse is excitatory but under–threshold, others

are inhibitory. Therefore, when structure is too complex, evolution gets rid of the

redundant elements.

. copy machine principle occurs when the neuron has inputs with over–threshold

weights. It is an information pass–by or an another way how to handle the re-

dundancy. One of the explanation is that the structure is more complex than is

needed. It has repeatedly occurred in “small cv” problems.

. activity routing We will examine figure 4.5 (b) again. The same information

flows through the only one neuron number 2. However, this network performs its

task with 92.23% accuracy. How is it possible? The strong negative recurrent

loop at 0 causes that a frequent input activity is projected to a sparse and low

input for 2 (but still over threshold). In addition, inhibition 0 → 1 reduces the

output on 1, because 1’s threshold is high. On the contrary, frequent activity at

1 excites 2, since the 2’s connection from 1 is strong. In this case, 1 also excites

6 Column shows the best results from table 4.4.
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0 to produce more activity. High potential at 2 entails the higher firing rate and

causes 5 to fire sooner than 4. From what has been said, the potential value of 2

acts as a semaphore and a router: low one means frequent activity in 0 and the

high one, in 1 and allows 5 to fire.
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(a) isi: 20 vs. 40 ms, cv = 0.5
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(b) isi: 10 vs. 30 ms, cv = 1

Figure 4.5: Evolved networks with displayed thresholds, weights and latencies.

4.2 Hypothesis Testing of Frequency

In this task the network is given just one input train and it has to decide whether its

isi is higher/lower than selected critical value isiθ (see 2.3). In particular, network is

providing statistical hypothesis testing with the zero hypothesis H0 : isi < isiθ against

alternative. To put it differently, the network does not have an option to compare

two inputs. In addition, it is forced to remember a threshold value. Hence this is a

more difficult task, than the previous one: Even psychophysical experiments on human

behavior support the idea that humans are better at reporting relative comparisons of

stimulus features (luminance, contrast, pressure) than reporting exact values

4.2.1 Results

We modified the structure of the C–network as shown in figure 4.6 (a) for this task.

Evolution set up and parameters remained equal as in 4.1.3. For the fitness evaluation,
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H0 cv = 0.02 cv = 0.1 cv = 0.5 cv = 1 cv ∈R 〈0, 1〉
isi < 20 ms 98.57 % 94.72 % 89.48 % 57.20 % 73.91 %

isi < 25 ms 99.00 % 95.04 % 85.59 % 60.66 % 73.78 %

isi < 30 ms 98.97 % 94.64 % 67.53 % 56.86 % 74.21 %

Table 4.6: Hypothesis testing of frequency: isi ∈R 〈10 ms, 40 ms〉, 300 ms

actual isi was randomly chosen from 〈10 ms, 40 ms〉. We selected 20, 25 and 30 ms for

isiθ. Results are shown in table 4.6. Like in the previous “stereo” input, more regular

inputs were easier for frequency decision making. Although the isiθ = 20 ms results

can be considered similar to isiθ = 30 ms due to ratio of yes/true tests of the prior

distribution π (1/3 vs. 2/3 and 2/3 vs. 1/3), it is to be recognized that a lower isi can

be determined sooner just because the lower isi inputs include more events. Some new

strategies have appeared:

Strategies

. gap detection There is a longer time between the events in the spike trains

with the lower frequencies. The network in figure 4.6 (c) detects these gaps in

neuron 2 and with the more occurrences causes 4 to fire — figure 4.6 (d).

. perfect timing The network in figure 4.6 (e): Neuron 1 is out of the game, 4

fires always. Number 3 is interesting: The parameters are set up to keep 2’s firing

rate so that 3’s potential fluctuates around its threshold. 2’s negative recurrent

loop emphasizes the difference, when the isi is below 25 ms. There is also an

evidence that the network remembered 25 ms value by this means.

4.3 More Regular Input

After frequency we focused our attention to another feature: regularity. The presence

of regularity in biological network paths is also considered the presence of an informa-

tion transmission. Network has to determine, which one of the input trains is more

regular/irregular. Evolution was run on C–networks with the same parameters as in

frequency case. Results (table 4.7) have shown that in general more frequent inputs are
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Decision Problems 4.3 More Regular Input
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(f) “yes” and “no” decision in neuron 3

Figure 4.6: Hypothesis testing of frequency: topology, examples and new strategies
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Decision Problems 4.4 Hypothesis Testing of Regularity

lower cv higher cv 10 ms 20 ms 30 ms 40 ms 〈10 ms, 40 ms〉
0.02 0.50 99.93 % 99.75 % 98.90 % 98.74 % 74.52 %

0.02 1.00 99.95 % 99.61 % 97.99 % 98.32 % 88.85 %

0.50 1.00 83.05 % 76.55 % 77.44 % 64.32 % 67.08 %

〈0.00, 1.00〉 70.99 % 67.85 % 67.78 % 63.96 % 55.07 %

Table 4.7: More regular input: Comparison of results for different isis, 300ms

easier to decide. We ascribe it again to more events in the spike train. In addition,

cv = 0.5 was more distinguishable from cv = 0.02 than from cv = 1. In the former case,

the more deterministic input was helpful in decision making.

Strategies

Two more strategies appeared and dominated in the regularity decision making.

. close events — principle that has shown here particularly helpful. The resulting

set up of network parameters are preset to “wait” for close events. Closer events

occur more frequently in the more irregular spike trains. In the most of reviewed

examples, thresholds and weights were adapted to raise no activity in the more

regular input. See the evolved network in figure 4.7 (a) and corresponding input

processing in neuron 0 in figure 4.7 (b). We also noticed it in detecting higher

frequency, see figure 4.6 (b).

. distant events — a complementary feature to close events of irregular input

trains. They contain more occurrences of the time intervals with no activity. A

decision is then made with the same principle as in gap detection strategy.

4.4 Hypothesis Testing of Regularity

In this case, the “mono–network” in figure 4.6 (a) tests cv < cvθ
against alternative. For

the evaluation tests the cv was randomly chosen from 〈0, 1〉. For the threshold value

we chose cvθ
= 0.5. Winners (table 4.8) achieved 70 – 80 % accuracy using close events

principle in general combined with the following strategies:
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Decision Problems 4.4 Hypothesis Testing of Regularity
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Figure 4.7: More regular input: evolved network for cv = 0.5 vs. 1 with isi = 20ms
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(b) “yes” and “no” decision in neuron 0

Figure 4.8: Hypothesis testing cv < 0.5 with isi = 20ms

H0 10 ms 20 ms 30 ms 40 ms 〈10 ms, 40 ms〉
cv < 0.5 83.04 % 76.28 % 76.20 % 74.99 % 66.31 %

Table 4.8: Hypothesis testing of regularity for various isis: cv ∈R 〈0, 1〉
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Decision Problems 4.4 Hypothesis Testing of Regularity

Strategies

While observing results of hypothesis testing of regularity, we have noticed that the

network performs preprocessing at the one–neuron level. A simple setup of neuron

values provides various information filtering:

. memory in latency — this occurs when recurrent loop has a latency value

almost equal to isi. If the input is rather regular, it gets neuron to highly superpose

its potential.

. from regularity to frequency — another reasonable use of a latency. With

a positive recurrent loop set up to to half of isi a neuron stays in the permanent

firing when the input is more regular. On the contrary, irregular input causes

dropouts in firing. As a result, more regular input is transformed to the more

frequent one.

. irregularity stopping — figure 4.8 (a) and (b) — with immediate negative

recurrent loop, neuron cannot fire some time after firing. This eliminates close

events and filter more irregular inputs. Then the output is subject to frequency

decision making, as well as in the previous case.
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Chapter 5

Conclusions

This thesis demonstrated the JASTAP’s applicability to model decision making on a

neural substratum. The results in more frequent input decision making support the

ideas on rate coding abilities. We have tested these capabilities on several topologies

and framed them within the theoretical strategies. In like manner we have examined

networks whether they can detect and make decisions on regularity patterns in the

input trains. Equally important is that we have found the decision makers for rate and

regularity decision making.

The advantage of evolution on spiking models like JASTAP over perceptrons is that

the results are amenable to analysis. As we have shown, they provide an insight into

internal operations on the level of synapses. In the simulations on evolved networks,

decision procedures were based on the simple strategies and principles: competing, close

events, perfect timing, activity routing, gap detection, from regularity to frequency, the

well–known time–and–space summation and others. A network has sometimes found a

tricky solution during an evolution, that we had not expected before (as the close events

principle), that helped to perform decision making. These strategies are also useful for

designing decision makers at NN level.

Indications for further work

Various optimization techniques, evolutionary and traditional, can be used to train

NNs. One limitation in our work was the use of fixed topologies. With the structure

optimization of a network architecture during an evolution, we could get more accurate
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decision makers. Moreover, an evolution of topology can result in as simple individuals

as it is needed with respect to given task.

Secondly, we have fixed several parameters to speed up evolution such as: t1 and t2 in

PSP prototype and Imax and Imin as a firing frequency limitations. In particular, a longer

decay in PSP shape had significant positive impact on the results. While including these

parameters into evolution entails in more complex search space, it also enable to evolve

superior and more descriptive NNs.

Finally, it is possible to include speed preferences into fitness function and get faster

decision makers. It is especially meaningful in those tasks, when we got ratios close to

100 %. Nonetheless, more tests in fitness evaluation during evolution reduces the ratio

fluctuation and open possibilities to incorporate response time into fitness. Alterna-

tively, one can wish to have promptness as a higher priority than accuracy.



Chapter 6

Abbreviations

∈R randomly chosen from

cv coefficient of variation

µ statistical mean

σ standard deviation

σ2 variance

E exponential distribution

G Gamma distribution

P Poisson distribution

U uniform distribution

CNS central nervous system

GA genetic algorithm

H0 zero hypothesis

isi inter–spike interval

ms millisecond

MP membrane potential

NN neural network

NE neuro–evolution

PSP post–synaptic potential

SW synaptic weight
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