
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Detecting Modified Bases in MinION Data
Master Thesis

2018
Bc. Rastislav Rabatin



Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Detecting Modified Bases in MinION Data
Master Thesis

Study programme: Informatics
Study field: Informatics
Department: Department of Computer Science
Supervisor: doc. Mgr. Tomáš Vinař,PhD.

Bratislava, 2018
Bc. Rastislav Rabatin



28804922

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Rastislav Rabatin
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Detecting Modified Bases in MinION Data
Detekcia modifikovaných báz v dátach platformy MinION

Cieľ: MinION je sekvenovací prístroj, ktorý produkuje postupnosť elektrických
signálov na základe analýzy molekúl DNA. Tieto signály možno preložiť
do reťazca nad abecedou {A,C,G,T}, ktorá reprezentuje príslušnú molekulu
DNA. Metódy na preklad signálu do reťazca sú netriviálnou aplikáciou metód
strojového učenia, ako napríklad rekurentných neurónových sietí.

Reťazcová reprezentácia v sebe nezahŕňa množstvo modifikácií báz DNA, ktoré
však spôsobujú zmeny elektrických signálov a teda ich možno z týchto signálov
identifikovať. Cieľom práce je vyvinúť metódu na identifikáciu takýchto
modifikácií za pomoci metód učenia bez učiteľa alebo kombináciou metód
s učiteľom a bez učiteľa.

Vedúci: Mgr. Tomáš Vinař, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 14.12.2016

Dátum schválenia: 14.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce



28804922

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Bc. Rastislav Rabatin
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Detecting Modified Bases in MinION Data

Aim: MinION is a sequencing platform that produces sequences of electrical signals
from DNA molecules. These signals can then be translated into a string
representation of the DNA (a string over alphabet {A,C,G,T}). Such translation
is non-trivial and requires advanced machine learning methods, such as
recurrent neural networks.

This string representation does not cover various base modifications, however
such modification cause changes in the electrical signals produced by the
device. The goal of this thesis is to develop a method to identify these
modifications by unsupervised (e.g. outlier detection) or semi-supervised
methods.

Supervisor: Mgr. Tomáš Vinař, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 14.12.2016

Approved: 14.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor



iii

Acknowledgement

First, I would like to thank my supervisor doc. Mgr. Tomáš Vinař,PhD. for his
guidance and his patience mainly during the last days.

I am also thankful to doc. Mgr. Bronislava Brejová, PhD. and Mgr. Vladimír
Boža,PhD. for their helpful advice.

Special thanks to my family and friends for their support.



iv

Abstrakt

Cieľom tejto diplomovej práce je výpočtovými metódami identifikovať modifikované
DNA bázy z dát platformy MinION.

MinION je prenosné zariadenie na sekvenovanie DNA, ktoré nepožaduje DNA am-
plifikáciu počas pripravovania vzoriek na sekvenovanie. DNA modifikácie sú tak stále
prítomné na DNA vlákne, počas sekvenovania, ktoré sa realizuje tým, že DNA vlákno
prechádza cez nanopór. Modifikované bázy spôsobujú posuny v meranom signále, ktoré
môžu byť neskôr identifikované pomocou výpočtových metód.

Súčasné nástroje na identifikáciu modifikovaných báz z dát platformy MinION
potrebujú trénovaciu množinu, ktorá je zložená z modifikovaných a nemodifikovaných
(kanonických) báz, kde pre kazdú bázu vieme, že či je modifikovaná. Je ťažké a drahé
experimentálne pripraviť takéto dáta. V tejto práci na identifikáciu modifikovaných
báz používame kombináciu metód s učiteľom a bez učiteľa. Natrénujeme autoenkóder
na dátach bez modifikácií, aby sme sa naučili charakteristiky nemodifikovaných báz.
Následne analyzujeme rekonštrukčnú chybu autoenkódera na to, aby sme identifikovali
bázy, ktoré sa nezhodujú s charakteristikami, ktoré sme sa naučili.

V našej práci sme sa sústredili na DNA metyláciu, ale náš prístup môže byť použitý
na identifikáciu ľubovoľných DNA modifikácií. Naše výsledky ukazujú, že z rekonštruk-
čnej chyby autoenkódera nevieme rozlíšiť medzi metylovanými a nemetylovanými DNA
bázami len z jedného čítania. Avšak keď použijeme rekonštrukčnú chybu z viacerých
čítaní, tak dostaneme celkom sľubné výsledky: pre väčšinu metylácií je desať čítaní
postačujúcich na to, aby sme vedeli rozlíšiť medzi metylovanými a nemetylovanými
vzorkami.

Kľúčové slová: MinION, DNA metylácia, detekcia anomálií, hlboké učenie, au-
toenkódery



v

Abstract

The goal of this master thesis is to computationally identify modified DNA bases from
raw MinION data.

The MinION is a portable DNA sequencing device, which does not require DNA
amplification in the sample preparation step. Consequently, DNA modifications are
still present in the DNA strand, which is sequenced by passing through the nanopore.
Modified bases cause shifts in the measured signal which can later be identified com-
putationally.

Current tools for the identification of modified bases from MinION data require
a labeled training set which is composed of modified and non-modified (canonical)
bases. It is quite difficult and expensive to experimentally create this kind of dataset.
In this thesis, we use a semi-supervised approach to this problem instead. We train
an autoencoder on a dataset without modifications to learn characteristics of the non-
modified bases. Then we analyze the reconstruction error of the autoencoder to identify
bases that do not conform to the learnt characterization.

In our work, we have focused on DNA methylation but our approach can be used
for the detection of any DNA modification. Our results show that from the recon-
struction error of the autoencoders, we cannot differentiate between methylated and
unmethylated DNA bases only by using a single read. However, when we aggregate
reconstruction errors from multiple reads, we get a more promising result: for most
of the methylations, ten reads are enough to differentiate between methylated and
unmethylated samples.

Keywords: MinION, DNA methylation, anomaly detection, deep learning, autoen-
coders



Contents

Introduction 1

1 Background and Problem Formulation 3
1.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 DNA Sequencing using MinION . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Squiggles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 DNA Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Epigenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 DNA Methylation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Technologies for Detection of Methylation . . . . . . . . . . . . 7

1.4 Methylation Detection using MinION . . . . . . . . . . . . . . . . . . . 8
1.4.1 Early Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Supervised and Semi-supervised Methylation Detection . . . . . 10
1.4.3 Outline of Our Approach . . . . . . . . . . . . . . . . . . . . . . 12

2 Anomaly Detection 13
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Methylation as an Anomaly . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Evaluation of The Anomaly Detection Methods . . . . . . . . . . . . . 16
2.4 Anomaly Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Distance-based Methods . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Domain-based Methods . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 Information Theoretic Methods . . . . . . . . . . . . . . . . . . 21
2.4.5 Reconstruction-based Methods . . . . . . . . . . . . . . . . . . . 21

2.5 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Variants of AEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methods and Experimental Evaluation 26
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



CONTENTS vii

3.3 Splitting Reads into Subsets and Signal Windows . . . . . . . . . . . . 28
3.3.1 Training, Development and Testing Dataset . . . . . . . . . . . 29
3.3.2 Extraction of the Signal Windows from the Reads . . . . . . . . 29
3.3.3 Window Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.5 Evaluation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Autoencoder with Fully-connected Layers (DAE) . . . . . . . . 32
3.5.2 Autoencoder with Convolutional Layers (CAE) . . . . . . . . . 32

3.6 Model Analysis and Evaluation . . . . . . . . . . . . . . . . . . . . . . 37
3.6.1 Distribution of The Reconstruction Error . . . . . . . . . . . . . 37
3.6.2 Mean Squared Error (MSE) . . . . . . . . . . . . . . . . . . . . 37
3.6.3 Bottleneck Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.4 MSE of CAE and DAE . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.5 Supervised Classification Based on a Single Read . . . . . . . . 44
3.6.6 Supervised Classification Using Multiple Reads . . . . . . . . . 45
3.6.7 Semi-supervised Classification . . . . . . . . . . . . . . . . . . . 47
3.6.8 Addition of Context to the Autoencoder . . . . . . . . . . . . . 51

Conclusion 54

Appendix A 61

Appendix B 62



List of Figures

1.1 Overview of the nanopore sequencing . . . . . . . . . . . . . . . . . . . 4
1.2 Multiple squiggles aligned on a pattern . . . . . . . . . . . . . . . . . . 6
1.3 5-methylcytosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Comparison of methylated and unmethylated signal . . . . . . . . . . . 9

2.1 Autoencoder structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Normalization of the signal using median of absolute deviations . . . . 29
3.2 DAE32 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 CAE32 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 The difference in MSE for methylated and unmethylated samples for

DAE64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Reconstruction error per position . . . . . . . . . . . . . . . . . . . . . 41
3.6 Errors profiles between CAE and DAE . . . . . . . . . . . . . . . . . . 42
3.7 Comparison of signals reconstructed by different autoencoders . . . . . 43
3.8 Comparison of ensemble of k-mer models and one model per motif . . . 46
3.9 Supervised classification using multiple reads . . . . . . . . . . . . . . . 48
3.10 Error profile of meth10 and meth09 for CAE32 . . . . . . . . . . . . . . 49
3.11 Error profile of meth04 – GAATTC . . . . . . . . . . . . . . . . . . . . 50
3.12 Semi-supervised detection of methylated genome sites . . . . . . . . . . 51
3.13 Semi-supervised detection of methylated genome sites . . . . . . . . . . 53

viii



List of Tables

3.1 Nanoraw dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The effect of the bottleneck size on DAE . . . . . . . . . . . . . . . . . 39
3.3 The effect of bottleneck size on convolutional autoencoder . . . . . . . 40
3.4 Comparison of MSE for DAE and CAE on neg-dev . . . . . . . . . . . 40
3.5 AUC scores for the supervised classification task based on a single read 45
3.6 Single read semi-supervised classification with CAE32 . . . . . . . . . . 50
3.7 Semi-supervised classification using a single read . . . . . . . . . . . . . 53

ix



Introduction

MinION is currently the smallest DNA sequencing device. Compared to other se-
quencing technologies it can produce very long reads. The sequencing is performed
by transporting the DNA molecule through a nanopore and measuring the changes in
the current caused by passing DNA nucleotides. We can determine the sequence of
nucleotides that passed through the nanopore from the changes in the electric current,
albeit with high error rate.

The sequencing using MinION does not require DNA amplification step in the li-
brary preparation process. This step is necessary for many sequencing technologies.
DNA amplification removes modifications which play a quite important role in the regu-
lation of gene expression and cell differentiation. Therefore, the MinION is a promising
technology for detection of modifications in DNA. These modified bases create a dif-
ferent disruption to the electric current while passing through the nanopore than the
canonical bases (A, C, T, G). Based on the signal deviations, we can determined which
bases are modified.

One of the most important modification of DNA is methylation. Recently, there
were published several approaches to the methylation detection from the MinION se-
quencing data. There are several ways that we can approach this problem. Some
research groups used the classification approach ([MAB+17] and [SWZ+16]). This ap-
proach requires a labeled dataset for training which is a quite strong requirement on
the data. It is quite hard and expensive to create a labeled dataset which contains
methylation in many different contexts.

The goal of this thesis is to design a method which uses only non-modified DNA in
the training phase. The algorithm should learn the characteristics of the non-modified
DNA and then in the testing phase, it should decide what bases are modified.

In the first chapter, we are going to describe the MinION sequencing technology
and how the DNA modifications affect the signal measured by this device. At the
end of this chapter, we are going to discuss the previous approaches to the problem of
methylation detection and give an overview of our approach.

In the second chapter, we are going discuss the anomaly detection problem and how
it relates to our problem. We can actually think of DNA modifications as anomalies.
Then we are going to describe several methods which are commonly used to solve the

1



Introduction 2

anomaly detection problem and at the end of the chapter, we are going to describe the
method which we are going to use in more details.

In the last chapter, we are going to present our methods, experimentally evaluate
them and analyze the results from these experiments.



Chapter 1

Background and Problem Formulation

1.1 DNA

Deoxyribonucleic acid (DNA) molecule stores most of the genetic information of a living
organism. This molecule is composed of two strands (template and complement)
and has a helix shape. Each strand is composed of four nucleotides – adenine (A),
cytosine (C), guanine (G) and thymine (T). Consequently, we can represent DNA
as a string over the alphabet {A,C, T,G}. The process of determining the order of
nucleotides from biological samples is called DNA sequencing. One of the main
problems of DNA sequencing is that we cannot sequence the whole DNA molecule
at once. Instead, the sequencer produces short substrings of the original DNA called
reads. This thesis is mainly focused on a particular nanopore sequencing device called
MinION. We are going to introduce the main principles of the nanopore sequencing in
the next section.

1.2 DNA Sequencing using MinION

The MinION device is a portable DNA sequencing instrument in the size of a regu-
lar USB flash drive. This device is manufactured by Oxford Nanopore Technologies
(ONT) and it is the first commercially sold nanopore sequencing device. One of the
main advantages of this device is that it produces very long reads compared to other
sequencing technologies at a very low price. The main drawback is that the MinION
reads suffer from very high error rates (10− 15%).

The central component of the MinION is a nanopore (Figure 1.1) which is a small
hole with an internal diameter of the order of one nanometer which is designed so that
only a single strand of the DNA sequence can pass trough it. MinION uses an array
of 512 nanopores so we can sequence multiple reads at the same time.

In the first step of the sequencing, a double-stranded DNA sequence is split into

3



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 4

Figure 1.1: Overview of the nanopore sequencing (Source: [Sch16])

two strands which are then connected by a hairpin adapter. Special adapters (proteins)
are also attached at the beginning and at the end of the whole DNA sequence in order
to lead the sequence through the nanopore. When we turn on the electric field DNA
is attracted towards the anode which forces the DNA sequence to travel through the
nanopore. The template strand is driven through the nanopore first, followed by the
complement strand. The speed at which DNA is traveling through the nanopore is
controlled by the current and the adapters attached to the sequence.

When DNA sequence passes through the nanopore, it alters ionic current flowing
through the nanopore. Every nucleotide causes a different disruption in the electric
current. From these changes in the current we can determine the sequence which is
passing through the nanopore. This process of translating the sequence of the electric
current measurements into a sequence of letters A, C, T, G is called base calling.

Unfortunately, the situation is not so simple and the current level measured at a
particular time is not influenced by only one nucleotide. It is influenced by multiple
nucleotides and we do not know exactly which consecutive sequence of nucleotides
influences the measurements.

The technology that we described above is called 2D nanopore sequencing be-
cause we use both of the DNA strands. However, the most current versions of the



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 5

MinION uses only the template strand and the complement strand is discarded. This
technology is called 1D sequencing.

A Model of The Sequencing Process

We can look at the sequencer as a finite state automaton (FSA) where the nanopore
is a head of the FSA that can read k letters at a time. The DNA strand that we
want to read can be seen as a word on the input tape of this automaton. As the
reading head slides through the input tape, it records signal measurements on the
output tape. Unfortunately, the speed at which the head slides through nanopore is
not completely constant and we can have errors in the process. This FSA is basically
a hidden Markov model and it is quite often used for modeling nanopore sequencing
data (e.g. [DDY+16]).

Event Segmentation

Event segmentation is a common pre-processing stage in the pipelines that process the
data from MinION. In this stage, we split the raw signal measured by the MinION into
segments where every segment should approximately correspond one nucleotide. These
segments are called events and are usually represented by three numbers – the duration
of the segment, the mean of the raw signal in that segment and the standard deviation
of the signal. Some approaches even try to align these events to the reference sequence
so every event corresponds to exactly one base in the reference sequence [SQE+16].

1.2.1 Squiggles

The raw signal measurements are usually called squiggles. See the plot of couple
squiggles in Figure 1.2. This plot shows 72 squiggles which should correspond to the
same sequence of bases. We would like to show couple important properties of the
nanopore squiggles.

The first thing that we can notice is that the nanopore signal is basically a step
signal with a quite high amount of noise. We can also notice a quite high variance of
the signal per base.

The second thing that we would like to show is that the signal in one segment does
not depend only on one base. For example, examine all the adenines in the plot. The
mean signal level for all adenines is not the same. Also notice the transition from
thymine to thymine approximately in the middle of the plot.

One property of the squiggles that we cannot see in the plot is that the segments do
not have the same durations. In order to align multiple squiggles on the same sequence
of bases and show it in one plot we have to either downsample the signal in every



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 6

segment or warp the squiggle in the time-domain. In this case, the second approach
was used. For very squiggle, we plot a different number of points in the same segment.

Figure 1.2: Multiple squiggles aligned on a pattern (Source: [SQE+16]). In this plot, we
have 72 curves (squiggles) and every squiggle should correspond to the base sequence
that is on the x-axis.

1.3 DNA Modifications

In this section, we are going to discuss different DNA modifications and explain the
importance of these modifications.

1.3.1 Epigenetics

In this thesis, we are going to focus on epigenetic modifications of DNA. Genetic
modifications are direct changes in the sequence of nucleotides. For example, cytosine
changes to adenine or a full gene translates to a different location in the genome. Ont
he other hand, epigenetic modifications are heritable changes of DNA which do not
directly modify the sequence of nucleotides. They do not influence the genetic code
which is stored in the cells but they influence the machinery which reads the genetic
code. These changes regulate the gene expression and cell differentiation.

The most studied epigenetic modifications are methylation and histone modifica-
tions. In this thesis, we are going to focus on the methylation since the dataset that we
have used for the experimental evaluation of our method is composed of several methy-
lation modifications created synthetically in vitro. In order to evaluate our method,
we need a dataset for which we know the locations and types of the modifications. In
other words, we need a dataset with ground truth. To our knowledge, this dataset
contains the greatest amount of different modifications among all the datasets that are
publicly available.

In the rest of this thesis, we are only going to focus on methylation but we would like
to emphasize that our method can be used for detection of any epigenetic modifications
that create different changes of the signal in the nanopore than the canonical bases
(A, C, T, G).



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 7

Figure 1.3: 5-methylcytosine (Source: [Wik18]). The added methyl group is in the red
circle.

1.3.2 DNA Methylation

Methylation [Wik17b] is a process by which methyl group (CH3) is added to a nu-
cleotide. Cytosine and adenine can be methylated but thymine and guanine cannot be
methylated. When we add CH3 to cytosine we get 5-methylcytosine (5-mC) which you
can see in the Figure 1.3 and when we add CH3 to adenine we get 6-methyladenine
(6-mA). Additionally, there are many other cytosine and adenine variants which can
be seen in DNA. For example, by oxidation we can obtain 5-hydroxymethylcytosine
(5-hmC).

Methylated bases are created by enzymes which are called methylases. There are
various types of methylases which methylate different pattern of DNA. We are going to
call this pattern amethylation patterns. For examples, the enzyme HhaI methylates
GCGC patterns in DNA.

Methylation plays an important role in the regulation of gene expression. For
example, it can silence tumor suppressors which protects cells against cancer. Some
bacteria (e.g. Escherichia coli) even use methylation marks for a protection against
viruses. Methylation plays a different role in various organisms and there is still ongoing
research in this field. In this next section, we are going to introduce some of the
technologies that are commonly used in these studies.

1.3.3 Technologies for Detection of Methylation

Currently, there is a couple of sequencing technologies which can detect methylation.
In this section, we are going to describe in high level two technologies that compete
with the nanopore sequencing technology and in the next section we are going to focus
on the nanopore sequencing technology by itself.

Many sequencing technologies cannot detect DNA methylation because they cre-
ate many copies of the DNA strand (DNA amplification) using polymerase chain
reaction (PCR) which removes the methylation marks from DNA. The DNA am-



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 8

plification step is not necessary in the preparation of the nanopore sequencing library
therefore we can sequence the extracted DNA directly. One approach that tries to
overcome the problem with DNA amplification is bisulfate sequencing [Res17]. This
technology in the first step converts unmethylated cytosine to uracil. Then we can
amplify the DNA and use a short read sequencing technology (e.g. Illumina) to read
the converted DNA. The main limitation of this technique is that we rely on the fact
that the conversion process converted all unmethylated cytosines. Another problem is
that DNA can be largely degraded during the conversion process into uracil.

The other technology that is commonly used for detection of methylation is Single
molecule real time sequencing (SMRT) [Pac17]. SMRT sequencing similarly to the
nanopore sequencing identifies the methylated bases directly from DNA without any
conversion process. The main idea of this technology is that in the first step fluorescent
dyes are attached to every base in the sequence and then the dyes are clipped off the
DNA using polymerase. During the clipping, a light is emitted and based on the
color of the emitted light we can determine the sequence of bases. The detection of
methylation using this technology is based on the observation that the delay between
two light impulses is greater in the case of methylated bases. Similarly as MinION,
this sequencing technology can produce quite long reads but the main disadvantage of
this technology is the cost and the size of the device compare to the MinION.

1.4 Methylation Detection using MinION

The main assumption behind the detection of any DNA modification using MinION
is that the modified bases create a different disruption to the electric signal than the
canonical bases. As we mentioned before, we are going to focus on the methylation.
Methylation is one of the DNA modifications which creates some changes to the signal
compared to the canonical bases. However, the changes are not so big as you can see in
Figure 1.4. We can notice a small systematic shifts in the signal on the first and second
guanine in the GCGC pattern. For TCGA pattern, we can notice a higher variance of
the samples for the methylated adenine and a systematic shift on the next adenine.

As we can see in the Figure 1.4, the methylation detection from nanopore sequencing
data is not so easy problem. In the rest of the section, we are going to describe different
approaches to the problem that were used by different research groups and at the end
of this section were are going to give a brief overview of our approach.

1.4.1 Early Approaches

The research of the detection of methylation using nanopore sequencing started a long
time before the MinION was released (e.g. [WSH+10]). The goal of the research



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 9

Figure 1.4: Comparison of methylated and unmethylated signal. The methylation
motif is highlighted by the red box and the methylated base is underlined. The red
squiggles are methylated and the black squiggles are unmethylated. In the first plot, we
have 32 coverage for methylated samples and 41 coverage for unmethylated samples. In
the second plot, we have 16 methylated samples and 30 unmethylated samples. These
plots were created using Tombo [SQE+16] from the dataset which we are going to use
in Chapter 3.



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 10

groups at that time was to prove that methylation can be detected from nanopore
sequencing data. They usually used short sequence of a special form constructed only
for this experiment and sequenced them many times. Afterwards, they compared the
distributions of the signal for the sequences with methylation and without methylation.
Most of the groups only tried to distinguish 5-mC and cytosine. However, later it was
also showed that even 5-hmC can be distinguished from cytosine (e.g. [LDB+13]) using
the signal from nanopore sequencing. The hypothesis that methylation can be detected
from the nanopore sequencing data was proved many times.

As we mentioned in the Section 1.2, the current level measured at the nanopore is
influenced by some k-mer inside the nanopore. Therefore the current measured for a
cytosine variant is dependent on the context surrounding the nucleotide which means
that we need measurements for the same variant in many different contexts in order
to develop a general algorithm which can detect DNA modifications in arbitrary se-
quences. The MinION is a high throughput sequencer therefore it can quickly generate
a lot of data. The release of the MinION encouraged couple research groups to try to
develop a general tool which can detect methylation in an arbitrary contexts.

1.4.2 Supervised and Semi-supervised Methylation Detection

The problem of methylation detection can be formulated in many different ways. In
this section, we are going to discuss several approaches and formulations of the problem
that were used by other research groups. We would like to compare them mainly in
terms of what kind of requirements they have on the data in the training and testing
phase.

Classification

The most simple variant of the problem is a classification problem. This approach to the
methylation detection was also used in nanopolish [SWZ+16] and mCaller [MAB+17].
These two groups use different models to solve this problem. Nanopolish project uses
hidden Markov models (HMMs) [DEKM98] and mCaller uses multi-layer perceptron
(MLP) [GBC16]. Nanopolish learns to differentiate between cytosine and 5-mC in CG
contexts methylated by M.SssI and mCaller lerns to differentiate between adenine and
6-mA. Nanopolish group created their training set by synthetically methylating the
samples and mCaller used SMRT sequencing to label their dataset. Both of the groups
showed that these two methylated bases can be detected from MinION data.

Classification is a typical supervised machine learning problem. The training set is
composed of samples methylated by a particular methylase and unmethylated samples.
Additionally, we know for every sample if it is methylated or unmethylated. This is
actually quite a strong requirement on the dataset. As we mentioned in Section 1.3.2,



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 11

a particular methylase methylates only contexts based on some methylation patterns.
Most of the methylases only methylate a single motif. If we want to train a classification
model which can detect methylation in various contexts, we have to create a dataset
by using several methylases which can be quite tedious and expensive or we can use
another sequencing technology to heuristically label our dataset.

Semi-supervised Classification

A more interesting formulation of this problem is anomaly detection or semi-
supervised classification. We can think of methylated bases as anomalies in our
data. In this formulation of the problem, the training set is composed of only un-
methylated samples and the algorithm should learn some characteristics of these sam-
ples. Afterwards, the algorithm is given a random sample and the task of the algorithm
is to tell which positions are methylated.

The reason why this task is more interesting is that we can use this algorithm
to discover new variants of the cytosine and new contexts in which these variants of
cytosine can occur. Additionally, it is easier to create an unmethylated dataset. We
can do it by using PCR reaction. This approach can be even further generalized into
detection of any modifications in DNA.

A very similar approach to the anomaly detection approach, which we have de-
scribed, was used in SignalAlign project [RJE+16]. At first, they initialize their pair
hidden Markov model on the unmethylated samples and then they finish the training
on an unlabeled dataset which contains a mixture of methylated and unmethylated
samples. To model the signal distributions they use hierarchical Dirichlet processes
[TJBB05] instead of Gaussian mixture model that was used in nanopolish. The methy-
lation patterns that they can detect are hard wired into the structure of HMM. The
basic assumption of this approach of their approach is that they require that the unla-
beled training set contains the methylation patterns which they want to detect.

Another approach that is similar to the anomaly detection in terms of the re-
quirements on the dataset is statistical testing approach which was used in nanoraw
[SQE+16]. This approach has basically no training phase. In the testing phase, they
take an unmethylated dataset and methylated dataset and compare these two datasets
using Mann-Whitney test [TM87]. In the first step, they compute the mean level
current for every segment (Section 1.2) in the signal and aggregate all the reads that
were aligned to a particular site in the genome. Afterwards, they use Mann-Whitney
test to compare the distributions of means for a particular segment that was aligned
to a particular base in the reference sequence. They use Fisher’s method [Whi05]
to aggregate the p-values from the statistical test for several bases surrounding the
methylated base. Afterwards, they use the aggregated p-value to decide whether the



CHAPTER 1. BACKGROUND AND PROBLEM FORMULATION 12

base is methylated. In the testing phase, this algorithm requires to have unmethylated
dataset and a dataset which we want to test if it contains any methylations. The most
problematic assumption of this approach is that both of the datasets have to be from
the same genome. This approach does not test methylation on a single read but it
tests methylation status of a genome site.

1.4.3 Outline of Our Approach

In this work we employ a semi-supervised approach to the problem of methylation
detection. We first train a machine learning model on a dataset containing only un-
methylated bases in order to learn the characteristics of the corresponding signal and
then use this model to detect methylated bases in a dataset which contains a mixture
of methylated and unmethylated bases. This approach can be actually used for the
detection of any modifications in DNA, not only typical methylation patterns.

In the next chapter, we state the anomaly detection problem in more general terms
(Section 2.1), explain the nature of the anomalies that we are interested in (Section 2.2),
describe several techniques which are used in the evaluation of this problem (Sec-
tion 2.3), and introduce several methods that are commonly used to solve the anomaly
detection problem (Section 2.4). At the end of the chapter, we describe autoencoders,
which is the method that we will later use to solve the methylation detection problem
(Section 2.5).



Chapter 2

Anomaly Detection

Anomaly detection is a semi-supervised learning problem which uses a training set
that contains only negative samples. As we mentioned in the previous chapter, we
want to design a method for detection of modified (non-canonical) bases. There are
many non-canonical bases and is it quite expensive to create a training set that contains
many different DNA modifications. Additionally, not all of the DNA modifications are
known and we are also interested in discovering new DNA modifications. Therefore
the anomaly detection approach is more appropriate than the supervised classification
approach.

In this thesis, we are going to focus on different methylations because we needed
a labeled dataset in order to validate our approach that contains many different DNA
modifications and methylations are DNA modifications that can be created in vitro
quite easily. In the case of methylation, the normal samples are the unmethylated
(PCR) samples and the abnormal samples are the methylated samples. Our learning
algorithm is presented with unmethylated samples in the training phase and has to
learn some characteristics of the PCR samples. In the testing phase, the algorithm is
presented with a single sample and has to say if the sample is methylated or not.

There are different types of anomalies that people are trying to detect and therefore
we can see different definitions of the anomaly detection task and the terminology that
is used. While reading the literature, we met with very similar problems such as novelty
detection, outlier detection or one-class classification. All of these problems are quite
similar and there is no clear distinction between them. The terminology that is used
usually actually depends on the application domain. We chose to call to our problem
anomaly detection task.

Chapter Organization

At first, we are going to define more formally what is an anomaly detection problem
and compare this task to the classical supervised an unsupervised learning problems

13



CHAPTER 2. ANOMALY DETECTION 14

(Section 2.1). In the Section 2.2, we are going to discuss the nature of the anomalies
that we are interested in. Then we are going to describe some of the common methods
used for the evaluation of anomaly detection models since it is not so straight forward
as in the case of classical supervised learning tasks (Section 2.3). Afterwards in the
Section 2.4, we are going to introduce some of the methods that are commonly used
to solve anomaly detection problems. The goal of this section is to give a general
overview of these methods and not to go into too many details. At the end of this
chapter (Section 2.5), we are going to focus more on autoencoders since these are the
methods that we have decided to use to approach our problem.

2.1 Problem Statement

The objective of the anomaly detection problem is to find a function f : Rn → R where
the input is a feature vector for a particular sample and the output is an anomaly
score. We want to find a function which is going to return small numbers for normal
samples and large numbers for abnormal (anomalous) samples and we are only allowed
to use normal samples in the training phase of our algorithm. In other words, our
training set is composed of only normal samples and our testing set is composed of a
mixture of normal and abnormal samples. The anomaly score expresses the confidence
of the classifier that that a sample belongs to the normal class. In many cases, the
anomaly score is not enough and we want a definitive decision whether the sample
is anomaly or not. In that case, we have to set a threshold on the anomaly score.
The usual approach to do so is to use cross-validation. The choice of the threshold is
directly related to the evaluation of the anomaly detection model which we are going
to discuss in Section 2.3.

There are several similar terms that denote basically the same problem. Every term
emphasizes different property of the problem that we are trying to solve. We can call
our problem a novelty detection problem since we are trying to detect something
novel (new or unusual [Web18]) – something that we have not seen in the data before.
It can also be called one-class classification problem since we have only data from
one class in our training set. At the testing phase, we have data from both of the classes
so it is quite similar to two-class classification problem. Additionally, we can also call
it outlier detection problem since outlier is defined in the dictionary [Web18] as "a
statistical observation that is markedly different in value from the others of the sample".
In our case, we want to find samples that are different in value from the samples in the
training set. However, we can also talk about outliers in our training set. These are the
samples that pollute our training set. More formally, these are the samples that come
from the distribution of normal samples but have a quite low probability (density) to



CHAPTER 2. ANOMALY DETECTION 15

be generated from this distribution (lie in the low density regions). We are going to
use the term outlier to denote this kind of samples. The samples that do not come
from the distribution of normal samples we refer to as abnormal or anomalous.

The most popular machine learning library – scikit-learn [PVG+11] – differentiates
between two tasks – novelty detection and outlier detection. Outlier detection methods
are the methods that are robust to the outliers in the training set and the novelty
detection methods are the methods that do not expect outliers in the training set.
The methods that are robust against the outlier try to fit the data around the central
modes of the distribution of the normal samples and ignore the deviated samples. The
samples far from the central modes are considered as outliers.

In some literature [CBK09], this problem is specifically called a semi-supervised
anomaly detection because it is somewhere between fully supervised approach and an
unsupervised approach. In the supervised anomaly detection, we have labeled data
from both classes but we usually suffer from the problem that we have too little data
from the abnormal class. That means not all the types of the anomalies are present
in the training set. In the fully unsupervised case, we have unlabeled training set and
our goal is to split the samples into normal or abnormal group. The usual assumption
is that the abnormal samples are far less common than the normal samples.

2.2 Methylation as an Anomaly

In this section, we are going to discuss the nature of the anomalies that we want to
detect.

We can observe short jumps that last for one or two observations in the signal from
the nanopore sequencing . These jumps are just outliers which we are not interested
in. It is obvious that something unusual has happened in the nanopore but when we
want to detect methylation we are not really interested in these jumps. For example,
the jumps might be caused by the fact that some other molecule other than DNA just
passed through the nanopore and it caused some uncharacteristic disruption in the
signal.

The anomalies that we are actually interested are contextual anomalies (some-
times called conditional anomalies). The context in this case are the bases that gener-
ated the signal. We want to be able to detect situations when the signal is consistently
different for a given context then we would normally expect. A nice example of con-
textual anomaly from a real life [CBK09] is temperature for a location. When we have
to decide if a given temperature is abnormal we have to know the location where the
temperature was measured.

Unfortunately, there are several problems with the context in our case. We are



CHAPTER 2. ANOMALY DETECTION 16

going to discuss these problems in the rest of this section.
The first problem is that base calling is a quite hard problem. Currently, the

techniques based on neural networks show the best results. Even when we use neural
networks to translate the signal to bases we still achieve high error rates (10 − 15%).
It is also hard to train these neural networks because it is quite hard to create a high
quality ground truth.

As we mentioned the base calling problem is quite hard, but in the ideal case we
would not only have the sequence of bases but we would also have the alignment of bases
to the signal. The current state of the art neural networks approaches [THD+17] do
not create a segmentation of the signal into bases. We have to create the segmentation
in the postprocessing stage by a different algorithm.

The last problem that we want to mention regarding contexts is that the number
of different contexts can actually grows exponentially. Let us say that the length of
the context that influences whether the segment of the signal is abnormal is l, then
we are actually interested in 4l of contexts. This means that the amount of data that
we have is not so important. The more important thing is that all of the contexts are
sufficiently covered by the training set. The length of the context that we are interested
is not completely known but the commonly used constant for MinION R9.4 is six. The
high number of different contexts makes it hard to train a separate model for every
context. Even though we are going to test out approach only on a small number of
DNA modifications we want to design a method that can discover new modifications
in the data. So we are basically interested in all of the possible contexts.

2.3 Evaluation of The Anomaly Detection Methods

As we mentioned before (Section 2.1), the goal of our anomaly task is to learn a function
f : Rn → R. Now, the question is how can we evaluate the performance of this learnt
function on unseen data.

For classification problems, we usually compute metrics like accuracy, precision
and recall on the testing set to evaluate the performance and when we want only a
single metric for model comparison we usually use F1 score which is harmonic mean of
precision and recall. We can also look at the binary classification models as functions
Rn → R. However, the difference is that they are usually trained to output numbers
close to one for positive class and numbers close to zero for negative class and the
threshold for determining whether the sample is positive or negative is usually 0.5. We
do not have any information about the positive class in the training process of the
anomaly detector so the output of the model is not a label but an anomaly score which
expresses how confident is the detector that the sample is positive or negative. When



CHAPTER 2. ANOMALY DETECTION 17

we want to get the labels from the anomaly score we have to have another dataset
which we are going to use for determining the threshold on the anomaly score. The
dataset has to have labels and has to contain mixture of normal and abnormal samples.
This dataset is usually called development or validation set. The usual strategy is to
compute anomaly score for all of the samples in the the dataset and then compute F1
score for several anomaly score thresholds and choose the one that gives the highest F1
score. We can even decide whether higher precision or recall is more important for us.
The thresholds that are usually tried are the anomaly scores that were assigned to the
samples in the development set. So if the dataset has n samples then we can try all of
the n thresholds. This process is called cross-validation. In the final evaluation stage
of the model, we compute the scores on another labeled dataset called a testing set
and use the threshold that was chosen by the cross-validation and report the metrics
for this threshold.

The problem with classification metrics is that it does not express how well is
the model going to perform if we change the threshold. Therefore when we evaluate
anomaly detection techniques, we also usually use other metrics that take various
thresholds into account. There are two methods that are commonly used to analyse
the effect of the threshold on the performance of an anomaly detector on unseen data.

The first one is called Receiver Operating Characteristic curve (ROC curve).
In this method, we plot a curve where on the x-axis is false positive rate (FPR) and
on the y-axis is true positive rate (TPR). We compute these two metrics for several
anomaly score thresholds and plot these points. When we connect these points we get
a curve which is our ROC curve. The curve of a random classifier is a diagonal line
y = x and the curve of a perfect classifier is the one that goes directly to the point
(0, 1) and then to (1, 0). The perfect classification is (0, 1). From this curve we can
better decide on the anomaly score threshold since we can see how much TPR changes
when we try to decrease FPR and vice versa.

The second method is called precision-recall curve (PR curve). In this method,
we plot precision against recall. Recall is on the x-axis and precision is on the y-
axis. Similarly as in the case of ROC curve, we compute these two metrics for several
thresholds and connect the points to create a curve. The score of a perfect classifier
is (1, 1) so the curve goes from (0, 1) to (1, 1) and then to (1, 0). The curve that
corresponds to a random classifier is a horizontal line y = P

P+N
where P is the number

of positive samples and N is the number of negative samples. Similarly as in the case
of ROC curves, we can better decide on the trade off between precision and recall using
these curves.

The main difference between PR curves and ROC curves is that ROC curves are
insensitive to the imbalance in classes which we can notice from the score that is
achieved by a random classification. In some literature, the authors consider ROC



CHAPTER 2. ANOMALY DETECTION 18

curves too optimistic for the evaluation of problems which have high number of negative
samples compare to positive samples. For a more detailed comparison of PR curves
and ROC curves we would like to refer the reader to the research paper The precision-
recall plot is more informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets [SR15]. As we are going to see in the last chapter, we had to also
deal with the imbalanced classes. Most of the research papers in the anomaly detection
report results from both of the evaluation methods therefore we are also going to do
the same.

When we want to analyse the results for different thresholds we are also going to a
look at the curves but sometimes we want to have a single metric for a comparison of
several models. In that case, we compute the Area Under the Curve (AUC). AUC
is a number between zero and one and one is the best score for both of the curves (PR
and ROC curve) mentioned before. The score of a random classifier for ROC curve is
always 0.5 but for PR curve this number depends on the ratio of positive and negative
samples as we mentioned before.

There are also some methods for evaluation of anomaly detection methods such as
Excess-Mass or Mass-Volume curves [Goi16] that do not require labeled data but they
are not so commonly used and they are computationally inefficient for high dimensional
data and non-linear models. They require Monte Carlo estimation of integrals which
is quite inefficient for a high dimensional data.

2.4 Anomaly Detection Methods

In this section, we are going to summarize the main categories of methods that are
commonly used in the anomaly detection. We use the classification of the methods
into categories from A review of novelty detection [PCCT14]. They have splitted the
methods into five categories: probabilistic methods, distance-based methods, domain-
based methods, information theoretic methods and reconstruction-based methods. We
mostly use the ideas from the reconstruction based methods and probabilistic methods
in our work. The goal of this section is to give a general overview of the methods and
ideas that they are based on. More detailed survey of these methods can be found
in one of these research papers: A review of novelty detection [PCCT14], Anomaly
detection: A survey [CBK09], Novelty detection: a review (part one [MS03a], part two
[MS03b]).

2.4.1 Probabilistic Methods

The goal of probabilistic methods in the anomaly detection is to estimate the probabil-
ity density function (PDF) of the normal samples and the samples in the low density



CHAPTER 2. ANOMALY DETECTION 19

regions are assumed quite likely to be anomalies. These methods also offer a quite
obvious method of evaluation which does not require labeled data. We can basically
estimate the volume of the regions for which the anomaly score is below a given thresh-
old. Unfortunately, the estimation of this integral is a quite hard task for most of the
models and Monte-Carlo integral estimation methods are unusually inaccurate.

The methods in the category of probabilistic methods are usually split into two
subcategories – parametric and non-parametric. In the rest of this subsection, we are
going to introduce some of the common methods from both of these categories.

The typical representative of the non-parametric methods is kernel density estima-
tor (Parzen-Rosenblatt method). In this method, we estimate the density around every
sample using a kernel function and the final density for a point x is just an average of
all densities among all the samples. More formally:

p(x) =
1

n

n∑
i=1

K(||x− xi||2) (2.1)

where K is a kernel function and xi is a sample from the training set. The most
commonly used kernel function is Gaussian function.

The typical representatives of the parametric methods are Gaussian Mixture Models
(GMMs), Hidden Markov Models (HMMs) and naive bayes models. In fact, these
methods were also used for methylation detection. The group led by Jared T. Simpson
[SWZ+16] worked on the methylation classification problem and they used two HMMs
– one for modeling unmethylated samples and the other for modeling samples that
were methylated by a particular methylase.

Rand et. al. [RJE+16] also used HMM for methylation detection but their approach
was semi-supervised and they mixed HMM with hierarchical Dirichlet processes which
is a non-parametric distribution.

The most commonly used machine learning library – scikit-learn [PVG+11] imple-
ments classical GMM estimation using maximum likelihood (MLE) but additionally it
also implements elliptic envelope method.

Elliptic envelope [RD99] is basically multivariate Gaussian model but the parame-
ters of this model are estimated using a more robust method to the outliers in training
set. The objective of this method is to find k samples from the training set that have
the lowest determinant of the sample covariance. The constant k is a hyperparame-
ter which expresses how many outlier we expect in the training set. The reason why
we want to achieve the minimum determinant is that determinant directly relates to
the volume of the elliptic contours of the normal distribution and we basically want
contours which make a tight envelope around our samples.



CHAPTER 2. ANOMALY DETECTION 20

2.4.2 Distance-based Methods

Techniques in this category are based on k-nearest neighbour (K-NN) method or clus-
tering approaches.

The basic idea behind the k-NN approaches is that the normal samples have very
close neighbours in the training set but the abnormal samples have their neighbour far
away. For example, the simplest method could use the sum of squared distance to the
k-nearest neighbours as an anomaly score. The similarity metric (distance metric) is
usually another hyperparameter of these techniques.

The most commonly used method from this category is Local Outlier Factor (LOF)
which is also implemented in scikit-learn. This method is based on the fact that the
density around an abnormal sample is lower than the local density around a normal
sample. This method compares the local density of a point to local densities of the
k-nearest neighbours from the training set. Local density of a point is computed using
the distances of the k-nearest neighbours. If the neighbours are close then the density
is high and if the neighbour are far away then the density is low.

In the clustering based approaches, we usually use the distance to the closest rep-
resentatives of any of the clusters as an anomaly score. So in the training phase, we
cluster the training set and we keep the representatives of the clusters (centroids).
Then in the testing phase, we compute the distances from the sample that is being
tested to the centroids of the clusters and use the minimum distance as an anomaly
score. The basic assumption of these methods is that the normal samples belong to one
of the clusters and the abnormal samples do not belong to any of the clusters. LOF
and clustering can be combined into one approach [HXD03].

2.4.3 Domain-based Methods

The methods in this category are based on Support Vector Machines (SVMs). The
goal of these methods is to describe a boundary surrounding the points in the normal
class. The points that are outside of this boundary are considered as anomalies. There
are basically two main ways to apply SVMs to the anomaly detection problem.

The first one is called One-class SVM [SPST+01]. In this method, we want to find
a hyperplane with maximum margin which separates our training data from the origin.
In other words, the only negative sample that we have in our dataset is the origin. In
order to learn non-linear boundaries we can apply the kernel trick similarly as in the
case of binary classification SVM. Since the separating hyperplane does not have to
exist we can also apply the soft-margin trick from the binary SVM.

The second adaption of SVMs to the anomaly detection is called Support Vector
Data Description (SVDD) [TD04]. In this method, we want to find the smallest hyper-
sphere which encloses all the points from the training set. Similarly as in the One-class



CHAPTER 2. ANOMALY DETECTION 21

SVM, we can allow to have some points outside of the hypersphere to deal with the
outliers in the training set. We just add a penalty into objective function to penalize
for the points outside of the hypersphere (the soft margin trick). We would also like
to mention that one-class SVM and SVDD are equivalent for some of the kernels (e.g.
Gaussian kernel [SPST+01]).

2.4.4 Information Theoretic Methods

The information theoretic methods are based on the assumption that the anomalies
change the information content of the dataset. The common metrics of information
content are entropy and Kolmogorov complexity. A basic information theoretic method
would try to find a subset of k samples from the dataset that give the highest drop
in entropy. This subset is then considered to be the set of the anomalies. Entropy is
a measure of disorder or uncertainty. The lower the entropy is the more ordered the
dataset is.

2.4.5 Reconstruction-based Methods

The last category of anomaly detection methods that we are going to discuss are
reconstruction-based methods. The methods in this category are mostly based on the
neural networks.

These methods learn some representation of the normal samples from the training
set and in the testing phase they are presented with some sample and their goal is to
reconstruct the sample – recall the most similar sample using the representation that
the model has learnt. The usual choice of an anomaly score for these methods is a
reconstruction error. We can meet with several methods in this category. We can split
these methods into two subcategories: subspace methods and biologically motivated
neural networks.

The main idea of the subspace methods is that they learn an embedding of the
samples into a lower dimensional space in which the normal samples can be better
distinguished from the abnormal samples. When the model compresses the data into a
lower dimensional vector space then it has to prioritize what information is important
that characterizes the samples in the training set. When we use this model for anomaly
detection we expect that is has learnt to extract from the data some characteristics
which distinguish the normal samples from the abnormal samples. Currently, the most
used methods from these category are autoencoders. Our anomaly detection method
is based on autoencoders therefore we are going to spend one full section on them
(Section 2.5).

The biologically motivated models try to model human brain and mostly associative
memory. They are mostly based on Hebbian theory [Heb49]. This theory tries to



CHAPTER 2. ANOMALY DETECTION 22

explain how neurons interact and how new synaptic connections are created in the
brain. These neural networks are not trained by backpropagation as it is usually done
for deep learning models. The training algorithms are based on how biological neurons
work and interact with each other.

2.5 Autoencoders

Autoencoders (AEs) are neural networks which get on the input a vector x and their
task is to output the same vector x. Training a neural network that copies the input
to output is not so useful therefore these AEs are usually constrained in some way to
learn a more useful representation of the data. A typical way to constrain AEs is to
have a layer in the middle of the neural network that is smaller than the input. See
the typical structure of AEs that are constrained in this way in Figure 2.1. This type
of AE is composed of two parts: encoder network and decoder network. The en-
coder compresses the input into lower dimensional space and the decoder decompresses
(reconstructs) the input back from the code that was produced by the encoder. The
smallest layer in the middle is usually called bottleneck layer and the features that
are learnt by this layer are called bottleneck features. AE can be also seen as a
dimensionality reduction technique. We learn to reduce the dimensionality to only
preserve the most important features from the data. We can also think of AE as a
lossy compression algorithm.

Training AEs

AEs are classical neural networks which can be trained by backpropagation [GBC16]
to minimize the reconstruction error. As a reconstruction error we can use for example
mean squared error or cross entropy. More formally, let us say that our network is
composed of encoder f : Rn → Rk and decoder g : Rk → Rn then we can train it to
minimize the mean squared reconstruction error:

L =
∑
i

||xi − g(f(xi))||2 (2.2)

where xi are our samples.

Applications

AEs have several use cases. One common use case is when we use the bottleneck
features as an input to another classifier. In the process of lossy compression AE
removes the noise from the input so the representation is robust against the noise.



CHAPTER 2. ANOMALY DETECTION 23

Figure 2.1: Autoencoder structure. [Wik16a]



CHAPTER 2. ANOMALY DETECTION 24

AEs can be also applied in the field of information retrieval. We can think of the
code that was produced by AE as a hash of a sample. We can hash all of our samples
using AE and then search in the database of hashes for similar samples.

The most important application for us is in the domain of anomaly detection. In
this case, we train AE on the normal samples and then we expect that it is going to
learn some features that distinguish the normal samples from the abnormal samples.
Consequently, AE will not be able to reconstruct the abnormal samples so well as it
can reconstruct the normal samples.

2.5.1 Variants of AEs

In this subsection, we are going to introduce various types of AEs. They mostly differ
in the way that they constrain AE to learn a better representation of the input.

Principal Component Analysis

We can think of Principal Component Analysis (PCA [GBC16]) as a special case of
AE. In this case, we have a encoder f(x) = Wx, where W is a weight matrix and a
decoder g(x) = W Tx. In other words, we have a linear AE and the weights for the
encoder and decoder are tied. The idea of the tied weight is also used in training non-
linear autoencoder [MF13]. We can think of it as another technique of constraining AE.
When the linear AE is trained to minimize the mean squared error with the constraint
that the rows of W are orthogonal to each other then the rows of the matrix W are
going to be the subspace of the principal components [GBC16].

Denoising AE

Another interesting technique that is used to force AE to learn some useful represen-
tation is to give it a partially corrupted input to make it harder for AE to reconstruct
the original sample. This way AE is forces to learn to filter out the random noise in
the data and learn a more robust representation. For example, we can add Gaussian
noise to the input and then AE has to learn to reconstruct the input without the noise.

Sparse AE

Sparse AE [GBC16] is an AE which is constrained to learn a sparse representation of
the input. This can be achieve by L1 or L2 regularization on the hidden code so the
loss function for a samples x is:

L = ||x− x̂||2 + λ||z||1 (2.3)

where x̂ is the output of AE when we give it an input x, z is hidden code for x and λ
is the regularization coefficient.



CHAPTER 2. ANOMALY DETECTION 25

Contractive AE

Contractive AE [GBC16] introduces a constraint on the derivatives of the encoder
function. The loss function is then:

L = ||x− x̂||2 + λ
∑
i

∑
j

(
∂f(xj)

∂xi

)2

(2.4)

where xi is the i-th component of the input vector. The constraint on Jacobian of the
encoder basically forces the samples that are close in the input space to lie also close
to each other in the bottleneck space.



Chapter 3

Methods and Experimental Evaluation

In the first chapter, we have introduced the MinION and explained how methylated
bases affect the raw signal produced by the MinION. In the second chapter, we have
introduced the anomaly detection problem, explained strategies that are commonly
used for the evaluation of methods solving the problem, introduced several methods
which are commonly used to solve this problem, and clarified how this problem relates
to the methylation detection problem. At the end of the chapter, we have described in
more details the autoencoders which are the main method which we are using in our
work.

In the first part of this chapter, we present the dataset that we use in our experi-
ments (Section 3.1), describe the pre-processing strategies (Section 3.2), and show how
we split the reads into subgroups and into signal windows which we use as an input to
the autoencoder (Section 3.3).

In the second part of this chapter, we explain the general training strategies that
we have used for hyperparameter tuning and training the autoencoders (Section 3.4)
and present two architectures of the neural networks (Section 3.5).

Finally, we analyze the reconstruction error of the trained autoencoders and show
the results for the methylation detection problem (Section 3.6).

3.1 Dataset

In our experiments, we have used a dataset which was produced by the authors of
the nanoraw paper [SQE+16]. At first, DNA was extracted from E. coli (strain K-12
MG1655) and amplified according to protocols provided by Oxford Nanopore Tech-
nologies. Then the DNA samples were split into several groups and every group was
barcoded. DNA barcoding is a technique which adds a special genetic marker to DNA
samples so we can later on differentiate between different groups of samples using this
marker. Afterwards, some of the groups were methylated. This experiment was done

26



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 27

by two laboratories – Loman Lab and Pennacchio Lab and three sequencing libraries
were created in total. Every library was sequenced by a different MinION device using
2D sequencing kit (SQK-LSK208) and R9.4 250bps flow cells. Notice the structure of
the dataset in Table 3.1.

The methylation reactions were not validated by any other methylation detection
technology such as bisufate sequencing or SMRT (Section 1.3.3). Authors of the dataset
stipulated that not all of the methylases that they have tried worked successfully - the
enzymes might have been inactive (Nicholas Loman. Personal communication. 2016).

As you can notice, some of the subsets of the data are not included in the table
(e.g. dataset with identifier m03). The authors of the nanoraw paper have sequenced
also other samples but we have not used them in our experiments and they have also
not reported the results for them in the nanoraw paper [SQE+16]. The links to the
dataset are available in Appendix A.

Library Barcode Identifier Methylase Motif Methylation class
lib1 NB01 meth01 TaqI TCGA 6mA

NB05 control1
NB06 meth02 BamHI GGATCC 5mC
NB08 meth04 EcoRI GAATTC 6mA

lib2 NB04 meth08 HhaI GCGC 5mC
NB05 meth09 MpeI CG 5mc

lib3 NB02 meth10 SssI CG 5mC
NB03 meth11 dam GATC 6mA
NB05 control2

Table 3.1: Nanoraw dataset [SQE+16]. Every library represents one sequencing run.
The column identifier contains identifiers of the subsets of the data that we are going to
use in this thesis. Motif is the DNA pattern that is methylated by the given methylase.
The nucletide that is underlined is the one that should be methylated. Methylation
class is the new non-canonical bases that is created after the methylation reaction. The
control groups are the groups which were not methylated (negative samples).

3.2 Pre-processing

After the sequencing, the reads were base called by Metrichor and stored in HDF5 files
[The10]. The base called reads have a quite high error rate therefore we have decided
to realign the raw signal from reads to the reference sequence. We have downloaded
the reference sequence from European Nucleotide Archive (accession number U00096.3
version 3). Afterwards, we have used Tombo package ([SQE+16] and [Oxf18]) to realign



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 28

the signal to the reference sequence. Tombo in the first stage maps the base called
reads onto the reference sequence and then it aligns the signal observations to the
reference. Tombo is just a new version of nanoraw with additional features. We have
configured tombo to use BWA-MEM [Li13] for the mapping of reads to the reference
sequence. The process of realigning the signal to the reference sequence is sometimes
called resquiggling.

Tombo supports two methods of resquiggling the signal – resquiggle with and with-
out events. We have used the method that uses events that were produced by Metrichor.
Metrichor does not work on the raw signal. At first, it segments the signal into events
and then it runs the base calling algorithm on the events (Section 1.2). The method
that uses events directly uses the alignment of events to the base called bases from
Metrichor. When we have started with our experiments, Tombo was not released yet.
Only nanoraw was available which only supported resquiggling using events. Tombo
is still in development and currently also supports eventless resquiggle. The problem
with eventless resquiggle is that a model for R9.4 250bps chemistry is not included in
Tombo. On the other hand, the requiggle algorithm that uses events does not need any
model. Currently, this chemistry is not supported by Oxford Nanopore Technologies.
One of many reasons why eventless resquiggle was replaced by resquiggle using events
is that the current base callers do not produce the alignment of events to the base
called bases. The whole nanopore research has moved from events to a raw signal.

MinION stores the raw data in Fast5 files which is a file format build on the top
of the standard HDF5 file format. The raw signal is stored in these files in the form
of sequence of 16-bit unsigned integers. The signal processing pipeline that is recom-
mended by Tombo is to use median of absolute deviations (MAD) to normalize the
signal through the whole read. The other strategy could be to used is mean normal-
ization. Median is more robust to outliers therefore it is recommended to use median
normalization. The pseudocode for the median normalization algorithm is in Figure 3.1.
The reason why we need to do the normalization is that the nanopores that are used
currently for the sequencing are protein structures which are not so stable and they
change their properties throughout the time (nanopore degradation). Therefore also
the produced signal changes. Simple shifting and scaling the signal showed to give
good results in many nanopore applications [SQE+16].

3.3 Splitting Reads into Subsets and Signal Windows

After this stage, we have signal observations aligned to bases in the reference sequence.
The average number of bases aligned to one base is 15. Since the reads are quite long
we only work with short windows of 512 signal observations. These windows should be



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 29

shift = median(x)

mad = median(abs(x− shift))
return (x - shift) / mad

Figure 3.1: Normalization of the signal using median of absolute deviations. x is a
vector of 16-bit unsigned integers with represent the signal observations from a single

read.

large enough because they should contain approximately 34 bases. It is a quite standard
approach in the nanopore community to segment the reads into smaller windows (e.g.
[SWZ+16], [MAB+17] or [THD+17]). It is not unusual when we get reads of length
10, 000 from MinION which can have around 150, 000 signal observations. Additionally,
we know that a single signal observation is influenced by approximately six surrounding
bases which means that when we are interested in determining whether couple bases in
the middle of the window are methylated we do not need such a large signal context.

3.3.1 Training, Development and Testing Dataset

As we mentioned in Section 3.1, our data is split into groups by the methylase that
was applied on the DNA samples. We also split our data into training, development
and testing set. The reads that mapped onto first third of the reference sequence are
in the training set, the reads that mapped onto second third are in the development
set and the reads that mapped onto last third are in the testing set. We use this split
in order to make sure that our models do not learn any specific characteristics of the
particular part of the genome. The reads that overlapped the borders of the thirds
were discarded.

Because of this data split into training, development and testing set, we have decided
to merged the reads from both of the unmethylated datasets (control1 and control2)
into one dataset. We have observed that control2 dataset had a slightly higher quality
(longer reads and higher identity) so we did not want to bias our method by using the
better or worse dataset.

3.3.2 Extraction of the Signal Windows from the Reads

As we mentioned in Section 2.2, we want to train our model only on the unmethylated
reads and then test on a dataset composed of methylated and unmethylated reads.
The windows for training ouf our models were constructed as follows. We took un-
methylated reads from the training set and slided a window of length 512 with a stride
512. Therefore the windows that we constructed were not overlapping.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 30

In the testing phase, we want to test how well we can detect particular methylation.
Therefore for every methylation we use windows which were centered on a particular
methylation motif. Additionally, we require that the windows contain only one occur-
rence of the pattern. We assume that the methylation reaction worked perfectly – all
of the occurrences of the pattern are methylated.

3.3.3 Window Filtering

We have noticed that the resquiggle algorithm does not always work well so we have
filtered out the windows which had less than 13 bases fully inside the window. By
fully inside the window, we mean that all the signal observations for the base are inside
the window. When we have 13 bases inside the window then the average number of
observations per base is 40 which is quite a lot. For the windows which were centered
on a particular methylation pattern we additionally require that the base that is in the
middle of the window has at lest five bases to the right and five bases to the left that
are fully inside the window. This way we make sure that the windows are reasonably
centered on the methylation pattern.

3.3.4 Notation

As you can notice, our dataset is split into several subsets based on various criteria
therefore we need some notation to make it simpler to refer to the various datasets.
In this section, we are going to establish a notation for our datasets. A dataset can
be characterized by a tuple (a, b, c) where a denotes what methylase was used on the
dataset, b denotes if the dataset is training, development or testing set and c denotes the
pattern on which the windows in the dataset are centered. If the dataset is methylated
the a is the identifier of the methylase from the Table 3.1 and if it is unmethylated then
a = neg (negative). When we want to talk about unmethylated samples in general, we
are sometimes going to denote them by only writing neg. To make the notation even
shorter, we use the abbreviations train, dev, test to denote training, development and
testing set, respectively. If the dataset was not centered on any methylation pattern
then we omit the last component of the tuple to simplify the notation. If we want
to emphasize that the windows are not centered on any methylation pattern then we
use c = none. These windows are just non-overlapping windows from the read. If the
dataset was centered on some methylation motif the c is the identifier of the methylase
from the Table 3.1. Instead of using the mathematical notation for the tuples we are
going to use string of the form a-b-c. Sometimes, we are also going to use a shorter
form of the methylase identifier and write mXX instead of methXX.

We would like to also introduce a notation xl:r to denote a subsequence xl, . . . , xr
of the sequence x.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 31

3.3.5 Evaluation Strategy

All of the models were trained on the training set, the analysis that we present was
done on the development dataset and only the final evaluation was done on the testing
set. The metrics we use are PR-AUC and ROC-AUC. The evaluation strategy for the
anomaly detection problem was discussed in the Section 2.3 in more details.

3.4 Training Neural Networks

As we mentioned before, we are going to approach this problem of the anomaly detec-
tion using neural networks. In this section we are going to describe the general training
and hyperparameter tuning strategies that we have used.

All of the neural networks were trained by using Adam optimizer [KB14]. The
values of β1, β2 and ε were not modified during training. We have only used the values
from the original Adam paper mentioned above. The weights were initialized by Glorot
method [GB10] from normal distribution.

We have used different batch sizes ranging from 512 to 4096 depending on the
hardware that the neural network was trained on and the size of the network. Some
researchers report that large batch sizes are prone to overfitting [LXTG17]. We have
not observed any problems with overfitting or underfiting when changing the batch
size. On the other hand, we have observed that when we use larger batch sizes then
the training is actually faster since modern GPUs operate with large number of threads
and the computation is well scalable.

We have experimented with different learning rate schedules. Most of the networks
were trained by this learning rate schedule:

αt =
α0

1 + λ · t
(3.1)

where αt is a learning rate at epoch t and λ is a learning rate decay. We have also tried
manual learning rate decay but it was tedious and did not yield that big improvement.
All of the networks that we report here were trained by using the learning rate schedule
from Equation (3.1). The decay parameter and initial learning rate were tuned by a
manual grid search. The initial learning rates that we have usually tried were 0.1, 0.01,
0.005, 0.001 and 0.0005. For the learning rate decay we have usually tried these two
values 0.01 and 0.005.

All of the neural networks were trained on neg-train. During training, we have
monitored the loss on neg-dev dataset. We have not observed any signs of overfitting
so we have not used any regularization techniques. The final model for evaluation was
chosen based on the validation error. Most of the networks were trained for 2000 epochs
but our analysis showed that we could train these networks for only approximately



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 32

400− 500 epochs. The validation error was still decreasing even after the 500th epoch
but during the offline analysis we have not observed any systematic improvement for
all of the methylations. Some methylations improved a little bit but then some got a
little bit worse.

3.5 Model Architectures

In this section, we are going to introduce the architectures of neural networks that we
have used.

3.5.1 Autoencoder with Fully-connected Layers (DAE)

The first architecture that we have tried was a classical autoencoder with fully-connected
layers. Every fully-connected layer (dense layer) compresses the dimensionality of data
by one half. For example, when we have an autoencoder with a bottleneck layer of
size 32 then the encoder layer sizes are 512, 256, 128, 64 and 32, respectively. See the
example of DAE32 in Figure 3.2. Since we are interested only in the signal positioned
in the middle of the window, for the input x0:512, the decoder will only reconstruct
the vector x90:332. In other words, we crop 90 observations from both of the ends of
the input. Every observation is affected approximately by six surrounding bases and
the average number of observations per base is 15. The 90 observations correspond
to approximately 6 bases at the window boundaries can help to predict bases which
correspond to signal x90:512−90, however they are influenced by the signal outside of the
input window x0:512 and consequently are not likely to be accurately predicted based
only on the information inside the window. The decoder layer sizes for bottleneck of
size 32 are 64, 128, 256 and 332. We have used hyperbolic tangent as an activation
function for all of the layers. In our experiments, we have tried the bottleneck sizes of
16, 32 and 64. We are going to refer to this models as DAE16, DAE32 and DAE64,
respectively.

3.5.2 Autoencoder with Convolutional Layers (CAE)

The second architecture that we have tried was an autoencoder with convolutional
layers. We have also tried different bottleneck layer sizes for this architectures as we
have done in the case of DAE. We have tried bottlenecks of size 16, 32 and 64 and we
are going to denote these networks by CAE16, CAE32 and CAE64, respectively.

This architecture is also split into two parts – encoder and decoder. In the following
two sections we are going to describe the architecture in more details. Also, notice the
diagram of CAE32 in Figure 3.3.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 33

Figure 3.2: DAE32 structure. The individual components are explained in Sec-
tion 3.5.1. The output dimensions from a layer are in the right part of the boxes.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 34

Encoder

Encoder network is composed of several convolutional modules and one fully-connected
layer with a hyperbolic tangent layer. The first convolutional module adds more chan-
nels to the data which is usually interpreted as a feature extraction step in the neural
network: every channel corresponds to one feature. We basically run multiple convo-
lutional filters through the signal in the time domain. Our input data has only one
channel (time). This could be also viewed as a step when we increase the dimensional-
ity of the data. Afterwards, every convolutional module compresses the dimensionality
of the data by one half. Every convolutional module is composed of four layers: one di-
mensional convolution (Conv1D) [DV16], batch normalization layer, ELU and average
pooling.

One dimensional convolution is basically the same convolution that is commonly
used in image processing. The difference is that we do not slide the filter through the
image, instead we slide the filter trough the time steps of the signal. This convolution
is commonly used in the audio domain. The number of convolutional filters is kept
constant for all the convolutional layers in the network. We have experimented with 32

and 16 filters. The results with 32 filters seemed more promising. Every convolutional
module in the network has the same number of filters. Even the last one which means
that the input size of the fully-connected layer is 32×b and output has b units, where b
is the number of bottleneck features. The size of the convolution kernel is set to eight,
stride is one and the input is padded by zeros so that the size of the output is the same
as the input.

Batch normalization [IS15] is a technique which is commonly used to accelerate
the training of deep neural networks. The batch normalization addresses the Internal
Covariate Shift problem. The input of the l-th layer is influenced by all the previous
layers. When the output distribution of the first layer is perturbed a little bit due to
the change in parameters, the shift is amplified by other layers and at the l-th layer
the distribution of the inputs changes in a much more pronounced way. Consequently,
small shifts int the input distribution might cause saturation of the units and other
problems with stability of the network weights. The technique is designed to prevent
this problem by normalizing every feature in the batch to zero mean and variance one
and then scaling the data by γ and adding β. In other words, it modifies the distibution
so that the features have β mean and γ2 variance. The parameters γ and β are learnt
during the gradient descent, since batch normalization layer is fully differentiable.

In our experiments, we have observed that the neural networks that were trained
with the batch normalization allowed us to use higher learning rate compared to net-
works without batch normalization.

ELUs [CUH15] are non-linear activation units which compared to sigmoid or hy-



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 35

perbolic tangent units, do not suffer from the saturation problems. They are similar
to ReLUs. The problem with ReLUs is that they suffer from a problem which is called
"dying units" problem. Since their derivative is zero for negative values, the gradient
cannot be back propagated to other layers, and some parts of the networks might sim-
ply become inactive. The other problem is that ReLU does not have negative values,
which causes shifts in the mean of activation distributions. ELU has non-zero output
for negative values compared to ReLU, therefore it does not suffer from either of the
problems mentioned above. The formula for ELU is:

f(x) =

x if x > 0

α(ex − 1) otherwise
(3.2)

where α is a hyperparameter. We have used the default value α = 1.
The last layer in the convolutional module is the average pooling. This layer

basically slides a window trough the input and outputs the mean of every window.
The window is slided in the time axis for every channel separately. We have used
windows of size two. The purpose of this layer is to downsample the input and reduce
the dimensionality. Another possibility to downsample the vector is to use convolution
with stride two or max pooling which computes the maximum of a sliding window
instead of the mean as in the average pooling. We expect that the input signal is in
fact a noisy step signal and average pooling can smooth out the noise in the signal.
On the other hand, max pooling can better describe sharp jumps in the signal which
would correspond to the base changes in the pore. We have decided to use average
pooling.

Decoder

Decoder is composed of as single fully-connected layer with hyperbolic tangent acti-
vation units and several deconvolutional modules, where every module increases the
dimensionality of the input. We have tried to make the encoder as similar as possible
to the encoder so the first fully connected layer has b input units and 32 · b output
units. Then this vector is reshaped into a b × 32 matrix which serves as an input to
the deconvolutional module. The last convolutional layer has only one filter since the
output has only one channel. The output of the decoder is actually smaller than the
input of the encoder due to the same reasons as in the case of DAE model. So actually
the last layer of the network is a cropping layers which crops 90 observations from both
of the ends of the output vector.

The structure of the deconvolutional modules is very similar to the convolutional
modules. In the convolutional modules, we had convolutional, batch normalization,
ELU and pooling layer. Since the purpose of deconvolutional modules is to upsample



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 36

Figure 3.3: CAE32 structure. The individual components are explained in Sec-
tion 3.5.2. The output dimensions from a layer are in the right part of the boxes.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 37

the input, instead of the pooling layer we use the upsampling layer, which duplicates
the inputs in the time dimension. All of the other layers are the same as in the convo-
lutional modules. Another option would be to use the transposed convolution [DV16]
with stride two. Transposed convolution is sometimes called deconvolution. Since
convolution is linear operation, it can be described as a matrix multiplication of the
input vector by a sparse matrix. By transposing this matrix, we achieve that the input
dimensionality of the convolution is swapped with the output dimensionality. There-
fore this operation increases the dimensionality. Nice illustrations of this operation can
be found in A guide to convolution arithmetic for deep learning by Dumoulin et al.
[DV16]. The other way to look at the transposed convolution with stride two is that
instead of duplicating values as it is done in the case of upsampling layer with convo-
lutional layer, it adds zeros and then convolves the input. For example, let us take the
input vector (1, 2, 3) then the transposed convolution would create vector (1, 0, 2, 0, 3)
and convolve this vector. In the case of upsampling layer with convolution, we would
first upsample the vector to get (1, 1, 2, 2, 3, 3) and then we would convolve it.

3.6 Model Analysis and Evaluation

In this section, we present the analysis of the reconstruction error and evaluation the
performance of the models.

3.6.1 Distribution of The Reconstruction Error

Sudden Jumps in The Signal

When inspecting the signal squiggles, we have observed that the signal can unexpect-
edly jump up for one or two observations. Autoencoder has no way to predict such
jumps and we are not really interested in these kind of anomalies in the signal. As we
mentioned in Section 2.2, we are interested in contextual anomalies where the signal
consistently deviates from the signal expected for a given context. To get rid of sudden
jumps in the reconstruction error, we have decided to smooth the error using median
filter with kernel size of five.

3.6.2 Mean Squared Error (MSE)

After training the neural networks, we have tried several techniques to compute the
anomaly score from the original and reconstructed signal. The obvious choice is MSE:

mse(x, ŷ) =
1

332

332∑
i=0

(xi+90 − ŷi)2 (3.3)



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 38

Figure 3.4: The difference in MSE for methylated and unmethylated samples for
DAE64. Every boxplot corresponds to the distribution of MSE for a given subset
of samples. For a methylase x we show three boxplots which correspond to: x-dev-x
(blue), neg-train-x (green) and neg-dev-x (red). The last two boxplots correspond to
the distributions of MSE of neg-train-none and neg-dev-none.

where x is the input signal and ŷ is the predicted signal.
As you can see in Figure 3.4, the differences in MSE for positive and negative

samples are quite small. We can usually see a statistically significant shift in median
between the negative and positive samples because the amount of samples is high
enough, but the difference is too small for the detection of methylated samples by
using MSE on a single read by itself. There is no good threshold for the MSE score
which would discriminate methylated from unmethylated samples. The biggest shift
can be observed for meth01.

Another interesting property is that some contexts are much easier to reconstruct
than others, which is demonstrated by large differences in MSE (e.g. compare m11
and m10). Using MSE, we can actually discriminate between different contexts better
than between methylated and unmethylated samples. We can also notice that there
are basically no differences between MSE in the training set and the development set,
which means that the differences that we see are consistent.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 39

Nevertheless, Figure 3.4 demonstrates that for all of the methylations we can ob-
serve higher reconstruction errors in the methylated datasets than in the unmethylated
datasets, with a single exception (m10) where the autoencoder can reconstruct the
methylated samples better than unmethylated.

3.6.3 Bottleneck Size

In this section we are going to look at the effect of bottleneck size on DAE and CEA
separately.

DAE

The comparison of the fully-connected autoencoders for various number of bottleneck
features is in Table 3.2. As an anomaly score, we have used MSE. We can notice in
this table that DAE64 is the best except for meth10 and meth11. However, all of the
autoencoders perform quite poorly on these two methylations. We basically achieve
the score of a random classifier. Overall, all of the ROC-AUC scores are quite close to
0.5. The only methylation that has ROC-AUC above 0.6 is meth04.

Methylase pattern #pos #neg ROC-AUC PR-AUC
16 32 64 16 32 64

meth01 TCGA 52748 254856 0.541 0.558 0.579 0.107 0.114 0.120
meth02 GGATCC 33315 9533 0.480 0.512 0.541 0.141 0.155 0.170
meth04 GAATTC 2951 11342 0.548 0.560 0.610 0.134 0.136 0.155
meth08 GCGC 206150 441005 0.512 0.525 0.547 0.193 0.199 0.213
meth09 CG 145297 377933 0.472 0.484 0.518 0.153 0.159 0.174
meth10 CG 70815 377933 0.431 0.422 0.415 0.073 0.071 0.071
meth11 GATC 89049 293111 0.509 0.509 0.507 0.132 0.131 0.130

Table 3.2: The effect of the bottleneck size on DAE.

CAE

The comparison of the different bottleneck sizes for CAE is in Table 3.3. The anomaly
score that was used is MSE. In the case of autoencoder with fully-connected layers,
we had a clear winner. In this case it is not so clear. CAE16 is definitely the worst.
From the table, it looks like that it works better in meth10 but we actually could take
negative MSE as an anomaly score and then all of the ROC curver would flip around
y = x and we would get auc = 1 − old_auc. So actually the best model for this
methylation is the one with bottleneck 64.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 40

Methylase pattern #pos #neg ROC-AUC PR-AUC
16 32 64 16 32 64

meth01 TCGA 52748 254856 0.571 0.590 0.593 0.118 0.125 0.122
meth02 GGATCC 3315 9533 0.515 0.582 0.580 0.153 0.188 0.190
meth04 GAATTC 2951 11342 0.594 0.575 0.632 0.154 0.143 0.163
meth08 GCGC 206150 441005 0.539 0.563 0.556 0.206 0.217 0.216
meth09 CG 145297 377933 0.482 0.500 0.533 0.157 0.165 0.179
meth10 CG 70815 377933 0.449 0.446 0.423 0.076 0.075 0.072
meth11 GATC 89049 293111 0.516 0.525 0.517 0.133 0.136 0.132

Table 3.3: The effect of bottleneck size on convolutional autoencoder.

3.6.4 MSE of CAE and DAE

In this section, we are going to compare DAE with CAE.
At first, we are going to compare MSE on neg-dev. The results are in Table 3.4.

You can notice that the reconstruction error of CAEs is always lower. We could say
that when the error is around 0.2 or greater then the autoencoder does not reconstruct
the signal very well. But on the other hand, when we try to achieve the reconstruction
error below 0.05, the autoencoder might converge to the state when it is just passing
the signal from the input to the output and does not learn any useful representation
of the input.

Bottleneck size DAE CAE

16 0.399 0.312
32 0.204 0.130
64 0.086 0.051

Table 3.4: Comparison of MSE for DAE and CAE on neg-dev.

When we look at the reconstruction errors for individual positions in the output
window of the autoencoder we can observe only really small shifts in the error distribu-
tions. Figure 3.5 shows that the greatest shifts in the distributions between methylated
and unmethylated samples are in the segment 150−200 of our signal windows. On the
right hand side of the figure, we can see that the differences between training and val-
idation set samples for a particular methylation. The differences are barely noticeable
which means that the deviations from unmethylated samples for the given methylation
on the left hand side are not random. They consistently appear for the given methy-
lation motif. Also note that the error distributions for positions are shifted towards



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 41

larger values since median is below the mean.

Figure 3.5: Reconstruction error per position. We call these plots also error profiles
for a particular methylation pattern. X-axis corresponds to individual positions in
the output window. Y-axis corresponds to reconstruction error. For every position, we
have aggregated the reconstruction errors and computed several statistics. Dashed lines
correspond to unmethylated samples and solid lines correspond to methylated samples.
Every color corresponds to a different statistic which we have used for aggregation
of reconstruction errors (residuals) for a particular position. Notice the legend with
description of the statistics. On the left hand side, we have samples that are centered
on a methylation pattern TCGA corresponding to meth01 and on the right hand side
we have samples from training and development datasets also centered on the same
motif. This plot can be viewed as a sequence of boxplots. Every boxplot corresponds
to one position in the output window. This error profile corresponds to fully-connected
network with bottleneck of size 32.

Figure 3.6 compares the profile of the reconstruction error for CAE32 and DAE64 on
the example of two methylases. The difference between methylated and unmethylated
reconstruction error for CAE is greater than for DAE in the case of both of the methy-
lations. The profile of the reconstruction error for CAE is smoother, because CAE can
model sharp transitions in the signal better than DAE (see Figure 3.7). Increasing the
bottleneck size of DAE leads to learning a random noise in the signal.

Even though CAE shows larger differences between methylated and unmethylated
samples this is still not sufficient to use it for classification. Notice the first (Q1) and
third (Q3) quartile of the reconstruction error in the bottom right corner of Figure 3.6.
The intervals [Q1, Q3] – also called interquartile ranges (IQRs) – for methylated and
unmethylated samples have significant overlaps even for a methylation pattern which
has the highest difference from the unmethylated samples. From a good anomaly score,



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 42

(a) DAE64 (b) CAE32

(c) DAE64 (d) CAE32

Figure 3.6: Errors profiles between CAE and DAE. Notice that the error scales are not
same.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 43

C A A T T A A C G A T A T C T A T T A C G C
Reference Sequence

3

2

1

0

1

2

3
Si

gn
al

dev - fwd

Original
Reconstructed

(a) DAE32

C A G T T A C G T A G G A T T T C C C A G C C C A G C
Reference Sequence

3

2

1

0

1

2

3

Si
gn

al

dev - rev

Original
Reconstructed

(b) DAE64

C T A A C C A A C A G C T T A A C A C C A T T A A C A T
Reference Sequence

3

2

1

0

1

2

3

Si
gn

al

dev - fwd

Original
Reconstructed

(c) CAE32

Figure 3.7: Comparison of signals reconstructed by different autoencoders. X-axis
corresponds to time and y-axis corresponds to the signal level. Bases of the refer-
ence sequence are aligned to the signal (see x-axis and the vertical grid lines). The
blue squiggle represents the reconstructed signal and the black squiggle represents the
original signal.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 44

we would expect that IQRs of unmethylated and methylated samples do not overlap.

3.6.5 Supervised Classification Based on a Single Read

To ascertain the discrimination power of the reconstruction error of CAE, we have
decided to use this score in a simple supervised setup. We have chosen a simple proba-
bilistic model – a multivariate normal distribution with the diagonal covariance matrix
– and trained this distribution on methylated and unmethylated samples separately.
These distributions were trained on a separate training set and separately for every
methylation. The classification score is logarithm of likelihood ratio.

Obviously, we could use more complicated classification models such as SVM, deci-
sion tree, or even a neural network. However, the purpose of this experiment was not
to find the best classification model, but to evaluate if the comparison of unmethylated
and methylated error profiles can give useful results. In the previous experiments,
methylation detection using MSE did not yield good results. We can view results in
this section as an upper bound on what can be achieved using autoencoder error profiles
for the anomaly detection task.

The AUC scores for the classification task are shown in Table 3.5. Notice that
CAEs perform better than DAEs in general. Both of the CAEs perform similarly well.
CAE32 is the best on GGATCC and GCGC. CAE64 is the best on GAATTC. We do not
have clear winners for the other methylations. The differences are quite small and not
consistent among ROC-AUC and PR-AUC. For example, for TCGA, the best model
according to ROC-AUC is CAE64 but according to PR-AUC the best one is actually
CAE32.

The interesting observation in the case of GAATTC methylation is that none of the
models have smooth error profiles, even though CAEs usually have smooth error pro-
files. However, this might be caused by the fact that for this motif we have the least
number of samples, perhaps this indicates overfitting. We can also observe the rough-
ness of the curves on GGATCC but it is not as noticeable as in the case of GAATTC. We
would like to remind that Gaussian models were fitted on different dataset than dataset
for which we computed ROC curves and the error profile curves.

AUC score for motif CG is quite close to 0.5 for all of the models which means that
none of the models can detect it well. The easiest to detect is GAATTC motif, but GCGC
also works quite well.

In general, longer motifs seem be reconstructed better. To examine this in more
detail, we have fitted Gaussian model to samples which had some particular k-mer in
the middle. We have chosen k = 6, since the longest methylation pattern is of length
six. Thus, our model of error is an ensemble of Gaussian models, and every Gaussian
corresponds to one k-mer. Unfortunately, the results for this ensemble of models were



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 45

Methylase meth01 meth02 meth04 meth08 meth09 meth10 meth11

pattern TCGA GGATCC GAATTC GCGC CG CG GATC
#pos 52748 3315 2951 206150 145297 70815 89049
#neg 254856 9533 11342 441005 377933 377933 293111
ROC-AUC CAE 32 0.65 0.622 0.738 0.718 0.528 0.576 0.605

CAE 64 0.654 0.575 0.776 0.604 0.53 0.575 0.606
DAE 32 0.61 0.509 0.65 0.645 0.525 0.577 0.553
DAE 64 0.629 0.556 0.724 0.622 0.518 0.579 0.562

PR-AUC CAE 32 0.28 0.35 0.408 0.547 0.297 0.2 0.322
CAE 64 0.258 0.315 0.457 0.405 0.295 0.198 0.328
DAE 32 0.24 0.263 0.321 0.466 0.296 0.197 0.269
DAE 64 0.248 0.3 0.4 0.427 0.289 0.199 0.28

Table 3.5: AUC scores for the supervised classification task based on a single read.

not better. Some contexts could be better reconstructed better and some could not.
For comparison, see ROC curves for CAE with bottleneck 32 in Figure 3.8. The AUC
score improved just a little bit for CG motifs. In order to do a fair comparison of these
two approaches, we had to filter out samples from validation set that had k-mer in the
middle for which we were not able to estimate a model from the training set. In other
words, it did not have at least one unmethylated and one methylated sample.

3.6.6 Supervised Classification Using Multiple Reads

The classification of of methylation from a single read is a very difficult task and it is
not clear that a single read contains enough information to perform the task. However,
assuming that a single position in a genome is methylated consistently in all read, we
can pool the information from multiple reads to achieve better classification results.

To compute the classification score of a single site in the reference sequence, we take
a set of samples which were centered on the same motif, have the same methylation
status and were aligned to the same position on the genome. For the classification, we
simply sum the log-likelihood ratio scores. In other words, we assume that the reads
are independent samples from that particular position in the genome.

We expect that when we sum the scores from multiple reads overlapping the same
context then the score is going to be more discriminative when the signal is consistent.

Definition 1. Site has a coverage x in a particular dataset if the dataset contains
exactly x reads centered on the site in the reference.

We have decided to inspect the effect of site coverage on this score. In our dataset,



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 46

(a) One Model per Motif (b) Ensemble of Models

Figure 3.8: Comparison of ensemble of k-mer models and one model per motif. ROC
curves on the left hand side correspond to one Gaussian per motif and the plot on the
right hand side corresponds to ensemble of Gaussians.

every methylation has a different number of reads and a different number of occurrences
in the genome. Therefore the site coverage varies a lot.

The experiment is designed as follows. First we filter out sites with coverage lower
than c and then randomly sample c reads overlapping every genome site where a par-
ticular methylation pattern occurs. Figure 3.9 shows the results for different coverages.
We have chosen ROC-AUC as a metric since PR-AUC is very sensitive to imbalance
of positive and negative samples. Increasing the coverage significantly decreases the
number of positive samples (Figure 3.9), but the number of negative samples does not
decrease that much. Consequently, the PR-AUC plots against coverage mainly show
the change in then ratio of positive samples to negative samples.

CAE32 performs the best for most of the methylations. CAE64 does better on
meth04, but the estimate of the AUC is quite questionable for this methylation since the
number of positive samples drops quickly below 100. All of the models perform poorly
on CG methylation in meth10 dataset. The error profile of meth10 (Figure 3.10), shows
that the reconstruction error for the methylated samples is actually consistently lower
than for the unmethylated samples on the window boundaries but in the center, the
reconstruction error of methylated reads surpasses the unmethylated reads, as would
be expected. Normally, we would expect that the reconstruction error is greater for
methylated samples since the autoencoder was trained only on unmethylated samples.
On the other hand, we do not see this strange behaviour of error profile for meth09

(Figure 3.10). We can notice that the error jumps a little bit in the middle of the
window. The differences on the sides of the window are barely noticeable. Meth09 and



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 47

Meth10 are methylations of the same type. Although, they were created by a different
methyltransferase. Both of the methylases should bind additional CH3 to every cytosine
in CG context. The authors of the original paper which collected the data mention that
these two methyltranferases were obtained from two different companies. Most of the
methyltransferases were obtained from New England Biolabs but meth10 and meth01

were obtained from Chrometra, Belgium.

3.6.7 Semi-supervised Classification

In this section, we are going to describe our approach to detection of methylated
samples based on the error profiles. One obvious strategy is to compute mean square
error through the whole output window and use this score as an anomaly detection.
We have also tried several other strategies to define an anomaly score based on error
profile. We are also going to present the results for both of the tasks – detection of
methylated samples and detection of methylated genome sites.

Quite common strategy in anomaly detection is to train a probabilistic model on
normal data and then use probability density as an anomaly score. In this case, we
expect that anomalies are going to get low density compare to normal distributions.
We discuss these methods in more details in Section 2.4.1. The goal of the probability
distribution in our case is to describe error profile of a particular methylation. Notice
that so far we did not given the autoencoder any information about the context of the
anomaly. Fitting a distribution to an error profile of a particular methylation is a way
to provide some information about the context. The advantage is that we do not need
to have a good alignment of signal to bases in order to fit these distributions. We just
need some samples that are approximately centered on the methylation motif. The
disadvantage is that we still have the problem that some of the bases might be stuck in
the nanopore for a longer time and the length of the segment in which the error profile
is deviated from the normal error profile might be different for various samples which
probably contributes to the noise in error distribution for a particular positions in the
output window.

In our experiments, we have tried to fit different probability distributions to recon-
struction errors for unmethylated data for a specific methylation and then we have used
logarithm of density as an anomaly score. As we could notice from the previous plots
of error profiles, the error distributions for different positions in the output window
are usually right-skewed. Therefore, we have also tried several skewed distributions.
We have tried two versions of multivariate normal distribution – with full covariance
matrix and with diagonal covariance matrix. The version with diagonal matrix gave
better results probably because it needs to estimate less parameters and is less prone
to overfitting.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 48

(a) CAE32 (b) CAE64

(c) DAE64 (d) Decrease of the number of methylated sites

Figure 3.9: Supervised classification using multiple reads. The plot in the lower right
corner shows how quickly the number of methylated sites decreases as we increase the
coverage. Notice that y-axis is in log-scale. All the other plots correspond to AUC
scores of the individual models.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 49

Figure 3.10: Error profile of meth10 and meth09 for CAE32.

Multivariate normal distribution with diagonal matrix could be also interpreted
as a naive bayes model when we assume that every position in the output window is
conditionally independent given the class and we only have data from one class. The
features of a sample are reconstruction errors and every feature is distributed accord-
ing to univariate normal distribution. For every position, we have estimated different
parameters. In the same spirit, we have tried to replace the univariate normal distri-
bution by several other distributions. We mostly aimed at skewed distributions. The
distributions that we have tried were: log-normal distribution, gamma distribution, in-
verse normal distribution and skewed normal distribution. The most promising showed
up to be the inverse normal distribution. Additionally, we have also tried to slightly
improve the MSE method. We call this "MSE middle score" because we compute MSE
only using the errors in the middle of the output window. More precisely, we use the
segment y100:250 from the output window of size 332. This method is based on the
observation that all the methylations had the most deviated error profile from the un-
methylated error profile in the middle of the window. The comparison of some of the
techniques for CAE with bottleneck 32 are in Table 3.6. As we can notice, "MSE mid-
dle" is the best technique. It improves a lot the basic MSE which takes all of the errors
in the output window and averages them. We can also see that for meth04 the best
model is inverse gaussian distribution. This is actually specific for this autoencoder.
For CAE64 and DAE64, we can observe that inverse gaussian is not so significantly
better. There is actually disagreement between PR-AUC and ROC-AUC in this case.
The reason why targeting the middle of the window does not help for meth04 is that we
can observer deviations from unmethylated profile also on the sides of the window. See
the comparision of the error profile for meth04 in CAE64 and CAE32 in Figure 3.11.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 50

(a) CAE32 (b) CAE64

Figure 3.11: Error profile of meth04 – GAATTC. Notice that the reconstruction error
scales are not same.

Methylase meth01 meth02 meth04 meth08 meth09 meth10 meth11

pattern TCGA GGATCC GAATTC GCGC CG CG GATC
#pos 52748 3315 2951 206150 145297 70815 89049
#neg 254856 9533 11342 441005 377933 377933 293111
ROC-AUC mse_simple 0.592 0.583 0.573 0.565 0.499 0.446 0.529

mse_middle 0.634 0.624 0.574 0.63 0.51 0.479 0.564
inv_gauss 0.586 0.58 0.598 0.569 0.491 0.449 0.524
diag_norm 0.579 0.56 0.592 0.576 0.486 0.462 0.521
skew_norm 0.586 0.573 0.598 0.575 0.49 0.452 0.524

PR-AUC mse_simple 0.222 0.318 0.254 0.36 0.278 0.136 0.244
mse_middle 0.255 0.346 0.256 0.422 0.284 0.147 0.27
inv_gauss 0.218 0.316 0.276 0.364 0.275 0.137 0.241
diag_norm 0.217 0.3 0.278 0.373 0.27 0.14 0.243
skew_norm 0.219 0.308 0.28 0.369 0.272 0.138 0.243

Table 3.6: Single read semi-supervised classification with CAE32.

We have also tried non-probabilistic anomaly detection techniques such as isolation
forest and one-class SVM. The problem with these techniques is that they have several
hyperparameteres which needs to be tuned for every methylation pattern separately
which is not the path the we wanted to go. Additionally, the training algorithm of
one-class SVM is quite slow so we had to downsample the dataset. Isolation forest
performed better than one-class SVM and gave slightly worse results than multivariate



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 51

normal with full covariance matrix. We have not done any grid search to tune the
isolation forest. The estimation of all the distributions that we mentioned above does
not require any hyperparameter tuning which is lot better in our case since the number
of methylation patterns that we are interested might grow a lot and we do not want
to be limited to a specific set of motifs.

We have also tried to detect methylated sites in genome. The comparison of CAE32
and CAE64 for MSE middle is in Figure 3.12. We can notice that bottleneck 32 is better
for most of the methylations except meth04. The other nice property taht we can notice
is that for most of the methylations the AUC score approaches 0.8.

(a) CAE32 (b) CAE64

Figure 3.12: Semi-supervised detection of methylated genome sites. The plot with the
number of positive samples for various coverages can be found in Figure 3.9.

3.6.8 Addition of Context to the Autoencoder

As we mentioned in Section 2.2, we are interested in contextual anomalies. So far the
autoencoder has not been given any information about the context but we could notice
from the error profiles that it can discriminate different contexts (Figure 3.4). The
error profiles for different contexts can look significantly different. The autoencoder
can reconstruct some of the contexts better then the other contexts but this is actually
undesirable. We would actually want the anomaly score to be more stable for different
contexts.

In Section 2.2, we have mentioned couple problem regarding incorporation of the
context into to the model. We have to basically cope with two main problems – large
number of contexts and errors in determining the context for a particular sequence of
signal observations. To deal with the problem with errors, we have used bases from
the reference sequence which were aligned to our signal. See Section 3.2 for more



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 52

details. Additionally, we have decided to use only the bases that are in the middle of
the window. We took the bases that were aligned to the observations in the middle of
the window and then we took three bases to the left of the base and three bases to the
right (7-mer). We have also applied some additional filtering to the training set. We
require that we have at least two bases around the 7-mer that are fully inside the input
window. These windows made 0.44% of the training dataset. We have also applied
this filtering strategy on the development set so the comparison with other models is
fair.

The extracted 7-mer were passed to the autoencoder in one-hot encoding. We have
experimented with two variants: when the bases were added as an input to the decoder
and when they were added as input to the encoder.

In the encoder case, the bases were merged with signal using fully-connected layer
with hyperbolic tangent activations. The output size of this layer was 512 so this
layer actually compresses the information since we go from two vectors of size 512 and
7 · 4 = 28 to one vector of size 512.

In the decoder case, the bases were merged with the bottleneck features using
fully-connected layer with hyperbolic tangent units. The output size of this layer was
32 · 32 = 1024 since we have 32 filters and 32 bottleneck features. This neural network
is actually similar to a neural network that receives bases and tries to predict the signal
but we additionally give it some features about the signal – the bottleneck features.
We have also tried to train a network which would predict the signal from bases but
with no success.

The approach with addition of bases on the input of the decoder gave significantly
better results. The comparison of CAE32 without bases and CAE32 with bases as
an input to decoder for the methylated sites detection task is in Figure 3.13. We can
notice that for methylations one, two and four, we are able to reach 0.85 AUC compare
to 0.8 AUC. We can observe slight improvements also in the other methylations. The
only ones that do not improve are 10 and 11.

We also provide a table (Table 3.7) with scores for a single read methylation detec-
tion task. We can notice that addition of bases helps for nearly all of the methylations
except meth11.

Notice that an alternative approach would be to train a separate neural network
for every methylation but this is quite computationally expensive and requires hyper-
parameter tuning for every methylation separately. The approach when we pass the
bases to the autoencoder is quite similar but does not need separate hyperparameter
tuning for every motif.



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 53

(a) CAE32 without bases (b) CAE32 with bases

Figure 3.13: Semi-supervised detection of methylated genome sites. The plot on the
left-hand side corresponds to classical CAE32 and the plot on the right-hand side
corresponds to CAE32 with 7-mer as an additional input to the decoder. The plot
with the number of positive samples for various coverages can be found in Figure 3.9.
As an anomaly score was used "MSE middle".

Methylase pattern #pos #neg ROC-AUC PR-AUC
no bases bases no bases bases

meth01 TCGA 52748 254856 0.634 0.655 0.255 0.265
meth02 GGATCC 3315 9533 0.624 0.658 0.346 0.373
meth04 GAATTC 2951 11342 0.574 0.649 0.256 0.301
meth08 GCGC 206150 441005 0.630 0.635 0.422 0.429
meth09 CG 145297 377933 0.510 0.522 0.284 0.292
meth10 CG 70815 377933 0.479 0.504 0.147 0.156
meth11 GATC 89049 293111 0.564 0.561 0.270 0.266

Table 3.7: Semi-supervised classification using a single read. In this table we compare
CAE32 without bases and CAE32 with bases as an input to the decoder. As an anomaly
score was use "MSE middle".



Conclusion

The goal of this thesis was to design a method which can computationally identify
modified DNA bases from raw MinION signal. The conventional approaches to this
problem train a classifier on a dataset for which we know what bases are modified. The
main limitation of this technique is that it requires an extensive training dataset that
contains known DNA modifications in many different contexts.

Instead, we have employed a semi-supervised approach to this problem. We train
an autoencoder on the dataset containing only canonical bases to learn characteristics
of the signal for the canonical bases and then based on the reconstruction error we
classify if the bases are modified or not.

We have experimented with two architectures of the autoencoder – convolutional
and fully-connected. Our experiments show that the autoencoders with the convolu-
tional architecture can better learn the characteristics of the signal of canonical bases.
The reconstruction error profile for the convolutional autoencoders is smoother than
for the fully-connected autoencoders.

The second conclusion drawn from our experiments is that our models cannot detect
methylation based on a single read, but when we use multiple overlapping reads we can
detect most of the methylations in our dataset. The authors of the dataset which we
have used in our experiments have not done any validation if the methylases that they
used to prepare the dataset were active. Therefore it is possible that the datasets in
which we were not able to detect the methylation contains many unmethylated bases
and consequently, we do not have very good ground truth for these datasets.

In our experiments, we have also tried to add the sequence of bases on the input
of the decoder. This model actually shows the best results. This approach is similar
to training a neural network to predict the signal from bases, but in this case we also
include compressed features derived from the signal.

We have also attempted to use recurrent neural networks which seem to be a more
natural framework for this type of data, since we are working with sequential data.
Unfortunately, we did not get any promising results, and additionally the training of the
recurrent neural networks is significantly slower than training convolutional networks.

In future, we would like to experiment more with variational autoencoders, which
are probabilistic neural networks. We can use them to model the probability distri-

54



CHAPTER 3. METHODS AND EXPERIMENTAL EVALUATION 55

bution of unmethylated data and then use this probability as an anomaly score. We
have done some preliminary experiments with these types of networks but we have
encountered a problem that the autoencoder converged after two epochs into a bad
local minima. Researchers from the Google Brain [BVV+15] and OpenAI [KSJ+16]
teams apparently encountered similar problems in their work. We would like to try the
techniques that they used to overcome this problem.



Bibliography

[BB11] Tomáš Vinař Broňa Brejová. Methods in bioinformatics, volume 1.
Knižničné a edičné centrum, Fakulta matematiky, fyziky a informatiky,
Univerzita Komenského, Mlynská dolina, 842 48 Bratislava, 1 edition,
2011.

[BBB+] JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM
Smith, and M West. Generative or discriminative? getting the best of
both worlds.

[BBV16] Vladimír Boža, Broňa Brejová, and Tomáš Vinař. Deepnano: Deep re-
current neural networks for base calling in minion nanopore reads. arXiv
preprint arXiv:1603.09195, 2016.

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In ACM sigmod record, vol-
ume 29, pages 93–104. ACM, 2000.

[BVV+15] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal
Jozefowicz, and Samy Bengio. Generating sentences from a continuous
space. arXiv preprint arXiv:1511.06349, 2015.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

[DDY+16] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and
Jared T Simpson. Nanocall: An open source basecaller for oxford nanopore
sequencing data. bioRxiv, 2016.

[DEKM98] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998.

56



BIBLIOGRAPHY 57

[DV16] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 249–256,
2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GFGS06] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber. Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Proceedings of the 23rd
international conference on Machine learning, pages 369–376. ACM, 2006.

[Goi16] Nicolas Goix. How to evaluate the quality of unsupervised anomaly detec-
tion algorithms? arXiv preprint arXiv:1607.01152, 2016.

[Heb49] Donald O. Hebb. The organization of behavior: A neuropsychological the-
ory. Wiley, New York, June 1949.

[HXD03] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based
local outliers. Pattern Recognition Letters, 24(9-10):1641–1650, 2003.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[JFM+15] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten,
and Mark Akeson. Improved data analysis for the minion nanopore se-
quencer. Nature methods, 12(4):351–356, 2015.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[KSJ+16] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya
Sutskever, and Max Welling. Improved variational inference with inverse
autoregressive flow. In Advances in Neural Information Processing Sys-
tems, pages 4743–4751, 2016.

[Lab17] Winnie Tang Lab. Introduction to epigenetics, 2017. [Online; accessed
7-January-2017].

http://www.deeplearningbook.org


BIBLIOGRAPHY 58

[LDB+13] Andrew H Laszlo, Ian M Derrington, Henry Brinkerhoff, Kyle W Langford,
Ian C Nova, Jenny Mae Samson, Joshua J Bartlett, Mikhail Pavlenok,
and Jens H Gundlach. Detection and mapping of 5-methylcytosine and 5-
hydroxymethylcytosine with nanopore mspa. Proceedings of the National
Academy of Sciences, 110(47):18904–18909, 2013.

[Li13] Heng Li. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

[LQ14] Nicholas J Loman and Aaron R Quinlan. Poretools: a toolkit for analyzing
nanopore sequence data. Bioinformatics, 30(23):3399–3401, 2014.

[LQS15] Nicholas James Loman, Joshua Quick, and Jared T Simpson. A complete
bacterial genome assembled de novo using only nanopore sequencing data.
bioRxiv, page 015552, 2015.

[LXTG17] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss
landscape of neural nets. arXiv preprint arXiv:1712.09913, 2017.

[MAB+17] Alexa BR McIntyre, Noah Alexander, Aaron S Burton, Sarah Castro-
Wallace, Charles Y Chiu, Kristen K John, Sarah E Stahl, Sheng Li, and
Christopher E Mason. Nanopore detection of bacterial dna base modifica-
tions. bioRxiv, page 127100, 2017.

[MF13] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv
preprint arXiv:1312.5663, 2013.

[Mou04] David W. Mount. Bioinformatics: sequence and genome analysis. Cold
Spring Harbor Laboratory Press, 2004.

[MS03a] Markos Markou and Sameer Singh. Novelty detection: a review—part 1:
statistical approaches. Signal processing, 83(12):2481–2497, 2003.

[MS03b] Markos Markou and Sameer Singh. Novelty detection: a review—part 2::
neural network based approaches. Signal processing, 83(12):2499–2521,
2003.

[Oxf18] Oxford Nanopore Technologies. Tombo, 2018.

[Pac17] PacBio. Advance genomics with single molecule, real-time (smrt) sequenc-
ing, 2017. [Online; accessed 21-January-2017].

[PCCT14] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko.
A review of novelty detection. Signal Processing, 99:215–249, 2014.



BIBLIOGRAPHY 59

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[RD99] Peter J Rousseeuw and Katrien Van Driessen. A fast algorithm for the
minimum covariance determinant estimator. Technometrics, 41(3):212–
223, 1999.

[Res17] Zymo Research. Learn more about bisulfite conversion, 2017. [Online;
accessed 21-January-2017].

[RJE+16] Arthur C Rand, Miten Jain, Jordan Eizenga, Audrey Musselman-Brown,
Hugh E Olsen, Mark Akeson, and Benedict Paten. Cytosine variant calling
with high-throughput nanopore sequencing. bioRxiv, page 047134, 2016.

[SATY17] Dong-Qiao Shi, Iftikhar Ali, Jun Tang, and Wei-Cai Yang. New insights
into 5hmc dna modification: generation, distribution and function. Fron-
tiers in genetics, 8:100, 2017.

[Sch16] Amanda Schaffer. Nanopore sequencing, 2016. [Online; accessed 30-
April-2016] Available from http://www2.technologyreview.com/news/

427677/nanopore-sequencing/.

[Sim16] Jared T. Simpson. Simpson lab blog, 2016. [Online; accessed 27-January-
2016] Available from https://simpsonlab.github.io/.

[SPST+01] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola,
and Robert C Williamson. Estimating the support of a high-dimensional
distribution. Neural computation, 13(7):1443–1471, 2001.

[SQE+16] Marcus H Stoiber, Joshua Quick, Rob Egan, Ji Eun Lee, Susan E Celniker,
Robert Neely, Nicholas Loman, Len Pennacchio, and James B Brown.
De novo identification of dna modifications enabled by genome-guided
nanopore signal processing. bioRxiv, 2016.

[SR15] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on imbal-
anced datasets. PloS one, 10(3):e0118432, 2015.

[SWAS+13] Jacob Schreiber, Zachary L Wescoe, Robin Abu-Shumays, John T Vi-
vian, Baldandorj Baatar, Kevin Karplus, and Mark Akeson. Error rates

http://www2.technologyreview.com/news/427677/nanopore-sequencing/
http://www2.technologyreview.com/news/427677/nanopore-sequencing/
https://simpsonlab.github.io/


BIBLIOGRAPHY 60

for nanopore discrimination among cytosine, methylcytosine, and hydrox-
ymethylcytosine along individual dna strands. Proceedings of the National
Academy of Sciences, 110(47):18910–18915, 2013.

[SWZ+16] Jared T Simpson, Rachael Workman, Philip C Zuzarte, Matei David,
Lewis Jonathan Dursi, and Winston Timp. Detecting dna methylation
using the oxford nanopore technologies minion sequencer. bioRxiv, page
047142, 2016.

[TD04] David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45–66, 2004.

[Tec] Oxford Nanopore Technologies. Oxford nanopore sequencing technologies
specifications. [Online; accessed 26-January-2016] Available from https:

//nanoporetech.com/community/specifications.

[THD+17] Haotien Teng, Michael B Hall, Tania Duarte, Minh Duc Cao, and Lachlan
Coin. Chiron: Translating nanopore raw signal directly into nucleotide
sequence using deep learning. bioRxiv, page 179531, 2017.

[The10] The HDF Group. Hierarchical data format version 5, 2000-2010.

[TJBB05] Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Shar-
ing clusters among related groups: Hierarchical dirichlet processes. In Ad-
vances in neural information processing systems, pages 1385–1392, 2005.

[TM87] Ronald J Tallarida and Rodney B Murray. Mann-whitney test. In Manual
of Pharmacologic Calculations, pages 149–153. Springer, 1987.

[Web18] Merriam Webster. Merriam-webster online dictionary. 2018. [Online;
accessed 20-April-2018].

[Whi05] Michael C Whitlock. Combining probability from independent tests: the
weighted z-method is superior to fisher’s approach. Journal of evolutionary
biology, 18(5):1368–1373, 2005.

[Wik16a] Wikipedia. Autoencoder, 2016. [Online; accessed 30-April-2018].

[Wik16b] Wikipedia. Dna, 2016. [Online; accessed 30-April-2016].

[wik17a] Expectation maximization, 2017. [Online; accessed 7-January-2017].

[Wik17b] Wikipedia. Dna methylation, 2017. [Online; accessed 7-January-2017].

[Wik17c] Wikipedia. Epigenetics, 2017. [Online; accessed 7-January-2017].

https://nanoporetech.com/community/specifications
https://nanoporetech.com/community/specifications


BIBLIOGRAPHY 61

[Wik18] Wikipedia. Cpg island hypermethylation, 2018. [Online; accessed 30-April-
2018].

[WSH+10] Emma VB Wallace, David Stoddart, Andrew J Heron, Ellina Mikhailova,
Giovanni Maglia, Timothy J Donohoe, and Hagan Bayley. Identification
of epigenetic dna modifications with a protein nanopore. Chemical com-
munications, 46(43):8195–8197, 2010.



Appendix A – Links to Nanoraw
Dataset

Identifier File size (GB) Link
control1 54.52 http://s3.climb.ac.uk/nanopore-methylation/Control_lib1.tar
control2 81.44 http://s3.climb.ac.uk/nanopore-methylation/Control_lib3.tar
meth10 22.52 http://s3.climb.ac.uk/nanopore-methylation/meth10_lib3.tar
meth11 41.54 http://s3.climb.ac.uk/nanopore-methylation/meth11_lib3.tar
meth12 75.73 http://s3.climb.ac.uk/nanopore-methylation/meth12_lib3.tar
meth01 32.58 http://s3.climb.ac.uk/nanopore-methylation/meth1_lib1.tar
meth02 49.24 http://s3.climb.ac.uk/nanopore-methylation/meth2_lib1.tar
meth03 43.31 http://s3.climb.ac.uk/nanopore-methylation/meth3_lib1.tar
meth04 36.49 http://s3.climb.ac.uk/nanopore-methylation/meth4_lib1.tar
meth05 25.90 http://s3.climb.ac.uk/nanopore-methylation/meth5_lib2.tar
meth06 41.47 http://s3.climb.ac.uk/nanopore-methylation/meth6_lib2.tar
meth07 46.73 http://s3.climb.ac.uk/nanopore-methylation/meth7_lib2.tar
meth08 64.45 http://s3.climb.ac.uk/nanopore-methylation/meth8_lib2.tar
meth09 51.91 http://s3.climb.ac.uk/nanopore-methylation/meth9_lib2.tar

62



Appendix B - Source Code

This thesis includes an attached CD, containing the source code of the scripts that
were used in the experiments. The source code is also available at https://gitlab.
com/rastislav.rabatin/deepmeth.git.

63

https://gitlab.com/rastislav.rabatin/deepmeth.git
https://gitlab.com/rastislav.rabatin/deepmeth.git

	Introduction
	Background and Problem Formulation
	DNA
	DNA Sequencing using MinION
	Squiggles

	DNA Modifications
	Epigenetics
	DNA Methylation
	Technologies for Detection of Methylation

	Methylation Detection using MinION
	Early Approaches
	Supervised and Semi-supervised Methylation Detection
	Outline of Our Approach


	Anomaly Detection
	Problem Statement
	Methylation as an Anomaly
	Evaluation of The Anomaly Detection Methods
	Anomaly Detection Methods
	Probabilistic Methods
	Distance-based Methods
	Domain-based Methods
	Information Theoretic Methods
	Reconstruction-based Methods

	Autoencoders
	Variants of AEs


	Methods and Experimental Evaluation
	Dataset
	Pre-processing
	Splitting Reads into Subsets and Signal Windows
	Training, Development and Testing Dataset
	Extraction of the Signal Windows from the Reads
	Window Filtering
	Notation
	Evaluation Strategy

	Training Neural Networks
	Model Architectures
	Autoencoder with Fully-connected Layers (DAE)
	Autoencoder with Convolutional Layers (CAE)

	Model Analysis and Evaluation
	Distribution of The Reconstruction Error
	Mean Squared Error (MSE)
	Bottleneck Size
	MSE of CAE and DAE
	Supervised Classification Based on a Single Read
	Supervised Classification Using Multiple Reads
	Semi-supervised Classification
	Addition of Context to the Autoencoder


	Conclusion
	Appendix A
	Appendix B

