
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

A Secure Linux Desktop Environment

Master Thesis

2019

Bc. Zuzana Hromcová

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

A Secure Linux Desktop Environment

Master Thesis

Study programme: Computer Science

Field of study: 2508 Computer Science

Department: Department of Computer Science

Supervisor: RNDr. Jaroslav Janá£ek, PhD.

Bratislava, 2019

Bc. Zuzana Hromcová

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Zuzana Hromcová
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: A Secure Linux Desktop Environment

Annotation: The thesis deals with secure desktop environment in Linux OS using SELinux
security mechanisms. Common PC usage scenarios are analysed, functional and
security requirements are defined and a suitable solution is designed to fulfill
them. The thesis includes an implementation of the proposed solution.

Aim: - analyse common PC usage scenarios
- define functional and security requirements
- design and implement a solution
- analyse usability and security of the implemented solution

Supervisor: RNDr. Jaroslav Janáček, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 13.12.2017

Approved: 13.12.2017 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Zuzana Hromcová
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: A Secure Linux Desktop Environment
Bezpečné používateľské prostredie v OS Linux

Anotácia: Práca sa venuje problematike bezpečného používateľského prostredia v OS
Linux s využitím mechanizmov SELinux.Analyzuje bežné scenáre použitia
počítača z hľadiska funkčných a bezpečnostných požiadaviek a navrhuje
vhodný spôsob ich naplnenia. Súčasťou práce je implementácia riešenia.

Cieľ: - analyzovať bežné scenáre použitia PC
- definovať funkčné a bezpečnostné požiadavky
- navrhnúť a implementovať riešenie
- analyzovať použiteľnosť a bezpečnosť implementovaného riešenia

Vedúci: RNDr. Jaroslav Janáček, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 13.12.2017

Dátum schválenia: 13.12.2017 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgements:

To my advisor, RNDr. Jaroslav Janá£ek, PhD., thank you for the opportunity to work

on this compelling research topic. I enjoyed working on this thesis, as much as I enjoyed

all of your lectures that I could attend in my academic life (and there were quite a lot of

them). Thank you for your guidance, encouragement, and for the helpful discussions.

To my parents, thank you for your tremendous help throughout my studies. Thank

you for supporting my big life decisions, but also for all those little things you do for

me like waking me up on exam days, or picking me up from the train station on the

rare occasions when I come to visit you. You have been my role models and I am proud

to have followed your footsteps.

To Filip, thank you for introducing me to the world of computer security, and for

helping me discover my future career. Thank you for being my source of inspiration

and motivation for constant self-development, and thank you for your loving care and

devotion that made �nishing this thesis possible.

iv

Abstract

The thesis deals with securing a Linux desktop environment using SELinux mecha-

nisms.

The authors address the de�ciencies of using SELinux in practice, and suggest an ap-

proach to extend the reference policy in a way that improves both the security and

usability of a SELinux-protected system.

The authors �rst analyse common PC usage scenarios and relevant threats, in order to

de�ne functional and security requirements on a system. They design and implement

a solution to ful�ll these requirements, evaluate how the solution re�ects these require-

ments and provide suggestions for future improvements.

The thesis includes manuals and support tools for deployment, administration and

maintenance of the composed SELinux policy.

Keywords: SELinux, desktop environments, security

v

Abstrakt

Práca sa zaoberá bezpe£ným pouºívate©ským prostredím v OS Linux s vyuºitím mech-

anizmov SELinux. Identi�kuje existujúce rie²enia tohto problému a uvádza ich ne-

dostatky z h©adiska bezpe£nosti a pouºite©nosti.

Autori analyzujú beºné scenáre pouºitia po£íta£a z h©adiska funk£ných a bezpe£nos-

tných poºiadaviek, a navrhujú vhodný spôsob naplnenia týchto poºiadaviek, ktorý je

zárove¬ kompatibilný s existujúcimi rie²eniami a nástrojmi na podporu SELinuxu.

Sú£as´ou práce je implementácia rie²enia a nástrojov na jeho administráciu, návod

na pouºívanie a ¤al²ie roz²írenie rie²enia, rovnako ako ohodnotenie bezpe£nosti a

pouºite©nosti systému zabezpe£eného navrhovaným rie²ením.

K©ú£ové slová: SELinux, pouºívate©ské prostredie, po£íta£ová bezpe£nos´

Contents

Introduction 1

I Introduction, motivation and goals 4

1 Linux Access Control Mechanisms 5

1.1 DAC and capabilities . 5

1.2 MAC . 7

1.2.1 AppArmor . 7

1.2.2 SELinux . 7

1.2.3 TOMOYO . 8

1.2.4 SMACK . 8

1.3 Summary . 9

2 SELinux overview 10

2.1 SELinux principles . 10

2.1.1 Architecture . 10

2.1.2 Object classes and permissions 12

2.1.3 Security contexts . 13

2.1.4 Domain and Type Enforcement (DTE) 13

2.1.5 Role-based Access Control (RBAC) 14

2.1.6 Constraints . 15

2.1.7 Multi-Level/Multi-Category Security (MLS/MCS) 16

2.2 Using SELinux . 16

2.2.1 Activating SELinux . 17

2.2.2 Customizing SELinux policy . 17

2.2.3 Solving SELinux-related problems 18

2.3 SELinux development and support . 19

2.3.1 SELinux reference policy . 19

2.3.2 Reference policy problems . 21

2.4 Summary . 21

vi

CONTENTS vii

3 Improving SELinux coverage and usability 23

3.1 Previous work . 23

3.2 Our solution . 24

3.2.1 Target distribution . 24

3.2.2 Classifying applications . 25

3.2.3 Analytical approach . 25

3.2.4 Compatibility and extensibility 26

3.2.5 Target audience . 26

3.3 Summary . 28

II Analysis and design 29

4 Security requirements 30

4.1 MITRE ATT&CK Framework . 30

4.2 Scope of the analysis . 31

4.3 Threat analysis . 32

4.3.1 Initial Access . 32

4.3.2 Execution . 34

4.3.3 Persistence . 34

4.3.4 Privilege Escalation . 36

4.3.5 Defense Evasion . 36

4.3.6 Credential Access . 37

4.3.7 Discovery . 38

4.3.8 Lateral Movement . 39

4.3.9 Collection . 39

4.3.10 E�ects . 40

4.3.11 Ex�ltration . 40

4.3.12 Command and Control . 41

4.4 Summary . 42

5 Functional requirements 43

5.1 Classi�cation of user applications . 43

5.2 Design of our policy . 44

5.3 Requirements for our policy modules 46

5.3.1 Simple local applications . 46

5.3.2 File viewers . 46

5.3.3 File editors . 47

5.3.4 Trusted �le viewers . 47

5.3.5 Trusted �le editors . 47

CONTENTS viii

5.3.6 Device recorders . 47

5.3.7 Web browsers . 48

5.3.8 Mail clients . 48

5.3.9 General network applications 49

5.3.10 Teleconferencing applications 49

5.3.11 Unlimited applications . 50

5.4 Summary . 50

III Policy development 52

6 SELinux policy development 53

6.1 SELinux policy languages . 53

6.1.1 Kernel policy language . 54

6.1.2 Reference policy language . 56

6.1.3 CIL (Common Intermediate Language) 57

6.2 Reference policy structure . 57

6.3 Summary . 59

7 Implementation 60

7.1 Fixing the reference policy for Debian 60

7.1.1 Missing privileges . 60

7.1.2 Broken mechanism for default contexts 61

7.2 Design of the reference policy extension 61

7.3 User roles and domains . 62

7.4 Helper functions for new modules . 62

7.4.1 Interface over the reference policy 62

7.4.2 Classi�cation of user data . 64

7.5 Added modules . 64

7.5.1 Basic access . 65

7.5.2 Access to user data . 65

7.5.3 Access to network . 65

7.5.4 Access to devices . 65

7.5.5 Interaction with contrib modules 66

7.5.6 Interaction between new modules 66

7.6 Optional policy parts . 67

7.7 Summary . 68

CONTENTS ix

IV Deployment and maintenance 72

8 SELinux setup and administration 73

8.1 Enabling SELinux . 73

8.1.1 Installing SELinux utilities . 74

8.1.2 Obtaining SELinux policy . 74

8.1.3 Activating SELinux . 75

8.1.4 Verifying SELinux installation 75

8.1.5 Customizing the installation . 76

8.1.6 Switching to enforcing mode . 76

8.2 Using a system with SELinux . 76

8.2.1 Using basic Linux utilities . 77

8.2.2 Changing policy con�guration 79

8.2.3 Setup for new applications . 80

8.2.4 Temporary change of a security context 81

8.2.5 Permanent change of a security context 83

8.3 Solving SELinux-related problems . 84

8.3.1 Identifying the reason behind the error message 84

8.3.2 Addressing SELinux-related problems 86

8.4 Summary . 87

9 Policy maintenance 88

9.1 Developer tools . 88

9.2 Important �les . 88

9.3 Compilation . 89

9.4 Troubleshooting . 91

9.4.1 Syntactical errors . 91

9.4.2 Semantical errors . 92

9.5 Adding a new module . 93

9.6 Summary . 93

V Evaluation 94

10 Evaluation 95

10.1 Security validation . 95

10.2 Functionality validation . 96

10.3 Summary . 105

CONTENTS x

11 Discussion and remarks 109

11.1 Our decisions and remarks . 109

11.1.1 Extending the reference policy 109

11.1.2 Reference policy functions . 110

11.1.3 Simpli�cations . 110

11.1.4 Security and usability compromises 111

11.1.5 Target audience . 111

11.2 Possible improvements and future work 112

11.2.1 Support for other Linux distributions 112

11.2.2 Analysis of other security layers 112

11.2.3 SELinux as Intrusion Detection System 112

11.2.4 Separation of privileges . 113

11.2.5 More detailed policies . 113

11.3 Summary . 114

Conclusion 115

Appendices 116

A Release version 117

B SELinux policy source code 118

List of Figures

2.1 High Level Core SELinux Components [1] 11

2.2 Role Based Access Control in SELinux [1]. 15

7.1 Relationships between the added domains. 70

7.2 Groups of domains . 71

xi

List of Tables

5.1 Access to user data by application categories. 50

5.2 Access to network and devices by application categories. 51

7.1 Security types for �les in the user home directory. 64

7.2 Types added to the reference policy. 67

7.3 Boolean �ags added to the policy . 69

10.1 Mitigation of Initial Access techniques. 97

10.2 Mitigation of Execution techniques. 97

10.3 Mitigation of Persistence techniques. 98

10.4 Mitigation of Privilege Escalation techniques. 99

10.5 Mitigation of Defense Evasion techniques. 100

10.6 Mitigation of Credential Access techniques. 101

10.7 Mitigation of Discovery techniques. 102

10.8 Mitigation of Lateral Movement techniques. 102

10.9 Mitigation of Collection techniques. 103

10.10Mitigation of E�ects techniques. 103

10.11Mitigation of Ex�ltration techniques. 103

10.12Mitigation of Command and Control techniques. 104

10.13Tested simple local applications. 105

10.14Tested �le viewers. 105

10.15Tested �le editors. 106

10.16Tested trusted �le viewers and editors. 106

10.17Tested device recorders. 106

10.18Tested web browsers. 107

10.19Tested mail clients. 107

10.20Tested general network applications. 107

10.21Tested teleconferencing applications. 108

xii

Introduction

Information security has always been needed everywhere some data were processed,

even in the pre-electronic times. Naturally, its role and importance have evolved

alongside the technology advances, and since the data are nowadays being processed

electronically on heavily interconnected systems, the focus has shifted from assuring

physical security to a wider range of security requirements. Data integrity, authenticity,

con�dentiality and availability must be enforced in the electronic world.

To achieve these, operating systems, web applications, and other systems protect

the data against unauthorized access and modi�cation, using access control mecha-

nisms.

In the context of UNIX operating systems, traditional access control mechanisms

only protected �le system objects, and were under the discretion of their owner. This

design has proved insu�cient, as it comes with a number of inherent security weak-

nesses.

Possibilities to provide stronger security guarantees were in need: being able to

protect other objects of the system, besides the �lesystem objects; and able to de�ne

more �ne-grained access control with more complicated policies. These were especially

needed in environments with more users in the system, such as in large corporations,

but also in single-user environments that were to be protected against malicious appli-

cations.

These requirements led to the introduction of a new approach, adding additional

security mechanisms on top of the traditional access control systems. With the new

mechanisms, all the operations are controlled by a global system policy, that the user

has no control over. Several implementations emerged, SELinux being among the most

prominent ones.

SELinux is an access control mechanism with a signi�cant security potential. It

con�nes all objects on the system - from the �le system objects to network objects,

including objects related to databases, inter-process communication or X-window server

and clients. The granularity of the controlled operations is much more detailed when

compared to the simple security mechanisms. That allows for complex security policies.

An o�cial SELinux policy is provided and regularly updated by Linux distributions.

1

Introduction 2

Due to its complexity, ordinary users are not expected to write their SELinux policies

from scratch, so they use the ready-made policy to con�gure their systems.

This approach works for server setups with system applications and services that

have their boundaries clearly de�ned. But when it comes to desktop environments,

the users have varying security and functional requirements on the applications, and

so it is a more daunting task to de�ne such a policy that does not limit any of them.

Therefore, security compromises are made in the o�cial policy, in favour of usability

of the SELinux-protected systems.

As a result, the SELinux policy only restricts system applications and services,

while the user applications are virtually unlimited. On a di�erent note, some Linux

distributions do not support SELinux policy development in their desktop environments

at all, and these systems become unusable with SELinux enabled. Either way, SELinux

is not used up to its full potential in desktop environments - systems with SELinux

enabled either lack security guarantees, or usability and �exibility.

The goal of this thesis is to address these issues. In this thesis, we extend the

reference SELinux policy by further constraining privileges of user applications, in

order to protect the system against common threat scenarios.

Instead of writing a detailed policy for a small number of speci�c applications,

while leaving the others unlimited, we propose a more balanced approach. We design

policies for a number of more general categories of applications, and provide a way for

a security-concerned user for protecting sensitive data and limiting the damages caused

by untrusted applications.

We also focus on usability and �exibility of the system with our policy enforced,

and so we design our policy in a way that supports most common PC usage use case

scenarios without denying legitimate user actions.

The �rst part of the thesis provides necessary background knowledge and motivation

for our thesis. We assume the reader is already familiar with the basic concepts of

computer security and access control mechanisms in Linux, and is willing to further

explore the principles and possibilities of SELinux.

In Chapters 1 and 2, we introduce the concept of SELinux and brie�y review its ad-

vantages over other access control mechanisms. We identify the problems of SELinux

usability and security in practice. In Chapter 3, we present existing work that at-

tempted to address them, and introduce our fundamentally di�erent approach.

Part II of the thesis is dedicated to the analysis and design of our solution.

In Chapter 4, we identify common threat scenarios and associated security require-

ments of a Linux desktop system. In Chapter 5, we analyse functional requirements of

commonly used applications, and outline the design of our solution.

Introduction 3

Part III of the thesis deals with implementation of our SELinux policy.

Chapter 6 is an introduction to SELinux policy development. We explain the

mechanisms of the development, and review the structure of the reference policy. In

Chapter 7, we describe the implementation of our SELinux policy, we explain the issues

we have faced and decisions we have made.

In Part IV, we explain how to use a system protected by our extended reference

SELinux policy and how to make changes in the policy.

In Chapter 8, we provide a detailed tutorial on how to enable SELinux on system

and how to con�gure it with our policy. We introduce tools for SELinux administration

contributed by the SELinux community, and by the authors of this thesis. We list the

most common issues related to SELinux and show how to solve them.

In Chapter 9, we explain how our SELinux policy can be further extended as a sequel

to our work. We provide insight into a SELinux policy development, and present useful

tools and practices. This chapter is dedicated to more experienced users, and can be

skipped by readers who do not wish to further customize the policy.

Finally, Part V of the thesis deals with evaluation of our SELinux policy, in terms

of usability and security.

Chapter 10 validates the policy against the usability and security requirements

de�ned in Chapter 4 and Chapter 5, and assesses the overall security of the system

protected by our SELinux policy. Finally, in Chapter 11, we identify shortcomings of

our work, and suggest further improvements.

Part I

Introduction, motivation and goals

4

Chapter 1

Linux Access Control Mechanisms

The most prevalent type of access control in today's Linux environments is called

discretionary access control (DAC). As a main principle of DAC mechanisms, it is

the object's owner who determines who can access the object, and how it can be

manipulated. This design, however, comes with inherent security weaknesses [2], which

led the security community to develop another type of access control - mandatory

access control (MAC). The role of MAC mechanisms is to overcome issues of DAC

mechanisms and provide a higher level of security assurance.

SELinux belongs to the family of MAC mechanisms and can provide strong security

safeguards, but it requires the users and administrators to deal with some additional

complexity in using and managing their systems. To provide the context for under-

standing why it's worth the inconvenience, in this chapter we demonstrate the strengths

and weaknesses of SELinux and other access control mechanisms.

1.1 DAC and capabilities

File system permissions are the primary DAC mechanism in Linux systems. Each �le

system object is assigned a set of permissions which de�ne how its owner, members of

its owners' group and other users can interact with it. Three permissions are speci�ed

for each of them - read, write and execute permission for �les or list, add and use-in-

path permission for directories [3].

The main shortcoming of using �le system permissions is the poor granularity of

how the users are categorized1, which led to another mechanism being introduced to

supplement them - access control list (ACL). On top of assigning access permissions to

the object's owner, group and other users, with ACL one can also de�ne permissions for

other speci�c users and user groups, and default permissions for newly created objects.
1Access permissions can only be de�ned for one particular user (owner), one group and all other

users in general. For instance, there is no way to de�ne distinct permissions for three di�erent users.

5

CHAPTER 1. LINUX ACCESS CONTROL MECHANISMS 6

Both �le system permissions and access control lists can be changed by the object's

owner and the superuser. This design comes with a number of security weaknesses.

For one, the users (owners) can set overly permissive settings on their �les. More im-

portantly, DAC mechanisms cannot distinguish between computer users and programs,

and so any program executed in the context of a user has the same rights to manipulate

the access permissions of the user's objects as the original user. When such a program

is faulty, vulnerable or simply malicious, the system security can be compromised.

On a di�erent note, the traditional access rights models only distinguish between

privileged and unprivileged processes. Many operations, such as device mounting or

network con�guration, are only allowed to processes running in the context of the

root user. As a result, even if a program needs only a speci�c part of the superuser

privileges, it is granted all of them, and thus it automatically gains an unlimited access

to the system. This introduces another security vulnerability.

For example, a backup manager program requires administrator privileges to be

able to access all the �les on the system. When such a program is executed within the

context of a root user, it also gains the privileges to change the con�guration of the

�rewall, even though it does not need them. If there is an exploitable vulnerability in

the program, or the intentions of the program authors are not innocent, this trust can

be easily misused.

This problem is partially solved by another DAC mechanism called capabilities. In

this model, the privileges traditionally associated with the superuser account are split

into smaller groups, and a program is only assigned those permissions to the privileged

operations that it needs to perform, following the least privilege principle.

Privileges (capabilities) of a program can only be changed by processes entitled

to that particular privilege, which dramatically decreases the possibilities of rogue

applications for misusing their privileges. However, other issues emerging from the

nature of DAC mechanisms remain unresolved.

First, it is the users (or superuser) who are responsible for the con�guration of the

access privileges. Weak con�guration can result from the lack of knowledge or interest

in protecting the system.

Another issue is that neither DAC mechanisms, nor capabilities provide means to

de�ne (and enforce) more complicated security policies. They only protect a small part

of the system resources, and do so with a coarse granularity. For all these reasons, these

mechanisms can only work in environments where all programs are trustworthy and

without faults. This is not applicable in the real-world scenarios where the software is

�awed and will be �awed, so we need stronger security mechanisms.

CHAPTER 1. LINUX ACCESS CONTROL MECHANISMS 7

1.2 MAC

Unlike DAC, with MAC mechanisms, access to resources is regulated by a system

policy, which cannot be overridden by the users. These mechanisms provide some

safeguards that can protect resources even when the users are careless. In Linux, they

are brought to life using the Linux Security Module (LSM) framework, which opens the

Linux kernel to new security extensions. The extensions can enforce a system policy

by hooking various security checks provided by the framework [4].

Before LSM was introduced, security modules extending the functionality of the

kernel had to be applied as kernel patches. With LSM, kernel hooks act like an interface

that allows external security modules to in�uence the behaviour of the kernel [5].

The default LSM module built into the kernel is the capabilities module, but other

security mechanisms can build their checks on top of the de�ned capability hooks

and traditional access rights checks. LSM modules enforce additional restrictions on

security-critical operations, and do not generate exceptions to otherwise denied oper-

ations. Thus, any operation is permitted only if all of the mechanisms allow it.

As of now, there are 4 MAC mechanisms using LSM framework, ranging in their

user-friendliness and security potential: AppArmor, SELinux, Smack and TOMOYO [4].

The mechanisms address varying security goals, and protect access to di�erent sets of

system resources.

1.2.1 AppArmor

AppArmor implements a task centered policy, which means that access control at-

tributes are bound to programs, rather than users. The rules constraining an appli-

cation are de�ned in so-called task pro�les for each application [6]. These can include

capabilities, ability to manipulate speci�c �les, to use network or to mount devices.

The acccess control is based on �le paths [7].

Programs that do not have a pro�le de�ned for them run in an unrestricted state

which is equivalent to standard Linux DAC permissions. AppArmor is easy in principle

and user-friendly [8]. It is the default LSM module in Ubuntu and OpenSUSE.

Default AppArmor pro�les tailored to speci�c applications are provided by their

developers or by the respective Linux distributions.

1.2.2 SELinux

SELinux uses a di�erent paradigm than AppArmor - all operations are denied unless

speci�cally allowed by the policy. AppArmor also applies deny-by-default principle, but

only for a set of speci�ed programs, not for all programs as is the case with SELinux.

CHAPTER 1. LINUX ACCESS CONTROL MECHANISMS 8

Further, unlike AppArmor, SELinux is intended to protect the whole system. It

extends set of the controlled objects from �le system objects to all objects on the

system (IPC objects, network, database objects...), with much more �ne-grained access

permissions.

For example, on top of the traditional read/write/execute �le permissions, it can

grant permissions to create, open, lock, rename or delete a �le, read �le's attributes,

mount on the �le and other.

The SELinux security policy controls access to objects based on their security con-

texts that include user identity, role, type and level, which allows to implement all main

security paradigms in access control theory [8], such as Domain and Type Enforcement,

Role-Based Access Control and Multi Level Security2.

A general reference policy is provided by the SELinux team and adjusted by Linux

distributions. Application developers and the security community also contribute to

the policy.

SELinux is the default LSM module in Fedora.

1.2.3 TOMOYO

TOMOYO Linux is based on a philosophy di�erent than that of AppArmor and

SELinux. Instead of a ready-made security policy provided by the project team, with

TOMOYO, the policy must be created from scratch, tailored to the needs of the user.

The behaviour of all applications is �rst recorded in the test environment, and

then a policy is automatically generated for the speci�c system. In the production

environment, all applications are then forced to act within these recorded behaviours [9].

1.2.4 SMACK

SMACK is an acronym for Simpli�ed Mandatory Access Control Kernel, which re�ects

its main design goal - simplicity. To each object on the system, it attaches one of a

small set of labels. MAC rules then de�ne possible interactions between objects, based

on these labels. Con�guration data are minimal and not strictly required.

SMACK is similar to SELinux in the fact that access control is based on labels.

However, SMACK only de�nes a small number of labels and rules, and only supports

four types of access permissions (read, write, append, execute). In fact, it has been

criticized for being written as a new LSM module, when a custom SELinux security

policy could have provided equivalent functionality [10].
2See Sections 2.1.4, 2.1.5 and 2.1.7.

CHAPTER 1. LINUX ACCESS CONTROL MECHANISMS 9

1.3 Summary

The goal of our thesis is to create a secure Linux desktop environment. The weaknesses

inherent to the DAC mechanisms make them inappropriate to ful�ll our goal, therefore

we use MAC mechanisms in the implementation part of the thesis.

From the available MAC mechanisms, we chose SELinux3 due to its extensive ca-

pabilities. Unlike AppArmor, it protects the whole system, not just a part of it [8].

Unlike SMACK, the access permissions are tailored per object type and are much

more detailed than having the same four permissions for all objects. Finally, unlike

TOMOYO, with SELinux, we are able to de�ne a general policy applicable on a wide

range of systems.

SELinux is less user-friendly than the other three, but it is one of the goals of the

thesis to reduce the contrast.

3Our colleague, Bc. Peter Va²ut, is addressing similar goals using AppArmor mechanism, in a

parallel Master Thesis [11].

Chapter 2

SELinux overview

In this chapter, we introduce the concept of SELinux and demonstrate the added

complexity and pitfalls of using it. We identify the lack of usability and security of

SELinux in practice, when con�gured with the o�cial policy; and analyse problems

that prevent SELinux from being widely used to protect Linux desktop environments.

2.1 SELinux principles

SELinux (Security Enhanced Linux) is a mandatory access control mechanism imple-

mented as a security module of the Linux kernel [12]. By default, all operations are

prohibited by SELinux, unless they are explicitly allowed.

SELinux is not designed to prevent exploitation of software vulnerabilities (such as

memory leaks or bu�er over-runs), or to stop malware getting into the system, however,

it may limit the damage or leaks they cause [1].

In the further sections, we explain the SELinux concepts relevant in the context of

our thesis. For a more comprehensive SELinux reference, we encourage the reader to

study The SELinux Notebook [1] or SELinux User's and Administrator's Guide [13].

2.1.1 Architecture

The SELinux architecture consists of four components, which are strictly separated: ob-

ject manager, security server, access vector cache and security policy (with supporting

con�guration �les).

The object manager component carries out accesses to protected objects. In our

situation, it corresponds to the Linux kernel or X-Windows server. When a subject

(user or process) requests access to an object, the object manager �rst consults the se-

curity server. The security server evaluates the authorisation of the subject to perform

the operation, according to the security policy.

10

CHAPTER 2. SELINUX OVERVIEW 11

The security policy (or simply a policy) is a set of rules that determines which

operations are allowed and which are not. The rules are written in a speci�c language,

and then compiled to a binary form and loaded as a kernel module.

There are two types of SELinux policy - monolithic and loadable module policy.

Monolithic policy is compiled from one source �le to one �xed binary �le. The loadable

module infrastructure is more �exible - it allows policy to be managed on a modular

basis. It consists of a base policy module that contains all the core components of

the policy, and a number of modules that can be loaded and unloaded as required.

For example, a policy module usually constrains one program. If the program is not

installed on the system, then that module can be unloaded [1].

Further in this thesis, when referring to SELinux policies, we will always speak

about loadable module policies, as this is currently the most prevalent SELinux policy

type.

The security policy is usually not updated very often, so the same queries to the

security server result in the same answers for the object manager. The fourth com-

ponent of the SELinux architecture, an access vector cache (AVC), helps bene�t from

this repetition. AVC stores the previous verdicts of the security server, and so in this

updated model, the object manager �rst consults AVC with the query, and proceeds

to the security server only if needed.

This mechanism is illustrated in Figure 2.1.

Figure 2.1: High Level Core SELinux Components [1]

The SELinux infrastructure can be either enabled or disabled on the system, and

the system can either enforce the security policy or not. Based on these factors, we

distinguish three major modes of operation [1]:

• Disabled - SELinux infrastructure is not enabled, therefore no policy can be

loaded.

CHAPTER 2. SELINUX OVERVIEW 12

• Permissive - SELinux infrastracture is enabled, SELinux policy is loaded but the

policy rules are not enforced. This mode is generally used for testing purposes.

• Enforcing - SELinux infrastracture is enabled, SELinux policy is loaded and

enforced. This mode is used in production environments.

The most important part of the SELinux architecture from our point of view is the

security policy and related con�guration �les, as these are the only SELinux compo-

nents customizable by the administrator. Indeed, the access control concepts supported

by SELinux that we explain in the remainder of this section, can be implemented pre-

cisely by adding speci�c rules and de�nitions into the SELinux policy.

2.1.2 Object classes and permissions

When talking about SELinux, we should start by spelling out which categories of system

resources it protects. As you may recall from Section 1.1, Linux �le system permissions

only constrain user accesses to �le system objects such as regular �les, directories,

named pipes, symbolic links and others. Read, write and execute permissions are

controlled for each of these resources.

SELinux goes further. It provides means to control access to a broader set of

objects, including network objects, IPC objects and database objects. The categories

of resources (objects) are referred to as object classes, each being assigned a group of

access vectors controlled by the policy, referred to as permissions.

The object classes and permissions are closely tied to the implementation details of

Linux, particularly the kernel. In fact, they are designed to represent as accurately as

possible the resources implemented by the system [2]. They are de�ned in the SELinux

policy, but are generally not modi�ed by the policy developers.

Following are some examples of the permissions de�ned for various object classes in

Linux, illustrating the robustness of SELinux model. The meaning of the permissions

is self-explanatory.

• �fo_�le (named pipes):

append, audit_access, create, execmod, execute, getattr, ioctl, link, lock, moun-

ton, open, quotaon, read, relabelfrom, relabelto, rename, setattr, swapon, unlink,

write;

• netif (network interfaces):

tcp_recv, tcp_send, udp_recv, udp_send, rawip_rect, rawip_send, dccp_recv,

dccp_send, ingress, egress;

CHAPTER 2. SELINUX OVERVIEW 13

• msgq (IPC message queues):

associate, create, destroy, enqueue, getattr, read, setattr, unix_read, unix_write,

write;

• x_cursor (the cursor on the screen):

create, destroy, read, write, getattr, setattr, use.

The full list of the object classes permissions with their descriptions can be found

on the SELinux project website [14].

2.1.3 Security contexts

SELinux di�erentiates between two types of entities on the system - subjects (processes)

and objects (�les, sockets, IPC channels, and so on). Subjects manipulate the objects,

and the policy constrains the operations that a subject can perform with an object.

The access control is based on object class, and on the subject and object security

attributes called security context (or security label). The security context is a tuple of

identi�ers assigned to each subject and object. It consists of three mandatory and one

optional �eld - user, role, type and possibly a level. The level entry is included in the

security context in some types of SELinux policy, as explained in Section 2.1.7.

The usual format of a security context is one of the following:

user:role:type, user:role:type:level

By convention, identi�ers in the security context are appended descriptive su�xes

to help better readability of the policy. For instance, user_u, staff_r, init_t

would be acceptable user, role and type names, respectively.

All subjects and objects on the system are assigned security contexts. This as-

signment is computed via the security server, and is in�uenced by the SELinux policy,

kernel and some user settings. When making access control decisions, SELinux security

server then uses the subject and object security contexts, rather than other attributes

(such as user of �le names).

2.1.4 Domain and Type Enforcement (DTE)

The most important part of the security context is the SELinux type. Types of subjects

are commonly referred to as domains, even though they are de facto a subset of SELinux

types.

SELinux supports a type of MAC called Domain and Type Enforcement (DTE),

which is its central principle. DTE rules allow a subject to manipulate an object (e.g.

to read a �le), based on the subject domain and object type and class.

CHAPTER 2. SELINUX OVERVIEW 14

For instance, the policy may allow processes of domain staff_t to read �les of

type user_home_dir_t but not of type shadow_t.

The domains and types are central to access control decisions in SELinux, so another

important part of the policy deals with assigning types (domains) to objects (subjects).

The policy speci�es the default types for objects, default domains for users and the

�rst process. These types and domains are generally not changed in the lifetime of the

objects or subjects, and the child objects and processes usually inherit the parent's

type. However, the policy can specify more complex inheritance rules and enforce a

change of domain when a new process is spawned (and therefore a change in granted

privileges), or a change of type when a new object is created:

• domain transition: when a process executes a program, the child process domain

is determined by the parent process domain and type of executable �le,

• type transition: the type of a new object (e.g. new �le) is determined by the type

of the parent object (e.g. directory) and domain of the creating process (e.g.

touch process).

As an example of domain transition, we can look at a use case scenario where an

unprivileged user tries to change password. We assume the user runs in an unprivileged

user_t domain for which it is reasonable not to allow modifying sensitive �les such as

/etc/shadow. This privilege is, however, needed by the passwd program that the

user executes to change the password. Assume that passwd_t is a domain with these

privileges, and passwd_exec_t is the type of the executable �le of passwd program.

We can solve this situation by de�ning a domain transition rule in the policy. When

the user in user_t domain executes the passwd program with passwd_exec_t

type, the new process transitions to the passwd_t domain that has the necessary

privileges. As an e�ect, the privileges are not granted to the user permanently, only to

the passwd process until it �nishes.

2.1.5 Role-based Access Control (RBAC)

As we mentioned in Section 2.1.4, the access decisions are mostly made based on the

subject domain. We also explained that di�erent processes executed in the context of

one user can very well run in di�erent domains, each representing a particular set of

privileges determined by the type of the underlying executable �le. To further control

access of users to these domains, SELinux applies another mechanism on the subjects

- Role-based Access Control (RBAC).

Each Linux user is assigned a single SELinux user. SELinux user names generally

correspond to groups or classes of users, rather than to Linux user identities; and are

CHAPTER 2. SELINUX OVERVIEW 15

never changed. For example, system programs could be assigned a SELinux user name

of system_u, all the standard users user_u and administration sta� staff_u [1].

Furthermore, a SELinux user is assigned a set of roles it can acquire. Only one

of the roles is active at each moment, but the user can switch between them. Most

importantly, each role is authorized for a set of domains which the processes of that

user can enter. This mechanism is illustrated in Figure 2.2.

RBAC allows to restrict access to certain domains to speci�c roles, for example

a user with the administrator role can execute mount command and automatically

transition to a domain that is allowed to mount devices. But when a user with the

unprivileged role executes the same command, the domain transition fails because the

unprivileged role is not authorized for the domain.

Figure 2.2: Role Based Access Control in SELinux [1].

The SELinux roles are of no meaning for objects - as a convention in the SELinux

policies, all objects are assigned the same user role object_r, that is authorized for

all object types.

2.1.6 Constraints

Another mechanism how to impose additional restrictions on DTE rules is called con-

straints. SELinux primarily uses subject domain to control access to objects, but

constraints allow to take user or role names into account. For example, we can restrict

the ability of a user to read private keys to cases where the user entry of the security

context is the same for both the user and �le with the private key. This would be pos-

sible in the setting with SELinux identities mapped to Linux identities 1:1 (i.e. when

CHAPTER 2. SELINUX OVERVIEW 16

the user identity could be retrieved from the security context), in order to provide user

separation.

2.1.7 Multi-Level/Multi-Category Security (MLS/MCS)

The fourth, optional, level entry of the security context, is used by SELinux extensions

called Multi-Level Security (MLS) and Multi-Category Security (MCS).

MLS extension de�nes sets of hierarchically organized security sensitivities and

categories. Both subjects and objects are then labeled with a security level, composed

of a sensitivity and a category. The security level entails a subject's clearance or an

object's classi�cation [13].

With rules similar to those described in Section 2.1.6, it is then possible to further

restrict access based on the classi�cation of subjects and objects. We can implement

access control policies to protect con�dentiality (or integrity) of data, e.g. based on

the Bell-La & Padula [15] and Biba [16] models, that were originally used for enforcing

access control in government and military applications.

For example, we can de�ne that a process running at a con�dential level can read-

/write at its current level but only read down levels or write up levels. This ensures

con�dentiality as the process can copy a �le up to the secret level, but can never re-read

that content unless the process "steps up to that level", also the process cannot write

�les to the lower levels as con�dential information would then drift downwards. [1].

While still used in this way, the level entry of the security context is more commonly

used for application separation utilising the MCS variant.

MCS is a simpli�ed version of MLS, where all subjects and objects are assigned

the same sensitivity level, and non-hierarchical categories. This extension allows to

restrict access to cases where both source subject and target object have the same

security category [17].

We included MLS/MCS in the overview of concepts for completeness, but we will

not speci�cally focus on them in our policy, so we will not explain them in detail.

2.2 Using SELinux

In Section 2.1, we introduced the main SELinux concepts and mechanisms it uses to

restrict operations on the system. As already mentioned, it is a MAC mechanism, and

that requires some additional complexity in using and administering the underlying

system.

Managing a SELinux-protected system comprises three activities - activating SELinux

on a system, adjusting the SELinux policy to the speci�c needs of the users, and solv-

CHAPTER 2. SELINUX OVERVIEW 17

ing SELinux-related problems. In this section, we expand upon these requirements and

explain how SELinux interferes with the activities of system users and administrators.

For more details about SELinux administration and support tools, see Chapter 8.

2.2.1 Activating SELinux

Activating SELinux on a system requires enabling the SELinux infrastracture and

loading a SELinux policy1. The infrastructure itself denies all operations, and does

not de�ne any exceptions. All allowed operations are de�ned in the policy, which

determines the nature of the respective SELinux installation (i.e. how strictly protected

the system resources are).

The policy covers aspects of the system in a large detail and its language is not

so straightforward, therefore users do not generally write their own SELinux policies.

Instead, they use a ready-made generic policy provided by their respective Linux distri-

butions. The distribution policies are adjusted versions of a so-called reference policy,

which is provided and regularly updated by the SELinux developers.

Once installed, the SELinux policy determines how all subjects and objects of

the system are labeled, and controls all accesses to them. The policy is practically

immutable, in that the users generally do not change the active policy, except for

applying updates and patches. They can make small adjustments in the con�guration,

but these must all lie within the borders de�ned by the policy.

2.2.2 Customizing SELinux policy

SELinux policy is rather static, but it leaves some �exibility for the user, as long as the

decisions are in compliance with the policy. The user can do the following changes:

1. Activate/deactivate modules. The policy modules generally correspond one-to-

one to software applications that they con�ne, and so the users usually load and

unload the policy modules when they install or uninstall the respective applica-

tions.

2. Switch a speci�c SELinux domain to permissive mode. In this mode, SELinux

does not block any accesses of the speci�ed domain but logs all performed oper-

ations that are not allowed by the policy.

3. Change some decisions of the policy. SELinux policy can have conditional state-

ments built-in, which are evaluated based on the current value of boolean �ags

controlled by users. Booleans allow parts of SELinux policy to be changed at
1See Section 8.1 for a detailed guide on how to activate SELinux

CHAPTER 2. SELINUX OVERVIEW 18

runtime, without any knowledge of SELinux policy writing. This allows changes

without reloading or recompiling SELinux policy [13].

4. Toggle between active roles of the SELinux user. The active role of the user

determines the set of domains that the user is allowed to enter. The role change

must be allowed in the policy.

5. Manage security labels. Users can temporarily or persistently change �le and

directory labels and thus override default security labels de�ned in the policy.

It is required for incorrectly labeled or unlabeled applications (such as newly-

installed or compiled software), or in cases when the users want to change the

privileges of the program. The change must be allowed in the policy.

It is easy to perform these operations using a wide range of available SELinux

support tools [18]. The di�cult part of these decisions is that they require understanding

of the policy structure and philosophy - the available modules, domains, roles, booleans

and appropriate security contexts, respectively.

2.2.3 Solving SELinux-related problems

Another aspect of using a SELinux-protected system is that the users must be able to

respond to situations when SELinux denies a desired operation. The denials are logged

as error messages2, that can generally have four primary reasons [19]:

1. Labeling problems. Access control decisions in SELinux are based on security

contexts of subjects and objects. If they are incorrect (i.e. inconsistent with the

policy), SELinux will not function properly. Mislabeling can occur when a �le is

copied from a di�erent location or medium, or when a new software is installed

and is yet unlabeled. Solution to this problem is to restore the security contexts

to those de�ned in the policy, or to de�ne a more appropriate context assignment

for the respective object.

2. Inappropriate policy con�guration. Even if the security contexts are in compliance

with the policy, the policy con�guration might not be in accordance with the

user's requirements. For example, SELinux policy for httpd might not allow it

to send mail, in order to prevent a compromised website from becoming a spam

box. However, we might want our httpd to send mail legitimately. The solution

in this case could require changing a value of the appropriate boolean �ag, and in

other situations switching to a di�erent role or otherwise customizing the policy,

as described in Section 2.2.2.
2For more details, see Section 8.3.

CHAPTER 2. SELINUX OVERVIEW 19

3. Bugs in policy or applications. The problems might be caused by bugs in the

application, or in the policy con�ning the application. These must be solved on

a case-to-case basis.

4. The machine has been compromised. Inevitably, some SELinux error messages

might be created because an application is compromised and tries to do something

it is not allowed to do. In this case, SELinux can partially act as an intrusion

detection system, and it can help the user identify an ongoing attack on the

system.

In general, facing SELinux error messages usually requires analysing SELinux logs,

relabeling �les, changing SELinux con�guration or disabling some parts (e.g. putting

a domain into permissive mode). These solutions are supported by SELinux tools

and require understanding of the active policy and SELinux logs. More advanced

approach is to modify the SELinux policy to allow more operations, which requires

both understanding of the active policy and SELinux policy language. Alternatively,

the policy can be generated automatically by SELinux tools3, but this must be used

carefully, as permitting further operations could pose a security threat.

2.3 SELinux development and support

In this section, we examine how SELinux is maintained and used in practice.

SELinux originally started as the Flux Advanced Security Kernel (FLASK) devel-

opment by the Utah university Flux team [20] and the US Department of Defence. The

development was enhanced by the NSA [21] and released as open source software.

To date, part of its development is still carried by the NSA [21], while the majority

is done by the developers community. Several projects are active, e.g. to maintain

SELinux integration in userspace [22] or Linux kernel [23].

2.3.1 SELinux reference policy

At �rst, a so-called strict policy was developed, where, by default, all operations on the

system were denied and additional privileges could be granted to the processes with

speci�c rules. This, however, turned out to be too complex and di�cult to maintain.

To address this issue, another philosophy was introduced, and a development of a

targeted policy has started. In this policy, the majority of the processes are executed in a

special uncon�ned domain where all meaningful operations are explicitly allowed. Only

system processes, and those with the network access or working with security-critical

data are treated individually (all operations are denied by default, unless allowed by

3The audit2allow tool can generate policy allow rules from logs of denied operations.

CHAPTER 2. SELINUX OVERVIEW 20

policy rules). The users and user applications are usually unlimited, i.e. running in

the uncon�ned domain.

A set of basic policy modules combining the strict and targeted approach is main-

tained as an upstream reference policy [24], which is further adjusted for speci�cs of

Linux distributions by its developers.

The support, however, varies across the distributions [25]. We have reviewed four

major Linux distributions: Debian, Ubuntu, OpenSUSE and Fedora.

Ubuntu

Ubuntu uses AppArmor as a default security mechanism [7], which is incompatible with

SELinux.

It is possible to replace AppArmor with SELinux in Ubuntu, but SELinux pol-

icy packages are not being maintained since 2009. Instead, the Ubuntu developers

recommend using the Debian reference policy [29].

OpenSUSE

Similarly to Ubuntu, the default security module in OpenSUSE is AppArmor, but

SELinux can be installed and enabled instead. The reference policy is regularly updated

and some major applications are covered.

Debian

The Debian packaged Linux kernels have SELinux support compiled in, but disabled by

default. Packages with a policy and basic tools can be installed to enable SELinux [26].

Tools for the policy maintenance and extension are provided, both text-based and

graphical.

The default SELinux policy [27] (derived from the reference policy) is being main-

tained and tested by the developers, however, this is mostly for server installations.

Desktop versions of Debian are not heavily tested with SELinux [28], and even the de-

velopers expect issues to arise.

Indeed, our tests showed that the default Debian SELinux policy is �awed in all of

the latest Debian versions (7-9). With SELinux enabled, they are not able to function

without major issues, as serious as issues with booting the system or with X-windows

subsystem.

Fedora

SELinux is fully integrated into the Fedora OS and no further installation is needed.

The reference policy is regularly updated and tested, and over 200 modules for desktop

CHAPTER 2. SELINUX OVERVIEW 21

applications are provided. There are plenty additional tools for the policy maintenance.

SELinux is given by far the best support by the Fedora developers, who partic-

ipate actively in the reference policy development. Both of their policies, however,

concentrate on the server environments.

2.3.2 Reference policy problems

Regardless of the support of SELinux reference policy in Linux distributions, we have

some security concerns about the reference policy design for desktop environments.

The downside of the reference policy is that, while the system applications and

services are covered thoroughly by the policy, this is not the case for the user applica-

tions. Some major applications have a fully working policy module available, but it is

de�nitely not a general rule.

Since there are a lot of applications without an available SELinux module, there is a

natural need to ensure they work even when no speci�c module was written for them.

This is done by completely ommiting the security in favour of the usability. These

applications are executed in the uncon�ned domain where virtually all the possible

operations are explicitly allowed.

As a result, the SELinux policy in practice is quite unbalanced. Some applications

are covered in detail, operating with a restricted set of operations, while others are

not covered at all, free to perform any operation, without any security safeguards4.

SELinux is thus not used up to its full potential, as it does not limit consequences of

vulnerable user applications being exploited.

Even worse, SELinux reference policy has evolved to such an extent that it is not

easy to understand, customize and con�gure - to illustrate, there are approximately 4

thousand types and 100 thousand rules de�ned in over 400 modules. A lot of problems

arise when regular users attempt to use SELinux. The updates of the reference pol-

icy, Linux kernel and applications are not synchronized, so often some operations the

users wish to perform are not permitted by the policy, which might cause frustration

and, subsequently, disabling SELinux as a security module in Linux, and refusing the

protection it o�ers.

2.4 Summary

SELinux is an access control mechanism far more complex than other DAC and MAC

mechanisms, with a potential to protect the operating system signi�cantly. But when

it comes to Linux desktop environments, this potential is not fully ful�lled.
4Of course, the operations are still limited by traditional DAC mechanisms, but these are insecure

by design, as we described in Chapter 1.

CHAPTER 2. SELINUX OVERVIEW 22

In some major Linux distributions, SELinux infrastructure is supported but the

reference policy is currently not compatible with desktop environments, due to its

complexity and di�cult maintenance. But even in the distributions that have support

of SELinux as their priority, the used policy is unbalanced. Majority of user applications

are not limited, unless there is a speci�c policy module written for them.

As demonstrated, customizing and administering a system with SELinux reference

policy installed requires knowledge of this complex policy. In practice, this often dis-

courages security-concerned users from further exploring its potential, and ordinary

users from using SELinux at all.

In Chapter 3, we review existing solutions that try to solve problems with SELinux

usability and security in practice, and introduce our approach and goals of this thesis.

Chapter 3

Improving SELinux coverage and

usability

The objective of our thesis is to extend the reference SELinux policy to overcome its

problems, as described in Chapter 2. In the following chapter, we review existing

attempts to solve the problem of SELinux poor coverage and usability in desktop envi-

ronments. We identify de�ciencies in these solutions, and introduce our, fundamentally

di�erent, approach.

3.1 Previous work

The issue of insu�cient usability and/or security of SELinux-enabled desktop systems

has already been studied by other researchers. We have observed several attempts to

increase the scope of SELinux reference policy, in expanding the number of applications

con�ned by policy modules.

In the Bachelor theses by Jan Ji°inec [25] and Michael Sládek [30], the authors have

decided to extend the reference policy by adding custom policy modules for the ap-

plications of their choice. The result of each of the theses was a new policy module

covering one desktop application - Evince in GNOME environment and BackupPC in

Fedora environment, respectively.

Their contribution thus was adding new modules to the reference policy, in the

same fashion that the SELinux community gradually expands the policy.

The Master thesis by Ond°ej Vadinský [17] analysed the issue from a higher per-

spective. He viewed the desktop environment as a set of four logical layers: userspace,

desktop environment, services and applications. To cover the security requirements of

the environment, he created rules for each of the layers, either by creating a new policy

module, or by modifying an existing module (such as gnome and kde modules for the

desktop environment and userdomain module for the userspace environment).

23

CHAPTER 3. IMPROVING SELINUX COVERAGE AND USABILITY 24

Ultimately, the result of this thesis was a series of patches to existing reference

policy modules, and a set of new SELinux policy modules for �ve speci�c applications

- the most frequently used applications in Fedora desktop environment KDE (KMail,

KAddressBook, Konqueror, KWallet and Akonadi).

The reasoning in this thesis is more general than in the previous two cases, but

the choice of the rules for the respective policies was not justi�ed properly with the

respect on the security of the system, and the security of the policy was not tested.

The authors used a polgengui tool to generate a set of basic rules for the applications,

rather than allowing permissions based on the assessment of the requirements of that

respective application.

We see these as major problems as the solutions are both incomplete and lack

explicit justi�cation behind the security guarantees they provide. Moreover, they did

not change the fact that user applications are unlimited by default.

This was partially addressed by a policy by Dominick Gri�th [31]. This policy is

intended for more advanced users, and its goal is to con�ne the user space by default.

It is con�gured in a semi-strict fashion where the uncon�ned logins are prohibited by

default, but the uncon�ned domain can be entered manually.

The author adds new modules for some user applications. The policy also adds

SELinux user isolation, in that various Linux users are mapped to various SELinux

user identities, and users thus cannot interfere with each other [31].

We were not able to test this policy as the repository is unreachable, and is most

probably outdated anyway (the last update was made in 2010). Our policy will share

some ideas with this policy, such as con�ning the user applications by default, but will

go further than adding modules for a few speci�c applications.

3.2 Our solution

In this section, we explain our approach how to improve security and usability of

SELinux in practice, and we introduce the goals we set for our SELinux policy.

3.2.1 Target distribution

We will focus on the Debian distribution, as it supports SELinux infrastructure by

default (unlike Ubuntu), but does not currently provide a working policy for desktop

environments (unlike Fedora). One of our goals will be to �x the problems of reference

policy, that currently make a SELinux-enabled Debian system unusable.

Since Fedora already provides a working SELinux policy and active support from

their development team; and also all the aforementioned theses have focused on Fedora,

CHAPTER 3. IMPROVING SELINUX COVERAGE AND USABILITY 25

we believe our thesis will thus have a greater impact for the Linux community if we

concentrate our e�orts towards a di�erent Linux distribution1.

3.2.2 Classifying applications

The existing solutions of extending reference SELinux policy all concentrate on adding

new policy modules for speci�c applications. We aim to generalize the task and cover

more applications at once.

With reference policy, if there is no policy module con�ning a particular application,

the user can either leave it uncon�ned, or write a speci�c module for that application

from the scratch. Writing a set of rules for each application separately can be a

challenging and time-consuming task. In an ideal world, it would be the application

authors' responsibility to provide a SELinux module for the application since they are

the ones who know the best how the application works, but this is often not the case. If

another developer or security enthusiast tries to do it instead, some marginal use case

scenarios of the application might stay uncovered, which may result in the application

not working properly.

Our extended policy will provide a series of modules for more general categories of

applications, rather than speci�c applications. This will provide a SELinux-aware and

security-concerned user a third option - to limit the application with a more general

set of rules.

The policy will contain modules for groups of applications, rather than for ev-

ery single application independently. As a result, a compromise between a detailed

application-oriented policy and a general policy allowing all operations will be accom-

plished, with a certain level of security guaranteed.

3.2.3 Analytical approach

In the previous work, we have observed a rather practical approach to covering the

desktop applications with a SELinux policy. Our vision of an ideal solution is more

analytical - we believe it must be properly justi�ed, and that our decisions to grant

privileges to applications must be supported by arguments. Moreover, our solution will

cover all applications equally, rather than concentrating on a speci�c set that is then

fully covered while the others stay unnoticed. Our SELinux policy will achieve this by

abstracting from the unnecessary details of the respective applications and focusing on

the features that they have in common.

There are two main guidelines which we will follow. First, the policy must be

easy to install and must not limit the users in their regular (non-malicious) activity.
1Nevertheless, it will not be di�cult to port our solution to other Linux distributions supporting

SELinux.

CHAPTER 3. IMPROVING SELINUX COVERAGE AND USABILITY 26

Second, all the applications must be restricted to some extent, i.e. the system must be

protected against the most common attack scenarios.

We will back our decisions with analyses of common PC usage scenarios and com-

mon attack scenarios, that induce a set of security and functional requirements of the

system, against which we evaluate our policy.

3.2.4 Compatibility and extensibility

We build our SELinux policy upon the reference policy, patch where necessary and

extend it with new modules.

The reason behind this decision is that the reference policy mainly covers system

applications and services, which is not the focus of our thesis. The reference policy

has undergone years of research and development by the community; and we wish to

bene�t from these e�orts, and further extend the qualities of the policy, rather than

writing our policy from the scratch.

Also, our goal is to design our SELinux policy with the extensibility in our minds.

Should a user conclude that a new, yet uncategorized set of applications deserves a

special treatment, it should not be very challenging to extend our policy to meet more

demanding requirements. It will be possible to add a custom, more detailed policy

module for each application.

For example, a set of o�ce applications can share one policy module but it will be

possible to add another module for each of the respective applications. This module

can be more benevolent and allow more operations if needed. Similarly, if we decide to

further restrict one of the applications, we can assign it to another group of applications,

either existing or newly-created, with more strict rules.

3.2.5 Target audience

In our model, we assume a system with one or multiple security-aware users. The

protected system is a personal computer used by a small number of users, typically

in a home environment. Since the reference SELinux policy already con�nes system

applications and services in a great detail, we focus on user applications (both CLI and

GUI).

We assume that the administrator of the system is trusted - otherwise he/she could

disable the SELinux policy and circumvent all our security measures. Other (non-

privileged) users may or may not be trusted.

The main goal for this thesis is to limit any damage caused on a system by rogue

applications. This requires the users to be security-concerned (and SELinux-aware),

because they have to actively work with the SELinux policy components, in order to

CHAPTER 3. IMPROVING SELINUX COVERAGE AND USABILITY 27

fully use its potential. In practice, this means to protect the user privacy, to ensure

the con�dentiality and integrity of user data, and to prevent the system from being

misused or corrupted.

As described in Section 2.2, this requires labeling newly installed applications or

incorrectly copied �les, and doing the basic diagnostics if something goes wrong (e.g.

when a �le is assigned an incorrect context or the policy prevents a desired action).

Security-concerned users recognize the value of SELinux security mechanisms, and

want to use them to secure their desktop environments. Our policy provides these users

with security guarantees, without the need of studying the reference policy in detail or

writing their own policies, but they must understand the main SELinux concepts and

the philosophy of our policy.

This model assumes trusted users with untrusted software, and we assume two

situations that the users should be able to handle:

• After installing a new application (such as web browser), the user should be able

to classify the application into one of our policy modules, which correspond to

categories of applications. The classi�cation should be realized by permanently

setting the correct security contexts to the application itself and associated �les.

By setting the security contexts, the application is restricted from undesired

operations, determined by its category.

• The user should be able to execute an application in a di�erent domain, without

the overhead of setting the correct security contexts. This can include executing

a web browser in a more restricted domain when browsing on untrusted websites,

or in a more trusted domain, when sensitive data are being processed.

In case of ordinary users, we can assume they will generally not seek to further

constrain their applications. Instead, they will be more concerned about the usability

of the system.

These users should be able to use their systems with our SELinux policy installed,

without a need for further con�guration and maintenance, as is the current situation

with the reference policy on Fedora systems.

Even in this scenario, our policy will guarantee a certain level of security for all pro-

grams. Since the ordinary users will likely use the default settings, the user applications

cannot have unlimited privileges by default (as is the case in the reference policy with

the default uncon�ned domain). In our policy, the default level of application privileges

will be slightly restricted. Should the users be limited by this decision, they will have

the option to switch each application to a less restricted (possibly even unrestricted)

domain, but this will have to be done manually after interactive authentication.

CHAPTER 3. IMPROVING SELINUX COVERAGE AND USABILITY 28

The users will ultimately bene�t from these settings - even if they incorrectly forget

to assign an untrusted program to one of the categories, it will not gain unlimited

privileges - for example, it will not be able to read users' most sensitive documents

such as private keys.

3.3 Summary

To summarize, the target distribution of our work will be Debian (GNOME environ-

ment), and the target audience will be security-aware users.

We set the following goals for our SELinux policy:

• The default domain of applications should be restricted to some extent, i.e. user

applications should not be uncon�ned by default. The default level of privileges

can be partially customizable by the user.

• The (security-concerned) user should be able to, temporarily or permanently,

further restrict any application by assigning it a security context associated with

permissions more strict than those at the default level. The policy should cover

practically all applications, i.e. the user should be able to choose such a security

context that re�ects the requirements of the application. This should be possible

even at the cost of the policy being less detailed and less strict.

• The (ordinary) user should be able to grant more privileges to any application, in

case none of the designed categories represents a speci�c application accurately.

This mechanism should be present as a fallback solution, in order not to disrupt

usability of the applications/system.

• Our policy should be thoroughly tested, not only from the usability perspective,

but also against the security requirements. The policy design and implementation

should be based on analysis of common PC usage use case scenarios, and most

prevalent threats.

• Our policy should be compatible with the reference policy and easily extensible.

As a result, our approach is to build our policy upon the reference policy, and add

new modules, while using the existing structure of the reference policy and the modules

for system applications and services.

For user applications, we will implement a small number of modules representing

categories of applications, according to their functional and security requirements. We

further de�ne a default constrained domain, and a fallback uncon�ned domain.

Part II

Analysis and design

29

Chapter 4

Security requirements

There are various scenarios of how a Linux system can be compromised, and various

techniques that malicious software leverages on the infected system. In this chapter,

we analyse the threat landscape and common adversary techniques, and determine how

these should be re�ected in our policy.

This will help us understand which resources we need to protect, and which restric-

tions we have to put on the applications.

As a reference in our analysis, we use an industry-recognized MITRE ATT&CK

Framework [32].

4.1 MITRE ATT&CK Framework

Adversarial Tactics Techniques and Common Knowledge (ATT&CK) framework is a

knowledge base of tactics and techniques used by attackers when compromising IT

systems. The framework is provided by a non-pro�t security company MITRE [32], and

it is globally-accessible.

The framework is based on real-world observations, and updated by security com-

munity. It is widely regarded today as the most comprehensive catalog of attacker

techniques and tactics [33].

The catalog contains descriptions of over 200 techniques that adversaries may use

over the course of an attack. Real-world examples of these techniques are also provided.

The techniques are classi�ed into groups called tactics, which are further divided into

the following groups, based on the attack phase and the target platform:

• PRE-ATT&CK tactics and techniques describe activities of the malicious actors

prior the actual attack, and include planning, reconnaissance or development of

malicious tools.

• Enterprise tactics and techniques concentrate on the activities during the attack.

30

CHAPTER 4. SECURITY REQUIREMENTS 31

They are further divided into groups of techniques relevant for Linux, macOS

and Windows platforms.

• Mobile tactics and techniques describe activities of the adversaries during the

attack on mobile platforms.

4.2 Scope of the analysis

In this analysis, we mainly focus on Enterprise tactics and techniques relevant to

Linux OS [34], but we also decided to include two techniques of the E�ects [35] tactic.

This tactic is only presented for mobile platforms in the Framework, but we consider

them relevant for Linux OS as well, as they describe techniques of ransomware, which

would otherwise not be represented in the analysis1.

In total, we focus on techniques classi�ed into the following 12 tactics: Initial Ac-

cess, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access,

Discovery, Lateral Movement, Collection, E�ects, Ex�ltration and Command and Con-

trol.

We could achieve the maximal security of a system by mitigating all of these tech-

niques, but there are three reasons why it is unrealistic in our scenario.

First, the techniques are directed against various layers of system protection in-

cluding physical security, �rewall, or even security awareness of users. Some of them

are beyond the control of SELinux, as they rely on software vulnerabilities or human

mistakes. We exclude such techniques from our analysis.

Second, mitigating some of the techniques by SELinux could have undesired im-

pact on usability of the system. These include techniques that are also employed by

legitimate programs, such as the use of hidden �les and directories (which can be mis-

used for Defense Evasion), or listing running processes on the system (which can be

misused for Discovery). Strictly blocking these techniques would contradict our goal

of simplicity and usability.

Finally, some techniques require speci�c privileges, such as ability to execute ap-

plication deployment software (for Lateral Movement). SELinux reference policy does

not de�ne a special category for such a software, nor do we plan to include it in our

extension, and so mitigation of these techniques would be too complicated for our more

general, high-level policy.

Nevertheless, even if we only concentrate on a subset of the malicious techniques,

we can successfully ful�ll the �ve main security goals of our thesis - to protect the
1This tactic is not included in MITRE ATT&CK Linux OS tactics, because these are more focused

on targeted attacks, rather than mass-spreading malware. In this analysis, we consider both.

CHAPTER 4. SECURITY REQUIREMENTS 32

system from being misused or corrupted, and to protect user privacy, integrity and

con�dentiality of user data.

Techniques to achieve initial access, discovery or persistence are by nature not

malicious, they only assist the malicious actors in performing their ultimate goals. The

main focus of the malicious actors is usually on other techniques, such as techniques for

collection of sensitive data, ex�ltration or communication with the C&C server, which

directly interfere with our security goals.

Our highest priority will therefore be to mitigate the techniques associated with

the actual malicious activities, and less focus will be given to those that only play

an assisting role. The techniques with lower priority can be re�ected in our policy as

conditional rules.

In the analysis, we determine the priority with which our policy will mitigate each

respective tactic, and evaluate whether SELinux is able to mitigate the associated

techniques, without breaching our usability goals.

4.3 Threat analysis

In this section, we review the relevant adversary tactics and techniques. We analyse

which of them can be blocked with the use of SELinux, and whether their mitigation

should be included in our security requirements.

We do not explain the individual techniques in detail. In case mitigation of the

respective technique is beyond the scope of SELinux, we only mention the name of the

technique and a short explanation why we do not consider it. For techniques that are

relevant for de�ning the security requirements for our policy, we may include a short

description, unless the name of the technique is self-explanatory.

The reader is advised to �nd the full descriptions on the project website [32], using

the names of the techniques, which we are referring to using italic font, and technique

ID, as de�ned by the MITRE ATT&CK Framework (such as T1189).

Some techniques can be used to achieve several tactics, with di�erent possibilities

of mitigation using SELinux, therefore, we sometimes list the same technique several

times, but in di�erent contexts.

4.3.1 Initial Access

The initial access tactic represents the attack vectors adversaries use to gain the �rst

entry to the system [32].

According to the recent Internet Security Threat Report by Symantec [36], the

most common infection vectors in targeted attacks are Spear-Phishing Emails (71.4%),

CHAPTER 4. SECURITY REQUIREMENTS 33

Watering-hole websites (23.6%), Trojanized Software Updates (5.7%) and Web Server

Exploits (2.9%).

This distribution indicates that applications behind the most common attack vec-

tors are web browsers and mail clients, and that they should be treated with a special

caution. By limiting the privileges of these two types of applications, we can a�ect the

privileges of majority of the malware introduced to the system.

MITRE ATT&CK Techniques

There are 9 initial access techniques in the Framework, none of which can be mitigated

by a SELinux policy.

We exclude from the analysis the initial access techniques that rely on exploiting

software vulnerabilities or bugs, which SELinux cannot prevent: Drive-by Compromise

(T1189), Exploit Public-Facing Application (T1190) and Supply Chain Compromise

(T1195).

Further, we exclude initial vectors that take advantage of human mistakes, such as

falling for social engineering or browsing rogue websites, which SELinux also cannot

prevent. The said techniques are Spearphishing Attachment (T1193), Spearphishing

Link (T1192) and Spearphishing via Service (T1194).

SELinux also cannot prevent infection through legitimate channels, as is the case in

the techniques Valid Accounts (T1078) and Trusted Relationship (T1199), where the

attacker gains access to the system using stolen credentials of a legitimate user, or by

impersonating a trusted third-party.

Finally, the Hardware additions technique requires adding new hardware to the

system, such as devices for network tapping, keystroke injection or kernel memory

reading via DMA. This attack vector cannot be prevented from the OS level, let alone

by SELinux.

In general, SELinux cannot prevent any of these initial access techniques, and so

their mitigation is beyond the scope of this thesis. Our policy will disregard completely

the individual scenarios of how a malicious code has been executed on a system, and

focus on the actual malicious behaviour and other adversarial techniques.

Security requirements

Web browsers and mail clients should be treated with special caution, as these are

behind the most prevalent intial attack vectors.

CHAPTER 4. SECURITY REQUIREMENTS 34

4.3.2 Execution

The execution tactic represents techniques that result in execution of adversary-controlled

code on a local or remote system [32]. The execution techniques are not directly ma-

licious, and have their legitimate use. They can be controlled by SELinux, but we

should consider their mitigation by an optional policy.

MITRE ATT&CK Techniques

MITRE ATT&CK for Linux describes 10 execution tactics. We exclude Exploitation

for Client Execution (T1203), as it relies on software vulnerabilities, and Trap (T1154),

as it is a shell built-in that cannot be disabled by SELinux.

The other techniques can be controlled by SELinux, but it should be up to user

whether a strict or more benevolent approach should be employed.

Standard techniques of (malware) execution, which require execute permissions,

can be mitigated by blocking execution of speci�c �les. These techniques include User

Execution (T1204), execution using Command-Line Interface (T1059) or Graphical

User Interface (T1061), execution using Third-party Software (T1072), execution by

scheduling a task or a periodic background job (Local Job Scheduling (T1168)), and

execution of a shell (Scripting (T1064)).

The execution using Source command does not require the �le to be executable, as

it loads and executes the �le in the current context. This technique can be mitigated

by SELinux by restricting the ability of the source command to read untrusted �les.

Security requirements

Our policy should provide an optional feature of application whitelisting2, i.e. a mode in

which the execution of untrusted software and/or scheduling it as a task is completely

blocked. In this mode, all software with the default security context is considered

untrusted and can be executed only after the user has changed its security context

to a more privileged domain. As this feature can severely impact the usability of the

system, it should be optional for the users.

If possible, the policy should limit the privileges of any process to execute a shell,

and the ability of the source command to read untrusted software, in order to prevent

its execution.

4.3.3 Persistence

Persistence is any access, action, or con�guration change to a system that gives an

adversary a persistent presence on that system [32].

2Similar to AppLocker [37] in Windows OS, not so prevalent in Linux [38].

CHAPTER 4. SECURITY REQUIREMENTS 35

Persistence techniques do not directly interfere with our security goals, and because

of their legitimate use, the mitigation of some of them should be optional.

MITRE ATT&CK Techniques

MITRE ATT&CK Framework describes 13 persistence techniques on Linux systems.

Our policy should block the use of Bootkit (T1067) and Kernel Modules and Ex-

tensions (T1215) for all user applications, as there is no legitimate scenario when they

should interfere with the boot sectors or kernel modules. It is one of our priorities to

protect the integrity of the system.

Ensuring persistence by modifying .bash-pro�le and .bashsrc (T1156), by scheduling

a task (Local Job Scheduling (T1168)), and by ability to Create Account (T1136) can be

both legitimate and rogue. SELinux can provide means to prevent these techniques, but

that could clash with some legitimate use-case scenarios. Mitigation of these techniques

should be optional in our policy.

As for the Web Shell technique, SELinux can mitigate the scenario where malware

runs a web server on the client machine, allowing access to the infected machine using

a command-line interface. The situation when malware exploits an existing web server,

cannot be prevented by SELinux.

Following are the other persistence techniques, all of which we exclude from our

analysis:

The Setuid and Setgid (T1166) technique is excluded, because it relies on a software

vulnerability in an application with the setuid or setgid �ag set. Redundant Access

(T1108) because it is a strategy, rather than a tangible technique, so in general, it

cannot be prevented by SELinux.

The trap command (Trap (T1154)) is built into the shell and can register code to

be executed upon receiving speci�c interrupt signals (e.g. Ctrl+C keyboard interrupt).

This mechanism cannot be blocked by SELinux.

Browser Extensions (T1176), Hidden Files and Directories (T1158) and Valid Ac-

counts (T1078), because they are based on misusing legitimate functionality, and con-

trolling them could have a negative impact on usability.

SELinux does not have the ability to detect or prevent Port Knocking (T1205)

technique. SELinux can block network access to ports, network interfaces and even at

the packet level, but cannot analyse patterns in the network communication.

Security requirements

All user applications should be denied access to the boot sector of hard drives, and the

ability to load/unload kernel modules.

CHAPTER 4. SECURITY REQUIREMENTS 36

Our SELinux policy should optionally limit the ability to modify .bash-profile

and .bashsrc scripts; to schedule a task using at, cron or launchd; to create user

accounts; and to run a web server.

4.3.4 Privilege Escalation

Privilege escalation is the result of actions that allows an adversary to obtain a higher

level of permissions on a system or network [32].

In general, the reference SELinux policy is more strict than the traditional MAC

mechanisms, and SELinux restrictions are in place even after a malicious applications

has gained administrator privileges. Thus, mitigating these techniques will not be our

main focus.

MITRE ATT&CK Techniques

Process Injection (T1055), especially to an elevated process, should be denied to all

user applications.

SELinux cannot prevent misusing poor con�guration of the sudoers �le (Sudo

(T1169), Sudo Caching (T1206)) but it can prevent the applications from weakening

a good con�guration, by controlling write access to the sudoers �le.

SELinux cannot prevent Web Shell (T1100), Exploitation for Privilege Escalation

(T1068) nor Setuid and Setgid (T1166), as they rely on exploiting software vulnera-

bilities. Neither can it mitigate the Valid Accounts (T1078) technique, where the user

gains access to the system using stolen credentials.

Security requirements

Our policy should block the ability of an application to inject into another process,

and the ability to manipulate the sudoers �le.

4.3.5 Defense Evasion

Defense evasion consists of techniques an adversary may use to evade detection or

avoid other defenses [32]. We will mostly be concerned with the techniques that can

evade/disable SELinux, the other techniques will be treated with lower priority.

MITRE ATT&CK Techniques

First and foremost, our policy should control access to disabling SELinux, so as not to

make its protections ine�ective (Disabling Security Tools (T1089)). Low-level access

to system should be carefully controlled, to mitigate Rootkits (T1014).

CHAPTER 4. SECURITY REQUIREMENTS 37

Further, the policy should limit the ability to Install Root Certi�cate (T1130), to

inject into another process (Process Injection (T1055)), to Clear Command History

(T1146) and manipulate HISTCONTROL (T1148).

It is possible but not necessary to mitigate File Permissions Modi�cation (T1222)

and Indicator Removal on Host (T1070), as other features of SELinux can naturally

assume these roles (DTE and SELinux logging).

We do not consider techniquesMasquerading (T1036), Obfuscated Files or Informa-

tion (T1027), Port Knocking (T1205), Web Service (T1102), Hidden Files and Direc-

tories (T1158), File Deletion (T1107), Binary Padding (T1009), Scripting (T1064),

Timestomp (T1099), Redundant Access (T1108) nor Indicator Removal from Tools

(T1066), as they are aimed at other layers of security protections, and legitimate from

the SELinux perspective.

SELinux also cannot prevent software vulnerabilities that facilitate Exploitation

for Defense Evasion (T1211) or using leaked user credentials for logging into Valid

Accounts (T1078).

Security requirements

Our policy should control access to disabling SELinux and changing SELinux con�gu-

ration; and should prevent installation of rootkits.

It should also limit the ability to manipulate installed certi�cates, to inject into

another process, to clear command history and logs, and to manipulate certain �le

permissions.

4.3.6 Credential Access

Credential access represents techniques resulting in access to or control over system,

domain, or service credentials [32]. These techniques are malicious by nature, and are

often deployed by keyloggers, banking trojans or other types of spyware, so it is one of

our priorities to mitigate them.

MITRE ATT&CK Techniques

Our policy should mitigate Input Capture (T1056), Network Sni�ng (T1040) and

Two-Factor Authentication Interception, as long as the second authentication factor is

a hardware token and the credentials are intercepted with the use of a keylogger. The

policy cannot prevent interception of out-of-band communications (SMS).

It is important that the policy restricts access to Credentials in Files (T1081) and

Private Keys (T1145).

CHAPTER 4. SECURITY REQUIREMENTS 38

If possible, the policy should also limit the possibility to dump credentials from

the Bash History (T1139) and by reading information from the /proc �lesystem

(Credential Dumping (T1003)).

SELinux cannot prevent Brute Force (T1110) techniques and Exploitation for Cre-

dential Access (T1212).

Security requirements

Our policy should prevent capturing pressed keystrokes and unauthorized network

sni�ng. If possible, it should limit the possibility to dump credentials from the bash

history and and by reading information from the /proc �lesystem.

The policy should provide special protection to �les with credentials and private

keys.

4.3.7 Discovery

Discovery consists of techniques that allow the adversary to gain knowledge about the

system and internal network [32]. All of the discovery techniques could be blocked by

SELinux, but since they do not directly interfere with our security goals, and due to

their otherwise legitimate use, we will not particularly concentrate on their mitigation.

MITRE ATT&CK Techniques

Most discovery techniques do not leak sensitive data of the user, so we will prefer us-

ability to security in this case. This applies to techniques Account Discovery (T1087),

Browser Bookmark Discovery (T1217), Network Service Scanning (T1046), Password

Policy Discovery (T1201), Permission Groups Discovery (T1069), Process Discovery

(T1057), Remote System Discovery (T1018), System Information Discovery (T1082),

System Network Con�guration Discovery (T1016), System Network Connections Dis-

covery (T1049) and System Owner/User Discovery (T1033). Some applications may

not be allowed these accesses in our policy, but it will not be our main focus to control

them.

Our policy should be focused on techniques that can threaten con�dentiality of

user data, and should limit the ability of user processes to perform File and Directory

Discovery (T1083) and Network Sni�ng (T1040).

Security requirements

Our policy should prevent unauthorized processes from performing network sni�ng;

and should limit the ability to read user �les (sensitive and/or non-sensitive).

CHAPTER 4. SECURITY REQUIREMENTS 39

4.3.8 Lateral Movement

Lateral movement consists of techniques that enable an adversary to access and control

remote systems on a network. These techniques are examples of spreading mechanisms

within the infected network, and are commonly used by worms.

We should limit the lateral movement techniques, as they pose a threat to security

of other systems within the network.

Techniques

Remote File Copy (T1105) can be mitigated by SELinux. Our policy should limit the

ability of user applications to use certain network protocols, such as SMB or FTP, or

to use network in general, unless necessary.

We can also mitigate SSH Hijacking (T1184) by controlling access to credential

stores.

We will not consider mitigation of Exploitation of Remote Service (T1210), Third-

party Software (T1072), Application Deployment Software (T1017) and Remote Ser-

vices (T1021), as they rely on software vulnerabilities or leaked user credentials, which

are beyond the control of SELinux.

Security requirements

Our policy should limit network access of user applications, and should limit the range

of network protocols they can use for the communication. The policy should protect

access to sensitive user information, such as credential stores.

4.3.9 Collection

Collection consists of techniques used to identify and gather information, such as sen-

sitive �les, from a target network prior to ex�ltration [32]. Data collection is the main

goal of spyware, and is directed against the user privacy and con�dentiality of user

data. Therefore, it is one of our primary goals to mitigate collection techniques.

MITRE ATT&CK Techniques

Our policy should mitigate Audio Capture (T1123), Screen Capture (T1113), Input

Capture (T1056) and collection of Clipboard Data (T1115). To a reasonable degree,

it should protect Data from Local System (T1005), Data from Network Shared Drive

(T1039), Data from Information Repositories (T1213) and Data from Removable Me-

dia (T1025).

CHAPTER 4. SECURITY REQUIREMENTS 40

We do not consider mitigation of Data Staged (T1074) and Automated Collection

(T1119) techniques, as these refer to coding practices of the malware, rather than

techniques with impact on data con�dentiality.

Security requirements

Our policy should protect access to user data on all drives - �xed, removable or remote.

Unless necessary, the user applications should not be allowed to read, write or otherwise

modify the data.

The ability to record audio and video using microphone and webcam device, to

record keystrokes and to capture screenshots, should only be allowed when absolutely

necessary.

4.3.10 E�ects

E�ects on the system are actions that interfere with our security goal of preventing the

system from being corrupted, and protection of user data integrity. Those techniques

are commonly used by ransomware, disk wipers and other malware types whose main

goal is blackmailing, sabotage or destruction.

MITRE ATT&CK Techniques

Our policy should block the ability to Encrypt Files for Ransom (T1417) (used by

ransomware), in order to protect the integrity of user data.

We should also mitigate the Wipe Device Data (T1447) technique, in order to

protect the integrity of the system.

Security requirements

Whenever applicable, our policy should block user applications from modifying user

and system data.

4.3.11 Ex�ltration

Ex�ltration refers to techniques and attributes that result or aid in the adversary

removing �les and information from a target network [32]. Ex�ltration techniques are

crucial for the successful operation of spyware, and we should mitigate them with the

highest priority, as they threaten the con�dentiality of user data.

CHAPTER 4. SECURITY REQUIREMENTS 41

MITRE ATT&CK Techniques

SELinux cannot prevent the techniques of Automated Ex�ltration (T1020), Data Com-

pressed (T1002), Data Encrypted (T1022), Data Transfer Size Limits (T1030) nor

Scheduled Transfer (T1029), as these appear legitimate to SELinux.

The policy also cannot block Ex�ltration Over Command and Control Channel

(T1041), once such a channel has been established. Possibilities of how to prevent

establishing such a channel are analysed in Section 4.3.12.

On the other hand, the policy can prevent Ex�ltration Over Alternative Protocol

(T1048), di�erent from the C&C protocol. FTP, SMTP or DNS are a few examples.

The policy should also prevent Ex�ltration Over Physical Medium (T1052) and Ex�l-

tration Over Other Network Medium (T1011) such as WiFi connection or Bluetooth.

Security requirements

Our policy should limit the ability of the applications to create and maintain network

connections (using various protocols), and the access to removable media.

4.3.12 Command and Control

The command and control tactic represents how adversaries communicate with systems

under their control within a target network [32]. It is crucial to mitigate the command

and control techniques, as they are used by the majority of the malware. Command

and control communication helps the malware ex�ltrate collected in�ltration (spyware),

receive further commands (backdoors), download new modules and so on.

MITRE ATT&CK Techniques

Whenever possible, our policy should block the ability of user applications to commu-

nicate over network, either using a Standard Non-Application Layer Protocol (T1095),

Standard Application Layer Protocol (T1071) or Custom Command and Control Pro-

tocol (T1094), Commonly Used Port (T1043) or Uncommonly Used Port (T1065).

The possibility of Communication Through Removable Media (T1092), Remote File

Copy (T1105) and using legitimate Remote Access Tools (T1219) should be given only

when required.

We do not consider techniques Custom Cryptographic Protocol (T1024), Stan-

dard Cryptographic Protocol (T1032), Multilayer Encryption (T1079), Data Encoding

(T1132), Data Obfuscation (T1001), Multiband Communication (T1026), Port Knock-

ing (T1205), Web Service (T1102), Multi-Stage Channels (T1104), Connection Proxy

(T1090), Multi-hop Proxy (T1188), Domain Fronting (T1172) and Fallback Channels

CHAPTER 4. SECURITY REQUIREMENTS 42

(T1008), as they are aimed at other layers of security protections, and legitimate from

the SELinux perspective.

Security requirements

Our policy should control the ability of user applications to communicate over network,

using various network protocols and ports.

The policy should limit the possibility to execute remote access tools. If possible,

access to removable and remote drives should be limited.

4.4 Summary

Our extension of SELinux reference policy should mostly mitigate the adversary tech-

niques associated with credential access, e�ects, collection, ex�ltration, command and

control and some techniques of lateral movement.

Some of the MITRE ATT&CK techniques are beyond the control of SELinux and

must be mitigated with the use of other security protections. We do not focus on these

techniques.

Mitigation of other techniques could potentially have a negative impact on the us-

ability of the system, and should thus be re�ected into a conditional policy, or omitted.

In this chapter, we de�ned a set of security requirements for our policy. In the

following chapter, we will use them to suggest a design of the policy.

Chapter 5

Functional requirements

The goal of this thesis is to provide a SELinux policy that covers the whole Debian

system. The reference policy already con�nes system applications and services in a

great detail - it de�nes policies for the bootloader, init, for SSH service and many

others. We assume that these policies are compliant with the functional and security

requirements of these programs.

This thesis extends the reference policy by covering the other part of the system

- user applications. This chapter is dedicated to analysing functional requirements of

these programs. We identify the most widely used user desktop applications, and sort

them by their common features.

Finally, we confront the requirements of legitimate applications with the security

requirements de�ned in Chapter 4, and create a high-level classi�cation of user appli-

cations to be re�ected in our policy.

5.1 Classi�cation of user applications

In order to de�ne functional requirements of user desktop applications, we �rst started

with analysing user-composed lists of popular Linux applications [39] [40] [41] [42] [43]. We

sorted these applications by their functionality and created the following categories:

• Web Browsers (e.g. Firefox, Vivaldi)

• Mail clients (e.g. Thunderbird, Evolution)

• Basic utilities (e.g. Calculator, Calendar, Notes)

• O�ce software/text editors (e.g. LibreO�ce, Sublime)

• Code editors (e.g. Atom)

• Image/photo editors (e.g. GIMP, Inkscape, Pinta)

43

CHAPTER 5. FUNCTIONAL REQUIREMENTS 44

• Image/photo galleries, PDF readers (e.g. Eog, Evince, Okular)

• Electronic book/magazine readers (e.g. Calibre)

• Video/audio players (e.g. VLC, Totem)

• Streaming applications (e.g. Spotify, Tomahawk)

• Video/audio editors (e.g. Audacity, Openshot)

• Audio/video/screen recorders (e.g. Handbrake)

• File management tools - archivers, converters (e.g. winFF)

• Cloud storage services (e.g DropBox, pCloud)

• Downloading tools, torrent clients (e.g. Transmission, FileZilla)

• Messaging applications (e.g. Skype)

• CD/DVD burning/disk formatting applications (e.g. WoeUSB)

• Basic local games (e.g. Mines)

• Gaming platforms (e.g. Steam)

• Applications for digital signature creation/veri�cation (GPG)

• Applications for encryption/decryption (OpenSSL, Kleopatra)

• Key/password managers (e.g. KeePass)

Some other applications, such as backup utilities, WINE or Tor, are already covered

by the reference policy - there are speci�c modules con�ning them. We will therefore

not consider them in the further analysis.

5.2 Design of our policy

Our original plan was to create a SELinux policy module to cover each type of ap-

plications de�ned in the previous sections. To illustrate, instead of the traditional

approach where each speci�c video player would be con�ned by a separate, detailed

policy module, in this approach, one module would cover all video players.

This approach has, however, proven insu�cient. Some of the types of applications

have overlapping functionality and can be easily merged into one category, to decrease

the complexity of the policy. For example, image/photo galleries, PDF readers and

video/audio players all require read-only access to user data. Video/audio players also

CHAPTER 5. FUNCTIONAL REQUIREMENTS 45

need a permission to play sounds, but this permission itself is not considered security-

sensitive and does not threaten integrity nor con�dentiality of user data. Therefore,

we can create one general category of �le viewers with these permissions, which will

cover all these types of applications.

More importantly, there are two classes of applications that require special treat-

ment. As demonstrated in Section 4.3.1, mail clients and web browsers are associated

with the most common attack vectors, and thus their privileges should be strictly lim-

ited. Moreover, both of them are a (frequently used) large piece of software, and there

can be vulnerabilities which can be exploited when processing malicious data from the

Internet. From the security point of view, all these reasons suggest the web browsers

and mail clients should only have minimal privileges.

On the other hand, both of these categories represent a complex piece of software

with a wide range of features, which require severe privileges.

Naturally, web browsers require network access to communicate over web protocols

(HTTP, HTTPS), but there are other requirements. For example, users often wish

to upload any local �le, or download a �le using the browser and store it in any

local directory. Further, using online messaging and teleconferencing services may

require access to webcam or microphone. Finally, to be able to use a private key for

authentication for some web services, the browsers require read access to sensitive user

data. In order to satisfy all these requirements, a full access to user data (including

sensitive data) and these devices would have to be granted to web browsers.

The situation is similar with mail clients. Apart from network communication over

mail protocols, the users require the ability to attach �les to email messages, and to

save attachments locally, for which the mail clients need read/write access to user data.

To provide active hyperlinks in the email messages, the mail clients need to be able to

execute web browsers. To correctly display images in emails from external sources, they

need to communicate over other than mail protocols. Finally, to be able to digitally

sign or encrypt emails, the mail client requires read access to sensitive user data.

Our solution to this problem will be to create several SELinux modules to con�ne

web browsers, and several modules to con�ne mail clients. These modules will vary in

the range of privileges, and we will enable a security-concerned user to decide which

mode will be used as the default and when to switch to another (more or less privileged)

mode.

In conclusion, our extension of reference SELinux policy will comprise a number

of additional modules for various groups of desktop applications. These groups of

applications will loosely correspond to classes de�ned in Section 5.1, but it will not be

a one-to-one assignment. Some modules are intended for several classes of applications

(since they have common security and functional requirements), and some applications

CHAPTER 5. FUNCTIONAL REQUIREMENTS 46

are covered by several modules with di�erent privileges (web browsers and mail clients).

5.3 Requirements for our policy modules

In this section, we present the list of modules that will be implemented by our policy,

supplemented with the functional requirements, example applications and typical use

case scenarios. The applications are assigned the least privileges needed for their

�awless operation, while limiting potential damages if they are exploited.

When referring to user data in this analysis, we distinguish between sensitive and

non-sensitive (general) user data. Sensitive data include password databases, encryp-

tion keys and other data the user identi�es as such.

In particular, we will recognize download/upload data, which, as a rule, refers to the

Downloads folder; and con�guration data, which refers to locations in the user home

directory where applications store user con�guration and temporary data. All these

data are considered non-sensitive, but sometimes we will use this more �ne-grained

separation.

When referring to network access, we will distinguish between network access over

speci�c application-layer protocols, general network access over standard protocols,

and unlimited network access (including access to raw sockets etc).

When referring to devices, we will distinguish between default, non-privileged access

to devices (access to terminals, speakers etc), and privileged access to devices, which

can include access to security-sensitive devices (such as webcam or microphone) and

raw access to devices (such as disks).

5.3.1 Simple local applications

Simple local applications such as games (gnome-mines, gnome-chess) and basic GUI

utilities (gnome-calculator, gnome-todo). These applications only process their con�g-

uration data (user settings, game score statistics) and do not need any access to user

data or network.

5.3.2 File viewers

Local applications for reading documents (evince), displaying images or photos (eog);

video and audio players (vlc, totem). These applications only require read access to

user data, there is no need to modify them, except for their con�guration data. Access

to sensitive user data or network access is not required.

This mode can also be used to display untrusted documents downloaded from the

internet, or email attachments from unreliable sources. PDF viewers or o�ce software

CHAPTER 5. FUNCTIONAL REQUIREMENTS 47

can contain security vulnerabilities that can be exploited when processing a malicious

�le from a rogue source. In this scenario, these applications can be executed in a

more restricted, read-only domain, in order to limit damages caused by the exploited

application.

5.3.3 File editors

General local applications processing non-sensitive user data. Examples include o�ce

suites (libreo�ce), code editors (atom), image/video/audio editors (gimp), paint appli-

cations (pinta), photography applications or �le archivers. Full access to non-sensitive

user data is needed. These applications do not require network access nor access to

sensitive user data.

5.3.4 Trusted �le viewers

Applications for creating digital signatures, data encryption and decryption. They

require read access to sensitive user data (such as private keys) and full access to

non-sensitive user data (for example, to read a document being signed, and create a

signature for that document). Network access is not required.

File viewers should generally be executed in the default, non-trusted mode (see File

viewers), but this trusted mode can be used to read sensitive user data. For example,

the user can execute an o�ce software in this trusted mode to be able to read sensitive

documents such as private keys or passwords.

5.3.5 Trusted �le editors

Local applications with full access to user data, including sensitive data such as pri-

vate and public keys, and passwords. Examples include password and key managers

(seahorse, keepass).

This mode can also be used for executing standard text editors, for example to edit

sensitive user data.

5.3.6 Device recorders

Local applications for recording audio/video and screen recording using microphone/we-

bcam devices (gnome-sound-recorder, cheese). These applications need full access to

non-sensitive user data and to webcam and microphone devices.

CHAPTER 5. FUNCTIONAL REQUIREMENTS 48

5.3.7 Web browsers

This class of applications is dedicated solely to web browsers, such as �refox-esr,

chromium or konqueror. As web browsers have gradually become more and more

complex, a wide range of access permissions is needed to support their functionality.

We want to enable a security-concerned user to limit its privileges, and thus reduce

potential damage, and so our policy o�ers four modes of using a web browser. It is up

to the user to decide which mode will be used as the default and when to switch to

another mode.

In all of the following modes, web browsers can communicate over web protocols.

General web browsers

General web browsers have full access to all non-sensitive user data. They do not have

access to webcam or microphone devices.

Restricted web browsers

Restricted web browsers can only access a small subset of user data (typically a Down-

loads folder, but the user can change this con�guration). They do not have access to

most of the user data, nor to webcam or microphone devices. This mode can be used

for browsing untrusted websites.

Trusted web browsers

Trusted web browsers have full access to all non-sensitive user data, and they can also

read sensitive user data. They do not have access to webcam or microphone devices.

This mode can be used when the user needs to use a locally stored private key to

authenticate for a remote server, or to digitally sign an email (when using webmail).

Unlimited web browsers

Unlimited web browsers are granted all permissions needed to support the browser

functionality, including full access to non-sensitive user data, to webcam and micro-

phone devices.

5.3.8 Mail clients

This class of applications is dedicated solely to mail clients, such as thunderbird or evo-

lution. For the basic functionality, mail clients require network access to communicate

over email protocols (SMTP, POP3...). Similarly to the web browsers, there are three

CHAPTER 5. FUNCTIONAL REQUIREMENTS 49

modes with di�erent privileges to be used with mail clients. It is up to the user to

choose the default mode and the proper mode for each situation.

In all of the following modes, mail clients can communicate over mail protocols.

The mail clients are never allowed access to webcam or microphone devices.

General mail clients

General mail clients have full access to all non-sensitive user data. They can communi-

cate over web protocols (e.g. to download resources from external servers, to correctly

display images included in email message) and execute a web browser upon clicking on

a hyperlink.

Restricted mail clients

Restricted mail clients can only access a small subset of user data (typically a Down-

loads folder, but the user can change this con�guration). They do not have access to

most of the user data, nor can they communicate over other than mail protocols or

execute web browsers.

This is a paranoid mode that can, for example, mitigate some forms of phishing.

Trusted mail clients

Trusted mail clients have full access to all non-sensitive user data, and they can also

read sensitive user data. This mode can be used when the user needs to use a locally

stored private key to digitally sign, encrypt or decrypt an email message.

5.3.9 General network applications

Applications that require network access, other than over only mail and web protocols.

Examples include electronic book/magazine readers (calibre), streaming applications

(spotify), cloud storage services (dropbox) or torrent clients (transmission-gtk). These

applications can communicate over various network protocols and have full access to

non-sensitive user data.

5.3.10 Teleconferencing applications

Messaging applications (skype, yakyak) and other applications that require ability to

communicate over various network protocols, to read and manipulate non-sensitive

user data (for �le sharing), and, most notably, to provide screen sharing and to access

webcam and microphone devices.

CHAPTER 5. FUNCTIONAL REQUIREMENTS 50

Category/User data type Con�g Downloads Sensitive General

Simple local applications Full None None None

File viewers Full Read-only None Read-only

File editors Full Full None Full

Trusted �le viewers Full Full Read-only Full

Trusted �le editors Full Full Full Full

Device recorders Full Full None Full

General web browsers Full Full None Full

Restricted web browsers Full Full None None

Trusted web browsers Full Full Read-only Full

Unlimited web browsers Full Full None Full

General mail clients Full Full None Full

Restricted mail clients Full Full None None

Trusted mail clients Full Full Read-only Full

General network applications Full Full None Full

Teleconferencing applications Full Full None Full

Table 5.1: Access to user data by application categories.

5.3.11 Unlimited applications

Some applications may require speci�c privileges, and might not fall into any of the pre-

vious categories. Since we still want to ensure a smooth execution of such applications,

we will provide a fallback mechanism - the unconfined domain from the reference

policy1. However, it should be used rarely and wisely, since it does not provide any

security guarantees.

5.4 Summary

In total, our policy will de�ne 15 modules for user applications, which loosely corre-

spond to categories of applications, when sorted by functionality.

The main di�erences between these categories are in the level of access to user data,

network resources and devices, and are summarized in Table 5.1 and 5.2.

Of course, we could de�ne other categories with di�erent combinations of privileges.

We chose this set of categories because we believe they represent the reality the most

accurately.

In case that individual requirements of a user are di�erent from our vision, the user
1Remember that in the original reference policy, user applications are executed in this domain by

default. In our policy, we only use it when no other option is available.

CHAPTER 5. FUNCTIONAL REQUIREMENTS 51

Category/Protocols, devices Web Mail TCP/UDP Raw Devices

Simple local applications No No No No Default

File viewers No No No No Default

File editors No No No No Default

Trusted �le viewers No No No No Default

Trusted �le editors No No No No Default

Device recorders No No No No Default

General web browsers Yes No No No Default

Restricted web browsers Yes No No No Default

Trusted web browsers Yes No No No Default

Unlimited web browsers Yes No No No Full

General mail clients Yes Yes No No Default

Restricted mail clients No Yes No No Default

Trusted mail clients Yes Yes No No Default

General network applications Yes Yes Yes No Default

Teleconferencing applications Yes Yes Yes No Full

Table 5.2: Access to network and devices by application categories.

is advised to add a similar module to our policy, with a di�erent, more appropriate

combination of privileges. The mechanism is not di�cult and is explained in Chapter 9.

Part III

Policy development

52

Chapter 6

SELinux policy development

In this chapter, we explain the mechanisms of a SELinux policy development, and the

main parts of a SELinux policy. As stated earlier, we only consider the modular policy

architecture, and so we will not provide details about monolithic policy in this chapter.

6.1 SELinux policy languages

A SELinux policy source code de�nes a set of policy modules. Some of them form the

base policy module, the other are optional and can be loaded or unloaded as required.

These module source �les are compiled into policy packages, and combined into a single

binary policy, which is then loaded into the kernel.

The SELinux policy further de�nes mapping between the Linux users and SELinux

identities, a set of roles that the SELinux user is authorized for, the default role for

each user, the default type for each role and the default contexts for some objects (such

as X-server objects or DBUS objects).

Currently, there are three separate policy languages in common usage [44], which we

introduce in the following sections:

• Kernel policy language - The original, low-level policy language.

• Reference policy language - Language created in M4 macros over the kernel policy

language, which includes interfaces and templates.

• CIL language - A new language, semantically equivalent to kernel policy language

that solves some of the kernel policy language problems and adds new features.

In this thesis, we will actively use the kernel and reference policy languages. We

only need a passive knowledge of the CIL language, as it can be used for troubleshooting

during the policy development.

53

CHAPTER 6. SELINUX POLICY DEVELOPMENT 54

6.1.1 Kernel policy language

In this section, we review the policy language statements [44] and explain which of them

we will use in our policy to accomplish our goals. We will not provide the syntax of

the rules. For a comprehensive reference, we advise the reader to study SELinux By

Example [2]

Policy building blocks

Statements class, common, inherits are used to de�ne object classes and per-

missions. We will preserve these de�nitions from the reference policy, as they are

closely tied to the Linux kernel objects, and are not supposed to be modi�ed by policy

developers.

We will use the statements user, role, type, typealias to de�ne users,

roles and types, and statements attribute, attribute_role and typeat-

tribute, roleattribute to de�ne groups of types and groups of roles.

RBAC rules

We will use the roles and types statements to de�ne a set of types allowed for a role,

and a set of roles allowed for a user. We will use the role_transition statement

to de�ne possible role transitions (role changes).

DTE rules

The DTE rules constitute the majority of the SELinux policy, and so naturally will be

the most frequently used rules in our policy as well.

The allow rules specify access allowed between two types.

For example, the following rule would allow a process running in the uncon-

fined_t domain to execute a �le of type bin_t:

allow unconfined_t bin_t : file execute;

The neverallow rules specify permissions that may never be granted by any allow

rule. This statement is especially useful when the SELinux policy consists of several

modules, possibly provided by independent creators, and when it is hard to keep track

of all allowed permissions.

For example, when the following rule is used, no domain except for the kernel_t

domain can be given the sys_module capability (to load kernel modules):

neverallow ~kernel_t self:capability sys_module;

CHAPTER 6. SELINUX POLICY DEVELOPMENT 55

Labeling rules

Statements default_user, default_role, default_type, fs_use_task,

fs_use_trans, fs_use_xattr, genfscon, netifcon, nodecon, port-

con, sid are used to de�ne default security contexts or parts of security contexts

to objects (kernel, �lesystems, ports...). We will preserve these de�nitions from the

reference policy.

In our policy, we will more often use the type_transition statement, which

allows (with combination of other statements) to de�ne type and domain transition

rules. These rules determine the types/domains of newly created objects (e.g. a new

�le in a directory) or processes.

For example, the following combination of rules speci�es that whenever a process

running in the init_t domain executes a �le with the apache_exec_t type, the

new process will be executed in the apache_t domain:

allow init_t apache_exec_t:file execute;

allow init_t apache_t:process transition;

allow apache_t apache_exec_t:file entrypoint;

Constraint statements

The constrain statement with the r1, r2, t1, t2, u1, u2 keywords and

==, !=, eq, dom, domby, incomp operators are used to de�ne constraints. We

do not de�ne any new constraints in our policy, we only preserve the constraints de�ned

by the reference policy.

Conditional policy statements

We will use the bool1, if and else to de�ne conditional policies, for example:

if (bool_allow_execmem && bool_allow_execstack) {

Allow making the stack executable via mprotect.

allow $1 self:process execstack;

}

Audit rules

We will use audit statements to de�ne rules specifying which events should be logged.

By default, all denied accesses are logged but it is possible to suppress logging of an

event that is commonly denied or security non-sensitive using dontaudit rule; or log

allowed operations that are security-sensitive using an auditallow rule.
1We will actually use the gen_bool macro of the reference policy language to de�ne a boolean �ag,

rather than the bool kernel policy statement.

CHAPTER 6. SELINUX POLICY DEVELOPMENT 56

MLS/MCS statements

Our policy does not use the optional MLS/MCS part of the SELinux policy, so we will

not use the related statements such as category, sensitivity, level, low,

level, low, low_high, low_high, default_range, dominance or oth-

ers like mlsconstrain and mlsvalidatetrans...

6.1.2 Reference policy language

The reference policy relies heavily on the M4 macro processor, as the policy interfaces,

templates and other supporting services are created as M4 macros over the kernel policy

language.

In this section, we will provide a few examples of the support M4 macros. More

information can be found in Section 5.7 of The SELinux Notebook [1], or in the reference

policy documentation.

Loadable module macros provide support to loadable module infrastructure - for

example, to de�ne modules (policy_module), or optional policies that are enabled

or disabled based on whether the corresponding module is loaded or not (optional_-

policy).

Other macros allow to de�ne boolean �ags (gen_bool), user-role assignments

(gen_user) or contexts assignments (gen_context).

Especially useful are the macros that de�ne groups of related object classes and

permissions, and common access patterns. A few examples follow.

When used in the policy allow rules, the read_file_perms macro is expanded

to a set of permissions required for read access to the �le:

define(‘read_file_perms’,‘{ getattr open read lock ioctl }’)

The socket_class_set is expanded to a set of all socket object classes:

All socket classes

define(‘socket_class_set’, ‘{ tcp_socket udp_socket rawip_socket

netlink_socket packet_socket unix_stream_socket unix_dgram_socket

appletalk_socket netlink_route_socket netlink_firewall_socket

netlink_tcpdiag_socket netlink_nflog_socket netlink_xfrm_socket

netlink_selinux_socket netlink_audit_socket netlink_ip6fw_socket

netlink_dnrt_socket netlink_kobject_uevent_socket tun_socket

netlink_iscsi_socket netlink_fib_lookup_socket

netlink_connector_socket netlink_netfilter_socket

netlink_generic_socket netlink_scsitransport_socket

netlink_rdma_socket netlink_crypto_socket }’)

The create_files_pattern expands to rules necessary to allow the speci�ed

domain ($1) to create a �le with the speci�ed type ($3) in a directory of the speci�ed

type ($2):

CHAPTER 6. SELINUX POLICY DEVELOPMENT 57

define(‘create_files_pattern’,‘

allow $1 $2:dir add_entry_dir_perms;

allow $1 $3:file create_file_perms;

’)

We will use these and other similar macros frequently in our policy.

6.1.3 CIL (Common Intermediate Language)

There is currently a project underway called the Common Intermediate Language (CIL)

project that de�nes a new policy de�nition language [1]. CIL is meant to enable several

features that are currently di�cult or impossible to achieve with the current policy

languages and tools, and to �x some problems of the kernel policy language, such as

inconsistency of naming conventions, order dependence and dependence on M4 macros.

In general, CIL preserves the current kernel policy almost unchanged (just with a

di�erent syntax) and layers on features from the existing languages, and novel features

(such as inheritance). It is designed to be an intermediate language between the low-

level kernel policy representation and a high level policy language. It is possible to write

a SELinux policy solely in CIL, but the future goal is to build more domain-speci�c

high-level languages over CIL.

In this thesis, we will not use CIL language for policy development. The reference

policy is implemented using the policy language and M4 macros over this language, and

since our goal is to extend it, we naturally choose to preserve the coding conventions2.

Being aware of CIL language can, however, be useful for a more experienced reader

of this thesis, who will seek to customize or further extend our policy. CIL uses a

LISP-inspired syntax for easy parsing, and is suitable for policy analysis. It can be

used during the policy development, for identifying bugs in the policy code. We used

this opportunity frequently, and provide more information in Chapter 9.

6.2 Reference policy structure

The source code and documentation of reference policy can be retrieved by installing the

selinux-policy-src and selinux-policy-doc packages. The former package

contains the policy de�nitions and rules, and Makefile for compilation and installa-

tion.

In this section, we provide a brief overview of the important parts of the reference

policy, upon which we build our policy. More details can be found in Section 5.2 of

The SELinux Notebook [1].
2The reader is, of course, welcome to study the comprehensive CIL language reference on the

project website [45].

CHAPTER 6. SELINUX POLICY DEVELOPMENT 58

The most important parts of the policy source tree are:

• config directory - application con�guration �les (e.g. default security contexts);

• doc directory - documentation, templates and example �les;

• policy directory - policy modules and con�guration �les;

• support directory - M4 support macros;

• Makefile, Rules.modular, Rules.monolithic - rules for building the

policy;

• users - de�nition of SELinux users and role assignments;

• constraints - constrain rules.

Other �les are generated during the compilation using de�nitions in the other source

�les, for example booleans.conf with all the boolean �ags (name, description,

default value), modules.conf with all the modules (whether it is a base or loadable

module, whether it should be enabled or disabled).

The policy modules in the policy directory are logically structured into 7 layers

(subdirectories). The admin, apps, kernel, roles, services and system layers contain the

core policy modules, and the contrib layer consists of modules for third-party/optional

applications.

Each of the policy module is implemented in the following three �les [46]:

The .te �le contains the SELinux policy code (type enforcement rules). The .if

�le contains functions that can be called by other modules, and that allow them to use

the internal types de�ned in the respective module (interfaces). The .fc �le contains

mappings between �le paths and security contexts, generally those de�ned in the .te

�le.

Some of the modules form the base policy module, the other modules are optional

and can be loaded or unloaded as required. The type of the module is determined by

the preamble of the interface �le. In this example, filesystem would be compiled

into the base module and mozilla would be a loadable module:

filesystem.if

<summary>Policy for filesystems.</summary>

<required val="true">

Contains the initial SID for the filesystems.

</required>

mozilla.if

<summary>Policy for Mozilla and related web browsers.</summary>

CHAPTER 6. SELINUX POLICY DEVELOPMENT 59

The con�guration �les in the config directory are presented in three subdirectories

- appconfig-mcs, appconfig-mls and appconfig-standard. Which set of

con�guration �les is used, is determined by the policy type (standard/with MCS/with

MLS). The reference policy uses MCS3, so we will use the appconfig-mcs directory,

although we do not add any special rules using the MCS mechanism.

6.3 Summary

Because we are extending a reference SELinux policy, we will naturally be using the

same languages and coding conventions. We will use the statements of a kernel policy

language and reference policy language, which builds upon the kernel policy language

with the use of M4 macros.

CIL language will be useful for troubleshooting during the development.

In our extension of the reference policy, we de�ne a new layer of modules (app-

groups), implement a number of modules in this layer and de�ne interactions between

the existing and the new modules. We will build on the reference policy, follow the

established conventions and use the provided Makefile.

3Multi-Category Security, see Section 2.1.7.

Chapter 7

Implementation

This chapter is dedicated to the implementation of our SELinux policy. We describe

the newly added modules and other changes made in the reference policy.

7.1 Fixing the reference policy for Debian

The SELinux policy for a Debian distribution, GNOME environment, has been bugged

at least since version Debian 7 [28]. We tested the reference policy with Debian versions

7, 8 and 9, and encountered severe problems with booting or using the X-server. There-

fore, in the �rst part of our implementation, we had to make changes in the existing

modules of the reference policy, to �x these bugs.

7.1.1 Missing privileges

The most important issue was missing privileges of some applications. We added

privileges to the following modules:

• initmodule and its interaction with udev, dbus, cron, xserver, gnome

and logging modules,

• selinuxutils module,

• unconfined module.

It is important to note that our patches are generic, i.e. we added some small sets

of privileges to make the system usable, without a deeper understanding why these

privileges are required. But due to the nature of the a�ected modules (system or

already highly-privileged applications), we are con�dent these changes do not have any

impact on the security of the user applications, which are the main focus of this thesis.

60

CHAPTER 7. IMPLEMENTATION 61

7.1.2 Broken mechanism for default contexts

The second issue we encountered was a problem with setting default security contexts

for users upon log on, as de�ned in the config directory of the policy source tree.

Although a default role for a user is de�ned, as well as a default domain for a role, the

latter setting is not e�ectively used. Instead, a so-called failsafe context is used for the

user, which is normally used in case the context for some subject or object cannot be

determined by any other settings.

We are not aware of any reason why this mechanism doesn't work. Nevertheless, we

can still determine the default context of the user by changing the value of the failsafe

context (in our case to confined_r:confined_t:s0).

The drawback of this solution is that the same role and domain will be used for

all SELinux users, even though we would prefer for the common users to log into a

nonprivileged role and the root user to a privileged role, or further distinguish between

various security contexts for the user based on how he/she logged in. In this solution,

all users are logged into the unprivileged role but can switch to the privileged role

manually1.

7.2 Design of the reference policy extension

In our implementation, we rely on the reference policy that already con�nes system

data and related resources. User applications also require some level of interaction

with system resources, but they do not require any special permissions such as reading

/etc/passwd �le or loading kernel modules. Therefore, we assign only a basic set of

system-related privileges to all user applications, such as read access to con�guration

�les, access to temporary directory, or ability to use terminals.

We add a new layer of modules to the reference policy that we call appgroups,

which refers to the nature of our modules that con�ne groups of applications, rather

than speci�c applications.

The layer contains modules for the categories of applications, as de�ned in Chapter

5, and a helperfnc module. The latter module de�nes an interface over the functions

provided by the reference policy, which we then use in the other modules to de�ne the

required privileges.

The user is by default logged in with an unprivileged confined_r role and con-

fined_t domain, but is also authorized for the privileged unconfined_r role and

unconfined_t domain.

The unprivileged domain ensures that the default privileges of the user and appli-

cations are limited, even if they are not speci�cally covered by the SELinux policy.
1See Section 8.2.4 for more details on how to switch between roles.

CHAPTER 7. IMPLEMENTATION 62

The privileged domain allows the user to change SELinux policy con�guration and do

other changes in the system.

7.3 User roles and domains

The unprivileged domain determines the permissions of the user, and of any application

that is executed without a domain transition (e.g. generic applications in /usr/bin

or user home directory). Those are generally applications that are not classi�ed into

any of our categories, nor con�ned by any of the existing reference policy modules.

We implemented the unprivileged role (confined_r) using the template for a

non-privileged user role provided by the reference policy (user_r), but we made some

minor changes. The unprivileged domain is authorized for basic access to system

resources (such as to read con�guration �les or to send logs to syslog) and for access

to non-sensitive user data, but - as a contrary to the user_t domain - it is restricted

from using network resources, accessing private user data, executing untrusted �les and

adjusting SELinux con�guration.

These precautions ensure that generic applications have only limited permissions,

unless assigned to a category of applications with the appropriate set of privileges. In

order to manipulate the sensitive user data or access network, either the user must

execute an application within the respective domain, or must switch to a privileged

role.

It is expected that the user will commonly switch between the privileged and unpriv-

ileged role, in the same way that he/she uses sudo. As a rule of thumb, all privileged

operations that require the use of a sudo command will now have to be carried out

in the privileged domain. To prevent frequent switching between the two roles, the

user can execute one shell in the privileged domain, another shell in an unprivileged

domain, and use them as required.

7.4 Helper functions for new modules

To simplify implementation of modules for application groups, we created a module

called helperfnc, in which we implemented helper functions for the other modules.

7.4.1 Interface over the reference policy

The helper functions mostly constitute a simpli�ed interface over the reference policy.

The reason behind this step was that the functions provided by the modules of the

reference policy are often too detailed, for example, in order to grant the read privileges

to the objects in a temp directory, one may need to call separate functions to allow

CHAPTER 7. IMPLEMENTATION 63

the access to directories, to �les, to symbolic links, sometimes even named sockets and

named pipe of the tmp_t type.

We grouped such functions regarding the same type and access vector, and created

a number of simpli�ed functions. We provide a few examples, but the user is advised

to study the documentation of the module for more details2.

Example 1

Read access to /var directory.

Read generic files in /var, /var/lib

Types: var_t, var_lib_t

interface(‘helper_read_var’,‘

files_list_var($1)

files_read_var_files($1)

files_read_var_symlinks($1)

files_list_var_lib($1)

files_read_var_lib_files($1)

files_read_var_lib_symlinks($1)

’)

Example 2

Privileges to use network ports and send packets associated with web protocols.

interface(‘helper_network_web’,‘

corenet_sendrecv_http_client_packets($1)

corenet_tcp_connect_http_port($1)

corenet_tcp_sendrecv_http_port($1)

corenet_sendrecv_http_cache_client_packets($1)

corenet_tcp_connect_http_cache_port($1)

corenet_tcp_sendrecv_http_cache_port($1)

’)

Example 3

Example of a helper function that does not use the existing functions of the reference

policy modules. This part of the function allows the basic IPC communication between

the processes of the same domain.

Basic interaction (~ safe for all modules)

interface(‘helper_self_permissions’,‘

IPC objects (unlimited access to objects of the same type)

allow $1 self:shm create_shm_perms;

allow $1 self:sem create_sem_perms;

allow $1 self:msgq create_msgq_perms;

allow $1 self:msg { send receive };

...

’)

2See Appendix B.

CHAPTER 7. IMPLEMENTATION 64

Type name Description

user_home_t Default type for objects in the user home directory.

user_home_con�g_t Type for objects in hidden directories in the user home

directory (e.g. ~/.config/ directory).

downloads_t Type for objects in the download/upload directories, which

are the only directories accessible to a restricted web

browser and a mail client (e.g. ~/Downloads/).

private_t Type for private user data (e.g. in the ~/Private direc-

tory).

Table 7.1: Security types for �les in the user home directory.

7.4.2 Classi�cation of user data

The reference policy by default de�nes a single type for �lesystem objects located in the

user home directory - user_home_t. However, we need a more �ne-grained control

over the �les in this directory.

For example, the category of simple local applications (local_restricted_t)

does not require access to user data, but does require access to user con�guration direc-

tories such as ~/.local/share, ~/.config or ~/.cache. In the reference policy,

all of these �les have the same type so we could not ful�ll both of these requirements

at the same time.

We solved this problem by creating new labels for objects in the user home directory,

as listed in Table 7.1.

To preserve compatibility with the other modules of the reference policy, we de�ned

an attribute user_home_generic_content_type and replaced all occurrences of

user_home_t with this attribute.

We further de�ned new types for bash con�guration �les and bash history �le, in

order to put restrictions on access to these �les, and thus to comply with our security

requirements.

All of these changes apply to the userdomain module.

7.5 Added modules

We added 15 new modules into the policy, that implement the requirements of the

categories of applications (appgroups), as de�ned in Chapter 5. These modules rely on

the interface of the helperfnc module.

In this section, we describe the groups of privileges that we granted to these modules

(in various combinations, based on their functionality requirements). We also describe

CHAPTER 7. IMPLEMENTATION 65

possible interactions between our newly-de�ned domains and types.

7.5.1 Basic access

All of our domains can be executed by both privileged (unconfined_t) and non-

privileged (confined_t) domain. They all have privileges to use IPC objects, ma-

nipulate �les within their domain or send signals to processes of the same domain.

All of our domains are given the basic access to system �les, which includes ability

to read generic �les in /usr, /etc, /tmp, /var, /sysfs, /proc, retrieve

�lesystem atrtibutes, read sysctls, manage temporary �les and tmpfs �les, manage

locks and user con�guration data, send messages to syslog and execute generic binary

�les without domain transition.

7.5.2 Access to user data

Our policy largely focuses on protecting the user data, so our domains are given a

varying level of privileges with regards to the data in the user home directory and on

removable drives.

In the restricted level, the domains only have access to user con�guration data.

Some domains can only access �les in the download/upload folders. Most of the

domains have a full or readonly access to non-sensitive user data, and only trusted

domains can access or even modify sensitive user data.

7.5.3 Access to network

Unless necessary, our domains have no access to network. Web browser domains only

have access to web protocols, mail clients only to mail protocols, and sometimes to web

protocols.

The domain for general network applications has full access to network via TCP/UDP

protocols, but only uncon�ned domain can use raw sockets.

7.5.4 Access to devices

Basic access to devices given to all domains consists of access to terminals, ability to

use a printer device and speakers.

When necessary, the domains are also given access to the webcam and microphone

devices. Only the uncon�ned domain has full access to all devices (such as raw disks).

CHAPTER 7. IMPLEMENTATION 66

7.5.5 Interaction with contrib modules

Whenever necessary, the helper functions de�ne possible interactions with modules

from the contrib layer, for example, the trusted applications are allowed to interact

with the gpg module, which also deals with private user data.

7.5.6 Interaction between new modules

The existing modules of the reference policy often de�ne a number of types that are used

by the respective application. For example, the samba module de�nes type smbd_-

exec_t for the daemon executable �le, smbd_t for the corresponding application

domain, and a couple of other types that are used to label private con�guration �les,

log �les etc (samba_log_t, samba_var_t, samba_var_run_t, samba_etc_t,

samba_secrets_t, samba_unit_t...)

Even though this approach allows to de�ne complex policies, it may cause confusion

to the user, who will likely have a hard time understanding which type should be used

in which situation.

We decided for a simpli�ed solution where we use only two or three types for each

module - a type for the application domain (with which all the privileges are associated);

a type for an executable �le that determines the entrypoint to the domain; and a type

for all other associated �les. Sometimes, we even use the same type for the application

domain and �le type. All types that we de�ned for our new modules, are listed in

Table 7.2.

As for the interaction between the modules, the application domains are not au-

thorized to modify �les of types de�ned by the other modules. However, in favour of

usability, we added an option to execute the �les de�ned by the other modules, but

always in the less-privileged of the two domains.

For example, when a web browser (browser_general_t) executes a calculator

(local_restricted_exec_t), domain transition to local_restricted_t do-

main is enforced. This is to prevent a non-trusted, non-privileged application from

being executed in a domain with higher privileges (in this example, the ability to read

and modify user data and the access to the network).

On the other hand, should the calculator attempt to execute the web browser, the

policy will not allow the domain transition (even if requested), and the web browser

will be executed in the context of the less-privileged calculator. This is to prevent a

non-trusted, non-privileged application from executing highly-privileged applications,

possibly with malicious inputs.

The graph in Figure 7.1 illustrates the relationships between the domains, showing

which of each pair is more privileged.

CHAPTER 7. IMPLEMENTATION 67

Executable �le type Other �les type Application domain

browser_general_exec_t browser_t browser_general_t

browser_restricted_exec_t browser_t browser_restricted_t

browser_trusted_exec_t browser_t browser_trusted_t

browser_with_devices_exec_t browser_t browser_with_devices_t

local_general_exec_t local_general_t local_general_t

local_readonly_exec_t local_readonly_t local_readonly_t

local_restricted_exec_t local_restricted_t local_restricted_t

local_trusted_readonly_exec_t local_trusted_readonly_t local_trusted_readonly_t

local_trusted_rw_exec_t local_trusted_rw_t local_trusted_rw_t

mail_general_exec_t mail_t mail_general_t

mail_restricted_exec_t mail_t mail_restricted_t

mail_trusted_exec_t mail_t mail_trusted_t

network_general_exec_t network_general_t network_general_t

Table 7.2: Types added to the reference policy. Each line in the table represents

types used by one of the modules. The name of the corresponding modules are obvious

from the naming convention. Some modules can share access to a single �le type (web

browser and mail client modules).

Further, one of our requirements was to be able to temporarily execute a �le in a

di�erent domain. For example, when the user executes a �le with the browser_-

general_exec_t type, the new process will automatically transition to the domain

browser_general_t.

But using a runcon command3, we can temporarily execute the �le in a di�erent

context, as long as it is allowed in the policy. An entrypoint permission between

the �le type and the desired temporary domain is required.

In our policy, we de�ned these permissions for the groups of domains that can be

used for the same types of applications. For example, a text editor can be temporarily

executed in read-only mode to process potentially malicious data from a mail attach-

ment, or a web browser can be temporarily executed in a trusted mode to be able to

use the webcam and microphone for teleconferencing. All the possible combination for

temporary domain change are listed in Figure 7.2.

7.6 Optional policy parts

We implemented some parts of the policy as conditional statements, in order to allow

the user to determine the level of strictness of the policy - often, it means to decide
3See Chapter 8.

CHAPTER 7. IMPLEMENTATION 68

between a usability and security.

Our optional policies deal with application whitelisting (which types of �les can be

executed), memory corruption prevention (ability to execute code on stack or heap)

and restricting access to network resources.

For example, our policy by default does not allow execution of �les located in the

download/upload folders, in order to prevent accidental execution of untrusted �les

downloaded from the internet. Furthermore, the policy does not allow any network

access to the default domain of the user. Both of these settings can, however, be

changed by the policy boolean �ags.

All added boolean �ags with their default values and meanings are listed in Table

7.3.

7.7 Summary

We extended the reference SELinux policy by a new layer of 16 modules - a helper mod-

ule serving as an interface over the existing policy, and 15 application group modules

bulding upon the interface.

Since the reference policy is currently not working on a Debian desktop system, we

also added a few patches necessary to �x its issues.

In our policy, a user always logs in into an unprivileged role and domain, and can

then switch to a privileged role and domain when necessary. This separation ensures

that even if an application is not assigned to one of our application group domains, it

will not be executed with unlimited privileges (as is the case in the original reference

policy).

The privileged role and domain can be used for changing SELinux settings, or

general system con�guration, or any other operation in which the user does not wish

to be limited by SELinux. The role change can, however, only be made after an

authentication, which prevents malicious code running in the context of the user to

switch to a more privileged role.

CHAPTER 7. IMPLEMENTATION 69

Boolean name Default Description

appgroups_allow_execmem True Ability of the new domains to

execute memory mappings.

appgroups_allow_execstack True Ability of the new domains to

execute code on stack.

appgroups_allow_execheap True Ability of the new domains to

execute code on heap.

apprgroups_exec_shell True Ability of the new domains to

execute a shell.

appgroups_exec_downloads False Ability of all domains to exe-

cute �les in the download/upload

directory.

appgroups_exec_all_readable_-

�les

False Ability of the new domains to

execute all �les to which they have

read access (e.g. temporary �les).

appgroups_exec_all_exe-

cutable_�les

False Ability of the new domains to exe-

cute all executable �les (from the

perspective of SELinux).

appgroups_read_app_private_-

�les

False Ability of the new domains to read

private �les de�ned by speci�c cat-

egories, e.g. not only generic �les

in user home directory (user_-

home_t), but also �les in the user

home directory owned by mozilla

(mozilla_home_t).

appgroups_network_for_de-

fault_role

False Allow network access to the un-

privileged domain (TCP/UDP, not

raw).

appgroups_servers_for_net-

work_general

True Allow network applications to

create and run servers, apart from

creating connections with remote

servers.

appgroups_allow_gpg_for_de-

fault_domain

False Allow access to gpg utility and

related �les to the default domain.

Table 7.3: Boolean �ags added to the policy, determining optional sets of privileges

for the application group domains.

CHAPTER 7. IMPLEMENTATION 70

Figure 7.1: Topological ordering of the newly-created modules, based on their privi-

leges. There is a directed path in the graph from module A to module B precisely when

the privileges of module A are a superset of privileges of module B.

CHAPTER 7. IMPLEMENTATION 71

Figure 7.2: Pairs of �le types, which can be interchangeably executed in all the under-

lying domains, when using a runcon command. There is a directed edge between two

modules when the former module is allowed to be executed in the domain of the latter

module.

Part IV

Deployment and maintenance

72

Chapter 8

SELinux setup and administration

In Section 2.1, we introduced the main SELinux concepts and mechanisms that are used

to restrict operations on the system. As already mentioned, it is a MAC mechanism,

and that requires some additional complexity in using and administering the underlying

system.

In this chapter, we provide a detailed tutorial on how to enable SELinux on a

system, how to con�gure it with our policy, and introduce tools for handling common

problematic situations.

We tested the policy, and this tutorial, on a Debian 9.8 system with GNOME

desktop environment1. For other distributions and desktop environments, there might

be di�erences in tool/package names; and it must be checked whether the system is

using a SELinux capable kernel and �lesystem.

In this section, we use the following convention in the listings - $ marks a start of

a command to be executed in the user shell, # in a root shell, // indicates a comment

and the other lines contain command outputs.

8.1 Enabling SELinux

In this section, we describe how to install and enable SELinux with our policy [47].

Administrator privileges are required.

The installation consists of the following steps:

1. Install the basic set of SELinux utilities.

2. Obtain the compiled SELinux policy.

3. Activate SELinux - con�gure GRUB and PAM and schedule a �le system rela-

beling.
1Release: 4.9.0.8-amd64, kernel version: #1 SMP Debian 4.9.144-3.1 (2019-02-19), architecture:

x86_64

73

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 74

4. Reboot the system. Automatic relabeling will occur, and then the system will be

rebooted again. This step might take quite some time.

5. Check whether the installation was successful.

6. Customize the installation.

7. Switch SELinux to enforcing mode.

8.1.1 Installing SELinux utilities

The basic selinux tools are included in the selinux-basics package. SELinux

further uses auditd for logging. It is not required to install this package but it is

recommended, as it is necessary for e�ective troubleshooting.

apt-get install selinux-basics auditd selinux-policy-default-

selinux-policy-dev-

Note: We do not install the package selinux-policy-default because it con-

tains the reference SELinux policy. We will install the policy manually in the next

step. We do not install the package selinux-policy-dev since it comprises tools

for SELinux policy development, which are not necessary for an ordinary SELinux user.

Other packages with SELinux utilities should be installed automatically with this

command as recommended packages. If not, the user should also install the packages

selinux-utils, setools, setools-gui, python3-setools, policycore-

utils and policycoreutils-python-utils.

It is essential to install the newrole package, to be able to switch between SELinux

roles. With our policy, a user is by default logged in with an unprivileged role, which is

not authorized for doing any SELinux-related changes. Without the ability to switch

into a privileged role, the user can easily lock himself/herself out from the system:

apt-get install newrole

8.1.2 Obtaining SELinux policy

The reference SELinux policy can be obtained from the o�cial sources, by installing one

of the packages selinux-policy-default or selinux-policy-mls on Debian.

Doing so installs the policy and con�guration �les to /etc/selinux/default or

/etc/selinux/mls, respectively.

This is not our case, however, as we want to use our own policy. The policy can be

found in Appendix A.

To install the compiled policy to the con�guration directory (/etc/selinux/)

and the policy packages to the policy store (/usr/share/selinux or alternatively

/var/lib/selinux), run the following script:

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 75

%APPENDIX%/thesis-release/INSTALL

As an alternative, the policy can be compiled from the source code. This option

can be used when installation of the compiled version goes wrong (for any reason),

or where there is a new version of the reference policy and so our policy should be

updated accordingly. In that case, the reader can apply a patch to the reference policy

with the changes we made. The full source code and the patch against the reference

policy can be found in Appendix B, and more information about how to compile the

policy from the source code, in Section 9.3.

8.1.3 Activating SELinux

Activate SELinux using the following command:

selinux-activate

This command makes GRUB to be aware of SELinux. It adds kernel boot param-

eters to make SELinux the active LSM module.

The command also creates an empty /.autorelabel �le, which triggers rela-

beling of the system on the next reboot. The next step is, therefore, to reboot the

system.

reboot

The system is then automatically relabeled, i.e. all the objects are assigned security

contexts, as de�ned in the active SELinux policy. This step might take a while.

After the relabeling is completed, the system reboots automatically.

8.1.4 Verifying SELinux installation

To verify the installation was successful on Fedora or Ubuntu, we would run the fol-

lowing command:

check-selinux-installation

The command checks that everything has been setup correctly and catches common

SELinux problems [47].

However, on Debian systems using systemd (not init scripts), this command fails

before doing any relevant tests [48]. Instead, we recommend to do some checks manually.

SELinux is by default con�gured in permissive mode, which means it does not block any

operations but it logs information about attempted operations that would be denied if

SELinux was con�gured in enforcing mode.

First, disable any dontaudit rules to force SELinux to log all denied operations.

This is done by semanage command from policycoreutils-python-utils

package:

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 76

semanage dontaudit off

Try to execute some applications, log out and back in, reboot the system. Then,

check the logs in /var/log/audit.log or /var/log/audit/audit.log to see

if any of the legitimate operations would be denied. The logs are quite descriptive, but

we recommend to study reference materials [49] to understand them.

As an alternative, the logs can be read in more user-friendly form when ausearch

command from auditd package is used. See Section 8.3 for more details.

The dontaudit rules should then be turned back on, in order to prevent over-

loading the logs with security-insigni�cant entries:

semanage dontaudit on

8.1.5 Customizing the installation

To change some user-speci�c settings, run the post-installation script included in Ap-

pendix A:

%APPENDIX%/thesis-release/POSTINSTALL

The script sets contexts of some �les, as per the instructions of the user. It asks

the user for the location of download/upload directory (downloads_t) and directory

with private user data (private_t). It also sets the default values of built-in boolean

�ags.

8.1.6 Switching to enforcing mode

Finally, switch SELinux to enforcing mode. This can be done temporarily (until the

next reboot), or permanently (by changing the corresponding kernel boot parameter).

Without SELinux being switched to enforcing mode permanently, the security protec-

tions provided by SELinux are not active, therefore it is an important step.

// temporary change

setenforce 1

// permanent change

selinux-config-enforcing 1

8.2 Using a system with SELinux

In order to use a SELinux-enabled system, the users have to be aware of the security

contexts and be able to view and modify them. SELinux is based on DTE, and so it

is crucial that objects of the system are assigned correct type.

After SELinux has been enabled, �lesystem objects are labeled with security con-

texts, as de�ned in the policy. Without any further changes after the installation, the

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 77

policy constrains operations of a prede�ned set of applications, mostly system services

and applications and some user programs, while the majority of the user programs runs

in the default mode.

Using a SELinux-enabled system requires assigning correct types to the newly-

installed applications, and to �les that require extra protection (such as private keys).

Sometimes, the users have to switch between user roles, to be able to access more

privileged domains.

The administrators will typically need to adjust policy con�guration, and to solve

most common SELinux-related problems.

In this section, we will review how these activities can be accomplished by some

Linux commands and SELinux utilities. For more details, we advise the readers to

study the SELinux project website [18] and the manpages of the respective commands.

Beware that some of the SELinux-related administration tasks are only allowed in

the privileged user domain (unconfined_t), and so the user must �rst switch to the

privileged role (unconfined_r) to be able to use them.

8.2.1 Using basic Linux utilities

Many Linux commands accept the -Z or -context argument to view, create, and

modify the security contexts. It is very important to use these arguments, in order to

avoid inconsistencies in �le labeling.

We review the most useful commands with examples [50] and explain how to use

them. All of these commands can be used in the unprivileged domain confined_t.

Viewing security contexts

Command ls -Z lists directory contents with the security context of each �le.

$ ls -lZ

-rw-r--r--. 1 test test unconfined_u:object_r:user_private_t:s0 1822

Jan 01 12:30 passwords.kdbx

Command id -Z prints the security context of the user.

$ id -Z

unconfined_u:unconfined_r:unconfined_t:s0

With the -Z argument, the ps command prints the security contexts of the running

processes.

$ ps -aZ

LABEL PID TTY TIME CMD

system_u:system_r:init_t:s0 550 tty1 00:00:00 gnome-shell

unconfined_u:unconfined_r:browser_general_t:s0 1213 tty2 00:00:08

firefox-esr

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 78

unconfined_u:unconfined_r:local_restricted_t:s0 1544 tty2 00:00:00

gnome-calculator

...

Modifying security contexts

Incorrectly modifying the security contexts when creating/moving/copying �les or di-

rectories is a common mistake of SELinux users, which leads to the most common

SELinux problems [51]. It is therefore important to use the SELinux-speci�c arguments

when using these commands.

With the -Z argument (or without any arguments), the mkdir command sets the

security context of the newly created directory to the default context. The default

context is determined by the context of the parent directory, e.g. user_home_t in

the user home directory.

With the --context argument, the speci�ed security context is set. In our condi-

tions, this command is useful when the user wants to create a new directory accessible

for a restricted web browser (downloads_t), or a new directory with sensitive data

(private_t).

$ pwd

/home/test

$ mkdir dir1

$ ls -lZ dir1

drwxr-xr-x. 2 test test unconfined_u:object_r:user_home_t:s0 4096 Jan

01 12:31 dir1

$ mkdir --context=unconfined_u:object_r:downloads_t:s0 dir2

$ ls -lZ dir2

drwxr-xr-x. 2 test test unconfined_u:object_r:downloads_t:s0 4096 Jan

01 12:32 dir2

Without any arguments, the mv command will attempt to maintain the security

context of a �le that is moved to a di�erent directory. This can lead to undesired

behaviour, when the source and destination folders contain �les with di�erent security

contexts.

As an example with our SELinux policy, this can lead to problems if we use the

web browser in a restricted mode. Let's assume the user wants to upload a photo to a

website, using the web browser. The photo is located in the /home/user/Pictures

directory and labeled with the user_home_t type. The user �rst moves the �le to

the directory to /home/user/Downloads directory, which contains �les with the

downloads_t type.

If the user moves the �le using the mv command without any argument, the �le

retains its security type of user_home_t. The web browser will not be able to read

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 79

this �le, because it is not allowed to read generic �les with in the user directory (with

user_home_t type), only the �les with the downloads_t type.

The correct handling of this situation is to use the -Z argument when moving the

image �le. With this argument, the mv command sets SELinux security context of

destination �le to the default type in the destination folder.

For brevity, we only display the type portion of the security context in the following

example.

$ ls -lZ /home/test/Downloads

-rw-r--r--. 1 test test downloads_t 15 Jan 6:00 image

$ ls -lZ /home/test/Private

-rw-r--r--. 1 test test user_private_t 182 Jan 7:00 passwords1

-rw-r--r--. 1 test test user_private_t 154 Jan 8:00 passwords2

$ mv /home/test/Private/passwords1 /home/test/Downloads

$ mv -Z /user/test/Private/passwords2 /home/test/Downloads

$ ls -lZ /home/test/Downloads

-rw-r--r--. 1 test test downloads_t 15 Jan 6:00 image

-rw-r--r--. 1 test test user_private_t 182 Jan 7:00 passwords1

-rw-r--r--. 1 test test downloads_t 154 Jan 8:00 passwords2

The cp command is similar to mv and mkdir. With -Z argument, the security

context of the destination �le is set to the default type in the destination folder. With

-context argument, the security context is set to the speci�ed value.

The behaviour without any modi�ers is slightly di�erent to that of mv command. If

the destination �le already exists, the new �le will maintain the context of the previous

�le [51]. Otherwise, the security context of the source �le will be preserved, just like

with the mv command.

8.2.2 Changing policy con�guration

Our SELinux policy has builtin a number of if/then/else rules called booleans that

allow users to tweak the prede�ned rules to allow di�erent access.

For example, in our policy, the user can choose whether the user applications will be

able to execute code on stack. From the security point of view, this is not recommended

as it can facilitate memory corruption exploitation, but a lot of legitimate applications

are implemented poorly and require these privileges. By setting the appgroups_-

allow_execstack �ag, the user can choose between the security and usability. All

boolean �ags de�ned in our policy are described in Section 7.6.

To manage the values of the boolean �ags, SELinux comes with a number of tools.

All booleans with their values can be listed using the following commands:

// list all booleans with their current value

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 80

$ getsebool -a

appgroups_allow_execstack --> off

...

// list descriptions of all booleans

$ semanage boolean -l

SELinux boolean State Default Description

allow_execstack (off , off) Allow appgroup executables to make

their stack executable. This should never, ever be necessary.

Probably indicates a badly coded executable, but could indicate an

attack. This executable should be reported in bugzilla.

...

To permanently or temporarily change boolean values in SELinux policy, setse-

bool command can be used:

// temporary change, <value> corresponds to 0 (disable) or 1 (enable)

$ setsebool <boolean_name> <value>

// permanent change, <value> corresponds to 0 (disable) or 1 (enable)

$ setsebool -P <boolean_name> <value>

Commands getsebool and setsebool are included in the policycoreutils

package, and command semanage boolean in the policycoreutils-python-

utils package.

The getsebool command can be used in the unprivileged user domain, but the

setsebool command can only be used in the privileged domain.

8.2.3 Setup for new applications

The SELinux policy de�nes security contexts for system objects, such as kernel, IPC

objects, �les (con�guration �les, log �les, libraries...), �lesystems or network ports.

Policy modules also de�ne contexts for speci�c applications, and their related objects

(con�guration �les, user data...).

These de�nitions are included in the .fc policy source �les and are based on �le

paths, for example:

/usr/bin/tor -- gen_context(system_u:object_r:tor_exec_t,s0)

Naturally, the list of applications with speci�c, non-generic hardcoded types in

the policy can not be exhaustive. The security contexts for all the other applications

(e.g. commercial applications, new software or software not included in the policy)

must be set manually by the user. Without the change of the security contexts, the

applications are executed in the default confined_t domain, and the associated

objects are assigned default types.

The default domain is restricted and, for security reasons, does not allow all op-

erations. To enable the whole functionality of such an application, we must assign it

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 81

to one of our application categories. The application and the associated �les must be

assigned a meaningful type - the one entitled to such a set of privileges, that is in

accordance with the application functional and security requirements. Failure to do

so might lead to SELinux blocking desired operations, or not providing the promised

security guarantees.

In order to help the user choose the correct type for a newly-installed application,

we created a tool set-appgroup-contexts. The tool is installed on a system by

the post-installation script, and is only accessible from the privileged domain.

It interactively guides the user to identify the suitable application category by a

series of simple questions. It is important that the user correctly �lls in the path to the

program executable �le and directory with the associated �les (for example a folder in

/opt or /usr/share). In case the application does not fall into any of the supported

categories, there is always the option to fallback to the uncon�ned domain - so as not

to make the system unusable.

It is important to note that the tool is based on SELinux utilities semanage

fcontext and restorecon, so it is required to have packages policycoreutils-

python-utils and policycoreutils installed on the system.

Also, since relabeling is a security-sensitive operation, it is not allowed to execute

the tool in the default unprivileged role. In order to use the tool, the user �rst must

switch to the privileged role, which requires authentication, as explained in Section

8.2.4. This ensures that even if a rogue application tries to change its security context

by executing the tool, it would not be successful without the consent of the user2.

8.2.4 Temporary change of a security context

Domain change

The design of our policy allows the users to �exibly change security contexts of the

applications. For example, the user can execute a text editor in a read-only domain,

when processing a document downloaded from an untrusted website. In another sce-

nario, the user can execute a mail client in a trusted domain, in order to use private

key for digitally signing an email message.

This mechanism is possible using the runcon utility, which executes the applica-

tion, command or a script in the speci�ed domain, without permanently changing the

security context of the executable �le.

In the following example, the mail client evolution is permanently assigned a

type mail_general_exec_t. When executed normally, the new process transi-
2We assume that security-concerned users are paranoid enough to not to type their passwords

on-demand, without further investigation.

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 82

tions automatically to the mail_general_t domain. However, when executed with

the following runcon command, the process transitions to the mail_trusted_t

domain:

$ runcon -t mail_trusted_t evolution

It is important to note that the runcon command can only be used for combina-

tions of types that are explicitly allowed by the policy. All admissible combinations for

the modules of our policy are stated in Section 7.5.6.

The runcon utility is a core Linux utility, included in the coreutils package.

It is available both for privileged and unprivileged user domain.

Role change

Another scenario when a user needs to temporarily change a part of his/her security

context is when switching between user roles is required. Each SELinux user is assigned

a set of allowed roles, and each role is authorized for a number of security domains.

However, only one user role can be active at the time. The user can change the active

role to have access to a di�erent set of domains. In our policy, the user is logged into an

unprivileged confined_r role, but is also eligible for a privileged unconfined_-

r role, which is authorized for the unconfined_t domain. In order to change the

con�guration of the SELinux policy, or the system in general, the user �rst has to

switch to the privileged role.

The newrole command executes a new shell for the user, with the speci�ed role,

as long as the role change is allowed by the policy. For security reasons, running the

command requires authentication of the user.

$ id -Z

unconfined_u:confined_r:confined_t:s0

$ newrole -r unconfined_r

$ id -Z

unconfined_u:unconfined_r:unconfined_t:s0

The command is included in the newrole package.

Although there are several roles de�ned in our policy (for backwards compatibility),

only three of them are e�ectively used - system_r for the system processes, and

unconfined_r and confined_r for the users. Our policy allows switching from

unconfined_r to confined_r role, and vice versa.

Type change

Finally, the user will sometimes need to temporarily change a security context of a �le.

In our policy, this can happen when the user wants to upload a �le from the home direc-

tory using a restricted web browser, which only has access to �les of downloads_t

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 83

type. The user can either copy the �le into the Downloads folder, or temporarily

change the context of the �le without copying it, only to restore the original context

after the �le has been uploaded.

In the latter case, when we do not wish to de�ne a permanent rule in the policy,

we use the chcon command to add a temporary labeling rule, and a restorecon

command to actually change the security context (using this rule).

// Temporarily change the type of a file

chcon -t downloads_t /home/test/Pictures/IMG89.png

// Change the context with the reference label (the same context as

another file)

chcon --reference /home/test/Downloads/sample.png /home/test/

Pictures/IMG89.png

// Restore the context and view the changes (for both cases)

restorecon -v /home/test/Pictures/IMG89.png

The command chcon is included in the coreutils package, restorecon in

the restorecon package. In order to temporarily change a security context of a �le,

the user must �rst switch into the unconfined_r role.

This change is only temporary and does not survive �le system relabeling, unlike

the changes made using the semanage fcontext command introduced in the next

section.

8.2.5 Permanent change of a security context

In another scenario, the users may wish to change the security contexts permanently.

For example, the policy de�nes type and private_t for directories and �les with

sensitive data. Only trusted applications (i.e. executed in the trusted domains) can

access and manipulate these data. By default, the post-installation script creates a

Private folder in the user home directory, and labels it with the private_t type.

The user can, however, set the type of any other �le or folder to private_t, and

thus decide which data should be regarded as sensitive.

The commands in the following example would assign type private_t to all

objects matching the speci�ed regular expression - �rst, to a single �le, and then to a

directory with all of its content. The semanage fcontext tool adds this entry to

the active policy, and restorecon uses the updated policy to recover correct labels

in the speci�ed directory.

semanage fcontext -a -t "private_t" "/home/test/passwords.kdbx"

restorecon -v /home/test/passwords.kdbx

semanage fcontext -a -t "private_t" "/home/test/Passwords(/.*)?"

restorecon -R -v /home/test/Passwords

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 84

The semanage fcontext command is included in the policycoreutils-

python-utils package and the restorecon command in the policycoreutils

package. The other useful modi�ers are -d to delete the assignment, and -m to change

the existing assigment.

It is important to note that relabeling of the object from the source type to a

target type must be allowed by the security policy, i.e. the user cannot arbitrarily

change security contexts of the programs. In our policy, relabeling is not allowed in

the unpriviliged user domain confined_t, so the user must switch to the privileged

domain by changing a role to unconfined_r.

8.3 Solving SELinux-related problems

Using a SELinux-enabled system will almost certainly be accompanied by occasional

access denials, i.e. situations when SELinux blocks some desired operation of the user

or a program. These problems can be mostly avoided or �xed by closely following

the recommendations from Section 8.2, but there can be other reasons behind these

problems.

In this section, we explain how to examine SELinux error messages, what are the

primary causes for them, and how to address them [19].

8.3.1 Identifying the reason behind the error message

SELinux error messages originate from access denials, and are logged in /var/log/au-

dit.log or /var/log/audit/audit.log �les. The logs can be viewed directly,

or using ausearch command. Another way how to examine the logs is by using the

audit2why tool. This tool translates SELinux audit messages into a description of

why the access was denied.

We demonstrate these tools on an example scenario where a user tries to upload

a photo from the user home directory using a restricted web browser, which can only

access �les in download/upload directories, and so the operation is denied.

// Displaying recent AVC audit logs

ausearch -m avc --start recent

time->Fri Apr 26 12:15:39 2019

type=PROCTITLE msg=audit(1556273739.294:806): proctitle="firefox-esr"

type=SYSCALL msg=audit(1556273739.294:806): arch=c000003e syscall=4

success=no exit=-13 a0=7f56d916b0c8 a1=7f56d729c118 a2=7

f56d729c118 a3=16 items=0 ppid=1547 pid=1971 auid=1000 uid=1000

gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid

=1000 tty=pts0 ses=3 comm=53747265616D5472616E7320233231 exe="/usr

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 85

/lib/firefox-esr/firefox-esr" subj=unconfined_u:unconfined_r:

browser_restricted_t:s0 key=(null)

type=AVC msg=audit(1556273739.294:806): avc: denied { getattr } for

pid=1971 comm=53747265616D5472616E7320233231

path="/home/test/IMG863.png" dev="vda1" ino=393672 scontext=

unconfined_u:unconfined_r:browser_restricted_t:s0 tcontext=

system_u:object_r:user_home_t:s0 tclass=file permissive=0

We marked the important parts of the entry as bold. As we can see, the pro-

cess firefox-esr of browser_restricted_t domain was denied to retrieve at-

tributes of the �le /home/test/IMG863.png of user_home_t type.

The audit2why tools attempts to explain the meaning of such logs. Indeed, in

this example, it identi�es that the problem was caused by a missing type enforcement

rule:

// Interpreting the audit logs with since the last policy reload

cat /var/log/audit/audit.log | audit2why -l

type=AVC msg=audit(1556273732.695:783): avc: denied { getattr } for

pid=1971 comm="pool" path="/home/test/seclin/README.md" dev="

vda1" ino=393671 scontext=unconfined_u:unconfined_r:

browser_restricted_t:s0 tcontext=system_u:object_r:user_home_t:s0

tclass=file permissive=0

Was caused by:

Missing type enforcement (TE) allow rule.

You can use audit2allow to generate a loadable module to allow this

access.

The audit2allow tool can even generate the necessary rules and compile a new

module to �x the issues. Beware that enabling new privileges in the policy without

justi�cation is dangerous.

Following is the output of this tool in the aforementioned situation:

audit2allow -b

#============= browser_restricted_t ==============

allow browser_restricted_t bash_config_t:file read;

allow browser_restricted_t bash_history_t:file read;

allow browser_restricted_t gpg_secret_t:dir { getattr read };

allow browser_restricted_t ssh_home_t:dir { getattr read };

allow browser_restricted_t user_home_t:dir write;

allow browser_restricted_t user_home_t:file read;

Please note that this example only shows one log entry but in reality, there will

likely be an overwhelming amount of them, and it is important to learn how to identify

the important parts. Chapter 2.16 of The SELinux Notebook [1] and other reference

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 86

materials can help as a starting point in understanding the meaning of the logs, but

mastering it requires a lot of experimenting.

Labeling problems

As already mentioned, it is crucial that the security contexts of �les and other objects

are correctly assigned, otherwise SELinux will not function as expected.

Solution to the problem of mislabeling is to permanently or temporarily change the

security context of the a�ected �les3.

Inappropriate application policy

Another reason for SELinux errors is the case when an application policy is not in

accordance with its requirements. In our situation, a solution might require assigning

the application to a more suitable domain or changing a value of a policy boolean4.

Bugs in policy or applications

The problems occurring when using SELinux might be caused by bugs in the applica-

tion, or in SELinux policy. These must be solved on a case-to-case basis.

The machine has been compromised

Sometimes, AVC logs are created because an application is compromised and tries to

do something it is not allowed to do. Such an attempt would trigger a lot of AVC

denial messages, that can help the user identify an ongoing attack on the system.

8.3.2 Addressing SELinux-related problems

The desired approach to facing SELinux error messages is to identify the reason for the

error, and then relabel the concerned application, or to change the policy con�guration.

However, there are other approaches as well, when the troubleshooting is not pos-

sible or when there is a bug in the application or in the policy.

The �rst approach is to modify the SELinux policy, to allow the blocked operation.

An experienced user can modify the source code of the policy, following the manual

in Chapter 9. A less experienced user can use automatized tool audit2allow which

can generate policy allow rules from logs of denied operations. However, this must be

used carefully (and we do not recommend doing so), as permitting further operations

without justi�cation can pose a security threat.
3See Section 8.2.5 and Section 8.2.4 for more details.
4See Section 8.2.3 and Section 8.2.2 for more details.

CHAPTER 8. SELINUX SETUP AND ADMINISTRATION 87

As the last resort, the user can switch a speci�c domain, or the whole SELinux into

permissive mode. In this mode, the policy decisions will be logged but not enforced.

This solution discards the security guarantees provided by the SELinux policy, but

allows the user to further investigate the problem, while having access to the system.

// Prints SELinux mode (permissive/enforcing/disabled) and other

information

sestatus

// Temporarily switches SELinux to permissive/enforcing mode

setenforce 0/1

// Permanently switches SELinux to permissive/enforcing mode

selinux-config-enforcing 0/1

// Switches the specified domain to permissive mode

semanage permissive -a <domain>

// Switches the specified domain to enforcing mode

semanage permissive -d <domain>

8.4 Summary

Con�guring SELinux on a system requires installing the SELinux infrastructure, en-

abling the SELinux policy and further adjust its con�guration to the speci�cs of the

respective user.

In order to use a SELinux-enabled system, the user must get used to using SELinux

utilities, especially to correctly set security contexts of programs and other �les. SELinux

project provides a variety of tools to assist these activities.

Sometimes, errors in SELinux policy or policy con�guration can lead to preventing

the user from performing some operations. In this case, SELinux error messages and

support tools can help reveal the reason behind this error, and �x it. If there is a

substantial error, some parts of the SELinux policy can be deactivated, so as to make

the system usable. Experienced users can solve the problems by adjusting the SELinux

policy source code, which is explained in the next chapter.

Chapter 9

Policy maintenance

In this chapter, we provide some details about how we approached the SELinux policy

development. Since it is not so common to write SELinux policies, there are fewer

up-to-date manuals available. Thus, we believe our tips could serve as a starting point

to any experienced reader of this thesis who will decide to further extend our work.

9.1 Developer tools

For a policy development and testing, one should install packages policycoreutils-

dev, selinux-policy-dev, setools, setools-gui and all packages men-

tioned in Chapter 8.

As for the development environment, we used the Sublime-text editor with a cus-

tomized syntax highligher1, but any decent text editor would be more than enough,

due to the nature of how SELinux is compiled and tested. It is useful if the text editor

is capable of tracking references to functions, highlighting syntax and doing some basic

refactoring.

We found an older project by Tresys called SLIDE [52] (SELinux Policy IDE), which

might also be worth a try. It is an Eclipse plugin that comes with some additional

features such as auto-completion of interface names or compile assistant, but we did

not test this tool, so we cannot con�rm whether it is still up-to-date.

9.2 Important �les

The SELinux con�guration �les are located at several places on the system.

Global con�guration �les are located in the /etc/selinux/ directory. The �le

/etc/selinux/config contains several entries, most importantly SELinux mode
1See Appendix B.

88

CHAPTER 9. POLICY MAINTENANCE 89

(enforcing/permissive/disabled) and SELinux policy name. There can be several poli-

cies installed on the system - the active policy will be determined by the policy name

in this �le. If this �le is missing or corrupt, no policy will be loaded [1].

The directory /etc/selinux/<policy_name> contains a subdirectory con-

texts with the default contexts and a subdirectory policy with the actual compiled

binary policy.

Other con�guration �les are in a so-called policy store, whose location can be ei-

ther of these: /etc/selinux/<policy_name>/modules or /var/lib/selin-

ux/<policy_name>/modules.

Beside other �les, it contains the policy packages for policy modules, which are used

for rebuilding the binary policy in the /etc/selinux/<policy_name>/policy

directory.

9.3 Compilation

The SELinux policy is compiled with the checkmodule and checkpolicy tools,

but since the reference policy Makefile builds on these tools, we did not use them

directly.

The most important targets of the Makefile are the following:

• clean - deletes all temporary �les and compiled policies;

• bare - does the clean target, and also removes con�guration �les and documen-

tation, especially the list of modules to be compiled and policy/modules/k-

ernel/corenetwork.te and policy/modules/kernel/corenetwork.if

�les;

• conf - generates con�guration �les in the source directory;

• make - compiles policy modules and policy base to policy package �les (.pp) in

the source directory; and copies the .pp �les into policy store;

• install, install-headers - copies contents of the config directory to

/etc/selinux/<policyname>/contexts;

• load - creates a binary policy �le in /etc/selinux/<policyname>/policy,

and loads the policy into the kernel.

To compile the whole policy from the source code, it is recommended to follow the

tutorial in Section 8.1, but the steps in Section 8.1.2 should be replaced by compiling

the policy using the following commands:

CHAPTER 9. POLICY MAINTENANCE 90

make conf

make load

When making changes to already compiled policy, this is not always the best ap-

proach, as the policy compilation can easily take several minutes. When we only make

changes to a single module and when the changes do not in�uence the other modules

(i.e. the changes are not made in the module interface), it is more handy to recompile

and reload only this module:

make <modulename>.pp

semodule -i <absolutepath>/<modulename>.pp

If the a�ected module is a required module, then it is the base policy that must be

recompiled, i.e. <modulename> = base. Otherwise, <modulename> is the name

of the module, e.g. mozilla.

The semodule tool allows to load (-i), unload (-r) or list (-l) all loaded modules.

Finally, the third scenario which requires a slightly di�erent compilation is adding

or removing a module. The list of modules to be compiled is in the policy/mod-

ules.conf �le, which is generated by make conf target but not deleted by make

clean target, nor re-generated by make load target. Therefore, if we add (or re-

move) a policy module, the following sequence of commands should be used:

make bare

make conf

make load

The same approach should be used when modifying the corenetwork module. In

contrast with the other modules, the source �les of this module are generated by M4

preprocessor from �les corenetwork.if.in, corenetwork.if.m4, corenet-

work.te.in and corenetwork.te.m4. This module contains policy and context

assignments for network objects, for example for speci�c ports, and since there is a

large amount of similar rules, it is reasonable to generate them using macros.

When recompiling the policy, it is sometimes useful to switch SELinux to permissive

mode (setenforce 0), especially in cases when bigger changes have been made in

the policy. Otherwise, if there is a bug in the policy, the system could stop responding

and it might be necessary to boot in the safe mode and switch SELinux to permissive

mode. It is therefore better to �rst check logs2 after recompilation, and only then

switch SELinux back to enforcing mode (setenforce 1).

2See Section 8.3.

CHAPTER 9. POLICY MAINTENANCE 91

9.4 Troubleshooting

When developing or modifying a SELinux policy, one can encounter problems during

the policy compilation and loading the policy. But even if those succeed, the policy

may not comply with the access control requirements, i.e. it may deny some desired

operations, or otherwise behave unexpectedly. For these cases, the SELinux project

provides a number of useful tools.

9.4.1 Syntactical errors

When error is encountered during policy compilation, the error output speci�es the

name of the �le and the line with the problem. Beware that source of the problem

can be hidden in a call to a function from another module interface, in which case the

compiler does not nest into the function and marks the call to the function as faulty.

When error is encountered during loading the policy, the error output again speci�es

the number of line with the problem, but in this case, it is not the line in the source

�le, since the policy loader deals with the compiled policy packages. The line number

is speci�ed with regards to the .cil �le that was generated in the process. This is

when knowledge of the CIL syntax comes in handy.

To investigate the source of the problem, we �rst have to convert a binary policy

package �le (.pp) into a .cil �le using a conversion utility located at /usr/libex-

ec/selinux/hll/pp

/usr/lib/selinux/hll/pp <modulename>.pp > <modulename>.cil

The utility must be used manually, as demonstrated. Note that there is no manual

for it, other than the following usage description:

Usage: pp [OPTIONS] [IN_FILE [OUT_FILE]]

Read an SELinux policy package (.pp) and output the equivilent CIL.

If IN_FILE is not provided or is -, read SELinux policy package from

standard input. If OUT_FILE is not provided or is -, output CIL to

standard output.

Options:

-h, --help print this message and exit

When the policy package has been converted into a �le with CIL syntax, the user

can search the faulty line and �nd the cause of the error. An example follows.

A problem occurred when trying to load a policy module:

semodule -i /path/to/source/code/browser_general.pp

Re-declaration of typeattribute file_type

Failed to create node

Bad typeattribute declaration at /var/lib/selinux/default/tmp/modules

/400/browser_general/cil:5

CHAPTER 9. POLICY MAINTENANCE 92

semodule: Failed!

We use pp tool to locate the problem:

$ /usr/lib/selinux/hll/pp browser_general.pp > browser_general.cil

$ cat -n browser_general.cil

1 (type browser_general_t)

2 (roletype object_r browser_general_t)

3 (type browser_general_exec_t)

4 (roletype object_r browser_general_exec_t)

5 (typeattribute file_type)

6 (typeattributeset file_type (browser_general_t

browser_general_exec_t))

7 (roleattributeset cil_gen_require system_r)

...

The problem in this case was that our module rede�ned a type attribute file_-

type that had already been de�ned elsewhere in the policy.

9.4.2 Semantical errors

When the loaded SELinux policy does not comply with the expected requirements, one

might need to examine the rules de�ned in the loaded policy.

The seinfo utility can be used to query information about the policy, such as

number of users, user-role assignments, list of booleans etc. For example, the following

command would list all types assigned to the cert_type attribute:

$ seinfo -x -a=cert_type

Type Attributes: 1

attribute cert_type;

cert_t

dovecot_cert_t

slapd_cert_t

The sesearch utility allows to query particular rules of the policy, based on

the source and destination types, object classes and permissions and a rule type.

For example, the following command would query all allow rules with browser_-

restricted_t source type and downloads_t destination type.

$ sesearch -A -s browser_restricted_t -t downloads_t

allow browser_restricted_t downloads_t:dir { search write create

rename open reparent link remove_name rmdir read ioctl getattr

setattr lock add_name unlink };

allow browser_restricted_t downloads_t:file { write create append

rename open link read ioctl getattr setattr lock unlink };

allow browser_restricted_t downloads_t:lnk_file { write create rename

link read ioctl getattr setattr lock unlink };

CHAPTER 9. POLICY MAINTENANCE 93

allow browser_restricted_t user_home_generic_content_type:dir {

search open read ioctl getattr lock };

...

The apol tool is a graphical extension of the above tools, which also allows to

analyze the policy (rules, users, constraints...). The tool takes the binary policy as an

input �le.

apol /etc/selinux/<policyname>/policy/policy.<ver>

9.5 Adding a new module

In order to further extend our work by de�ning a di�erent set of privileges for a cer-

tain group of applications, one should add a new module for this group, for example

a module named mygroup. First, three �les must be created in the policy/mod-

ules/appgroups directory: mygroup.te, mygroup.if and mygroup.fc.

Template �les from Appendix B can be used as a starter.

The .te �le should de�ne any new types and attributes. Most probably, a type

mygroup_t will be appropriate for the �les associated with the group of applications,

and mygroup_exec_t for an executable �le launching the application. To specify

that by executing a �le of mygroup_exec_t type, the created process will be executed

in the mygroup_t domain, a domain transition interface should be added to the .if

�le. This function should then be called from other modules, with the parameter set

to all domains that should have the privileges to execute the �le. In our scenario, it

will most probably be confined_t or even unconfined_t domain, but some other

domains may also need these privileges.

The .te �le should further contain calls to the appropriate functions from the

simpli�ed interface over the reference policy modules (helperfnc.if). Should the

module require any extra privileges, of course it can also use functions from other

modules' interfaces or de�ne more speci�c rules.

Finally, the .fc �le should de�ne �les that should be labeled with the types de�ned

in this module.

9.6 Summary

We welcome all experienced readers of this thesis to further extend and customize our

SELinux policy. We provide a documentation of our part of the policy and a template

for adding new modules.

The policy can be compiled using the a Makefile. When problems occur, the

pp, seinfo, sesearch and apol tools can be useful for troubleshooting.

Part V

Evaluation

94

Chapter 10

Evaluation

In this chapter, we assess the overall security and usability of a Debian system protected

with our SELinux policy, and demonstrate that our policy ful�lls the functional and

security requirements that we de�ned in Chapters 4 and 5.

10.1 Security validation

We start the security validation by evaluating the overall security of the mechanism.

It is important to note that once installed, the SELinux policy cannot be disabled or

modi�ed without the user's knowledge. All policy con�guration operations, such as

�le relabeling, module loading, or a change of a role, are only allowed when the user

switches to a privileged role and domain. The role change always requires the user

authentication, and thus cannot be done covertly by a malicious application running

in the context of the user. This claim is based on an assumption that the privileged

role will be used with caution and only for limited amount of time, and the assumption

that the user does not type a user password whenever prompted.

These assumptions are in accordance with our requirements on target users - trusted

and security-aware.

Another argument for why this setting comes with some security guarantees is

that the applications that are assigned one of the newly-de�ned domains, have limited

privileges. They cannot make substantial changes to the system and user data, nor

can they covertly transition to a more privileged domain.

Finally, the applications that are not assigned any of the new domains, are executed

in the unprivileged confined_t domain, which limits their abilities.

As for the actual malicious techniques, we reviewed our policy from the perspective

of the security requirements, de�ned in Chapter 4. We analysed whether our policy

provides a user with options to mitigate the relevant techniques, and mention them. We

present our observations on how our policy mitigates the MITRE ATT&CK techniques

95

CHAPTER 10. EVALUATION 96

in Tables 10.1-10.12. In the tables, we review all the relevant techniques and explain

whether it is possible to mitigate them using SELinux (or why it is not) and whether

we mitigated them in our policy (and how).

We refer to three types of domains in the tables:

• unprivileged user domain refers to the confined_t domain, which is the default

domain for users and generic applications,

• privileged user domain refers to the unconfined_t domain,

• application domains refer to the newly-de�ned domains for the categories of ap-

plications in our policy.

In conclusion, our policy provides possibilities to ful�ll our main security goals.

We protect the system from being corrupted by prohibiting the application domains

from making changes in system con�guration. We protect the system from being

misused, and protect con�dentiality and integrity of user data by controlling access to

sensitive and non-sensitive data, to network resources in general and to speci�c network

protocols. Finally, we protect the privacy of the user by controlling access to webcam

and microphone devices.

Limitations of our solution

In favour of simplicity and usability, all application domains have practically unlim-

ited access to X-server objects - we preserved the xserver module from the original

reference policy. However, the downside of this decision is that our policy does not

focus on mitigating some of the collection techniques - the ability to capture pressed

keystrokes, make screenshots and steal clipboard data. For example, these techniques

can be leveraged by banking trojans to obtain credit card information. Mitigation of

these techniques would therefore contribute to the security of the system.

Future extensions of our work should deal with this issue.

10.2 Functionality validation

We tested our policy on a Debian 9.8 system with GNOME environment, using popular

user applications, both from Debian distribution and third-party applications. We

tested each application with one or more suitable domains, and we report our �ndings

in Tables 10.13-10.21.

In general, we were able to categorize popular user applications to suitable cate-

gories, and thus limit their privileges. In some cases, it was necessary to switch the

policy into a less strict mode (by changing a value of a boolean �ag) in favour of

usability, or to sacri�ce some non-essential functionality in favour of security.

CHAPTER 10. EVALUATION 97

Adversary Technique Priority Our mitigation / Note

Drive-by Compromise - The mitigation is beyond the capabilities of

SELinux, as these techniques rely on exploiting

software vulnerabilities or bugs.

Exploit Public-Facing Appli-

cation

-

Supply Chain Compromise -

Hardware Additions - The mitigation is beyond the control of SELinux, as

this technique relies on physical access.

Spearphishing Attachment -
The mitigation is beyond the control of SELinux, as

these techniques take advantage of human mistakes.
Spearphishing Link -

Spearphishing via Service -

Trusted Relationship - These are otherwise legitimate operations, and so

should not be prevented by SELinux.Valid Accounts -

Table 10.1: Mitigation of Initial Access techniques.

Adversary Technique Priority Our mitigation / Note

Command Line Interface Low Ability to execute a shell is controlled by a global

boolean �ag (appgroups_allow_exec_shell).Scripting Low

Graphical User Interface Low Ability to execute speci�c groups of �les is

controlled by boolean �ags as a form of application

whitelisting: by default, it is not allowed to execute

�les in download/upload folders

(appgroups_execute_downloads) and

executable �les in general, unless speci�ed

otherwise (appgroups_execute_all_-

executable_files,

appgroups_execute_all_readable_files).

Third-party Software Low

User Execution Low

Local Job Scheduling Low

Source Low The source command is built into the shell, and so

constraining the read privileges of the command would

require constraining reading privileges of the shell do-

main, which is usually identical to the user domain.

For usability reasons, we decided not to mitigate this

technique, as we do not wish to restrict the user from

reading �les and scripts.

Exploitation for Client Exe-

cution

- The mitigation is beyond the capabilities of SELinux,

as the technique relies on exploiting software vulnera-

bilities or bugs.

Trap - The trap command is built into the shell and cannot

be disabled nor controlled by SELinux.

Space after Filename - This is not a valid technique in Linux (it refers to

OSX).

Table 10.2: Mitigation of Execution techniques.

CHAPTER 10. EVALUATION 98

Adversary Technique Priority Our mitigation / Note

Bootkit High Access to raw disk is not allowed to the default user

domain nor user application domains.

Kernel Modules and Exten-

sions

High Neither default user domain, nor application domains

are allowed to manipulate kernel modules.

.bash-pro�le and .bashsrc Low Application domains are not allowed to modify �les

bash con�guration �les (~/.bashrc, ~/.bash_-

profile, ~/.profile, ~/.bash_logout).

The default user domain is allowed this access.

Create Account Low Neither default user domain, nor application domains

are allowed to create user accounts.

Local Job Scheduling Low Neither default user domain, nor application domains

are allowed to execute at and cron commands.

Web Shell Low Ability of running a webserver is controlled by a

global boolean �ag (appgroups_servers_for_-

network_general), and only allowed to network ap-

plications. Default domain can also have this privi-

lege, if appgroups_network_for_default_role

is also enabled.

Setuid and Setgid - The mitigation is beyond the capabilities of SELinux,

as the technique relies on exploiting software vulnera-

bilities.

Browser Extensions - These are otherwise legitimate operations, and so

should not be prevented by SELinux.Valid Accounts -

Hidden Files and Directories -

Trap - The trap command is built into the shell and cannot

be disabled nor controlled by SELinux.

Port Knocking -
These techniques are indistinguishable from

legitimate operations from the perspective of

SELinux, and thus cannot be mitigated by it.

Redundant Access -

Table 10.3: Mitigation of Persistence techniques.

CHAPTER 10. EVALUATION 99

Adversary Technique Priority Our mitigation / Note

Process Injection High We do not allow the default user domain, nor the ap-

plication domains, to ptrace other processes.

Sudo Caching Low SELinux cannot prevent misusing poor

con�guration of sudo, but we prevent malicious

applications from weakening the con�guration.

Neither application domains, nor unprivileged user

domain can edit the /etc/sudoers �le (or any

other �le in /etc).

Sudo Low

Exploitation for Privilege Es-

calation

-
These techniques cannot be mitigated by SELinux,

as they rely on exploiting software vulnerabilities.
Setuid and Setgid -

Web Shell -

Valid Accounts - This is an otherwise legitimate technique, that should

not be prevented by SELinux.

Table 10.4: Mitigation of Privilege Escalation techniques.

On several occasions, the tested applications could be assigned to several of our

categories. For example, vlc can be executed as a File viewer application, and the

essential functionality (of playing local video and audio �les) will be supported. To

be able to play videos from the internet, it should be executed as a General network

application; and if the user wishes to use it for recording videos using the webcam

and microphone device, it should be executed as a Device recorder. Whenever such a

situation occurred during in our tests, we chose to assign the application to the least

privileged category supporting the basic functionality, and we stated the limitations

of the application in this mode in our analysis. Nevertheless, it is up to the user to

decide which of the categories are the most suitable for ful�lling his/her security and

functionality expectations from that application.

Limitations of our solution

We had problems with executing cron and at with SELinux enabled, which may

cause some discomfort for the user. Also, new �les in the /var/run/Network-

Manager folder are occasionally mislabeled due to a missing type transition rule

in the reference policy, and the user is then required to restore the correct contexts

(restorecon command).

Further, we encountered problems when testing booting into a recovery mode, when,

due to the broken reference policy mechanism of assigning default security contexts,

the root user is logged in into the unprivileged domain. This domain does not have the

privileges to do the necessary setup (for example, it would require the ability to load

kernel modules, which we don't want to grant to applications running in the default

domain), and so the user cannot switch to the more privileged role and domain. This

CHAPTER 10. EVALUATION 100

Adversary Technique Priority Our mitigation / Note

Disabling Security Tools High Only the privileged unconfined_t domain is eligible

to change SELinux con�guration.

Rootkit High Neither application domains, nor unprivileged user do-

main are authorized for doing system changes.

Install Root Certi�cate High Only trusted application domains have access to mod-

ifying certi�cates.

Process Injection High We do not allow the default user domain, nor the ap-

plication domains, to ptrace other processes.

Clear Command History Low SELinux cannot prevent the applications from

setting the HISTCONTROL and HISTFILE

environment variables. However, we control access

to the ~/.bash_history �le - the default user

domain is allowed to modify it but application

domains are not.

HISTCONTROL Low

File Permissions Modi�cation Low We control the ability of application domains to read

and modify �le permissions (on a case-to-case basis).

Indicator Removal on Host Low Application domains are not authorized for deleting

log �les.

Exploitation for Defense Eva-

sion

- SELinux cannot mitigate this technique, as it relies on

exploiting software vulnerabilities.

Valid Accounts - This is an otherwise legitimate technique, and so it

should not be prevented by SELinux.

Space After Filename - This is not a valid technique in Linux.

Binary Padding -
Mitigation of these techniques is beyond the

capabilities of SELinux, because they are all aimed

at other layers of security protections, and appear

legitimate from the SELinux perspective.

File Deletion -

Hidden Files and Directories -

Indicator Removal from Tools -

Masquerading -

Obfuscated Files or Informa-

tion

-

Port Knocking -

Redundant Access -

Scripting -

Timestomp -

Web Service -

Table 10.5: Mitigation of Defense Evasion techniques.

CHAPTER 10. EVALUATION 101

Adversary Technique Priority Our mitigation / Note

Bash History High Application domains are not authorized to read the

~/.bash_history �le. For usability reasons, both

privileged and unprivileged domain is allowed this ac-

cess.

Credential Dumping High Entries in /proc/<pid> directory have the security

contexts determined by the domain of the running pro-

cess, for example entries of a trusted �le editor applica-

tion will be of local_trusted_rw_t type. There-

fore, it is not possible to dump a process memory using

this mechanism by another application, unless it is au-

thorized for reading �les of this type. As Figure 7.1

depicts, more privileged domains can read �les of less

privileged types, but not vice versa. If used properly,

this should eliminate the possibility to dump creden-

tials being processed by more trusted applications.

Credentials in Files High Only trusted application domains are allowed to

manipulate �les with credentials/keys.Private Keys High

Network Sni�ng High Only applications with unlimited access to network can

use raw network devices.

Input Capture High Mitigation of these techniques is possible with

SELinux but remains an open problem for future

extensions of this thesis.

Two-Factor Authentication

Interception

High

Brute Force - This technique appears legitimate from the perspective

of SELinux.

Exploitation for Credential

Access

- SELinux cannot prevent exploitation of software vul-

nerabilities.

Table 10.6: Mitigation of Credential Access techniques.

CHAPTER 10. EVALUATION 102

Adversary Technique Priority Our mitigation / Note

Network Sni�ng High Raw access to network objects is only allowed to un-

limited network applications.

File and Directory Discovery High Only trusted application domains can list sensitive

�les. For usability reasons, all domains are allowed

to list (not read) non-sensitive �les.

Account Discovery Low All of these techniques have otherwise legitimate

use. In order not to disrupt normal activity of a

user, we do not employ any active measures to

mitigate these techniques.

Browser Bookmark Discovery Low

Network Service Scanning Low

Password Policy Discovery Low

Permission Groups Discovery Low

Process Discovery Low

Remote System Discovery Low

System Information Discov-

ery

Low

System Network Con�gura-

tion Discovery

Low

System Network Connections

Discovery

Low

System Owner/User Discov-

ery

Low

Table 10.7: Mitigation of Discovery techniques.

Adversary Technique Priority Our mitigation / Note

Remote File Copy High Only network application domains are allowed to use

network, but even those do not have unlimited access

to all protocols (e.g. web browsers and mail clients can

only use web and mail protocols, not SMB or FTP).

SSH Hijacking High Only trusted application domains are allowed to read

data from credential stores.

Application Deployment Soft-

ware

- SELinux cannot mitigate these techniques, as the

rely on software vulnerabilities or leaked user

credentials.Exploitation of Remote Ser-

vice

-

Remote Services -

Third-party Software -

Table 10.8: Mitigation of Lateral Movement techniques.

CHAPTER 10. EVALUATION 103

Adversary Technique Priority Our mitigation / Note

Audio Capture High We limit access to microphone device.

Data from Information

Repositories

High We limit read access to user data on local and

removable drives.

Data from Local System High

Data from Removable Media High

Data from Network Shared

Drive

High Only domains for network applications are authorized

for using network, and by extension for reading data

on network shared drives.

Input Capture High Mitigation of these techniques is possible with

SELinux but remains an open problem for future

extensions of this thesis.

Clipboard Data High

Screen Capture High

Automated Collection - These techniques refer to coding practices, that

generally cannot be detected nor mitigated by

SELinux.

Data Staged -

Table 10.9: Mitigation of Collection techniques.

Adversary Technique Priority Our mitigation / Note

Encrypt Files for Ransom High We control read/write access to user data.

Wipe Device Data High We control delete access to system and user data.

Table 10.10: Mitigation of E�ects techniques.

Adversary Technique Priority Our mitigation / Note

Ex�ltration Over Alternative

Protocol

High Our policy limits the ability of user domains to use

standard and non-standard network protocols.

Ex�ltration Over Command

and Control Channel

High

Ex�ltration Over Other Net-

work Medium

High

Ex�ltration Over Physical

Medium

High We limit the privileges of application domains to use

removable media and other devices.

Automated Ex�ltration - These techniques refer to coding practices of the

malware authors, and generally cannot be detected

nor mitigated by SELinux.

Data Compressed -

Data Encrypted -

Data Transfer Size Limits -

Scheduled Transfer -

Table 10.11: Mitigation of Ex�ltration techniques.

CHAPTER 10. EVALUATION 104

Adversary Technique Priority Our mitigation / Note

Commonly Used Port High Our policy limits the ability of user domains to use

standard and non-standard network ports and

protocols.

Custom Command and Con-

trol Protocol

High

Remote File Copy High

Standard Application Layer

Protocol

High

Standard Non-Application

Layer Protocol

High

Uncommonly Used Port High

Remote Access Tools High Ability to use legitimate remote access tools by our

application domains would require speci�cally allowing

domain transition to a more privileged RAT domain.

We do not allow such a transition in our policy.

Communication Through Re-

movable Media

High We limit access to removable media.

Connection Proxy - These techniques refer to coding practices of the

malware authors, and generally cannot be detected

nor mitigated by SELinux.

Custom Cryptographic Pro-

tocol

-

Data Encoding -

Data Obfuscation -

Domain Fronting -

Fallback Channels -

Multi-Stage Channels -

Multi-hop Proxy -

Multiband Communication -

Multilayer Encryption -

Port Knocking -

Standard Cryptographic Pro-

tocol

-

Web Service -

Table 10.12: Mitigation of Command and Control techniques.

CHAPTER 10. EVALUATION 105

Application Functionality Note

gnome-calculator Calculator Financial mode is not working (it cannot retrieve cur-

rency rates).

gnome-calendar Calendar No problems with the functionality.

gnome-todo TODO list man-

ager

/usr/games/* Simple local

games

Table 10.13: Tested simple local applications.

Application Functionality Note

totem Video/audio

player

The appgroups_allow_execmem �ag must be en-

abled. In this mode, it is not possible to play au-

dio/video from the internet.

vlc In this mode, it is not possible to record audio/video nor

play audio/video from the internet.

eog Image viewer It is possible to view and print images - editing is not

possible in this mode.

evince PDF viewers In this mode, it is possible to view and print documents.

To be able to send documents via email or save a copy of

the document, more privileged categories must be used.

okular

xpdf The appgroups_exec_shell �ag must be enabled.

Table 10.14: Tested �le viewers.

issue needs to be addressed by �xing the broken mechanism in the reference policy (or,

more likely, in Debian).

Finally, the reference policy does not concentrate on graphical applications, and

therefore some of the existing modules may be missing support for their graphical

versions. For example, the ssh-keygen tool for generating SSH keys works without

problems in the text mode, but to be able to use this tool in a graphical version (with

seahorse password/key manager), we had to add some privileges to the tool.

In conclusion, we are con�dent that our modules de�ne privileges that are in accor-

dance with functional requirements of the associated application groups, but we cannot

guarantee the same for reference policy modules, as testing the existing 200+ reference

policy modules is beyond the scope of this thesis.

10.3 Summary

Our policy successfully ful�lls our security goals and mitigates most of the relevant

MITRE ATT&CK techniques. In contrast with the reference SELinux policy, our

CHAPTER 10. EVALUATION 106

Application Functionality Note

pinta Paint application The appgroups_allow_execmem and

appgroups_exec_shell �ags must be enabled.

inkscape Paint

applications
It is not required to enable any boolean �ags.

gimp

sublime-text Document

editors
The appgroups_exec_shell �ag must be enabled.

libreo�ce

texstudio Document genera-

tor

It can only be used as a local application, as long as all

necessary packages are already installed. Otherwise, it

must be executed as a general network application.

Table 10.15: Tested �le editors. The same applications could also be used as trusted

�le editors, �le viewers and trusted �le viewers, as required.

Application Functionality Note

keepass2 Password manager The appgroups_allow_execmem and

appgroups_exec_shell �ags must be enabled.

Synchronization is not possible in this mode. The

password databases should be stored in the Private

directory, to maximize their con�dentiality.

seahorse Credential store It is possible to manage passwords and SSH keys.

openssl Utility for encryp-

tion/decryption,

digital signature

creation/veri�ca-

tion, key/certi�-

cate generation

No boolean �ags are required. It is recommended to

store the associated �les in the Private directory.

Table 10.16: Tested trusted �le viewers and editors.

Application Functionality Note

gnome-sound-

recorder

Sound recorder The appgroups_allow_execmem �ag must be en-

abled.

vlc Video/audio

recorders

No boolean �ags have to be enabled.

cheese

kazam

Table 10.17: Tested device recorders.

CHAPTER 10. EVALUATION 107

Application Note

�refox-esr,

iceweasel

It is necessary to disable mozilla module from reference policy. The

appgroups_allow_execmem �ag must be enabled.

konqueror The appgroups_allow_execmem �ag must be enabled.

chromium It is necessary to disable mozilla module from reference policy. The

appgroups_allow_execmem �ag must be enabled. It only works with the

-no-sandbox option, since the Chrome sandbox requires severe privileges,

such as chown_dac_override, net_raw or sys_admin capabilities.

epiphany-browser The appgroups_allow_execmem �ag must be enabled.

opera Cannot be executed in our browser domains at all, since it requires sys_-

admin capability.

vivaldi The appgroups_allow_execmem and appgroups_exec_shell �ags

must be enabled. It only works with the -no-sandbox option, since our

modules do not allow sys_admin capability.

Table 10.18: Tested web browsers.

Application Note

evolution Con�guration of an email account requires access to web protocols, and there-

fore cannot be done in the restricted mode. After account con�guration, the

restricted mode is a suitable option.

thunderbird The appgroups_allow_execmem and appgroups_exec_shell �ags

must be enabled. Similarly to above, con�guration cannot be done in the

restricted mode.

Table 10.19: Tested mail clients.

Application Functionality Note

calibre E-book reader The appgroups_exec_shell �ag must be enabled.

rhythmbox Streaming appli-

cation

No boolean �ag must be enabled.

�lezilla File download/u-

pload clients

The appgroups_servers_for_network_general

�ag must be enabled (because of the nature of the FTP

protocol).transmission-gtk

atom Code editor The appgroups_allow_execmem and

appgroups_exec_shell �ags must be enabled.

It cannot be executed as a local application, because it

requires network access for synchronization with code

repositories (and exits with error without this access).

texstudio Document genera-

tor

Can also be executed as a local application, as long as

all the required packages are installed.

Table 10.20: Tested general network applications.

CHAPTER 10. EVALUATION 108

Application Functionality Note

skypeforlinux Messaging appli-

cation

Messaging, video and audio calls work in this mode.

However, setup of the application and logging in should

be done in the uncon�ned domain, as it requires making

system changes (installing ceriti�cates, ensuring persis-

tence).

Table 10.21: Tested teleconferencing applications.

policy limits the privileges of user applications by default, instead of assigning them

all into the uncon�ned domain. We provide means for a security-concerned user to

determine privileges for the applications, following the least privilege principle.

We contributed to usability of the SELinux policy from the perspective of the user

and administrator in that the policy modules are more transparent when compared to

the reference policy modules. The user is not required to study the reference policy in

detail in order to correctly use our extension. At the same time, the privileges assigned

to newly-de�ned application domains correspond to the usability requirements de�ned

for application groups, so our policy mostly does not limit legitimate activities of the

user.

Some of our security and usability requirements remained unmet, and we list these

de�ciencies as a basis for future work and improvements.

Chapter 11

Discussion and remarks

In this chapter, we discuss limitations of our solution and suggest possible improve-

ments.

11.1 Our decisions and remarks

While working on this thesis, we encountered several problems that required decisions

which a�ected the security and usability of the solution. In this section, we explain

our motivation behind these choices, and possible other solutions.

11.1.1 Extending the reference policy

In the early phase of our research, we considered a possibility to implement a SELinux

policy from the scratch, rather than by extending the existing reference policy.

Creating an independent policy would allow us to further simplify the policy and

make it more transparent to the other developers. We could reduce the number of

types and rules de�ned in the policy.

However, this approach would require de�ning rules for the system applications and

services, which was not the focus of our thesis. Extending the reference policy allowed

us to build upon the work of the SELinux project team, which has focused on these

categories of applications, and which has been developing and testing the policy for

years.

The compatibility with the reference policy also allows a wider use in the security

community.

We improved the transparency of the reference policy by de�ning a simpli�ed in-

terface over its modules. We believe this will allow our fellow developers to de�ne new

modules in a simpler way.

109

CHAPTER 11. DISCUSSION AND REMARKS 110

11.1.2 Reference policy functions

We observed that the functions already de�ned in the reference policy were sometimes

inconsistent. For example, for some directories, access to �les, symbolic links, named

pipes and sockets of the directory type was de�ned. For other directories, only access to

�les was de�ned, as if the policy developers assumed these directories will not contain

any �lesystem objects other than common �les. In general, the reference policy does

not always de�ne functions for accessing all combinations of objects and access vectors.

When creating an interface over the reference policy, we considered changing the

reference policy functions radically, to create uniform interfaces, but we decided not

to. When necessary, we added new functions to the reference policy but in general, we

wanted to keep the number of changes in the reference policy in a reasonable level, so

that our patch to the policy can be easily applied even after a reference policy update.

We believe that this should not have a negative impact on the security or usability

of the system, as we believe the reference policy already de�nes all important combi-

nations of accesses to objects and we trust it has been well tested.

11.1.3 Simpli�cations

We simpli�ed rules for the added modules to access some subsystems, which we did

not consider essential for the security or usability of the system.

For example, we allowed unlimited access to the dbus system and some IPC objects,

as we believe that a faulty treatment of these objects could have a big impact on

usability of the system. On the other hand, we believe that allowing these accesses

does not have a fundamental impact on the system security.

Similarly, we did not speci�cally treat access to database objects, as in our scenario,

none of the common user applications requires this access. We assume that services

that require these access are already covered in the reference policy (for example in

postgresql or apache modules).

A possible sequel to our work could de�ne more �ne-grained access control to these

objects.

On a di�erent note, we also made some simpli�cations when designing the optional

policy decisions. The values of boolean �ags de�ned in our policy a�ect all application

domains. It could be worth to add more �exibility for this mechanism, i.e. to de�ne

the same set of boolean �ags for each of the application domains, and thus be able to

vary the settings for di�erent applications.

CHAPTER 11. DISCUSSION AND REMARKS 111

11.1.4 Security and usability compromises

When implementing the rules for the groups of applications in our policy, we had to

settle for several decisions that were in con�ict with the ideal privileges required by an

application.

For example, we made a compromise in favour of security by denying access to the

network for a calculator and other local applications. They could normally require this

access, for example to load the currency exchange rates, or more generally for checking

updates or loading help pages.

These functions are, however, not essential for functionality of the local applications,

and can be omitted. As a result, should such an application be compromised (for

example by injecting malicious code into a running process), the privileges of the

malicious code would be signi�cantly limited.

A di�erent compromise, this time made in favour of a usability, was to allow exe-

cution of memory for user applications. This is a very dangerous privilege indeed, as

it facilitates memory corruption exploitation, which can lead to introducing malicious

applications to the system. However, as we found out during the testing phase, a lot of

legitimate applications require these privileges due to bad coding practices of their de-

velopers. These applications are not able to function properly without these privileges,

and so we allowed them for the user applications.

However, we implemented an option to disable this access. We expect a security-

concerned user to disable this option, even if that means that he/she will not be able

to use some applications.

A more elegant solution would be to allow this access per-category, or per-application,

rather than by a global decision. But since we provided a comprehensive manual on

how to add a new module to our policy, we believe a security-concerned user can use

it to create a new module with the appropriate combination of privileges.

11.1.5 Target audience

The target audience of our thesis (and by extension, of our policy) are security-

concerned, trusted users.

Our policy de�nes a default, non-privileged role, in which the user processes have

limited privileges. But we also de�ne a privileged role in which the user is virtually

unrestricted, and which can be used to customize the policy, or for a routine admin-

istration of the system. A user is authorized for both of these roles, and can switch

between them as required.

In a case of a non-trusted user, these privileges could be easily misused - the user

could always log into the privileged domain, and could even disable SELinux protec-

CHAPTER 11. DISCUSSION AND REMARKS 112

tions.

It is possible to de�ne a role for untrusted users, for example for systems that

are shared by a security-concerned, trusted user responsible for administration, and a

number of non-trusted users. In this mode, the users should still be able to use the

SELinux-enabled system, for example to change security contexts of new applications

or private �les, but they should not have the privileges to bypass the protections.

This extension could be a subject for a sequel work, as it is out of the scope of this

thesis.

11.2 Possible improvements and future work

We recognize that our solution is not complete in the terms of providing a perfect

security of a Linux desktop system, and that there are possible improvements to our

work.

Also, as we mentioned on several occasion in this thesis, SELinux has an enormous

security potential. It allows to de�ne very detailed policies, which can be used to

provide various levels of security.

In this section, we introduce some possible suggestions for future work.

11.2.1 Support for other Linux distributions

In our thesis, we focused on a Debian distribution, particularly on a GNOME environ-

ment. In general, the SELinux policy should also be applicable for other environments

and distributions, without radical changes.

A possible extension of our work could be to adjust and test our policy in other

Linux environments.

11.2.2 Analysis of other security layers

As stated in Chapters 4 and 10, SELinux itself cannot prevent all malicious techniques,

as listed in the MITRE ATT&CK Framework, as some of them are directed against

other layers of security protections.

It could be useful to further extend our analysis, and identify which other security

tools or measures would be suitable in combination with our SELinux policy, in order to

mitigate the other MITRE ATT&CK techniques (i.e. those not covered by SELinux).

11.2.3 SELinux as Intrusion Detection System

Apart from being an access control mechanism, SELinux also has a potential as a base

for an Intrusion Detection System.

CHAPTER 11. DISCUSSION AND REMARKS 113

The SELinux policy can be con�gured to log security-sensitive (allowed) events,

such as a remote login of a user, or modifying sensitive user �les, even when they

are allowed by the policy1. These operations can be speci�ed in the policy, and sub-

sequently logged whenever such a situation occurs, which can facilitate post-attack

analysis.

A potential future work could also be dedicated to building a tool analysing patterns

in these logs, in order to identify (and stop) an ongoing attack.

This approach could also help mitigate some MITRE ATT&CK techniques that

SELinux cannot prevent.

11.2.4 Separation of privileges

Our policy concentrates on limiting abilities of speci�c applications or groups of ap-

plications, rather than isolating the applications from each other. It is important to

note that applications of the same type (for example, General local applications) can

interfere with each other, e.g. send signals to each other, or modify the con�guration

�les of each other. This decision was made in favour of the simplicity of the policy, but

comes with obvious security drawbacks.

Neither our policy provides a mechanism to separate several users from each other,

as all the user data are assigned equivalent security contexts.

If con�gured correctly, these actions are usually prevented by other access controls,

such as capabilities of �le system permissions, but it would be a better solution not

to rely on these mechanisms. A further extension of our work could concentrate on

separation of these applications from each other with the mechanisms of SELinux.

11.2.5 More detailed policies

More experienced users could further extend our SELinux policies by modules with

more detailed policies, capturing advanced security requirements.

For example, SELinux can control access to the network on the level of network

packets. The Linux �rewall (iptables) can be con�gured [53] to label packets with

security contexts. The SELinux policy can then, in turn, de�ne possible access to

packets labeled with these contexts. For example, the �rewall can assign a special label

to packets sent to/received from speci�c domains (such as internet banking websites)

and a trusted web browser can only be allowed to process packets with these labels.

Similarly, the X-server objects are worth further exploration. In our policy, we

allowed practically unlimited access to the objects to all of our application domains.

However, controlling access to these objects more strictly could help mitigate malicious
1This can be con�gured with auditallow rules.

CHAPTER 11. DISCUSSION AND REMARKS 114

techniques that remain uncovered by our policy - screen capture, capturing pressed

keystrokes and stealing clipboard data.

11.3 Summary

Our SELinux policy addresses the problem of securing a Linux desktop environment.

We designed a policy that, by our best knowledge, represents a reasonable compromise

between a system security and functionality, but there are several potential improve-

ments to our solution.

We also recognize the need for using other layers of security, as SELinux itself cannot

block all stages of attack (for example, it cannot prevent software vulnerabilities or �nd

patterns in the network tra�c). We advise a security-concerned user to further explore

the possibilities to achieve a better security.

Conclusion

In this thesis, we studied the problem of a secure Linux desktop environment. Our

goal was to provide a mechanism for a security-concerned user to protect the system

from being corrupted or misused, to protect the user privacy and the con�dentiality

and integrity of the user data.

We addressed these problems with the use of SELinux mechanisms, by extending a

reference SELinux policy, with the focus on the user-applications part.

We implemented 17 new modules in the policy, that con�ne categories of user

applications. We based this classi�cation on our analysis of security and functional

requirements on a system. We created most of the categories to represent classes of

user applications that share the same set of security and functional requirements. Two

applications that are behind the most common attack vectors - web browsers and mail

clients - were treated with a special caution. We de�ned several modules (modes) for

these applications with varying sets of privileges, and provided a mechanism to switch

between these modes as required.

In the process of development, we encountered a problem with a SELinux reference

policy on a Debian desktop installation. Debian developers currently do not particu-

larly focus on providing support for SELinux policy in graphical installations, and so

a Debian system (versions 7-9) is currently unusable with the o�cial reference policy.

We �xed these issues to make SELinux usable with Debian 9.8, GNOME environment.

We dedicated a part of this thesis to the administration and usage of a system with

our SELinux policy, as problems with these are one of the main causes of low popularity

of SELinux among users. We described useful o�cial SELinux tools and provided

custom scripts and tools for policy installation, con�guration and customization.

We provided a more advanced user with an option to further extend our policy,

for example to add a module with a di�erent set of privileges. We created a simpli-

�ed interface over the reference policy, and provided a documentation, manual and a

template for creating a new module.

We tested the usability of the system that is con�gured with our policy, by testing

functionality of common user Linux applications. We evaluated the security with the

use of an industry-recognized MITRE ATT&CK Framework, and identi�ed possibilities

for future improvements of our work, based on this evaluation.

115

Conclusion 116

While several layers of protection must be employed to achieve an optimal security

of the system, we believe our SELinux policy can signi�cantly contribute to the security

of a Linux desktop environment.

Appendix A

Release version

Our SELinux policy can be installed on a system without compilation. The compiled

version can be found on the attached CD in a directory called thesis-release.

To install the policy, please follow the steps described in Chapter 8. The installation

script can be found on the CD in a �le named thesis-release/INSTALL, and the

post-installation script in a �le named thesis-release/POSTINSTALL.

The tool for labeling user applications is located in a �le thesis-release/set-

appgroup-contexts and is automatically installed on the system by the installation

script.

117

Appendix B

SELinux policy source code

In this thesis, we extended the Debian version of the reference SELinux policy. We

based our policy on the reference policy version 2.20161023, which was the most up-

to-date at the time of writing the thesis.

The original reference policy source code can be installed on Debian as a package

named selinux-policy-src. The source code will be installed in the following

�le:

/usr/src/selinux-policy-src.tar.gz

The attached CD contains the source code of our policy, and also a di� between our

policy and the original reference policy. Should there be any updates to the reference

policy, the reader is encouraged to apply this patch to update our policy accordingly.

The source code of our policy can be found on the CD in a directory named

thesis-src. The doc subdirectory contains documentation to the modules, as

well as a template for creating additional modules (appgroup.te, appgroup.if,

appgroup.fc).

A simple syntax highlighter that we used for Sublime-text editor during the policy

development is included on the CD in a �le SELinux.sublime-syntax.

The patch is located on the CD in a �le named refpolicy.patch.

118

Bibliography

[1] Haines, R. The SELinux Notebook, 2014. http://freecomputerbooks.

com/The-SELinux-Notebook-The-Foundations.html.

[2] Mayer, F., MacMillan, K., Caplan, D. SELinux by Example: Using Security

Enhanced Linux. Prentice Hall Open Source Software Development Series, 2006.

[3] Understanding Linux File Permissions, 2010. https://www.linux.com/

learn/understanding-linux-file-permissions.

[4] Linux Security Module Usage, . https://www.kernel.org/doc/html/v4.

16/admin-guide/LSM/index.html.

[5] An Introduction Into Linux Security Modules, . https://linux-audit.com/

introduction-into-linux-security-modules/.

[6] AppArmor: Pro�le Components and Syntax. https://doc.opensuse.

org/documentation/leap/security/html/book.security/cha.

apparmor.profiles.html.

[7] AppArmor in Ubuntu. Ubuntu Wiki, . https://wiki.ubuntu.com/

AppArmor.

[8] SELinux and AppArmor: An Introductory Comparison,

. https://www.scribd.com/document/230617085/

SELinux-and-AppArmor-An-Introductory-Comparison.

[9] TOMOYO Linux. https://wiki.archlinux.org/index.php/TOMOYO_

Linux.

[10] Smack (software). Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/wiki/Smack_(software).

[11] Va²ut, P. Zabezpe£enie pracovnej stanice s OS Linux, 2019.

[12] Smalley S., Vance, C., Salamon, W. Implementing SELinux as a

Linux Security Module. National Security Agency, 2006. https:

119

http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
https://www.linux.com/learn/understanding-linux-file-permissions
https://www.linux.com/learn/understanding-linux-file-permissions
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://linux-audit.com/introduction-into-linux-security-modules/
https://linux-audit.com/introduction-into-linux-security-modules/
https://doc.opensuse.org/documentation/leap/security/html/book.security/cha.apparmor.profiles.html
https://doc.opensuse.org/documentation/leap/security/html/book.security/cha.apparmor.profiles.html
https://doc.opensuse.org/documentation/leap/security/html/book.security/cha.apparmor.profiles.html
https://wiki.ubuntu.com/AppArmor
https://wiki.ubuntu.com/AppArmor
https://www.scribd.com/document/230617085/SELinux-and-AppArmor-An-Introductory-Comparison
https://www.scribd.com/document/230617085/SELinux-and-AppArmor-An-Introductory-Comparison
https://wiki.archlinux.org/index.php/TOMOYO_Linux
https://wiki.archlinux.org/index.php/TOMOYO_Linux
https://en.wikipedia.org/wiki/Smack_(software)
https://en.wikipedia.org/wiki/Smack_(software)
https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf

BIBLIOGRAPHY 120

//www.nsa.gov/Portals/70/documents/resources/everyone/

digital-media-center/publications/research-papers/

implementing-selinux-as-linux-security-module-report.pdf.

[13] Jahoda, M., An£incová, B., Gkioka, I., �apek, T. SELinux User's and Adminis-

trator's Guide. Red Hat Enterprise Linux 7, 2018. https://access.redhat.

com/documentation/en-us/red_hat_enterprise_linux/7/

html-single/selinux_users_and_administrators_guide/index.

[14] Object Classes and Permissions. SElinux Project Website. https://

selinuxproject.org/page/NB_ObjectClassesPermissions.

[15] Bell�LaPadula Model. Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/wiki/Bell%E2%80%93LaPadula_model.

[16] Biba Model. Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/wiki/Biba_Model.

[17] Vadinský, O. Bezpe£nostní politiky SELinuxu pro vybrané aplikace prost°edí

KDE. Master Thesis, Vysoká ²kola ekonomická v Praze, 2011. https://vskp.

vse.cz/26301.

[18] Tools. SELinux Project Repository. https://github.com/

SELinuxProject/selinux/wiki/Tools.

[19] Walsh, D. What is SELinux trying to tell me? The 4 key causes of SELinux errors.,

. https://fedorapeople.org/~dwalsh/SELinux/Presentations/

selinux_four_things.pdf.

[20] Flux Research Group. http://www.flux.utah.edu/index.

[21] Security-Enhanced Linux. National Security Agency. https://www.nsa.gov/

What-We-Do/Research/SELinux/.

[22] SELinux userspace project. http://userspace.selinuxproject.org.

[23] SELinux integration in Linux kernel project. http://www.kernel.org.

[24] SELinux reference policy project. https://github.com/SELinuxProject/

refpolicy.

[25] Ji°inec, J. SELinux politika pro BackupPC. Bachelor Thesis, Vysoká ²kola eko-

nomická v Praze, 2013. https://vskp.vse.cz/68071.

[26] SELinux. Debian Wiki, . https://wiki.debian.org/SELinux.

https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/digital-media-center/publications/research-papers/implementing-selinux-as-linux-security-module-report.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index
https://selinuxproject.org/page/NB_ObjectClassesPermissions
https://selinuxproject.org/page/NB_ObjectClassesPermissions
https://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model
https://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model
https://en.wikipedia.org/wiki/Biba_Model
https://en.wikipedia.org/wiki/Biba_Model
https://vskp.vse.cz/26301
https://vskp.vse.cz/26301
https://github.com/SELinuxProject/selinux/wiki/Tools
https://github.com/SELinuxProject/selinux/wiki/Tools
https://fedorapeople.org/~dwalsh/SELinux/Presentations/selinux_four_things.pdf
https://fedorapeople.org/~dwalsh/SELinux/Presentations/selinux_four_things.pdf
http://www.flux.utah.edu/index
https://www.nsa.gov/What-We-Do/Research/SELinux/
https://www.nsa.gov/What-We-Do/Research/SELinux/
http://userspace.selinuxproject.org
http://www.kernel.org
https://github.com/SELinuxProject/refpolicy
https://github.com/SELinuxProject/refpolicy
https://vskp.vse.cz/68071
https://wiki.debian.org/SELinux

BIBLIOGRAPHY 121

[27] SELinux reference policy adjusted to Debian, . https://salsa.debian.org/

selinux-team/refpolicy.

[28] Debian SELinux Status and Issues, . https://wiki.debian.org/SELinux/

Issues.

[29] SELinux in Ubuntu. Ubuntu Wiki, . https://wiki.ubuntu.com/SELinux.

[30] Sládek, M. Bezpe£nostní politiky SELinuxu pro vybranou aplikaci prost°edí

Gnome. Bachelor Thesis, Vysoká ²kola ekonomická v Praze, 2015. https:

//vskp.vse.cz/45888.

[31] Grifth, D. Targeted con�gured semi-strict with UBAC for Fedo-

ra/Redhat distros, . http://selinux-mac.blogspot.com/2010/07/

targeted-configured-semi-strict-with.html.

[32] MITRE ATT&CK, . https://attack.mitre.org/.

[33] Insights from the MITRE ATT&CK-based evaluation of Windows Defender ATP,

2018.

[34] Technique Matrix for Linux. MITRE ATT&CK, . https://attack.mitre.

org/matrices/enterprise/linux/.

[35] E�ects Tactic. MITRE ATT&CK, . https://attack.mitre.org/

tactics/TA0034/.

[36] Internet Security Threat Report. Symantec, 2018. http:

//images.mktgassets.symantec.com/Web/Symantec/

%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_

Main-FINAL-APR10.pdf?aid=elq_.

[37] What Is AppLocker?, 2017. https://docs.microsoft.

com/en-us/windows/security/threat-protection/

windows-defender-application-control/applocker/

what-is-applocker.

[38] Essential Eight in Linux Environments, 2019. https://www.acsc.gov.au/

publications/protect/essential-eight-linux.htm.

[39] 50 Essential Linux Applications, 2016. http://www.linuxandubuntu.com/

home/50-essential-linux-applications.

[40] Tanjim. M. 24 Must Have Essential Linux Applications.

https://salsa.debian.org/selinux-team/refpolicy
https://salsa.debian.org/selinux-team/refpolicy
https://wiki.debian.org/SELinux/Issues
https://wiki.debian.org/SELinux/Issues
https://wiki.ubuntu.com/SELinux
https://vskp.vse.cz/45888
https://vskp.vse.cz/45888
http://selinux-mac.blogspot.com/2010/07/targeted-configured-semi-strict-with.html
http://selinux-mac.blogspot.com/2010/07/targeted-configured-semi-strict-with.html
https://attack.mitre.org/
https://attack.mitre.org/matrices/enterprise/linux/
https://attack.mitre.org/matrices/enterprise/linux/
https://attack.mitre.org/tactics/TA0034/
https://attack.mitre.org/tactics/TA0034/
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker
https://www.acsc.gov.au/publications/protect/essential-eight-linux.htm
https://www.acsc.gov.au/publications/protect/essential-eight-linux.htm
http://www.linuxandubuntu.com/home/50-essential-linux-applications
http://www.linuxandubuntu.com/home/50-essential-linux-applications

BIBLIOGRAPHY 122

[41] Dev£i¢, I. I. 30 Best Linux Apps And Software, 2016. https://beebom.com/

best-linux-apps/.

[42] Best Ubuntu apps for a better Ubuntu experience, . https://itsfoss.com/

best-ubuntu-apps/.

[43] Best Linux apps of 2018, . https://www.techradar.com/news/

best-linux-apps.

[44] SELinux Project Wiki, . http://selinuxproject.org/page/Main_Page.

[45] MacMillan, K., Case, C., Brindle, J., Sellers, C. SELinux Common Intermediate

Language Motivation And Design. SELinux Project GitHub repository. https:

//github.com/SELinuxProject/cil/wiki.

[46] Vermeulen, S. Where does CIL play in the SELinux

system?, 2015. http://blog.siphos.be/2015/06/

where-does-cil-play-in-the-selinux-system/.

[47] SELinux Setup. Debian Wiki, . https://wiki.debian.org/SELinux/

Setup.

[48] Selinux-basics: check-selinux-installation fails without initscripts. Debian Bug

report logs, . https://bugs.debian.org/cgi-bin/bugreport.cgi?

bug=860522.

[49] Where to �nd SELinux permission denial details. https://wiki.

gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_

permission_denial_details.

[50] Callejas, A. A sysadmin's guide to SELinux: 42 answers to the

big questions, 2018. https://opensource.com/article/18/7/

sysadmin-guide-selinux.

[51] Walsh, D. SELinux with cp/mv, 2006. https://danwalsh.livejournal.

com/56534.html.

[52] SLIDE. TresysTechnology. http://userspace.selinuxproject.org/

archive/slide.php.

[53] Walsh, D. Using SELinux and iptables Together, . https://www.linux.com/

learn/using-selinux-and-iptables-together.

[54] Introduction to SELinux. The Debian Administrator's Handbook. https://

debian-handbook.info/browse/stable/sect.selinux.html.

https://beebom.com/best-linux-apps/
https://beebom.com/best-linux-apps/
https://itsfoss.com/best-ubuntu-apps/
https://itsfoss.com/best-ubuntu-apps/
https://www.techradar.com/news/best-linux-apps
https://www.techradar.com/news/best-linux-apps
http://selinuxproject.org/page/Main_Page
https://github.com/SELinuxProject/cil/wiki
https://github.com/SELinuxProject/cil/wiki
http://blog.siphos.be/2015/06/where-does-cil-play-in-the-selinux-system/
http://blog.siphos.be/2015/06/where-does-cil-play-in-the-selinux-system/
https://wiki.debian.org/SELinux/Setup
https://wiki.debian.org/SELinux/Setup
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=860522
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=860522
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details
https://opensource.com/article/18/7/sysadmin-guide-selinux
https://opensource.com/article/18/7/sysadmin-guide-selinux
https://danwalsh.livejournal.com/56534.html
https://danwalsh.livejournal.com/56534.html
http://userspace.selinuxproject.org/archive/slide.php
http://userspace.selinuxproject.org/archive/slide.php
https://www.linux.com/learn/using-selinux-and-iptables-together
https://www.linux.com/learn/using-selinux-and-iptables-together
https://debian-handbook.info/browse/stable/sect.selinux.html
https://debian-handbook.info/browse/stable/sect.selinux.html

BIBLIOGRAPHY 123

[55] Walsh, D. Blog, . https://danwalsh.livejournal.com/.

[56] Grepl, M. Blog, . https://mgrepl.wordpress.com/.

[57] Coker, R. Blog. https://etbe.coker.com.au/tag/selinux/.

[58] Vrabec, L. Blog. https://lukas-vrabec.com/.

[59] Moore, P. Blog. http://www.paul-moore.com/blog/.

[60] Grifth, D. Blog, . http://selinux-mac.blogspot.com/.

[61] Janá£ek, J. General Purpose Operating System for Security Critical Applications.

PhD Thesis, Comenius university in Bratislava, 2011.

[62] S. Travis. The MITRE ATT&CK Framework: What You Need

to Know, 2018. https://www.tripwire.com/state-of-security/

mitre-framework/mitre-attack-framework-what-know/.

[63] D. Strom. What is Mitre's ATT&CK framework? What red teams need

to know, 2018. https://www.csoonline.com/article/3267691/

what-is-mitres-attandck-framework-what-red-teams-need-to-know.

html.

[64] Independent SELinux Policy. Fedora Project. https://fedoraproject.

org/wiki/SELinux/IndependentPolicy.

[65] Grepl, M. Fun with SELinux - Writing SELinux Policy, . https://mgrepl.

fedorapeople.org/PolicyCourse/writingSELinuxpolicy_MUNI.

pdf.

[66] Vrabec, L., Mojzis, V. SELinux from Developer POV. LinuxDays, 2017. https:

//www.linuxdays.cz/2017/video/Lukas_Vrabec-SElinux.pdf.

[67] SELinux HowTo. CentOS. https://wiki.centos.org/HowTos/SELinux.

[68] Walsh, D. Awesome new coreutils with improved SELinux support. Dan Walsh's

Blog, 2013. https://danwalsh.livejournal.com/67751.html.

[69] Debian Bug report logs: Bugs in source package refpolicy, . https:

//bugs.debian.org/cgi-bin/pkgreport.cgi?repeatmerged=no&

src=refpolicy.

[70] Introduction to AppArmor. The Debian Administrator's Handbook, . https:

//debian-handbook.info/browse/stable/sect.apparmor.html.

https://danwalsh.livejournal.com/
https://mgrepl.wordpress.com/
https://etbe.coker.com.au/tag/selinux/
https://lukas-vrabec.com/
http://www.paul-moore.com/blog/
http://selinux-mac.blogspot.com/
https://www.tripwire.com/state-of-security/mitre-framework/mitre-attack-framework-what-know/
https://www.tripwire.com/state-of-security/mitre-framework/mitre-attack-framework-what-know/
https://www.csoonline.com/article/3267691/what-is-mitres-attandck-framework-what-red-teams-need-to-know.html
https://www.csoonline.com/article/3267691/what-is-mitres-attandck-framework-what-red-teams-need-to-know.html
https://www.csoonline.com/article/3267691/what-is-mitres-attandck-framework-what-red-teams-need-to-know.html
https://fedoraproject.org/wiki/SELinux/IndependentPolicy
https://fedoraproject.org/wiki/SELinux/IndependentPolicy
https://mgrepl.fedorapeople.org/PolicyCourse/writingSELinuxpolicy_MUNI.pdf
https://mgrepl.fedorapeople.org/PolicyCourse/writingSELinuxpolicy_MUNI.pdf
https://mgrepl.fedorapeople.org/PolicyCourse/writingSELinuxpolicy_MUNI.pdf
https://www.linuxdays.cz/2017/video/Lukas_Vrabec-SElinux.pdf
https://www.linuxdays.cz/2017/video/Lukas_Vrabec-SElinux.pdf
https://wiki.centos.org/HowTos/SELinux
https://danwalsh.livejournal.com/67751.html
https://bugs.debian.org/cgi-bin/pkgreport.cgi?repeatmerged=no&src=refpolicy
https://bugs.debian.org/cgi-bin/pkgreport.cgi?repeatmerged=no&src=refpolicy
https://bugs.debian.org/cgi-bin/pkgreport.cgi?repeatmerged=no&src=refpolicy
https://debian-handbook.info/browse/stable/sect.apparmor.html
https://debian-handbook.info/browse/stable/sect.apparmor.html

BIBLIOGRAPHY 124

[71] SELinux and AppArmor: An Introductory Compari-

son. https://www.scribd.com/document/230617085/

SELinux-and-AppArmor-An-Introductory-Comparison.

[72] Linux Kernel Security (SELinux vs AppArmor vs Grsecurity), 2009. https://

www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.

html.

https://www.scribd.com/document/230617085/SELinux-and-AppArmor-An-Introductory-Comparison
https://www.scribd.com/document/230617085/SELinux-and-AppArmor-An-Introductory-Comparison
https://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
https://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
https://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html

	Introduction
	I Introduction, motivation and goals
	Linux Access Control Mechanisms
	DAC and capabilities
	MAC
	AppArmor
	SELinux
	TOMOYO
	SMACK

	Summary

	SELinux overview
	SELinux principles
	Architecture
	Object classes and permissions
	Security contexts
	Domain and Type Enforcement (DTE)
	Role-based Access Control (RBAC)
	Constraints
	Multi-Level/Multi-Category Security (MLS/MCS)

	Using SELinux
	Activating SELinux
	Customizing SELinux policy
	Solving SELinux-related problems

	SELinux development and support
	SELinux reference policy
	Reference policy problems

	Summary

	Improving SELinux coverage and usability
	Previous work
	Our solution
	Target distribution
	Classifying applications
	Analytical approach
	Compatibility and extensibility
	Target audience

	Summary

	II Analysis and design
	Security requirements
	MITRE ATT&CK Framework
	Scope of the analysis
	Threat analysis
	Initial Access
	Execution
	Persistence
	Privilege Escalation
	Defense Evasion
	Credential Access
	Discovery
	Lateral Movement
	Collection
	Effects
	Exfiltration
	Command and Control

	Summary

	Functional requirements
	Classification of user applications
	Design of our policy
	Requirements for our policy modules
	Simple local applications
	File viewers
	File editors
	Trusted file viewers
	Trusted file editors
	Device recorders
	Web browsers
	Mail clients
	General network applications
	Teleconferencing applications
	Unlimited applications

	Summary

	III Policy development
	SELinux policy development
	SELinux policy languages
	Kernel policy language
	Reference policy language
	CIL (Common Intermediate Language)

	Reference policy structure
	Summary

	Implementation
	Fixing the reference policy for Debian
	Missing privileges
	Broken mechanism for default contexts

	Design of the reference policy extension
	User roles and domains
	Helper functions for new modules
	Interface over the reference policy
	Classification of user data

	Added modules
	Basic access
	Access to user data
	Access to network
	Access to devices
	Interaction with contrib modules
	Interaction between new modules

	Optional policy parts
	Summary

	IV Deployment and maintenance
	SELinux setup and administration
	Enabling SELinux
	Installing SELinux utilities
	Obtaining SELinux policy
	Activating SELinux
	Verifying SELinux installation
	Customizing the installation
	Switching to enforcing mode

	Using a system with SELinux
	Using basic Linux utilities
	Changing policy configuration
	Setup for new applications
	Temporary change of a security context
	Permanent change of a security context

	Solving SELinux-related problems
	Identifying the reason behind the error message
	Addressing SELinux-related problems

	Summary

	Policy maintenance
	Developer tools
	Important files
	Compilation
	Troubleshooting
	Syntactical errors
	Semantical errors

	Adding a new module
	Summary

	V Evaluation
	Evaluation
	Security validation
	Functionality validation
	Summary

	Discussion and remarks
	Our decisions and remarks
	Extending the reference policy
	Reference policy functions
	Simplifications
	Security and usability compromises
	Target audience

	Possible improvements and future work
	Support for other Linux distributions
	Analysis of other security layers
	SELinux as Intrusion Detection System
	Separation of privileges
	More detailed policies

	Summary

	Conclusion
	Appendices
	Release version
	SELinux policy source code

