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Abstract

Title: Covering edges of a hypergraph: complexity and applications
Author: Vladimı́r Repiský
Advisor: Mgr. Tibor Hegedüs

This thesis gives an overview of the edge covering problems in hyper-
graphs. We explore the complexity properties of covering the edges of a hy-
pergraph by subhypergraphs of different types. We consider the problem of
covering by clique hypergraphs, split hypergraph, and threshold hypergraphs.
In total we prove NP-completness of 6 problems. We especially focus on the
problem of covering by threshold hypergraphs, which has applications in the
theory of machine learning. We give a reduction from the clique covering
problem, so proving NP-hardness of this problem would imply NP-hardness
of the problem of covering by threshold hypergraphs. Moreover, we propose a
generalization of the concept of Dilworth number of a graph to hypergraphs.
We give a polynomial algorithm for the computation of this number. We
prove that the Dilworth number gives an upper bound for some important
parameters like the diameter and domination number of a hypergraph.
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I am very grateful to Tibor Hegedüs, my supervisor, for his time, advices
and support. His insights have been always very helpful.
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Chapter 1

Introduction

1.1 Motivation

The complexity properties of the covering problems in graphs have been ex-
tensively studied by many authors (see [GJ79] for a survey). In recent years,
Aizenstein et al. [AHHP98] has proved that efficient learnability in one of
the on-line learning models is related to the representation problem, e.g. to
decide if a given Boolean formula in DNF has a representation of some type,
for example as a union of k linearly separable functions. NP-hardness of
representation problem for some concept class implies negative results for
its efficient learnability in this model. Such results are given for many con-
cept classes, however for an important concept class - the class of unions
of two linearly separable functions, the status of the representation problem
is unknown. The covering problem by threshold hypergraphs can be easily
transformed to the representation problem of unions of two linearly separa-
ble functions. This thesis focuses on the complexity properties of covering
problems in hypergraphs. These problems were not explored elsewhere, and
their applications to the learning theory are a good motivation for a deeper
examination of these problems.

1.2 Summary of thesis contributions

We prove NP-completness of the following covering problems for r-uniform
hypergraphs:

9



10 CHAPTER 1. INTRODUCTION

• r-HYPERGRAPH CLIQUE PARTITION NUMBER

• r-HYPERGRAPH STABILITY NUMBER

• HYPERGRAPH SPLIT DIMENSION

These problems are shown to be NP-complete even in their fixed-parameter
versions (for every fixed k ≥ 2 and r ≥ 3). Other NP-complete problems are
mentioned as generalizations of their counterparts for graphs.

In the Chapter 6 we propose a concept of the Dilworth number of a hyper-
graph, which is a generalization of the Dilworth number for graphs. Similarly
as the Dilworth number of graph, the Dilworth number of hypergraph has
many nice properties. The hypergraphs with the Dilworth number 1 are ex-
actly threshold hypergraphs of the type T3. We give a polynomial algorithm
for computation of this number. We prove that the Dilworth number gives an
upper bound for some important parameters like diameter and domination
number of a hypergraph.

In the Chapter 7 and 8 we present two ideas which could possibly lead to
a proof of NP-hardness of recognizing hypergraphs with threshold dimension
two.

We give a reduction of the COVERING BY TWO r-UNIFORM CLIQUES
problem to the THRESHOLD DIMENSION TWO problem. At present, the
status of the COVERING BY TWO r-UNIFORM CLIQUES problem is un-
known. In case it turns out to be NP-complete, our reduction will imply
NP-hardness of the THRESHOLD DIMENSION TWO problem.

We also propose a special 3-uniform hypergraph, which can be used in the
proof. It exhibits similar properties as a special subgraph used by Yannakakis
in his proof of NP-completness of THRESHOLD DIMENSION THREE prob-
lem for graphs [Yan82]. We give a computerized proof of the properties for
this hypergraph.



Chapter 2

Terminology

We present here some basic terminology used in the thesis.

Graphs: A graph G is a pair (V, E) of vertices V and edges E. E is a set of
unordered pairs of distinct vertices, called edges. Sometimes we denote the
vertex set of G by V (G) and the edge set by E(G). A clique (or a complete
set) V ′ is a graph with all possible edges, e.g. ∀x, y ∈ V ′, x 6= y, {x, y} ∈ E.
We also use the term clique for a subset V ′ of V if V ′ induces a clique in V .
By induced graph by a subset V ′ of V we mean a graph G(V ′, E ′) with the
edge set E ′ = {e|e ∈ E ∧ ∀x ∈ e, x ∈ V ′}. A complementary graph of G is
a graph G = (V, E ′) with edges E = {{x, y}|x, y ∈ V, {x, y} /∈ E}. A stable
set (or an independent set) is a graph with no edge. A stable set is also a
subset V ′ of V , which induces a stable graph in G.

A coloring c of G by k colors is a function c : V → {1, 2, . . . , k} which
assigns a color to every vertex from V, in such a way, that none of the edges
is monochromatic, e.g ∀x, y ∈ V, x 6= y, {x, y} ∈ e, c(x) 6= c(y).

The join of graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G1⊕G2 =
(V1 ∪ V2, E1 ∪ E2 ∪ E12), where E12 = {{x, y}|x ∈ V1, y ∈ V2}.

Hypergraphs: A hypergraph is a generalization of a graph. Hypergraph
H(V, E) with the vertex set V and edge set E differs from a graph in the
property that an edge can connect more than two vertices, that is, an edge
is an arbitrary subset of the vertex set V . A r-uniform hypergraph H(V, E)
is a hypergraph whose all edges are of size r.

11



12 CHAPTER 2. TERMINOLOGY

A coloring of a hypergraph H is defined similarly to coloring of a graph
as a function c : V → {1, 2, . . . , k} which assigns a color to every vertex from
V, such that none of the edges is monochromatic, e.g ∀e ∈ E, ∃x, y ∈ V, x 6=
y, x, y ∈ e, c(x) 6= c(y).

The join of two r-uniform hypergraphs H1 = (V1, E1) and H2 = (V2, E2)
is defined as the hypergraph H1 ⊕ H2 = (V1 ∪ V2, E1 ∪ E2 ∪ E12), where
E12 = {{x1, . . . , xn}|((∀i, 1 ≤ i ≤ n)(xi ∈ V1 ∪ V2))∧ ((∃i, 1 ≤ i ≤ n)xi ∈
V1) ∧ ((∃j, 1 ≤ j ≤ n)xj ∈ V2)}.

Partially ordered sets: Partially ordered set (or a poset) is a structure
P=(X,P), where X is set, and P is a reflexive, antisymmetric and transitive
binary relation on X; i.e., (x, x) ∈ P for each x ∈ X, if (x, y) ∈ P and
(y, x) ∈ P than x = y and if (x, y) ∈ P and (y, z) ∈ P than (x, z) ∈ P . We
call X the ground set of the poset X, and we refer to P as a partial order on X.
We use the notations x ≤ y in P, y ≥ x in P and (x, y) ∈ P interchangeably,
and we usually omit the reference to partial order P, when the reference to
it is clear from the context. A similar structure to poset is a preorder. A
preorder P is a structure P=(X,P), where X is a set, and P is a reflexive and
transitive binary relation on X.

We say that, two elements x and y are comparable when (x, y) ∈ P or
(y, x) ∈ P , otherwise they are incomparable. We write x ./ y, when x and
y are incomparable. The incomparability graph I(P ) = (P, ./) of a poset
P=(X,P) is an undirected graph, where x ./ y, when x and y are incompara-
ble in P. A linear order L=(X,L) is a partial order, where for every x, y ∈ X
holds (x, y) ∈ L or (y, x) ∈ L. We define the dimension dO(P ) of a partial
order P as the minimum number of linear orders whose intersection is P.

Learning theory: A domain is a nonempty finite set X. A concept is any
subset of X. A concept class C represents a nonempty set of concepts. The
learning task is to identify an unknown concept over X from C using per-
mitted types of queries. We mention here two types of queries: membership
query and equivalence query . Let c be a target concept we want to learn.
The membership query gets as input x ∈ X and outputs true if x ∈ c or false
if x /∈ c. The equivalence query gets as input a concept c′. If the concept
c′ is equal to c than it returns true, otherwise it returns a counter-example
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e.g x ∈ (c \ c′) ∪ (c′ \ c). The representation problem REP (F ) for class F is
defined as follows:
Instance: A set X = {x1, x2, . . . , xn} of variables and a Boolean formula g
over X.
Question: Is there some f ∈ F such that f represents the same Boolean
function as g?



14 CHAPTER 2. TERMINOLOGY



Chapter 3

Cliques in Hypergraphs

3.1 Clique in a graph

In graph theory a clique is a well known concept. By clique we denote a
subset C of vertices of a graph G(V, E) if for all pairs of vertices u, v ∈ C
the edge {u, v} belongs to E. Note that the complement of a clique is stable
set and vice versa.

3.2 Clique in a hypergraph

For a r-uniform hypergraph H(V, E) we call r-uniform clique a subset C of
vertices V if for every subset R of C with size r E contains R.

We define a clique number of a hypergraph H(V, E) as the minimum
number l of subsets to whose the vertex set V can be partitioned into in
such a way, that each of these l subsets induces a clique in H. We denote
the clique number of a hypergraph H by Pc(H). Sometimes this number is
denoted in literature as the clique cover number .

Similarly we define r-uniform stable set (or r-uniform independent set)
as a subset S of vertices V if for every subset R of C with size r, E does
not contain R. We will drop from the name the r-uniform part on the places,
where it is clear, that we mean r-uniform clique, or r-uniform stable set.

Moreover we define the stability number of a hypergraph H(V, E) as the
minimum number s of subsets to whose the vertex set V can be partitioned
into in such a way, that each of these l subsets induces a stable set in H. We
denote the stability number of a hypergraph H by s(H).

15



16 CHAPTER 3. CLIQUES IN HYPERGRAPHS

3.3 Properties

We use the common symbol χ(H) for the chromatic number of a hypergraph
H. At first we prove some relations between the chromatic number, the
clique number and the stability number of an r-uniform hypergraph.

Theorem 1. For every hypergraph H holds

χ(H) = s(H).

Proof. χ(H) ≥ s(H) : Suppose, that V (H) can be colored by k colors. Let
Si be the set of vertices colored by color number i. The set Si is stable,
otherwise it would contain an edge e, which is a contradiction to the fact
that vertices in the edge e cannot be all colored with the same color.

χ(H) ≤ s(H) : Let V (H) can be partitioned to k stable sets. We can
color vertices V (H) such that to a vertex from stable set Si we assign color
i. This is a legal coloring, because no edge is monochromatic (vertices in it
do not have the same color).

Theorem 2. For every hypergraph H holds

s(H) = Pc(H
′),

where H ′ is the complementary hypergraph of H.

Proof. Every stable set of H is a clique in the complementary hypergraph of
H and vice versa. Therefore the stability number of H and clique number of
H ′ are equal.

Corollary 3. For every hypergraph H holds

χ(H) = s(H) = Pc(H
′),

where H ′ is the complementary hypergraph of H.

Denote by cov(H) the minimal number of subsets s1, . . . , scov(H) of V (H),
such that every si is a clique and for every v ∈ V (H) there exists j, such
that v ∈ sj. Note that the sets si do not need to be disjoint.

Theorem 4. For every hypergraph H holds

Pc(H) = cov(H).
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Proof. Pc(H) ≤ cov(H). Every subset of a set of vertices which induces a
clique in H also induces a clique in H. If we have two sets sj and sk, inducing
cliques in H, we can transform them into disjoint sets by setting s′j = sj and
s′k = sk \ sj . These set induce cliques in H. So, from the covering of H by
the sets inducing cliques in H we can construct a covering of H by disjoint
sets inducing cliques in H.

Pc(H) ≥ cov(H). Every partitioning of V (H) into disjoint sets is also a
covering of V (H), where the sets do not need to be disjoint.

3.4 Complexity properties

In this section we will focus on the complexity properties of problems re-
lated to the concept of cliques in hypergraphs. Corollary 3 tells us, that
the problem of determination of chromatic number of a hypergraph has the
same complexity as determination of the clique and stability number of a
hypergraph. We can formally describe the chromatic number problem for
hypergraphs as follows:

r-HYPERGRAPH CHROMATIC NUMBER
Instance: A r-hypergraph H(V,E) and a positive integer k ≤ |V |.
Problem: Is it true that χ(H) ≤ k?

Theorem 5 ([Lov73]). The problem r-HYPERGRAPH CHROMATIC NUM-
BER is NP-complete, even for every fixed r ≥ 3 and k ≥ 2.

As a corollary the problems dealing with stability and cliqueness of a hy-
pergraph are NP-complete:

r-HYPERGRAPH CLIQUE PARTITION NUMBER
Instance: A r-hypergraph H(V,E) and a positive integer k ≤ |V |.
Problem: Is it true that Pc(H) ≤ k?

r-HYPERGRAPH STABILITY NUMBER
Instance: A r-hypergraph H(V,E) and a positive integer k ≤ |V |.
Problem: Is it true that s(H) ≤ k?

Theorem 6. The problems r-HYPERGRAPH CLIQUE PARTITION NUM-
BER and r-HYPERGRAPH STABILITY NUMBER are NP-complete, even
for every fixed r ≥ 3 and k ≥ 2.
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Proof. This is clear from the fact that r-HYPERGRAPH CHROMATIC
NUMBER is NP-complete (see Theorem 5) and the Corollary 3.

We list some other problems related to clique partition number. They
are all NP-complete, because their restrictions to graphs are NP-complete
[GJ79][Kar72].

r-UNIFORM CLIQUE PROBLEM
Instance: r-uniform hypergraph H(V, E), positive integer k ≤ |V |.
Problem: Does H contain a clique of size k or more?

r-UNIFORM INDEPENDENT SET PROBLEM
Instance: r-uniform hypergraph H(V, E), positive integer k ≤ |V |.
Problem: Does H contain an independent set of size k or more?

r-UNIFORM VERTEX COVER
Instance: r-uniform hypergraph H(V, E), positive integer k ≤ |V |.
Problem: Is there a vertex cover of size k or less for H, i.e., a sub-
set V ′ ⊆ V and |V ′| ≤ k such that for each edge {v1, . . . , vr} ∈ E
at least one of v1, . . . , vr belongs to V ′?

3.5 Covering of edges

We define the clique edge covering number (or the clique dimension) of a hy-
pergraph H(V, E) as a minimal number of subsets V1, V2, . . . , VK of V such
that each Vi induces a clique in H and such that for every edge e ∈ E there
is some Vi such that e ⊆ Vi. We denote the clique dimension of a hypergraph
H by Dc(H). Consider the following problem:

COVERING BY r-UNIFORM CLIQUES
Instance: r-uniform hypergraph H(V, E), positive integer k ≤ |V |.
Problem: Is it true that Dc(H) ≤ k?

Theorem 7. The problem COVERING BY r-UNIFORM CLIQUES is NP-
complete.
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Proof. According to the work of Kou, Stockmeyer and Wong [KSW78] and
Orlin [Orl77], the COVERING BY CLIQUES problem for graphs is NP-
complete. Therefore this problem is also NP-complete for hypergraphs.

We are not aware of the complexity of the COVERING BY r-UNIFORM
CLIQUES problem for a fixed k. This version of the problem is tractable
(solvable in polynomial time) for ordinary graphs as was shown by Gramm
et al. [GGHN06].
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Chapter 4

Split Hypergraphs

4.1 Introduction

A split graph is a graph whose vertex set can be partitioned into a clique
and a stable set. Let (K, S) be such a partition, where K is a clique and S
is a stable set; we call (K, S) a split partition and connote the split graph
with this partition as (K, S). Split graphs were first defined by Földes and
Hammer [FH77]. Later on, these graphs were independently introduced by
Chernyak and Chernyak [CC86] as polar graphs . A survey of the split graphs
can be found in [Mer03] or [MP95]. We define a split hypergraph similarly: as
a hypergraph whose vertex set can be partitioned into a clique and a stable
set. Split hypergraphs were also defined by Sloan and Turán in [ST97]. They
also presented a polynomial algorithm for recognition of split hypergraphs.

4.2 Covering of edges

The split dimension (or the split edge covering number) of a hypergraph is the
least number of split subhypergraphs covering its edges. We denote the split
dimension of a hypergraph H by ds(H). For graphs it was shown by Chernyak
and Chernyak [CC91] and later by Peled and Mahadev [MP95], that for every
fixed k ≥ 3, the problem of determining if a graph has split dimension at
most k is NP-complete. We modify the proof of Peled and Mahadev to show
that the problem of determining if a given r-uniform hypergraph has split
dimension at most k is NP-complete, even for every fixed k ≥ 2 and r ≥ 3.

21
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Lemma 8. Let H be a hypergraph and k a positive integer; then ds(H) ≤ k
if and only if V (H) can be partitioned into k or fewer cliques and a maximal
stable set.

The word ”maximal” in the Lemma is not necessary. We can transfer the
vertices to stable set until it becomes maximal. Using this transformation,
the rest of H will be still partitioned to k or fewer cliques.

Proof. Let V (H) can be partitioned into k or fewer cliques Ki and a maximal
stable set S. Let Si be a graph induced in H by Ki ∪ S. Clearly each Si is a
split graph, therefore dS(H) ≤ k. Now assume that E(H) can be partitioned
to k or fewer split subhypergraphs Gi. Each Gi has some split partition
(Ki, Si). The stable set S is S = V (H) \

⋃
i Ki. We can drop common

vertices from the cliques Ki to make them disjoint.

We consider the following problem:

HYPERGRAPHS SPLIT DIMENSION
Instance: A r-uniform hypergraph G(V, E) and a positive integer
k ≤ |V |.
Problem: Is it true that dS(H) ≤ k?

We define a graph modification:

Definition 1. Let H(V, E) be a r-uniform hypergraph, we define Hr
k as Hr

k =
H ⊕ I(r−1)∗k+1.

1 I(r−1)∗k+1 is a stable set with (r − 1) ∗ k + 1 vertices.

Theorem 9. For every r-uniform hypergraph H(V, E) holds:

Pc(H) ≤ k if and only if dS(Hr
k) ≤ k.

Proof. Assume, that V (H) can be partitioned to k or fewer cliques. Then
Hr

k can be partitioned into these k or fewer cliques and a stable set I(r−1)∗k+1.
According to the Lemma 8 dS(Hr

k) ≤ k.
If dS(Hr

k) ≤ k then according to the Lemma 8 V (Hr
k) can be partitioned

to k or fewer cliques Ki and a maximal stable set S. If V ∩ S 6= ∅, then
the stable set S is not a subset of I(r−1)∗k+1 and I(r−1)∗k+1 ⊆

⋃
i Ki holds,

because the Hr
k was constructed with all edges between V (H) and I(r−1)∗k+1

1Operation ⊕ is join of hypergraphs, for explanation see Chapter 2.
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and in the stable set there cannot be vertices from V (H) and I(r−1)∗k+1.
I(r−1)∗k+1 ⊆

⋃
i Ki can not hold, because each Ki can have at most r − 1

vertices in I(r−1)∗k+1 and I(r−1)∗k+1 has (r− 1) ∗ k + 1 vertices. So V ∩ S = ∅
and V ⊆

⋃
i Ki.

Theorem 10. The HYPERGRAPHS SPLIT DIMENSION problem is NP-
complete, even for every fixed r ≥ 3 and k ≥ 2.

Proof. This problem is in NP, because we can decide in a polynomial time if
a given hypergraph is split.

We reduce the problem r-HYPERGRAPH CLIQUE PARTITION NUM-
BER to this problem. According to the Theorem 9 Pc(H) ≤ k if and only if
dS(HSk

) ≤ k, so for every given hypergraph H for the CLIQUE PARTITION
NUMBER problem we create HSk

and check if dS(HSk
) ≤ k.
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Chapter 5

Threshold Hypergraphs

In this section we present some known results about the threshold graphs
and hypergraphs. It is based mostly on the book from Peled and Mahadev
[MP95] and the article from Reiterman et al. [RRST85].

5.1 Motivation

The notion threshold graph was first defined by Chvátal and Hammer [CH75].
These are simply graphs for which there exists a linear-threshold function
separating independent sets and non-independent sets. The motivation for
their study comes from many directions like computer science, psychology,
sociology, scheduling theory, and many others. To display the variety of usage
of threshold graphs, they can be applied in set-packing problems [CH73,
CH75], parallel processing [HZ77] or resource allocation [Ord85]. For us the
most important work is that of Yannakakis [Yan82], where he proved NP-
completness of recognition of graphs with threshold dimension of at most
three. In his proof he used a class of graphs named difference graphs (or
chain graphs), which are very close to the threshold graphs. Many properties
of difference graphs hold also for threshold graphs and vice versa.

5.2 Threshold graphs

Threshold graphs are defined as follows:

Definition 2. A graph G = (V, E) is a threshold graph if there exist non-

25



26 CHAPTER 5. THRESHOLD HYPERGRAPHS

negative real numbers wv (v ∈ V ) and t such that∑
v∈U

wv ≤ t if and only if U ⊆ V is a stable set

There exist many equivalent characterizations of threshold graphs. The
following theorem from [MP95] gives us six different characterizations of
threshold graphs.

Theorem 11 ([MP95]). For a graph G(V, E), the following statements are
equivalent:

• G is a threshold graph.

• G does not have induced subgraphs isomorphic to P4, C4 or 2K2.

• G is a split graph G(K, S) and the neighborhoods of the vertices of S
are nested.

• G can be constructed from the one-vertex graph by repeatedly adding an
isolated vertex or a dominating vertex.

• The vicinal preorder of G is total.

• There exist non-negative real numbers wv (v ∈ V ) and t such that for
distinct vertices u and v,

wu + wv > t if and only if {u, v} ∈ E

5.3 Definition

M. CH. Golumbic [Gol80] first considered the problem of generalization of
threshold graphs to r-uniform hypergraphs. He proposed the following three
generalizations.

Definition 3. A hypergraph H(V, E) is a threshold hypergraph of type T1 if
and only if there exist (positive integer) numbers wv (v ∈ V ) and a threshold
t, such that ∑

v∈U

wv ≤ t if and only if U ⊆ V is a stable set
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Definition 4. A hypergraph H(V, E) is a threshold hypergraph of type T2 if
and only if there exist (positive integer) numbers wv (v ∈ V ) and a threshold
t, such that for every subset A ⊆ V of size r

A ∈ E if and only if
∑
v∈A

wv > t

Sometimes we define the numbers wv (v ∈ V ) as a labeling function c,
such that c(v) = wv for every v ∈ V .

Now we define a partial order � on the vertices of a hypergraph in this
way:

Definition 5. For x, y ∈ V x � y if and only if for any {x1, x2, . . . , xr−1} ∈
[V \{x, y}]r−1 (that is, for any r−1-element subset of V \{x, y}), {x, x1, . . . , xr−1} ∈
E implies {y, x1, . . . , xr−1}

Definition 6. A hypergraph H(V, E) is a threshold hypergraph of type T3

if and only if the partial order � on V is total, e.g for all x, y ∈ V either
x � y or y � x or both hold.

5.4 Properties

Golumbic has also asked the question whether these definitions are equiva-
lent. This was answered negatively by Reiterman et al. [RRST85]. They
also gave us some interesting theorems about threshold hypergraphs. We will
mention some of them here.

Theorem 12 ([RRST85]). For every r-uniform hypergraph H(V, E) property
T1 implies property T2 and T2 implies property T3. Conversely the property
T3 does not imply property T2 and the property T2 does not imply property
T1. If r = 2 properties T1,T2 and T3 are equivalent.

Reiterman et al. [RRST85] also characterized T3 hypergraphs in terms of
forbidden configurations.

Definition 7. Let H(V,E) be a r-uniform hypergraph. A forbidden configu-
ration in H is a finite sequence of not necessarily distinct vertices
x1, x2, ..., xr, y1, y2, ..., yr; x1 /∈ {y2, ..., yr},y1 /∈ {x2, ..., xr} in V such that
{x1, x2, ..., xr} ∈ E,{y1, y2, ..., yr} ∈ E,{y1, x2, ..., xr} /∈ E,{x1, y2, ..., yr} /∈
E.
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Theorem 13 ([RRST85]). Hypergraph H(V, E) is a T3 hypergraph if and
only if it does not contain a forbidden configuration.

Another characterization of T3 and T2 hypergraphs is given by Reiterman
et al. [RRST85] using the concept of a system of generators.

Definition 8. Let H(V,E) be a r-uniform hypergraph. We say that E ′ ⊂ E,
E ′ 6= ∅ is a system of generators of H if there exists a linear ordering ≺ of
V such that e = {x1, x2, . . . , xr} ∈ E if and only if (∃e′ = {x′1, x′2, . . . , x′r} ∈
E ′)(∀i ∈ {1, 2, . . . , r})(x′i ≺ xi)

Theorem 14 ([RRST85]). Hypergraph H(V, E) is a T3 hypergraph if and
only if it has a system of generators.

Theorem 15. [[RRST85]] Hypergraph H(V, E) is a T2 hypergraph if and
only if it has a system of generators with only one generator.



Chapter 6

Dilworth Number of a
hypergraph

6.1 Introduction

In this section we use definitions from [FH78] and [MP95]. For a graph (V, E)
we define a vicinal preorder as a binary relation - on V as

x - y if and only if N(x) ⊆ N(y) ∪ {y}

(For v ∈ V , N(v) denotes the set of neighbors of v.)

Since - is a reflexive and transitive relation, - is a preorder. If x - y
but y - x does not hold, then we denote this by x ≺ y. If x - y and y - x
holds, then we denote this by x ∼ y.

A chain is defined as a set of mutually comparable vertices. All the
elements in a chain can be sorted into a sequence x1, x2, . . . , xk such that
xi - xj holds for all i, j satisfying 1 ≤ i < j ≤ k. Vertices of every graph G
can be partitioned into chains. The least number of such chains, into which
the vertices of the graph can be partitioned, is called Dilworth number and
is denoted by D(G). As an opposite of a chain we define an antichain as a
set of mutually incomparable elements.

According to the well-known Dilworth theorem [Dil50], the Dilworth num-
ber is equal to the size of the largest antichain.
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6.2 Generalization to hypergraphs

We use the relation defined in the Definition 5 for the definition of a vicinal
preorder of a hypergraph:

For x, y ∈ V , x - y if and only if for any {x1, x2, . . . , xr−1} ∈
[V \ {x, y}]r−1, {x, x1, . . . , xr−1} ∈ E implies {y, x1, . . . , xr−1}

We define the Dilworth number of a hypergraph as the least number of
chains, into which the vertices of the hypergraph can be partitioned.

As we know from the previous chapter, threshold graphs are exactly
graphs with Dilworth number 1. For hypergraph it holds that threshold hy-
pergraphs of the type T3 are precisely the hypergraphs with Dilworth number
1.

6.3 Computation of the Dilworth number

There exist several algorithms for the computation of the Dilworth number
for graphs. An O(n3) algorithm was proposed by Mahadev [Mah84]. An
even faster algorithm can be given if we use matrix multiplication. In that
case the computation time of such an algorithm will be O(f(n)), where f(n)
is the time required to multiply two n×n matrices. Currently the best know
algorithm for the matrix multiplication is from Coppersmith and Winograd
and requires time O(n2.376) [CW87]. For graphs with small Dilworth number
k the algorithm from Felsner et al. is efficient, which recognizes whether a
graph has the Dilworth number k in the time O(k2n2) [FRS03]. We will use
the Mahadev’s algorithm as a model for our algorithm.

Theorem 16. The Dilworth number of a r-uniform hypergraph can be com-
puted in the time O(nr+1).

Proof. Let H(V, E) is a r-uniform hypergraph with V = {x1, . . . , xn}. We
will construct a transitive directed graph G′ on V with edges:

E(G′) = {(xi, xj)|(xj ≺ xi) or (xi ∼ xj and i < j)}

Each clique in G′ forms a chain of G and every chain of G forms a clique
in G′. So the Dilworth number of G is the size of the minimal clique partition
of G′. There is an O(n2) algorithm for transitive orientable graphs [Gol80],
which computes such a partition. So this part of this algorithm is not ”slow”.
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The construction of G′ can be done in the time O(nr+1). For every pair
of vertices x,y we scan the sets of r− 1 vertices to determine, whether x ≺ y
or x ∼ y holds. So the total time will be O(nr−1 ∗ n2)=O(nr+1).

The Dilworth number for hypergraphs gives us an upper bound for some
parameters of a hypergraph, such as the diameter and domination number.
These parameters are NP-hard to compute even for graphs, therefore a poly-
nomial algorithm for the computation of a Dilworth number for hypergraphs
can be very useful.

We use the definition of a diameter of a hypergraph from Ye [Ye03]. Let
H = (V, E) be a r-uniform hypergraph, E = {e1, e2, . . . , em}. A path P in H
from x1 to xs+1 is a vertex-edge alternative set x1e1x2e2, . . . , xs, es, xs+1 such
that {xi, xi+1} ⊆ ei (i = 1, 2, . . . , s) and xi 6= xj, ei 6= ej (i 6= j), where s is
called the length of path P . The distance of vertices x and y, dist(x, y) is the
minimum length of a path which connects x and y. We denote the diameter
of H by d(H) and is defined as d(H) = max{dist(x, y)|x, y ∈ V }.

The following two theorems were proved for graphs by Földes and Ham-
mer [FH78]. We prove them for hypergraphs.

Theorem 17. For every r-uniform hypergraph H holds:

d(H) ≤ D(H) + 1.

Proof. Let the diameter of H be k, then H contains an induced path with
k+1 vertices. Now assume, that two intermediate vertices xi, xj in this path
are comparable, so let xi - xj. Let the path look like this:

x1e1x2e2, . . . , ei−1, xi, ei, . . . , ej−1, xj, ej, . . . , xs, es, xs+1

(the proof will be analogous if xj will be before xi in the path). Then we
can omit the part of the path xi, ei, . . . , ej−1, and if the edge ei−1 does not
contain xj we replace this edge by (ei−1 \ {xi}) ∪ {xj}. Such an edge must
exist in E because xi - xj. So no two intermediate vertices on the path are
comparable, thus the Dilworth number is at least k − 1.

Definition 9. A dominating set is a subset S of vertices such that every
vertex not in S is adjacent to some vertex in S. The domination number of
H, denoted by γ(H), is the minimum size of a dominating set of H.
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Theorem 18. If H(V,E) is a r-uniform hypergraph with no isolated vertices,
than

γ(H) ≤ D(H).

Proof. Let S be a minimum dominating set such that the subhypergraph of
H induced by S has the largest possible number of edges. We claim that S is
an antichain. Assume otherwise, that x - y for x, y ∈ S. If there is an edge
between x and some vertex from S \ {x} (that is, an edge containing both
vertices), then the set S \ {x} will be dominating. This is a contradiction
with the minimality of S. So there is no edge in E with x and some vertex
from S \ {x}. But H has no isolated vertices, so there must be an edge e
between x and some vertex z from V \ S. Because x - y holds, there is also
an edge (e \ {x}) ∪ {y} in E. Then the set (S \ {x}) ∪ {z} is a minimum
dominating set, which has more edges than S, a contradiction. Therefore S
is an antichain and γ(G) = |S| ≤ D(G).



Chapter 7

Hypergraph Threshold
Dimension

7.1 Introduction

In this chapter we will deal with the threshold dimension problem. Formally
the threshold dimension dt(G) of a graph G is defined as the minimal number
of threshold subgraphs of G needed to cover the edges E(G). For a r-uniform
hypergraph H(V, E) we define the threshold dimension analogously, as the
minimal number the threshold subhypergraphs needed to cover the edges
E(H). According to the types of threshold subhypergraphs we distinguish
between T1 threshold dimension dT1(G), T2 threshold dimension dT2(G) and
T3 threshold dimension dT3(G).

7.2 Relationship to the Learning theory

The threshold dimension problem has also applications in machine learning,
in the learning theory. We mention here a theorem from Aizenstein et al.
[AHHP98].

Theorem 19 ([AHHP98]). Let F be a polynomially reasonable and polynomi-
ally size-bounded class of Boolean functions. If REP(F) is NP-hard under ≤p

m

reductions, then F is not learnable with membership and equivalence queries
unless NP=co-NP.
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Aizenstein et al. [AHHP98] also asked whether the representation prob-
lem for the class of unions of two linearly separable (threshold) functions is
NP-hard. This problem can be translated to the language of graph theory.

Let f be a monotone Boolean 3-DNF formula, f(x1, . . . , xn) = xi1xj1xk1∨
xi2xj2xk2 ∨ · · · ∨ ximxjmxkm. We construct a 3-uniform hypergraph Hf =
(V, E) with the edge set E = {{xil, xjl, xkl}|1 ≤ l ≤ m} and the vertex set
V = {x1, . . . , xn}.

Theorem 20. A monotone Boolean 3-DNF formula f can be represented as
a union of two linearly separable functions if and only if Hf has threshold
dimension 2 of the type T1.

Proof. Let f is representable as an union of two linearly separable functions,
e.g f(x1, . . . , xn) = 1 if and only if l1(x1, . . . , xn) = 1 or l2(x1, . . . , xn) = 1,
where l1 and l2 are linearly separable functions. Let these two be: l1(x1, . . . , xn) =
[
∑n

i=1 w1i ∗ xi > θ1] and l2(x1, . . . , xn) = [
∑n

i=1 w2i ∗ xi > θ2]. The two 3-
uniform T1 threshold hypergraphs will be H1 = (V1, E1) and H2 = (V2, E2)
with the sets: E1 = {{vi, vj, vk}|vi, vj, vk ∈ V, vi 6= vj 6= vk, w1i+w1j +w1k >
θ1}, V1 =

⋃
e∈E1

e, E2 = {{vi, vj, vk}|vi, vj, vk ∈ V, vi 6= vj 6= vk, w2i + w2j +
w2k > θ2} and V2 =

⋃
e∈E2

e. Clearly the set T ⊆ V is not stable if and only
if there exists a subset of T ′ ⊆ T with three elements such that T ′ ∈ E1 or
T ′ ∈ E2.

On the other side from two 3-uniform T1 threshold hypergraphs H1,H2

and their values of threshold functions we can create two linearly separable
functions l1, l2. If for example some threshold hypergraph Hi does not contain
all vertices, the value of this vertex in the function li will be zero.

So if we will be able to prove NP-hardness of recognizing hypergraphs
with threshold dimension 2 of the type T1, it will imply that the class of
unions of two linearly separable functions is not learnable with membership
and equivalence queries unless NP=co-NP.

7.3 The Problem

The threshold dimension problem is defined as follows:
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THRESHOLD DIMENSION
Instance: A r-uniform hypergraph H(V,E), a type of threshold
dimension t ∈ {1, 2, 3} and a positive integer k ≤ |V |
Problem: Is it true that dTt(H) ≤ k?

From the work of Chvátal and Hammer [CH75] we know that the de-
termination of the threshold dimension of graphs is NP-complete problem.
Furthermore, as was proved by Yannakakis [Yan82], it is NP-complete for ev-
ery fixed k ≥ 3. Therefore THRESHOLD DIMENSION is an NP-complete
problem, even for every fixed k ≥ 3. We are interested in the question
whether this problem is NP-complete for fixed k = 2.

We are unable to answer this question, but we give a reduction of the
COVERING BY r-UNIFORM CLIQUES (k = 2) problem to the THRESH-
OLD DIMENSION (k = 2) problem. If it will be proven that the COVER-
ING BY r-UNIFORM CLIQUES problem is NP-complete for fixed k = 2,
this reduction will imply NP-hardness of the THRESHOLD DIMENSION
problem for fixed k = 2.

7.4 The Reduction

Here we give the reductions of the COVERING BY r-UNIFORM CLIQUES
(k = 2) problem to THRESHOLD DIMENSION (k = 2) for every type of
threshold hypergraphs T1, T2 and T3.

Definition 10. For 3-uniform hypergraph H(V, E) we define 3-uniform hy-
pergraph HT as follows: HT (VT , ET ), where vertices are VT = {V ∪W} and
W = {w0, w1, w2} and edges are ET = {E ∪ F}, where F = {{w,w′, v}|v ∈
V ∧ w,w′ ∈ W ∧ w 6= w′} ∪ {{w, v, v′}|v, v′ ∈ V ∧ w ∈ W ∧ v 6= v′}.

Theorem 21. Let H(V, E) be a 3-uniform hypergraph. For the hypergraph
HT constructed according to the definition 10 the following holds:

c(H) ≤ 2 if and only if cT3(HT ) ≤ 2

Proof. If c(H) = 1, then the graph HT is T3 threshold hypergraph, because
the sorting of vertices w0, w1, w2, v11, ...., v1n, where (v11, ..., v1n ∈ V ), satis-
fies Definition 6 of T3 property.
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Let c(H) = 2. So the edges of H can be covered by two cliques: C1 and
C2 (C1, C2 ⊆ V , C1, C2 induces a r-clique in H). Then there exist two sets V1

and V2, which are subsets of VT , such that V1 and V2 induces a T3 hypergraph
in HT . Let V1 = C1 ∪ W and V2 = C2 ∪ W . When we sort the vertices in
V1 in the following way: w0, w1, w2, v11, ...., v1n, where (v11, ..., v1n ∈ C1),
then this sorting satisfies Definition 6 of T3 property. Similarly the sorting
w0, w1, w2, v21, ...., v2m, where (v21, ..., v2m ∈ C2), satisfies Definition 6 of T3

and V2 induces a T3 hypergraph in HT too. All edges of HT are covered by
these two T3 hypergraphs.

On the other side, now assume that HT can be covered by two or less T3

hypergraphs. Let the two vertex sets be V1 and V2. We distinguish between
two cases:

In case, when one of V1, V2 is empty (HT can be covered by one T3

hypergraph), for example V1, than V2 = VT must hold. Assume that the
set V ′′ = VT \ W is not a clique; then there is a set of distinct vertices
s = {v1, v2, v3} /∈ E, (v0, v1, v2 ∈ V ). Then VT contains a forbidden config-
uration: w0, v1, v2, v3, w1, w2 - a contradition with the fact that VT is a T3

hypergraph. Therefore V ′′ is a clique and together with an empty set creates
a partition of V into two induced cliques in H.

In the second case, when V1 and V2 is not empty. We claim that both V1

and V2 must contain w1, w2 and w0 or one of them is equal to VT .
Assume that one of them (for example V1) does not contain some of the

vertices w1, w2 or w0. Let it be wj. Since we need to cover the edges from the
set {{wj, w

′, v}|v ∈ V ∧ w′ ∈ W ∧ wj 6= w′}, V2 must contain w1, w2 and w0.
But to cover the edges from the set {{wj, v, v′}|v, v′ ∈ V ∧ v 6= v′} it must
contain also all vertices from V . This is a contradiction with the assumption
that one T3 hypergraph is not enough to cover HT .

So we assume that both V1 and V2 contain w1, w2 and w0. Assume,
that V1 \ W (or V2 \ W ) is not a clique, then there is a set of vertices s =
{v1, v2, v3} /∈ E, v1, v2, v3 ∈ V1 \W . Then similarly V1 contains a forbidden
configuration: w0, v1, v2, v3, w1, w2 - a contradiction with the fact that VT is
a T3 hypergraph.

Theorem 22. Let H(V, E) be a 3-uniform hypergraph. For the hypergraph
HT constructed according to the definition 10 the following holds:
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c(H) ≤ 2 if and only if cT2(HT ) ≤ 2

Proof. If c(H) = 1, then the graph HT is T2 threshold hypergraph, be-
cause the sorting of vertices w0, w1, w2, v11, ...., v1n, where (v11, ..., v1n ∈ V ),
satisfies Characterization 15 of T2 property, e.g the set {w0, w1, v11} is the
generator.

Assume that H can be covered by two cliques (C1 and C2 ⊆ V , C1, C2

induce a r-clique in H). Then HT can be covered by two T2 hypergraphs V1 =
C1 ∪W, V2 = C2 ∪W . V1 (and V2) induces a T2 hypergraph in HT . Indeed,
when we sort the vertices in V1 in the following way: w0, w1, w2, v11, ...., v1n(v11, ..., v1n ∈
C1), then this sorting satisfies Characterization 15 of T2 property and the set
{w0, w1, v11} is the generator.

The second implication follows from the theorem 12, which says that a T2

hypergraph is also a T3 hypergraph and from the previous theorem 21.

Theorem 23. Let H(V, E) be a 3-uniform hypergraph. For the hypergraph
HT constructed according to the definition 10 the following holds:

c(H) ≤ 2 if and only if cT1(HT ) ≤ 2

Proof. If c(H) = 1, then the graph HT is a T1 threshold hypergraph, because
we can set c(w) = 1, w ∈ W , c(v) = 5 for v ∈ V and t = 4, and this labeling
and threshold satisfies the definition of T1.

Assume that H can be covered by two cliques (C1 and C2 ⊆ V , C1, C2

induce a r-clique in H). Then HT can be covered by two T1 hypergraphs
V1 = C1 ∪ W , V2 = C2 ∪ W . V1 (and V2) induces a T1 hypergraph in HT .
Indeed, if we set labeling c(w) = 1, w ∈ W , c(v) = 5 for v ∈ V1 and t = 4,
then this labeling and threshold satisfies the definition of T1.

The second implication follows from the theorem 12, which says that a T1

hypergraph is also a T3 hypergraph and from the previous theorem 21.

Theorem 24. If the COVERING BY r-UNIFORM CLIQUES problem is
NP-complete for fixed k = 2, then the problem THRESHOLD DIMENSION
for fixed k = 2 is NP-complete for threshold dimension of the type T2 and T3

and NP-hard for threshold dimension of the type T1.
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Proof. The THRESHOLD DIMENSION for k = 2 and threshold dimension
of the type T2 and T3 is in NP, because we know polynomial algorithms for
deciding whether a given hypergraph is a threshold hypergraph of the type
T2 or T3 [RRST85]. We can use the Theorems 21, 22 or 23 to reduce the
COVERING BY r-UNIFORM CLIQUES (k = 2) problem to the THRESH-
OLD DIMENSION for k=2 with the threshold dimension of the type T1, T2

or T3.



Chapter 8

The Partial Order Dimension

8.1 Introduction

Yannakakis [Yan82] has proved that the problem of determining if a given
partial order has dimension at most 3 is NP-complete. A result contained in
his proof is that the problem of determining if the edges of a given graph can
be covered by 3 difference subgraphs has the same complexity. And similarly
the problem of determing if the edges of a given graph can be covered by
3 threshold graphs is NP-complete. We give here the proof of Yannakakis
together with some background definitions.

From Chapter 2 we know what a partial order is and how the dimension
of a partial order is defined. We can imagine a poset P=(X,P) as a directed
acyclic graph (DAG) on X. Assume that a partial order P is partitioned into
two sets S,S’ so that there is no edge directed from S’ to S in P. Define
B(P) as the bipartite graph with nodes X and the following set of edges:
{(x, y) | x ∈ S, y ∈ S ′, x ./ y}. The bipartite graph B=(X,Y,P) is called a
chain graph if there is no induced 2K2 in G. In other words for any pair of
vertices u, v ∈ X (or Y ), either N(u) ⊆ N(v) or N(v) ⊆ N(u) (The symbol
N(v) stands for the set of neighbors of vertex v). Chain graphs are also
called difference graphs [HPS90]. For a bipartite graph G, let ch(G) be the
minimum number of difference (chain) graphs of G that cover all the edges
of G.

According to results of Dushnik and Miller [DM41] we know the necessary
and sufficient conditions for a partial order to have dimension 2. These
conditions gave us polynomial algorithm for testing if an arbitrary partial
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order has dimension at most 2. However for k ≥ 3 this problem is NP-
complete.

8.2 The partial order dimension problem

Lemma 25. For every partial order P , ch(B(P )) ≤ dO(P ).

Proof. Let P has dimension d. Then there are d linear extensions L1, . . . , Ld

of P, whose intersection is P. Let L be a linear extention of P, we define
L’ as the bipartite graph with the vertex set V (B(P )) and the edge set
{{x, y}|x ∈ X, y ∈ Y, (y, x) ∈ L}. The graphs L′

1, . . . , L
′
d are difference

graphs and cover all edges of B(P).

Corollary 26. For every partial order P , dO(P ) ≤ 3 ⇒ ch(B(P )) ≤ 3.

The following problem is known [GJ79] to be NP-complete.

GRAPH CHROMATIC NUMBER 3
Instance: Given a graph G(V, E).
Problem: Is the chromatic number χ(G) ≤ 3?

We reduce the GRAPH CHROMATIC NUMBER 3 problem to the par-
tial order dimension 3 problem:

PARTIAL ORDER DIMENSION 3
Instance: Given a partial order.
Problem: Is the dimension dO(P ) ≤ 3?

In the reduction we will construct for any graph G a partial order P in
such a way that dO(P ) ≤ 3 if and only if χ(G) ≤ 3. We use the construction
from [MP95]. Let G = (V, E), with V = {u1, . . . , un}, E = {e1, . . . , em} is a
graph. We will construct a partial order P on the union of two disjoint sets
S and S ′. The set S is partitioned into the sets Q and R, and the set S ′ is
partitioned into Q′ and R′. The sets are

Q = {uik| vertex ui is incident with edge ek},

R = {uia, uib|ui is a vertex},

Q′ = {u′ik| vertex ui is incident with edge ek},
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R′ = {u′ia, u′ib|ui is a vertex}.
We call the vertices in Q′ and R′ primed versions of its counterparts in the
sets Q and R. The partial order P is defined by these rules:

• Each vertex in R is smaller than each vertex in R′ ∪Q′ with the same
first index, except for its primed version.

• Each vertex in Q is smaller than each vertex in R′.

• Each vertex uik in Q is smaller than a vertex u′jk in Q′ if k < l.

• A vertex uik ∈ Q is smaller than a vertex u′jk ∈ Q′ if ek = {ui, uj}.

• A vertex uik ∈ Q is smaller than a vertex u′jl ∈ Q if k < l.

• There are no other relations in P.

From this definition we can see that the edges of B(P ) are defined by
these conditions:

• There is an edge from each vertex in R to its primed version in R′ and
to all vertices of R′ ∪Q′ with a different first index.

• There is an edge from uik ∈ Q to u′jl ∈ Q′ if k > l.

• There is an edge from each vertex in Q to its primed version in Q′.

Lemma 27 ([Yan82]). ch(B(P )) ≤ 3 ⇒ χ(G) ≤ 3

Proof. Let ch(B(P )) ≤ 3 and D1, D2 and D3 are three difference subgraphs
of B(P ) that cover its edges. The subgraph Hi of B(P ) induced by all
vertices with the first index i has three connected components: the edge
{uia, u

′
ia}, the edge {uib, u

′
ib} and the subgraph induced by uik, u

′
ik, where

i ≤ k ≤ m. Since every Dl is a difference graph, no Dl can contain two
edges from different components of Hi. Hi has three components, so all the
edges of the third component are in the same Dl, we color vertex ui with
color l. To show that this is a valid coloring, assume that there are two
adjacent vertices ui,uj colored with the same color l. Let they be connected
by the edge ek={ui, uk}. Then according to the definition of the coloring
{uik, u

′
ik}, {ujk, u

′
jk} ∈ Bl. This is a contradition with the assumption that

Bl is a difference graph, because these two edges induce a 2K2 in B(P ).
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Lemma 28 ([Yan82]). χ(G) ≤ 3 ⇒ dO(P ) ≤ 3

Proof. The proof can be found in the article [Yan82] or in the book [MP95].

Theorem 29 ([Yan82]). The problem PARTIAL ORDER DIMENSION 3
is NP-complete.

Proof. It follows from Corollary 26 and Lemmas 27 and 28.

The proof follows from this lemma:

Lemma 30 ([Yan82]). Let B is a bipartite graph whose vertices are parti-
tioned into the stable sets X and Y. Let B′ be obtained from B by adding
all the edges between vertices in X (i.e making X into a clique). Then
ch(B) = Dt(B

′).

And finally the theorem about NP-completness of the threshold dimension
problem.

Theorem 31 ([Yan82]). For every fixed k ≥ 3, it is NP-complete to deter-
mine if a given graph G has threshold dimension at most k, even if G is a
split graph.

The reduction was given from the GRAPH CHROMATIC NUMBER 3
problem. One could think that in the case of hypergraph threshold dimension
2 a similar proof can be done using the reduction from HYPERGRAPH
CHROMATIC NUMBER 2. However such a proof would not be trivial.

Let’s have a look at the coloring of B(P ) in the proof. The subgraph S
induced by the vertices uik,ujk,u

′
ik and u′jk represents an edge ek = {ui, uj} in

the graph. This graph is a 2K2 with edges {uik, u
′
ik} and {ujk, u

′
jk}. Clearly

edges of S cannot be covered by one difference graph. The difference graph
covering the edge {uik, u

′
ik} represents the color of the vertex ui in the original

graph.
Here we present a hypergraph, which could be used in a similar proof

for hypergraphs. Three from its edges can be covered by two T3 threshold
subhypergraphs only in such a way that there is a bijection between this
covering of its (1st, 2nd and 5th) edges and the possible coloring of three
vertices connected by an edge in a 3-uniform hypergraph.



8.2. THE PARTIAL ORDER DIMENSION PROBLEM 43

Theorem 32. The following 3-uniform hypergraph: H = (V, E), where
V = {0, 1, 2, 3, 4}, E = {e1, e2, e3, e4, e5, e6, e7} and
e1 = {0, 1, 4}
e2 = {0, 2, 3}
e3 = {0, 2, 4}
e4 = {0, 3, 4}
e5 = {1, 2, 3}
e6 = {1, 2, 4}
e7 = {1, 3, 4}
can be covered by two T3 threshold subhypergraphs only by one of these 6 pos-
sible coverings:

cover1(e1) = 1 cover2(e1) = 1 cover3(e1) = 1
cover1(e2) = 1 cover2(e2) = 2 cover3(e2) = 2
cover1(e3) = 1 cover2(e3) = 1 cover3(e3) = 2
cover1(e4) = 1 cover2(e4) = 1 cover3(e4) = 2
cover1(e5) = 2 cover2(e5) = 2 cover3(e5) = 1
cover1(e6) = 2 cover2(e6) = 1 cover3(e6) = 1
cover1(e7) = 2 cover2(e7) = 1 cover3(e7) = 1

cover4(e1) = 2 cover5(e1) = 2 cover6(e1) = 2
cover4(e2) = 2 cover5(e2) = 1 cover6(e2) = 1
cover4(e3) = 2 cover5(e3) = 2 cover6(e3) = 1
cover4(e4) = 2 cover5(e4) = 2 cover6(e4) = 1
cover4(e5) = 1 cover5(e5) = 1 cover6(e5) = 2
cover4(e6) = 1 cover5(e6) = 2 cover6(e6) = 2
cover4(e7) = 1 cover5(e7) = 2 cover6(e7) = 2

Proof. The proof explores all different coverings by two T3 threshold subhy-
pergraphs and for every coloring it either displays that it is a valid covering,
or displays a forbidden configuration, which violates the characterization of
T3 hypergraphs. The proof was done by a computer program and it is omit-
ted here because of space limitations. The complete proof can be found on
the website [Rep].
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Chapter 9

Future directions

This thesis provides answers to some questions, but several important open
problems in this area still remain unsolved.

Hypergraph threshold dimension two: Is the problem of recognizing
hypergraphs with threshold dimension two NP-hard? The problem for graphs
and fixed dimension 3 is NP-complete, and the reduction is done from the
graph coloring problem by three colors, which is NP-complete. Since the
coloring problem for hypergraphs is NP-complete for two colors, it is not
unreasonable to expect that the problem of recognizing hypergraphs with
threshold dimesion 2 is NP-hard. We propose a particular 3-uniform hy-
pergraph with specific properties which could be used in such a proof. An-
other possibility is to prove the NP-completeness of the COVERING BY
r-UNIFORM CLIQUES problem for k = 2 and use our reduction.

Covering graphs coverable by three threshold graphs by four thresh-
old graphs: The problem of coloring 3-colorable graphs with 4 colors is
NP-hard [GJS74]. Since the proof of NP-completeness of the THRESHOLD
DIMENSION problem was done using a reduction from the graph coloring
problem, we ask whether the problem of covering graphs coverable by three
threshold graphs by four threshold graphs is NP-complete.

45
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Abstrakt

Názov: Pokrývanie hrán hypergrafu: zložitosť a aplikácie
Autor: Vladimı́r Repiský
Školitel: Mgr. Tibor Hegedüs

Táto práca prináša preȟlad o problémoch pokrývania hrán v hypergrafoch.
Skúmame v nej zložitostné vlastnosti pre problémy pokrývania hrán v hy-
pergrafoch podhypergrafmi rôznych typov. Uvažujeme pokrývanie klikovými
hypergrafmi, rozdelenými hypergrafmi, a prahovými hypergrafmi. Celkovo
dokazujeme NP-úplnosť pre 6 problémov. Špeciálne sa zameriavame na
problém pokrývania prahovými hypergrafmi, ktorý má aplikácie v teórii
strojového učenia. Poskytujeme redukciu z problému pokrývania klikami,
takže potencionálny dôkaz NP-tažkosti tohto problému by implikoval NP-
ťažkosť problému pokrývania prahovými hypergrafmi. Okrem toho navrhu-
jeme zovšeobecnenie pojmu Dilworthového č́ısla grafu na hypergrafy. Priná–
šame polynomiálny algoritmus na výpočet tohto č́ısla. Dokazujeme, že Dil-
worthovo č́ıslo stanovuje hornú hranicu pre niektoré dôležité vlastnosti hy-
pergrafov, ako sú polomer a dominačné č́ıslo hypergrafu.

Keywords: Prahový hypergraph, Pokrývanie hypergrafu, NP-úplnosť
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