
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS

AND INFORMATICS

ANALYSIS OF THE GENERALIZED

RECIRCULATION-BASED LEARNING ALGORITHMS

IN BIDIRECTIONAL NEURAL NETWORKS

MASTER THESIS

Bratislava 2014 Bc. Peter CSIBA

ii

68032880

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Peter Csiba
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Analysis of the generalized recirculation-based learning algorithms in
bidirectional neural networks

Aim: 1. Study the literature on general recirculation-based learning algorithms in
neural networks and write the state-of-the art of the topic.
2. Implement the GeneRec and BAL algorithms and test their properties on
selected data sets, using computer simulations and visualization techniques.
3. Consider suitable modifications of the algorithms aimed at improving the
network performance.

Literature: O'Reilly, R.C. (1996). Biologically plausible error-driven learning using
local activation differences: The Generalized Recirculation algorithm. Neural
Computation, 8, 895-938.
Farkaš I., Rebrová K. (2013). Bidirectional activation-based neural network
learning algorithm. In Proceedings of the International Conference on Artificial
Neural Networks (ICANN), Springer. 154-161.

Annotation: The advantage of the GeneRec algorithm resides in its biological plausibility,
as opposed to the well-known error backpropagation, because it only allows
propagation of neuron activations. Recently, a completely bidirectional model
BAL has been proposed, inspired by GeneRec, but has not been analyzed in
detail (Farkaš and Rebrová, 2013).

Keywords: supervised learning, neural network, heteroassociative mapping

Supervisor: doc. Ing. Igor Farkaš, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. PhDr. Ján Rybár, PhD.

Assigned: 10.12.2012

Approved: 10.12.2012 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

iv

68032880

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Peter Csiba
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Analysis of the generalized recirculation-based learning algorithms in
bidirectional neural networks
Analýza algoritmov učenia na báze zovšeobecnenej recirkulácie
v obojsmerných neurónových sieťach

Cieľ: 1. Preštudujte literatúru o algoritmoch učenia založených na zovšeobecnenej
recirkulácii v neurónových sieťach a urobte prehľad aktuálneho stave výskumu.
2. Implementujte učiace algoritmy GeneRec BAL a otestujte ich vlastnosti
na vybratých dátových množinách, pomocou počítačových simulácií
a vizualizačných techník.
3. Preskúmajte modifikácie algoritmov s cieľom vylepšiť správanie siete.

Literatúra: O'Reilly, R.C. (1996). Biologically plausible error-driven learning using
local activation differences: The Generalized Recirculation algorithm. Neural
Computation, 8, 895-938.
Farkaš I., Rebrová K. (2013). Bidirectional activation-based neural network
learning algorithm. In Proceedings of the International Conference on Artificial
Neural Networks (ICANN), Springer. 154-161.

Anotácia: Algoritmus GeneRec je biologicky prijateľný, na rozdiel od známeho algoritmu
spätného šírenia chyby, pretože dovoľuje šírenie len aktivácií. Na jeho základe
bol nedávno navrhnutý podobný model BAL úplne obojsmernej siete (Farkaš
a Rebrová, 2013), ktorý nebol ešte dostatočne preskúmaný.

Kľúčové
slová: učenie s učiteľom, neurónová sieť, heteroasociatívne zobrazenie

Vedúci: doc. Ing. Igor Farkaš, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. PhDr. Ján Rybár, PhD.

Dátum zadania: 10.12.2012

Dátum schválenia: 10.12.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

vi

Acknowledgements

The completion of this thesis could not have been possible without my supervisor Igor

Farkaš who encouraged and helped me out through the whole process. Especially, I

want to thank him for investing his precious time in our weekly sessions which navigated

me what to do next and made me work regularly.

I also want to thank my parents Viktor and Jarmila for their lifelong investment

in providing me with the best education they could, while often sacrifing their own

comfort.

vii

viii

Abstract

In our work, we used computational simulations to analyse supervised artificial neu-

ral networks based on the Generalized recirculation algorithm (GeneRec) by O’Reilly

(1996) and the Bidirectional Activation-based Learning algorithm (BAL) by Farkaš

and Rebrová (2013). The main idea of both algorithms is to update weights based

on the difference between forward and backward propagation of neuron activations

rather than based on error backpropagation (BP) between layers, which is considered

biologically implausible. However, both algorithms struggle to learn low dimensional

mappings which could be easily learned by BP. The aim of this work is to fill this gap.

Several modifications of BAL are proposed and after systematic analysis a Two

learning rates (TLR) version is introduced. TLR uses different learning rates for differ-

ent weight matrices. The simulations prove increase in success rate and show smooth

relation between success and learning rates. For the networks with highest success

rate the two learning rates can be in ratio 106. Further the idea of TLR is applied to

GeneRec. Finally, additional experiments for momentum, weight initialization, hidden

activations and dynamic learning rate are analysed.

We believe that using the idea of TLR could lead to performance increase in other

artificial neural network models as well, and even multi-layered networks. Intuitively,

an increase in success rate could be achieved by generalizing the idea of TLR to ad-

ditional parameters, such as momentum or weight initialization. Further experiments

are outlined.

Keywords: supervised learning, artificial neural network, heteroassociative mapping,

dynamic learning rate, activation based learning.

ix

x

Abstrakt

Táto práca pomocou výpočtových simulácií analyzuje umelé neurónové siete (UNS),

ktoré sú založené na Generalized recirculation algorithm (GeneRec) (O’Reilly, 1996) a

Bidirectional Activation-based Learning algorithm (BAL) (Farkaš and Rebrová, 2013).

Od štandardných sietí, akými sú napríklad siete spätne šíriace chybu (BP), sa líšia

tým, že zmena váh je založená na rozdiely dopredných a spätných aktivácií. Takéto

siete sa považujú za prirodzené pre ich obojsmernosť a preto, lebo šíria iba aktiváciu

a nie chybu. Je známe, že tieto siete majú problémy s naučením sa aj jednoduchých

úloh, ktoré sa BP vie naučiť. Cieľom práce je preto zvýšenie úspešnosti BALu.

Analyzujeme viacero modifikácií BALu. Na základe pozorovaní navrhujeme model

Two learning rates (TLR), ktorý využíva rozdielne rýchlosti učenia pre rôzne matice.

Pomocou simulácií potvrdíme, že TLR značne zvyšuje úspešnosť BALu vo viacerých

úlohách. Navyše, pozorujeme jasné závislosti medzi rýchlosťami učenia a úspešnosťou

siete. Zaujímavosťou je, že pre najlepšie siete môže byť podiel medzi dvoma rýchlosťami

učenia až 106. Myšlienku TLR aplikujeme aj na GeneRec. Navyše, skúšame viacero

štandardných modifikácií UNS, ako sú napríklad moment, dávkové učenie, dynamická

rýchlosť učenia alebo inicializácia váh.

Veríme, že aplikácia myšlienky TLR má potenciál zvýšiť úspešnosť aj iných modelov

UNS. Myšlienka sa dá zovšeobecniť aj na iné parametre, ako sú napríklad moment alebo

inicializácia váh.

Kľúčové slová: učenie s učiteľom, neurónová sieť, heteroasociatívne zobrazenie,

dynamická rýchlosť učenia, učenie na základe aktivácií

xi

xii

CONTENTS CONTENTS

Contents

Introduction 6

1 Overview 7

1.1 Preliminaries . 7

1.1.1 Perceptron . 7

1.1.2 Multi-layer feedworward networks 9

1.1.3 Recurrent networks . 10

1.1.4 Hopfield networks . 11

1.1.5 Backpropagation . 11

1.2 Related models . 12

1.2.1 Contrastive Hebbian learning 12

1.2.2 Recirculation algorithm . 13

1.2.3 Generalized recirculation . 14

1.3 Bidirectional activation-based learning algorithm 17

2 Simulations 19

2.1 Evaluation methods . 19

2.2 Datasets . 20

2.2.1 4-2-4 Encoder . 20

2.2.2 Complex binary vector associations 20

2.2.3 Handwritten digits . 21

2.3 New models . 21

2.3.1 Two learning rates . 22

2.3.2 Recirculation BAL . 23

2.4 Experiments . 24

2.4.1 Momentum . 24

2.4.2 Candidate selection . 25

2.4.3 Hidden activations . 27

2.4.4 Other experiments . 27

3 Results 31

1

CONTENTS CONTENTS

3.1 4-2-4 Encoder . 31

3.1.1 Comparison . 31

3.1.2 Two learning rates . 32

3.1.3 Hidden activations . 33

3.1.4 Momentum . 37

3.1.5 Features . 37

3.1.6 Other . 39

3.1.7 Conclusion . 40

3.2 Complex binary vector associations . 42

3.2.1 Two learning rates . 42

3.2.2 Comparison . 43

3.2.3 GeneRec . 43

3.3 Handwritten digits . 44

3.3.1 Two learning rates . 45

3.3.2 Comparison . 45

3.3.3 Backward representations . 46

Conclusion 47

Bibliography 48

2

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Perceptron transforming inputs [x0, x1, . . . , xN] to output yk. 7

2 Fully connected feedforward multi-layer network with one hidden layer. 9

3 Simple recurrent network proposed by Elman (1990). Taken from Haykin

(1994). 10

4 The recirculation algorithm by Hinton and McClelland (1988). Taken

from (O’Reilly, 1996). 14

5 Depicting the minus (left) and plus (right) phases of GeneRec defined

in Table 2. Taken from Orrú et al. (2008). 16

6 BAL performance on CBVA. Black color stands for target–estimate

match, gray for target only and gray with a cross for false–positive esti-

mate (Farkaš and Rebrová, 2013). 21

7 Samples from the digits dataset. 21

8 TLR success rate and convergence time needed for successful networks

on the 4-2-4 encoder task with σ = 2.3 and µ = 0.0. Best network

achieved 96.5$ with λh = 0.0003 and λv = 1000.0. 33

9 TLR success rate timeline for the 4-2-4 encoder task with λh = 0.0002

and λv = 500. The top plot without candidate selection and the bottom

plot with candidates selection. 34

10 BAL hidden activations on the 4-2-4 encoder task. The top 2 × 2 are

unsuccessful networks and the bottom 2 × 2 successful ones. Only the

first ≈ 100 epochs had change in activation. 35

11 TLR hidden activations on the 4-2-4 encoder task. The top 2 × 2 are

unsuccessful networks and the bottom 2 × 2 successful ones. Only the

first ≈ 10000 epochs had change in activation. 36

12 Comparison of momentums µ = 0.01 (left) and µ = 0.3 (right) for TLR

on the 4-2-4 encoder task. 37

13 Comparison of distFB
H (2.4.2) timelines for the 4-2-4 encoder task. . . . 38

14 Comparison of distFB
V (2.4.2) timelines for the 4-2-4 encoder task. . . . 38

15 Comparison of distH (2.4.2) timelines for the 4-2-4 encoder task. 39

3

LIST OF TABLES LIST OF TABLES

16 Comparison of matrix_weight (2.4.2) timelines for the 4-2-4 encoder

task. 39

17 BAL-recirc (2.3.2) on the 4-2-4 encoder. Best success rate 36% achieved

with λh = 0.0001 and λv = 1.0. 40

18 GeneRec (1.2.3) success rate and convergence time on the 4-2-4 encoder

task with σ = 2.3 and µ = 0.0. Best result 83% achieved with λh = 0.3

and λv = 1.0. 40

19 TLR performance on the CBVA task with hidden sizes 3 on top, 5 in

middle and 8 at bottom. 41

20 TLR success rate timeline for the CBVA task with λh = 0.1 and λv =

100. Without candidate selection on top and with candidate selection

at bottom. 42

21 GeneRec success rate and convergence time on the CBVA task with

hidden sizes 3 on top and 5 at bottom. 44

22 TLR performance on the digits task for σ = 1/
√

784 + 1 ≈ 0.036 and

µ = 0.01. Best patSuccF = 88.47% with λv = 0.1 and λh = 10−8. 45

23 Backward representations for the most successful TLR instance on the

digits task. 46

List of Tables

1 Activation values in backpropagation. 12

2 Equilibrium network variables in GeneRec (O’Reilly, 1996). 15

3 Activation phases and states in BAL (Farkaš and Rebrová, 2013). . . . 18

4 Activation for BIA (2.3.2). The only difference with BAL (3) are the

recurrent terms
∑

k w
OH
kj y

F
k and

∑
iw

IH
ij x

B
i 23

5 Difference between BiGeneRec (2.3.2) and BIA (4) is the additional C+

phase corresponding to the plus phase of GeneRec (1.2.3). 24

6 Comparison of different models on the 4-2-4 encoder task. Results for

BP, GR, GR Sym, GR Mid and CHL are taken from O’Reilly (1996). . 32

7 Comparison of different momentums for TLR on the 4-2-4 encoder task. 37

4

LIST OF ALGORITHMS LIST OF ALGORITHMS

8 Comparison of TLR and GeneRec on CBVA using 3 hidden neurons. . 43

9 Comparison of different models on the digits task. Data from LeCun

et al. (1998a) and LeCun et al. (1998b). 46

List of Algorithms

1.1 Perceptron training pseudocode. 8

2.1 Candidate selection pseudocode. 25

5

INTRODUCTION

Introduction

The field of artificial neural networks (ANN) gets lots of attention nowadays. ANNs

are interesting for both psychologists and computer scientists. For psychologists they

provide a simulation environment of the human brain which could be used to prove

their hypotheses. For computer scientists ANNs are a general model which could be

used to solve a broad range of practical problems.

We choose to analyse the Bidirectional Activation-based Learning algorithm (BAL)

recently introduced by Farkaš and Rebrová (2013). The main reasons why we have

chosen BAL over standard models are its simplicity, bidirectionality and biological

plausibility. The term biological plausibility is stated by six principles by Hinton and

McClelland (1988). One of these principles is the bidirectional activation propagation

is achieved in BAL by using backward representations for learning the forward repre-

sentations and vice versa.

Although BAL performs well on high dimensional tasks, it has problems to learn

low dimensional tasks with 100% reliability, while BP is able to learn them. Therefore,

our primary goal was to find reasons for this performance gap and use them to derive

a modification of BAL which will perform comparably to BP. In our work, we were

able to follow this process and find reasons which were then used for deriving the

Two learning rate model (TLR). TLR uses different learning rates for different weight

matrices and shows some counter intuitive behaviour. It performs comparable to BP

if it is initialized correctly.

Our work starts with an overview of ANNs in Chapter 1 which consists of necessary

preliminaries and related models. In Chapter 2 we describe our simulations, experi-

ments and datasets used through our work. We finish our work with Chapter 3 which

contains simulation results aimed at TLR, which proved to be the most successful

modification of BAL. Finally we conclude our results and outline future experiments

in Section 3.3.3.

6

1 OVERVIEW

1 Overview

1.1 Preliminaries

In this section, we will describe the basics of artificial neural networks. We will also

introduce the notation used in this work. Note that the definitions and notations

vary through the literature and therefore we use the one which the author is familiar

with. For the reader who is comfortable with this topic we recommend to continue to

Section 1.2.

1.1.1 Perceptron

The theory of artificial neural networks started with the model of Perceptron introduced

by McCulloch and Pitts (1943). It is a simple model which transforms a vector of inputs

s to an output value y. The notation used is depicted in Figure 1: x is the input vector

where always x0 = 1, w0k is the weight vector, Σ is the summing junction, ηk is the

net input, φ is the activation function, θk is the treshold, yk is the output and bk is the

bias.

x0

x1

x2

xN

w0k

w1k

w2k

wNk

w0k = bk (bias)

Σ φ(·)

Activation Function

Summing
Junction

Treshold

Output
yk

θk

ηk

Figure 1: Perceptron transforming inputs [x0, x1, . . . , xN] to output yk.

We can write the whole transformation of the input vectors to the output activation

yk:

yk =

 1 if φ(
∑N

i=0 xiwik) > θk

0 otherwise
(1)

Equation (1) describes a simple binary treshold perceptron. One could observe that

the binary perceptron divides the vector space RN by a (n−1)–dimensional hyperplane,

7

1.1 Preliminaries 1 OVERVIEW

where the bias is the absolute term (Rosenblatt, 1958). This leads to the fact that for

one perceptron is impossible to classify non–linearly separable vectors. Now we see the

importance of bias which is the absolute term in the equation of the hyperplane.

Learning. The goal of a perceptron is to learn the mapping given by the set T =

{(Xj, tj)} of pairs, where Xj is the input vector (xj0, xj1, . . . , xjN) and tj is the corre-

sponding target. It could be formalized as minimizing the error function:

E =
N∑
k=1

1

2
(tk − yk)2. (2)

A straightforward method for the network to minimize the error function (2) is by

simply updating weights according to the partial derivates of the error function:

∂E

∂wik

= (tk − yk)φ′(ηk)xi = (tk − yk)yk(1− yk)xi, (3)

which gives us the update rule going opposite the gradient:

∆wik = λ(tk − yk)yk(1− yk)xi, (4)

where λ is the learning rate. Using the learning rule (4) we can design training algo-

rithm shown in Algorithm 1.1. It applies the weight update rule (4) in loop for each

sample in T . One main loop is called epoch.

Algorithm 1.1 Perceptron training pseudocode.
for epoch = 1 to Epochmax do

for all (Xj, tj) in T do

yj ← [φ(
∑N

i=0 xiwik) > θk]

for i = 0 to N do

wij ← wij + λ(tk − yk)yk(1− yk)xi

end for

end for

end for

Continuous perceptron. Till now, the Perceptron could give only discrete out-

puts. We put additional constraints for the activation function φ : R 7→ (0, 1) that

8

1 OVERVIEW 1.1 Preliminaries

φ is differentiable, monotonously increasing and satisfying two asymptotic conditions

t(−∞) = 0 and t(∞) = 1. Usually, the activation function is realized by the logistic

function 1/(1 + exp−η). To allow real numbered results from the range (0, 1), we drop

the treshold function and simply output φ(ηk).

1.1.2 Multi-layer feedworward networks

We will define multi-layer feedforward networks as in Haykin (1994). First, we define

a layered neural network where neurons are organised to form layers. In the simplest

version we have an input layer of source nodes and an output layer which is formed by

continuous perceptrons (1.1.1). In other words this is a feedforward or acyclic type of

network as the activation, i.e. outputs of the neurons are computed from the input to

the output layer and never backwards.

x0

x1

x2

xN

y2

y1

yM

Input layer of
source nodes

Hidden layer

Output layer

Figure 2: Fully connected feedforward multi-layer network with one hidden layer.

Multi-layer neural network has one or more hidden layers in addition to the input

and ouput layer as shown in Figure 2. The source nodes supply the activation pattern,

i.e. input vector, which is applied to next layer of neurons, i.e. the hidden layer. The

output signal of the hidden layer is then used as the input for the output layer. As

shown by Cybenko (1989) the three layer network is an universal approximator of

continuous functions on compact subsets of Rn.

There exists several methods for training multi-layer networks. First, we will de-

scribe the most common backpropagation in Section (1.1.5) and then methods related

9

1.1 Preliminaries 1 OVERVIEW

to our work such as CHL (1.2.1), GeneRec (1.2.3) and BAL (1.3).

1.1.3 Recurrent networks

In recurrent neural networks also cycles of connections are allowed. In other words, the

output of a particular unit could affect its input. Therefore, the activations in general

could not be computed only by one forward pass. This introduces real valued dynamic

systems for computing the activations. We can observe that it holds that ∂η/∂t = 0 for

the activations of neurons in the fixed point state. There are several approaches solving

these dynamic systems and deriving the learning rule (Pineda, 1987; Pearlmutter, 1989;

Williams and Zipser, 1989; Elman, 1990; Haykin, 1994).

In
p
u
t
layer

H
id
d
en

layer
C
on

tex
t
layer

O
u
tp
u
t
layer

Figure 3: Simple recurrent network proposed by Elman (1990). Taken from Haykin (1994).

An iterative method is used by Movellan (1990) to compute activations. In the first

step the input neurons have activations equal to the input vector and the other neurons

have activations equal to zero. In the next steps activations from the last step are used

to compute activation in the current step as shown in equation (5):

ηi(t+ 1) = φ

(∑
j

wjiηi(t)

)
(5)

This rule is iterated while the activations are not settled. For particullar symmetric

networks it can be proved that activations will converge (O’Reilly, 1996). For more

general networks a dynamic system based on rule (5) could be introduced. The the fixed

point solution is the settled activation. We experimented with the iterative method for

a two way version of GeneRec in Section (2.3.2).

10

1 OVERVIEW 1.1 Preliminaries

1.1.4 Hopfield networks

Hopfield (1984) introduced a network with arbitrary connections defined only by one

weight matrix W . Some of the units are chosen as the input units which have stable

activations for a given input pattern. We can treat a Hopfield network as a recurrent

neural network. A Hopfield network comes with a continuous energy function for which

usually function (6) is chosen:

E = −1

2

∑
i

∑
j

aiwijaj, (6)

where ai is the activation of the i-th unit. The aim of the network is to settle the

activations so that E settles in a global minima. Activation for the i-th unit is computed

based on the following differential equation (Hopfield, 1984):

∂ai
∂t

= α(−ai + fi(ηi)), (7)

where aT = [a1, . . . , an] is the activation vector, fi is bounded, monotically increasing,

differentiable activation function. Hopfield (1984) proved for equation (7) that if the

weights are symmetric, i.e. wij = wji, the activations will settle in the minimal error

state defined in equation (7). This learning rule is typically used in interactive activa-

tion networks studied by Grossberg (1978) and McClelland and Rumelhart (1981).

1.1.5 Backpropagation

Backpropagation is a multi-layer feedforward network (1.1.2) which differs from our

definition of multi-layer networks (1.1.2) only with its learning rule. The aim is to

find a powerful synaptic modification rule that will allow an arbitrarily connected

neural network to develop an internal structure that is appropriate for a particular

task domain (Rumelhart et al., 1986). A criticism of backpropagation is that it is

neurally implausible (and hard to implement in hardware) because it requires all the

connections to be used backward and it requires the units to use different input–output

functions for the forward and backward passes (Hinton and McClelland, 1988).

11

1.2 Related models 1 OVERVIEW

Layer Net Input Activation

Input (s) – si = stimulus input

Hidden (h) ηj =
∑

iwijsi hj = σ(ηj)

Output (o) ηk =
∑

j wjkhj ok = σ(ηk)

Table 1: Activation values in backpropagation.

Using the Perceptron error function (2) we can compute ∂E/∂yj from output to

input layer. For the hidden–to–output wieght it will look like:

∂E

∂wij

= −
∑
k

(tk − yk)wjkσ
′(ηj)si, (8)

where tk is the target value, ok is the output value, σ is the nonlinear function, ηj is

the net input and si is the stimulus input (O’Reilly, 1996).

1.2 Related models

In this section, we briefly mention models directly related to our work. Mainly it is

the Bidirectional Activation-based Learning algorithm (1.3) by Farkaš and Rebrová

(2013) and the Generalized recirculation (1.2.3) by O’Reilly (1996). The other two

models CHL (1.2.1) and BAL-Recirc (2.3.2) are inspiration for the two former ones.

Understanding the latter helps understanding the former. We compare these models

to our specialized versions in Table 6.

1.2.1 Contrastive Hebbian learning

The main idea of Contrastive Hebbian Learning developed by Movellan (1990) is to have

two activation phases in an aribtrary Hopfield network (Hopfield, 1984) as described

in Section 1.1.4. In the first phase, called minus phase and denoted “−”, only the

input vector is clamped, i.e. activations of the clamped units as equal to the clamped

values. In the second phase, called plus phase and denoted “+”, both the input and

target are clambed to the underlying network. The learning is based on the difference

of these two activations. For an idea how it works see Table 2. Note that CHL makes

no assumptions about the structure of the underlying network and therefore, it has no

layers in general.

12

1 OVERVIEW 1.2 Related models

As mentioned previously CHL is based on Hopfield networks. Therefore, it has an

energy function J which is based on the Helmholtz free energy function F (Hinton,

1989):

F = −1

2

∑
i

∑
j

aiwijaj +
∑
i

∫ ai

f(0)

f−1i (a)da (9)

where −1
2

∑
i

∑
j aiwijaj is the Hopfield energy function (6). Then the contrastive error

function J is defined as:

J = F̂+ − F̂− (10)

where F̂+ and F̂− respectively are the values of the energy functions at equilibrium

states for the plus and the minus phases.

Based on the contrastive energy function (10) a learning rule is derived by Movellan

(1990):

∆wij = âi
+âj

+ − âi−âj− (11)

where âi and âj denote the equilibrium state activations of the i–th and j–th unit. It

could be shown that the learning rule (11) decreases the energy function (10) (Movel-

lan, 1990). Moreover it could be shown that the CHL learning rule is equivalent to

backpropagation learning rule in terms of computability while it is biologically more

plausible as it uses only activation for computing the error gradient (O’Reilly, 1996;

Xie and Seung, 2003).

1.2.2 Recirculation algorithm

The Recirculation algorithm designed by Hinton and McClelland (1988) is an unsuper-

vised neural letwork for learning encoder tasks. Motivation for such a model comes

from interesting hidden representations of backpropagation (1.1.5) which could be used

as an encoder. It has only two layers denoted visible layer and hidden layer as shown

in Figure 4. The aim of the network is to remember on the hidden layer the patterns

presented to the visible layer. This could be used for compression if the hidden layer

has fewer units than the visible layer. It also could be used as a content-addressable

memory, when if novel patterns are presented to the network then it could show the

blend of the most similar stored patterns.

13

1.2 Related models 1 OVERVIEW

Figure 4: The recirculation algorithm by Hinton and McClelland (1988). Taken from

(O’Reilly, 1996).

As depicted in Figure 4 the activation is propagated in four steps T ∈ {0, 1, 2, 3}.
At the first phase, denoted by T = 0 only the input vector t is clamped on the visible

layer, at T = 1 a forward pass h∗ is computed from visible to hidden, at T = 2 a

reconstructed pattern ok as a function of hidden state h∗ is computed and finally at

T = 3 a hidden state h is computed from ok.

For the reconstruction to work symmetric weights are used. The learning rule is

common for both visible and hidden layers and it’s based only on the difference of

activations:

∂E

∂wij

= −(η∗j − ηj)φ′(ηj)ti,

≈ −(h∗j − hj)ti.

And similary we get hi(tj − oj) for the hidde to visible weights. The approximation

step is possible because φ′(ηj) has usually the same sign as (η∗j − ηj) (Hinton and

McClelland, 1988; O’Reilly, 1996). The approximation more precise if the difference of

activations is smaller and therefore, the rule (12) could be used to make o similar to

target pattern t.

ok = αtk + (1− α)f(ηk). (12)

1.2.3 Generalized recirculation

Introduction. The Generalized recirculation algorithm, or GeneRec, was introduced

by O’Reilly (1996). It is a supervised learning algorithm which in comparison with

14

1 OVERVIEW 1.2 Related models

backpropagation (1.1.5) is argued to be a more biologically plausible model as error is

computed locally as a difference between activations (O’Reilly, 1998, 2001; da Silva and

Rosa, 2011; Schneider and Rosa, 2009). It extends the recirculation algorithm (1.2.2)

by having a hidden layer of units and uses “+” and “−” phases as CHL (1.2.1) for weight

update. This allows GeneRec to learn arbitrary mappings and not only conntent-based

memories as the recirculation algorithm. For the error computation a backward weight

matrix from output layer to hidden layer is used and the learning rule is derived from

the CHL learning rule (11). It could be proven that GeneRec, as Backpropagation,

could learn arbitrary input–output mappings (O’Reilly, 1996).

Activation. The main difference between CHL and GeneRec is that GeneRec has

layers and it is based more on recurrent neural networks than on the Hopfield networks.

Therefore, as shown in Table 2, we can compute the activations sequentially. We can see

the inspiration from the recirculation algorithm (1.2.2) and a correspondence between

T in recirculation and phases in GeneRec. In particular s− ≈ T = 0, h− ≈ T = 1,

o− ≈ T = 2 and h+ corresponds to T = 3. The activation flow is depicted in Figure 5.

Layer Phase Net Input Activation

Input (s) − - si = stimulus input

Hidden (h) − η−j =
∑

iw
IH
ij si +

∑
k w

OH
kj o

−
k h−j = σ(η−j)

+ η+j =
∑

iw
IH
ij si +

∑
k w

OH
kj o

+
k h+j = σ(η+j)

Output (o) − η−k =
∑

j w
HO
jk hj o−k = σ(η−k)

+ - o+k = target output

Table 2: Equilibrium network variables in GeneRec (O’Reilly, 1996).

In case of the plus phase only the hidden activations are necessary to compute and

that could be achieved by computing φ(ηi). In case of the minus phase, where only

inputs are clamped it is necessary to find an equilibrium activation state for which

the equations (2) hold. There are several approaches as dicussed in recurrent net-

works (1.1.3). In our implementation we choose the iterative method with the following

15

1.2 Related models 1 OVERVIEW

rules for computing activations ai:

ai(t+ 1) =

 si if i ∈ input

φ(
∑

j wjiaj(t)) otherwise

ai(0) =

 si if i ∈ input

0 otherwise

(13)

where ai(t) is the activation of i–th unit in discrete time t. The rules (13) are iterated

while |ai(t+ 1)ai(t)| > ε for some unit i, where ε ∈ R+. For the successful networks it

was enough to have 3 to 33 iterations. On the contrary, especially for BAL-recirc (2.3.2),

the process was not able to converge. In such case we took the average of last two

activations, which reduced the ratio of diverging networks. But still we encountered

fluctuation (2.4.2) with arbitrary size. This method is further discussed in Orrú et al.

(2008).

In
p
u
t
layer

O
u
tp
u
t
layer

H
id
d
en

layer

In
p
u
t
layer

O
u
tp
u
t
layer

H
id
d
en

layer

Figure 5: Depicting the minus (left) and plus (right) phases of GeneRec defined in Table 2.

Taken from Orrú et al. (2008).

Learning rule. GeneRec uses three weight matrices W IH , WHO and WOH for the

input–hidden, hidden–output and output–hidden weights. It also has the “−” and “+”

phases as CHL with same meaning, i.e. in the minus phase only the input vector is

clamped and in the plus phase both input and target vectors are clamped as seen in

Table 2. Generec uses the non symmetric version of the CHL rule for all three weight

matrices:

∆wij = λa−i (a+j − a−j), (14)

where a−i denotes the presynaptic and a−j denotes the postsynaptic unit activation in

minus phase, a+i is the postsynaptic activation from plus phase and λ denotes the

learning rate. For example, when updating WHO then a−i = h−i , a
−
j = o−j and a+j = tk.

16

1 OVERVIEW 1.3 Bidirectional activation-based learning algorithm

Modifications. It is important to note that O’Reilly (1996) proved that GeneRec

converges if the learning rule (14) is a valid approximation to the error derivate and

the weights are symmetric, i.e. WHO = (WOH)T . O’Reilly (1996) based on CHL and

the midpoint method for gradient computation proposed two more learning rules for

GeneRec:

1

λ
∆wij =

1

2
(a−i + a+i)(a+j − a−j) (15)

1

λ
∆wij = (a+j a

−
i − a−j a+i)− 2a−j a

−
i (16)

where (15) is called the midpoint learning rule and (16) is called the symmetric learning

rule which aims to preserve the weight symmetry. By combining rules (15) and (16)

we get the CHL learning rule (11). Thus we see that GeneRec is closely related to

CHL.

1

λ
∆wij = (a+i a

+
j)− (a−i a

−
j) (17)

1.3 Bidirectional activation-based learning algorithm

Design of Bidirectional Activation-based Learning algorithm (BAL) by Farkaš and

Rebrová (2013) is motivated by the biological plausibility of GeneRec. BAL inherits

the learning rule (14) of GeneRec and also the two phases. But unlike GeneRec, BAL

aims to learn bidirectional mapping between inputs and outputs and for this purpose

it uses four weights W IH , WHO, WOH and WHI . The design of BAL is symmetric as

shown in Table 3 and thus we avoid calling inputs, outpus, minus phase or plus phase.

We rather choose forward and backward which could be interchanged. This brings us

different notation where aF denotes forward activations, aB backward activations, x is

the first activation layer, i.e. front layer, y is the third activation layer, i.e. back layer,

F means forward pass and B means backward pass. Layers x and y are visible and layer

y is hidden. Note that all non- timulus units have learnable biases and their weights

are updated in a same way as regular weights.

17

1.3 Bidirectional activation-based learning algorithm 1 OVERVIEW

Layer Phase Net Input Activation

x F - xFi = forward stimulus

h F ηFj =
∑

iw
IH
ij x

F
i hFj = σ(ηFj)

y F ηFk =
∑

j w
HO
jk hFj yFk = σ(ηFk)

y B - yBk = backward stimulus

h B ηBj =
∑

k w
OH
kj y

B
k hBj = σ(ηBj)

x B ηBi =
∑

j w
HI
ji h

B
j xBi = σ(ηBi)

Table 3: Activation phases and states in BAL (Farkaš and Rebrová, 2013).

In the first phase, called forward pass, the forward stimulus is clamped and forward

activations are computed. In the same way, in the second phase, called backward pass,

the backward stimulus is clamped and backward activations are computed. We can

imagine the backward pass as a reconstruction of the target pattern for the forward

pass. For the forward learning rule the difference between the forward pass and the

backward pass is used as shown in equation (18).

∆wF
ij = λ aFi (aBj − aFj). (18)

The backward learning rule (19) is same as the forward learning rule (18). We will

reference them together as BAL learning rule.

∆wB
ij = λ aBi (aFj − aBj). (19)

Note that we can treat the differences (aBj −aFj) and (aFj −aBj) as error terms which push

the forward and backward activation to settle. Both forward (18) and backward (19)

learning rules are same as the basic GeneRec learning rule (14). We experimented with

different learning rules (1.2.3).

18

2 SIMULATIONS

2 Simulations

Introduction

In this section, we describe all simulations which we performed in our work. We

start with definition of our evaluation metrics in Section 2.1 and te we give a short

description of datasets used for our simulations in Section 2.2. The main part are the

descriptions of used modified versions of BAL in Section 2.3. Finally, we end with

additional experiments used to prove or disprove our hypotheses in Section 2.4.

2.1 Evaluation methods

Following Farkaš and Rebrová (2013), we measured two key properties of a BAL-like

network. The more important being success rate and second being convergence time.

Success rate. Before comparing given outputs on both visible layers the activations

yF and xB are classified by a treshold:

gk =

 1 if xBk > 0.5

0 otherwise
(20)

For an input I from the sample set S we denote vector given by propagation of neuron

activations GI and the target vector we denote T I . We distinguish two main success

measures:

• Bit success (bitSucc) defined as bitSucc = avgI∈S
∑|T I |

i |T I
i −GI

i | and

• Pattern success (patSucc) defined as

patSucc = avgI∈S

 1 if T I = GI

0 otherwise
(21)

Convergence time. We denote the number of epochs before the stop of the training

algorithm as convergence time. There are several possibilities when to stop the learning

algorithm. Usually, training could be stopped for two reasons. The network could

either reach the stopping criteria or the maximum epoch is reached. Given by nature

of used datasets we trained the neural networks while patSuccF 6= 1. In case of the

19

2.2 Datasets 2 SIMULATIONS

digits (2.2.3) dataset we decided to stop the training if patSuccF was not increased for

3 epochs. Note that we are motivated to decrease the convergence time as it makes

the training process faster.

2.2 Datasets

For analysing our versions of BAL (1.3) we have chosen three datasets on which we

tested and compared the performance of our models.

2.2.1 4-2-4 Encoder

The 4-2-4 econder task is the simplest dataset we have been working with. It consists

of four four–dimensional samples (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) where

each sample is mapped to itself. We use two units on the hidden layer what gives us the

4-2-4 architecture. The 4-2-4 encoder task is a well–known problem and used previously

for testing GeneRec (O’Reilly, 1996) and BAL (Farkaš and Rebrová, 2013). In the case

of BAL only 60–65% patSuccF was achieved what leaves window for improvement.

We chose this dataset as it is convenient for testing novel approaches as the learning

progress of the network could be checked by hand and eye.

2.2.2 Complex binary vector associations

The complex binary vector associations (CBVA) task was used in Farkaš and Rebrová

(2013) and its motivated by the sensory–motor mappings between distributed patterns.

The task is to associate between sixteen 16–dimensional vectors which all had 3 active

units. There are always 4 distinct overlapping input patterns associated with exactly

one output pattern. As there are several possibilities of inputs for each output, then

in the backward way it is impossible to achieve perfect bitSuccB or patSuccB. There-

fore, we would expect from the network to give a blend of the four input patterns

corresponding to one output.

20

2 SIMULATIONS 2.3 New models

Figure 6: BAL performance on CBVA. Black color stands for target–estimate match, gray

for target only and gray with a cross for false–positive estimate (Farkaš and Rebrová, 2013).

2.2.3 Handwritten digits

The well–known MNIST dataset of handwritten digits (LeCun et al., 1998b) first anal-

ysed by LeCun et al. (1998a) consists of 42,000 samples of 28 × 28 grayscale images

mapped to one digit. We have chosen this dataset for three reasons. First, it is big

and complex enough to test the practicallity of our models. Second, performance of

many models is known on this dataset and therefore, we can easily compare perfor-

mance of our models to these models. And third, we can easily visualize the backward

blend representations and intuitively confirm if our models perform as expected. These

visualisations could be found in Section 3.3.3.

Figure 7: Samples from the digits dataset.

2.3 New models

Introduction

In this section, we describe models we developed based on BAL (1.3). We start with

description of TLR (2.3.1) as the most important model of our work and continue with

description of BAL-recirc which is a combinations both of BAL and GeneRec (1.2.3).

Both models are inspired by our experiments further described in (2.4).

21

2.3 New models 2 SIMULATIONS

2.3.1 Two learning rates

We proposed the Two learning rates (TLR) model as a solution for the hidden acti-

vation settling (2.4.3) based on the dynamic learning rate model (2.4.4). As the name

suggests this model uses two learning rates. The learning rate λv, i.e. lambda visible,

for weights WHI and WHO and learning rate λh, i.e. lambda hidden, for weights W IH

and WOH . Both λv and λh are constant during whole learning phase. Note that the

names are derived from the layer names on which the error term (a+j −a−j) is computed.

Our simulations show that setting λh � λv could lead to significantly better perfor-

mance in comparison to the standard BAL model (3.1.1). Our intuition explains it as

follows: because λh � 1 thus W IH and WOH are updated only little and also activa-

tions hF and hB change only a little and |hF−hB| converges to zero slower. Thus error

terms (yBj −yFj) and (xFj −xBj) from the BAL learning rule 18 forWHI andWHO impact

the weight change longer with non constant hidden activations (2.4.3). The importance

of hidden activations was confirmed by the candidate selection experiment (2.4.2).

We can also explain TLR in terms of biological plausibility. Results of TLR suggests

λh � λv. That means the input–hidden mapping is changed only a little and mostly

hidden–output mapping is trained. Let us put this in context of interpreting images

from eyes in human brains. That would mean that human representations, i.e. hiddens,

of eye images, i.e. inputs, are changed only little while the symbolic interpretations,

i.e. outputs, could change rapidly.

Related work. Most of the previous work regarding different learning rates is based

on Dynamic learning rate (DLR) model introduced by Jacobs (1988). Aim of DLR

is to compute best learning rate in terms of successful convergence and avoidance of

local minima (Behera et al., 2006). There are several approaches how to achieve this.

Most of them have individual learning rates for each weight in the network which could

change in time. Some approaches precompute learning rates (Weir, 1991) while others

adapt learning rates dynamically through the training process (Yu and Chen, 1997;

Magoulas et al., 1999; Yu and Liu, 2002).

The most relevant information for TLR we found was the tip given by LeCun et al.

(2012) that “Beyond choosing a single global learning rate, it is clear that picking a

22

2 SIMULATIONS 2.3 New models

different learning rate λij for each weight wij can improve convergence. Weights in

lower layers should typically be larger than in the higher layers.” Unfortunatelly, we

were not able to find other simulations which backup this tip. Moreover, LeCun et al.

(2012) focuses on individual weights, and not matrices as TLR. Therefore, we conclude

that, to our best knowledge, the TLR model is unique in terms of number of learning

rates.

2.3.2 Recirculation BAL

The aim of Recirculation BAL is to combine the ideas of BAL (1.3) and iterative

activation from GeneRec (1.2.3). In other words, instead of computing the forward

pass using only W IH and WHO we add a recirculation step between matrices WHO

and WOH , and similary for the backward pass and WHI and W IH . We tried two

approaches of such a combination. The first one is Bidirectional Iterative Activation

(BIA) which is a straightforward implementation of the idea. Activation computation

of BIA is shown in Table 4.

Layer Phase Net Input Activation

x F - xFi = stimulus

h F ηFj =
∑

iw
IH
ij x

F
i +

∑
k w

OH
kj y

F
k hFj = σ(ηFj)

y F ηFk =
∑

j w
HO
jk hFj yFk = σ(ηFk)

y B - yBk = stimulus

h B ηBj =
∑

k w
OH
kj y

B
k +

∑
iw

IH
ij x

B
i hBj = σ(ηBj)

x B ηBi =
∑

j w
HI
ji h

B
j xBi = σ(ηBi)

Table 4: Activation for BIA (2.3.2). The only difference with BAL (3) are the recurrent

terms
∑

k w
OH
kj yFk and

∑
iw

IH
ij x

B
i .

The second one is Bidirectional GeneRec (BiGeneRec) which has three phases. The

first F− phase is same as the minus phase of GeneRec and the third C+ phase is same

as the plus phase of GeneRec. The second B− phase is same as the F− phase but from

back to front. In other words we can treat F− and B− phases as forward and backward

minus phase of GeneRec and the C+ phase as the plus phase of GeneRec. As in the

23

2.4 Experiments 2 SIMULATIONS

F− phase, only the forward weights W IH and WHO are updated and in the B− phase

only the backward weights WOH and WHI are updated. We can treat weight updates

of BiGeneRec as two independent GeneRec update steps.

Layer Phase Net Input Activation

Hidden (h) C+ η+j =
∑

iw
IH
ij x

F
i +

∑
k w

OH
kj y

B
k h+j = σ(η+j)

Table 5: Difference between BiGeneRec (2.3.2) and BIA (4) is the additional C+ phase

corresponding to the plus phase of GeneRec (1.2.3).

For both BIA and BiGeneRec we experimented with both asymmetric and symmet-

ric versions. For the asymmetric version we experienced problems with fluctuation.

This is briefly discussed in Section 1.2.3 and in Section 2.4.2.

2.4 Experiments

In this section, we describe modifications which could be applied to any model of

artificial neural networks. Some of them, such as momentum (2.4.1) and batch learning

mode (2.4.4) are well–known approaches. Other, such as dynamic learning rates (2.4.4)

or weight initialization classification (2.4.4) were chosen specially to reinforce important

features of BAL (1.3).

2.4.1 Momentum

Momentum was introduced by Jacobs (1988) as an special case of dynamic learning

rate (2.4.4). It is an extension to any learning rule for any artificial neural network by

adding a momentum term:

∆wij(t) = learning rule + µ∆wij(t− 1),

where µ is a real–valued parameter.

It is argued that momentum could overcome settling in local minima by leveraging

the second derivate (Phansalkar and Sastry, 1994). It is also “believed that momen-

tum could render the learning procedure more stable and accelarate convergence” but

“momentum setting is as practice shows problem dependend” (Riedmiller and Braun,

24

2 SIMULATIONS 2.4 Experiments

1993). As learning rate has an adaptive dynamic version (2.4.4), momentum also has

an adaptive dynamic version (Miniani and Williams, 1990).

2.4.2 Candidate selection

The candidate selection model was used to test and confirm if some particular network

features (2.4.2) have an impact to the overall network performance. The only difference

between standard BAL (1.3) and candidate selection is that before the training phase,

N networks are randomly generated from which a best candidate network is selected.

For selecting the best candidate we use feature function defined as F : network 7→ R.

Algorithm 2.1 Candidate selection pseudocode.
best_candidate← (∞, null)
for i = 1 to N do

gn← generate_network()

candidate← (F (gn), gn)

if candidate < best_candidate then

best_candidate← candidate

end if

end for

Features. We denote XI , HI and YI as the front, hidden and back activation vectors

for input I (and the corresponding target). For the rest of the notation please consult

Section 3. We measured the following features :

• distH (real) – the average distance between all hidden activations of the inputs,

i.e. avgI 6=J

(
dist(H+

I , H
+
J)
)
.

• distFB
H (real) – the average distance between corresponding forward and backward

hidden activations, i.e. avgI
(
dist(H−I , H

+
I)
)
.

• distFB
V (real)– the average distance between corresponding forward and backward

visible activations, i.e. avgI
(
dist(Y −I , X

+
I)
)
. Note that this feature is only

relevant for auto–associative tasks such as 4-2-4 encoder (2.2.1).

25

2.4 Experiments 2 SIMULATIONS

• matrix_weight (real) – average weight of the network, i.e. average value of all

weight matrices W IH , WHO, WOH and WHI . Note that each matrix value has

the same impact to matrix_weight.

• in_triangle (bool) – check if hidden activations of inputsH+
I form a convex poly-

gon, i.e. if the hidden activation points are all lineary separable (1.1.1). Therefore

in_triangle = 0 is a necessary condition for perfect success rate. Consult Fig-

ure 10 for examples of convex and non–convex hidden activations. Note that

in_triangle was implemented only for hidden size equal to two, i.e. for the 4-2-4

encoder task.

• fluctuation (real) – the maximal difference between activations in the last two

iterations when using the iterative method for activation computation (13). With

other words, let ai(t) be the activation of unit i in iteration t and T be number

of iterations. Then fluctuation is maxi|ai(T − 1)−ai(T)|. So if fluctuation ≈ 0

then the iterative method was successful and all activations settled.

Also all parameters of TLR were included such as λv, λh (2.3.1), momentum µ (2.4.1)

and weight distribution σ (2.4.4).

Linear regression. To get the most important features we trained a feature func-

tion on a feature dataset consisting of individual features and with label equal to

bitErrF = 1 − bitSuccF . The dataset was created by generating standard BAL net-

works, measuring feature values before the training phase and adding the success rate

label after the training phase. On this feature dataset we trained a simple linear re-

gression model shown in equation (22).

bitErrF = −0.328× distH + 0.140× distFB
H − 0.100× distFB

V

+ 0.019×matrix_sim− 0.127× σ + 0.000×matrix_weight+ 3.610 (22)

From equation (22) we observe that the feature which contributed the most to patSuccF

is distH . This was used as a inspiration for the TLR model (2.3.1). Furthermore,

we started using the feature function (23) for all candidate selection simulations. It

simply choses the network with greatest distH . For the 4-2-4 encoder task we also add

26

2 SIMULATIONS 2.4 Experiments

in_triangle as primary feature to ensure the convexity of initial hidden activations.

F (network) = −distH(network) (23)

2.4.3 Hidden activations

We observed that hidden activations in BAL (1.3) tend to settle fast as shown in

Figure 13, i.e. the weight changes become close to zero because |HF − HB| ≈ 0.

Therefore, the network is de facto reduced to a two–layer network between the constant

hidden activations and the target values. Thus for the cases when the hidden activations

are not linearly separable (1.1.1), it is impossible for wHI and wHO to learn targets.

This behaviour is demonstrated by the in_triangle measure (2.4.2).

A more formal explaination why the hidden activations tend to settle fast could be

given by the GeneRec learning rule (14):

∆wij = ai(bj − aj), (24)

which for the W IH and WOH yields:

∆wIH
ij = xFi (hBj − hFj)

∆wOH
ij = yBi (hFj − hBj).

We see that both terms (hBj − hFj) and (hFj − hBj) push W IH and WOH to settling

hBj = hFj . This experiment was one of the reasons we started to experiment with

dynamic learning rate (2.4.4) which lead to the TLR model (2.3.1).

2.4.4 Other experiments

In this section, we describe additional models, model modifications and experiments

we proposed and used during our work. We further introduce notation used in the

results section.

Weight initialization classification. As candidate selection suggested in Section

2.4.2, weight initialization could be crucial for the success rate of BAL. To further anal-

yse this hypothesis we propose the following experiment. First we generate n networks

Ni with random weights Wi, train them and label them si = patSuccF . This way we

27

2.4 Experiments 2 SIMULATIONS

get a dataset D = (Wi, si) for which we can fit a model M and use it for prediction of

si. Then we analyse M and try to propose hypothesis for successful weights. Finally,

we would modify the weight initialization algorithm that it will support the more suc-

cessful networks. Note that this experiment was not implemented but we recommend

it for future work.

In our work, we used a weight initialization algorithm inspired by O’Reilly (1996).

For each weight wij we select randomly a value from the normal probability distribution:

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (22)

where weight initialization constant σ is one of the network parameters and µ = 0 is

the expected value of the normal distribution. We showed that σ influences the success

rate (22). It is recommended by O’Reilly (1996) to set σ = 1√
N+1

where N is the

number of units on the input layer including bias.

Dynamic learning rate. The idea of dynamic learning rate (DLR) was introduced

by Jacobs (1988). DLR uses separate learning rates for each weight wij which could

change in time t and are denoted λij(t). There are several possibilities how to set

λij(t) which are briefly described in Section 2.3.1. We further tried to develop our own

DLR model which would depend on error of the previous epoch. In one of our trials,

we set the learning rate to be smaller with smaller error to make BAL settle hidden

activations later. Although we were not able to increase the success rate, we admit

there is space for further improvement (3.3.3). This modification was an inspiration

for TLR (2.3.1).

Batch mode. Normally, before each epoch the training samples are shuffled. But in

batch mode instead of updating weights after each training sample, the weight changes

are accumulated for the whole epoch. With other words, all weight changes are summed

for each sample in the training set and then weights are updated in batch. One can

observe, that after the weights are initialized, the learning algorithm becomes deter-

ministic. Therefore, this approach could be used to confirm or disprove the importance

of weight initialization. We executed several simulations on BAL with batch weight

update, but it had no significant impact.

28

2 SIMULATIONS 2.4 Experiments

Dropout. Based on the work of Hinton et al. (2012), we implemented the dropout

method of learning. The main idea is that in each epoch, we randomly choose half of

the hidden layer neurons, which will be ignored for this epoch. With other words, in

each epoch a random subset of hidden neurons is chosen to be active, while the other

hidden neurons are ignored. The motivation is to prevent co–adaptation of the hidden

layer neurons (Hinton et al., 2012). We were not able to train any successful BAL (1.3)

network using dropout on the 4-2-4 encoder (2.2.1) and CBVA (2.2.2) tasks. Therefore

we soon dropped the idea, but we admit, that setting other probability p for dropout

or applying it on higher dimensional tasks could have a positive impact on success rate.

Noise. Motivated by the chaotic behaviour of nature itself we tried adding random

noise to each weight update. We hoped, that the possible noise could prevent settling

of hidden activations to fast (2.4.3). Our simulations of BAL and BAL-recirc using

random noise showed no significant increase in performance.

Multi-layer GeneRec. We implemented a multi-layer version of GeneRec (1.2.3).

The recirculation step in the minus phase was extended to 2L − 3 steps, where L is

the number of layers. First the propagation of neuron activations goes L − 1 times

forward and next it goes L − 2 times backward. Then the recirculation step (1.2.3)

between layers 2, 3, . . . , L is executed. Our implementation of multi-layer GeneRec

using the 784–300–50–10 architecture achieved 43.22% success rate on the handwritten

digits recognition task (2.2.3).

Symmetric BAL. Inspired by the necessary condition for convergence of GeneRec

stated by O’Reilly (1996) we introduced Symmetric BAL (SymBAL). SymBAL is a

modification of BAL with symmetric weights W IH = (WHI)T and WHO = (WOH)T .

We found no significant improvement when using this approach with

29

2.4 Experiments 2 SIMULATIONS

30

3 RESULTS

3 Results

In this section, we present our most important results and an in depth analysis of

TLR (2.3.1). We compare TLR to BAL (1.3), GeneRec (1.2.3) and other models. This

section is organised by the datasets (2.2). We start with the 4-2-4 encoder task in

Section 3.1 which received most of our attention. Then we follow with the CBVA task

in Section 3.2 and finish with our biggest dataset digits in Section 3.3.

3.1 4-2-4 Encoder

In this section, we analyse performance of TLR (2.3.1) for a broad range of parameters

λh and λv. The network architecture is only 4-2-4 (2.2.1) what allows us to run plethora

of simulations. There were two kinds of simulations. First are two dimensional maps

(TDM), where λv is plotted on the x axis, λh on the y axis and color is used for the z

axis. Second are timelines which plot success rate to epoch for the best configuration

found by TDM. To create TDM we ran 500 networks for each pair (λv, λh) and for

timelines we ran 10000 networks. After the simulations ended, the average for each

configuration was plotted. The networks were trained while patSuccF 6= 1 or epoch <

Epochmax. The Epochmax was set to 100,000 in TDM and 1,000,000 in timelines. Note

that most of the plots are in logarithmic scale.

3.1.1 Comparison

In Table 6 we can see the comparison of the most important models which we analysed

on the 4-2-4 encoder task. We achieved an improvement of BAL patSuccF from 62.7%

to 93.1% by using two different learning rates (2.3.1). This result was further improved

to 99.86% by selecting networks with candidate selection (2.4.2). This confirmed that

hidden distance and convexity of hidden representations are important attributes of

BAL.

On the other hand, many of the analysed models compared less to BAL. We tried the

alternative GeneRec learning rules (1.2.3) on BAL, calling these models BAL GeneRec

Learning Rules (BAL GLR), but there was no instance which was able to achieve

patSuccF > 0. Also, success rate of BAL-recirc (2.3.2) was lower than success rate

31

3.1 4-2-4 Encoder 3 RESULTS

of BAL. We experimented with momentum in Section 3.1.4 or BAL with symmetric

weights, but both without significant improvement in success rate.

Algorithm (section) λh λv patSuccF Epochs

BP (1.1.5) 2.4 2.4 100% 60

GR (1.2.3) 0.6 0.6 90% 418

GR Sym (16) 1.4 1.4 56% 88

GR Mid (15) 2.4 2.4 92% 60

CHL (1.2.1) 1.2 1.2 56% 77

BAL (1.3) 0.9 0.9 62.7% 5136.11

BAL TLR (2.3.1) 0.0002 500 93.12% 5845.01

BAL TLR Can (2.4.2) 0.0002 500 99.86% 150.417

BAL Recirc (2.3.2) 0.0001 1.0 36% 1221.6

BAL GLR (1.2.3) any any 0% N/A

Table 6: Comparison of different models on the 4-2-4 encoder task. Results for BP, GR, GR

Sym, GR Mid and CHL are taken from O’Reilly (1996).

Note that, if we want to compare execution time based on epochs in Table 6, then

we must be aware of that GeneRec and BAL-recirc epochs take longer than epochs of

other models. This is because the recirculation step (1.2.3), for which about 3 to 33

iterations are needed for activation to settle (1.2.3). Thus the 418 epochs of GeneRec

are comparable to the 5845 epochs of TLR in terms of execution time.

3.1.2 Two learning rates

In Figure 8 we compare success rate for range of λv and λh. It is interesting that the

subspace with best achieving networks is around the half line [(10, 0.001), (109, 0.001)].

That means the performance mainly depends on λh while a constraint on λv is added.

Also see the plot for epochs, where a ridge occurred around line [(0.01, 0.0002), (109, 0.0002)].

Unfortunatelly, we can only guess what is the reason behind this ridge. Maybe it is

related to Epochmax and the fact that we are calculating epochs only from successful

networks. Therefore, successful networks having λh < 10−6 need to converge using λv,

because otherwise they would fail to converge because of λh · Epochmax < 1.

32

3 RESULTS 3.1 4-2-4 Encoder

Note that the success space is robust and therefore it is possible to find it by stochas-

tic methods such as Monte Carlo as an additional parameters is introduced. This ap-

proach is needed as finding the optimal values of λv and λh could take long using the

trivial exhaustive search.

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

0.1^4
0.001
0.01
0.1
1 10 100
1000
10^4
10^5
10^6
10^7
10^8
10^9

la
m

bd
a

hi
dd

en

lambda visible

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

9090
90

85

85

85

8080

80 80

75
75

75

7000

70

70

7070

70

70

70 70

70

65

65

65

65

65

65

65 65

65

0 60

60

0 55

55
55

50

50
50

4545

45

40

40
40

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

0.1^4
0.001
0.01
0.1
1 10 100
1000
10^4
10^5
10^6
10^7
10^8
10^9

la
m

bd
a

hi
dd

en
lambda visible

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

5000

5000

5000

5000

5000

00

4000
4000

4000 4000

4000

4000

40
00

40
00

3000

3000

3000

30
00

3000

30
00

2000

2000

2000

2000

2000

2000

2000
2000

2000

2000

0

2000

20002000

2000

2000

0 1000 10
00

Figure 8: TLR success rate and convergence time needed for successful networks on the

4-2-4 encoder task with σ = 2.3 and µ = 0.0. Best network achieved 96.5$ with λh = 0.0003

and λv = 1000.0.

Note the inconsistency between Table 6, where 93.12% success rate was stated for

TLR, and in Figure 8 where it was 96.5%. This is explained by the law of big numbers.

In the first case the average performance of 10000 networks were used, thus the result

is likely to mirror the reality. In the second case only 200 networks were used for a

particular (λv, λh) pair. As there were about 50 candidates for best success rate, it

was likely that some of them will achieved better than average.

In Figure 9 the success timeline for TLR with best λh and λv is analysed. We see

that the success rate increases even after 105 epochs and our intuition tells us that it

will continue even after 106 epochs. Another observation is that patSuccB first follows

patSuccF for about 100 epochs, but then it stagnates at rate ≈ 0.8. We find this hard

to explain as both the architecture and data are symmetric.

3.1.3 Hidden activations

In Figure 10 and in Figure 11 we show forward hidden activations. Each color represents

the forward hidden representation of one of the four inputs in the 4-2-4 encoder task.

As the hidden layer size is 2 then the hidden activation can be mapped to the two

33

3.1 4-2-4 Encoder 3 RESULTS

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000 1e+06

ne
tw

or
k

pe
rf

or
m

an
ce

epoch

patSuccB
patSuccF

bitErrB
bitErrF

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000 1e+06

ne
tw

or
k

pe
rf

or
m

an
ce

epoch

patSuccB
patSuccF

bitErrB
bitErrF

Figure 9: TLR success rate timeline for the 4-2-4 encoder task with λh = 0.0002 and

λv = 500. The top plot without candidate selection and the bottom plot with candidates

selection.

dimensional space. The plotted activations start at epoch = 0 where the starts are

depicted with black squares and continue as outlined by the the lines.

The main difference between TLR and BAL seems to be the speed of activation

change. For BAL, as shown in Figure 10, we have a step of size 0.6, which corresponds

to four, one for each input, weight updates. Another observation is that after some

initial steps BAL tends to stop the activation change. This could be contributed to

settling |HF −HB| ≈ 0 as discussed in Section (2.4.3).

Another source of error could be non–convex hidden activation initializations. In

the beginning, the weight matrices are initialized by random and that leads to random

hidden activations. And if the hidden activations are also non–convex in the end

then it is impossible to perfectly classify on the hidden–to–visible layer due the linear

separability theorem discussed in Section 1.1.1. Therefore if the network had non–

convex hidden activations in the beginning, then it must escape the non–convex state.

34

3 RESULTS 3.1 4-2-4 Encoder

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

Figure 10: BAL hidden activations on the 4-2-4 encoder task. The top 2×2 are unsuccessful

networks and the bottom 2 × 2 successful ones. Only the first ≈ 100 epochs had change in

activation.
35

3.1 4-2-4 Encoder 3 RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

Figure 11: TLR hidden activations on the 4-2-4 encoder task. The top 2×2 are unsuccessful

networks and the bottom 2× 2 successful ones. Only the first ≈ 10000 epochs had change in

activation.
36

3 RESULTS 3.1 4-2-4 Encoder

3.1.4 Momentum

Adding momentum (2.4.1) to the basic TLR simulations (3.1.2) had no significant effect

on network performance as shown in Table 7 where for each momentum we take average

from all simulations. Only a little improvement in convergence rate was achieved. We

ran simulations for range of λv and λh values as shown in Figure 12.

momentum avg(success)

0.001 0.4419

0.003 0.4428

0.01 0.4440

0.03 0.4464

0.1 0.4468

0.3 0.4493

Table 7: Comparison of different momentums for TLR on the 4-2-4 encoder task.

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

100

0.001

0.01

0.1

1 10 100

1000

10^4

10^5

10^6

10^7

10^8

la
m

bd
a

hi
dd

en

lambda visible

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

90

90
90

90

90

85

85

80
80

80 80

75

75
75

70

0 70

70

70

70
700

70

7070

70
70 70

65

65

65

65

65

65 650

0 60
60

60

0

55

5555

55

55

50

50

50

45

45

45

40

40

0
3535

35

30

30
30

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

100

0.001

0.01

0.1

1 10 100

1000

10^4

10^5

10^6

10^7

10^8

la
m

bd
a

hi
dd

en

lambda visible

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

90

0

90

0

90

90

85

85

85
80

8080

80

75

75

75

70

000

70

0

70

70

70

7070

70

70

70

70

70 70

70

65

65

6565

65

65 65

65

65

0 60

60

0

55

55

55
55

50

50

45

45
45

40

40
40

3535

35

30

30
30

Figure 12: Comparison of momentums µ = 0.01 (left) and µ = 0.3 (right) for TLR on the

4-2-4 encoder task.

3.1.5 Features

In this section, we analyse the timelines for features distFB
H , distFB

V , distH andmatrix_weight

introduced in Section 2.4.2. We compare the values for BAL, TLR and TLR with can-

didates selection (TLR-can).

The importance of the distance between forward and hidden activations distFB
H is

37

3.1 4-2-4 Encoder 3 RESULTS

shown in Figure 13. We observe that distFB
H settles fast for BAL. This means the

network stops learning as the difference (hBj − hFj) ≈ 0 renders the weight update in

BAL update rule to zero. On the other hand, we see that distFB
H of TLR is not affected

in time. This could be contributed to lower magnitude of updates W IH and WOH .

TLR-can is stationary as it converges in 150 epochs.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

di
st

an
ce

 b
et

w
ee

n
H

F
 a

nd
 H

B

epoch

BAL
TLR

TLR can

Figure 13: Comparison of distFB
H (2.4.2) timelines for the 4-2-4 encoder task.

Difference between forward and backward outputs distFB
V is shown in Figure 14.

We see that BAL decreases the difference monotonously and converges to zero. That

means the mappings learned by forward and backward weights are same. But, this is

not true for TLR. We observe a rebound around epoch 4. This could be contributed

to λh � λv as it could greatly increase |WHI
ij | and |WHO

ij | and therefore activations on

output layers change rapidly. After the rebound a convergence phase start which could

be explained by settling of |yF − yB| ≈ 0. This could explain the difference between

yF and xB discussed in Section 3.1.2.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100 1000 10000 100000

di
st

an
ce

 b
et

w
ee

n
H

F
 a

nd
 H

B

epoch

BAL
TLR

TLR can

Figure 14: Comparison of distFB
V (2.4.2) timelines for the 4-2-4 encoder task.

Candidate selection showed that distH is the primary feature contributing to net-

38

3 RESULTS 3.1 4-2-4 Encoder

works success rate (22). In Figure 15 we see that candide selection indeed picks net-

works with greater distH . We can observe that distH stagnates through the training

phase. This reinforces the importance of proper weight initialization.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100 1000 10000 100000

hi
dd

en
 d

is
ta

nc
e

epoch

BAL
TLR

TLR can

Figure 15: Comparison of distH (2.4.2) timelines for the 4-2-4 encoder task.

Analysis of the average weight of matrices matrix_weight in Figure 16 shows that

setting 1� λv leads to greater matrix_weight. We can observe that matrix_weight

is not bounded for TLR and therefore a convenient stopping criteria should be picked.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 10 100 1000 10000 100000

m
at

rix
 w

ei
gh

t

epoch

BAL
TLR

TLR can

Figure 16: Comparison of matrix_weight (2.4.2) timelines for the 4-2-4 encoder task.

3.1.6 Other

Recirculation BAL. In Figure 17 we see that BAL-recirc (2.3.2) achieved lower

success rate than BAL on the 4-2-4 encoder task. In comparison with TLR we see

that there is a global maxima at point λh = 0.0001 and λv = 1.0. We can therefore

conclude that the space of successfull parameters λh and λv is bounded. Similar results

were achieved for GeneRec as shown in Figure 18.

39

3.1 4-2-4 Encoder 3 RESULTS

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

100

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0

 5

 10

 15

 20

 25

 30

 35

 40

0

30
25

25

20

2020

0

20

20

15

15

0

10

10
10

5

5

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

100

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

50
00

5000

0
4000

40
00

30
00

30
00

2000

20
0020

00
20

00

1000

1000

1000

10
00

Figure 17: BAL-recirc (2.3.2) on the 4-2-4 encoder. Best success rate 36% achieved with

λh = 0.0001 and λv = 1.0.

GeneRec. As with generalizing of BAL to TLR we tried also generalizing GeneRec

using the two learning rates approach. The results in Figure 18 show no increase in

success rate in comparison with setting λv = λh, i.e. using the original GeneRec.

We can observe that the results are similar with the results of BAL-recirc shown in

Figure 17. Finally, as with BAL-recirc, we can conclude that the success space is

bounded.

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

100

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

75

70

65

65

60

55

55

50

7

0

40

40

35

35

30

30

30

30

25

25

25

20

20

20

15

15

15

10

10

10

000

5

5

5

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

100

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

80
00

8000

8000

7000

70
00

0

7000

700060
00

60
00

6000

0

5000

50
00

5000

5000

50004000

40
00

4000

4000

3000

3000

30
00

3000

3000

2000

2000

20
00

01000 00

Figure 18: GeneRec (1.2.3) success rate and convergence time on the 4-2-4 encoder task

with σ = 2.3 and µ = 0.0. Best result 83% achieved with λh = 0.3 and λv = 1.0.

3.1.7 Conclusion

The results in this chapter suggest a hypothesis why TLR outperforms BAL on the

4-2-4 encoder task. The reason is that the hidden activations settle before WHO and

40

3 RESULTS 3.1 4-2-4 Encoder

WHI adapt to them. This is explained by the fact that forward and backward hidden

activations become same to fast (3.1.3, 2.4.3) and moreover, weight initialization could

help this (9). The first issue is solved by setting λh � λh what adds epochs to

the training phase. The second issue is solved by candidate selection which prevents

initializing hidden activations close to each other.

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0

 20

 40

 60

 80

 100

100

100
90

00

9090

90

90

8080

80
8070

70

0

7070

70

70

60

60

60 60

5050

50

50

4040

40

7

30

30

30

0

20
20

20

20 20

1010

10

10 10

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2400

2400

24
00

2400

2400 2400
00000000

21
00

0000

2100

21
00

2100

2100

0

2100

2100

2100
2100

2100

2100
2100

0

1800

18001800

1800 1800

1500

1500

1500

1500

1500

15001500

1500
1500

1500

1500 1500 15
00

1500

1500

1500

1500

0

1500

15
00

1500

1500

0

1500

12001200

1200

0

900 900

900

900
900

90
0

900

900

900

900

900

900

900

900
900

900

900

900

900

900

600

600

0

300
300

300

0

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0

 20

 40

 60

 80

 100

100

100 100

9090

90
90

0

80

80

80 80

70

70

70
70

7070

70

70

60

6060

60

60 60

50

50

50

0

50

50

50

50

50

50

50

50

5050

50

50

50

50

5050

40

4040

4040

40

40

40

00030

30

30

0
20

20

2020

20

20

0
10

10

10

10 0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2400

24
00

2400

2400

000

2100

000
2100

2100

2100
21

00

1800

1800

1800

18
00

18
00

18
00

1500

1500

1500

15001500

1500

15
00

1500

15001500

15
00

1500

15
00

1500

0

1500

0

1200

1200

1200

1200

1200

12001200

12
00

900900

90
0

900

900

900
900

900900
900

900

900

900

900

900
900 900900

900900

900

900

900

90
0

900

900

90
0

900

600

600 600

600

600

600

600

600

600

60
0

60
0

600

0

300

300

00

300

30
0

0

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0

 20

 40

 60

 80

 100

0100

100

100

000000

90

000

90

000

90

9090

90

90

90

90

90

0
80

80

80

0

70

70

7070

70

70

60

60

60

50

5050

50

50

40

40

40

030

30

0

20
20

20

0
10

10

10

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

1000

10^4

la
m

bd
a

hi
dd

en

lambda visible

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2400

24
00

2400

2100
2100

21
00

21
00

1800

18
00

18
00

1800

1500
1500

15
00

15
00

1200

12
00

1200

0

900
900

900900

90
0

900

0

600

600

60
0

60
0

00300

30
0

0

Figure 19: TLR performance on the CBVA task with hidden sizes 3 on top, 5 in middle and

8 at bottom.

41

3.2 Complex binary vector associations 3 RESULTS

3.2 Complex binary vector associations

In this section, we analyse TLR (2.3.1) and GeneRec (1.2.3) performance on the CBVA

task (2.2.2). The methodology is similar to the case of the 4-2-4 encoder task described

in Section 3.1. The main difference is that we tried several architectures of type 16-n-16

for n ∈ {3, 4, · · · , 10}. Second difference is the setting of Epochmax to 20,000 for TLR

and 5,000 for GeneRec because the bigger network size.

3.2.1 Two learning rates

Comparison of success rates for different hidden sizes and (λv, λh) pairs is shown in

Figure 19. We see that TLR was able to learn the CBVA task only with 3 hidden

neurons. The successfull values of (λv, λh) lie on the half line [(1, 0.1), (104, 0.1)]. This

behaviour of TLR is similar to the behaviour of TLR on the 4-2-4 encoder task (17).

Again, the performance mostly depends on λh and it is bounded by a value of λv. We

observe that the perfect success space smoothly expands from top to down as increasing

the hidden size. This is not true for GeneRec as shown in Figure 21.

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000

ne
tw

or
k

pe
rf

or
m

an
ce

epoch

patSuccB
patSuccF

bitErrB
bitErrF

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000

ne
tw

or
k

pe
rf

or
m

an
ce

epoch

patSuccB
patSuccF

bitErrB
bitErrF

Figure 20: TLR success rate timeline for the CBVA task with λh = 0.1 and λv = 100.

Without candidate selection on top and with candidate selection at bottom.

42

3 RESULTS 3.2 Complex binary vector associations

Next we analysed the performance of TLR for best λh and λv in Figure 9. We

can observe that TLR is increasing its success rate in time steadily. Moreover, we see

that candidate selection (2.4.2) has positive impact on the network performance. Note

that the CBVA task is non bijective, i.e. one output has several inputs, therefore it is

impossible to achieve 100% patSuccB or bitSuccB.

3.2.2 Comparison

Although CBVA is a higher dimensional task than the 4-2-4 encoder task, the networks

were able to achieve perfect success rate and comparable convergence time as shown in

Table 8. The interesting fact is that having two learning rates has no advantage over

setting λh = λv. This disproves our intuition that a more general model should achieve

better.

Algorithm (section) λh λv patSuccF Epochs

GR (1.2.3) 0.1 0.1 100 84

GR TLR 0.03 1.0 100 89

BAL (1.3) 0.5 0.5 100 54

BAL TLR (2.3.1) 1.0 5.0 100 64

Table 8: Comparison of TLR and GeneRec on CBVA using 3 hidden neurons.

3.2.3 GeneRec

We used the two learning rate approach also for GeneRec. In figure 19 we compare

success rate for different values of (λv, λh) and different hidden sizes. We can observe

a similar behaviour for GeneRec with the 16-3-16 architecture as for the 4-2-4 encoder

task (18). That is the success space is bounded and the importance of both learning

rates is same. Furthermore, as the hidden size becomes bigger, the success rate expands

downwards to lower λh values as with TLR in Figure 19.

43

3.3 Handwritten digits 3 RESULTS

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

90

80

80

70

70

60

60

50

50
40

40

30

7

20

0

10

10

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2400

2400

2400

0

2100

2100

21
00

21
001800

1800

18
00

1500 1500

1500

00

15
00

15
00

1200

1200 12
00

900 900 900
900

900

90
0

900

600

60
0

60
0

0

00

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0

 20

 40

 60

 80

 100

100

9090

80

80

70

70

70

60

60

50

50

50

50

40

07

0

0

20

20

20

10

10

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2400

24002100
21

00

21
00

1800

18
00

1500

1500 15
00

15
00

1200

12
00

900

900

900

90
0

600

60
0

0

00

Figure 21: GeneRec success rate and convergence time on the CBVA task with hidden sizes

3 on top and 5 at bottom.

3.3 Handwritten digits

In this section, we wanted to test TLR on a higher dimensional graphical task and

compare it to other known models. For this we chose the handwritten digits dataset

(2.2.3). As in the previous simulations, we trained the networks for range of λv and

λh values to find the best parameters. Then we analysed the network with thes best

parameters individually.

Before the training we splitted the dataset to train set with 38,000 samples and test

set with 4,000 samples. Then we trained the networks on the train set and evaluted

them on the test set. The Epochmax value was set to 20 and the training was stopped

if patSuccF was not increased for 3 successive epochs. The network architecture 784–

300–10 was chosen as results for BP with such architectures exists. Note that for the

final classification we chose the unit with the maximal activation.

44

3 RESULTS 3.3 Handwritten digits

3.3.1 Two learning rates

We confirmed that TLR could learn high dimensional tasks as shown in Figure 22.

The properties of the plot are similar to the 4-2-4 encoder case. It both holds that

λh � λv and the success space is smooth. The main difference is that the magnitude of

values of both λh and λv is smaller. This notion indroduces a hypothesis that for higher

dimensional tasks, which usually also have more samples, lower values of learning rates

should be chosen.

0.1^9

0.1^8

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.01

0.1

1 10 100

1000

10^4

10^5

10^6

la
m

bd
a

hi
dd

en

lambda visible

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.80.75 0.7 0.7

0.65

0.6

0.6

Figure 22: TLR performance on the digits task for σ = 1/
√
784 + 1 ≈ 0.036 and µ = 0.01.

Best patSuccF = 88.47% with λv = 0.1 and λh = 10−8.

3.3.2 Comparison

For comparison of TLR on the digits task we chose neural network models with similar

architecture from LeCun et al. (1998b). In Table 9 we see that TLR is able to learn

higher dimensional tasks, but still has a performance gap to fill. Note that it performs

comparably as linear classifier, i.e. a two layer neural network.

45

3.3 Handwritten digits 3 RESULTS

Algorithm (section) λh λv patSuccF Epochs

Linear classifier – – 88 –

BP 784–300–10 (1.1.5) – – 95.3 –

TLR 784–300–10 (1.1.5) 10−8 0.1 88.47 20

GeneRec 784–300–50–10 (2.4.4) 0.03 0.03 43.22 50

Table 9: Comparison of different models on the digits task. Data from LeCun et al. (1998a)

and LeCun et al. (1998b).

3.3.3 Backward representations

The goal of backward representations for heteroassociative tasks, i.e. tasks which have

multiple inputs for the same output, is to depict the backward activation of an partic-

ular output. As the mapping is not bijective, we expect the backward image to be a

blend of observed inputs.

As we can see in Figure 23, TLR gives us readable backward activations. This

intuitively proves that the model is capable of bidirectional training. The shapes could

be best seen for digits ”0”, ”1” and ”8”. By using some imagination we can also see the

other digits.

Figure 23: Backward representations for the most successful TLR instance on the digits

task.

46

CONCLUSION

Conclusion

In our work, we proposed and analysed the Two learning rates (TLR) model, a mod-

ification of BAL, which increased the success rate from 62.7% to 93.1% on the 4-2-4

encoder task. We observed that BAL converges rapidly to the state, when the backward

and forward activations converge to the same values. This has inspired our primary

hypothesis to explain why BAL had problems learning the 4-2-4 encoder task. Our

hypothesis was further confirmed by candidate selection, which selected the network

with more distant hidden activations. This increased the success rate from 93.1% to

99.84% and reduced the number of epochs needed for convergence from 5845 to 150.

Then we applied TLR on the handwritten digit recognition task using the architecture

784–300–10. Although TLR still has a performance gap compared to backpropagation,

it achieved far better success rate than original BAL.

We experimented with many different modifications of BAL, notably BAL-recirc,

other GeneRec learning rules, dropout and multi-layer GeneRec, but these did not

prove to be useful. Standard modifications, such as batch training mode or adding

momentum, showed no tendency in increasing the success rate of TLR. We admit that

there is a space for improvement on these approaches.

Our work opened several ways to continue the analysis of BAL. For instance, it would

be possible to predict success rate from the initial weights, as discussed in Section 2.4.4.

Another option is to use four learning rates, one for each matrix, or dynamic learning

rates for each connection as outlined in Section 2.4.4. Furthermore, we recommend

analysing backward activations which showed counterintuitive behaviour in Figure 9.

Finally, TLR introduced one more parameter to the network setup and therefore a

method for finding best pair learning rates would be usefull.

47

CONCLUSION

48

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

Behera, L., Kumar, S., and Patnaik, A. (2006). On adaptive learning rate that guaran-

tees convergence in feedforward networks. Transactions on Neural Networks, IEEE,

17(5):1116–1125.

Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications,

Springer, 45(1):41–51.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems. Springer, 2(4):303–314.

da Silva, A. B. and Rosa, J. L. G. (2011). Advances on criteria for biological plausibility

in artificial neural networks: think of learning processes. In IJCNN. International

Joint Conference on Neural Networks, pages 1394–1401. IEEE.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, Wiley Online

Library, 14(2):179–211.

Farkaš, I. and Rebrová, K. (2013). Bidirectional activation-based neural network learn-

ing algorithm. In Artificial Neural Networks and Machine Learning (ICANN), pages

154–161. Springer.

Grossberg, S. (1978). A theory of visual coding, memory, and development. Formal

Theories of Visual Perception, Wiley, pages 7–26.

Haykin, S. (1994). Neural Networks: a Comprehensive Foundation. Prentice Hall.

Hinton, G. (1989). Deterministic boltzmann learning performs steepest descent in

weight-space. Neural Computation, MIT Press, 1(1):143–150.

Hinton, G. and McClelland, J. (1988). Learning representations by recirculation.

In Neural Information Processing Systems, pages 358–366. American Institute of

Physics.

49

BIBLIOGRAPHY BIBLIOGRAPHY

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2012). Improving neural networks by preventing co-adaptation of feature detectors.

CoRR, abs/1207.0580.

Hopfield, J. J. (1984). Neurons with graded response have collective computational

properties like those of two-state neurons. Proceedings of the National Academy of

Sciences, 81(10):3088–3092.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation.

Neural Networks, Elsevier, 1(4):295–307.

Kirkpatrick, S., Vecchi, M., et al. (1983). Optimization by simmulated annealing.

Science, 220(4598):671–680.

LeCun, Y. A., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop.

In Neural Networks: Tricks of the Trade, pages 9–48. Springer.

LeCun, Y. A., Corinna, C., and Christopher, J. C. B. (1998b). The MNIST Database

of Handwritten Digits. http://yann.lecun.com/exdb/mnist/. [Online; accessed

28-April-2014].

Magoulas, G. D., Vrahatis, M. N., and Androulakis, G. S. (1999). Improving the con-

vergence of the backpropagation algorithm using learning rate adaptation methods.

Neural Computation, MIT Press, 11(7):1769–1796.

McClelland, J. L. and Rumelhart, D. E. (1981). An interactive activation model of

context effects in letter perception: I. an account of basic findings. Psychological

Review, American Psychological Association, 88(5):375.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biology, Springer, 5(4):115–133.

Miniani, A. and Williams, R. D. (1990). Acceleration of back-propagation through

learning rate and momentum adaptation. In Proceedings of International Joint Con-

ference on Neural Networks, volume 1, pages 676–679.

50

http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY BIBLIOGRAPHY

Movellan, J. (1990). Contrastive hebbian learning in the continuous hopfield model.

In Proceedings of the Connectionist Models Summer School, pages 10–17.

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local activa-

tion differences: The generalized recirculation algorithm. Neural Computation, MIT

Press, 8(5):895–938.

O’Reilly, R. C. (1998). Six principles for biologically based computational models of

cortical cognition. Trends in Cognitive Sciences, Elsevier, 2(11):455–462.

O’Reilly, R. C. (2001). Generalization in interactive networks: The benefits of

inhibitory competition and hebbian learning. Neural Computation, MIT Press,

13(6):1199–1241.

Orrú, T., Rosa, J. L. G., and Andrade Netto, M. (2008). Sabio: A biologically plau-

sible connectionist approach to automatic text summarization. Applied Artificial

Intelligence, Taylor & Francis, 22(9):896–920.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural net-

works. Neural Computation, MIT Press, 1(2):263–269.

Phansalkar, V. and Sastry, P. (1994). Analysis of the back-propagation algorithm with

momentum. Transactions on Neural Networks, IEEE, 5(3):505–506.

Pineda, F. (1987). Generalization of back-propagation to recurrent neural networks.

Physical Review Letters, APS, 59(19):2229–2232.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropaga-

tion learning: The rprop algorithm. In International Conference Neural Networks.,

pages 586–591. IEEE.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological Review, American Psychological

Association, 65(6):386.

Rumelhart, D., Hintont, G., and Williams, R. (1986). Learning representations by

back-propagating errors. Nature, 323(6088):533–536.

51

BIBLIOGRAPHY BIBLIOGRAPHY

Schneider, M. O. and Rosa, J. L. G. (2009). Application and development of biologically

plausible neural networks in a multiagent artificial life system. Neural Computing

and Applications, Springer, 18(1):65–75.

Weir, M. K. (1991). A method for self-determination of adaptive learning rates in back

propagation. Neural Networks, Elsevier, 4(3):371–379.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running

fully recurrent neural networks. Neural Computation, MIT Press, 1(2):270–280.

Xie, X. and Seung, H. S. (2003). Equivalence of backpropagation and contrastive

hebbian learning in a layered network. Neural Computation, MIT Press, 15(2):441–

454.

Yu, C.-C. and Liu, B.-D. (2002). A backpropagation algorithm with adaptive learning

rate and momentum coefficient. In IJCNN. Proceedings of the International Joint

Conference on Neural Networks., volume 2, pages 1218–1223. IEEE.

Yu, X.-H. and Chen, G.-A. (1997). Efficient backpropagation learning using optimal

learning rate and momentum. Neural Networks, Elsevier, 10(3):517–527.

52

	Introduction
	Overview
	Preliminaries
	Perceptron
	Multi-layer feedworward networks
	Recurrent networks
	Hopfield networks
	Backpropagation

	Related models
	Contrastive Hebbian learning
	Recirculation algorithm
	Generalized recirculation

	Bidirectional activation-based learning algorithm

	Simulations
	Evaluation methods
	Datasets
	4-2-4 Encoder
	Complex binary vector associations
	Handwritten digits

	New models
	Two learning rates
	Recirculation BAL

	Experiments
	Momentum
	Candidate selection
	Hidden activations
	Other experiments

	Results
	4-2-4 Encoder
	Comparison
	Two learning rates
	Hidden activations
	Momentum
	Features
	Other
	Conclusion

	Complex binary vector associations
	Two learning rates
	Comparison
	GeneRec

	Handwritten digits
	Two learning rates
	Comparison
	Backward representations

	Conclusion
	Bibliography

