
Comenius University

Faculty of Mathematics, Physics and Informatics

Department of Computer Science

Bratislava, Slovakia

Parallelization

of Radiosity Method

Master's Thesis

Pavol Slamka

author

Dr. Tomá² Plachetka

advisor

Bratislava May 2007



Parallelization

of Radiosity Method

Master's Thesis

Pavol Slamka

Comenius University

Faculty of Mathematics, Physics and Informatics

Department of Computer Science
Bratislava, Slovakia

Study Programme: 2508800 Informatics

Dr. Tomá² Plachetka

Bratislava, May 2007



I hereby declare that this thesis is my own work, and was written only

with the help of the referenced literature and under the careful supervision

of my thesis advisors.

Bratislava, May 2007 Pavol Slamka



Acknowledgements

I would like to thank my teacher and consultant Dr. Tomá² Plachetka for

his time, worthy advice and guidance on this diploma thesis. I would also

like to thank Prof. RNDr. Branislav Rovan PhD. for his comments on this

thesis.



Abstract

In this thesis, we focus on design of a highly e�cient parallel algorithm for

solving the radiosity method. The presented parallel algorithm is based on

the progressive radiosity method. We use asynchronous message passing

model in combination with communication-thread in order to overlap com-

munication with computation. This approach allows us to take a di�erent

numerical approach to the problem, thus decreasing the communication be-

tween processors. All this improves e�ciency of the parallel algorithm. The

parallelization at a high level of sequential algorithm further decreases the

communication and can be viewed as a parallel framework, which is indepen-

dent of the implementation of lower layers. In this thesis, we design a fully

asynchronous algorithm and an algorithm with deferred synchronization for

progressive radiosity solution. For comparison, we also designed a simple

synchronous algorithm. Finally we propose two load balancing approaches

based on work stealing, which are suitable for presented algorithms.

Keywords: Parallelization, Progressive radiosity, Asynchronous model



Contents

1 Introduction 7

1.1 Radiosity and Current Research . . . . . . . . . . . . . . . . . 8

1.2 Parallelization of Radiosity . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . 9

2 Radiosity Method 11

2.1 Global Illumination . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Radiosity Equation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Progressive Radiosity . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Form Factor Computation . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Projection Methods . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Ray-Casting Methods . . . . . . . . . . . . . . . . . . . 29

3 Overview of Parallelization Algorithms 32

3.1 Parallelization Issues . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Radiosity Related Problems . . . . . . . . . . . . . . . . . . . 34

3.3 Classi�cation of Parallel Architectures . . . . . . . . . . . . . 35

3.4 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Parallelization of Progressive Radiosity . . . . . . . . . 37

4 Design of Algorithm 41

4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Target Architecture . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Communication Model . . . . . . . . . . . . . . . . . . 41

4.1.3 Memory Limitations and Termination Criteria . . . . . 42

4.2 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Simple Synchronous Algorithm . . . . . . . . . . . . . . . . . 44

4.4 Fully Asynchronous Algorithm . . . . . . . . . . . . . . . . . . 48

4.4.1 Proof of Convergence and Termination . . . . . . . . . 58



4.5 Algorithm with Deferred Synchronization . . . . . . . . . . . . 62

4.5.1 Queue Size Problems . . . . . . . . . . . . . . . . . . . 62

4.5.2 Queue Size Delimitation . . . . . . . . . . . . . . . . . 63

4.5.3 Algorithm with Deferred Synchronization . . . . . . . . 64

4.5.4 Algorithm Overview . . . . . . . . . . . . . . . . . . . 65

5 Loadbalancing Using Work Stealing 71

5.1 Important Factors . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 General Work Stealing for the Asynchronous Algorithm . . . . 74

5.3 Iteration Stealing . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Patch Stealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Work Stealing for the Algorithm with Deferred Synchronization 81

6 Conclusion 83

References 84



7

1 Introduction

Virtual reality has become a common part of today's life. We meet with new

amazing worlds and possibilities and that not just in the movie industry or

computer games, but also in art or advertising. The visualization of arti�cial

space is an inextricable part of virtual reality. Creation and visualization of

three-dimensional scenes is also used for simulations and has its signi�cance

in other sectors of industry, e.g. architecture.

Photorealistic image synthesis is a part of computer graphics, which is

examining the possibilities of true visualization of existent or non-existent

three-dimensional scenes with the help of a computer. Requirements for the

output's �realism� di�er according to the �eld of use. In general, however,

the exact solution is never reached and the result is just its approximation.

The greater accuracy we want to achieve, the greater are the demands for

the computation.

In spite of today's permanent growth of speed and capabilities of com-

puters, there are physical boundaries. Therefore, the growth of computer's

power will eventually stop. Moreover, the increase of speed of computers is

still relatively slow. Although not all computations can be solved in parallel

with a signi�cant e�ciency increase, parallel computing is a natural way for

further increase of computational power.

Radiosity is one of the methods of photorealistic image synthesis. With

increasing accuracy and quality of the output image, the computational de-

mands are increasing incomparably faster. For this reason, radiosity is a

good candidate for parallelization. In this work, we will focus on the ef-

fective, high-level parallelization of the radiosity method, which exploits an

asynchronous model of computation and communication, and therefore also

modi�es the way of numerical solution.



8 1 INTRODUCTION

1.1 Radiosity and Current Research

Radiosity as a method of photorealistic synthesis became very popular. Be-

cause of the ability to simulate indirect light and creating soft shadows,

rendered images have very realistic looks, in spite of several drawbacks. To

remedy some of these drawbacks, radiosity can be combined with other meth-

ods such as ray tracing, in a so-called two-pass solution [WCG87] [SP89], to

produce even better quality images.

The recent research in the radiosity �eld is focusing on two goals. The

�rst one is to increase the accuracy and correctness of the resulting image,

so that the results have fewer artifacts, look more realistic and are correct

within the physical model. The second goal researchers try to achieve is to

speed up the computation and optimize the amount of resources needed, since

the radiosity computation is, similar to other photorealistic image synthesis

methods, very time and memory consuming. Some approaches are successful

in improving both these goals. Research involves topics such as input scene

representation, adaptive subdivision, probabilistic models for visibility com-

putation, dynamic scenes, realtime radiosity computation, or parallelization.

1.2 Parallelization of Radiosity

There have been many di�erent approaches and strategies to the paralleliza-

tion of radiosity. Although it is quite easy to develop an arbitrary parallel

algorithm for radiosity, it is a di�cult task to develop an e�cient one.

Former parallelization approaches di�er in the choice of architecture,

where the topology and communication overhead play an important role,

in the de�nition and distribution of tasks, and in special hardware usage.

Moreover, di�erent basic sequential radiosity algorithms were chosen for par-

allelization. This may have a signi�cant in�uence on how parallelism can be

exploited and on the level it can be exploited at. The basic algorithms di�er

in the choice of techniques used for local computations, such as visibility

computation, in the choice of the method for solving linear equations system



1.3 Outline of This Thesis 9

and in optimization techniques used.

The main challenge in parallelization is to avoid situations, where there

are unoccupied processors waiting for other processors, thus wasting the com-

putational time. Also, we try to use as little communication between proces-

sors as possible, because communication is slow1 and introduces additional

cost in comparison with sequential algorithm. In our opinion, many radiosity

algorithms still lack a straightforward approach to achieving these goals.

It is a common practice to write parallel applications using one of two

standard parallel libraries, MPI or PVM. Applications using these libraries

can be easily modi�ed to run at di�erent architectures, what outweighs a

small performance loss. Unfortunately, these parallel standards show an in-

convenient drawback when used with a certain class of parallel applications,

as it was addressed in [Pla06] or [Pla03]. When using PVM or MPI li-

braries for the class of non-trivial parallel application, active polling (or busy

waiting) occurs, causing ine�cient computation. In our application, the use

of threads is necessary in order to exploit the asynchronous model. There

are several thread-safe MPI implementations. However, the active polling

problem still occurs, either hidden in the library implementation, or at the

application level. The result is a signi�cant loss of e�ciency. The solution to

this problem, thread parallel library, which is thread-safe and avoids the ac-

tive polling problem, was proposed in [Pla06]. The use of this library allows

us to exploit a full asynchronous communication. The asynchronous com-

munication is very e�cient � however, it also brings new implementation

challenges in comparison to synchronous communication.

1.3 Outline of This Thesis

In this thesis we present an e�cient asynchronous algorithm for the radiosity

method, based on modi�ed progressive radiosity, using the asynchronous

message passing model, and we avoid the active polling problem by using

1Compared to the processor speed



10 1 INTRODUCTION

thread-safe, non-polling communication library.

In chapter 2 we present radiosity as a method for realistic image synthe-

sis. We start by describing the problem of global illumination and continue

with the de�nition of radiance and radiance equation. Next, we focus on the

derivation of radiosity equation. We also discuss the possibilities to the solu-

tion of the radiosity equation where we look more in detail at the progressive

radiosity, which is the base for the presented parallel algorithms. In the third

part of chapter 2, we consider possible approaches to form factor computa-

tion. The objectives, di�culties and di�erent approaches to parallelization

of radiosity method are discussed in chapter 3. In chapter 4 we �rst acquaint

the reader with assumptions made to the presented algorithms. We describe

a simple synchronous algorithm and a fully asynchronous algorithm followed

by an algorithm with deferred synchronization. We also prove the termina-

tion and convergency properties for the asynchronous algorithm. In chapter

�ve we discuss the possibilities if improving the presented algorithms using

load balancing. We o�er two approaches based on work stealing technique.



11

2 Radiosity Method

2.1 Global Illumination

Given an arbitrary 3D model, which consist of the geometry of individual 3D

objects, the material properties for these objects, light sources and the virtual

camera, the problem of global illumination can be formulated as computing

the image that the virtual camera takes, according to laws of physics. This

problem can be divided in two independent phases:

• computation of the light distribution in the scene

• measurement of the light distribution by the virtual camera

The �rst phase computes the distribution of light according to the laws

of physics. Note that the �rst phase is independent on the virtual camera

position. If the light distribution computed in the �rst phase is stored (as

in the case of radiosity), then it is easy to compute pictures as the virtual

camera moves and measures light information from di�erent positions. In

order to formally de�ne the global illumination problem, we will introduce

several de�nitions:

De�nition 1. Radiant power (�ux) Φ is the amount of energy which passes

through a boundary per unit time (over a given spectrum range).

Φ =
dQ

dt
(1)

De�nition 2. Radiance (intensity) is the radiant power radiated (or re-

ceived) at a given point x in a given direction −→ω , per unit projected surface

area dA⊥2, per unit solid angle d−→ω , over a given spectrum range (Fig. 2(a)).

L(x,−→ω ) =
d2Φ

dA⊥d−→ω
(2)

2Per unit area perpendicular to the direction of travel



12 2 RADIOSITY METHOD

(a) Radiance leaving di�erential
area dA in the direction ω.

(b) Unit projected surface area.

Figure 1: Radiance.

The unit projected surface area can be expressed as:

dA⊥ = dA cos θ (3)

where θ is the angle between the local surface normal and the direction
−→ω (Fig. 2(b)).

The importance of radiance lies in the fact that human visual perception

is sensitive to radiance. The same is valid for a camera sensor. The intensity,

the color of a pixel is proportional to the radiance of the corresponding

object. In vacuum, radiance in particular direction is invariant everywhere

along this direction [CWH93]. Therefore the color or contrast of an observed

object does not change with changing distance of the observer. Radiance

has also the advantage that many radiometric quantities can be expressed as

radiance integrals.

De�nition 3. Radiosity is de�ned as the radiant power radiated3 from a

di�erential surface area around a given point.

B(x) =
dΦ

dA
(4)

3This includes both re�ected �ux and emitted �ux



2.1 Global Illumination 13

Radiosity can be expressed as the radiance integral over the hemisphere.

B(x) =

∫
Ω

L(x, d−→ω ) cos θd−→ω (5)

De�nition 4. The bidirectional scattering function, BSDF is de�ned as the

ratio of the scattered radiance and the incoming radiance:

BSDF (x, ω′, ω) =
dLs(x, ω)

dEi(x, ω)
=

dLs(x, ω)

dLi(x, ω′) cos θ′dω′ (6)

where x is the point of incidence, ω is a di�erential solid angle around the

outgoing direction, ω′ is a di�erential solid angle around the incoming direc-

tion, θ′ is the angle between the surface normal and the incoming direction.

BSDF is a more general function than BRDF4 because it describes both

the re�ection and the refraction of light. Given the BSDF function for a

surface and the value of incoming radiance for a particular point x from a

particular direction ω′, we can determine, for any outgoing direction ω, the

value of scattered radiance using the scattering equation, which describes the

local illumination model [CWH93]:

Ls(x, ω) =

∫
Ω

BSDF (x, ω′, ω)Li(x, ω′) cos θ′dω′ (7)

Surfaces are usually modeled using polygonal mesh, Fig. 3(a), or con-

structive solid geometry, which uses boolean operators on simple objects in

order to create complex surfaces as shown in Fig. 3(b). For more elaborate

information, you can refer to [ZBSF04] or [Pla03].

As stated in [Pla03], we can formally de�ne an instance of the global

illumination.

De�nition 5. The instance of the global illumination problem is a tuple

〈G, BSDF, Le, C〉 (8)

4Bidirectional re�ectance distribution function



14 2 RADIOSITY METHOD

(a) An example of triangle mesh. The object
consists of many connected triangles.

(b) Description of an object
in constructive solid geom-
etry. The object is a result
of the di�erence and union
operations.

Figure 2: Surface modeling.

where G is the description of surfaces, BSDF is the function describing

the surface materials, Le is the description of light sources and C is the

virtual camera description.

In order to solve the global illumination problem, we have to compute

at least the radiance values of the scene objects which are visible by the

virtual camera. The camera can afterwards record the picture according to

the radiance values.

De�nition 6. The Ray-Trace function RT (x, ω) returns the nearest surface

point to x in the direction ω. (If no surface point is found in direction ω, an

arbitrary point along the direction ω from the point x is returned.)

Considering that the total radiance consists of the emitted radiance and

the scattered radiance and using (7) and the Ray-Trace function RT (x, ω),

we get the Radiance equation:

L(x, ω) = Le(x, ω) + Ls(x, ω) (9)



2.2 Radiosity Equation 15

L(x, ω) = Le(x, ω) +

∫
Ω

BSDF (x, ω′, ω)L(RT (x,−ω′), ω′)) cosθ′dω′ (10)

The radiance equation can be solved by using direct methods, or approxi-

mation methods. The former use Monte Carlo methods for direct integration

of the equation, e.g. the gathering path method. The latter, e.g. the radiosity

method, introduce simpli�cations to the original model in order to simplify

the radiance equation.

2.2 Radiosity Equation

Radiosity method historically originates from radiative heat transfer compu-

tation [GTGB84]. It is one of more ways to �nd the solution for the basic illu-

mination equation, however, introducing several simplifying assumptions as

follows. The �rst simpli�cation is, that all of the scene surfaces are perfectly

di�use re�ectors, also called Lambertian surfaces, re�ecting light equally in

all directions. By all directions we only mean directions in the half space of

re�ection. We can characterize a perfect di�use surface by BSDF as follows:

BSDF (x, ω′, ω) =


ρ(x)
π

if ω lies in the half-space of re�ection;

0 otherwise.
(11)

where ρ(x) ∈ 〈0, 1〉 is the re�ection coe�cient.

This simpli�cation, of course, brings errors to the rendered images, be-

cause as we know, none of real objects is perfectly di�use. Moreover, there

are objects, which we cannot describe using di�use re�ection, not even ap-

proximately, e.g. mirror or transparent objects. We can neither simulate

refraction of light at the boundaries of di�erent optical environments, as we

can in ray tracing.

The second simpli�cation would be, that the 3D scene consists of one type

of objects only. These objects, so called patches, are planar polygons, which

represent parts of the surface of an object in the scene. We consider every



16 2 RADIOSITY METHOD

patch being uniform in all its surface points, in the sense of the BSDF and

the radiance values. Patches also represent light sources. All light sources

are area light sources, and are perfect di�use emitters. Thanks to these

simpli�cations, the radiance equation can be simpli�ed into a more feasible

form, and so can be the radiosity equation. First, we rewrite the equation

(10) using (11):

L(x, ω) = Le(x, ω) +
ρ(x)

π

∫
Ω

L(RT (x,−ω′), ω′)) cosθ′dω′ (12)

De�nition 7. We de�ne excitance as:

E(x) =

∫
Ω

Le(x, ω) cos θdω (13)

where Le(x, ω) is the function describing only radiance outgoing from light

sources in the scene5. Since all surfaces are Lambertian surfaces, Le(x, ω) is

not dependent on ω and we can simplify the previous equation using spherical

coordinates:

E(x) =

∫
Ω

Le(x, ω) cos θdω

= Le(x, ω)

∫
Ω

cos θdω

= Le(x, ω)

∫ π

0

∫ 2π

0

cos θ sin θdθdφ

= πLe(x, ω). (14)

We can also simplify the de�nition of the radiosity quantity (3):

5Given a point x that does not lie inside any light sources, E(x) = 0



2.2 Radiosity Equation 17

B(x) =

∫
Ω

L(x, ω) cos θdω

= L(x, ω)

∫
Ω

cos θdω

= πL(x, ω). (15)

After multiplying (12) by π we obtain:

B(x) = E(x) + ρ(x)

∫
Ω

L(RT (x,−ω′), ω′) cos θ′dω′ (16)

The Ray-Trace function returns the closest surface point y in the direc-

tion −ω′ if there is one (if no surface point is found in direction −ω, an

arbitrary point yarb along the direction −ω from the point x is returned, thus

L(yarb, ω) = 0):

y = RT (x,−ω′). (17)

Since we know that y lies on a surface that is a perfect di�use re�ector

and emitter, it holds that

L(y, ω′) = L(RT (x,−ω′), ω′) =
B(y)

π
(18)

Now we can see from (18) that the radiance incoming from a point of

surface depends only on the radiosity of this point. Therefore, the equation

(16) can be further simpli�ed if we substitute for dω′6:

B(x) = E(x) +
ρ(x)

π

∫
S

B(y)
cos θ cos θ′

r(x, y)2
V (x, y)dA (19)

where θ is the angle between the surface normal and the direction y → x at

the point y, r(x, y) is the distance function, dA is the di�erential area around

point y. Because we integrate through all surface points S in the scene, we

6dω′ = dA cos θ/r2



18 2 RADIOSITY METHOD

must cut o� those points which are not visible from x and therefore don't

contribute to the incoming radiance. This is the reason why the visibility

term V (x, y) is introduced.

V (x, y) =

x if x and y are mutually visible;

0 otherwise.
(20)

The surfaces of the scene S are represented by patches Pi. That allows

us to split the integration domain and integrate over all patches, since S =⋃n
i=1 Pi:

B(x) = E(x) +
ρ(x)

π

n∑
i=1

∫
y∈Pi

B(y)
cos θ cos θ′

r(x, y)2
V (x, y)dAi (21)

We suppose that all patches are uniform, hence all the points of a particu-

lar patch have the same radiosity and material properties. Since the incoming

radiance, and therefore also the radiosity value, varies over the points of a

particular patch, we introduce the patch radiosity as the area-weighted aver-

age of point radiosities, in order to satisfy the uniformity condition.

Bi =
1

Ai

∫
x∈Pi

B(x)dx (22)

Similarly, we obtain uniformity of excitance over a patch.

Ei =
1

Ai

∫
x∈Pi

E(x)dx (23)

After incorporating patch uniformity to the equation (21), we obtain

Bi = Ei + ρi

n∑
j=1

Bj
1

Ai

∫
x∈Pi

∫
y∈Pj

cos θ cos θ′

πr(x, y)2
V (x, y)dAjdAi (24)

where ρi = ρ(x) for all x such that x ∈ Pi.

Let us denote



2.2 Radiosity Equation 19

Fij =
1

Ai

∫
x∈Pi

∫
y∈Pj

cos θ cos θ′

πr(x, y)2
V (x, y)dAjdAi (25)

where the Fij terms are called form factors. Then the radiosity equation

can be written as linear equation system

Bi = Ei + ρi

n∑
j=1

FijBj (26)

with a corresponding matrix form


1− ρ1F11 −ρ1F12 . . . −ρ1F1n

−ρ2F21 1− ρ2F22 . . .
...

... . . .
. . . ...

−ρnFn1 . . . . . . 1− ρnFnn

 ·


B1

B2

...

Bn

 =


E1

E2

...

En

 (27)

The solution of the global illumination problem with the radiosity method

consists of two steps. In the �rst (view-independent) step, we solve the

radiosity equation in order to �nd radiosity values for all patches in the

scene. In the second step, we look at the scene with the camera from a

certain position and we produce a corresponding image. The �rst step is

completely independent of the camera position, hence we might repeat the

second step placing the camera at di�erent positions, using the radiosity

values computed in the �rst step. In this fashion, animated sequences can be

created e�ciently. Note that we change only the position of the camera in the

scene, while all objects of the scene (patches) remain at the same position.

Once we move an object and change the geometry of the scene, the �rst step

needs to be recomputed again, although techniques exists which try to avoid

this [Sch00].

In order to �nd the solution of the radiosity equation, we need to compute

the form factors Fij, which are only geometry dependent, and can be therefore

pre-computed, if needed. Next, we solve the equation, using an appropriate



20 2 RADIOSITY METHOD

method for solving linear equation systems. However, the computation of

form factors is very time-consuming. With the increasing number of patches

in the scene, the size of the radiosity equation matrix grows with square of the

number of patches in the scene. Hence, for large scenes, those methods for

solving linear equations, which need to have the whole matrix computed, e.g.

Gauss elimination, Jacobi or Gauss-Seidel, are not very practical. Instead,

other methods are used, such as Southwell relaxation, which is related to the

progressive radiosity method.

2.3 Progressive Radiosity

De�nition 8. We say that a given matrix M is strictly row diagonally dom-

inant, if ∀i : |Mii| >
∑

j 6=i |Mij|.

De�nition 9. We say that a given matrix M is strictly column diagonally

dominant, if ∀j : |Mjj| >
∑

i6=j |Mij|.

For the numerical solution of the radiosity equation

Bi = Ei + ρi

n∑
j=1

FijBj (28)

several relaxation methods can be used7. We refer to the solution of equa-

tion (28), using Gauss-Seidel method, as to gathering radiosity, because the

radiosity Bi of the patch Pi is de�ned as a sum of other patches' radiosities,

in a sense, it is gathering the incoming light. To �nd a better estimation for

a single patch's Pi radiosity Bi, we need to compute the ith row of the matrix

from (27). In order to determine this one row, we need to compute O(n)

form factors (where n is the number of patches). Furthermore, to estimate

the radiosity of all patches using the Gauss-Seidel method, at least the �rst

complete iteration cycle is necessary [CCWG88]. That means, we need to

compute the whole matrix � O(n2) form factors. This is intractable even for
7Matrix from equation (27) is row diagonally dominant, because Fii = 0 ,

∑n
j=1 Fij ≤ 1

and 0 ≤ ρi < 1



2.3 Progressive Radiosity 21

moderately large scenes. Moreover, this matrix may be too large to �t into

memory. A method that avoids these drawbacks, progressive radiosity (also

called shooting radiosity), was proposed [CCWG88] as an approach to the

solution of radiosity equation following the progressive re�nement principle

[BFGS86], and it is equivalent to the combination of Southwell relaxation

and Jacobi iteration [GCS93].

Progressive radiosity works in iterations, which are repeated until the

desired convergence criterion is met. In every iteration, we �rst select the

patch with the greatest unshot energy.8 Afterwards, this patch � shooter

�shoots� its energy on other patches, receivers. The energy is distributed

among the receivers according to the corresponding form factors. For every

patch, we store the total received radiosity, Bi, and the radiosity to be shot,

Ri. When increasing the value of Bi, we increase the total �brightness� of

patch Pi. When increasing residual Ri, we increase the unshot energy, which

should be re�ected from patch Pi and hit other patches. After patch Pi

shoots its energy that corresponds to RiAi (where Ai is the area of patch Pi),

its residual Ri is set to zero and the iteration ends. After the algorithm has

�nished, the resultant radiosities are found in Bi. Note, that we only compute

the form factor Fij when needed, and we do not store it. In comparison with

full matrix methods, we avoid storing O(n2) form factors. On the other hand,

we may sometimes have to compute the same form factor again.

/*INPUT*/

var array E[i]; /*light sources radiosities*/

var array r[i]; /*patch reflectances*/

var array P[i]; /*patch geometry description*/

/*VARIABLES*/

var array B[i]; /*total radiosities*/

var array R[i]; /*residual radiosities*/

8In the beginning of algorithm, this will be the strongest light source



22 2 RADIOSITY METHOD

BEGIN

for all i:

{

B[i] := r[i] * E[i];

R[i] := r[i] * E[i];

}

while not converged

{

select i with greatest R[i]

for all j

{

F = Compute_Form_Factor(P[i], P[j]);

increase = r[j] * F * R[i]A[i] / A[j];

E[j] := E[j] + increase;

R[j] := R[j] + increase;

}

R[i] := 0;

}

END

In the next few lines, we will explain the principle of the Southwell relax-

ation. We will also prove that the Southwell relaxation is valid for equation

systems with column diagonally dominant matrix.

Consider a linear equation system

Ax = b, (29)



2.3 Progressive Radiosity 23

where the matrix M is n×n and is column diagonally dominant. In Southwell

relaxation, we construct a sequence of approximate solutions for vector x,

which converges to the system's solution. We denote x(k) the approximate

solution after the kth step. We de�ne the kth residual as

res(k) = b− Ax(k). (30)

In every step, we update the approximate solution

xk+1 = xk + ∆x. (31)

At the beginning, we set x(0) = 0, therefore res(0) = b. Let us consider that

after the kth step we are given vector res(k). Then we can compute res(k+1):

res(k+1) = b− Ax(k+1) = b− A(xk + ∆x) = res(k) − A∆x. (32)

Following the Southwell relaxation, we select the component from res(k) hav-

ing the greatest residual. Our goal is to relax this ith component's residual

res
(k)
i so that res

(k+1)
i = 0. From (32), we get

res
(k+1)
i = res

(k)
i −

n∑
j=1

Aij∆x (33)

0 = res
(k)
i −

n∑
j=1

Aij∆x (34)

res
(k)
i =

n∑
j=1

Aij∆x. (35)

The following vector is solution to the equation above

∆xj =

0 if i 6= j;

res
(k)
i /Aii if i = j.

(36)

After updating the approximate solution vector by ∆x as de�ned above, we



24 2 RADIOSITY METHOD

update residua as follows

res
(k+1)
j = res

(k)
j − Aji

Aii

res
(k)
i . (37)

The proof of convergence follows:

Proof. In this proof, we will use the norm

||res(k)|| =
∑

i

|resk
i |. (38)

Note that if the convergence holds for the norm as de�ned above, it also

holds for the max-norm, which is de�ned as

||res(k)|| = MAX|resk
i |. (39)

We know from (37)that

res
(k+1)
j = res

(k)
j + (

−Aji

Aii

res
(k)
i ). (40)

Since |a + b| ≤ |a|+ |b|, we obtain

|res(k+1)
j | ≤ |res(k)

j |+ |Aji|
|Aii|

|res(k)
i |, (41)

we sum up for all j 6= i

∑
j 6=i

|res(k+1)
j | ≤

∑
j 6=i

|res(k)
j |+

∑
j 6=i

|Aji|
|Aii|

|res(k)
i |, (42)

∑
j

|res(k+1)
j | − |res(k+1)

i | ≤
∑

j

|res(k)
j | − |res(k)

i |+ |res(k)
i |

|Aii|
∑
j 6=i

|Aji|, (43)

||res(k+1)|| ≤ ||res(k)|| − |res(k)
i |+ |res(k)

i |
|Aii|

∑
j 6=i

|Aji|. (44)



2.3 Progressive Radiosity 25

Let us denote

λi =

∑
j 6=i |Aji|
|Aii|

(45)

From the strict column diagonal dominance of A we derive that

0 ≤ λi < 1. (46)

The previous inequality is valid for any particular i. If we denote λ the

maximum among all λi, then the following holds

||res(k+1)|| ≤ ||res(k)|| − |res(k)
i |+ |res(k)

i |λ, (47)

where 0 ≤ λ < 1.

||res(k+1)|| ≤ ||res(k)||+ |res(k)
i |(λ− 1). (48)

Since res
(k)
i is the greatest residual, it holds that

|res(k)
i | ≥ ||res(k)||

n
. (49)

Therefore, since (λ − 1) is negative, we can exchange the term |res(k)
i | and

we obtain

||res(k+1)|| ≤ ||res(k)||(1 +
λ− 1

n
). (50)

1 + λ−1
n

< 1, hence

||res(k+1)|| ≤ ||res(k)||q (51)

where q < 1.

||res(k+1)|| ≤ ||res(0)||qk (52)

Since qk converges to 0, the residua converge to 0, the vector of unknowns

converges to the solution.

We can see that in the progressive radiosity algorithm, radiosities and

residua of all patches are updated in one shooting step. In the Southwell



26 2 RADIOSITY METHOD

relaxation, in one relaxation step we update all residua, but only one com-

ponent of the unknown vector.9 The permanent updating of radiosity values

of all patches in every iteration step is equivalent to one use of Jacobi sweep

at the end of Southwell relaxation. More speci�cally, once we are done with

Southwell relaxation, we still have the computed values of the residua. The

addition of these residua to the solution vector is in fact one Jacobi sweep.

Every Southwell relaxation step adds the residua to the relaxed component,

x
(k+1)
i = x

(k)
i + res

(k)
i /Aii. If we were running Southwell long enough, all

residua would be eventually added to corresponding components, but up-

dated in every step. We do the same with the Jacobi sweep, just using the

old data, because the residua are not updated.10 The use of Jacobi is valid

for systems with strictly diagonal matrix, as noted in [GCS93]. It follows,

that the progressive radiosity converges to the solution of equation (55).

From (25) we can derive the reciprocity relation for form factors

FijAi = FjiAj (53)

where Ai and Aj are areas of patches Pi and Pj, respectively. After multi-

plying (28) by term Ai, the reciprocity relation allows us to rewrite it as

BiAi = EiAi + ρi

n∑
j=1

BjAjFji (54)

9Which corresponds to the radiosity value of one patch
10In case of radiosity, the old residua are smaller than the new ones would be, if we

continued with Southwell relaxation long enough. Therefore, by using not-updated residua,
we move closer to the solution, just more slowly than if we had the updated residua.



2.4 Form Factor Computation 27

with the matrix form
1− ρ1F11 −ρ1F21 . . . −ρ1Fn1

−ρ2F12 1− ρ2F22 . . .
...

... . . .
. . . ...

−ρnF1n . . . . . . 1− ρnFnn

 ·


B1A1

B2A2

...

BnAn

 =


E1A1

E2A2

...

EnAn


(55)

.

Lemma 2.1. The matrix M from (55) is column diagonally dominant.

Proof. Since ∀iFii = 0, it follows that ∀iMii = 1. From the physical con-

straints we have that ∀i
∑

j 6=i Fij <= 1 (for closed scenes, the equality is true,

i.e.
∑

j 6=i Fij = 1). Also, 0 ≤ ρi < 1. Therefore ∀i
∑

j 6=i |Mij| < 1. Because

∀iMii = 1, the lemma holds.

Gauss Seidel and Southwell relaxations are equivalent to gathering and

shooting radiosity, respectively. While the Southwell relaxation has the ad-

vantage of the greatest residual choice and exhibits better estimates in the

beginning11, in the long run,12 the greedy choice is unnecessary and the

Gauss-Seidel method will work at least as well as the Southwell relaxation.

Progressive radiosity as a combination of Southwell and Jacobi allows us to

get an early approximation for all patches that can be computed using O(n)

form factor computations only. Also, it allows us to compute the form fac-

tors when needed, avoiding their explicit storage. Finally, not all O(n2) form

factors have to be determined. Therefore, we have chosen the progressive

radiosity algorithm as the base for our parallelization.

2.4 Form Factor Computation

The most expensive part in the radiosity computation is the visibility com-

putation. To compute the fraction of shooter's13 energy that should be trans-
11In the radiosity sense, it shoots the light sources in the beginning.
12When we run O(n) iterations.
13We use the shooter / receiver analogy from the progressive radiosity.



28 2 RADIOSITY METHOD

mitted to another particular patch, we need to compute form factor between

these two patches. Form factor is designation of the radiosity equation's term

Fij =
1

Ai

∫
x∈Pi

∫
y∈Pj

cos θ cos θ′

πr(x, y)2
V (x, y)dAjdAi (56)

The value of the form factor between shooter and receiver is dependent

on the following factors:

• the sizes of the patches, respectively (the larger the receiver, the more

energy it will receive, the larger the shooter, the more energy it will

shoot)

• the distance between the two patches (the size of the form factor term

decreases with the square of distance of the patches)

• the angular position of the patches (if the viewed patch is rotated, it is

viewed under smaller angle, a patch not facing the other patch cannot

�see� that patch at all)

• the visibility conditions between the patches (there may be obstacles

in the scene � other patches, which prevent the shooter from fully

�seeing� the receiver, or from �seeing� the receiver at all)

2.4.1 Analytical Methods

The exact value of a form factor can be computed by analytical methods,

without errors.14 However, the use of analytical methods is available only

for the simplest con�gurations, where there are no obstacles between the

patches in the scene [How82]. Besides, the patches must be of the simplest

shapes. In real scenes, these conditions are met only occasionally, therefore

other methods are used to approximate the form factor values.

14Consider that with the use of computer, there may be errors because of �oating point
arithmetic



2.4 Form Factor Computation 29

2.4.2 Projection Methods

Another way to compute form factors is using projection methods. Here, we

use the geometrical analogy to form factor, called Nusselt's analogy: For a

�nite area, the form factor is equivalent to the fraction of the circle (which

is the base of the hemisphere) covered by projecting the area onto the hemi-

sphere and then orthographically down onto the circle (Fig. 3). A well known

projection method is the hemicube algorithm [CG85]. It constructs a meshed

hemicube above the particular patch Pi and pre-computes the delta form fac-

tor for every polygon from the mesh. To determine the form factor Fij, we

project the patch Pj onto the hemicube and sum up the delta form factors

for every mesh polygon the projection covers. However, this doesn't consider

possible occlusions. Therefore, we �rst project all patches onto the hemicube.

In case that more di�erent patches project onto the same polygon, we make

the proximity test and choose only the nearest one to �occupy� the poly-

gon. Afterwards, we compute the form factors Fij for every Pj, summing up

the corresponding delta form factors �occupied� by patch Pj. The drawback

of hemicube method is, that it is hard to determine the proper density of

hemicube meshing, or resolution, to maintain necessary accuracy. Also, it

approximates the form factors for patch Pi as form factors for it's center

point, what introduces large inaccuracies if the patch Pi is relatively large.

2.4.3 Ray-Casting Methods

Ray-casting methods provide form factor approximation using stochastic and

numeric approach, known as Monte Carlo integration. Monte Carlo integra-

tion estimates the value of an integral by randomly generating sample points

and computing the values of the given integrated function in the sample

points. The resulting integral is then the average of values computed in the

sample points.

Ray casting methods are based on random shooting of rays from a par-

ticular patch to determine visibility and form factor estimation. Here we



30 2 RADIOSITY METHOD

Figure 3: Nusselt's analogy. The patch is �rst projected onto the unit hemi-
sphere, and afterwards onto the base plane. Form factor is equivalent to the
fraction of the covered part of unit circle.

have two basic options. The �rst one would be, as suggested in [WEH89], to

generate sample points at the patch Pi and the patch Pj and connect all the

points of patch Pi with all points from the patch Pj, creating �rays�. After

this, we do intersection tests for all rays to determine, if they collide with

an obstacle somewhere between corresponding points of patch Pi and Pj. If

there is no intersection, the energy is allowed to �ow in the direction of the

particular ray and thus the ray contributes to the actual form factor with a

small fraction, the delta form factor. If a ray does intersect an obstacle, the

contribution is zero. When we sum up the delta form factors' contributions

from all rays, we get the form factor between patch Pi and Pj.

We can also follow another idea. In [Mal88], the direction sampling

method is proposed. This method generates sample rays leaving from a

particular patch Pi in random directions. When such a ray hits a patch Pj

in the scene, a delta form factor is added to the Fij form factor. In this

fashion, we compute the form factors between Pi and all other patches. Note

that there are other approaches, which use the direction sampling and Monte



2.4 Form Factor Computation 31

Carlo integration to directly solve the the integral equation [Kel96], called

random walks methods.

More detailed description of Monte Carlo methods used in radiosity com-

putation, including estimators and techniques of variance reduction can be

found in [Bek99] and [Pie93].

Ray-casting methods can make use of existing techniques of spatial sub-

division to speed up the computational times. These techniques can be found

in ray tracing algorithms [Gla89]. Well known techniques are the bounding

volumes, the bounding volume hierarchies or octrees.



32 3 OVERVIEW OF PARALLELIZATION ALGORITHMS

3 Overview of Parallelization Algorithms

3.1 Parallelization Issues

The goal of parallelism is to increase the computational resources available,

so that also very demanding computations can be solved at all, or can be

solved in a considerably short time.

How do we design a parallel algorithm? Let us say we have a sequential

algorithm. Now we could identify tasks processed in the sequential algo-

rithm, divide them into sets among the processors and solve the sets of tasks

individually. Unfortunately, some of the tasks may depend on each other. In

sequential algorithms, we proceed step by step and those tasks, which other

depend on, are always computed �rst. We construct algorithms naturally in

this way � we do it sequentially. However, in parallel algorithms, we do not

want the long step-by-step processing, we might want more tasks to be pro-

cessed at once. Hence, we try to �nd independent sets of tasks, which can be

executed in parallel. Results of these sets of tasks can be the input for other

independent sets of tasks that will be processed in parallel just afterwards.

In the end, we combine the results of individual processors into the solution,

if needed.

The amount of independent tasks may not be enough to feed all of the

processors in one parallel step. In that case, we can try to reformulate the

problem and use di�erent techniques than in the sequential algorithm that

are more suitable for parallelization. For example, in some cases, preprocess-

ing will increase the total amount of computation needed, but will improve

the parallelization possibilities, resulting in a better e�ciency of the parallel

algorithm. The design of e�cient parallel algorithms can be very complicated

and not very straightforward in comparison with the sequential algorithm. In

fact, a good parallel algorithm may be completely di�erent from a sequential

one for the same problem. Moreover, some problems are hardly suitable for

parallelization at all.



3.1 Parallelization Issues 33

In case of the radiosity method, relatively many tasks are independent and

can be identi�ed quite easily. It is questionable, which parts of a computation

should be chosen to represent tasks. Let us explain this on a somewhat

arti�cial example.

Imagine a high school where the boys are trying to charm the girls. At

this high school, there are only a few boys and lots of girls.15 Every boy

would like to hang out with one of the girls, but the girls are shy. After a

talk with a particular girl, every boy can tell his chances. Now every boy

talks with all the girls and decides for the one he thinks he has best chances

with. Every talk consists of over a hundred topics that are always the same.

Now our task is to simulate all this using N processors and �nd out for

every boy, which girl he is going to ask to go out with him.16 First, we

try to identify the independent tasks, where we have several options. One

elementary task could be:

1. one particular boy talks to all girls about all topics

2. one particular boy talks to one particular girl about all topics

3. one particular boy talks to one particular girl about one particular topic

In the �rst case, we would divide the boys into groups and assign every

processor one group.17 One particular processor will for every boy from his

group go over all the girls and talk about all topics, computing the �how-

much-she-likes-me� value, and choosing the girl, who likes him the most.

In the second case, we will start with the �rst boy, we will divide the girls

among processors and we do the talks with the �rst boy in parallel. Then

the processors will have to agree on the best choice for the �rst boy.18 After
15There is another high school in town, where almost boys from town go to, because

there are many interesting computer science classes.
16Since we only simulate the tasks, we make an assumption that both girls and boys

can do more talks at once
17The number of boys in a group would be approximately the total number of boys

divided by N .
18Note that this is additional work comparing with the �rst case, where one processor

can tell right away.



34 3 OVERVIEW OF PARALLELIZATION ALGORITHMS

that all processors move on to the next boy. In the last case, the processors

go over the boys and over the girls and then divide the topics between a

particular boy and girl which they simulate. Then, they compute together

the �how-much-she-likes-me� value and move on to the next girl. After they

are done with all girls for a particular boy, they agree on the most favorable.

At this example, we can see that the tasks can be identi�ed at di�erent

levels of the computation. The choice of some levels brings additional costs,

because of �common agreements� or synchronization, where di�erent proces-

sors have to cooperate. This is the case in both the second and the third

option of our example.

If we consider, that all the students have di�erent communication skills,

then every talk would take a di�erent amount of time. That introduces im-

balance to the parallel algorithm, since the tasks themselves are of di�erent

di�culty. Consider the second case of our example, where particular proces-

sor simulates the talk of a particular boy with a very talkative girl. It will get

its answers sooner than other processors, and will have to wait for them in

order to agree on (compute) the �how-much-she-likes-me� value. Note, that

in the third case, tasks are of equal di�culty, since processors work on topics

for a particular boy and girl, where the talking skills are the same.

If the school has very many girls (the problem's data are big), every boy

knows only some girls (and their phone numbers). In order to talk with all

girls, every boy needs to get all girls' phone numbers. So every boy has to ask

the other boys for phone numbers. That means that a processor associated

with a particular boy (in the �rst case of our example), will have to ask

another processor, associated with another boy, for the data needed.

3.2 Radiosity Related Problems

From our example, we can extract several issues � task identi�cation, im-

balance problems and data locality problems. In radiosity, we have several

options where to set up the parallelization. This usually corresponds to the



3.3 Classi�cation of Parallel Architectures 35

loops in the sequential radiosity algorithm. As we have shown in our example,

the parallelization at di�erent levels requires di�erent amounts of overhead,

such as synchronization.

The techniques of load balancing are often dependent on the chosen level

of parallelization. One approach is the master � worker framework, where

the master divides the work load among the workers. When the number of

processors increases, the master often becomes a bottleneck, since it must

process many demands from the workers. Another approach is work stealing.

In work stealing, the work distribution is not controlled in a centralized

fashion. Basically, if there is no work for some processor, it will �steal� the

work from another processors, which are loaded with work.

If an algorithm has a bad data locality property � that means every

processor has the data it needs � usually a lot of communication is required,

decreasing drastically the e�ciency of the algorithm.

Finally, in order to achieve best results we often also take the architecture

choice into consideration.

3.3 Classi�cation of Parallel Architectures

According to [Cap93], the parallel architectures can be classi�ed according

to following criteria:

• number of instructions and data streams supported,

• memory organization,

• coupling,

• granularity.

The classi�cation according to the number of instruction and data

streams is also known as Flynn's taxonomy [Fly66]:

• SISD� Single Instruction Single Data (this is the standard sequential

computer),



36 3 OVERVIEW OF PARALLELIZATION ALGORITHMS

• MISD � Multiple Instruction Single Data,

• SIMD � Single Instruction Multiple Data (every processor executes

the same instruction, but on its own data),

• MIMD�Multiple Instruction Multiple Data (each processor executes

di�erent programs with di�erent data)

The present parallel computers are almost exclusively MIMD computers.

Flynn's classi�cation originates from 1966 and is rather obsolete.

We consider two di�erent classes according to memory organization:

• Shared memory� all processors have access to global address space.

They also may have local memory. Communication between processors

is achieved using shared variables.

• Distributed memory� all sprocessors have their local memory only

� the memory resources are distributed among the processors. Com-

munication between processors is achieved through message passing.

For the coupling criterion, Capin [Cap93] distinguishes two classes:

• Synchronous architectures � processors perform their tasks in a

lock-step, or highly synchronized manner.

• Asynchronous architectures � processors are not synchronized in

any fashion, they can process tasks independently at di�erent speeds,

sometimes barrier synchronization may be used.

Granularity designates the ratio between the computation and communi-

cation time:

• Coarse-grain architectures� computation to communication ratio

is very high, few powerful processors are used.

• Medium-grain architectures � computation to communication ra-

tio of 100 or more.



3.4 Previous Work 37

• Fine-grain architectures � computation and communication ratio

is almost unity, very large numbers of simple processors are used.

3.4 Previous Work

From the numerical point of view, we are mainly interested in parallel al-

gorithms of progressive radiosity. The radiosity solutions using full matrix

methods are suitable only for very accurate computations, where the com-

putation of full matrix is necessary. In all other cases, progressive radiosity

exhibits better results. The parallel solutions of full matrix method were

presented in [PT89] or [PZ90].

Funkhouser [Fun96] presented an alternative approach using group iter-

ative method. Jacobi group iteration was used. Since the Jacobi method

does not use the actual radiosity estimates from other groups,19 it is suitable

for a coarse-grained parallel implementation. In this algorithm processors

are assigned group of patches. In every iteration a processor solves its own

group to convergence, but with �old data�, since no updates are received from

the other groups ,until the end of iteration. The master-slave approach is

used, where the master processor assigns groups to the slave processors on

demand, until the iteration is �nished.

3.4.1 Parallelization of Progressive Radiosity

Most approaches focus on the progressive radiosity method, since it exhibits

good results already after linear number of form factor computations. Still

there are many di�erent approaches to parallelization of progressive radiosity.

One di�erence is in the form factor computation. Most of the recent

algorithms use the ray-casting technique for the form factor computation

[SW], [YIY97], [APRP96] instead of hemicube method [RGG90], [Cap93]

which has aliasing e�ects. However, very good results using the hemicube

19The radiosity estimates from the previous iteration are used, even if they are old.



38 3 OVERVIEW OF PARALLELIZATION ALGORITHMS

form factor computation were achieved with use of hardware acceleration

[BW90]. Some approaches replace the hemicube by a single plane [RGG90].

Considering the Flynn's taxonomy, MIMD computers are used almost

exlusively. Parallelization of progressive radiosity on a SIMD computer was

proposed in [DS92].

Another important aspect in radiosity computation is the data distri-

bution. When data are replicated among all processors, communication is

necessary in order to update the data. In case the data are partitioned and

distributed among processors, communication is necessary in case the data

needed are not available in local memory. A good technique is to distinguish

between the geometry data and the data considering light distribution. Then

we can replicate the scene geometry among processors, since geometry is read

only, and only distribute the data representing radiosity estimates. We will

follow this idea in our algorithms.

Some algorithms strictly follow the sequential progressive radiosity algo-

rithm. For this, however, the patch with greatest residual must be deter-

mined and announced to all processors. Therefore, synchronization is nec-

essary. Some algorithms process more than single patch at time. Either all

processors select several patches at once together (again synchronization is

necessary), or the patches are selected individually in asynchronous fashion.

The drawback of parallel processing of several patches is, that not necessarily

the best patches are chosen. Still, the asynchronous approach avoids the idle

times in synchronization and is in our opinion the better choice.

In [RGG90], only geometry data are duplicated. Since the master-slave

approach is used, only the master processor stores the radiosity estimates.

The slave processors are on demand assigned a shooter. Every processor

carries out the transfer of shooter's energy on all other patches. Several

shooters are being shot at the same time. Results are communicated back to

the master processor. This technique is called the demand-driven approach.

It has the advantage that the computational load is distributed on demand,

therefore no loadbalancing is needed. However, the master processor is known



3.4 Previous Work 39

to be the bottleneck in case the number of processor increases. The master-

slave approach is also used in [FP91], [�in95], [RGG90] and [SW].

In case the geometry data are distributed, cooperation is often needed to

perform the form factor computations. Such approaches usually divide the

scene according to some spacial subdivision, and assign every processor one

part of the scene � so called voxel. Several shooting patches are selected in

parallel. Every processor selects the shooter with greatest energy available

from its local database. Afterwards it transfers the shooters energy on all

other patches. If the patches are not in its local database, it communicates

the energy to neighbouring processors.20 Such approach was proposed in

[GRS95]. This approach distinguishes between geometry-data and light-data

ownership. In case the non-local light-data were changed, message is sent to

owner process. Energy transfer is performed by ray-casting and sending rays

to corresponding processes. Communication is improved by sending groups

of rays rather then single rays. Multi-thread mechanism is used.

Arnaldi et. al. [APRP96] proposed parallel algorithm using virtual inter-

faces technique based on virtual walls. Visibility masks are used in order to

speed up form factor computations. The algorithm works in asynchronous

manner. However, it distributes the geometry among processors, thus in-

creasing the amount of communication. Moreover, the distribution of re-

sponsibilities for radiosity estimates is based on spatial subdivision and can

lead to severe imbalances [Sch00].

In [BP94] an algorithm using shared virtual memory was proposed, there-

fore the processors have virtual access to all memory. More patches are pro-

cessed in parallel. Every processor selects a patch and computes form factors

to all other patches. Afterwards the energy distribution is stored in the

shared virtual memory. Processors do not synchronize, however concurrent

writing problems arise. In case an analogy of our approach for distributed

memory was used, memory we be divided into local virtual memories. In-

20Neighbours are determined according to the space subdivision.



40 3 OVERVIEW OF PARALLELIZATION ALGORITHMS

stead of radiosity updates, only shooters would be �sent� through shared

channels. In this fashion, the number of collisions would be decreased.

The duplication of geometry can also be found in [YIY97]. The data cor-

responding to radiosity estimates are distributed among processors. Mainly

the patch distribution in static loadbalancing is discussed, in order to mini-

mize imbalances of computation. The algorithm however follows the synchro-

nized patch selection technique. The synchronous approach is also followed

in [Cap93] and [SW].

Good asynchronous algorithm was presented in [Sch00]. We will propose a

similar asynchronous algorithm for progressive radiosity. Moreover, e�ective

dynamic load balancing techniques will be presented in order to minimize

the idle times. In addition, we will present a novel algorithm with deferred

synchronization, in order to solve technical di�culties of the asynchronous

algorithm. This algorithm is not only e�cient, but is also able to control the

degree of synchronization.



41

4 Design of Algorithm

Before we present the parallel algorithms with di�erent synchronization prop-

erties, we will introduce basic features of the environment we expect these

algorithms to be running in.

4.1 Assumptions

4.1.1 Target Architecture

We will identify suitable architectures for our algorithms according to the

classi�cation of parallel architectures by [Cap93]. Presented algorithms are

suitable for the MIMD computer architectures, with distributed memory or-

ganization. These architectures, known as multicomputers, are very common

today. Our algorithms are asynchronous and try to exploit the asynchronous

communication model. In order to utilize their power, asynchronous archi-

tectures need to be used.

Also, we assume that the processors used are of the same speed. If pro-

cessors di�er in speed, but their speeds are given, it is not hard to extend

the proposed algorithms.

4.1.2 Communication Model

In our approach, we will use the message passing model used in distributed

architectures. We will use four basic operations in the message passing frame-

work, presented in [Pla06]:

De�nition 10 (Submission of a basic message passing operation.). Submis-

sion of a basic operation denotes the act of passing the operation from a

process to the message passing system.

De�nition 11 (Representation of basic message passing operations.). All

basic message passing operations are tuples [op, x, Y, m, f, s, t], where op ∈
CREATE, DESTROY, SEND, RECV; x is the identi�er of the process which



42 4 DESIGN OF ALGORITHM

submits the operation; Y is a set of process identi�ers; m is a message; f is

a boolean function de�ned on messages (a �lter); s is either a reference to

a semaphore object which can be accessed by the message passing system, or

NULL; t is the time stamp of the submission of the operation (i.e. the time

when the operation has been read by the message passing system).

The SEND operation is unblocked, while the RECV operation is blocked.

In order to achieve possibility of an asynchronous communication, we will

only be using a communication thread for submitting the RECV operation

and treating the incoming messages. This is possible, since the framework is

thread-safe.

We assume that all the processors are non-faulty. We also assume that

the communication channels are non-faulty and that they maintain the or-

der of messages � if a particular process sends two messages in a certain

order to another processor, both the delivery and the order of messages are

guaranteed.

We assume that all processors are fully connected and can communicate

with each other. We do not take into consideration the physical topology.

We work with the logical topology of full graph, since it can be simulated on

all usual physical topologies. The problem of routing can be solved indepen-

dently.

4.1.3 Memory Limitations and Termination Criteria

In all presented algorithms, we assume that the size of the input scene ge-

ometry is small enough to �t to memory of every processor. This is not

very restrictive, since usual scenes have ∼ 100.000 patches21 and very large

scenes have ∼ 1.000.000 patches, what corresponds to approximately 500

MB of memory. Moreover, since the scene geometry is read-only, it can be

easily stored in a distributed database with read-only access [GP89], [Gra98],

[Pla03].
21Patch is a part of the scene surface, usually a polygon. It is a result of the discretisation

of scene surface.



4.2 General Overview 43

Considering the termination criteria, we have two options here. We may

terminate the algorithm when total residual values are below certain thresh-

old. However, we may also de�ne a maximal residual allowed and terminate

when all residua are less then equal to the allowed maximum. Both this

criteria are equivalent, in the sense that we can assure the validity of one

criterion by a corresponding setting of the other one. For parallel purposes

however, the criterion de�ned as the greatest residual allowed is more suit-

able, because if the criterion is met for all parts of the scene individually, it

is also met for the whole scene.

4.2 General Overview

Since any shading algorithm or ray tracing can be used for the second phase

of radiosity method, we will focus on the �rst phase only. An interested

reader can �nd out more about parallelization of ray tracing in e.g. [RCJ98]

or [GP89]. In this chapter, we will present a simple synchronous parallel

algorithm followed by a fully asynchronous and an algorithm with deferred

synchronization. We will �rst give the reader a notion of our basic approach

to radiosity computation used in all presented algorithms.

In our parallel algorithms, we will follow the progressive radiosity princi-

ple. We will use the Monte Carlo methods for form factor computation. For

these computations, form factor estimator proposed in [Pie93] is very suit-

able. It is based on analytical computation of the inner integral of (25), with

additional stochastic ray casting method to estimate the visibility conditions

between patches.

Our basic idea is to follow the data parallel approach to exploit the par-

allelism at a low level. The scene will be divided among the processors, so

that every processor will be assigned a local set of patches of its own. These

local sets of patches are disjunct. Additionally, we will replicate the com-

plete scene geometry in every processor's memory. Since the scene geometry

data are read only, the case when the scene does not �t into memory can be



44 4 DESIGN OF ALGORITHM

handled independently, using a distributed database with read-only access

[GP89], [Gra98], [Pla03]. We use the geometry information for form factor

computation and we do not alter it during the algorithm. Every patch from

a processor's local set represents a potential work for the processor. If the

energy of a patch is high enough,22 it will eventually have to be shot on

all other patches, including other processors' local sets. Algorithms di�er

in the strategy of patch selection. However, we always try to select patch

with large unshot energy, as we stick to the principle of greatest residual (as

in the Southwell relaxation). Once selected, the patch actual state and a

time-stamp is recorded.23 We will refer to this unique record as to shooter.

After being selected, shooter is sent to other processors to be shot at the

patches in their individual local sets. In the computation, some patches may

be selected more times to have their energy shot, but at di�erent moments,

therefore represented by di�erent shooters. Eventually, every processor will

shoot the energy of a particular shooter at all patches in its local set and will

do it only once. This includes the computation of the form factors between

the shooting patch and receiving patches and updating the values of local

patches after the energy from the shooter is transferred. We should note,

that the actual residual and total radiosity values related to a particular

patch are stored only in the local set of the processor that this patch belongs

to. The patches keep being selected, until all the patches in every local set

satisfy the termination condition. Then the algorithm ends.

4.3 Simple Synchronous Algorithm

In order to better explain what we understand under asynchronous algorithm,

we will present a simple synchronous algorithm based on progressive radiosity.

Like the progressive radiosity, the algorithm will work in iterations, until
22Its unshot energy is smaller than the maximum allowed. This maximum is given as

the termination criterion as addressed in section 3
23Since patch geometry stays the same during the computation, our main concern is to

avoid the alteration of radiosity values, particularly the energy to be shot, because it might
change locally over time and cause data inconsistencies in the asynchronous algorithm.



4.3 Simple Synchronous Algorithm 45

the global24 termination criterion is met. Every iteration consists of several

phases:

1. First, the global termination condition is checked. Every processor eval-

uates if convergence is met for its local set and sends the information

to the master.25 The master decides whether the global termination

criterion is met or not and broadcasts the information to all other pro-

cessors. In the �rst case, the algorithm will quit.

2. Next, the processors will globally select the patch containing the largest

unshot energy in the following fashion: Every processor selects the

strongest shooter from its local set of patches and sends it to the master.

When the master receives all locally selected maxima, it selects the

global maximum and broadcasts it to all other processors. Note, that

this phase can be included in the �rst phase for optimization.

3. Having received the shooter for this iteration, particular processor

will compute the form factors between the shooter and the individual

patches in its local set. Then it transfers the corresponding amounts

of energy to its local patches accordingly.

Because of di�erent visibility conditions and di�erent patch sets assigned,

the third phase will take di�erent times on the individual processors. The

faster26 processors will move on to the �rst phase of the next iteration sooner

than the slower ones. The �rst phase is a synchronization phase, because the

master will not test the situation against the termination criterion sooner

than all the processors are done with the previous iteration. This implies

that some processors will have to wait. To avoid this situation, we may

try to use a loadbalancing technique such as work stealing. This will be

24Global means, that the condition will hold considering all the patches in all processors,
not just the individual local sets

25Master processor is identi�ed using the rank identi�er. For instance it can be processor
with rank zero. This processor is used to decide on common cooperative tasks.

26Those which �nish the iteration sooner than other processors



46 4 DESIGN OF ALGORITHM

discussed later in this chapter. A better way, in our opinion, is to avoid the

synchronization.

Program Synchronous;

/*INPUT*/

array E; /*light sources radiosities for all patches*/

array P; /*patch geometry and reflectancy description

*for all patches */

criterion; /*greatest residual allowed*/

rank; /*unique identifier */

/*VARIABLES*/

var array B; /*total radiosities of local patches*/

var array R; /*residua of local patches*/

var array QREF; /*indexes to patch geometries for patches

*in the queue of shooters */

var array QRES; /*residua of patches in the queue of shooters*/

BEGIN

candidate = Select_Shooter_Candidate_From_Local_Set();

candidate_residual = R[candidate];

Send(to_master, "SHOOTER CANDIDATE",

candidate, candidate_residual);

if ( rank == 0 ) /* master selects among candidates */

{

Receive_Candidates_From_All_Processors();

shooter = Select_Candidate_With_Greatest_Residual();

if ( shooter_residual > criterion )

{

Broadcast("SHOOTER", shooter, shooter_residual);

}



4.3 Simple Synchronous Algorithm 47

else

{

Broadcast("END");

}

}

Receive(msg); /* synchronization */

while( msg.TAG != "END" )

{

if ( msg.TAG = "SHOOTER")

{

shooter = Unpack_Shooter(msg);

shooter_residual = Unpack_Residual(msg);

for all i from local set

{

F = Compute_Form_Factor(P[shooter], P[i]);

increase = r[shooter] * F * shooter_residual *

* A[shooter] / A[i];

E[i] := E[i] + increase;

R[i] := R[i] + increase;

}

if P[shooter] in local set

{

R[shooter] := 0;

}

}

Dispatch(msg);

candidate = Select_Shooter_Candidate_From_Local_Set();

candidate_residual = R[candidate];

Send(to_master, "SHOOTER CANDIDATE",

candidate, candidate_residual);

Receive(msg); /* synchronization */



48 4 DESIGN OF ALGORITHM

}

Dispatch(msg);

END

4.4 Fully Asynchronous Algorithm

In order to avoid waiting in the synchronization phase, we could leave out the

synchronization phase and let the faster processors start another iteration.

We allow an arbitrary processor to start an iteration and select the patch �

shooter � to have its energy shot. In fact, several iterations can be run at

the same time. We will ensure that all the iterations will �nish eventually.

Iterations may be executed in di�erent order on di�erent processors, but the

data used will be the same as when the iteration started, since we �freeze�

every shooter's data upon selection. This shooter will be delivered to all

processors, stored in a queue of shooters and processed eventually. Therefore,

the iteration will �nish eventually. This approach brings us to the fully

asynchronous algorithm � Fig. 4.

As we have already mentioned, processors are allowed to start an iter-

ation without synchronization. The question arises, which patch should be

selected by a processor for another iteration. We would like to stick to the

progressive radiosity principle and choose the greatest residual. However,

every processor has only information about the residua related to its local

patches. In such a case, the choice of the globally greatest residual will be

most likely violated. Anyways, we will choose the greatest residual available

at the moment. Note, that processors may choose to continue an iteration

started by another processor (if any, there will be shooters waiting in the

queue of shooters), instead of starting a new one. In that case, we will again

decide for the largest residual � we pick the best candidate from the local

set of patches and we pick the best candidate from the queue of shooters.

Finally, we choose the one with the greatest residual. If there is a strong

residual in the local set, it will be soon selected and sent to others. In this



4.4 Fully Asynchronous Algorithm 49

fashion, mostly strong shooters will be used �rst and the algorithm will be

very similar to the progressive radiosity algorithm.

Figure 4: Basic asynchronous algorithm with two threads. Patch and geom-
etry distribution can be done in the pre-computation phase.

In order to receive a shooter incoming from another processor, the receiver

must run the Receive() procedure. The call of Receive() blocks the current

execution until a message is received. In a sense, this is synchronization.

The receiver must wait for a message to accept � it must wait for someone

to reach the Send() procedure. Such synchronization is used in the simple

synchronous algorithm, where the processors wait for the global shooter.

In the asynchronous algorithm however, there are no global synchronous

iterations and it is not known, when there will be message with a shooter

coming and if there will be any at all. Therefore we can't use the blocking

Receive() call. To solve this issue, our algorithm uses two threads. One



50 4 DESIGN OF ALGORITHM

thread is meant for computation, another one for communication. The second

thread waits for a message to receive, while the �rst one is free to work.

For better explanation, we can use an worker/manager analogy here. The

computing thread is the worker and does the computation needed, where the

communication thread is the manager who supervises the worker and assigns

work if any.

In our case, computation thread computes the iterations, selects new

shooters and sends them to all other processors, and checks the queue for

received shooters. The communication thread receives messages with packed

shooters and adds them to the queue. Note, that both threads are accessing

the queue, therefore, we avoid the concurrent access by using a semaphore.

The algorithm follows.

Program Asynchronous;

/*INPUT*/

array E; /*light sources radiosities for all patches */

array P; /*patch geometry and reflectancy description

*of all patches*/

criterion; /*greatest residual allowed*/

/*VARIABLES*/

var array B; /*total radiosities of local patches*/

var array R; /*residua of local patches*/

var array QREF; /*indexes to patch geometries

*for patches in the queue of shooters*/

var array QRES; /*residua of patches

*in the queue of shooters*/

COMPUTATIONAL THREAD BEGIN



4.4 Fully Asynchronous Algorithm 51

for all i from local set

{

B[i] := r[i] * E[i];

R[i] := r[i] * E[i];

}

local_max = Select_Candidate_From_Local_Set();

queue_max = Select_Candidate_From_Queue(); /* returns -1

if queue empty */

repeat {

while( (R[local_max] > criterion) OR (queue not empty) )

{

if ( R[local_max] > QRES[queue_max] ) /* QRES[-1]

* is equal to -1 for the case of empty queue */

{

shooter = local_max; /* index to patch geometry */

shooter_residual = R[shooter]; /* residual */

R[shooter] := 0;

Broadcast("SHOOTER", shooter, shooter_residual);

/*freeze the residual and sent broadcast*/

}

else

{

shooter = QRES[queue_max]; /* index to patch geometry*/

shooter_residual = QRES[queue_max];

Lock_Queue;

Remove_From_QRES(queue_max);

Remove_From_QREF(queue_max);

Unlock_Queue;

}



52 4 DESIGN OF ALGORITHM

for all i from local set

{

FF = Compute_Form_Factor(P[shooter], P[i]);

increase = P[shooter].reflectancy * FF *

* shooter_residual * A[shooter] / A[i];

E[i] := E[i] + increase;

R[i] := R[i] + increase;

}

local_max = Select_Candidate_From_Local_Set();

queue_max = Select_Candidate_From_Queue();

}

} until global convergence reached

COMPUTATIONAL THREAD END

COMMUNICATION THREAD BEGIN

Receive(msg);

while( msg.TAG != "END" ) /* this message comes from the

termination algorithm, which will be explained later

{

if ( msg.TAG = "SHOOTER")

{

global_shooter = Unpack_Shooter(msg);

global_shooter_residual = Unpack_Residual(msg);

Lock_Queue;

Add_To_QREF(global_shooter);

Add_To_QRES(global_shooter_residual);

Unlock_Queue;

Dispatch(msg);



4.4 Fully Asynchronous Algorithm 53

Receive(msg);

}

}

Dispatch(msg);

COMMUNICATION THREAD END

For the sake of simplicity, details of the algorithm's termination were left

out. In the algorithm shown, it is unclear where the computational thread has

the knowledge about the global convergence from, since every processor can

only check its own local set for the local termination criterion. Because of the

choice of the criterion (maximal residual), once the iterations have �nished

and the criterion is met for all the local sets, also the global termination

criterion is met. Unfortunately, termination in asynchronous approach is not

straightforward. Although the local termination criterion may be met for

all processors, there can still be some delayed message with a shooter on its

way, as can be seen on Fig. 5. The energy of this shooter can invalidate

the convergence criterion. Therefore, before terminating, we have to make

sure there is no message hanging in the net. We will now describe how the

algorithm terminates correctly. Basically, the termination is veri�ed by the

master processor. After that, the end is announced to every processor.

The worker's27 role stays unchanged, except that it now informs its man-

ager about the work status and the local convergence status. In order for the

manager28 to have the actual information about its worker's status, we intro-

duce a shared variable � idle. The access to the shared variable is guarded

by a semaphore. Idle is set to true by the worker in case that the worker

has no work and is just checking the queue for incoming shooters (or waiting

for work obtained by work stealing as will be discussed later). Note, that in

the case the worker is idle, the local convergence holds, since otherwise the
27Computational thread
28Communication thread



54 4 DESIGN OF ALGORITHM

Figure 5: Delayed shooter in the asynchronous algorithm prevents the global
termination in time phase 4, even if the local convergence holds for all pro-
cessors.



4.4 Fully Asynchronous Algorithm 55

worker would select a shooter. Once a shooter is received by the manager,

idle is set to false and the shooter is added to the queue. These two opera-

tions have to be carried out together, since the worker sets the idle variable

according to the state of the queue. We have to ensure that the idle variable

is always set properly. Therefore we perform necessary locking.29 Once the

worker has determined local convergence and the queue is empty, it will an-

nounce this to its manager � sends the IDLE message. After IDLE was sent,

the manager knows that the local convergence holds. A CONV FALSE mes-

sage is sent by the worker only when convergence has just been invalidated.

Upon the receipt of convergence information from the worker (IDLE or CONV

FALSE message), the manager announces the master manager, if there was

a change (local convergence does not necessarily change when idle changes).

For reference on all message types sent between threads and processors and

used variables, see Fig. 6.

As we have mentioned, once a worker has determined local convergence

and the queue is empty, it will announce this to its manager � sends IDLE

message. The manager makes a note about the situation and sends a message

CONV TRUE to the master manager. The master manager keeps a record of

the local convergence state of all processors. Once the master manager thinks

that all have reached local convergence, it runs the termination checking pro-

cedure. In the checking procedure it is determined, if there is something in

the system that could prevent the global convergence. Once the termination

checking procedure is started, the master manager switches to the CHECK

mode and sends a CHECK 0 message30 to all managers. Upon receiving the

CHECK 0 message, every manager switches to the CHECK mode and per-

forms following steps:

1. Sends a PATH CHECK 0 message to all its neighbours.

29We use the same semaphore for controlling access to queue and the idle variable
30The number included in the message may be di�erent, it depends on the actual value

of the attempt counter. In case that this termination attempt fails, the next one's messages
will have an number increased.



56 4 DESIGN OF ALGORITHM

Figure 6: Message types used in the asynchronous algorithm.



4.4 Fully Asynchronous Algorithm 57

2. The manager determines, if its worker's local convergence still holds.
31 When idle is set to true, local convergence holds. When idle is set

to false, it is not certain, if the local convergence holds. This means

that worker is processing a shooter, which might possibly invalidate the

convergence status, but the local convergence check is yet to be done.

Here we have to wait for the result and have two options. Either idle

will be set to true by the worker, or the CONV FALSE message will be

sent. From the communication thread concept � the need to receive

messages (e.g. CONV FALSE), we cannot a�ord to keep checking the idle

variable. But we can wait for the worker to send the IDLE message �

the worker does it every time idle is set from false to true.

3. If the worker is idle, the manager awaits PATH CHECK 0 messages from

all neighbours.

Note, that the processing of steps 2 and possibly 1 is �red by receipt

of a corresponding message. Therefore these steps may overlap. Once all

messages from step 3 are collected and the local convergence still holds, the

message CHECK 0 SUCCESS is sent to the master manager.

In case that the master manager receives successful checks from all man-

agers, the global convergence criterion is met. The master manager broad-

casts the termination announcement to all managers. The managers inform

their workers by means of the shared variable end, and the algorithm ends.

Note, that PATH CHECK 0 message may arrive before the CHECK 0 message.

In that case, the receiving manager will switch to the CHECK mode and

record, that the a PATH CHECK 0 from one neighbour has been received al-

ready. While in the CHECK mode, only checking and termination messages

and between-threads messages are considered safe. Once any other message

is received, the termination was violated and the receiver sends STOP 0 mes-

sage to every manager, runs the Stop() procedure and only then processes
31This must be done, since we allow the worker to process a shooter even after the

local convergence was announced to master manager and before the manager switched to
CHECK mode.



58 4 DESIGN OF ALGORITHM

the received message. The Stop() procedure includes switching the CHECK

mode o�, cleaning the convergence record (for the master manager only), in-

creasing the counter of unsuccessful checking procedures to 1, checking the

status of the worker and sending CONV TRUE message to the master manager

if the worker is idle. Upon receiving the STOP 0 message, every manager runs

the Stop() procedure. Note, that once the counter was increased to 1, man-

agers ignore any numbered message with the value smaller than that of the

counter (these are PATH CHECK 0, CHECK 0, STOP 0, CHECK 0 SUCCESS).

This is done in order to distinguish between individual termination checks,

so that they do not interfere.32 Note that the STOP i message is also broad-

casted in case that manager �nds out that its worker has made changes to

the data since convergence announcement and the local convergence does not

hold.

4.4.1 Proof of Convergence and Termination

Consider the case, when there are no SHOOTER messages in the system and

all workers have set the idle variable to true. We will refer to this as the �nal

state. The �nal state means that the global convergence has been reached

and all iterations have been �nished.

The proof idea is the following: We will prove that the computational part

of the algorithm is running until the �nal state is reached. Also, once the

�nal state is reached, the algorithm will terminate, otherwise it will continue

computing.

Lemma 4.1. No deadlocks appear in the algorithm.

Proof. Note, that there is no circular waiting except the termination checking

procedure. Therefore we will only describe the situation when the managers

are in the CHECK mode.

32Delayed message STOP from previous unsuccessful termination check could abort the
current termination check.



4.4 Fully Asynchronous Algorithm 59

The manager is in the CHECK mode and is waiting for the worker.

Unless a shooter is received by the manager � that means the termination

checking procedure will be canceled by STOP i messages, worker will not

be added any additional work. Therefore, the worker will either reach local

convergence and send the IDLEmessage, or will send the CONV FALSEmessage

what will cause the cancelation of termination checking procedure. If IDLE

was received (or idle was set) manager awaits the PATH CHECK i messages.

These are sent by every manager once it has switched to CHECK mode.

If one manager switches to the CHECK mode, all managers eventually

will, unless the termination checking procedure is canceled. Therefore, all

PATH CHECK i will be received eventually. Since there is no waiting for other

messages, the algorithm will continue in execution.

Lemma 4.2. The algorithm will reach the �nal state eventually.

Proof. Consider total residua TR at the beginning of the algorithm and also

given termination criterion, greatest residual allowed MaxR. Then, MaxR

is a constant fraction of TR � ∃k > 0 : k ∗MaxR = TR. Given the residual

Ri of any shooter selected during computation, it only takes a constant time

to every processor to process this shooter. Note, that it does not matter when

the shooter is processed. Also note, that we only allow to select shooters if

local convergence was not reached, therefore it holds for any such residual Ri

that

∀i : Ri ≥ MaxR (57)

Recall the λ coe�cient from the proof of convergence for Southwell relaxation

(47) which describes the fraction of shot energy which stays in the scene.33

Since 0 ≤ λ < 1, there will be residua decrease after every step by at least

MaxR ∗ (1 − λ). Therefore, in case we can perform k ∗ 1
1−λ

steps (there

is enough shooters with residua above MaxR) the total residua will be 0,

therefore also the greatest residual is zero and the convergence is met. If there

is not enough shooters, i.e. all shooters have their residua smaller than MaxR

33The other energy is dissipated and will not �bounce back�.



60 4 DESIGN OF ALGORITHM

and the convergence is met. There can not be more than k ∗ 1
1−λ

∗N shooters

send, therefore there will not be any SHOOTER messages eventually.

Note, that we did not prove that the asynchronous algorithm will neces-

sarily converge to zero in case we set the MaxR to 0.

Lemma 4.3. While the execution of the algorithm is not in �nal state, the

algorithm will not terminate.

Proof. Assume that the termination checking procedure has started, but the

algorithm is not in the �nal state (either the local convergence on some

processor is not met, or there is a SHOOTER message). The master manager

sends the CHECK i message and will not con�rm the termination until CHECK

i SUCCESS messages return from all processors.

Assume there is worker which does not meet the local convergence crite-

rion. This worker manager will �nd this out (either immediately or will wait

for CONV FALSE message) and send STOP i to all others including master

manager and the termination will be canceled.

Assume CHECK i SUCCESS message is received from A and no STOP i

message was sent in this termination check. It means, that A's worker is idle,

all other processors are in CHECK mode (since A received PATH CHECK i

messages from them) and there is no message on any path to A � since A

received PATH CHECK i messages from them. If there was any message, it

was �pushed� by the PATH CHECK i message, because messages of the same

channel are received in the same order as they have been sent. Should there

be a message sent after the PATH CHECK i from X, it means that X is no

longer in CHECK mode, therefore STOP i message was sent somewhere in

the system what violates our assumption. Therefore, if there is a SHOOTER

message somewhere on its way to X, after all managers reached theCHECK

mode, it must have been sent before the sender reached the CHECK mode.

Therefore, the SHOOTER message will be received by X before the PATH CHECK

i, and the termination will be stopped, since master manager will receive

STOP i instead of CHECK i SUCCESS.



4.4 Fully Asynchronous Algorithm 61

Lemma 4.4. Once the �nal state (global convergence) was reached, the al-

gorithm will terminate properly.

Proof. In the �nal state, managers do not process any SHOOTER messages

since otherwise idle would be set to false. Then it is straightforward that

all started iterations were �nished, since otherwise there would be SHOOTER

messages in the system or there would be workers working, since our model

permits message-system's or processors faults. The master manager always

eventually receives a message CONV TRUE if the corresponding worker is idle.34

If the �nal state is met, then the master's record will show local convergency

for all workers eventually, or it already does. Therefore the termination

checking procedure has already started or will eventually. If it started before

the �nal state was reached, it could not be accomplished, unless the �nal

state was reached in the meanwhile, as we have shown in previous proof.

After the �nal state was reached, there will be next attempt eventually. The

attempts do not interfere, since every attempt has its number. Therefore let

us only consider the case, where the termination checking procedure starts by

the time the �nal state has been reached already. In that case, all managers

will reach the CHECK state eventually. Every manager will send PATH

CHECK i message to every neighbour, thus will also receive one PATH CHECK

i message from every neighbour. Since all workers are idle, all managers will

send CHECK i SUCCESS to the master manager eventually. After the receipt

of these messages, the master manager will broadcast the END message and

the algorithm will terminate correctly.

34Master's record of local convergence states is only changed either directly from the
worker's manager, or when the termination attempt failed. In the latter case, the record
is cleared, but managers with idle workers will update the record soon after failure, since
every CONV TRUE message will be processed when the CHECK mode is o�



62 4 DESIGN OF ALGORITHM

4.5 Algorithm with Deferred Synchronization

We will present another algorithm, which is based on the fully asynchronous

algorithm. First we will explain the reasons why at least �deferred� synchro-

nization should be incorporated into the originally asynchronous algorithm.

4.5.1 Queue Size Problems

Consider the following situation in the asynchronous algorithm presented pre-

viously � processor A has such patches in its local set that it is quite easy to

compute form factors related to these patches.35 In such a case, A can �nish

local iteration with a particular shooter much faster than other processors.

I.e. the other processors will compute at their pace and occasionally send

shooter to A. Since A is fast in iterations, it will empty its queue of shooters

quickly and �ood the other processors with its own shooters. In this fashion,

the size of another (a slow ones) processor's (B) queue can grow quickly.

This is inconvenient from the point of implementation, because of the fact

that there are memory limitations. In order to reserve enough memory for

the program, we should be able to determine its memory requirements, or

delimit them.

Another inconvenience in this scenario is, that A is forced, since its queue

empties quickly, to choose new own shooters without any reference.36 These

shooters may have small residua, thus their contribution to the convergence

process is insigni�cant. Unluckily, these insigni�cant shooters' energy also

has to be transferred on other processors' patches, thus wasting their com-

putational time.

35For example, all patches are faced away from most of other patches in the scene,
including light sources

36In case there are shooters in its queue, the processor can decide, if its own shooters
are �stronger� and, if not, decide rather for the shooters from queue.



4.5 Algorithm with Deferred Synchronization 63

4.5.2 Queue Size Delimitation

In the asynchronous algorithm, once B's queue reached the limit, there is no

time to prevent others from sending additional shooters, since many shooters

may be on their way already. We will have to avoid these shooters to be

sent � every processor will remember the number of shooters sent by itself,

which are residing in B's queue. In case of A, once a certain threshold for

sent shooters is met, A will stop to select new shooters from the local set �

we will refer to this as to blocked state, Fig. 7. Of course, the actual number

of A's shooters in B's queue may be smaller than A remembers, since B may

have processed some already. We will refer to the number of A's shooters in

B's queue as to actual A|B score.37 If A is in blocked state, we would like B

to inform A if actual A|B score is smaller than the threshold. Here we have

to be careful so that we do not misinform A:

Figure 7: Processors are sending shooters and block themselves in case they
reach the limit of queue space reserved for them.

Say that threshold = 5, actual A|B is still 4, but A's record of A|B is 5,

since the �fth shooter has been sent recently. If B now informs A that actual

37Note that A|B is di�erent from B|A.



64 4 DESIGN OF ALGORITHM

A|B is 4, A will possibly send another shooter and exceed the threshold limit

for B's queue.

From the previously shown reason, B informs A only if A is in a blocked

state. To �nd out when A is blocked, B keeps record of what A thinks � B

increases counter count[A] every time shooter from A is received. Once the

counter reaches the threshold value, B knows A is blocked. At that moment

(or later), B may have already processed some shooters of A. Therefore

it sends the noti�cation � actual A|B score to A38, and assigns the A|B
value to the count[A] counter in order to keep track of what A thinks. We

may decide if B should notify A immediately after A has blocked itself and

the actual A|B score is under the threshold, or when the actual A|B score

dropped to a certain value � trigger.

Consider there are N processors. All processors other than B keep the

score record of their own shooters sent to B. If we limit every processor's

X/B score to threshold, the maximal number of all shooters (from di�erent

processors) in B's queue will be less or equal to threshold ∗ (N − 1).

4.5.3 Algorithm with Deferred Synchronization

Since A is blocking itself until noti�ed by B, synchronization occurs in the

algorithm. In comparison with the synchronous algorithm, the synchroniza-

tion only takes place after few iterations.39 Moreover, such synchronization

only relates to a pair of processors. Therefore, we call this algorithm an

algorithm with deferred synchronization.

In the algorithm with deferred synchronization, the threshold value is an

interesting parameter, in the sense of amount of synchronization used. If we

set the threshold value to 5, every pair of processors will always synchronize

themselves at least after 5 �iterations�.40 Moreover, if we also set the trigger

38While A is blocked, it cannot in�uence the A|B score.
39Determined by the threshold value.
40In the asynchronous algorithm, iteration is rather one shooting performed by particular

processor.



4.5 Algorithm with Deferred Synchronization 65

parameter to 0, every pair of processors will always synchronize exactly after

5 �iterations�. Therefore, when increasing the threshold parameter, we can

defer the synchronization for several steps. If we set the threshold value high

enough, we will get an algorithm very similar to the fully asynchronous one.

On the other hand, if we limit the queue size to Q, threshold will be equal to

Q/N−1. If there is a large number of processors, threshold will be relatively

small.

We also solved the issue of insigni�cant shooters selection. Smaller thresh-

olds bring the advantage of better shooter selection, since processors cannot

compute �too-much-ahead� and shooting of insigni�cant shooters will not

take place that often.

4.5.4 Algorithm Overview

As we have shown, the algorithm with deferred synchronization is a nat-

ural extension of the asynchronous algorithm. It also uses two threads for

communication and computation. Considering the added functionality, these

threads have to cooperate to achieve it. Basically, we can identify two ad-

ditional independent groups of functionality in the extended algorithm from

the view of the single processor A:

• Functionality 1: Control of the number of consecutively sent shooters

to every particular processor B since the last received noti�cation from

this processor and blocking of shooter selection if necessary.

• Functionality 2: Recording of the number of received shooters from

every particular processor X and sending noti�cations if the particular

processor can be unblocked. This can be also in�uenced by the trigger

value.

In the presented pseudo-code we will leave out the management of the

shared variables and necessary communication from the asynchronous algo-

rithm needed for proper termination. We will only show the added func-



66 4 DESIGN OF ALGORITHM

tionality. Also, we will not take the trigger values into consideration, since

the algorithm can be easily extended for use of the trigger. The use of

threads implies, that every shared variable access must be controlled � by

a semaphore including both read and write access. If we do not state oth-

erwise, we assume that every shared variable is locked before the immediate

access and unlocked immediately after the operation on data is performed.

Considering the �rst functionality, the worker41 only increases the A|B
score and blocks itself if the threshold is reached. Note, that it can still

select and �shoot� the shooters from queue. After the worker was blocked,

the possible incoming noti�cation is then received by manager42. In order

for the worker to start working, it must be informed by the manager that the

noti�cation has already arrived. It is su�cient for the manager to update the

A|B score according to received information � that certainly means lowering

the score. We will use shared array score containing the A|B scores43 to solve

this communication need. The worker reads the score values and determines

if it should be in the blocked state.

Considering the second functionality, the manager records the number of

received shooters from every particular processor X, increasing the count[X]

variable. The actual X|B score can be in�uenced by both the worker and

manager.44 The worker decreases X|B and the manager increases X|B. The

noti�cation is performed by both threads, depending on the situation:

• Case: By the time count[X] reached the threshold, some of X's shoot-

ers stored in queue have been processed since last noti�cation � actual

X|B < count[X].

Manager: Upon receiving X's new shooter, it increases count[X] and

determines if the threshold was reached. If so, since X|B < count[X]

manager sends the noti�cation and updates count[X].
41Computation thread
42Communication thread
43However not the most actual ones.
44Note that actual X|B score can be easily computed by counting corresponding shooters

in the queue.



4.5 Algorithm with Deferred Synchronization 67

• Case: By the time count[X] reached the threshold, none of X's shoot-

ers in queue have been processed since last noti�cation � actual A|B =

count[X].

Worker: Once shooter from queue is to be processed, worker deter-

mines if there is time for noti�cation of the shooter's owner (possibly

X), according to the count[X] array. If so, worker sends the noti�cation

and updates count[X].

Note, that the proper locking here is crucial. In both cases, the threads

must have exclusive access to both count[X] and queue. The locking order

must be the same for both threads to avoid deadlocks.

Program Deferred;

/*INPUT*/

threshold: int; /* a limit to the number of shooters allowed

* to sent consecutively to every particular

* processor without received notification */

/*VARIABLES*/

var array score: int; /* for every processor this array

* stores number of shooters sent

* consecutively to that processor */

var blocked: boolean;

var array count: int; /* used for deferred synchronization,

* records if the number of received

* shooters from a particular

* processor reached threshold value*/

COMPUTATIONAL THREAD BEGIN

Do necessary initializations;



68 4 DESIGN OF ALGORITHM

for all i {

count[i] := 0;

score[i] := 0;

end := false;

}

repeat

while( not converged OR queue not empty ) {

for all i { /* we test for all processors*/

if ( score[i] == threshold ) /* we are in blocked state*/

{

blocked := TRUE;

break;

}

}

if ( blocked )

Select shooter from queue if there is one;

else

Select shooter from local set or from queue;

if ( shooter selected from local set ) {

Broadcast("SHOOTER"); /* freeze the residual

* and broadcast it */

for all i {

inc(score[i]); /* the number of sent

* residuals increases */

}

Transfer shooter's energy on local set;

}

Lock queue;

if ( shooter selected from queue )



4.5 Algorithm with Deferred Synchronization 69

{

Remove shooter from queue;

j := shooter's owner; /* the processor that has sent

* the particular shooter */

Lock count[j];

if ( count[j] == threshold ) /* if j-th processor

* is blocked */

{

k := number of j-th processor's shooters in the queue;

Send(to j, "SCORE", k); /* we notify j-th processor

* about the actual score,

* to unblock it */

}

Transfer shooter's energy on local set;

}

}

} until end == TRUE

COMPUTATIONAL THREAD END

COMMUNICATION THREAD BEGIN

Receive(msg);

while( msg.TAG != "END" ) /* this is sent by the

* termination algorithm */

{

if ( msg.TAG = "SHOOTER")

{

j := shooter's owner;

Lock queue;

Lock count[j];



70 4 DESIGN OF ALGORITHM

Add shooter to queue;

inc(count[j]);

if ( count[j] == threshold ) {

k := number of j-th processor's shooters in the queue;

if ( k < threshold )

{

Send(to j, "SCORE", k); /* we notify j-th processor

* about the actual score,

* to unblock it */

}

}

Unlock count[j];

Unlock queue;

Dispatch(msg);

}

if ( msg.TAG = "SCORE")

{

j := msg.sender;

score[j] := msg.score;

Dispatch(msg);

}

.

. /* processing of other messages */

.

}

end := TRUE;

Dispatch(msg);

COMMUNICATION THREAD END



71

5 Loadbalancing Using Work Stealing

In the asynchronous algorithm, we have the patches divided among processors

in the same fashion as in the synchronous algorithm. In fact, since the

work to be done for a particular processor is to transfer energy on the local

set, the amount of work done in a particular processor is similar in both

algorithms.45 As we have already mentioned, in the synchronous algorithm,

there are idle times before every synchronization. In the Fig. 8, it can be seen

that in the asynchronous algorithm, the idle times were just pushed down

closer to the end of the algorithm. Consider a situation in the asynchronous

algorithm, where a processor has reached the local convergence, its queue

of shooters is empty. In case the global convergence was not reached yet,

the processor is idle. There will be shooters coming from other processors

sooner or later, but the processor cannot generate work on its own right now.

In case the processor will only wait and process incoming shooters, we will

likely not do any better than with the synchronous algorithm. Sometimes,

the fully asynchronous algorithm may be faster � although the processors

computational times di�er in every iteration of the synchronous algorithm,

they may �even-out� in the fully asynchronous algorithm,46 in case the total

work every processor did was the same. In case the total work spent by

processors was not even, we just take all the relatively small idle times from

the synchronous algorithm, move them down and connect together into a

larger idle time.

In both algorithms, we would like to minimize the idle times somehow.

For both algorithms, work equalization would be bene�cial. Static loadbal-

ancing may provide equal distribution of work. Note, that the synchronous

algorithm is �sensitive� to complexity di�erences in the tasks47 themselves,

since there is only one task per iteration. The asynchronous algorithm is

45It is not equal, since the asynchronous algorithm does not always choose the greatest
residual.

46That means they will �nish at the same time and there will be no idle times.
47In this case a task is to transfer the energy of shooter on patches from local set.



72 5 LOADBALANCING USING WORK STEALING

Figure 8: Comparison of idle times for the synchronous and asynchronous
algorithm. Note, that in the asynchronous algorithm the idle times are com-
pacted.

�sensitive� to the di�erences in the total amount of work done by individual

processors. Therefore asynchronous algorithm should do better, using static

loadbalancing only.

However, static loadbalancing is often not satisfactory, because imbal-

ances may rise during computation itself (e.g. patch subdivision) and are

hard to predict. To deal with this issue, dynamic loadbalancing is used.

There are several approaches to dynamic loadbalancing. For the asynchronous

message passing model, work stealing is very suitable.

5.1 Important Factors

The decision must be made, what kind of work should be �stolen� or trans-

ferred between processors, and how ��ne� the tasks should be � task gran-

ularity. In the synchronous algorithm, imbalances have to be evened out at

the iteration level, where a relatively small amount of work is done. There-



5.1 Important Factors 73

fore the tasks should be even smaller. One form factor computation could

be a task of desired granularity. However, in order to perform one stealing,

communication is necessary. The communication time (latency) plays here

an important role. In the synchronous algorithm, the idle times may be too

short to perform work stealing. For example, processor A asks processor B

for work, since A has �nished the iteration. B sends A twenty form factor

computations to be done. By the time B receives results from A, is B already

idle, because the communication takes too long. Thus B could have �nished

earlier if it had computed those two form factors by itself. The smallest

amount of work which can be e�ciently stolen and performed is latency de-

pendent. The �ner the granularity of tasks, the better, since we can assign a

more precise amount of them. Therefore, tasks of �ne granularity are as well

suitable for the asynchronous algorithm. However, asynchronous algorithm

will be also resilient to larger-sized tasks, as well as to longer communication

times. Moreover, considering large-sized tasks, quite a lot of work may be

exchanged between processors in one task. Say that this corresponds to a

hundred of tiny tasks. In case we can store the information corresponding

to the large task in the same space as the small tasks, the data transfer of

hundred tiny tasks is hundred times higher than transfer of one large task.

Who should we steal from? There are two radical options. To steal from

all, or from one. For both cases, it is necessary to have the information

of the current load in order to determine the amount of work to be stolen.

Unfortunately, no global snapshot can be done about the processors' state.

Also, any communication in order to gain additional information costs time

and is therefore inappropriate. In the asynchronous algorithm, the length of

queue of shooters represents a good indicator of computational load.

The next thing we should take into consideration, is the temporality of

the �stolen� work.

• In the �rst case, the stolen work could be the determination of one

form factor for example. This will put a temporary load on the target



74 5 LOADBALANCING USING WORK STEALING

processor until the task is �nished.

• In the second case, a processor could steal part of another processor's

local set of patches. The stolen patches mainly represent a relatively

large amount of possible future work, instead of a temporary job.48

Also, it is hard to predict how much work are the patches related with.

In a sense, this is similar to static loadbalancing.

Both these approaches have their own rationale. The choice of ideal work

stealing is rather complicated and is out of scope of this thesis. We will

present both above mentioned approaches in connection with two algorithms.

However, our algorithms will be designed on a higher level and in an adapt-

able fashion, so that they can be linked with any work stealing algorithm.

5.2 General Work Stealing for the Asynchronous Algo-

rithm

In the asynchronous algorithm, work stealing will be run only if the proces-

sor's queue is empty, and the local convergence was reached, therefore no

work is available. In fact, this is also the right time to check if the global

convergence was reached. In that case, instead of work stealing, we would

rather end the computation and run a termination protocol. Before the pre-

sented termination algorithm starts, the worker sends "IDLE" message to its

manager. The worker does so anytime there is no work. Thus, work stealing

can be easily incorporated at this point of the algorithm. We only have to

introduce another shared variables � ws �ag (i.e. the manager is in work

stealing state) and a list of stolen work � tasks. Once the manager receives

the "IDLE" message, it sets ws �ag to true, performs work stealing and after

receiving of all work, passes it to the worker, setting idle to false and ws to

false. While ws is set or task queue is not empty, the worker dedicates him-

48The work related with stolen patches lies in future shooters energy transfer onto these
patches.



5.3 Iteration Stealing 75

self to solving of those tasks.49 Once the worker is done, possible results are

sent to the corresponding computer. In case the worker is out of work again,

"IDLE" message is sent again. Once the manager �nds out there is nothing

to steal,50 it sends the "CONV TRUE" message51 to the master manager in

case the worker is still idle. In case there should be results sent back, the

processors managers which have sent the work, have record of whom they

have given work and what work. Upon receipt of the results, they clear the

corresponding record.

While the work stealing is in progress � there are work stealing related

messages, computing, or results are awaited � the termination procedure

cannot succeed. Therefore in the check procedure the manager will have to

check for the work stealing status too. Since the work stealing messages will

abort the termination check automatically, it will be su�cient to verify if

there is any record of to-be-returned results, if there is work awaited as a

result of work stealing and if the worker is idle.

5.3 Iteration Stealing

In the iteration stealing, we consider a task to be equal to one local iteration

(see Fig. 9), that means to transferring a particular's shooter energy onto

patches from local set. Accordingly, the work we will steal is �shootings� on

other processor's local set.

The work stealing proceeds as follows: First, a manager asks all other N−
1 processors for work. In case there is a large number of processors we may

only choose one to spare some resources. This choice is rather complicated

and may include combination of approaches such as queue size heuristics,

gathering information, or probabilistic methods. Every asked processor's

manager will carry out the queue locking, determine the number of shooters

49In some cases we may also allow the worker to check if there is new work of its own.
In that case, it returns the work back to the �lender�.

50The answers to work stealing requests contain no work.
51The manager does so upon receipt of last empty work stealing answer.



76 5 LOADBALANCING USING WORK STEALING

Figure 9: Example of one local iteration. Energy of queue shooter is trans-
ferred onto the local set.

in the queue � |Q| and return b|Q|/Nc of the �weakest� shooters52 (Fig. 10),
plus it will decide with probability (|Q|/N)−b|Q|/Nc to send one additional

shooter.53 After the manager has received this work, it hands it over to the

worker. We assume that the scene also contains patch owner information

(i.e., each patch �knows� which process it belongs to).

In this case, we can carry out the iteration, since we have the knowledge

of the shooter's owner local patch set. Note, that the local sets do not change

during the computation.

In case we cannot assure the manager the knowledge of the �lender's�

local set, the lender also appends the identi�cation of its local set to the

message with the stolen shooter. Consecutively, this data are received by the

applicant's manager, and inserted into the task queue. The worker proceeds

with the computation and sends the corresponding radiosity and residua

52Which correspond to the less important iterations.
53This solves the situation with larger amount of processors and little work.



5.3 Iteration Stealing 77

Figure 10: Iteration stealing. Work is contained in the shooters to be shot.

results to the shooter's owner. The owner's manager receives the results and

updates the residua of the local set. Note, that locking is necessary, since

common access is required. After the worker has �nished processing the

stolen work, it proceeds with the usual algorithm.

This approach has the disadvantage that relatively large amounts of data

have to be transferred in order to deliver the computed results of stolen work,

if processor's local patch set contains a lot of patches � say 10.000.54 We

can identify tasks at a lower-level � at the level of form factors. However,

there would be additional control and synchronization necessary.

The advantage of this work stealing approach is, that the amount of work

contained in a task can be estimated quite accurately. Also, since we steal a

temporary work, the load balancing can be applied at arbitrary point in the

algorithm.

54Then, 10.000 residua (results) must be sent after only one task was stolen.



78 5 LOADBALANCING USING WORK STEALING

5.4 Patch Stealing

We will present another approach based on work stealing. In this algorithm,

we will rather �steal� data than work, still there will be work hidden in

relation to the data. The principle can be seen on Fig. 11.

Figure 11: Patch stealing. Work is contained in the stolen patches to (pos-
sibly) have energy shot onto.

The patch stealing procedure works on the same principle as the general

work stealing. We have already mentioned, that we will steal a part of some

processor's local set. Since there are complications with the data consistency

as we shall show, it is wiser to choose only one processor to steal from. In

order to make the right choice, the particular processor A will at �rst ask

all the other processors about their speed � the number of total iterations

computed � I. Afterwards, the processor B with highest load is selected.

The asked processor will sent a certain part of its data to the �applicant� A.

Afterwards, A will unite the received patches together with its local set.

There are two problems to be discussed:

• to determine the amount of work to be �stolen�

• to keep the data in a consistent state



5.4 Patch Stealing 79

The �rst problem is how to determine the number of patches to be sent in

response to the work request. If every processor remembers the total number

of form factors computed � F , we can approximately compare its speed with

others. The applicant will send F count and as well patch count P 55 to the

particular �lender�, which can compare their relative speeds.

We would like the processors to have the same number of iterations per-

formed from the beginning. Since the number of iterations can be expressed

as F/P we have

F [A]

P [A] + x
=

F [B]

P [B]− x
(58)

where x is the number of to-be-sent patches. From this we have

x =
F [A]P [B]− F [B]P [A]

F [A] + F [B]
(59)

After this procedure, B and A update the number of �nished iterations:

I ′[A] = I ′[B] = (I[A] + I[B] ) / 2;

Another problem is connected with data consistency. First, we have to

pay attention when removing the data from the lender's local set. There

should be no iteration going on when the patches are extracted, since if there

is iteration running, the shooter's could be shot on some patches only and

others may stay left out.56 If we have extracted our shooters, we send them

and attach the actual queue of shooters, because these shooters' energy has

to be shot on the sent patches too.

Then there is another problem which can show up when the patches with

queue are on their way. They may miss an incoming shooter as shown in

Fig. 12.

In order to solve this issue, we will have to store in every processor the

information of last received shooter from every processor � S. If A asks B

55Number of patches in its local set
56This can be optimized so, that we divide the local set into two parts and we remember

which part is processed actually. Then we select the patches from the inactive half.



80 5 LOADBALANCING USING WORK STEALING

(a) Processor 1 sends
new shooter

(b) Shooter received by
processor 3 only

(c) Processor 3 asks pro-
cessor 2 for work

(d) Proc.3 receives work
form proc.2

(e) Shooter message still
hanging

(f) Shooter received by
proc.2

Figure 12: Data consistency problem. Shooter misses the patches which are
not stored in any of the processors, instead they are somewhere in net.



5.5 Work Stealing for the Algorithm with Deferred Synchronization 81

for patches, the worker blocks itself, the S[A] is recorded and sent to B. No

incoming shooters are processed until the work stealing is complete. Since

the shooters always have a time stamp, we can compare them to shooters

which originated in the same processor.

De�nition 12. We say that record of last received shooters

S = ”s1, s2, . . . , sn” is greater or equal than R = ”r1, r2, . . . , rn”,

if ∀i : si ≥ ri. We similarly de�ne the other relations.

After B received the request from A with S[A], it compares S[A] with

S[B]. S[B] must be greater or equal than S[A] in order to select the patches

� if some S[A][i] is greater than the corresponding S[B][i], that means A

has received some shooter which B has not. Therefore B must wait for

this shooter so that it does not miss the to-be-stolen patches, instead to be

added into the queue. Once this condition is ful�lled, patches can be sent.

In order for A to unite its local set with the received set, it must unite the

queues related with these sets. Since S[B] ≥ S[A] and A was not processing

any shooters, now B can wait for and process necessary shooters such that

eventually S[B] = S[A]. Afterwards the sets can be united.

An advantage of the patch stealing is that the data transfer induced

by patch transfer and other necessary data is relatively small. Also, we

do not have to send any results. However the amount of work caused by

the individual patches is hard to predict. Patch stealing is not suitable

for the asynchronous algorithm, where work stealing is done near the end

of computation, when stolen patches do not represent any signi�cant load.

Moreover, the implementation brings di�culties with data consistency, since

the data are moved between processors.

5.5 Work Stealing for the Algorithm with Deferred Syn-

chronization

There are two points in the algorithm with deferred synchronization where

there are idle times:



82 5 LOADBALANCING USING WORK STEALING

• The processor has sent too many shooters, thus is blocked and awaits

noti�cation.

• The processor reached local convergence and there is no work.

The second case is actually the same as by the asynchronous algorithm.

Therefore, iteration stealing should be used to obtain new work.

In the �rst case, we have two options. Even though the patch stealing is

not suitable for the asynchronous algorithm, it can be used at this point in

the algorithm with deferred synchronization, because the patch distribution

signi�cantly in�uences the load on the processors.

The iteration stealing is also suitable for the point in the algorithm when a

certain processor is blocked. Note, that at this point the processor may decide

to process shooters from its queue. However, this may not be optimal because

it may violate the assumptions of using the greatest residual available. If

we want to use iteration stealing, it is reasonable to steal work from the

processor, which prevents us from computing. This is a slight modi�cation

in comparison with the approach we have presented. The blocked processor

only asks the blocking one for shooters (related to iterations). The blocking

processor returns |Q|/N shooters, where |Q| is the number of shooters in the

queue and N is the number of processors. Otherwise the algorithm is the

same as the iteration stealing presented before. However, there is a place

for optimization in the case of algorithm with deferred synchronization. For

A, instead of waiting in the blocked state, A continues in the computation.

In case a new shooter is selected from the local set, instead of sending the

selected shooter to every processor, we only send it to the nonblocking ones.

A computes the shooter's energy transfer on its local set, but also on the

sets of the blocking processors. This is possible, because we assume that the

distribution of patches between processors is known to every processor and

that it does not change.



83

6 Conclusion

In this thesis, we presented two e�cient parallel algorithms based on the

progressive radiosity method. These algorithms were designed on a high level.

In connection with the asynchronous communication model and separate

communicationthread, this implies small communication demands. Both the

algorithms are not only e�cient, but also very �exible. Our algorithms do

not require any speci�c partitioning of the scene geometry. They can be

viewed as a parallel framework and can be easily connected with di�erent

sequential algorithms based on progressive radiosity.

The presented asynchronous algorithm computes the radiosity solution

with perfectly minimized communication, while it retains a high degree of

convergence rate. In comparison with the simple synchronous algorithm, the

asynchronous algorithm is more resistant to load imbalances and can be very

easily combined with work stealing techniques to obtain high speedups. We

have proved that the algorithm converges for a given accuracy to the radiosity

solution.

In addition, a novel e�cient algorithm was proposed � the algorithm

with deferred synchronization allows us to control the degree of synchroniza-

tion, and controls the amount of memory used during computation. If there

is enough memory available, the algorithm has the same properties as the

asynchronous algorithm.

For further improvements, we proposed two di�erent approaches to work

stealing. Iteration stealing is a very general method for dynamic load balanc-

ing and can be used in all situations. Patch stealing is a method of dynamic

loadbalancing based on data transfer instead of work transfer. It is very sim-

ilar to static load balancing in the sense that it in�uences the load for the

rest of computation. The amount of data transferred using patch stealing is

independent on the corresponding work.



84 REFERENCES

References

[APRP96] Bruno Arnaldi, Thierry Priol, Luc Renambot, and Xavier Pueyo.

Visibility Masks for Solving Complex Radiosity Computations

on Multiprocessors. In Proc. First Eurographics Workshop on

Parallel Graphics and Visualisation, pages 219�232, Bristol, UK,

1996.

[Bek99] Philippe Bekaert. Hierarchical and Stochastic Algorithms for Ra-

diosity. PhD thesis, Leuven, Belgium, 1999.

[BFGS86] Larry Bergman, Henry Fuchs, Eric Grant, and Susan Spach. Im-

age rendering by adaptive re�nement. In SIGGRAPH '86: Pro-

ceedings of the 13th annual conference on Computer graphics and

interactive techniques, pages 29�37, New York, NY, USA, 1986.

ACM Press.

[BP94] K. Bouatouch and T. Priol. Data management scheme for par-

allel radiosity. Computer Aided Design, 26(12):876�882, 1994.

[BW90] Daniel R. Baum and James M. Winget. Real time radiosity

through parallel processing and hardware acceleration. In SI3D

'90: Proceedings of the 1990 symposium on Interactive 3D graph-

ics, pages 67�75, New York, NY, USA, 1990. ACM Press.

[Cap93] Tolga K. Capin. Parallel Processing for Progressive Re�nement

Radiosity. Master's thesis, Ankara, Turkey, 1993.

[CCWG88] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and

Donald P. Greenberg. A progressive re�nement approach to fast

radiosity image generation. In SIGGRAPH '88: Proceedings of

the 15th annual conference on Computer graphics and interactive

techniques, pages 75�84, New York, NY, USA, 1988. ACM Press.



REFERENCES 85

[CG85] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: a

radiosity solution for complex environments. In SIGGRAPH '85:

Proceedings of the 12th annual conference on Computer graphics

and interactive techniques, pages 31�40, New York, NY, USA,

1985. ACM Press.

[CWH93] Michael F. Cohen, John Wallace, and Pat Hanrahan. Radiosity

and realistic image synthesis. Academic Press Professional, Inc.,

San Diego, CA, USA, 1993.

[DS92] Steven M. Drucker and Peter Schroder. Fast radiosity using a

data parallel architecture. In Third Eurographics Workshop on

Rendering, pages 247�258, Bristol, UK, 1992.

[Fly66] M.J. Flynn. Very high-speed computing systems. In Proceedings

of the IEEE, Volume: 54, Issue: 12, pages 1901�1909, 1966.

[FP91] Martin Feda and Werner Purgathofer. Progressive re�nement

on a transputer network. In Proceedings of 2nd Eurographics

Workshop on Rendering, pages TALK: M. Feda.

[Fun96] Thomas A. Funkhouser. Coarse-grained parallelism for hierarchi-

cal radiosity using group iterative methods. Computer Graphics,

30(Annual Conference Series):343�352, 1996.

[GCS93] Steven J. Gortler, Michael F. Cohen, and Phillipp Slusallek.

Radiosity and Relaxation Methods: Progressive Re�nement is

Southwell Relaxation. Technical Report CS-TR-408-93, Prince-

ton, NJ, 1993.

[Gla89] Andrew S. Glassner, editor. An introduction to ray tracing. Aca-

demic Press Ltd., London, UK, UK, 1989.

[GP89] S.A. Green and D.J. Paddon. A highly �exible multiprocessor

solution for ray tracing. The Visual Computer, 5(6), 1989.



86 REFERENCES

[Gra98] Pavol Grambli£ka. Cache techniky pre paralelný raytracing. Mas-

ter's thesis, Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovakia, 1998.

[GRS95] Pascal Guitton, Jean Roman, and Gilles Subrenat. A parallel

method for progressive radiosity. Technical Report Research Re-

port 992-95, Talence, France, 1995.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg,

and Bennett Battaile. Modeling the interaction of light between

di�use surfaces. In SIGGRAPH '84: Proceedings of the 11th

annual conference on Computer graphics and interactive tech-

niques, pages 213�222, New York, NY, USA, 1984. ACM Press.

[How82] J.R. Howell. A Catalog of Radiation Con�guration Factors.

McGraw-Hill, 1982.

[�in95] Libor �indlar. Paralelní algoritmz po£íta£ové gra�ky. Master's

thesis, Matematicko-fyzikální fakulta Univerzity Karlovy, Praha,

Czech Republic, 1995.

[Kel96] Alexander Keller. Quasi-Monte Carlo Radiosity. In Render-

ing Techniques '96 (Proceedings of the Seventh Eurographics

Workshop on Rendering), pages 101�110, New York, NY, 1996.

Springer-Verlag/Wien.

[Mal88] Thomas J. V. Malley. A Shading Method for Computer Gener-

ated Images. M.Sc. thesis, June 1988.

[Pie93] Georg Pietrek. Fast Calculation of Accurate Formfactors. In

Fourth Eurographics Workshop on Rendering, number Series EG

93 RW, pages 201�220, Paris, France, 1993.



REFERENCES 87

[Pla03] Tomá² Plachetka. Event-driven message passing and parallel

simulation of global illumination. PhD thesis, University of

Paderborn, 2003.

[Pla06] Tomas Plachetka. Unifying framework for message passing. In

Jirí Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková,

and Julius Stuller, editors, SOFSEM, volume 3831 of Lecture

Notes in Computer Science, pages 451�460. Springer, 2006.

[PT89] M. Price and G. Truman. Radiosity in parallel. In Proceedings of

the 1rst conference on applications of transputers, pages 40�47,

1989.

[PZ90] Werner Purgathofer and Michael Zeiller. Fast radiosity by par-

allelization. In Eurographics Workshop on Photosimulation, Re-

alism and Physics in Computer Graphics, pages 173�183, June

1990.

[RCJ98] Erik Reinhard, Alan Chalmers, and Frederik W. Jansen.

Overview of parallel photo-realistic graphics. Technical Report

CS-EXT-1998-147, 1, 1998.

[RGG90] Rodney J. Recker, David W. George, and Donald P. Green-

berg. Acceleration techniques for progressive re�nement radios-

ity. SIGGRAPH Comput. Graph., 24(2):59�66, 1990.

[Sch00] Olaf Schmidt. Parallele Simulation der globalen Beleuchtung in

komplexen Architekturmodellen. PhD thesis, University of Pader-

born, 2000.

[SP89] F. Sillion and C. Puech. A general two-pass method integrating

specular and di�use re�ection. In SIGGRAPH '89: Proceedings

of the 16th annual conference on Computer graphics and interac-

tive techniques, pages 335�344, New York, NY, USA, 1989. ACM

Press.



88 REFERENCES

[SW] W. Sturzlinger and C. Wild. Parallel prograssive radiosity with

parallel visibility computations.

[WCG87] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg.

A two-pass solution to the rendering equation: A synthesis of ray

tracing and radiosity methods. In SIGGRAPH '87: Proceedings

of the 14th annual conference on Computer graphics and interac-

tive techniques, pages 311�320, New York, NY, USA, 1987. ACM

Press.

[WEH89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing

algorithm for progressive radiosity. In SIGGRAPH '89: Proceed-

ings of the 16th annual conference on Computer graphics and in-

teractive techniques, pages 315�324, New York, NY, USA, 1989.

ACM Press.

[YIY97] Yizhou Yu, Oscar H. Ibarra, and Tao Yang. Parallel progres-

sive radiosity with adaptive meshing. Journal of Parallel and

Distributed Computing, 42(1):30�41, 1997.

[ZBSF04] Ji°í Zára, Bed°ich Bene², Ji°í Sochor, and Petr Felkel. Moderní

po£íta£ová gra�ka. Computer Press, Brno, Czech Republic, 2004.



Abstrakt

Táto práca sa zaoberá návrhom efektívneho paralelného algoritmu pre rie²e-

nie metódy radiosity. V paralelnom algoritme zaloºenom na progresívnej

radiosity pouºívame asynchrónny model posielania správ. V¤aka nezávis-

lému toku riadenia ur£enému pre prijímanie správ (komunika£né vlákno)

môºe komunikácia medzi procesmi prebieha´ aj po£as výpo£tu. Tento prístup

umoº¬uje modi�kova´ numerické rie²enie problému, £ím sa zabezpe£í zníºenie

komunikácie medzi procesmi. V¤aka tomu je algoritmus efektívny. Výpo£et

je paralelizovaný v najvy²²ej moºnej vrstve sekven£ného algoritmu, £o spô-

sobuje ¤al²ie zníºenie komunikácie a tieº umoº¬uje vytvorenie paralelného

frameworku nezávislého na implementácii niº²ích vrstiev. V práci je navrhnutý

plne asynchrónny a £iasto£ne synchrónny prístup pre rie²enie progresívnej ra-

diosity. Pre porovnanie uvádzame aj tradi£ný synchrónny prístup. Práca tieº

obsahuje návrh pre vyrovnávanie nerovnomerností zá´aºe, ktoré môºu nasta´

po£as výpo£tu.

K©ú£ové slová: progresívna radiosity, paralelizácia, asynchrónny model


	Cover page
	Title page
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Radiosity and Current Research
	1.2 Parallelization of Radiosity
	1.3 Outline of This Thesis

	2 Radiosity Method
	2.1 Global Illumination
	2.2 Radiosity Equation
	2.3 Progressive Radiosity
	2.4 Form Factor Computation
	2.4.1 Analytical Methods
	2.4.2 Projection Methods
	2.4.3 Ray-Casting Methods


	3 Overview of Parallelization Algorithms
	3.1 Parallelization Issues
	3.2 Radiosity Related Problems
	3.3 Classification of Parallel Architectures
	3.4 Previous Work
	3.4.1 Parallelization of Progressive Radiosity


	4 Design of Algorithm
	4.1 Assumptions
	4.1.1 Target Architecture
	4.1.2 Communication Model
	4.1.3 Memory Limitations and Termination Criteria

	4.2 General Overview
	4.3 Simple Synchronous Algorithm
	4.4 Fully Asynchronous Algorithm
	4.4.1 Proof of Convergence and Termination

	4.5 Algorithm with Deferred Synchronization
	4.5.1 Queue Size Problems
	4.5.2 Queue Size Delimitation
	4.5.3 Algorithm with Deferred Synchronization
	4.5.4 Algorithm Overview


	5 Loadbalancing Using Work Stealing
	5.1 Important Factors
	5.2 General Work Stealing for the Asynchronous Algorithm
	5.3 Iteration Stealing
	5.4 Patch Stealing
	5.5 Work Stealing for the Algorithm with Deferred Synchronization

	6 Conclusion
	References


