
COMMENIUS UNIVERSITY

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OFCOMPUTER SCIENCE

PRACTICAL DATA COMPRESSION
MASTER’ S THESIS

V IKTOR ŠTUJBER

Bratislava, 2008

Practical Data Compression

MASTER’ S THESIS

Viktor Štujber

COMMENIUS UNIVERSITY

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OFCOMPUTER SCIENCE

Informatics

Thesis advisor
doc. RNDr. PavoľDuriš, CSc.

BRATISLAVA , 2008

I hereby declare that the work presented in this thesis is my
own, written only with the help of the referenced literature
and internet resources.

Viktor Štujber

ACKNOWLEDGEMENTS

First and foremost, I would like to give my thanks to Matt Mahoney. Without his research this
thesis would never have existed. I also thank my thesis advisor, doc. PavoľDuriš, for giving me
motivation and useful suggestions. Finally, a big thanks tomy parents and siblings for bearing
with me and supporting me during the period of writing.

ABSTRACT

The main focus of this thesis is to examine the concept of compressors that use multiple algo-
rithms or data models. This approach is the core of today’s top-ranking compression software,
yet there doesn’t seem to be any mention of it in data compression literature. We intend to
fill in this gap by explaining the technique, introducing a suitable multi-compressor model and
describing its structure in detail.
This thesis also covers a closely related area of interest, data compression metrics. We show how
apply it to our model to improve its decision-making process.

Keywords:lossless data compression, multiple algorithms, parallelprocessing, metrics

FOREWORD

All data consists of two components: information and redundancy.Lossless data compressionis
the concept of reducing its size without losing any information. This is done by recognizing and
eliminating the redundancy part. And the better the compressor is at finding redundancy and the
more of it is present in the data, the shorter the output will be once the data compression process
completes.

There are several main reasons why we would want to use data compression.
First, reducing thesizeof data lets us extend the effective capacity of storage devices past

their physical specifications. This can provide significantsavings, especially in situations where
an alternative approach would be economically or technically prohibitive.

Whenevertransferringdata over a communication channel whose capacity is smallerthan the
computing power of its endpoints, employing data compression can increase the real transfer rate
above the limit imposed by the available bandwidth. This means a reduction in time spent waiting
for the transfer to complete. Depending on the characteristics of the data, the improvement can
be by a factor of two or more.

Finally, the concept of data compression is closely tied toinformation theory. If some string
of data can be compressed, it contains redundancy. If it contains redundancy, it is not random.
This is of importance in the field of cryptology.

Due to the significance of data compression, we believe that if there is possibility of im-
provement, we should definitely investigate it. Such was thecase with the material presented in
this thesis. To the best of our knowledge this is the first publication that mentions the area of
our research. Therefore we hope that our ideas will be helpful in achieving better compression
results.

CONTENTS

1. Introduction . 10
1.1 Background . 10
1.2 Goals . 11
1.3 Overview . 11

2. Terms and definitions. 12

3. Related work. 13
3.1 Preprocessing .. 13
3.2 Entropy Coding .14
3.3 Modelling . 15
3.4 Summary . 15

4. Metrics. 17
4.1 Measuring . 18
4.2 Ranking . 18

5. The multi-compressor model. 20
5.1 Structure .20

5.1.1 Selector . 21
5.1.2 Modules . 22
5.1.3 Mixer . 22

5.2 Properties .22
5.3 Metric-driven mixer 24

6. Conclusion. 25

Bibliography . 27

Abstract in Slovak language. 28

LIST OF FIGURES

3.1 The classic compressor model 13
3.2 Compression time and ratio comparison 16
3.3 Decompression time and ratio comparison 16

5.1 The multi-compressor model 20
5.2 Selector activity diagram 21
5.3 Parallelism in the multi-compressor model 23

LIST OF TABLES

3.1 overview of described compression algorithms 16

4.1 absolute metrics .. . 19
4.2 time-based metrics .. . 19
4.3 communication-based metrics 19

1. INTRODUCTION

1.1 Background

From the beginning, data compression was centered around the principle of a single universal
compression algorithm doing all the work. It would consist of a model to analyze the data, and an
entropy coder to process its output. The resulting softwarewould provide very few configuration
options and offer little space for improvement beside the algorithm itself.

But recently, compression tools have appeared which utilize more than one compression
algorithm. By understanding this concept, a whole area of research opens up - one that offers
new possibilities to improve on existing data compression techniques, and also to develop brand
new ones.

Implementations of this idea have already existed for some time now, in a very basic form.
These either depended entirely on manual configuration, or used some simple heuristic to select
an appropriate strategy. There was usually only a single primary coder, while the others were
only utilized in some special cases which could not be handled well enough by the core.

This situation changed dramatically after M. Mahoney introduced hiscontext mixingmodel
[Mah02] and the open-source PAQ1series of compressors. In his approach, multiple specialized
models process the input independently and in parallel. Each model has its own assumptions on
how the input is structured, and after processing a bit of input, each model produces a prediction
and confidence rating. These are then gathered and combined to produce the final prediction.

Shortly after its introduction in 2002, PAQ became number one in terms of compression,
beating the Calgary Challenge [Bro96] and remaining on the top of compression benchmark
charts ever since.

But even with various sophisticated input preprocessing steps, the PAQ algorithm had by
design the worst compression/decompression performance from among all the other algorithms.
It could be considered as a sort of bruteforcing approach that relied on its models to identify
patterns and make accurate predictions. This made it interesting in theory but nearly unusable in
practical applications. Nonetheless, its structure and mode of operation became a great source of
inspiration for this thesis.

1 PAQ is available athttp://www.cs.fit.edu/~mmahoney/compression/#paq.

1. Introduction 11

1.2 Goals

Our goal was to explain the concept of utilizing multiple compression algorithms and show that
it is good enough to be used in practice, as a superior alternative to the classic single-compressor
approach. We also wanted to find out whether metrics other than compression ratio (or equiva-
lently, bits per character) could be used for comparisons, or even inside compression algorithms
themselves.

We can say that we achieved the first goal. We have designed a model for the so-calledmulti-
compressorand explained its components in detail. We have investigated multiple resources to
find suitable metrics, and present them in a separate chapter. We have also shown how these
metrics can applied to our model to produce an interesting compressor that doesn’t focus on
compression ratio only.

Sadly we could not provide empirical comparisons against classic compressors. This would
require a full implementation based on the model and that wasnot possible due to time con-
straints. Nonetheless, weaker implementations of this idea already exist and are very successful
at ranking high on various compression benchmarks. Therefore we believe that any more tests
would only serve to prove the point.

1.3 Overview

This thesis is structured as follows.
Chapter 2 introduces a small set ofterms and conventionsthat will be used frequently in the

following text, to reduce unneccessary repetition that would otherwise accompany any mention
of oompression or decompression.

Chapter 3 gives a quickoverviewof the currently accepted basic data compression model. It
mentions various input preprocessing techniques, some well-known universal data compression
algorithms and entropy coding schemes. For each of these, wegive a short description and
references to relevant publications.

In Chapter 4 we provide information on compressor benchmarking and the variousmetrics
involved. We then describe the notion of ascoringfunction and list some known examples found
in literature.

In Chapter 5 we present an unifiedmodel for compressors with multiple algorithms. We
describe its structure and explain the purpose of its three components. We show some interesting
properties and propose an implementation that uses the results of the preceding chapter.

Finally, Chapter 6 summarizes the important points of this thesis and offers suggestions for
future work.

2. TERMS AND DEFINITIONS

Here are some basic basic terms and conventions which will beused throughout the document.

Definition 2.1. Data compressionis the process of transforming data into a representation of
smaller size (compression), in a way that allows an inverse transformation to reconstruct the
original data (decompression).

Definition 2.2. Lossless1data compression is data compression where decompression of com-
pressed data always yields output identical to the originalinput.

Definition 2.3. A compressionalgorithm (technique) is a specific method of performing data
compression.

Definition 2.4. A compression algorithm isadaptiveif it dynamically adjusts to the data being
processed.

Definition 2.5. A compressionprogram(compressor, encoder, packer) is an implementation of
a compression algorithm.

In the rest of the text, any mention ofcompressionshould be understood asadaptive lossless
data compression. Also, since an algorithm and its implementation representthe same concept,
we will be using them interchangeably unless explicitly stated otherwise. The same thing applies
to the paircompressionanddecompression, since they are very closely tied.

These conventions are introduced to reduce repetition and make the text easier to read and
understand. It should be clear what the text is referring to from the surrounding context.

This thesis is written in a way that closely relates to practice, as opposed to the usual, highly
abstract terminology (hence the title). We believe that this will make the content more intuitive
to the reader.

1 In contrast tolossydata compression

3. RELATED WORK

In data compression literature, the notion of abasic compressoris pretty well defined. Thanks to
[RL81] we know that such a compressor can be separated into two components - themodeland
theentropy coder. There can be an optionalpreprocessingstage where input is transformed to a
form more suitable for data compression.

The process itself is a loop where input is fed to the model, the model outputs a symbol and a
probability, and the entropy coder encodes the symbol into asequence of bits based on the given
probability. The model then updates itself and proceeds with the next piece of input.

Fig. 3.1:The classic compressor model

For each of these three stages there exist various approaches and implementations. Since the
components are standalone, it is possible to interchange them, thus allowing a certain degreee of
flexibility when designing a compressor.

In the rest of the chapter we will briefly mention some populartechniques in each category.
A much more extensive approach can be found for example in [Ski06] or [Say02].

3.1 Preprocessing

Preprocessing means transforming and restructuring the input in a way that’s expected to improve
its compressibility. These algorithms are only applicableto specific types of data and therefore
need some sort of input recognition scheme.

Text-basedtransforms exploit well-known characteristics of writtenlanguages, like the fact
that text consists of sentences and sentences consist of delimited words. Techniques range from
simple substitution of words from a prepared dictionary, tosophisticated schemes like Star en-
coding and Word Replacing Transformation. The details of these approaches are explained well
in [SGD05] and [AT05].

Audiostream preprocessing works by decorrelating the audio channels present in the stream.
Then, linear prediction (or some other form) is applied to approximate the original signal and

3. Related work 14

compute the differences. The resulting sequence can then becompressed by conventional means.
Graphicsdata is two-dimensional, and thus uses special transformations to “linearize” it.

This is coupled by filters that perform spatial decorrelation of neighbouring pixels, which a
normal compression algorithm would be unable to do.

Specialized techniques also exist for manyother input types. These include XML-like
markup, executable code and video streams. Some compressors have even demonstrated pre-
processing that performs partial decompression of alreadycompressed graphics data to let more
powerful algorithms do the work better. But these are currently in experimental stage and require
that the decoder perfectly reconstructs the original data,which some of them fail to guarantee.

3.2 Entropy Coding

Entropy coding is the process of encoding symbols into sequences of bits so that the code lengths
correspond to the probabilities of occurence of these symbols and the most frequent symbols get
the shortest codes. This is used as a final stage of the data compression process, where the
symbols and probabilities are provided by the part that doesinput modelling.

The principle dates back to [Sha48] and this area is well-researched. Several schemes are
available: Huffman coding, Arithmetic coding and Range coding.

Huffmancoding is based on [Huf52]. The algorithm decides on which codes to use by orga-
nizing the individual symbols into a binary tree according to their probabilities, the most frequent
being at the root. The code for a particular symbol is then obtained by traversing the tree from
root to the symbol’s node and noting the path taken. The simplicity of this approach makes it
popular for teaching purposes and hardware implementation. Its drawback is that it only achieves
the best possible result if all probabilities are a equal to some negative power of two, because it
has to encode each input symbol individually and into an integral number of bits.

Arithmeticcoding, published in [Ris76], solves the problem by encoding input as one frac-
tional number. Since its entire output is one long codeword,the abovementioned effect does not
occur. Furthermore, it has been proven that for any given setof probabilities, the scheme used
by the encoder guarantees that the size of the produced output will be very close to their actual
entropy. The algorithm itself works by dividing the interval [A..B], initially [0..1] into subinter-
vals of length proportional to the symbol probabilities, choosing the interval corresponding to the
symbol being currently encoded, and mapping A and B to the endpoints of this interval. Then
this process continues for the next input symbol until the entire input is exhausted. The result is
a fractional number encoded in binary that uniquely represents that particular input.

Rangecoding ([Mar79]) uses the same concept as arithmetic coding, but instead of fractions,
it works with integral numbers big enough to represent the range. There are also some minor
differences in processing that increase the output size slightly, but in turn allow much faster
processing.

3. Related work 15

3.3 Modelling

Modelling input means trying to recognize the structure andredundancy in the data. The better
the algorithm understands the input, the better it can estimate what its following contents will be.
This estimate will in turn affects the performance of the followup entropy coding process.

In this category we recognize these four approaches: Dictionary compression (also called
Lempel-Ziv compression), Block-sorting compression (also called Burrows-Wheeler compres-
sion), Prediction by Partial Matching, and Context Mixing.

Dictionary-based compression operates by tracking a list (dictionary) of sequences that were
seen in the already seen input, and replacing newly found occurences of the same sequences
by a reference to the dictionary. After its publication in [ZL77] it became the first widely-used
scheme for compressing text and similar data. LZ compressors are the fastest-performing of all,
but at the expense of compressing power.

Block-sortingcompression is a solution that is heavily based on a preprocessing step called
the Burrows-Wheeler Transform [BW94]. This is an intriguing input permutation algorithm that
moves characters with similar context closely together, nomatter what their original position
was. If the input contained repetitive phrases, then the result will contain long runs of repetitive
characters. Specialized algorithms like Move-to-front coding and Run-length coding are then
used to remove this redundancy.

Prediction by Partial Matching(shorthand: PPM) bases its algorithm on the theorems of
Shannon [Sha48], which say that the entropy of a source can bebetter approached if we track
symbol occurences along with their context. This will give acloser estimation of the real prob-
abilities of symbol occurence in the input and the entropy coder can therefore produce a more
precise codeword.

Context mixingis a very recent method, first documented in [Mah02]. It started as an ex-
tension to PPM by using more than one model. Each one would have its own specifications on
how to match the input, and during processing of each bit, each model would give a prediction
of the next bit, and a confidence level of this prediction. A mixer would then compute a weighed
average and pass the result to an entropy coder. By using over20 models, each specialized for
certain patterns of data, it is able to perform significantlybetter than other compressors, but at
the expense of huge memory requirements and very slow processing speed.

3.4 Summary

In table 3.1 we list the four compression algorithms described earlier, along with their general
characteristics like compression speed and memory usage. In figures 3.2 and 3.3 we plot the
distribution of results of the Maximum Compression Benchmark ([Ber08]) for over 100 com-
pressors. The more a value is to the lower-right part the better. From here we can clearly see the
effects of the time-space tradeoff, where the best performing compressors require significantly
more time to perform both compression and decompression.

1 according to [Ski06]

3. Related work 16

Class Introduced in
Compr.

effectivity
Compr.
speed

Decompr.
speed

Memory
usage

LZ 1977 Average High Very high Low
BWT 1994 Good Average Average Average
PPM 1984 Very good Low Low High
CM 2002 Best Very low Very low Very high

Tab. 3.1:Overview of described compression algorithms1

Fig. 3.2:Compression time and ratio comparison

Fig. 3.3:Decompression time and ratio comparison

4. METRICS

This section is organized as follows. First we provide some background on compressor bench-
marking. Afterwards we describe which metrics and factors are present during the data compres-
sion process, define the notion of a scoring function and finally list some relevant instances of
this function.

If we have two or more compressors at hand, naturally we wouldwant to compare them. This
can be done by either theoretical analysis of their algorithms (and perhaps implementations), or
by empirical tests and measurements.

This section will focus on the latter approach. For the theoretical part, we suggest taking a
look at some already achieved results, like the the establishment of a relationship between LZ
and DMC (mentioned in [How93]). We also recommend [Cha97] which presents some very
good impossibility results related to data compression. These give us the motivation to focus on
a compressor’s runtime behavior instead.

The ultimate purpose of data compression research is to haveits results applied in practice.
This implies that to give measurements any significance, they need to be made on real-world
data. To make individual measurements comparable, some level of consistency needs to be
maintained. If the results are meant to be used only for demonstrative purposes, it is sufficient to
provide identical conditions to all executions that are to be measured. If they are to be published
so that others can reproduce the results and perform comparisons of their own, then it is crucial
that all of the data used in the tests be made available. This can become a problem if the data set
is prohibitively large, or for some reason may not be released to public.

To this end, an overall of several data sets were proposed, the content of each chosen carefully
as a representative of usual data of that time. The initial and most accepted set that appears in
data compression literature is of course the Calgary Corpus[BCW90].

Sadly, there is no universal testing platform, which only leaves authors the possibility of spec-
ifying the hardware configuration which they used for their experiments. Due to the multitude of
hardware available today, this means that the results wouldprobably be only approximate. For
this reason, the values published in data compression literature will most likely be only in bits
per character, which represent the compression factor achieved by the test.

4. Metrics 18

4.1 Measuring

Let us now identify the measurable variables that are present during a single execution of a
compression program.

• si size of the input data (bits)

• so size of the resulting output (bits)

• tc compression time (seconds)

• td decompression time (seconds)

• mem peak memory usage

There are also several external factors that are constant for a given system, but have influence
on the results.

• cpu processing power

• bw available bandwidth

Note. The compression and decompression time is in fact itself a function of processing power,
the program’s code and the input, but we will omit such low-level decomposition because they
cannot be measured.

4.2 Ranking

The metrics mentioned in the previous section arebasic- their values come directly from mea-
surements. But neither of these alone can really be used to objectively rank results. As an
example, comparing results of coders A and B usingso might show that they are equally good,
even though A is several times faster and requires less memory. Similarly, A and B could have
comparable compression times, but A’s asymmetric algorithm would make decompresion way
faster than B’s.

For this reason we introducederivedmetrics. These are functions of the basic metrics, and
some bring in various external factors. Their common point is that they all give scalar values,
meaning that the values can be totally ordered and ranked. What we are looking for is a good
metric to serve as a ranking function.

More formally, letv = (v1, ..., vk) be basic metrics of our choice. We want a function
score : v → R that would allow the comparison of vectors of measured values. All we require
is that obeys a basic sanity constraint

(∀i : ui mi vi) =⇒ score(u) m score(v)

wherem represents a “better than” comparison over the corresponding domain for each pair of
arguments. The reason this extra step is needed is because each metric can be using a different
ordering.

4. Metrics 19

Table 4.1 lists the metrics that are not affected by any external factor (explicit and implicit).
Table 4.2 containts the metrics that are based on time, and therefore on thecpu factor.
Table 4.3 adds several metrics that work withbw, to be used where communication is involved.

compressed output size so

compression ratio so

si

bits per character log |L| ∗ so

si

compression gain11 100 loge

si

so

Tab. 4.1:absolute metrics

compression time tc

compression rate si

tc

efficiency22 16

√

(si−so)16

tc

efficiency33 tc ∗ 2
so
So

−1

0.1 , So = min{sio}

Tab. 4.2:time-based metrics

total transmission time tc + tt + td, tt = so

bw

transmission acceleration tu

tc+tt+td
, tu = si

bw

average streaming rate min(si

tc
, bw, si

td
)

Tab. 4.3:communication-based metrics

1 by [How93]
2 by M. Ashland :http://www.monkeysaudio.com/comparison.html
3 by [Ber08]

5. THE MULTI-COMPRESSOR MODEL

Here we introduce the model for compressors with multiple cooperating algorithms. We describe
its components and their purpose. Then we show some interesting properties of this model, and
finally sketch an implementation that makes its decisions based metrics described in Chapter 4.

Definition 5.1. Themulti-compressoris a compressor capable of processing its input using more
than one compression technique.

As was mentioned in the earlier chapters, the classic compressor’s mode of operation is sim-
ple and requires no special decision-making process. But once we add multiple choices on how
to accomplish its task, the outcome of which is not yet known,we suddenly require a way to
choose a suitable strategy. And even after that, there is still the need to interpret the results and
combine them to produce the final output.

Our model handles these problems by clearly defining which components are responsible
for dealing with them and which approaches can be used to solve them. This structure lets us
separate the problems and focus on each one individually.

Note. This chapter only discusses the compressor’s model. Its decompressor counterpart has a
similar but much less complex architecture, due to the fact that decompression is straightforward
and no choices have to be made except for looking up the correct module(s) to decompress the
input.

5.1 Structure

Our model specifies three distinct components: theselector, the set ofmodules, and themixer.

Fig. 5.1:The multi-compressor model

5. The multi-compressor model 21

5.1.1 Selector

Theselectorfocuses on input handling. Its task is to analyze the input and understand its struc-
ture, then choose the most suitable subset from the set of modules. It will then activate them and
make the input available for processing.

A classic universal data compression algorithm makes no explicit assumptions on the struc-
ture of its input. We can see from [Ber08] that specialized techniques give results superior to
generic algorithms. This happens because understanding the structure means being able to make
more accurate predictions.

The downside is that such techniques can have very strict requirements on the input’s con-
tents, and will not be applicable if the requirements are notfulfilled. This is why a good selector
implementation needs to know what the type of the input is andwhich modules are able to handle
it. In the worst case, this would require scanning the input for patterns before doing any work,
because the input might come as a single cosecutive stream offoreign structure. Type recogni-
tion schemes do exist (see [MH03] or [HLR05]), but they have avery varying success rate which
makes them unsuitable as a primary mechanism.

Luckily for us, such problems do not occur often in practice.This is because the need to
communicate information between various systems gave riseto a data format standardization
process. As a consequence, frequently used data will most likely use a well known and standard-
ized format. For example, MIME1is a very well-known standard that registers and categorizes
these formats.

Compare this approach to the PAQ compression scheme, where the models are forced to
do input recognition themselves. This allows them to process data of arbitrary structure, but
significantly degrades processing speed. Also, compression rate might suffer if one or more
models make incorrect assumptions about the input.

Once the input has been recognized, a subset needs to be chosen from the list of candidate
modules. This process will vary depending on how the rest of the compressor is implemented.
An example strategy might be to select all of them and let themixerdeal with the rest. A com-
plementary approach would be to choose only a single module which is “best” for that particular
type of input, based on static ranking tables.

The overall sequence of activities that a selector performsis given in fig.5.2.

Fig. 5.2:Selector activity diagram

1 MIME media types are described inhttp://tools.ietf.org/html/rfc2046

5. The multi-compressor model 22

5.1.2 Modules

A modulein the loosest sense is an arbitrary data compressor, adjusted slightly to fit into the
multi-compressor model. Its purpose is straightforward - it has to accept input and produce
compressed output when activated by the selector.

Along with the compressed data itself, every module shall also send additional metadata.
These will not be part of the output, but will instead be used to assist in the mixer’s decision-
making process. Some possible values to send are

• module’s unique identifier

• original input size

• compression statistics

The set ofmodulesrepresents the multi-compressor’s “power”. The more modules there
are, the more options the compressor has to improve the compression rate. But the modules
themselves aren’t enough: the selector needs to be able to choose them appropriately.

5.1.3 Mixer

Themixeris the final stage of the multi-compressor model. Its task is to receive data and metadata
from active modules, to choose the results of one of them and to write them in some appropriate
form to the output.

The way to decide which input to accept depends solely on the implementation. Normally
this would be a simple comparison to rank the inputs according to some chosen metric, and then
choose the best one. A default choice would becompressed size, but we will in a latter section
demonstrate how other metrics can be used as well.

A basic multiplexing scheme that we use in this document for simplicity is to prefix the
chosen module’s output with its unique identifier. This is the minimum required to let the de-
compressor work properly. However, without knowing the size of the compressed stream, it
has to wait for the modules themselves to signal end of processing. Conversely, providing the
length adds more overhead to the output, but allows advancedtechniques like random acccess
and parallel decoding.

5.2 Properties

Lemma 5.1. The compressed output of a classic compressorA and a multi-compressor module
mA which usesA is identical, for every inputI.

Proof. By definition, a module is merely a wrapper for a classic data compressor. Thus their
outputs will always be the same.

Theorem 5.2.For each classic data compressorA there exists a multi-compressor which for the
same input produces identical output.

5. The multi-compressor model 23

Proof. All we need to do is define the selector to simply forward all ofits input, define a single
module that usesA, and define the mixer to output the data received from the module, unchanged.
From lemma 5.1 it follows that this system will behave just like the original compressor.

Note. This observation shows that the multi-compressor model is anatural generalization of the
classic model.

Theorem 5.3. Let A be a classic compressor andI its input. LetM be a multi-compressor that
containsA as a modulemA, whose mixer decides using the metricso

2and whose selector will
choose at leastmA when given the inputI. Then the size ofM ’s output will be no higher than
the size ofA’s output plus a constant.

Proof. If the selector chooses the modulemA, it means that the mixer will subsequently receive
the compressed output ofmA. From lemma 5.1 we get that this output, and therefore its size will
be identical toA’s. The constant factor is just the unique identifier required for the decompressor.
Combined with the fact that there might be a second module that performs better thanmA, we
get the desired inequality.

Note. This shows that multi-compressors will not perform worse3than classic compressors.

Corollary 5.4. Adding more modules does not significantly degrade the output size of a multi-
compressor (only bylog k, the space needed to store a module’s unique identifier).

Theorem 5.5. The operations done by the modules can be simply performed inparallel, thus
reducing the running time from

∑

k

i=1 tmi
to min{tmi

|i = 1..k}.

Proof. See fig.5.3. This is possible because each module works independently of others.

Fig. 5.3:Parallelism in the multi-compressor model

3 Compressed size, lower is better.
3 W.r.t. compressed size.

5. The multi-compressor model 24

5.3 Metric-driven mixer

In the previous text we used a metric that’s exclusively usedin data compression literature -
compressed size. This is understandable, since this metricis the only one that guarantees perfect
reproducibility and allows comparing measurements straight away.

What isn’t considered is that the most powerful compressorsconsume the most CPU time,
both during compression (fig.3.2) and decompression (fig.3.3). The author of PAQ himself states
in [Mah05] that

“Context mixing algorithms allow compressors to push the three way tradeoff be-
tween compression, speed, and memory to the extreme.”

This has severe consequences when such algorithms are deployed, because even though ranking
“best”, they are unsuitable for use in practical applications.

In the previous text we mentioned that a multi-compressor’smixer can base its decisions
on the measured values provided by models after they finish processing their input. There we
maintained the convention of using the compression time metric, but as was said here, this isnot
the best indicator anymore. In a hypothetical run of a multi-compressor, one powerful algorithm
would dominate all the weaker but much faster ones. This would defeat the whole point.

To this end, we chose a sub-category of multi-compressors whose selector is based on a
more suitableefficiencymetric. Some such metrics we already listed in Chapter 4. Their main
advantage of these compressors is that they introduce a new,very much needed level of flexibility
to the data compression process.

As an example, let us take two modulesm1 andm2 and two blocks of input,I1 and I2.
Assume thatm1 is more powerful thanm2 but takes significantly longer to compress and de-
compress data. Assume thatI1 contains very little redundancy compared toI2. Then neither
of these modules alone would be able to perform efficiently -m1 would waste time working
with I1’s poorly compressible data andm2 wouldn’t compressI2 thoroughly. If both were active
and the compressor used a good efficiency metric, the result would both be smaller in size and
decompress faster.

What this example demonstrates is a situation that can happen easily in practice, thanks to
the wide-spread use of compressed formats. Our solution shows that it is possible to avoid it and
ensure the best4decompression performance possible, at the cost of increased compression time.
And by theorem 5.5 this time cost can be converted into parallel work, which makes it suitable
for implementation on current multi-core systems.

4 W.r.t. a chosen metric and a set of modules.

6. CONCLUSION

In this thesis we introduced the concept of a compressor thatprocesses its input using multiple
data compression algorithms. We specified a model, gave a detailed overview of its components
and showed several interesting properties.

We also investigated the measurable aspects of compressor execution. We stressed the need
for a good scoring function and listed some candidates. Finally we proposed an instance of our
model that bases its choices on scoring functions.

To the best of our knowledge there is no previous publicationthat deals with this subject.
Therefore further exploration of this area of data compression might yield new findings.

From the practical side, the first thing needed is a referenceimplementation. It would help
clarify technical details of the model and let us run comparative benchmarks. Also it would be
interesting to see how the metric-based compressor described at the end of Chapter 5 performs
against conventional compressors.

BIBLIOGRAPHY

[AT05] J. Abel and B. Teahan. Universal text preprocessing for data compression.IEEE
Transactions on Computers, 54(5):497–507, May 2005.

[BCW90] Timothy C. Bell, John G. Cleary, and Ian H. Witten.Text compression. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[Ber08] W. Bergmans. Maximum compression, 2008.
http://www.maximumcompression.com/.

[Bro96] L. Broukhis. The calgary corpus compression challenge, 1996.
http://mailcom.com/challenge/.

[BW94] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, 1994.

[Cha97] G.J. Chaitin. Information, randomness & incompleteness - papers on algorithmic
information theory - second edition, 1997.

[CW84] J. Cleary and I. Witten. Data compression using adaptive coding and partial string
matching.IEEE Transactions on Communications, COM-32(4):396–402, April 1984.

[HLR05] Douglas J. Hickok, Daine Richard Lesniak, and Michael C. Rowe. File type detection
technology. In38th Midwest Instruction and Computing Symposium April 8 - 9, 2005.
University of Wisconsin-Eau Claire, Eau Claire, WI, 2005.

[How93] P. Howard. The design and analysis of efficient lossless data compression systems.
Technical Report CS-93-28, Brown University, June 1993.

[Huf52] D. Huffman. A method for the construction of minimum-redundancy codes.Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

[Mah02] M. Mahoney. The paq1 data compression program, 2002.

[Mah05] M. Mahoney. Adaptive weighing of context models forlossless data compression.
Technical Report CS-2005-16, Florida Institute of Technology, 2005.

[Mar79] G. Martin. Range encoding: an algorithm for removing redundancy from a digitised
message. conference, 1979.

Bibliography 27

[MH03] Mason McDaniel and M. Hossain Heydari. Content basedfile type detection algo-
rithms. InHICSS ’03: Proceedings of the 36th Annual Hawaii International Confer-
ence on System Sciences (HICSS’03) - Track 9, page 332.1, Washington, DC, USA,
2003. IEEE Computer Society.

[Ris76] J. Rissanen. Generalized kraft inequality and arithmetic coding.IBM J. Res. Devel.,
20:198–203, 1976.

[RL81] J. Rissanen and G. Langdon. Universal modeling and coding. IEEE Transactions on
Information Theory, 27(1):12–23, January 1981.

[Say02] K. Sayood, editor.Lossless Compression Handbook. Academic Press, 1st edition,
August 2002.

[SGD05] P. Skibínski, Sz. Grabowski, and S. Deorowicz. Revisiting dictionary-based compres-
sion. Software - Practice & Experience, 35(15):1455–1476, December 2005.

[Sha48] C. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379–
423, 623–656, 1948.

[Ski06] P. Skibínski. Reversible data transforms that improve effectiveness of universal loss-
less data compression. PhD thesis, University of Wrocław, October 2006.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

ABSTRAKT

Hlavným ciel’om tejto práce je preskúmat’ koncept bezstratovej dátovej kompresie ktorá využíva
viacero algoritmov alebo modelov súčasne. Tento prístup je jadrom súčasného špičkového kom-
presného softvéru, no dostupná literatúra sa oňom vôbec nezmiěnuje. Náš zámer je vyplnit’ tento
priestor. Priblížime spomenutý koncept, zavedieme pre neho vhodný model a detailne popíšeme
jeho štruktúru.
Taktiež pokryjeme úzko súvisiacu oblast’, metriky dátovejkompresie. Ukážeme ako aplikácia
na náš model upraví jeho proces rozhodovania.

Kl’účové slová: bezstratová dátová kompresia, integrácia algoritmov, paralelné spracovanie,
metriky

