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Abstract

In our work we present a formal specification of Agent Modeling Language (AML), which
was defined in PhD thesis wrote by R. Červenka. It provides precise and unambiguous
description of AML, which can help in better understanding of the language, opening the
door to its wider applicability and further improvements.

We also show how to formally specify an abstract multi-agent system (MAS) by means
of the concepts of AML. This part demonstrates and proves well-formedness of the used
concepts and provides a basis for further research in the area of MAS theories and formal
specification of agent-based systems.

Keywords: AML, Agent Modeling Language, MAS, Multi-Agent Systems, Object-Z,
OZ, formal specification.
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Preface

“Of course, there is no fool-proof methodology or magic formula that will
ensure a good, efficient, or even feasible design. For that, the designer needs
experience, insight, flair, judgement, invention. Formal methods can only stim-
ulate, guide, and discipline our human inspiration, clarify design alternatives,
assist in exploring their consequences, formalize and communicate design de-
cisions, and help to ensure that they are correctly carried out.”

C.A.R. Hoare, 1988

Formal methods are becoming more accepted in both academia and industry as one pos-
sible way in which to help improve the quality of both software and hardware systems. It
should be remembered however that they are not a panacea, but rather one more weapon
in the armory against making design mistakes. Thus we should not expect too much from
formal methods, but rather use them to advantage where appropriate. [19]

The work on which this thesis is based involved, mainly, the PhD thesis wrote by R. Čer-
venka [2]. Our thesis started by gathering some background informations about AML, Z
and Object-Z notation. Our first goal was to transform the AML specification presented
in UML diagrams to Object-Z specification. For this purpose an automatic transformation
engine would be an ideal solution. Unfortunately, due to organization problems our effort
has not been attended with success, and therefore, we were forced to make the transfor-
mation manually using a formal mapping. Secondly, in order to properly comprehend the
content of AML, it was necessary to understand its underlying concepts. A formal speci-
fication of a model of an abstract multi-agent system was provided to describe them. R.
Červenka in [2] writes: “The intention is not to provide a comprehensive metamodel for all
aspects and details of a MAS (e.g. detailed architectural design, system dynamics, opera-
tional semantics, etc.), but rather to explain the concepts that were used as the underlying
principles of AML, and influenced the design of comprised modeling constructs.”

We hope that our work can serve as a basis for more specific investigations in a multi-agent
theory.

Bratislava, May 2008 Ján Danč
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Chapter 1

Introduction

“The main approach advocated for making software more reliable is the use
of formal, or mathematical, methods of software specification, verification and
refinement.”

— Graeme Paul Smith
An Object-Oriented Approach to Formal Specification, 1992

The Agent Modeling Language (AML) [3] is a semi-formal visual modeling language for
specifying, modeling and documenting systems that incorporate concepts drawn from
multi-agent systems (MAS) theory. It is specified as an extension to UML 2.0, is a con-
sistent set of modeling constructs designed to capture the aspects of multi-agent systems.
The ultimate objective for AML is to provide a means for software engineers to incorpo-
rate aspects of multi-agent system engineering into their analysis and design processes.
Unified Modeling Language (UML) [11] has been developed as a standard language for
object-oriented designs. Through its graphical and intuitive diagrams, software analysis
and design process become easy. However, this graphical notation lacks precisely defined
semantics. It is difficult to determine whether the design is consistent, unambiguous and
complete.

This thesis presents a way of formalizing the AML metamodel. It uses a formal transfor-
mation mapping between UML models and Object-Z specifications. With this approach,
the semantics of AML are directly expressed in formal specification language Object-Z.

We restrict the scope of our work mainly on describing the principles from theory of agent-
based systems and MAS. It is assumed that the reader has the necessary background to
understand the presented work.

1.1 Motivation and Goals of Thesis

The most significant motivation driving the development of AML was the extant need for
a ready-to-use, comprehensive, versatile and highly expressive modeling language suitable
for the development of commercial software solutions based on multi-agent technologies.
To qualify this more precisely, AML was intended to be a language that: (1) is built on
proved technical foundations, (2) integrates best practices from agent-oriented software
engineering (AOSE) and object-oriented software engineering (OOSE) domains, (3) is
well specified and documented, (4) is internally consistent from the conceptual, semantic
and syntactic perspectives, (5) is versatile and easy to extend, (6) is independent of any
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1.2. Structure of Thesis 2

particular theory, software development process or implementation environment, and (7)
is supported by Computer-Aided Software Engineering (CASE) tools. [4]

Motivation behind this thesis is to provide a better insight into multi-agent theory. With
a formal specification of AML we will gain access to a deeper understanding of this agent
modeling language and also be able to formally describe a multi-agent system on concepts
originated in AML.

Formal specification is the first step in the formal development of a software system. It is
followed by a series of steps involving verification and refinement which lead to an eventual
implementation. The primary role of the formal specification is to provide a precise and
unambiguous description of the system as a basis for these subsequent steps. [18]

More about Object-Z and the formal specification can be found in chapters 4 Object-Z in
Shortcut (p. 4) and 5 Object-Z and the Formal Mapping (p. 9).

The goals of this thesis can be summarized as following:

1. Create a formal specification of Agent Modeling Language that provides a precise
and unambiguous description of AML and can lead to additional investigation in its
improvement.

2. Formally specify an abstract multi-agent system by means of the concepts of AML.
This outline can be used in further research in MAS theory.

1.2 Structure of Thesis

The remainder of the thesis is structured as follows:

Chapter 2 Introduction to AML (p. 3) presents an introduction to Agent Modeling Lan-
guage. Chapter 3 Object-Z in Shortcut (p. 4) forms a brief introduction into formal
specifications and Object-Z notation.

Part I: Solution summary (p. 6) – This part summarizes the process of getting to the
results, which are presented in Part II and Part III. Chapter 4 Transformation of the
AML Metamodel (p. 7) describes the process of transformation of the AML Metamodel.
Chapter 5 Object-Z and the Formal Mapping (p. 9) shows the transformation process by
means of formal mapping method, and presents an abstract UML class metamodel.

Part II: Formal Specification of AML (p. 19) – This part contains formal specification of
AML Metamodel using Object-Z specification language. Chapter 6 Overview of used UML
classes (p. 20) familiarize the reader with an enumeration of UML classes that were used
in the second part of this thesis. Chapter 7 Organization of the AML Specification (p.
21) captures the overall package structure of AML Metamodel. Chapters 8 Architecture
(p. 23), 9 Behaviors (p. 38), 10 Mental (p. 69), 11 Ontologies (p. 83), and 12 Model
Management (p. 85) contain Object-Z specification of all packages from the AML Kernel
(Architecture, Behaviors, Mental, Ontologies and Model Management), their sub-packages
and metaclasses. In Chapter 13 UML Extension for AML (p. 86) are presented the AML-
related extensions of UML.

Part III: Abstract Multi-Agent Framework (p. 88) - This part presents conceptual AML
metamodel originated in [1]. Chapter 14 Concepts of AML (p. 89) describes components
that form the framework.

Part IV: Summary of Achievements (p. 117) - This part provides a summary of the
achieved results in chapter 15 Conclusions and Future Works (p. 118).



Chapter 2

Introduction to AML

The Agent Modeling Language (AML) [2] is a semi-formal visual modeling language for
specifying, modeling and documenting systems that incorporate concepts drawn from MAS
theory. It was required to overcome the deficiencies of the current state-of-the-art and
practice in the area of MAS modeling languages, namely: insufficient documentation of
modeling languages, using proprietary and/or non-intuitive modeling constructs, limited
scope, mutual incompatibility, insufficient support by CASE tools, etc. AML is intended
to be a ready-to-use, complete and highly expressive modeling language suitable for the
industrial development of real-world software solutions based on multi-agent technologies.

The starting point of development of AML was to obtain necessary know-how from the area
of MAS and agent-oriented modeling in particular. Apart from study relevant theories,
specification and modeling approaches, abstract MAS models, technologies, and available
agent-based solutions, the main source of inspiration was drawn from existing agentori-
ented modeling languages. Based on analysis of the modeled MAS aspect, R. Cervenka
in [2] defined the basic MAS modeling concepts and created the MAS metamodel, which
forms a conceptual basis for the design of AML.

In combination with the UML 2.0 metamodel, the previously defined MAS concepts were
used to define the AML modeling constructs. The abstract syntax and semantics of AML
was specified in the AML metamodel. Based on the metamodel the language’s notation was
also defined and used to specify its concrete syntax. The AML metamodel and notation
represent the core of the language specification.

Besides this, the author of [2] also extended the basic set of UML diagram types with
additional ones, to provide agent-specific views of the system model. Another achievement
of AML is the definition of a set of operators extending the OCL Standard Library [13]
with operators from modal logic, deontic logic, temporal logic, dynamic logic, epistemic
logic, BDI logic, etc. These operators allow the specification of OCL constraints based
on different types of modal family logics that provide more natural, and commonly used,
means for specification of MASs.

AML represents a consistent framework for modeling applications that embody and/or
exhibit characteristics of multi-agent systems. It integrates best modeling practices and
concepts from existing agent oriented modeling and specification languages into a unique
framework built on the foundations of UML 2.0 and OCL 2.0. AML is also specified in
accordance with the OMG modeling frameworks MOF 2.0 and Model-Driven Architecture
(MDA). [1]

For more details we refer the reader to Radovan Cervenka and Ivan Trencansky [1].
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Chapter 3

Object-Z in Shortcut

G. Smith in [18] writes – “Formal specification is the first step in the formal development
of a software system. It is followed by a series of steps involving verification and refinement
which lead to an eventual implementation. The primary role of the formal specification
is to provide a precise and unambiguous description of the system as a basis for these
subsequent steps.”

The uses of a formal specification are basically as following. A formal specification allows
the system designer to verify important properties, resolve ambiguities and detect design
errors before system development begins. Without a formal specification, a system would
have to be extensively tested after implementation. This alternative is not only expensive,
since on failing the tests the system may need to be reimplemented, but also can never
guarantee reliable behavior.

To enable verification of system properties and refinement towards an implementation,
a language for formal specification must be mathematically based. Usually this basis is
expressed algebraically or in set theory and logic. A formal specification language must also
have a well-defined syntax and semantics. A wide range of formal specification languages
have been proposed. Most of these languages can be classified as either property-oriented
(e.g. Clear [22], OBJ [23]) or model-oriented (e.g. Z [20], VDM [24]). Property-oriented
languages describe a system implicitly by stating its properties whereas model oriented
languages construct an explicit model of the system. Some specification languages do not
belong to just one of the above classes. For example, the specification language LOTOS [25]
has two distinct parts: a process algebra based on CCS and an abstract data type language
based on the algebraic specification language ACT ONE [26].

The Object-Z specification language also combines two techniques. Being an extension to
Z, it is primarily a state-based language but it also has a temporal logic component used
to capture liveness properties.

G. Smith defines Object-Z in [18] as follow – “Object-Z is an extension of Z in which the
existing syntax and semantics of Z are retained and new constructs are introduced to facil-
itate specification in an object-oriented style. The major extension in Object-Z is the class
schema which captures the object-oriented notion of a class by encapsulating a single state
schema with all the operation schemas which may affect its variables. The class schema
is not simply a syntactic extension but also defines a type whose instances are objects.”
Briefly said – Object-Z (OZ) is an extension to the ISO-standardized mathematically-
based specification language Z [19, 20] that adds support for object-oriented constructs:
classes, attributes, operations, object relationships, and inheritance.”

4
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An Object-Z class schema, often referred to simply as a class, is represented syntactically
as a named box with zero or more generic parameters. In this box there may be local type
and constant definitions, at most one state and associated initial state schema and zero
or more operations. A class may also include the names of inherited classes and history
invariants for capturing liveness properties. The basic structure of a class is depicted in
Fig. 3.1.

ClassName[generic parameters]
inherited classes
type definitions
constant definitions
state schema
initial state schema
operations

history invariant

Figure 3.1: Basic structure of a class in Object-Z

For more details see [18, 21].
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Chapter 4

Transformation of the AML Metamodel

From the beginning of our work we have considered to use automatic conversion of the AML
metamodel to OZ schemes. The main benefit from this approach would be correctness,
reliability and effectiveness of transformation.

J.G. Süß et al. presents in [6] a practical application of MDA and reverse engineering
based on a domain-specific modeling language. A well defined metamodel of a domain-
specific language is useful for verification and validation of associated tools. Authors of [6]
applied this approach to SIFA1, a security analysis tool. SIFA has evolved as requirements
have changed and its metamodel was not defined. Hence, testing SIFA’s correctness was
difficult. A formal metamodeling approach to develop a well-defined metamodel of the
domain was introduced. Initially, J.G. Süß et al. developed a domain model in EMF by
reverse engineering the SIFA implementation. Then they transformed EMF to Object-Z
using model transformation. Finally, they completed the Object-Z model by specifying
system behavior. The outcome is a welldefined metamodel that precisely describes the
domain and the security properties that it analyses. It also provides a reliable basis for
testing the current SIFA implementation and forward engineering its successor.

The common notion of Model-Driven Architecture [12] is one of gradual refinement of
models from a platform-independent to a platform-specific model. The starting point of
the process is an abstract specification of the system; the destination is an executable
system. In [6] is described an experience which runs contrary to that received notion: an
existing application is gradually turned into a formal specification: A process of reverse-
MDA.

While the authors of [6] used a system specific reverse-MDA, it was sufficient to inspire
us to generalize this process for our purpose. Fig. 4.1 shows a generalized reverse-MDA.
Existing System is converted using reverse engineering into UML Model and using XMI
parsing into Object Model. Once the structure and behavior are known, we can follow
to construct formal Object-Z Model and its printable LATEX representation. In our case,
the system stands for the AML metamodel which needs to be transferred into a printable
version of its OZ representation. Therefore, we needed to find an acceptable way of doing
so.

1SIFA stands for Security Information Flow Analyser and is a part of an information security project
developed by Tim McComb and Luke Wildman.

7
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System UML Model Object Model

Printable OZ Model OZ Model

reverse engineering XMI parsing

transformation engine

converter

Figure 4.1: Generalized Reverse-MDA

J.G. Süß et al. in their paper needed to build an initial version of their metamodel
quickly. Their approach could be described as a toolchain involving Rational Rose and its
XML-DTD importer, Eclipse EMF [15] and its Rational Rose importer, the Tefkat QVT
transformation engine [16], a text-storage module, and the Community Z Tools (CZT)
suite [17]. They reverse-engineered the data structures of their system called SIFA into a
UML class diagram, using a DTD-to-UML converter, which generated a model based on
an XML DTD Profile and removed the profile to turn the DTD model into a general UML
model. This model was visualized in several diagrams and reworked and refined with the
aid of SIFA’s author to yield a first draft metamodel. This metamodel was imported into
the Eclipse Metamodeling Framework (EMF). They used then model transformation to
convert the EMF representation of SIFA into an instance of a metamodel of the Object-Z
language. Both Ecore and Object-Z are object-oriented modeling languages and share the
common concepts of object-orientation: classes, attributes, operations, object relationships
and inheritance. Thus, transformation between the languages was straightforward. The
transformation system that was used is DSTC’s Tefkat. Tefkat uses a declarative language
which is expressive and backed by a prolog-based solver. Hence its formalism is well-suited
to directly encode the formal correspondences between UML static structure models and
Object-Z static structure models, as laid out in [7]. The specification was completed by
enriching it with a behavioral description. There was also a need to visualize instances
of the model. Object-Z is a superset of the Z notation, which has a standard LATEX
concrete syntax. Authors of [6] therefore created a converter from the XMI representation
of an Object-Z instance to its LATEX representation. With a complete and formal domain
metamodel whose instances could be converted to LATEX they were able to tap into the
resources of the Object-Z community: the Community Z Tools project (CZT) [17]. Among
the CZT tools are editors, textual layout tools for HTML and print-media, a type-checker,
and connectors for external model-checking tools. They used CZT to type-check the
Object-Z and add more refined constraints and behaviors.

Even thou we were inspired by the aforementioned transformation approach described
by J.G. Süß et al., our approach was slightly different. The EMF representation of the
AML Metamodel was constructed in Eclipse [15]. Next step would be to use DSTC’s
Tefkat transformation engine to obtain Object-Z specification. Since the transformation
rules were available only partially, we made contact with Dr. Soon-Kyeong Kim from
the University of Queensland in Australia, who helped us with our transformation for a
while. But due to organization problems this part of work was not satisfactory finished.
There was no other alternative for us – using [5], [6], and [8] we were able to make the
transformation manually. As it has been stated above, the transformation between Ecore
and Object-Z modeling languages was straightforward, but not exhaustive. We required
quite a lot of time to make it complete. Chapter 5 Object-Z and the Formal Mapping (p.
9) explains this process in more detail.



Chapter 5

Object-Z and the Formal Mapping

This chapter introduces the formal mapping between UML models and Object-Z specifi-
cations and explains, how this mapping works.

5.1 Formal Mapping Between UML Models and Object-Z
Specifications

This approach has been presented by Soon-Kyeong Kim and David Carrington in [5]. The
goal of their work was to provide a formal basis for the syntactic structures and seman-
tics of UML modeling constructs and to provide a sound mechanism for reasoning about
UML models. To achieve this goal, they first gave a formal description for UML modeling
constructs using Object-Z classes. Second, they translated UML modeling constructs to
Object-Z constructs for a rigorous analysis of UML models. This was achieved by a defi-
nition of an abstract metamodel for UML and Object-Z. In the metamodel, the abstract
syntax and semantics of core modeling constructs are grouped together into Object-Z
classes. For better understanding the UML class diagrams were used to show the struc-
ture of both UML and Object-Z modeling constructs. Given the formal description for
UML constructs and Object-Z constructs, the UML constructs are translated to Object-Z
constructs. The translation process is described formally in terms of mapping functions.
The scope of [5] is restricted only to the UML class constructs and class diagrams.

Following schemes represents UML class metamodel and are not equivalent with UML
Infrastructure 2.0 defined in [10], but we have decided to add it. We believe that the
reader will gain this way a better insight in the Object-Z. All the conditions that refer
to [10, 11] (e.g. see section 8.1.2) in the second part of our work have been declared as if
the UML 2.0 metamodel in OZ did exist. To our knowledge this didn’t happen yet.

[Name]

Name is a given set from which the names of all classes, attributes, operations, operation
parameters, associations and roles are drawn.

9
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Type

name : Name
attributes : F Attribute c©
operations : F Operation c©

An Object-Z class Type is a meta type, from which all possible types in UML such as
object types, basic types (integer and string) and so on can be derived. Each type has
a name and contains a collection of its own features: attributes and operations. Thus, a
circled c, which models a containment relationship in Object-Z is attached to the types of
attributes and operations.

VisibilityKind ::= private | public | protected
Visibility in UML can be private, public, or protected.

Attribute

name : Name
type : ↓Type
visibility : VisibilityKind
multiplicity : P1 N

Parameter

name : Name
type : ↓Type

Attributes and parameters are also defined as follows. Variable multiplicity in Attribute
describes the possible number of data values for the attribute that may be held by an
instance.

Operation

name : Name
visibility : VisibilityKind
parameters : seqParameter c©
∀ p1, p2 : ran parameters • p1.name = p2.name ⇒ p1 = p2

Within an operation, parameter names should be unique.

Class
Type

∀ a1, a2 : attributes • a1.name = a2.name ⇒ a1 = a2
∀ op1, op2 : operations •

(op1.name = op2.name ∧ #op1.name = #op2.name ∧
∀ i : 1..#op1.parameters •

op1.parameters(i).name = op2.parameters(i).name ∧
op1.parameters(i).type = op2.parameters(i).type) ⇒ op1 = op2
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With these classes, we define an Object-Z class Class as follows. Since a class is a type, it
inherits from Type. Attribute names defined in a class should be different and operations
should have different signatures. The class invariant formalizes these properties.

Boolean ::= true | false
Boolean represents boolean data type.

AggregationKind ::= none | aggregate | composite

AssociationEnd

rolename : Name
multiplicity : P1 N

attachedClass : ↓Class
aggregation : AggregationKind
navigability : Boolean

multiplicity �= 0
aggregation = composite ⇒ multiplicity ∈ {{0, 1}, {1}}

The Object-Z class AssociationEnd is a formal description of association ends. It has
a role name, a multiplicity constraint, an attached class and attributes for describing
aggregation and navigability. The multiplicity constraint describes a range of nonnegative
integers denoting the allowable cardinality constraints for instances of the class attached to
the other end. The variable aggregation can take the values none, aggregate, or composite.
The variable navigability can be true or false. The constraints in the predicate state that
a multiplicity cannot be 0 and for composition, the multiplicity of the composite end can
be no more than one.

Association

name : Name
e1, e2 : AssociationEnd c©
e1.rolename �= e2.rolename
e1.aggregation ∈ {aggregate, composite} ⇒ e2.aggregation = none
e1.rolename �∈ {a : e2.attachedClass.attributes • a.name}
e2.rolename �∈ {a : e1.attachedClass.attributes • a.name}
∀ a1, a2 : Association | a1 �= a2 •

{a1.e1.attachedClass, a1.e2.attachedClass} =
{a2.e1.attachedClass, a2.e2.attachedClass} ⇒ a1.name �= a2.name

A binary association has a name and exactly two association ends. An Object-Z class
Association is a formal description of binary associations.

The constraints in the predicate state the core properties of association:

• Each role name must be different.
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• For aggregation and composition, there should be an aggregate or a composite end
and the other end is therefore a part and should have the aggregation value of none.
We assume that e1 is the composite or aggregate.

• For an association or an association class, the role name at an association end should
be different from the attribute names of the class attached to the other end.

• An association name should be unique in the combination of its attached classes.

AssocClass
Class
Association

e1.aggregation = none ∧ e2.aggregation = none
self �∈ {e1.attachedClass, e2.attachedClass}
{a : attributes • a.name} ∩ {e1.rolename, e2.rolename} = ∅

An association class inherits from a class and an association. We define an Object-Z class
AssocClass inheriting from Class and Association.

The constraints describe well-formedness rules for association classes:

• the aggregation value of both association ends is none,

• an association class cannot be defined between itself and something else, and

• the role names and the attribute names do not overlap.

Generalization

super : ↓Class
sub : ↓Class

{g : Generalization • (g .super , g .sub)}∗ ∩ id(↓Class) = ∅

In UML, a generalization describes a taxonomic relationship between objects, in which
objects of the superclass have general information and objects of the subclasses have more
specific information [10, 11]. This relationship is defined with an Object-Z class named
Generalization. In the class, two variables, super and sub are declared to represent the
superclass and the subclass involved in a generalization. The constraint prohibits any
circular inheritance.
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ClassDiagram

class : F ↓Class
assoc : F ↓Association
assocCls : F ↓AssocClass
gen : F ↓Generalization

∀ c1, c2 : class • c1.name = c2.name ⇒ c1 = c2
∪{a : assoc • {a.e1.attachedClass, a.e2.attachedClass}} ⊆ class
∪{g : gen • {g .super , g .sub}} ⊆ class
assocCls ⊆ class

A UML class diagram is a collection of classes including association classes, associations
and generalizations between these classes. Classes should have unique names within the
class diagram. The following Object-Z class is a formal description of UML class diagrams.

The constraints describe that:

• Classes that are involved in associations or association classes should be classes in
the diagram.

• Classes involved in generalizations should be classes in the diagram.

The reader looking for more details is referred to [5].

5.2 Usage of the Formal Mapping

In this section we show the formal mapping described earlier.

Following review was adopted from David Roe, [8].

The translation of the UML class diagrams (without OCL) into Object-Z structures is
presented here using examples based on the UML diagram given in Fig. 5.1.

Account
-balance: float
-overdraftLimit: natural
+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float
+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1
Account

-balance: float
-overdraftLimit: natural
+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float
+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1

Figure 5.1: An UML class diagram for persons and bank accounts

5.2.1 Mapping Classes

Consider the simple UML class diagram of Fig. 5.1. Ordinary UML classes like Account
and Person may be mapped into an Object-Z class construct of the same name, with class
features transcribed to the enclosed schemas defining state variables, constants and class
operations. Features marked public (+) are included within the class construct visibility
list, while those that are unadorned or marked private (−) are not.
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5.2.2 Mapping Attributes

UML attributes are mapped as variables of the same name, declared within the state
schema of the corresponding Object-Z class construct or within the separate constant
definition schema when marked with UML’s {frozen} property string. Attribute type
declarations are required for translation to Object-Z, which supports a range of well known
domains corresponding to most basic programming types.

User-defined classes may also be employed as types within UML models and Object-Z spec-
ifications; for example, a person’s sex might have been enumerated (male, female) within
the UML model corresponding to the definition of a named domain, Sex = {male, female}
in Object-Z.

Attributes with multiplicities greater than one may be mapped as finite sequences of the
base UML type, combined with a cardinality restriction. A person’s dateOfBirth attribute
therefore corresponds to the declaration of the state variable dateOfBirth : seq Z and
predicate #dateOfBirth = 3. Derived attributes, marked (/) in the UML, are distinguished
from primary variables within Object-Z schema through the Δ separator.

5.2.3 Mapping Operations

UML class operations may be translated as individual Object-Z operation schema with
the same name, with parameters and return values mapped as input and output communi-
cation variables adorned (?) and (!) respectively. Although parameter names are optional
within the UML, and return values are not named, both must be supplied for the pur-
poses of translation to Object-Z. As with attributes, UML operations marked public are
included within the class construct visibility list. Based on the discussion so far, Fig. 5.2
provides a translated class skeleton for class Account.

5.2.4 Mapping Associations

Associations may be represented through the instantiation of additional state attributes
in Object-Z, depending upon the navigability specified across the UML association line.
Fig. 5.1 depicts navigability from class Person to class Account, implying an additional
attribute within the Object-Z class Person. Its name is mapped from the target class
rolename (since none is specified in this example, account by default) and its type is the
power set of the target class. Bi-directional associations are mapped as if they were two
separate uni-directional associations. Association multiplicities are reflected in additional
state axioms constraining the size of such sets, in this case 0 ≤ account ≤ 3. Fig. 5.3 pro-
vides a mapping for class Person, reflecting the navigable association with class Account.
The class association management operations are described later.

5.2.5 Mapping Aggregation and Composition

Translation of aggregations therefore proceeds much as for ordinary associations, with the
compound class construct containing an additional state variable of type power set of the
part class. UML composition, by contrast, implies that instances of the part class may
belong to just one instance of the compound class. Mapping is straightforward in that
Object-Z provides a notational shorthand ( c©) denoting unshared containment. Compo-
sition between an account and the transactions made on that account, for example, may
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Account
�(withdraw , deposit , fundsAvailable)

balance : R

overdraftLimit : N

withdraw
amount? : R

deposit
amount? : R

fundsAvailable
fundsAvailable! : R

Figure 5.2: Object-Z class skeleton for class Account

be captured through the declaration of a state variable transactions : Transaction c© in
the state schema of class Account.

Person
�()

dateOfBirth : seq Z

#dateOfBirth = 3

name : seq char
account : P Account
ΔtotalBalance : R

0 ≤ #account ≤ 3

Figure 5.3: An UML class diagram for persons and bank accounts

5.2.6 Mapping Association Classes

Association classes permit class like features to be added to UML associations. Such
classes may be formalized in Object-Z as described above, but with the addition of two
state variables corresponding to the rolenames and types of the classes participating in
the association. Depending upon the navigability specified across the association line, the
participating class constructs will contain an additional attribute whose type is a power
set of the association class, and constrained in size by the multiplicity specified at the
opposite association end.
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5.2.7 Mapping Generalization

Mapping of UML generalization is straightforward in that Object-Z provides a simple
notation denoting inheritance, with child classes naming inherited classes just below their
visibility list. Specialized subclass features may then be mapped as described earlier.

Fact about inheritance in OZ [21, p. 13]: The visibility list (denoted by �) of a class is not
inherited, and must be respecified. Visible features may be removed from the interface,
invisible may be made visible. In our work can often be seen � (. . . , list of visible items).
Using “. . .” we state that also the visible items from the parent classes are inherited.

5.3 Additional Functions

In this section we present some additional functions that are used mainly in the second
part of this thesis.

To define constraints, authors of [1] used in their work the UML 2.0 OCL Specification [13].
In our work we use some similar functions, but first let us present the most important OCL
functions:

• oclIsKindOf (t : OclType) : Boolean – The oclIsKindOf property determines whether
t is either the direct type or one of the supertypes of an object.

• conformsTo(c : Classifier) : Boolean – The conformsTo operation is defined on Clas-
sifier. It evaluates to true, if the self Classifier conforms to the argument c.

• oclAsType(OclType) – This operation results in the same object, but the known type
is the argument OclType. When it is certain that the actual type of the object is the
subtype, the object can be re-typed using this operation.

• includesAll(c2 : Collection(T)) : Boolean – This operation answers following ques-
tion: “Does self contain all the elements of c2 ?”

We use similar functions in our OZ specification of AML:

• isKindOf : ↓OZType × ↓OZType → Boolean – Function determines whether the
value in first argument is either the direct type or one of the supertypes of the
second argument.

• conformsTo : ↓Classifier × ↓Classifier → Boolean – Function determines whether
the value in first argument conforms to value in second argument.

• asType : ↓OZType × ↓OZType → ↓OZType – This function re-types type given in
the first argument to type given in second argument and returns modified type. See
oclAsType operation.

• includesAll : ↓Collection × ↓Collection → Boolean – Function determines whether
the collection given in first attribute contains all elements from the second collection.
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For instance, roleAttribute = self.ownedAttribute → select(oclIsKindOf(RoleProperty))
can be expressed in OZ as follows:

∀ ra : roleAttribute •
∀ oa : self .ownedAttribute | isKindOf (oa,RoleProperty) = true •

ra = oa

The roleAttribute is equal to all ownedAttributes that are of the kind RoleProperty. In
OZ we express this fact similar. We say, that all roleAttribute objects are equal to all
ownedAttribute objects, which are of the kind RoleProperty. As we can see, the isKindOf
function is used in similar way as the oclIsKindOf function. The only difference is the
first argument.

The ↓OZType comes from the Object-Z metamodel defined by Soon-Kyeong Kim and
David Carrington in [5]. It is an abstract class from which all possible types in Object-
Z can be derived. Meaning of ↓ notation can be explained as follows – “In Object-Z, a
variable can be declared, explicitly, to be an object of any class in a particular inheritance
hierarchy. For example, if C is a class then the declaration c : ↓C declares the object c to
be of class C or any class derived from C by inheritance.” [18]

The Classifier and Collection types are defined in [10,11].

As was stated before, to present the complete OZ specification of AML, we would require
the UML metamodel in OZ, but this specification is provided only partially and mainly
is not defined as in [10, 11]. In this chapter (section 5.1, p. 9) we already presented such
metamodel. Also, to define the afore mentioned functions, we would need to refer to the
Object-Z metamodel. There exists a specification, which can be found in [5]. But to make
things work properly, we would need greatly to extend our work. Naturally, this would
lead us beyond the scope of this thesis.

5.4 Example of Mapping

Figure 5.4 shows a MentalProperty class (section 10.1.8, p. 73) in the AML Metamodel [1,
p. 268].

Using the formal mapping we can transform this UML class diagram into following OZ
schema (Fig. 5.5). The ∀ o : association • o.mentalMemberEnd = self condition in Men-
talProperty and the ∀ o : mentalMemberEnd • o.association ∈ self condition in MentalAs-
sociation (section 10.1.9, p. 74) ensure the consistency of the bi-directional relationship.

For a complete definition of MentalProperty class containing also mapped OCL constraints,
we refer the reader to section 10.1.8 on page 73.
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Associat ion
(from UML)

Property
(from UML)

MentalClass

MentalConstraint

MentalAssociation

0..12 0..1

+memberEnd

2

{ordered, redefines 
memberEnd}

MentalProperty

degree : ValueSpecificat ion [0..1]

0..1

*

+type0..1

{redefines type}

*

* 0..1

+mentalConstraint

*

{subsets ownedElement}

0..1

0..1

1

+association0..1
{redefines 
association}

+mentalMemberEnd

1

{subsets memberEnd}

MentalSemiEntityType

*

0..1

+/mentalAttribute *

{ordered, subsets 
ownedAttribute}

+classifier 0..1

{redefines classifier}

Figure 5.4: MentalProperty class in AML Metamodel

MentalProperty
�(. . . , degree, association, type,mentalConstraint)
Property

degree : seqValueSpecification
association : P MentalAssociation
type : P MentalClass
mentalConstraint : P MentalConstraint c©
#degree ≤ 1
#association ≤ 1
∀ o : association • o.mentalMemberEnd = self
#type ≤ 1

Figure 5.5: MentalProperty class schema without mapped OCL constraints
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Formal Specification of AML
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Chapter 6

Overview of used UML classes

The following classes of the UML 2.0 metamodel were used in our formal specification of
AML. Boldly are marked partially defined metaclasses that can be found in section 5.1
on page 9, but they mainly serve for demonstrative purposes and are, as we have notified
(section 5.1, p. 9), not equivalent with UML 2.0 metamodel [10]. The reader is at this
place referenced to [10,11] for more details. We also remind him that in this work all UML
metaclasses were used as if they would be specified and would corespond to [10,11].

AcceptEventAction, AddStructuralFeatureValueAction, Activity,
Actor, BehavioralFeature, Behavior,
Association, BehavioredClassifier, CallOperationAction,
Class, Constraint, CreateObjectAction,
Dependency, DestroyObjectAction, DirectedRelationship,
EventOccurence, ExecutionEnvironment, Expression,
InputPin, Interaction, InteractionFragment,
Lifeline, Message, MultiplicityElement,
NamedElement, Namespace, Operation,
OutputPin, Package, Parameter,
Port, Property, Realization,
RedefinableElement, RedefinableTemplateSignature, SendObjectAction,
State, TemplateParameter, Trigger,
Type, Usage, ValueSpecification.
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Chapter 7

Organization of the AML Specification

In order to improve the readability and comprehension of the specification, the AML
Metamodel is organized according to a hierarchy of packages which group either further
(sub)packages or metaclasses that logically fit together. All the AML metaclasses are
defined only within the packages on the lowest level of the package hierarchy, i.e. within
packages that do not contain further subpackages.

The second part of this thesis is organized as follow:

• Chapters 8 Architecture (p. 23), 9 Behaviors (p. 38), 10 Mental (p. 69), Chapters
11 Ontologies (p. 83), and 12 Model Management (p. 85) hold these conventions:

◦ Each chapter represents a package from AML Metamodel package (see Fig.
7.1).

◦ Each section stands for a package on the lowest level of package hierarchy.

• Chapter 13 UML Extension for AML (p. 86) fulfil similar precondition:

◦ Each chapter stands for a package on the lowest level of package hierarchy.

• Each section is described in following matter:

◦ A short informal definition of the metaclass.

◦ A brief explanation of the reasons why a given metaclass is defined within AML.

◦ A formal specification of presented AML metaclass depicted in a schema-like
form.

◦ A natural language explanation of presented Object-Z class schema.

The AML Metamodel is logically structured according to the various aspects of MAS
abstractions. All packages and their content are described in the following chapters. The
overall package structure of the AML metamodel is depicted in Fig. 7.1.

The structure of this chapter has been mainly inpired by [1], which serves as a rational
reference between our work and [1, Part III: AML Specification].
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<<metamodel>>
AML Metamodel

UML

AML Kernel

UML Extension
for AML

Behavior
Decomposition

Behaviors

Services

Communicative
InteractionsMobility Basic

Behaviors

Observations
and Effecting
Interactions

Mental
Relationships

Mental

Mental States

Beliefs

Goals

Plans

Entities

Environments

Social
Aspects

Architecture

Agents Resources

MAS
Deployment

<<metamodel>>

Basic
Ontologies

Model
ManagementOntologies

Contexts

Figure 7.1: Overall package structure of the AML metamodel



Chapter 8

Architecture

The Architecture package defines the metaclasses used to model architectural aspects of
multi-agent systems.

8.1 Entities

The Entities package defines a hierarchy of abstract metaclasses that represent different
kinds of AML entities. Entities are used to further categorize concrete AML metaclasses
and to define their characteristic features.

8.1.1 EntityType

EntityType is an abstract specialized Type (from UML). It is a superclass to all AML
modeling elements which represent types of entities of a multi-agent system. Entities are
understood to be objects, which can exist in the system independently of other objects,
e.g. agents, resources, environments. EntityTypes can be hosted by AgentExecution-
Environments (section 8.6.1, p. 34), and can be mobile (section 9.6.3, p. 66). For more
details see [1, p. 138].

EntityType is introduced to allow explicit modeling of entities in the system, and to define
the features common to all its subclasses.

EntityType
Type

EntityType = ∅

EntityType is an abstract Object-Z class, which inherits from Type. Abstractness is ex-
pressed in following condition in the state schema: EntityType = ∅. In Object-Z class
types are interpreted as disjoint sets of object identities, where such identities represent
possible unique instantiations. By default there are an infinite (although countable) num-
ber of possible instantiations of classes because these sets are unbounded, but above Entity-
Type is constrained to be empty(∅ is the empty set). This ensures that EntityType cannot
be instantiated.

23
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8.1.2 BehavioralEntityType

BehavioralEntityType is an abstract specialized EntityType used to represent types of enti-
ties which have the features of BehavioredSemiEntityType and SocializedSemiEntityType,
and can play entity roles (see sections 8.5.6 and 8.5.7). Instances of BehavioralEntityTypes
are referred to as behavioral entities. For more details see [1, p. 138].

BehavioralEntityType is introduced to define the features common to all its subclasses.

BehavioralEntityType
�(. . . , roleAttribute)
BehavioredSemiEntityType
SocializedSemiEntityType
EntityType

Δ
roleAttribute : P RoleProperty

BehavioralEntityType = ∅

[1] ∀ ra : roleAttribute •
∀ oa : self .ownedAttribute | isKindOf (oa,RoleProperty) = true •

ra = oa

BehavioralEntityType is an abstract Object-Z class that inherits from EntityType, Beha-
vioredSemiEntityType, and SocializedSemiEntityType. It comprises of roleAttribute, which
is derived attribute. In Object-Z all attributes below Δ are dervived attributes. Invariant
[1] formalizes the fact, that all roleAttribute instances are equal to all ownedAttributes
instances that are of RoleProperty kind.

8.1.3 AutonomousEntityType

AutonomousEntityType is an abstract specialized BehavioralEntityType and MentalSemi-
EntityType used to model types of self-contained entities that are capable of autonomous
behavior in their environment, i.e. entities that have control of their own behavior, and
act upon their environment according to the processing of (reasoning on) perceptions of
that environment, interactions and/or their mental attitudes. There are no other entities
that directly control the behavior of autonomous entities. AutonomousEntityType, being
a MentalSemiEntityType, can be characterized in terms if its mental attitudes, i.e. it can
own MentalProperties. Instances of AutonomousEntityTypes are referred to as autonomous
entities. For more details see [1, p. 139].

AutonomousEntityType is introduced to allow explicit modeling of autonomous entities
in the system, and to define the features common to all its subclasses.

AutonomousEntityType
BehavioralEntityType
MentalSemiEntityType

AutonomousEntityType = ∅
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Object-Z abstract class AutonomousEntityType inherits from BehavioralEntityType and
MentalSemiEntityType classes.

8.2 Agents

The Agents package defines the metaclasses used to model agents in multi-agent systems.

8.2.1 AgentType

AgentType is a specialized AutonomousEntityType used to model a type of agents, i.e. self-
contained entities that are capable of autonomous behavior within their environment. An
agent (instance of an AgentType) is a special object (which the object-oriented paradigm
defines as an entity having identity, status and behavior; not narrowed to an object-
oriented programming concept) having at least the following additional features:

• Autonomy, i.e. control over its own state and behavior, based on external (reactivity)
or internal (proactivity) stimuli, and

• Ability to interact, i.e. the capability to interact with its environment, including
perceptions and effecting actions, speech act based interactions, etc.

AgentType can use all types of relationships allowed for UML Class, for instance, associa-
tions, generalizations, or dependencies, with their standard semantics, as well as inherited
AML-specific relationships described in further sections. For more details see [1, p. 140].

AgentType is introduced to model types of agents in multi-agent systems.

AgentType
AutonomousEntityType

Object-Z class AgentType inherits from AutonomousEntityType.

8.3 Resources

The Resources package defines the metaclasses used to model resources in multi-agent
systems.

8.3.1 ResourceType

ResourceType is a specialized BehavioralEntityType used to model types of resources con-
tained within the system. A resource is a physical or an informational entity, with which
the main concern is its availability and usage (e.g. quantity, access rights, conditions of
consumption). For more details see [1, p. 142].

ResourceType is introduced to model types of resources in multiagent systems.

ResourceType
BehavioralEntityType
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Resource is an Object-Z class that inherits from BehavioralEntityType class.

8.4 Environments

The Environments package defines the metaclasses used to model system internal envi-
ronments (for definition see section 8.4.1) of multi-agent systems.

8.4.1 EnvironmentType

EnvironmentType is a specialized AutonomousEntityType used to model types of envi-
ronments, i.e. the logical and physical surroundings of entities which provide conditions
under which those entities exist and function. EnvironmentType thus can be used to de-
fine particular aspects of the world which entities inhabit, its structure and behavior. It
can contain the space and all the other objects in the entity surroundings, and also those
principles and processes (laws, rules, constraints, policies, services, roles, resources, etc.)
which together constitute the circumstances under which entities act. As environments are
usually complex entities, different EnvironmentTypes are usually used to model different
aspects of an environment. From the point of view of the (multi-agent) system modeled,
two categories of environments can be recognized:

• system internal environment, which is a part of the system modeled, and

• system external environment, which is outside the system modeled and forms the
boundaries onto that system.

The EnvironmentType is used to model system internal environments, whereas system ex-
ternal environments are modeled by Actors (from UML). An instance of the Environment-
Type is called environment. For more details see [1, p. 143].

EnvironmentType is introduced to model particular aspects of the system internal envi-
ronment.

EnvironmentType
AutonomousEntityType

EnvironmentType is a specialized AutonomousEntityType class.

8.5 Social Aspects

The Social Aspects package defines metaclasses used to model abstractions of social aspects
of multi-agent systems, including structural characteristics of socialized entities and certain
aspects of their social behavior.
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8.5.1 OrganizationUnitType

OrganizationUnitType is a specialized EnvironmentType used to model types of organiza-
tion units, i.e. types of social environments or their parts. An instance of the Organization-
UnitType is called organization unit. From an external perspective, organization units rep-
resent coherent autonomous entities which can have goals, perform behavior, interact with
their environment, offer services, play roles, etc. Properties and behavior of organization
units are both:

• emergent properties and behavior of all their constituents, their mutual relationships,
observations and interactions, and

• the features and behavior of organization units themselves.

From an internal perspective, organization units are types of environments that specify
the social arrangements of entities in terms of structures, interactions, roles, constraints,
norms, etc. For more details see [1, p. 147].

OrganizationUnitType is introduced to model types of organization units in multi-agent
systems.

OrganizationUnitType
EnvironmentType

Object-Z class OrganizationUnitType inherits from EnvironmentType class.

8.5.2 SocializedSemiEntityType

SocializedSemiEntityType is an abstract specialized Class (from UML), a superclass to
all metaclasses which can participate in SocialAssociatons and can own SocialProperties.
There are two direct subclasses of the SocializedSemiEntityType: BehavioralEntityType
and EntityRoleType. SocializedSemiEntityTypes represent modeling elements, which would
most likely participate in CommunicativeInteractions. Therefore they can specify meta-
attributes related to the CommunicativeInteractions, particularly: a set of agent communi-
cation languages (supportedAcl), a set of content languages (supportedCl), a set of message
content encodings (supportedEncoding), and a set of ontologies (supportedOntology) they
support. This set of meta-attributes can be extended by AML users if needed. Instances
of SocializedSemiEntityTypes are referred to as socialized semi-entities. For more details
see [1, p. 149].

SocializedSemiEntityType is introduced to define the features common to all its subclasses.
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SocializedSemiEntityType
�(. . . , supportedAcl , supportedCl , supportedEncoding ,
supportedOntology , socialAttribute)

Class

supportedAcl : seqValueSpecification
supportedCl : seqValueSpecification
supportedEncoding : seqValueSpecification
supportedOntology : seqValueSpecification
Δ
socialAttribute : P SocialProperty

SocializedSemiEntityType = ∅

[1] ∀ sa : socialAttribute •
∀ oa : self .ownedAttribute | isKindOf (oa,SocialProperty) = true •

sa = oa

SocializedSemiEntityType is an abstract Object-Z class, that inherits from Class. All
SocializedSemiEntityType’s attributes are visible (they all belong in the visibility list).
Invariant [1] formalizes the fact, that all socialAttribute instances are equal to all owne-
dAttributes instances that are of SocialProperty kind.

8.5.3 SocialProperty

SocialProperty is a specialized ServicedProperty used to specify social relationships that
can or must occur between instances of its type and:

• instances of its owning class (when the SocialProperty is an attribute of a Class), or

• instances of the associated class (when the SocialProperty is a member end of an
Association).

SocialProperty can be only of a SocializedSemiEntityType type. SocialProperties can be
owned only by:

• SocializedSemiEntityTypes as attributes, or

• SocialAssociations as member ends.

When a SocialProperty is owned by a SocializedSemiEntityType, it represents a social
attribute. In this case the SocialProperty can explicitly declare a social role of its type in
regard to the owning class. For more details see [1, p. 151].

SocialProperty is introduced to model social relationships between entities in multi-agent
systems.
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SocialProperty
�(. . . , socialRole, association, type)
ServicedProperty

socialRole : seqSocialRoleKind
association : P SocialAssociation
type : P SocializedSemiEntityType

#socialRole ≤ 1
#association ≤ 1
∀ o : association • self ∈ o.memberEnd
#type ≤ 1
[1] association �= ∅ ∧ socialRole = peer ⇒

∀me : association.memberEnd •
me.socialRole = peer

[2] association �= ∅ ∧ socialRole = superordinate ⇒
∀me : association.memberEnd | me �= self •

me.socialRole = subordinate
[3] association �= ∅ ∧ socialRole = subordinate ⇒

∃me : association.memberEnd •
me.socialRole = superordinate

SocialProperty class inherits from ServicedProperty. The size of socialRole and association
set is at most one. The attribute association in the SocialProperty class coresponds to an
attribute association in the SocialAssociation class, indicating a bi-directional relation-
ship between SocialProperty and SocialAssociation. The consistency of the bi-directional
relationship is ensured via the predicate ∀ o : association • self ∈ o.memberEnd in Social-
Property and the predicate ∀ o : memberEnd • o.association ∈ self in SocialAssociation.
Similar conditions can be found in some undermentioned Object-Z classes. Condition [1]
says that when association set not empty and when socialRole is peer, then the social-
Roles of all other member ends must be set to peer as well. Invariant [2] express similar
condition, but states also that the selected memberEnd is not equal to SocialProperty self.
Condition [3] says that if SocialProperty is a member end of a SocialAssociation and its
socialRole is set to subordinate, the socialRole of some another member end must be set
to superordinate.

8.5.4 SocialRoleKind

SocialRoleKind is an enumeration which specifies allowed values for the socialRole meta-
attribute of the SocialProperty. AML supports modeling of superordinate-subordinate
and peer-topeer relationships, but this set can be extended as required (e.g. to model
producer-consumer, competition, or cooperation relationships). For more details see [1, p.
154].

SocialRoleKind is introduced to define allowed values for the socialRole meta-attribute of
the SocialProperty.

SocialRoleKind ::= peer | superordinate | subordinate
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In Object-Z SocialRoleKind is defined as enumeration, which has peer, superordinate, and
subordinate values.

8.5.5 SocialAssociation

SocialAssociation is a specialized Association (from UML) used to model social relation-
ships that can occur between SocializedSemiEntityTypes. It redefines the type of the mem-
berEnd property of Association to SocialProperty. An instance of the SocialAssociation is
called social link.

SocialAssociation is introduced to model social relationships between entities in multi-
agent systems in the form of an Association.

SocialAssociation
�(. . . ,memberEnd)
Association

memberEnd : P SocialProperty

#memberEnd ≥ 2
∀ o : memberEnd • o.association ∈ self

SocialAssociation class inherits from Association class. The size of memberEnd set is
grater then two. SocialAssociation is in bi-directional relationship with SocialProperty.

8.5.6 EntityRoleType

EntityRoleType is a specialized BehavioredSemiEntityType, MentalSemiEntityType, and
SocializedSemiEntityType, used to represent a coherent set of features, behaviors, par-
ticipation in interactions, and services offered or required by BehavioralEntityTypes in
a particular context (e.g. interaction or social). Each EntityRoleType thus should be
defined within a specific larger behavior (collective behavior) which represents the con-
text in which the EntityRoleType is defined together with all the other behavioral entities
it interacts with. An advisable means to specify collective behaviors in AML is to use
EnvironmentType or Context. Each EntityRoleType should be realized by a specific im-
plementation possessed by a BehavioralEntityType which may play that EntityRoleType.
EntityRoleType can be used as an indirect reference to behavioral entities, and as such
can be utilized for the definition of reusable patterns. An instance of an EntityRoleType
is called entity role. It represents either an execution of a behavior, or usage of features,
or participation in interactions defined for the particular EntityRoleType by a behavioral
entity (see section 8.1.2 for details). The entity role exists only while a behavioral entity
plays it. For more details see [1, p. 156].

EntityRoleType is introduced to model roles in multi-agent systems.

EntityRoleType
SocializedSemiEntityType
BehavioredSemiEntityType
MentalSemiEntityType
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EntityRoleType is an Object-Z class, which inherits from SocializedSemiEntityType, Beha-
vioredSemiEntityType, and MentalSemiEntityType.

8.5.7 RoleProperty

RoleProperty is a specialized Property (from UML) used to specify that an instance of
its owner, a BehavioralEntityType, can play one or several entity roles of the specified
EntityRoleType. The owner of a RoleProperty is responsible for implementation of all
Capabilities, StructuralFeatures and metaproperties defined by SocializedSemiEntityType
which are defined by RoleProperty ’s type (an EntityRoleType). Instances of the played
EntityRoleType represent (can be substituted by) instances of the RoleProperty owner.
One behavioral entity can at each time play (instantiate) several entity roles. These entity
roles can be of the same as well as of different types. The multiplicity defined for a
RoleProperty constrains the number of entity roles of a given type that the particular
behavioral entity can play concurrently. For more details see [1, p. 158].

RoleProperty is introduced to model the possibility of playing entity roles by behavioral
entities.

RoleProperty
�(. . . , association)
Property

association : P PlayAssociation

#association ≤ 1
[1] self .aggregation = composite

RoleProperty class inherits from Property class. The association set is grater than one.
Invariant [1] formalizes the fact that aggregation attribute of the RoleProperty class is
composite.

8.5.8 PlayAssociation

PlayAssociation is a specialized Association (from UML) used to specify RoleProperty in
the form of an association end. It specifies that entity roles of a roleMemberEnd ’s type
(which is an EntityRoleType) can be played, i.e. instantiated by entities of the other end
type (which are BehavioralEntityTypes). Each entity role can be played by at most one
behavioral entity. Therefore:

• The multiplicity of the PlayAssociation at the BehavioralEntityType side is always
0..1, and thus is not shown in diagrams.

• If there are more than one PlayAssociations attached to an EntityRoleType then an
implicit constraint applies, stating that no more than one PlayAssociation link can
exist at any given moment. These constraints are implicit and thus not shown in
diagrams.
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Multiplicity on the entity role side of the PlayAssociation constrains the number of entity
roles the particular BehavioralEntityType can instantiate concurrently. An instance of the
PlayAssociation is called play link. For more details see [1, p. 160].

PlayAssociation is introduced to model the possibility of playing entity roles by behavioral
entities.

PlayAssociation
�(. . . , roleMemberEnd ,memberEnd)
Association

roleMemberEnd : P RoleProperty
memberEnd : P Property

#roleMemberEnd = 1
∀ o : roleMemberEnd • o.association ∈ self
#memberEnd = 2

PlayAssociation class inherits from Association class. The size of roleMemberEnd set is
equal one. PlayAssociation is in bi-directional relationship with Property.

8.5.9 CreateRoleAction

CreateRoleAction is a specialized CreateObjectAction (from UML) and AddStructuralFea-
tureValueAction (from UML), used to model the action of creating and starting to play
an entity role by a behavioral entity. Technically this is realized by instantiation of an
EntityRoleType into an entity role of that type, and adding this instance as a value to the
RoleProperty of its player (a behavioral entity) which starts to play it. The CreateRole-
Action specifies:

• what EntityRoleType is being instantiated (roleType meta-association),

• the entity role being created (role meta-association),

• the player of created entity role (player meta-association), and

• the RoleProperty owned by the type of player, where the created entity role is being
placed (roleProperty meta-association).

For more details see [1, p. 162].

CreateRoleAction is introduced to model an action of creating and playing entity roles by
behavioral entities.
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CreateRoleAction
�(. . . , role, roleType, player , roleProperty)
CreateObjectAction
AddStructuralFeatureValueAction

role : OutputPin c©
roleType : EntityRoleType
player : InputPin c©
roleProperty : RoleProperty

[1] ∀ t : player .type | t �= ∅ •
isKindOf (t ,BehavioralEntityType) = true

[2] ∀ t : role.type | t �= ∅ •
conformsTo(t , roleType) = true

[3] ∀ t : roleProperty .type | t �= ∅ •
∀ rt : roleType •

conformsTo(rt , t) = true

CreateRoleAction class inherits from CreateObjectAction and AddStructuralFeatureValue-
Action classes. The declaration of role (player) signifies that the role (player) attribute
is a set of OutputPin (InputPin) instances, where that set is contained. The c© symbol
stands for object containment in Object-Z. Following invariants must be satisfied:

[1] If the player.type of the InputPin is specified, it must be a BehavioralEntityType.

[2] If the role.type of the OutputPin is specified, it must conform to the EntityRoleType
referred to by the roleType.

[3] If the roleProperty.type of the RoleProperty is specified, then the EntityRoleType
referred to by the roleType must conform to it.

8.5.10 DisposeRoleAction

DisposeRoleAction is a specialized DestroyObjectAction (from UML) used to model the
action of stopping to play an entity role by a behavioral entity. Technically it is realized by
destruction of the corresponding entity role(s). As a consequence, all behavioral entities
that were playing the destroyed entity roles stop to play them. For more details see [1, p.
165].

DisposeRoleAction is introduced to model the action of disposing of entity roles by behav-
ioral entities.
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DisposeRoleAction
�(. . . , role)
DestroyObjectAction

role : P InputPin c©
#role ≥ 1
[1] ∀ r : role | r .type �= ∅ •

isKindOf (r .type,EntityRoleType) = true

DisposeRoleAction class inherits from DestroyObjectAction class. Invariant [1] express the
fact, that if the types of the InputPins referred to by the role are specified, they must be
EntityRoleTypes.

8.6 MAS Deployment

The MAS Deployment package defines the metaclasses used to model deployment of a
multi-agent system to a physical environment.

8.6.1 AgentExecutionEnvironment

AgentExecutionEnvironment is a specialized ExecutionEnvironment (from UML) and Beha-
vioredSemiEntityType, used to model types of execution environments of multi-agent sys-
tems. AgentExecutionEnvironment thus provides the physical infrastructure in which MAS
entities can run. One entity can run at most in one AgentExecutionEnvironment instance
at one time. If useful, it may be further subclassed into more specific agent execution en-
vironments, for example, agent platform, or agent container. AgentExecutionEnvironment
can provide (use) a set of services that deployed entities use (provide) at run time. Agent-
ExecutionEnvironment, being a BehavioredSemiEntityType, can explicitly specify such
services by means of ServiceProvisions and ServiceUsages respectively. Owned Hosting-
Properties specify kinds of entities hosted by (running at) the AgentExecutionEnvironment.
Internal structure of the AgentExecutionEnvironment can also contain other features and
behaviors that characterize it. For more details see [1, p. 166].

AgentExecutionEnvironment is introduced to model execution environments of multi-agent
systems, i.e. the environments in which the entities exist and operate.
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AgentExecutionEnvironment
�(. . . , hostingAttribute)
ExecutionEnvironment
BehavioredSemiEntityType

Δ
hostingAttribute : P HostingProperty

[1] The internal structure of an AgentExecutionEnvironment can also
consist of other attributes than parts of the type Node.

[2] ∀ ha : hostingAttribute •
∀ oa : self .ownedAttribute | isKindOf (oa,HostingProperty) = true •

ha = oa

AgentExecutionEnvironment is an Object-Z class that inherits from ExecutionEnviron-
ment and BehavioredSemiEntityType classes. Invariant [1] is expressed only in natural
language due to absented UML metamodel. Invariant [2] express following fact – the
hostingAttribute refers to all ownedAttributes of the kind HostingProperty.

8.6.2 HostingProperty

HostingProperty is a specialized ServicedProperty used to specify what EntityTypes can
be hosted by what AgentExecutionEnvironments. Type of a HostingProperty can be only
an EntityType. HostingProperties can be owned only by:

• AgentExecutionEnvironments as attributes, or

• HostingAssociations as member ends.

The owned meta-attribute hostingKind specifies the relation of the referred EntityType to
the owning AgentExecutionEnvironment (for details see section 8.6.1). For more details
see [1, p. 169].

HostingProperty is introduced to model the hosting of EntityTypes by AgentExecution-
Environments.
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HostingProperty
�(. . . , hostingKind , association, type, clone, cloneFrom,move,moveFrom)
ServicedProperty

hostingKind : seqHostingKind
association : P HostingAssociation
type : P EntityType
Δ
clone : P Clone
cloneFrom : P Clone
move : P Move
moveFrom : P Move

#association ≤ 1
#type ≤ 1
∀ o : association • self = o.hostingMemberEnd
∀ o : clone • self = o.from
∀ o : cloneFrom • o.to ∈ self
∀ o : move • self = o.from
∀ o : moveFrom • self = o.to
[1] ∀m : move •

∀ cd : self .clientDependency | isKindOf (cd ,Move) = true •
m = cd

[2] ∀mf : moveFrom •
∀ sd : self .supplierDependency | isKindOf (sd ,Move) = true •

mf = sd
[3] ∀ c : clone •

∀ cd : self .clientDependency | isKindOf (cd ,Clone) = true •
c = cd

[4] ∀ cf : cloneFrom •
∀ sd : self .supplierDependency | isKindOf (sd ,Clone) = true •

cf = sd

HostingProperty class inherits from ServicedProperty class. Following invariants must be
satisfied:

[1] Every move instance refers to all clientDependencies of the kind Move.

[2] Every moveFrom instance refers to all supplierDependencies of the kind Move.

[3] Every clone instance refers to all clientDependencies of the kind Clone.

[4] Every cloneFrom instance refers to all supplierDependencies of the kind Clone.

8.6.3 HostingKind

HostingKind is an enumeration which specifies possible hosting relationships of Entity-
Types to AgentExecutionEnvironments. These are:

• resident – the EntityType is perpetually hosted by the AgentExecutionEnvironment.
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• visitor – the EntityType can be temporarily hosted by the AgentExecutionEnvironment,
i.e. it can be temporarily moved or cloned to the corresponding AgentExecution-
Environment.

If needed, the set of available hosting kinds can be extended. For more details see [1, p.
172].

HostingKind is introduced to define possible values of the hostingKind meta-attribute of
the HostingProperty metaclass.

HostingKind ::= resident | visitor

HostingKind is an enumeration, which has resident and visitor values.

8.6.4 HostingAssociation

HostingAssociation is a specialized Association (from UML) used to specify Hosting-
Property in the form of an association end. It specifies that entities classified according
to a hostingMemberEnd ’s type (which is an EntityType) can be hosted by instances of
an AgentExecutionEnvironment representing the other end type. HostingAssociation is a
binary association. An instance of the HostingAssociation is called hosting link. For more
details see [1, p. 172].

HostingAssociation is introduced to model the hosting of EntityTypes by AgentExecution-
Environments in the form of an Association.

HostingAssociation
�(. . . ,memberEnd , hostingMemberEnd)
Association

memberEnd : P Property
hostingMemberEnd : P HostingProperty

#memberEnd = 2
#hostingMemberEnd = 1
∀ o : hostingMemberEnd • o.association ∈ self

HostingAssociation class inherits from Association class. HostingAssociation is in bi-
directional relationship with HostingProperty.
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Behaviors

The Behaviors package defines the metaclasses used to model behavioral aspects of multi-
agent systems.

9.1 Basic Behaviors

The Basic Behaviors package defines the core, frequently referred metaclasses used to
model behavior in AML.

9.1.1 BehavioredSemiEntityType

BehavioredSemiEntityType is an abstract specialized Class (from UML) and Serviced-
Element, that serves as a common superclass to all metaclasses which can:

• own Capabilities,

• observe and/or effect their environment by means of Perceptors and Effectors, and

• provide and/or use services by means of ServicedPorts.

Furthermore, behavior of BehavioredSemiEntityTypes (and related features) can be explic-
itly (and potentially recursively) decomposed into BehavioralFragments. In addition to
the services provided and used directly by the BehavioredSemiEntityType (see the service-
Usage and the serviceProvision metaassociations inherited from the ServicedElement), it
is also responsible for implementation of the services specified by all ServiceProvisions and
ServiceUsages owned by the ServicedProperties and ServicedPorts having the Behaviored-
SemiEntityType as their type. Instances of BehavioredSemiEntityTypes are referred to as
behaviored semi-entities. For more details see [1, p. 176].

BehavioredSemiEntityType is introduced as a common superclass to all metaclasses which
can have capabilities, can observe and/or effect their environment, and can provide and/or
use services.

38
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BehavioredSemiEntityType
�(. . . , behaviorFragment , ownedServicedPort , ownedPerceptor ,
ownedEffector , capability)

ServicedElement
Class

Δ
behaviorFragment : P BehaviorFragment
ownedServicedPort : P ServicedPort c©
ownedPerceptor : P Perceptor c©
ownedEffector : P Effector c©
capability : P Capability c©
BehavioredSemiEntityType = ∅

[1] ∀ c : capability •
∀ ob : self .ownedBehavior •

∀ f : self .feature | isKindOf (f ,BehavioralFeature) = true •
c = ob ∨ c = f

[2] ∀ bf : behaviorFragment •
∀ oa : self .ownedAttribute | oa.aggregation ∈ {shared , composite}
∧ oa.type �= ∅ ∧ isKindOf (oa,BehaviorFragment) = true •

bf = oa.type

[3] ∀ osp : ownedServicedPort •
∀ op : self .ownedPort | isKindOf (op,ServicedPort) = true •

osp = op

[4] ∀ op : ownedPerceptor •
∀ osp : self .ownedServicedPort | isKindOf (osp,Perceptor) = true •

op = osp

[5] ∀ oe : ownedEffector •
∀ osp : self .ownedServicedPort | isKindOf (osp,Effector) = true •

oe = osp

BehavioredSemiEntityType is an abstract Object-Z class that inherits from ServicedElement
and Class classes. Following invariants are defined:

[1] The capability set is union of owned BehavioralFeatures and Behaviors.

[2] The behaviorFragment set comprises types of all owned aggregate or composite at-
tributes having the type of a BehaviorFragment.

[3] The ownedServicedPort set refers to all owned ports of the kind ServicedPort.

[4] The ownedPerceptor set refers to all ownedServicePorts of the kind Perceptor.

[5] The ownedEffector set refers to all ownedServicePorts of the kind Effector.
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9.1.2 Capability

Capability is an abstract specialized RedefinableElement (from UML) and Namespace
(from UML), used to model an abstraction of a behavior in terms of its inputs, out-
puts, pre-conditions, and post-conditions. Such a common abstraction allows use of the
common features of all the concrete subclasses of the Capability metaclass uniformly,
and thus reason about and operate on them in a uniform way. To maintain consistency
with UML, which considers pre-conditions as aggregates (see Operation and Behavior in
UML 2.0 Superstructure [11]), all pre-conditions specified for one Capability are under-
stood to be logically AND-ed to form a single logical expression representing an overall
pre-condition for that Capability. This is analogously the case for post-conditions. Ca-
pability, being a RedefinableElement, allows the redefinition of specifications (see UML
Constraint::specification) of its pre- and postconditions, e.g. when inherited from a more
abstract Capability. Specification of redefined conditions are logically combined with the
specification of redefining conditions (of the same kind), following the rules:

• overall pre-conditions are logically OR-ed, and

• overall post-conditions are logically AND-ed.

Input and output parameters must be the same for redefining Capability as defined in
the context of redefined Capability. The set of meta-attributes defined by the Capability
can be further extended in order to accommodate specific requirements of users and/or
implementation environments. Capabilities can be owned by BehavioredSemiEntityTypes.
Capability is part of the non-conservative extension of UML, while it is a common super-
class to two UML metaclasses: BehavioralFeature and Behavior. For more details see [1, p.
178].

Capability is introduced to define common meta-attributes for all “behavior-specifying”
modeling elements in order to refer them uniformly, e.g. while reasoning.
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Capability
�(. . . , output , precondition, postcondition, input)
RedefinableElement
Namespace

Δ
output : P Parameter c©
precondition : P Constraint c©
postcondition : P Constraint c©
input : P Parameter c©
Capability = ∅

[1] ∀ i : input •
if isKindOf (self ,BehavioralFeature) = true then

∀ p : asType(self ,BehavioralFeature).parameter •
p.direction ∈ {in, inout}

else ∀ p : asType(self ,Behavior).parameter •
p.direction ∈ {in, out}

• i = p

[2] ∀ o : output •
if isKindOf (self ,BehavioralFeature) = true then

∀ p : asType(self ,BehavioralFeature).parameter •
p.direction ∈ {out , inout}

else ∀ p : asType(self ,Behavior).parameter •
p.direction ∈ {in, inout}

• o = p

[3] ∀ p : precondition •
if isKindOf (self ,Behavior) = true then

∀ pre : asType(self ,Behavior).precondition
else

if isKindOf (self ,Operation) = true then
∀ pre : asType(self ,Operation).precondition

else pre = ∅ (self is the kind Reception)
• p = pre

[4] ∀ p : postcondition •
if isKindOf (self ,Behavior) = true then

∀ pc : asType(self ,Behavior).postcondition
else

if isKindOf (self ,Operation) = true then
∀ pc : asType(self ,Operation).postcondition

else pc = ∅ (self is the kind Reception)
• p = pc

Capability is an abstract Object-Z class that inherits from RedefinableElement and Names-
pace classes. Following invariants are defined:
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[1] The input set refers to all parameters having the direction set either to in or inout.

[2] The output set refers to all parameters having the direction set either to out or inout.

[3] The precondition set is identical either to the precondition set from Operation or the
precondition set from Behavior.

[4] The postcondition set is identical either to the postcondition set from Operation or
the postcondition set from Behavior.

9.2 Behavior Decomposition

The Behavior Decomposition package defines the BehaviorFragment which allows the de-
composition of complex behaviors of BehavioredSemiEntityTypes and the means to build
reusable libraries of behaviors and related features.

9.2.1 BehaviorFragment

BehaviorFragment is a specialized BehavioredSemiEntityType used to model coherent and
reusable fragments of behavior and related structural and behavioral features, and to
decompose complex behaviors into simpler and (possibly) concurrently executable frag-
ments. BehaviorFragments can be shared by several BehavioredSemiEntityTypes and a
behavior of a BehavioredSemiEntityType can, possibly recursively, be decomposed into
several BehaviorFragments. The decomposition of a behavior of a BehavioredSemiEntity-
Type to its sub-behaviors is modeled by owned aggregate attributes (having the aggrega-
tion meta-attribute set either to shared or composite) of the BehaviorFragment type. At
run time, the behaviored semi-entity delegates execution of its behavior to the containing
BehaviorFragment instances. For more details see [1, p. 181].

BehaviorFragment is introduced to: (a) decompose complex behaviors of BehavioredSemi-
Entities, and (b) build reusable libraries of behaviors and related features.

BehaviorFragment
BehavioredSemiEntityType

BehaviorFragment class inherits from BehavioredSemiEntityType class.

9.3 Communicative Interactions

The Communicative Interactions package contains metaclasses that provide generic as
well as agent specific extensions to UML Interactions. The generic extension allows the
modeling of:

• interactions between groups of objects,

• dynamic change of an object’s attributes induced by interactions, and

• messages not explicitly associated with an invocation of corresponding operations
and signals.
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The agent specific extension allows the modeling of speech act based interactions between
MAS entities and interaction protocols. The focus of this section is mainly on Sequence
Diagrams, however, notational variants for the Communication Diagrams are also men-
tioned.

9.3.1 MultiLifeline

MultiLifeline is a specialized Lifeline (from UML) and MultiplicityElement (from UML)
used to represent a multivalued ConnectableElement (i.e. ConnectableElement with mul-
tiplicity > 1) participating in an Interaction (from UML). The multiplicity meta-attribute
of the MultiLifeline determines the number of instances it represents. If the multiplicity
is equal to 1, MultiLifeline is semantically identical with Lifeline (from UML). The se-
lector of a MultiLifeline may (in contrary to Lifeline) specify more than one participant
represented by the MultiLifeline. For more details see [1, p. 187].

MultiLifeline is introduced to represent a multivalued ConnectableElement participating
in an Interaction.

MultiLifeline
Lifeline
MultiplicityElement

MultiLifeline class inherits from Lifeline and MultiplicityElement classes.

9.3.2 MultiMessage

MultiMessage is a specialized Message (from UML) which is used to model a particular
communication between MultiLifelines of an Interaction. If the sender of a MultiMessage
is a MultiLifeline, the MultiMessage represents a set of messages of a specified kind sent
from all instances (potentially constrained by the sendDiscriminator) represented by that
MultiLifeline. If the receiver of a MultiMessage is a MultiLifeline, the MultiMessage rep-
resents a set of messages of a specified kind multicasted to all instances (potentially con-
strained by the receiveDiscriminator) represented by that MultiLifeline. If a message
end of a MultiMessage references a simple Lifeline (from UML), it represents a single
sender or receiver. When a sender and/or receiver of a MultiMessage are represented by
MultiLifelines, the owned constraints sendDiscriminator and receiveDiscriminator can be
used to specify what particular representatives of the group of ConnectableElements rep-
resented by the particular MultiLifeline are involved in the communication modeled by
that MultiMessage. Within an alternative CombinedFragment (from UML), it is useful to
differentiate between:

• all of the ConnectableElements represented by the MultiLifeline, and

• each of the ConnectableElements represented by the MultiLifeline.

The keyword ‘single’ used as the corresponding discriminator indicating the latter of the
above cases. The receiver of a MultiMessage can be a group of instances containing also
the senders themselves. In this case the MultiMessage can specify (by the toItself meta-
attribute) whether the message is sent also to the senders themselves or not. For more
details see [1, p. 189].
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MultiMessage is introduced to model messages with multiple senders and/or recipients.

MultiMessage
�(. . . , toItself , receiveDiscriminator , sendDiscriminator)
Message

toItself : Boolean
receiveDiscriminator : P Constraint c©
sendDiscriminator : P Constraint c©
#receiveDiscriminator ≤ 1
#sendDiscriminator ≤ 1
[1] isKindOf (self .sendEvent .covered ,MultiLifeline) = true

∨ isKindOf (self .receiveEvent .covered ,MultiLifeline) = true
[2] sendDescriminator �= ∅ ⇒

isKindOf (self .sendEvent .covered ,MultiLifeline) = true
[3] receiveDiscriminator �= ∅ ⇒

isKindOf (self .receiveEvent .covered ,MultiLifeline) = true

Object-Z class MultiMessage inherits from Message class. Following invariants must be
satisfied:

[1] At least one end of the MultiMessage must be a MultiLifeline.

[2] The sendDiscriminator set can be specified only if the sender is represented by a
MultiLifeline.

[3] The receiveDiscriminator set can be specified only if the receiver is represented by
a MultiLifeline.

9.3.3 DecoupledMessage

DecoupledMessage is a specialized MultiMessage which is used to model a specific kind of
communication within an Interaction (from UML), particularly the asynchronous sending
and receiving of a DecoupledMessagePayload instance without explicit specification of the
behavior invoked on the side of the receiver. The decision of which behavior should
be invoked when the DecoupledMessage is received is up to the receiver. The objects
transmitted in the form of DecoupledMessages are DecoupledMessagePayload instances.
Because all the decoupled messages are asynchronous, the messageSort meta-attribute
(inherited from the UML Message) is ignored. For more details see [1, p. 191].

DecoupledMessage is introduced to model autonomy in message processing.
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DecoupledMessage
�(. . . , payload)
MultiMessage

payload : P DecoupledMessagePayload

#payload ≤ 1
[1] The constraints [2], [3], and [4] imposed on the UML Message

are released, i.e. the DecoupledMessage’s signature does not need to
refer to either an Operation or a Signal.

DecoupledMessage class inherits from MultiMessage class. Invariant [1] is expressed only
in natural language due to absented UML metamodel.

9.3.4 DecoupledMessagePayload

DecoupledMessagePayload is a specialized Class (from UML) used to model the type of
objects transmitted in the form of DecoupledMessages. For more details see [1, p. 193].

DecoupledMessagePayload is introduced to model objects transmitted in the form of De-
coupledMessages.

DecoupledMessagePayload
Class

DecoupledMessagePayload class inherits from Class class.

9.3.5 Subset

Subset is a specialized Dependency (from UML) used to specify that instances represented
by one Lifeline are a subset of instances represented by another Lifeline. The Subset
relationship is between:

• an EventOccurrence owned by the “superset” Lifeline (client), and

• the “subset” Lifelines (suppliers).

It is used to specify that since the occurrence of the supersetEvent, some of the instances
represented by the “superset” Lifeline are also represented by the “subset” Lifeline. The
“subset” Lifeline’s selector (for the details about the selector see Lifeline [11] and section
9.3.1) specifies the instances of the “superset” Lifeline that are also represented by the
“subset” Lifeline. All instances represented by the “subset” Lifeline are still represented
also by the “superset” Lifeline. One Lifeline can represent a “subset” of several “superset”
Lifelines, i.e. more than one Subset relationships can lead to one “subset” Lifeline. Ter-
mination of the “subset” Lifeline (the Stop is placed at the end of Lifeline) destroys all
instances it represents. For more details see [1, p. 194].

Subset is introduced to specify that instances represented by one Lifeline are a subset of
instances represented by another Lifeline.
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Subset
�(. . . , subset , supersetEvent)
Dependency

subset : P Lifeline
supersetEvent : P EventOccurence

#subset ≥ 1
#supersetEvent = 1
[1] ∀ s : subset | s.represents.type �= ∅ •

∀ se : supersetEvent | se.covered .represents.type �= ∅ •
conformsTo(s.present .type, se.covered .represent .type) = true

Subset class inherits from Dependency class. Invariant [1] formalizes the fact that all types
of the subset Lifelines must conform to the type of the superset Lifeline.

9.3.6 Join

Join is a specialized Dependency (from UML) used to specify joining of instances repre-
sented by one Lifeline with a set of instances represented by another Lifeline. The Join
relationship is between:

• an EventOccurrence owned by a “subset” Lifeline (client), and

• an EventOccurrence owned by a “union” Lifeline (supplier).

It is used to specify that a subset of instances, which have been until the subsetEvent
represented by the “subset” Lifeline, is, after the unionEvent represented only by the
“union” Lifeline. Thus after the unionEvent occurrence, the “union” Lifeline represents
the union of the instances it has previously represented and the instances specified by
the Join dependency. The subset of instances of the “subset” Lifeline joining the “union”
Lifeline is given by the AND combination of the Join’s selector and the selector of the
“union” Lifeline. If the selector of the Join dependency is not specified, all the instances
represented by the“subset”Lifeline conforming to the“union”Lifeline’s selector are joined.
Between subsetEvent and unionEvent occurrences, the set of instances joining the “union”
Lifeline is not represented by any of the two Lifelines. One EventOccurrence can be a
client or a supplier of several Joins. For more details see [1, p. 196].

Join is introduced to specify the joining of instances represented by one Lifeline with a
set of instances represented by another Lifeline.
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Join
�(. . . , unionEvent , selector , subsetEvent)
Dependency

unionEvent : P EventOccurence
selector : P Expression c©
subsetEvent : P EventOccurence

#unionEvent = 1
#selector ≤ 1
#subsetEvent = 1
[1] ∀ ue : unionEvent •

isKindOf (ue.covered ,MultiLifeline) = true
[2] ∀ se : subsetEvent | se.covered .represents.type �= ∅ •

∀ ue : unionEvent | ue.covered .represents.type �= ∅ •
conformsTo(se.covered .represents.type,

ue.covered .represents.type) = true

Join class inherits from Dependency class. Following invariants must be satisfied:

[1] The Lifeline owning the EventOccurrence referred to by the unionEvent set must
be a MultiLifeline.

[2] The type of the subsetEvent ’s Lifeline must conform to the type of the unionEvent ’s
MultiLifeline.

9.3.7 AttributeChange

AttributeChange is a specialized InteractionFragment (from UML) used to model the
change of attribute values (state) of the ConnectableElements (from UML) represented
by Lifelines (from UML) within Interactions (from UML). AttributeChange enables to
add, change or remove attribute values in time, as well as to express added attribute val-
ues by Lifelines (from UML). Attributes are represented by inner ConnectableElements.
AttributeChange can also be used to model dynamic changing of entity roles played by
behavioral entities represented by Lifelines. Furthermore, it allows the modeling of entity
interaction with respect to the played entity roles, i.e. each “sub-lifeline” representing a
played entity role (or entity roles in the case of MultiLifeline) is used to model the inter-
action of its player with respect to this/these entity role(s). If an AttributeChange is used
to destroy played entity roles, it represents disposal of the entity roles while their former
players still exist as instances in the system. To also destroy the player of an entity role,
the Stop element (from UML) must be used instead. Usage of the Stop element thus leads
to the disposal of the player as well as all the entity roles it has been playing. For more
details see [1, p. 199].

AttributeChange is introduced to model a change of the attribute values (state) of Con-
nectableElements in the context of Interactions.
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AttributeChange
�(. . . , destroyedLifeline, owningLifeline,when, createdLifeline)
InteractionFragment

destroyedLifeline : P Lifeline
owningLifeline : P Lifeline
when : P EventOccurence
createdLifeline : P Lifeline

#owningLifeline ≤ 0
#when = 1
[1] createdLifeline �= ∅ ⇒ owningLifeline �= ∅

[2] cl : createdLifeline | cl �= ∅ •
∀ ol : owningLifeline | ol .represents.type �= ∅ •

includesAll(ol .represents.type.attribute, cl .represents) = true

AttributeChange class inherits from InteractionFragment class. Invariant [1] says that if
createdLifeline is specified, the owningLifeline must be specified as well. Invariant [2]
specifies the fact that each createdLifeline must represent an attribute of the Classifier
used as the type of the ConnectableElement represented by the owningLifeline set.

9.3.8 CommunicationSpecifier

CommunicationSpecifier is an abstract metaclass which defines metaproperties of its con-
crete subclasses, i.e. CommunicationMessage, CommunicativeInteraction, and Service-
Specification, which are used to model different aspects of communicative interactions.
CommunicationMessages can occur in CommunicativeInteractions, and parameterized Co-
mmunicativeInteractions can be parts of ServiceSpecifications. All of them can specify val-
ues of the meta-attributes inherited from the CommunicationSpecifier. Potential conflicts
in specifications of the CommunicationSpecifier ’s meta-property values are resolved by the
overriding principle that defines which concrete subclasses of the CommunicationSpecifier
have higher priority in specification of those meta-attributes. Thus, if specified on different
priority levels, the values at higher priority levels override those specified at lower priority
levels. The priorities, from the highest to the lowest are defined as follows:

1. CommunicationMessage,

2. CommunicativeInteraction,

3. ServiceSpecification.

For more details see [1, p. 203].

CommunicationSpecifier is introduced to define meta-properties which are used to model
different aspects of communicative interactions. It is used in definitions of its subclasses.
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CommunicationSpecifier
�(acl , cl , encoding , ontology)

acl : seqValueSpecification
cl : seqValueSpecification
encoding : seqValueSpecification
ontology : seqValueSpecification

CommunicationSpecifier = ∅

#acl ≤ 1
#cl ≤ 1
#encoding ≤ 1

CommunicationSpecifier is an abstract Object-Z class.

9.3.9 CommunicationMessage

CommunicationMessage is a specialized DecoupledMessage and CommunicationSpecifier,
which is used to model communicative acts of speech act based communication in the
context of Interactions. The objects transmitted in the form of CommunicationMessages
are CommunicationMessagePayload instances. For more details see [1, p. 204].

CommunicationMessage is introduced to model speech act based communication in the
context of Interactions.

CommunicationMessage
�(. . . , payload)
DecoupledMessage
CommunicationSpecifier

payload : P CommunicationMessagePayload

#payload ≤ 1

Object-Z class CommunicationMessage inherits from DecoupledMessage and Communication-
Specifier classes.

9.3.10 CommunicationMessagePayload

We introduce a String data type representing the set of all possible sequences of characters
(this is a given type in Object-Z [18]).

[String ]

CommunicationMessagePayload is a specialized Class (from UML) used to model the
type of objects transmitted in the form of CommunicationMessages.

CommunicationMessagePayload is introduced to model objects transmitted in the form of
CommunicationMessages.
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CommunicationMessagePayload
�(. . . , performative)
DecoupledMessagePayload

performative : seqString

#performative ≤ 1

CommunicationMessagePayload class inherits from DecoupledMessagePayload class.

9.3.11 CommunicativeInteraction

CommunicativeInteraction is a specialized Interaction (from UML) and Communication-
Specifier, used to model speech act based communications, i.e. Interactions containing
CommunicationMessages. CommunicativeInteraction, being a concrete subclass of the
abstract CommunicationSpecifier, can specify some additional meta-attributes of interac-
tions, which are not allowed to be specified within UML Interactions, particularly:

• acl, i.e. the agent communication language used within the CommunicativeInteraction,

• cl, i.e. the content language used within the CommunicativeInteraction,

• encoding, i.e. the content encoding used within the CommunicativeInteraction, and

• ontology, i.e. the ontologies used within the CommunicativeInteraction.

For the above meta-attributes, the overriding principle defined in section 9.3.8 holds. For
more details see [1, p. 207].

CommunicativeInteraction is introduced to model speech act based communications.

CommunicativeInteraction
InteractionCommunicationSpecifier

CommunicativeInteraction class inherits from Interaction and CommunicationSpecifier
classes.

9.3.12 InteractionProtocol

InteractionProtocol is a parameterized CommunicativeInteraction template used to model
reusable templates of CommunicativeInteractions. Possible TemplateParameters of an
InteractionProtocol are:

• values of CommunicationSpecifier ’s meta-attributes,

• local variable names, types, and default values,

• Lifeline names, types, and selectors,

• Message names and argument values,
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• MultiLifeline multiplicities,

• MultiMessage discriminators,

• CommunicationMessage meta-attributes,

• ExecutionOccurrence’s behavior specification,

• guard expressions of InteractionOperands,

• specification of included Constraints, and

• included Expressions and their particular operands.

Partial binding of an InteractionProtocol (i.e. the TemplateBinding which does not sub-
stitute all the template parameters by actual parameters) results in a different Interaction-
Protocol. A complete binding of an InteractionProtocol represents a Communicative-
Interaction. For more details see [1, p. 208].

InteractionProtocol is introduced to model reusable templates of CommunicativeInteractions.

InteractionProtocol
�(. . . , ownedSignature)
CommunicativeInteraction

ownedSignature : P RedefinableTemplateSignature c©
#ownedSignature = 1

InteractionProtocol class inherits from CommunicativeInteraction class.

9.3.13 SendDecoupledMessageAction

SendDecoupledMessageAction is a specialized SendObjectAction (from UML) used to model
the action of sending of DecoupledMessagePayload instances, referred to by the request
meta-association, in the form of a DecoupledMessage to its recipient(s), referred to by the
target meta-association. For more details see [1, p. 213].

SendDecoupledMessageAction is introduced to model the sending of DecoupledMessages in
Activities.

SendDecoupledMessageAction
�(. . . , target)
SendObjectAction

target : P InputPin c©
#target ≥ 1

SendDecoupledMessageAction class inherits from SendObjectAction class.
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9.3.14 SendCommunicationMessageAction

SendCommunicationMessageAction is a specialized SendDecoupledMessageAction, which
allows to specify the values of the CommunicationSpecifier ’s meta-attributes. For more
details see [1, p. 214].

SendCommunicationMessageAction is introduced to model the sending of Communication-
Messages in Activities.

SendCommunicationMessageAction
SendDecoupledMessageAction
CommunicationSpecifier

SendCommunicationMessageAction is an Object-Z class, which inherits from SendDecoupled-
MessageAction and CommunicationSpecifier classes.

9.3.15 AcceptDecoupledMessageAction

AcceptDecoupledMessageAction is a specialized AcceptEventAction (from UML) which
waits for the reception of a DecoupledMessage that meets conditions specified by the
associated trigger (for details see section 9.3.17). The received DecoupledMessagePayload
instance is placed to the result OutputPin. If an AcceptDecoupledMessageAction has no
incoming edges, the action starts when the containing Activity (from UML) or Struc-
turedActivityNode (from UML) starts. An AcceptDecoupledMessageAction with no incom-
ing edges is always enabled to accept events regardless of how many are accepted. It does
not terminate after accepting an event and outputting the value, but continues to wait for
subsequent events. For more details see [1, p. 217].

AcceptDecoupledMessageAction is introduced to model the reception of DecoupledMessages
in Activities.

AcceptDecoupledMessageAction
�(. . . , result , trigger)
AcceptEventAction

result : P OutputPin c©
trigger : P DecoupledMessageTrigger

#result = 1
#trigger = 1
[1] ∀ r : result | r .type �= ∅ •

isKindOf (r .type,DecoupledMessagePayload) = true

AcceptDecoupledMessageAction class inherits from AcceptEventAction class. Invariant [1]
specifies following condition – if the type of the OutputPin referred to by the result set is
specified, it must be a DecoupledMessagePayload.
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9.3.16 AcceptCommunicationMessageAction

AcceptCommunicationMessageAction is a specialized AcceptEventAction (from UML) which
waits for the reception of a CommunicationMessage that meets conditions specified by as-
sociated trigger (for details see section 9.3.18). The received CommunicationMessagePay-
load instance is placed to the result OutputPin. If an AcceptCommunicationMessageAction
has no incoming edges, then the action starts when the containing Activity (from UML)
or StructuredActivityNode (from UML) starts. An AcceptCommunicationMessageAction
with no incoming edges is always enabled to accept events regardless of how many are
accepted. It does not terminate after accepting an event and outputting a value, but
continues to wait for subsequent events. For more details see [1, p. 218].

AcceptCommunicationMessageAction is introduced to model the reception of Commu-
nicationMessages in Activities.

AcceptCommunicationMessageAction
�(. . . , result , trigger)
AcceptEventAction

result : P OutputPin c©
trigger : P CommunicationMessageTrigger

#result = 1
#trigger = 1
[1] ∀ r : result | r .type �= ∅ •

isKindOf (r .type,CommunicationMessagePayload) = true

AcceptCommunicationMessageAction class inherits from AcceptEventAction. Invariant [1]
says that if the type of the OutputPin referred to by the result set is specified, it must be
a CommunicationMessagePayload.

9.3.17 DecoupledMessageTrigger

DecoupledMessageTrigger is a specialized Trigger (from UML) that represents the event
of reception of a DecoupledMessage, that satisfies the condition specified by the boolean-
valued Expression (from UML) referred to by the filter meta-association. The Expression
can constrain the signature name and argument values of the received DecoupledMessage,
or alternatively, the type and attribute values of the received DecoupledMessagePayload
instance. For more details see [1, p. 219].

DecoupledMessageTrigger is introduced to model events representing reception of De-
coupledMessages.
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DecoupledMessageTrigger
�(. . . ,filter)
Trigger

filter : P Expression c©
#filter = 1

DecoupledMessageTrigger class inherits from Trigger class.

9.3.18 CommunicationMessageTrigger

CommunicationMessageTrigger is a specialized DecoupledMessageTrigger that represents
the event of reception of a CommunicationMessage, that satisfies the condition specified
by the boolean-valued Expression (from UML) referred to by the filter meta-association.
The Expression can constrain the signature name and argument values of the received
CommunicationMessage, or alternatively, the type, value of performative meta-attribute,
and attribute values of the received CommunicationMessagePayload instance. For more
details see [1, p. 220].

CommunicationMessageTrigger is introduced to model events representing reception of
CommunicationMessages.

CommunicationMessageTrigger
DecoupledMessageTrigger

CommunicationMessageTrigger class inherits from DecoupledMessageTrigger class.

9.4 Services

The Services package defines metaclasses used to model services, particularly their speci-
fication, provision and usage.

9.4.1 ServiceSpecification

ServiceSpecification is a specialized BehavioredClassifier (from UML) and Communication-
Specifier, used to specify services. A service is a coherent block of functionality provided
by a behaviored semi-entity, called service provider, that can be accessed by other behav-
iored semi-entities (which can be either external or internal parts of the service provider),
called service clients. The ServiceSpecification is used to specify properties of such services,
particularly:

• the functionality of the services and

• the way the specified service can be accessed.
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The specification of the functionality and the accessibility of a service is modeled by owned
ServiceProtocols, i.e. InteractionProtocols extended with an ability to specify two manda-
tory, disjoint and nonempty sets of (not bound) parameters of their TemplateSignatures,
particularly:

• provider template parameters, and

• client template parameters.

The provider template parameters (providerParameter meta-association) of all contained
ServiceProtocols specify the set of template parameters that must be bound by the service
providers, and the client template parameters (clientParameter meta-association) of all
contained ServiceProtocols specify the set of template parameters that must be bound by
the service clients. Binding of all these complementary template parameters results in
the specification of the CommunicativeInteractions between the service providers and the
service clients. For the meta-attributes defined by CommunicationSpecifier the overriding
priority principle defined in section 9.3.8 applies. For more details see [1, p. 223].

ServiceSpecification is introduced to model the specification of services, particularly (a)
the functionality of the service, and (b) the way the service can be accessed.

ServiceSpecification
�(. . . , serviceProtocol)
BehavioredClassifier
CommunicationSpecifier

Δ
serviceProtocol : P ServiceProtocol c©
#serviceProtocol ≥ 1

ServiceSpecification class inherits from ServiceSpecification class.

9.4.2 ServiceProtocol

ServiceProtocol is a specialized InteractionProtocol, used only within the context of its
owning ServiceSpecification, extended with an ability to specify two mandatory, disjoint
and non-empty sets of (not bound) parameters of its TemplateSignature (from UML),
particularly:

• providerParameter, i.e. a set of parameters which must be bound by providers of
the service, and

• clientParameter, i.e. a set of parameters which must be bound by clients of the
service.

Usually at least one of the provider/client parameters is used as a Lifeline’s type which rep-
resents a provider/client or its inner ConnectableElements (see UML StructuredClassifier).
The ServiceProtocol can be defined either as a unique InteractionProtocol (a parameterized
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CommunicativeInteraction) or as a partially bound, already defined InteractionProtocol.
For more details see [1, p. 225].

ServiceProtocol is introduced to specify the parameters of an InteractionProtocol that
must be bound by service providers and clients. ServiceProtocols are necessary to define
ServiceSpecifications.

ServiceProtocol
�(. . . , providerParameter , clientParameter)
InteractionProtocol

providerParameter : P TemplateParameter
clientParameter : P TemplateParameter

#providerParameter ≥ 1
#clientParameter ≥ 1
[1] ∀ p : self .ownedSignature.parameter •

∀ pp : providerParameter •
includesAll(p, pp) = true

[2] ∀ p : self .ownedSignature.parameter •
∀ cp : clientParameter •

includesAll(p, cp) = true
[3] providerParameter ∩ clientParameter = ∅

[4] providerParameter ∪ clientParameter = self .ownedSignature.parameter

ServiceProtocol class inherits from InteractionProtocol class. Following invariants must be
satisfied:

[1] The providerParameter refer only to the template parameters belonging to the sig-
nature owned by a ServiceProtocol.

[2] The clientParameter refers only to the template parameters belonging to the signa-
ture owned by a ServiceProtocol.

[3] The providerParameter and clientParameter are disjoint.

[4] The providerParameter and clientParameter together cover all parameters of the
template signature.

9.4.3 ServicedElement

ServicedElement is an abstract specialized NamedElement (from UML) used to serve as
a common superclass to all the metaclasses that can provide or use services (i.e. Be-
havioralSemiEntitiyType, ServicedPort, and ServicedProperty). Technically, the service
provision and usage is modeled by ownership of ServiceProvisions and ServiceUsages. For
more details see [1, p. 228].

ServicedElement is introduced to define a common superclass for all metaclasses that may
provide or require services.
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ServicedElement
�(. . . , serviceProvision, serviceUsage)
NamedElement

Δ
serviceProvision : P ServiceProvision c©
serviceUsage : P ServiceUsage c©
ServicedElement = ∅

∀ o : serviceProvision • self = o.provider
∀ o : serviceUsage • self = o.client
[1] ∀ sp : serviceProvision •

∀ cd : self .clientDependency | isKindOf (cd ,ServiceProvision) = true •
sp = cd

[2] ∀ su : serviceUsage •
∀ cd : self .clientDependency | isKindOf (cd ,ServiceUsage) = true

su = cd

ServicedElement is an abstract class that inherits from NamedElement. Invariant [1] says
that the serviceProvision set refers to all clientDependencies of the kind ServiceProvision.
Invariant [2] states that the serviceUsage set refers to all clientDependencies of the kind
ServiceUsage.

9.4.4 ServicedProperty

ServicedProperty is a specialized Property (from UML) and ServicedElement, used to model
attributes that can provide or use services. It determines what services are provided and
used by the behaviored semi entities when occur as attribute values of some objects.
The type of a ServicedProperty is responsible for processing or mediating incoming and
outgoing communication. The ServiceProvisions and ServiceUsages owned by the the
ServicedProperty are handled by its type. For details see section 9.1.1. For more details
see [1, p. 229].

ServicedProperty is introduced to model attributes that can provide or use services.

ServicedProperty
�(. . . , type)
Property
ServicedElement

type : P BehavioredSemiEntityType

#type ≤ 1

ServicedProperty class inherits from Property and ServicedElement classes.
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9.4.5 ServicedPort

ServicedPort is a specialized Port (from UML) and ServicedElement that specifies a dis-
tinct interaction point between the owning BehavioredSemiEntityType and other Serviced-
Elements in the model. The nature of the interactions that may occur over a ServicedPort
can, in addition to required and provided interfaces, be specified also in terms of re-
quired and provided services, particularly by associated provided and/or required Service-
Specifications. The required ServiceSpecifications of a ServicedPort determine services that
the owning BehavioredSemiEntityType expects from other ServicedElements and which it
may access through this interaction point. The provided ServiceSpecifications determine
the services that the owning BehavioredSemiEntityType offers to other ServicedElements
at this interaction point. The type of a ServicedPort is responsible for processing or me-
diating incoming and outgoing communication. The ServiceProvisions and ServiceUsages
owned by the the ServicedPort are handled by its type. For details see section 9.1.1 For
more details see [1, p. 231].

ServicedPort
�(. . . , type)
Port
ServicedElement

type : P BehavioredSemiEntityType

#type ≤ 1

ServicedPort class inherits from Port and ServicedElement classes.

9.4.6 ServiceProvision

ServiceProvision is a specialized Realization dependency (from UML) between a Service-
Specification and a ServicedElement, used to specify that the ServicedElement provides the
service specified by the related ServiceSpecification. The details of the service provision
are specified by means of owned InteractionProtocols, which are partially bound coun-
terparts to all ServiceProtocols comprised within the related ServiceSpecification. Owned
InteractionProtocols (specified by the providingIP meta-association) must bind all (and
only those) template parameters of the corresponding ServiceProtocol, which are declared
to be bound by a service provider. The constraints put on bindings performed by service
providers and clients of a service (see section 9.4.7) guarantee complementarity of those
bindings. Therefore the InteractionProtocols of a ServiceProvision and a ServiceUsage,
which correspond to the same ServiceSpecification, can be merged to create concrete Co-
mmunicativeInteractions according to which the service is accessed. For more details
see [1, p. 233].

ServiceProvision is introduced to specify that the ServicedElement provides the service
specified by the related ServiceSpecification.
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ServiceProvision
�(. . . , service, provider , providingIP)
Realization

service : P ServiceSpecification
provider : P ServicedElement
providingIP : P InteractionProtocol c©
#service = 1
#provider = 1
∀ o : provider • self ∈ o.serviceProvision
#providingIP ≥ 1
[1] ∀ pip : providingIP •

∀ s : service •
pip.templateBinding .parameterSubstitution.formal =

s.serviceProtocol .providerParameter

ServiceProvision class inherits from Realization class. Invariant [1] formalizes the fact
that the providingIP binds all (and only) the providerParameters from all the service’s
ServiceProtocols.

9.4.7 ServiceUsage

ServiceUsage is a specialized Usage dependency (from UML) between a ServiceSpecification
and a ServicedElement, used to specify that the ServicedElement uses or requires (can re-
quest) the service specified by the related ServiceSpecification. The details of the service
usage are specified by means of owned InteractionProtocols, which are partially bound
counterparts to all ServiceProtocols comprised within the related ServiceSpecification.
Owned InteractionProtocols (specified by the usageIP meta-association) must bind all
(and only those) template parameters of the corresponding ServiceProtocol, which are de-
clared to be bound by a client of the service. The constraints put on bindings performed
by service providers (see section 9.4.6) and clients of a service guarantee complementarity
of those bindings. Therefore the InteractionProtocols of a ServiceProvision and a Service-
Usage, which correspond to the same ServiceSpecification, can be merged to create concrete
CommunicativeInteractions according to which the service is accessed. For more details
see [1, p. 235].

ServiceUsage is introduced to specify that the ServicedElement uses the service specified
by the related ServiceSpecification.
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ServiceUsage
�(. . . , service, usageIP , client)
Usage

service : P ServiceSpecification
usageIP : P InteractionProtocol c©
client : P ServicedElement

#service = 1
#usageIP ≥ 1
#client = 1
∀ o : client • self ∈ o.serviceUsage
[1] ∀ uip : usageIP •

∀ s : service •
uip.templateBinding .parameterSubstitution.formal =

s.serviceProtocol .clientParameter

ServiceUsage class inherits from Usage class. Invariant [1] says that the usageIP binds all
and only the clientParameters from all service’s ServiceProtocols.

9.5 Observations and Effecting Interactions

The Observations and Effecting Interactions package defines metaclasses used to model
structural and behavioral aspects of observations (i.e. the ability of entities to observe
features of other entities) and effecting interactions (i.e. the ability of entities to manipulate
or modify the state of other entities).

9.5.1 PerceivingAct

PerceivingAct is a specialized Operation (from UML) which is owned by a PerceptorType
and thus can be used to specify what perceptions the owning PerceptorType, or a Perceptor
of that PerceptorType, can perform. For more details see [1, p. 238].

PerceivingAct is introduced to specify which perceptions the owning PerceptorType, or a
Perceptor of that PerceptorType, can perform.

PerceivingAct
�(. . . , perceptorType)
Operation

perceptorType : PerceptorType

#perceptorType = 1
∀ o : perceptorType • self ∈ o.ownedPerceivingAct

PerceivingAct class inherits from Operation class.
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9.5.2 PerceptorType

PerceptorType is a specialized BehavioredSemiEntityType used to model the type of Per-
ceptors, in terms of owned:

• Receptions (from UML) and

• PerceivingActs.

For more details see [1, p. 239].

PerceptorType is introduced to model types of Perceptors.

PerceptorType
�(. . . , ownedPerceivingAct)
BehavioredSemiEntityType

Δ
ownedPerceivingAct : P PerceivingAct c©
∀ o : ownedPerceivingAct • o.perceptorType = self
[1] ∀ opa : ownedPerceivingAct •

oo : self .ownedOperation | isKindOf (oo,PerceivingAct) = true •
opa = oo

PerceptorType class inherits from BehavioredSemiEntityType class. Invariant [1] says that
the ownedPerceivingAct set refers to all ownedOperations of the kind PerceivingAct.

9.5.3 Perceptor

Perceptor is a specialized ServicedPort used to model capability of its owner (a Beha-
vioredSemiEntityType) to observe, i.e. perceive a state of and/or to receive a signal from
observed objects. What observations a Perceptor is capable of is specified by its type, i.e.
PerceptorType. For more details see [1, p. 241].

Perceptor is introduced to model the capability of its owner to observe.

Perceptor
�(. . . , type)
ServicedPort

type : P PerceptorType

#type ≤ 1

Perceptor class inherits from ServicedPort class.
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9.5.4 PerceptAction

PerceptAction is a specialized CallOperationAction (from UML) which can call Perceiving-
Acts. As such, PerceptAction can transmit an operation call request to a PerceivingAct,
what causes the invocation of the associated behavior. PerceptAction being a CallOp-
erationAction allows to call PerceivingActs both synchronously and asynchronously. For
more details see [1, p. 243].

PerceptAction is introduced to model observations in Activities.

PerceptAction
�(. . . , perceivingAct)
CallOperationAction

perceivingAct : P PerceivingAct

#perceivingAct = 1

PerceptAction class inherits from CallOperationAction class.

9.5.5 Perceives

Perceives is a specialized Dependency (from UML) used to model which elements can
observe others. Suppliers of the Perceives dependency are the observed elements, partic-
ularly NamedElements (from UML). Clients of the Perceives dependency represent the
objects that observe. They are usually modeled as:

• BehavioredSemiEntityTypes,

• PerceivingActs,

• PerceptorTypes, or

• Perceptors.

For more details see [1, p. 244].

Perceives is introduced to model which elements can observe others.

Perceives
Dependency

Perceives class inherits from Dependency class.

9.5.6 EffectingAct

EffectingAct is a specialized Operation (from UML) which is owned by an EffectorType
and thus can be used to specify what effecting acts the owning EffectorType, or an Effector
of that EffectorType, can perform. For more details see [1, p. 245].
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EffectingAct is introduced to specify which effecting acts the owning EffectorType, or an
Effector of that EffectorType, can perform.

EffectingAct
�(. . . , effectorType)
Operation

effectorType : P EffectorType

#effectorType = 1
∀ o : effectorType • self ∈ o.ownedEffectingAct

EffectingAct is an Object-Z class, which inherits from Operation.

9.5.7 EffectorType

EffectorType is a specialized BehavioredSemiEntityType used to model type of Effectors,
in terms of owned EffectingActs. For more details see [1, p. 246].

EffectorType is introduced to model types of Effectors.

EffectorType
�(. . . , ownedEffectingAct)
BehavioredSemiEntityType

Δ
ownedEffectingAct : P EffectingAct c©
∀ o : ownedEffectingAct • o.effectorType = self
[1] ∀ oea : ownedEffectingAct •

∀ oo : self .ownedOperation | isKindOf (oo,EffectingAct) = true •
oea = oo

EffectorType class inherits from BehavioredSemiEntityType class. Invariant [1] formal-
izes the fact that the ownedEffectingAct set refers to all ownedOperations of the kind
EffectingAct.

9.5.8 Effector

Effector is a specialized ServicedPort used to model the capability of its owner (a Beha-
vioredSemiEntityType) to bring about an effect on others, i.e. to directly manipulate with
(or modify a state of) some other objects. What effects an Effector is capable of is specified
by its type, i.e. EffectorType. For more details see [1, p. 247].

Effector is introduced to model the capability of its owner to bring about an effect on
other objects.
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Effector
�(. . . , type)
ServicedPort

type : P EffectorType

#type ≤ 1

Effector class inherits from ServicedPort class.

9.5.9 EffectAction

EffectAction is a specialized CallOperationAction (from UML) which can call Effecting-
Acts. Thus, an EffectAction can transmit an operation call request to an EffectingAct,
which causes the invocation of the associated behavior. EffectAction being a CallOpera-
tionAction allows calling EffectingActs both synchronously and asynchronously. For more
details see [1, p. 248].

EffectAction is introduced to model effections in Activities.

EffectAction
�(. . . , effectingAct)
CallOperationAction

effectingAct : P EffectingAct

#effectingAct = 1

EffectAction class inherits from CallOperationAction class.

9.5.10 Effects

Effects is a specialized Dependency (from UML) used to model which elements can ef-
fect others. Suppliers of the Effects dependency are the effected elements, particularly
NamedElements (from UML). Clients of the Effects dependency represent the objects
which effect. They are usually modeled as:

• BehavioredSemiEntityTypes,

• EffectingActs,

• EffectorTypes, or

• Effectors.

For more details see [1, p. 249].

Effects is introduced to model which elements can effect others.
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Effects
Dependency

Effects class inherits from Dependency class.

9.6 Mobility

The Mobility package defines metaclasses used to model structural and behavioral aspects
of entity mobility.

9.6.1 Move

Move is a specialized Dependency (from UML) between two HostingProperties used to
specify that the entities represented by the source HostingProperty (specified by the
from meta-association) can be moved/transferred to the instances of the AgentExecution-
Environment owning the destination HostingProperty (specified by the to meta-association).
For more details see [1, p. 250].

Move is introduced to model the movement of entities between instances of AgentExecution-
Environments.

Move
�(. . . , from, to)
Dependency

from : P HostingProperty
to : P HostingProperty

#from = 1
∀ o : from • self ∈ o.move
#to = 1
∀ o : to • self ∈ o.moveFrom
[1] ∀ f : from | f .type �= ∅ •

∀ t : to | t .type �= ∅ •
conformsTo(t .type, f .type)

Move class inherits from Dependency class. Invariant [1] says that if both types are
specified, then the type of the HostingProperty referred to by the to set must conform to
the type of the HostingProperty referred to by the from set.

9.6.2 Clone

Clone is a specialized Dependency (from UML) between HostingProperties used to spec-
ify that entities represented by the source HostingProperty (specified by the from meta-
association) can be cloned to the instances of the AgentExecutionEnvironment owning
the destination HostingProperties (specified by the to meta-association). For more details
see [1, p. 252].
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Clone is introduced to model the cloning of entities among instances of AgentExecution-
Environments.

Clone
�(. . . , from, to)
Dependency

from : P HostingProperty
to : P HostingProperty

#from = 1
∀ o : from • self ∈ o.clone
#to ≥ 1
∀ o : to • self ∈ o.clone
[1] ∀ f : from | f .type �= ∅ •

∀ t : to | t .type �= ∅ •
conformsTo(t .type, f .type)

Clone class inherits from Dependency class. Invariant [1] express the following condition
– if both types are specified, then the types of the HostingProperties referred to by the to
set must conform to the type of the HostingProperty referred to by the from set.

9.6.3 MobilityAction

MobilityAction is an abstract specialized AddStructuralFeatureValueAction (from UML)
used to model mobility actions of entities, i.e. actions that cause movement or cloning of
an entity from one AgentExecutionEnvironment to another one. MobilityAction specifies:

• which entity is being moved or cloned (entity meta-association),

• the destination AgentExecutionEnvironment instance where the entity is being moved
or cloned (to meta-association), and

• the HostingProperty owned by the destination AgentExecutionEnvironment, where
the moved or cloned entity is being placed (toHostingProperty meta-association).

If the destination HostingProperty is ordered, the insertAt meta-association (inherited
from AddStructuralFeatureValueAction) specifies the position at which to insert the entity.
MobilityAction has two concrete subclasses:

• MoveAction and

• CloneAction.

For more details see [1, p. 253].

MobilityAction is introduced to define the common features of all its subclasses.
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MobilityAction
�(. . . , to, toHostingProperty , entity)
AddStructuralFeatureValueAction

to : P InputPin c©
toHostingProperty : P HostingProperty
entity : P InputPin c©
MobilityAction = ∅

#to = 1
#toHostingProperty = 1
#entity = 1
[1] ∀ e : entity | e.type �= ∅ •

isKindOf (e.type,EntityType) = true
[2] ∀ t : to | t .type �= ∅ •

isKindOf (t .type,AgentExecutionEnvironment) = true
[3] ∀ t : to | t .type �= ∅ •

thp : toHostingProperty •
thp ∈ t .type.ownedAttribute

MobilityAction is an abstract class that inherits from AddStructuralFeatureValueAction
class. Following invariants must be satisfied:

[1] If the type of the InputPin referred to by the entity set is specified, it must be an
EntityType.

[2] If the type of the InputPin referred to by the to set is specified, it must be an
AgentExecutionEnvironment.

[3] If the type of the InputPin referred to by the to set is specified, the HostingProperty
referred to by the toHostingProperty set must be an ownedAttribute of that type.

9.6.4 MoveAction

MoveAction is a specialized MobilityAction used to model an action that results in a
removal of the entity (specified by the entity meta-association, inherited from Mobility-
Action) from its current hosting location, and its insertion as a value to the destina-
tion HostingProperty (specified by the toHostingProperty meta-association, inherited from
MobilityAction) of the owning AgentExecutionEnvironment instance (specified as the to
meta-association, inherited from MobilityAction). For more details see [1, p. 255].

MoveAction is introduced to model the movement of entities in Activities.

MoveAction
MobilityAction

MoveAction class inherits from MobilityAction class.
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9.6.5 CloneAction

CloneAction is a specialized MobilityAction used to model an action that results in a in-
sertion of a clone of the entity (specified by the entity meta-association, inherited from
MobilityAction) as a value to the destination HostingProperty (specified by the toHosting-
Property metaassociation, inherited from MobilityAction) of the owning AgentExecution-
Environment instance (specified as the to meta-association, inherited from MobilityAction).
The original entity remains running at its current hosting location. The entity clone is
represented by the action’s OutputPin (specified by the clone meta-association). For more
details see [1, p. 256].

CloneAction is introduced to model the cloning of entities in Activities.

CloneAction
�(. . . , clone)
MobilityAction

clone : P OutputPin c©
#clone = 1
[1] ∀ c : clone | c.type �= ∅ •

isKindOf (c.type,EntityType) = true
[2] ∀ c : clone | c.type �= ∅ •

∀ e : self .entity | e.type �= ∅

conformsTo(c.type, e.type) = true

CloneAction class inherits from MobilityAction class. Following invariants must be satis-
fied:

[1] If the type of the OutputPin referred to by the clone set is specified, it must be an
EntityType.

[2] The type of the OutputPin referred to by the clone set must conform to the type of
the InputPin referred to by the entity set, if the both specified.



Chapter 10

Mental

The Mental package defines the metaclasses which can be used to:

• support analysis of complex problems/systems, particularly by:

◦ modeling intentionality in use case models,

◦ goal-based requirements modeling,

◦ problem decomposition, etc.

• model mental attitudes of autonomous entities, which represent their informational,
motivational and deliberative states.

10.1 Mental States

The Mental States package comprises common fundamental metaclasses used to define
concrete metaclasses contained within the rest of the Mental sub-packages, i.e. Beliefs,
Goals, Plans and Mental Relationships.

10.1.1 MentalState

MentalState is an abstract specialized NamedElement (from UML) serving as a common
superclass to all metaclasses which can be used for:

• modeling mental attitudes of MentalSemiEntityTypes, which represent their infor-
mational, motivational and deliberative states, and

• support for the human mental process of requirements specification and analysis of
complex problems/systems, particularly by:

◦ expressing intentionality in use case models,

◦ goal-based requirements modeling,

◦ problem decomposition, etc.

69
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For more details see [1, p. 263].

MentalState is introduced to define the common features of all its subclasses.

MentalState
�(. . . , degree)
NamedElement

Δ
degree : seqValueSpecification

MentalState = ∅

#degree ≤ 1

MentalState class inherits from NamedElement class.

10.1.2 MentalClass

MentalClass is an abstract specialized Class (from UML) and MentalState serving as a
common superclass to all the metaclasses which can be used to specify mental attitudes
of MentalSemiEntityTypes. Technically, MentalProperties can only be of the MentalClass
type. Furthermore, the object meta-association of the Responsibility relationship can also
only be of the MentalClass type. For more details see [1, p. 264].

MentalClass is introduced to specify the mental attitudes of MentalSemiEntityTypes and
objects of Responsibility relationship.

MentalClass
�(. . . , isResponsibilityOf )
Class
MentalState

Δ
isResponsibilityOf : P Responsibility

MentalClass = ∅

∀ o : isResponsibilityOf • self ∈ o.object
[1] ∀ iro : isResponsibilityOf •

∀ sd : self .supplierDependency | isKindOf (sd ,Responsibility) = true •
iro = sd

MentalClass is an abstract class that inherits from Class and MentalState classes. Invari-
ant [1] says that the isResponsibilityOf set refers to all supplierDependencies of the kind
Responsibility.

10.1.3 ConstrainedMentalClass

ConstrainedMentalClass is an abstract specialized MentalClass which allows its concrete
subclasses to specify MentalConstraints. Note: To avoid misinterpretation of a set of
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multiple MentalConstraints of the same kind defined within one ConstrainedMentalClass,
AML allows the specification of only one MentalConstraint of a given kind within one
ConstrainedMentalClass. For more details see [1, p. 264].

ConstrainedMentalClass is introduced to allow the specification of MentalConstraints for
all its subclasses.

ConstrainedMentalClass
�(. . . ,mentalConstraint)
MentalClass

Δ
mentalConstraint : P MentalConstraint c©
ConstrainedMentalClass = ∅

[1] ∀mc1,mc2 : mentalConstraint •
mc1.kind �= mc2.kind

[2] ∀mc : mentalConstraint •
∀ or : self .ownedRule | isKindOf (or ,MentalConstraint) = true •

mc = or

ConstrainedMentalClass is an abstract class that inherits from MentalClass class. Follow-
ing invariants must be satisfied:

[1] Each mentalConstraint must have a different kind.

[2] The mentalConstraint set refers to all ownedRules of the kind MentalConstraint.

10.1.4 MentalConstraint

MentalConstraint is a specialized Constraint (from UML) and RedefinableElement (from
UML), used to specify properties of ConstrainedMentalClasses which can be used within
mental (reasoning) processes of owning MentalSemiEntityTypes, i.e. pre- and post-conditions,
commit conditions, cancel conditions and invariants. MentalConstraint, in addition to
Constraint, allows specification of the kind of the constraint (for details see section 10.1.5).
MentalConstraints can be owned only by ConstrainedMentalClasses. MentalConstraint,
being a RedefinableElement, allows the redefinition of the values of constraint specifica-
tions (given by the specification meta-association inherited from UML Constraint), e.g. in
the case of inherited owned ConstrainedMentalClasses, or redefinition specified by Mental-
Properties. For more details see [1, p. 265].

MentalConstraint is introduced to specify the properties of ConstrainedMentalClasses
which can be used within mental (reasoning) processes of owning MentalSemiEntityTypes.
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MentalConstraint
�(. . . , kind)
RedefinableElement
Constraint

kind : MentalConstraintKind

[1] kind �= commitPreCondition

MentalConstraint class inherits from RedefinableElement and Constraint classes. Invariant
[1] says that the commitPreCondition literal cannot be the value of the kind object.

10.1.5 MentalConstraintKind

MentalConstraintKind is an enumeration which specifies kinds of MentalConstraints, as
well as kinds of constraints specified for contributor and beneficiary in the Contribution
relationship. If needed, the set of MentalConstraintKind enumeration literals can be
extended. For more details see [1, p. 266].

MentalConstraintKind is introduced to specify the kinds of MentalConstraints and ends
of a Contribution relationship.

MentalConstraintKind ::= commitCondition | preCondition | commitPreCondition
| invariant | cancelCondition | postCondition

MentalConstraintKind is an enumeration, which has commitCondition, preCondition,
commitPreCondition, invariant, cancelCondition, and postCondition values.

10.1.6 MentalRelationship

MentalRelationship is an abstract specialized MentalState, a superclass to all metaclasses
defining the relationships between MentalStates. There is one concrete subclass of the
MentalRelationship–Contribution. For more details see [1, p. 267].

MentalRelationship is introduced as a superclass to all metaclasses defining the relation-
ships between MentalStates.

MentalRelationship
MentalState

MentalRelationship = ∅

MentalRelationship is an abstract class, which inherits from MentalRelationship class.

10.1.7 MentalSemiEntityType

MentalSemiEntityType is a specialized abstract Class (from UML), a superclass to all
metaclasses which can own MentalProperties, i.e. AutonomousEntityType and EntityRole-
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Type. The ownership of a MentalProperty of a particular MentalClass type means that
instances of the owning MentalSemiEntityType have control over instances of that Mental-
Class, i.e. they have (at least to some extent) a power or authority to manipulate those
MentalClass instances (their decisions about those MentalClass instances are, to some
degree, autonomous). For example, a MentalClass instance can decide:

• which Goal is to be achieved and which not,

• when and how the particular Goal instance is to be achieved,

• whether the particular Goal instance is already achieved or not,

• which Plan to execute, etc.

Instances of MentalSemiEntityTypes are referred to as mental semi-entities. For more
details see [1, p. 268].

MentalSemiEntityType is introduced as a common superclass to all metaclasses which can
own MentalProperties.

MentalSemiEntityType
�(. . . ,mentalAttribute)
Class

Δ
mentalAttribute : P MentalProperty

MentalSemiEntityType = ∅

[1] ∀ma : mentalAttribute •
∀ oa : self .ownedAttribute | isKindOf (oa,MentalProperty) = true •

ma = oa

MentalSemiEntityType is an abstract class, which inherits from Class class. Invariant [1]
express following condition – the mentalAttribute set refers to all ownedAttributes of the
kind MentalProperty.

10.1.8 MentalProperty

MentalProperty is a specialized Property (from UML) used to specify that instances of
its owner (i.e. mental semi-entities) have control over instances of the MentalClasses of
its type, e.g. can decide whether to believe or not (and to what extent) in a Belief, or
whether and when to commit to a Goal. The attitude of a mental semi-entity to a belief
or commitment to a goal is modeled by a Belief instance, or a Goal instance, being held
in a slot of the corresponding MentalProperty. The type of a MentalProperty can be only
a MentalClass. MentalProperties can be owned only by:

• MentalSemiEntityTypes as attributes, or

• MentalAssociations as member ends.
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MentalProperties (except of MentalProperties of Belief type) can own MentalConstraints
(each of a different type) to allow the redefinition of MentalConstraints of their types.
The redefinition rules are described in section 10.1.4. Note: The Plans controlled by
MentalSemiEntityTypes are modeled as owned UML Activities, and therefore use of Plans
as types of MentalProperties is forbidden, even if they are specialized MentalClasses. For
more details see [1, p. 268].

MentalProperty is introduced to specify that mental semi-entities have control over Goal
and Belief instances.

MentalProperty
�(. . . , degree, association, type,mentalConstraint)
Property

degree : seqValueSpecification
association : P MentalAssociation
type : P MentalClass
mentalConstraint : P MentalConstraint c©
#degree ≤ 1
#association ≤ 1
∀ o : association • o.mentalMemberEnd = self
#type ≤ 1
[1] self .type �= ∅ ⇒ isKindOf (self .type,Plan) = false
[2] ∀mc1,mc2 : mentalConstraint •

mc1.kind �= mc2.kind
[3] ¬ (self .type �= ∅ ∧ isKindOf (self .type,ConstrainedMentalClass = true))

⇒ mentalConstraint = ∅

MentalProperty class inherits from Property class. Following invariants must be satisfied:

[1] If the type set is specified, the MentalClass referred to by it cannot be a Plan.

[2] Each mentalConstraint must have different kind.

[3] The mentalConstraints can be specified only for a ConstrainedMentalClass.

10.1.9 MentalAssociation

MentalAssociation is a specialized Association (from UML) between a MentalSemiEntity-
Type and a MentalClass used to specify a MentalProperty of the MentalSemiEntityType
in the form of an association end. MentalAssociation is always binary. An instance of the
MentalAssociation is called mental link. For more details see [1, p. 272].

MentalAssociation is introduced to enable modeling of MentalProperties in the form of
association ends. It is used to specify that mental semi-entities have control over Goal and
Belief instances.
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MentalAssociation
�(. . . ,memberEnd ,mentalMemberEnd)
Association

memberEnd : P Property
mentalMemberEnd : P MentalProperty

#memberEnd = 2
#mentalMemberEnd = 1
∀ o : mentalMemberEnd • o.association ∈ self

MentalAssociation class inherits from Association class.

10.1.10 Responsibility

Responsibility is a specialized Realization (from UML) used to model a relation between
MentalClasses (called responsibility objects) and NamedElements (from UML) (called re-
sponsibility subjects) that are obligated to accomplish (or to contribute to the accomplish-
ment of) those MentalClasses (e.g. modification of Beliefs, or achievement or maintenance
of Goals, or realization of Plans). For more details see [1, p. 273].

Responsibility is introduced to model which NamedElements are responsible for (or con-
tribute to) the accomplishment of instances of which MentalClasses.

Responsibility
�(. . . , object , subject)
Realization

object : P MentalClass
subject : P NamedElement

#object ≥ 1
∀ o : object • self ∈ o.isResponsibilityOf
#subject ≥ 1

Responsibility class inherits from Realization class.

10.2 Beliefs

The Beliefs package defines metaclasses used to model beliefs.

10.2.1 Belief

Belief is a specialized MentalClass used to model a state of affairs, proposition or other
information relevant to the system and its mental model. If an instance of a Belief is
held in a slot of a mental semientity’s MentalProperty, it represents the information which
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the mental semi-entity believes, and which does not need to be objectively true. The
ability of a MentalSemiEntityType to believe in beliefs of a particular type is modeled
by the ownership of a MentalProperty of the corresponding type. The belief referred
to by several mental semi-entities simultaneously represents their common belief. The
degree meta-association of a Belief specifies the reliability or confidence in the information
specified by the Belief ’s constraint, i.e. a degree to which it is believed that the information
specified by the Belief is true. AML does not specify either the syntax or semantics of
degree’s values, users are free to define and use their own. For example the values can
be real numbers, integers, enumeration literals, expressions, etc. The specification of the
information a Belief represents is expressed by the owned Constraint (from UML). When
inherited, the owned constraint is overridden. It is possible to specify attributes and/or
operations for a Belief, to represent its parameters and functions, which can both be used
in the owned constraint as static or computed values. For more details see [1, p. 275].

Belief is introduced to model beliefs.

Belief
�(. . . , constraint , degree)
MentalClass

constraint : P Constraint c©
degree : seqValueSpecification

#constraint ≤ 1
#degree ≤ 1

Belief class inherits from MentalClass class.

10.3 Goals

The Goals package defines metaclasses used to model goals.

10.3.1 Goal

Goal is an abstract specialized ConstrainedMentalClass used to model goals, i.e. condi-
tions or states of affairs, with which the main concern is their achievement or maintenance.
The Goals can thus be used to represent objectives, needs, motivations, desires, etc. Com-
mitment of a mental semi-entity to a goal is modeled by containment of the corresponding
Goal instance by the value of the mental semi-entity’s MentalProperty. The goal to which
several mental semi-entities are committed to simultaneously represents their common
goal. The meta-attribute degree specifies the relative importance or appropriateness of
the Goal. AML does not specify either the syntax or semantics of degree’s values, users
are free to define and use their own. Goals can have attributes to specify parameters of
their instances, e.g. the goal “Buy car” can have attributes carType, carColor, or max-
Price. Goals can have also operations to compute e.g. utility function(s) to determine
how valuable the goal is, or operations computing the parameters of goals, etc. For more
details see [1, p. 279].
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Goal is introduced to define the common features of all its subclasses that are used to
model concrete types of goals.

Goal
�(. . . , degree)
ConstrainedMentalClass

degree : seqValueSpecification

Goal = ∅

#degree ≤ 1

Goal is an abstract class that inherits from ConstrainedMentalClass class.

10.3.2 DecidableGoal

DecidableGoal is a specialized concrete Goal used to model goals for which there are
clear-cut criteria according to which the goal-holder can decide whether the DecidableGoal
(particularly its postCondition; for details see section 10.1.5) has been achieved or not.
For more details see [1, p. 278].

DecidableGoal is introduced to explicitly model decidable goals.

DecidableGoal
Goal

DecidableGoal class inherits from Goal class.

10.3.3 UndecidableGoal

UndecidableGoal is a specialized concrete Goal used to model goals for which there are no
clear-cut criteria according to which the goalholder can decide whether the postCondition
(see section 10.1.5 for details) of the UndecidableGoal is achieved or not. For more details
see [1, p. 280].

UndecidableGoal is introduced to explicitly model undecidable goals.

UndecidableGoal
Goal

UndecidableGoal class inherits from Goal class.

10.4 Plans

The Plans package defines metaclasses devoted to modeling plans.
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10.4.1 Plan

Plan is a specialized ConstrainedMentalClass and Activity (from UML), used to model
capabilities of MentalSemiEntityTypes which represents either:

• predefined plans, i.e. kinds of activities a mental semi-entity’s reasoning mechanism
can manipulate in order to achieve Goals, or

• fragments of behavior from which the plans can be composed (also called plan frag-
ments).

In addition to UML Activity, Plan allows the specification of commit condition, cancel
condition, and invariant (for details see section 10.1.5), which can be used by reasoning
mechanisms. For modeling the applicability of Plans, in relation to given Goals, Beliefs
and other Plans, the Contribution relationship is used. The meta-attribute degree specifies
the relative preference of the Plan. AML does not specify either the syntax or semantics
of degree’s values, users are free to define and use their own. For more details see [1, p.
282].

Plan is introduced to model predefined plans, or fragments of plans from which the plans
can be composed.

Plan
�(. . . , degree)
Activity
ConstrainedMentalClass

degree : seqValueSpecification

#degree ≤ 1
[1] ∀ p : self .precondition | p �= ∅ •

∀mc : self .mentalConstraint | mc.kind �= ∅

∧ mc.kind = preCondition •
p.specification = mc.kind .specification

[2] ∀ p : self .postcondition | p �= ∅ •
∀mc : self .mentalConstraint | mc.kind �= ∅

∧ mc.kind = postCondition •
p.specification = mc.kind .specification

[3] ∀ c : context | c �= ∅ •
isKindOf (c,MentalSemiEntityType) = true

Plan is a specialized class that inherits from Activity and ConstrainedMentalClass classes.
Following invariants must be satisfied:

[1] Specification of the Constraint referred to by the precondition set is identical with
the specification of the MentalConstraint of kind preCondition referred to by the
mentalConstraint set, if the both are specified.

[2] Specification of the Constraint referred to by the postcondition set is identical with
the specification of the MentalConstraint of kind postCondition referred to by the
mentalConstraint set, if the both are specified.
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[3] If the context for Plan is specified, it must be a MentalSemiEntityType.

10.4.2 CommitGoalAction

CommitGoalAction is a specialized CreateObjectAction (from UML) and AddStructuralFea-
tureValueAction (from UML), used to model the action of commitment to a Goal. This
action allows the realization of the commitment to a Goal by instantiating the Goal and
adding the created instance as a value to the MentalProperty of the mental semi-entity
which commits to the Goal. Commitment to an existing instance of a Goal can be modeled
by AddStructuralFeatureValueAction (from UML) or by CreateLinkAction (from UML).
The CommitGoalAction specifies:

• what Goal is being instantiated (goalType meta-association),

• the Goal instance being created (goalInstance meta-association),

• the owning mental semi-entity committed to the Goal (mentalSemiEntity meta-
association), and

• the MentalProperty, owned by the type of the owning mental semi-entity, to which
the created Goal instance is added (mentalProperty meta-association).

For more details see [1, p. 284].

CreateRoleAction is introduced to model commitment actions within Activities (Plans).

CommitGoalAction
�(. . . ,mentalProperty ,mentalSemiEntity , goalInstance, goalType)
AddStructuralFeatureValueAction
CreateObjectAction

mentalProperty : P MentalProperty
mentalSemiEntity : P InputPin c©
goalInstance : P OutputPin c©
goalType : P Goal

#mentalProperty = 1
#mentalSemiEntity = 1
#goalInstance = 1
#goalType = 1
[1] mentalSemiEntity .type �= ∅

⇒ isKindOf (mentalSemiEntity .type,MentalSemiEntityType) = true
[2] goalInstance.type �= ∅

⇒ conformsTo(goalInstance.type, goalType) = true
[3] mentalProperty .type �= ∅

⇒ conformsTo(goalType,mentalProperty .type) = true
[4] ∀ hc : self .activity().hostClassifier() •

isKindOf (hc,MentalSemiEntityType) = true

CommitGoalAction class inherits from AddStructuralFeatureValueAction and CreateOb-
jectAction class. Following invariants must be satisfied:
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[1] If the type of the InputPin referred to by the mentalSemiEntity set is specified, it
must be a MentalSemiEntityType.

[2] If the type of the OutputPin referred to by the goalInstance set is specified, it must
conform to the Goal referred to by the goalType set.

[3] If the type of the MentalProperty referred to by the mentalProperty set is specified,
the Goal referred to by the goalType set must conform to it.

[4] CommitGoalAction can be performed only by a mental semi-entity.

10.4.3 CancelGoalAction

CancelGoalAction is a specialized DestroyObjectAction (from UML) used to model de-
commitment from goals. This action allows the realization of de-commitment from a Goal
by destruction of the corresponding Goal instance. De-commitment from an instance of a
Goal that does not need to be destroyed can be modeled by RemoveStructuralFeatureVal-
ueAction (from UML) or DestroyLinkAction (from UML). For more details see [1, p. 287].

CancelGoalAction is introduced to model de-commitment to goals.

CancelGoalAction
�(. . . , goalInstance)
DestroyObjectAction

goalInstance : P InputPin c©
#goalInstance ≥ 1
[1] ∀ gi : goalInstance | gi .type �= ∅ •

isKindOf (gi .type,Goal) = true
[2] ∀ hc : self .activity().hostClassifier() •

isKindOf (hc,MentalSemiEntityType) = true

CancelGoalAction class inherits from DestroyObjectAction class. Following invariants must
be satisfied:

[1] If the types of the InputPins referred to by the goalInstance set are specified, they
must be Goals.

[2] CancelGoalAction can be performed only by a mental semi-entity.

10.5 Mental Relationships

The Mental Relationships package defines metaclasses used to model relationships between
MentalStates which can support reasoning processes.
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10.5.1 Contribution

Contribution is a specialized MentalRelationship and DirectedRelationship (from UML)
used to model logical relationships between MentalStates and their MentalConstraints.
The manner in which the contributor of the Contribution relationship (i.e. a Mental-
State referred to by the contibutor meta-association) influences its beneficiary (i.e. a
MentalState referred to by the beneficiary meta-association) is specified by values of meta-
attributes of the particular Contribution. The meta-attribute kind determines whether
the contribution of the contributor’s MentalConstraint of a given kind (specified by the
metaattribute contributorConstraintKind) is a necessary, sufficient, or equivalent condi-
tion for the beneficiary’s MentalConstraint of a given kind (specified by the meta-attribute
beneficiaryConstraintKind). The meta-attribute contributorConstraintKind specifies the
kind of a MentalConstraint of the contributor which contributes in some way to a kind
of MentalConstraint of the beneficiary, specified by the beneficiaryConstraintKind meta-
attribute. For example, a Contribution can specify that a postcondition of the contributor
contributes in some way (e.g. in a positive and sufficient way) to the precondition of the
related beneficiary. For details about possible values of the constraint kinds see section
10.1.5. If contributor and/or beneficiary is a Belief, the contributorConstraintKind and/or
the beneficiaryConstraintKind meta-attribute is unspecified. In this case the Belief ’s con-
straint is considered to contribute or benefit. If the contributor and/or beneficiary is a
Contribution, the contributorConstraintKind and/or the beneficiaryConstraintKind meta-
attributes are also unspecified. The meta-attribute degree can be used to specify the
extent to which the contributor influences the beneficiary. AML does not specify either
the syntax or semantics of degree’s values, users are free to define and use their own. For
more details see [1, p. 289].

Contribution is introduced to model logical relationships between MentalStates and their
MentalConstraints.
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Contribution
�(. . . , kind , contributorConstraintKind , beneficiaryConstraintKind ,
degree, beneficiary , contributor)

MentalRelationship
DirectedRelationship

kind : ContributionKind
contributorConstraintKind : seqMentalConstraintKind
beneficiaryConstraintKind : seqMentalConstraintKind
degree : seqValueSpecification
beneficiary : P MentalState
contributor : P MentalState

#contributorConstraintKind ≤ 1
#beneficiaryConstraintKind ≤ 1
#degree ≤ 1
#beneficiary = 1
#contributor = 1
[1] isKindOf (contributor ,Belief ) = true

∨ isKindOf (contributor ,Contributor) = true
⇒ contributorConstraintKind �= ∅

[2] isKindOf (beneficiary ,Belief ) = true
∨ isKindOf (beneficiary ,Contribution) = true

⇒ beneficiaryConstraintKind �= ∅

Contribution class inherits from MentalRelationship and DirectedRelationship classes. In-
variant [1] says that if the MentalState referred to by the contributor set is a Belief or a
Contribution, the contributorConstraintKind set is unspecified. Invariant [2] formalizes the
fact that if the MentalState referred to by the beneficiary set is a Belief or a Contribution,
the beneficiaryConstraintKind set is unspecified.

10.5.2 ContributionKind

ContributionKind is an enumeration which specifies possible kinds of Contributions. AML
supports sufficient, necessary and equivalent (iff) contribution kinds. If needed, the set of
ContributionKind enumeration literals can be extended. For more details see [1, p. 298].

ContributionKind is introduced to define possible kinds of Contributions.

ContributionKind ::= sufficient | necessary | iff

In Object-Z, ContributionKind is an enumeration, which has sufficient, necessary, and iff
values.



Chapter 11

Ontologies

The Ontologies package defines the metaclasses used to model ontologies. AML allows the
specification of class-level as well as instancelevel ontologies.

11.1 Basic Ontologies

The Basic Ontologies package defines the generic means for modeling of ontologies in
AML, namely, ontology classes and their instances, relationships, constraints, and ontology
utilities. Ontology models are structured by means of the ontology packages.

11.1.1 Ontology

Ontology is a specialized Package (from UML) used to specify a single ontology. By
utilizing the features inherited from UML Package (package nesting, element import,
package merge, etc.), Ontologies can be logically structured. For more details see [1, p.
300].

Ontology is introduced to specify a single ontology.

Ontology
Package

Ontology class inherits from Package class.

11.1.2 OntologyClass

OntologyClass is a specialized Class (from UML) used to represent an ontology class (called
also ontology concept or frame). Attributes and operations of the OntologyClass represent
its slots. Ontology functions, actions, and predicates belonging to a concept modeled
by an OntologyClass are modeled by its operations. OntologyClass can use all types of
relationships allowed for UML Class (Association, Generalization, Dependency, etc.) with
their standard UML semantics. Even if UML predefines the“facet”used for attributes and
operations (i.e. the form of metainformation that can be specified for them, for example,
name, multiplicity, list of parameters, return value, or standard tagged values), the user is
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allowed to extend this metainformation by adding specific tagged values. OntologyClass
can also be used as an AssociationClass. For more details see [1, p. 300].

OntologyClass is introduced to model an ontology class (also called concept or frame).

OntologyClass
Class

OntologyClass inherits from Class class.

11.1.3 OntologyUtility

OntologyUtility is a specialized Class (from UML) used to cluster global ontology con-
stants, ontology variables, and ontology functions/actions/predicates modeled as owned
features. The features of an OntologyUtility can be used by (referred to by) other elements
within the owning and importing Ontologies. There can be more than one OntologyUtility
classes within one Ontology. In such a way different OntologyUtilities provide clusters for
logical grouping of their features. OntologyUtility has no instances, all its features are
class-scoped. For more details see [1, p. 302].

OntologyUtility is introduced to cluster global ontology constants, ontology variables, and
ontology functions/actions/predicates.

OntologyUtility
Class

OntologyUtility class inherits from Class class.
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Model Management

The Model Management package defines the generic-purpose modeling constructs which
can be used to structure AML models and thus manage their complexity and understand-
ability.

12.1 Contexts

The Contexts package defines the metaclasses used to logically structure models according
to situations that can occur during a system’s lifetime and to model elements involved in
handling those situations.

12.1.1 Context

Context is a specialized Package (from UML) used to contain a part of the model relevant
for a particular situation. The situation is specified either as a Constraint (from UML)
or an explicitly modeled State (from UML) associated with the Context. For more details
see [1, p. 304].

Context is introduced to offer the possibility to logically structure models according to the
situations which can occur during a system’s lifetime and to model elements involved in
handling those situations.

Context
�(situationConstraint , situationState)
Package

situationConstraint : P Constraint c©
situationState : P State

#situationConstraint ≤ 1
#situationState ≤ 1
[1] (situationState �= ∅ ∧ situationContext = ∅)

∨ (situationState = ∅ ∧ situationContext �= ∅)

Context class inherits from Package class. Invariant [1] says that either the situationState
or the situationConstraint can be specified.
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Chapter 13

UML Extension for AML

The UML Extension for AML package adds the meta-properties defined in the AML Kernel
package to the standard UML 2.0 Superstructure metaclasses. It is a non-conservative
extension of UML, and is an optional part of the language.

13.1 Extended Actor

Actor, being a specialized AutonomousEntityType, can:

• own MentalProperties,

• have Capabilities,

• be decomposed into BehaviorFragments,

• provide and/or use services (see section 9.4),

• observe and/or effect its environment (see section 9.5),

• play entity roles (see section 8.5),

• participate in social relationships (see section 8.5), and

• specify values of the meta-attributes defined by the SocializedSemiEntityType.

For more details see [1, p. 307].

Extension of UML Actor is introduced to allow the modeling of Actors as Autonomous-
EntityTypes.

Actor
AutonomousEntityType

Actor class inherits from AutonomousEntityType class.
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13.2 Extended BehavioralFeature

BehavioralFeature, being a specialized Capability, can in addition to UML BehavioralFea-
ture also specify meta-associations: inputs, outputs, pre-conditions, and post-conditions.
For more details see [1, p. 308].

The extension of BehavioralFeature is introduced to unify common meta-attributes of
BehavioralFeature and Behavior in order to refer to them uniformly e.g. while reasoning.

BehavioralFeature
Capability

BehavioralFeature = ∅

BehavioralFeature is an abstract class, which inherits from Capability class.

13.3 Extended Behavior

Behavior, being a specialized Capability, can in addition to UML Behavior also specify
meta-associations: inputs, outputs, pre-conditions, and post-conditions. For more details
see [1, p. 309].

Extension of Behavior is introduced to unify common meta-attributes of BehavioralFeature
and Behavior in order to refer to them uniformly e.g. while reasoning.

Behavior
Capability

Behavior = ∅

Behavior is an abstract class that inherits from Capability class.
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Abstract Multi-Agent Framework
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Chapter 14

Concepts of AML

In order to properly understand AML, it is necessary to understand its underlying con-
cepts. This chapter provides a description of the fundamental concepts used to describe
an abstract metamodel of a MAS. The intention is not to provide a comprehensive meta-
model for all aspects and details of a MAS (such as detailed architectural design, system
dynamics, or operational semantics), but rather to explain the concepts that were used
as the underlying principles of AML and influenced the design of comprised modeling
constructs. [1]

Every section describes a part of the abstract MAS specified in OZ. Each component is
specified independently in a separate subsection in following matter:

• A short informal definition of presented component.

• An Object-Z class schema that formalizes the described component.

• A natural language explanation of presented schema.

This chapter is related to chapter 5 Concepts of AML [1, p. 37] and to chapter 6 AML
Modeling Mechanisms [1, p. 53].

14.1 Operation Templates

Following generic schemas are used as templates and provides basic maintain operations
on sets.

AddElement [X ,Y ]
Δ(X )
y? : Y

y? �∈ X
X ′ = X ∪ {y?}

AddElement is a generic Z schema that forms a template of adding an element of type Y
into set expressed by X. Generic parameters X and Y are substitued by real values.
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RemoveElement [X ,Y ]
Δ(X )
y? : Y

y? ∈ X
X ′ = X \ {y?}

RemoveElement is a similar generic Z schema that forms a template of removing an ele-
ment.

AlterElement [X ,Y ]
Δ(X )
old? : Y
new? : Y

old? ∈ X
new? �∈ X
X ′ = X ∪ {new?} \ {old?}

AlterElement is a generic Z schema that forms a template of altering an element.

14.2 Multi-Agent System

This part of the conceptual MAS metamodel specifies the overall model of a multi-agent
system.

14.2.1 MAS

MAS (multi-agent system) is a system composed of several agents, capable of mutual
interaction. In the AML framework, a multi-agent system is an object that consists of, in
addition to agents, other entity types, e.g. Environments or Resources (see section 14.3).
In general we say that a multi-agent system comprises Entities. Physically, such a system
can be deployed on several agent execution environments. This ensures the fact that MAS
is specialized Object.

MAS
�(. . . , comprise, Init ,AddEntity ,RemoveEntity ,AlterEntity)
Object

comprise : P ↓Entity

INIT

comprise = ∅

AddEntity =̂ AddElement [comprise, ↓Entity ]
∧[self �∈ y?.hostedBy ⇒ y?.AddHost(self )]

RemoveEntity =̂ RemoveElement [comprise, ↓Entity ]
∧[self ∈ y?.hostedBy ⇒ y?.RemoveHost(self )]
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AlterEntity =̂ [old? : ↓Entity ; new? : ↓Entity ]
∧RemoveEntity(old?)∧AddEntity(new?)

The Object-Z definition of MAS includes visibility list, inherited class Object, comprise
attribute, which is a set of Entity (and all its sub-classes) instances. We also define
basic operations of addition, removal, and alteration on all attributes. Init state schema
identified by Init keyword declares the initial state of MAS class schema.

14.3 MAS Semi-entities and Entities

This part of the AML conceptual model of MAS deals with the modeling of constituents
of a multi-agent system. MAS may consist of a set of interconnected entities of differ-
ent types, namely agents, resources and environments. They are represented by concrete
classes in the MAS conceptual metamodel. Furthermore, these entities are categorized,
according to their specific characteristics, into several categories expressed in the concep-
tual metamodel by abstract classes used as superclasses to the concrete ones. In order
to maximize reuse and comprehensibility of the concepts, AML defines several auxiliary
abstract metamodeling concepts called semi-entities. Semi-entity is a modeling concept
that defines certain features specific to a particular aspect or aspects of entities, but does
not itself represent an entity. All entities inherit their features from semi-entities. Because
semi-entities are abstractions, the metaclasses representing semi-entities in the MAS con-
ceptual metamodel are abstract, and therefore they cannot be instantiated at a system’s
run time. [1]

14.3.1 StructuralSemiEntity

StructuralSemiEntity represents the capability of an entity to have properties, to be decom-
posed into other StructuralSemiEntities, and to be linked to other StructuralSemiEntity.
Each StructuralSemiEntity has structural capability and can be structured, internally and
externally. Internal structure of StructuralSemiEntity is given by values of owned prop-
erties and by nesting of StructuralSemiEntities. External structure of StructuralSemi-
Entities is specified by means of links among StructuralSemiEntities. Slot represents a
set of key-value pairs that are used to specify properties of its owner. Values of all prop-
erties of StructuralSemiEntity determine its state. In order to model hierarchical struc-
tures, StructuralSemiEntity can be nested, i.e. one StructuralSemiEntity can contain other
StructuralSemiEntities. StructuralSemiEntity can also be linked to other StructuralSemi-
Entities. A link represents a semantic relationship of two or more StructuralSemiEntities
that know each other and can communicate.
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StructuralSemiEntity
�(slot , consist , link , Init ,AddProperty ,RemoveProperty ,AlterProperty ,
AddStructuralSemiEntity ,RemoveStructuralSemiEntity ,
AlterStructuralSemiEntity ,AddLinkTo,RemoveLinkTo,AlterLinkTo)

slot : P Name × Value
consist : P ↓StructuralSemiEntity c©
link : P ↓StructuralSemiEntity

StructuralSemiEntity = ∅

consist ⊆ link

INIT

slot = ∅

consist = ∅

link = ∅

AddProperty
Δ(slot)
n? : Name
v? : Value

(n?, v?) �∈ slot
slot ′ = slot ∪ {(n?, v?)}

RemoveProperty
Δ(slot)
n? : Name
v? : Value

(n?, v?) ∈ slot
slot ′ = slot \ {(n?, v?)}

AlterProperty =̂ [old? : Name × Value; new? : Name × Value]
∧RemoveProperty(old?)∧AddProperty(new?)

AddStructuralSemiEntity =̂ AddElement [consist , ↓StructuralSemiEntity ]
RemoveStructuralSemiEntity =̂ RemoveElement [consist , ↓StructuralSemiEntity ]
AlterStructuralSemiEntity =̂ AlterElement [consist , ↓StructuralSemiEntity ]
AddLinkTo =̂ AddElement [link , ↓StructuralSemiEntity ]
RemoveLinkTo =̂ RemoveElement [link , ↓StructuralSemiEntity ]
AlterLinkTo =̂ AlterElement [link , ↓StructuralSemiEntity ]

The Object-Z definition of StructuralSemiEntity includes visibility list, slot attribute that
represents the ability of having property, consist attribute - a set of all ↓StructuralSemiEntity
instances, where that set is contained ( c©) and link attribute of all ↓StructuralSemiEntity
instances. We also define basic operations of addition, removal, and alteration on all
attributes.

Following Object-Z given sets are introduced.
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[Name]

Name is a given set, from which the names of all classes, attributes, operations, operation
parameters, associations and roles are drawn.

[Value]

Value is given set, from which all kinds of values are drawn. This incorporates basic types
as numbers, characters, structural types, instances of classes defined in this chapter, etc.

14.3.2 DeployableSemiEntity

DeployableSemiEntity represents the capability of an entity to be deployed on one or more
AgentExecutionEnvironments (see section 14.5).

DeployableSemiEntity
�(hosting , Init ,AddHosting ,RemoveHosting ,AlterHosting)

hosting : P Hosting

∀ h : hosting • h.deployableSemiEntity = self

INIT

hosting = ∅

AddHosting =̂ AddElement [hosting ,Hosting ]
∧[y?.deployableSemiEntity = self ;

{host : Hosting | host ∈ y?.agentExecutionEnvironment .hosting •
host = y?} = ∅

⇒ y?.agentExecutionEnvironment .AddHosting(y?)]
RemoveHosting =̂ RemoveElement [hosting ,Hosting ]

∧[y?.deployableSemiEntity = self ;
{host : Hosting | host ∈ y?.agentExecutionEnvironment .hosting •

host = y?} �= ∅

⇒ y?.agentExecutionEnvironment .RemoveHosting(y?)]
AlterHosting =̂ [old? : Hosting ; new? : Hosting ]

∧RemoveHosting(old?)∧AddHosting(new?)

DeployableSemiEntity class schema includes visibility list, hosting attribute - a set of Host-
ing instances. The attribute hosting in the DeployableSemiEntity class corresponds to an
attribute deployableSemiEntity in the Hosting class, indicating a bi-directional relation-
ship between a DeployableSemiEntity and Hosting. We also define basic operations of
addition, removal, and alteration on all attributes.

14.3.3 CapableSemiEntity

CapableSemiEntity represents the capability of an entity to possess capabilities.
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CapableSemiEntity
�(hasCapability , Init ,AddCapability ,RemoveCapability ,AlterCapability)

hasCapability : P ↓Capability c©
CapableSemiEntity = ∅

INIT

hasCapability = ∅

AddCapability =̂ AddElement [hasCapability , ↓Capability ]
RemoveCapability =̂ RemoveElement [hasCapability , ↓Capability ]
AlterCapability =̂ AlterElement [hasCapability , ↓Capability ]

CapableSemiEntity class includes visibility list, hasCapability attribute – set of all instances
of class Capability or all Capability ’s subclasses. We say that CapabilitySemiEntity has
a set of abilities that can be performed. At last, we define basic operations of addition,
removal, and alteration on hasCapability attribute.

We introduce given set of all constraints that can represent a precondition or postcondition
in the next class schema.

[Constraint ]

Constraint represents a given set of all constraints.

Capability is used to model an abstract specification of a behavior that allows reasoning
about and operations on that specification. Technically, a capability represents a uni-
fication of common specification properties of UML’s behavioral features and behaviors
expressed in terms of inputs outputs, pre- and post-conditions. [1]

Capability
�(precondition, postcondition, Init ,Run, input , output , evalConstraint ,
evalPrecondition, compute, determinePostcondition)

precondition : P Constraint
postcondition : P Constraint
input : seqName × Value
output : seqName × Value
evalConstraint : Constraint → Boolean
evalPrecondition : P Constraint → Boolean
compute : seqName × Value → seqName × Value
determinePostcondition : (seqName × Value) × P Constraint → P Constraint

ran evalPrecondition =
∨

evalConstraint(c : dom evalPrecondition)
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INIT

precondition = ∅

postcondition = ∅

input = ∅

output = ∅

Run
Δ(postcondition, output)

evalPrecondition(precondition) = true
input �= 〈 〉
output ′ = compute(input)
postcondition ′ = determinePostcondition(input , precondition)

Capability is an Object-Z class that includes visibility list, a set of attributes and functions,
and defines operation Run, which represents execution of capability. Capability defines
preconditions and functions evalConstraint and determinePostcondition to evaluate them.
All preconditions are logically OR-ed.

In Object-Z, Capability can also be understood as an operation, that can be run. When
the evaluation of preconditions is true and the sequence of input values is not empty then
a computation occurs, which outputs postconditions and output values.

14.3.4 BehavioredSemiEntity

BehavioredSemiEntity represents the ability of an entity to own Capabilities, interact with
other BehavioredSemiEntities, provide and use Services, to observe and effect their en-
vironment by means of Perceptors and Effectors, and to be decomposed into Behavior-
Fragments. For details see section 14.7.

14.3.5 SocializedSemiEntity

SocializedSemiEntity represents the capability of an entity to form societies and can par-
ticipate in social relationships. See section 14.4 Social Aspects for details.

14.3.6 MentalSemiEntity

MentalSemiEntity represents the capability of an entity to possess (or to be characterized
in terms of) mental attitudes, e.g. which information it believes in, what are its objectives,
needs, motivations, desires, what goal(s) it is committed to, when and how a particular
goal is to be achieved, which plan to execute, etc. For details see section 14.8 Mental
Aspects.

14.3.7 Object

Object represents all objects, which can exist in the system. Each object is a special-
ized StructuralSemiEntity, which can own capabilities (CapableSemiEntity), and can be
deployed in one or more AgentExecutionEnvironments (DeployableSemiEntity).



14.3. MAS Semi-entities and Entities 96

Object
�(. . . , deployedAt , Init ,Deploy ,Terminate,Replace)
StructuralSemiEntity
CapableSemiEntity
DeployableSemiEntity

deployedAt : P AgentExecutionEnvironment

∀ d : deployedAt • self ∈ d .deployed

INIT

deployedAt = ∅

Deploy =̂ AddElement [deployedAt ,AgentExecutionEnvironment ]
∧[self �∈ y?.deployed ⇒ y?.DeployObject(self )]

Terminate =̂ RemoveElement [deployedAt ,AgentExecutionEnvironment ]
∧[self ∈ y?.deployed ⇒ y?.TerminateObject(self )]

Replace =̂ [old?,new? : AgentExecutionEnvironment ]
∧Terminate(old?)∧Deploy(new?)

Object is an Object-Z class that comprises visibility list, inherited classes – StructuralSemi-
Entity, CapableSemiEntity, DeployableSemiEntity – a set of attributes and operations that
are identical to addition, removal, and alteration, but have different names. Each Object
can be deployed in an AgentExecutionEnvironment. This capability is represented by
deployedAt attribute and following condition ∀ d : deployedAt • self ∈ d .deployed .

14.3.8 Entity

Entity represents specialized Object, which can be hosted by an multi-agent system (MAS ).

Entity
�(. . . , hostedBy , Init ,AddHost ,RemoveHost ,AlterHost)
Object

hostedBy : P MAS

Entity = ∅

INIT

hostedBy = ∅

AddHost =̂ AddElement [hostedBy ,MAS ]
∧[self �∈ y?.comprise ⇒ y?.AddEntity(self )]

RemoveHost =̂ RemoveElement [hostedBy ,MAS ]
∧[self ∈ y?.comprise ⇒ y?.RemoveEntity(self )]

AlterHost =̂ [old? : MAS ; new? : MAS ]
∧RemoveHost(old?)∧AddHost(new?)



14.3. MAS Semi-entities and Entities 97

The Object-Z definition of Entity includes visibility list, inherited Object class, hostedBy
attribute that represents a set of all MAS instances, which own Entity. We also define
basic operations of addition, removal, and alteration on hostedBy attribute.

14.3.9 BehavioralEntity

BehavioralEntity is an abstract specialized entity which represents entities having the
features of BehavioredSemiEntities (see section 14.7 Behaviors) and SocializedSemiEntities
(see section 14.4 Social Aspects), and can play entity roles (see section 14.4 Social Aspects).

14.3.10 Resource

Resource is a concrete specialized BehavioralEntity used to represent a physical or an
informational entity within the system, with which the main concern is its availability and
usage (e.g. quantity, access rights, conditions of consumption).

Resource
�(. . .)
BehavioralEntity

Resource is defined as Object-Z class, that inherits from BehavioralEntity. Visibility list is
completly inherited from the superclass – this is denoted by � (. . .). As we have mentioned
in section 5.2.7, the visibility list of a class is not inherited by default.

14.3.11 AutonomousEntity

AutonomousEntity is an abstract specialized behavioral entity and MentalSemiEntity (see
section 14.8 Mental Aspects), used to represent self-contained entities that are capable
of autonomous behavior in their environment, i.e. entities that have control of their own
behavior, and act upon their environment according to the processing of (reasoning on)
perceptions of that environment, interactions and/or their mental attitudes. Autonomous-
Entity can be characterized in terms of its mental attitudes (see section 14.8 Mental As-
pects).

AutonomousEntity
�(. . .)
BehavioralEntity
MentalSemiEntity

AutonomousEntity = ∅

AutonomousEntity is an abstract Object-Z class, which superclasses are BehavioralEntity
and MentalSemiEntity. Visibility list is completely inherited.
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14.3.12 Agent

Agent is a concrete specialized AutonomousEntity representing a self-contained entity that
is capable of autonomous behavior within its environment. An agent is a special object
having at least the following additional features:

• autonomy, i.e. control over its own state and behavior, based on external (reactivity)
or internal (proactivity) stimuli, and

• ability to interact, i.e. the capability to interact with its environment, including
perceptions and effecting actions, speech act based interactions.

Other features such as mobility, adaptability, learning, etc., are optional in the AML
framework.

Agent
�(. . .)
AutonomousEntity

Agent is an Object-Z class that inherites visibility list and all functionality from Autonomous-
Entity class.

14.3.13 Environment

Environment is a concrete specialized AutonomousEntity representing a logical or physical
surroundings of comprised entities which provides conditions under which the entities exist
and function. Environment defines a particular aspect or aspects of the world which
entities inhabit, its structure and behavior. It can contain the space and all the other
objects in the entity surroundings, but also those principles and processes (i.e. laws,
rules, constraints, policies, services, roles, resources, etc.) which together constitute the
circumstances under which entities act. One entity can appear in several environments at
once and one environment can comprise several entities. Environments are not considered
to be static. Their properties, structure, behavior, mental attitudes, participating entities
and their features, etc. can change over time.

Environment
�(. . .)
AutonomousEntity

The Object-Z class Environment with its visibility list is inherited from AutonomousEntity.

14.4 Social Aspects

The social aspects define concepts used to model organization structure of entities, they
social relationships and the possibility to play (social) roles.
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14.4.1 SocialRelationshipKind

SocialRelationshipKind is introduced to define allowed values for SocialRelationship.

Similar to UML, in Object-Z can be defined enumeration types.

SocialRelationshipKind ::= peer | superordinate | subordinate

SocialRelationshipKind is an enumeration type, which can have peer, superordinate, and
subordinate values.

14.4.2 SocialRelationship

SocialRelationship is a particular type of connection existing between SocializedSemi-
Entities related to or having to deal with each other. A SocialRelationship is charac-
terized by its kind. AML predefines two rather high abstract kinds, peer-to-peer and
superordinate-to-subordinate. The set of supported SocialRelationshipKinds can be ex-
tended as required, e.g. by producer-consumer, competitors, or kinds of interpersonal re-
lationships inspired by sociology, for instance intimate relationships, sexual relationships,
friendship, acquaintanceship, brotherhood, etc.

SocialRelationship
�(kind , socializedSemiEntity)

kind : SocialRelationshipKind
socializedSemiEntity : ↓SocializedSemiEntity

self ∈ socializedSemiEntity .socialRelationship

INIT

kind .Init
socializedSemiEntity .Init

SocialRelationship is an Object-Z class representing an association class from UML. It
comprises of visibility list, attributes and initial state schema.

14.4.3 SocializedSemiEntity

SocializedSemiEntity is a semi-entity used to represent the capability of an entity to form
societies and to participate in social relationships with other socialized semi-entities.
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SocializedSemiEntity
�(socialRelationship)
Object

socialRelationship : P SocialRelationship

SocializedSemiEntity = ∅

INIT

socialRelationship = ∅

AddSocialRelationship =̂ AddElement [socialRelationship,SocialRelationship]
RemoveSocialRelationship =̂

RemoveElement [socialRelationship,SocialRelationship]
AlterSocialRelationship =̂

AlterElement [socialRelationship,SocialRelationship]

SocializedSemiEntity is an abstract Object-Z class that inherits from Object. It includes
socialRelationship attribute, which is a set of SocialRelationship instances. This attribute
defines a social relationship to other ↓SocializedSemiEntities. We also define basic opera-
tions of addition, removal, and alteration on socialRelationship attribute.

14.4.4 BehavioralEntity

BehavioralEntity is an abstract specialized entity which represents entities having the
features of BehavioredSemiEntities (see section 14.7 Behaviors) and SocializedSemiEntities
(see section 14.4 Social Aspects), and can play entity roles (see section 14.4 Social Aspects).

BehavioralEntity
�(. . . , play)
Entity
BehavioredSemiEntity
SocializedSemiEntity

play : P EntityRole c©
BehavioralEntity = ∅

∀ p : play • p.player = self

INIT

play = ∅

AddPlay =̂ AddElement [play ,EntityRole]
∧[y?.player = self ]

RemovePlay =̂ RemoveElement [play ,EntityRole]
∧[y?.player = self ]

AlterPlay =̂ [old? : EntityRole; new? : EntityRole]
∧RemovePlay(old?)∧AddPlay(new?)
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BehavioralEntity is an abstract Object-Z class, which inherits from Entity, Behaviored-
SemiEntity, and SocializedSemiEntity. It includes play attribute, that enables the possi-
bility to play different EntityRoles. We also define basic operation of addition, removal,
and alteration on play attribute.

14.4.5 EntityRole

EntityRole is a concrete specialized StructuralSemiEntity (see section 14.3 MAS Semi-
entities and Entities), BehavioredSemiEntity (see section 14.7 Behaviors), MentalSemi-
Entity (see section 14.8 Mental Aspects), SocializedSemiEntity, and DeployableSemiEntity,
used to represent either a usage of structural properties, execution of a behavior, partic-
ipation in interactions, capability of deployement, or possession of a certain mental state
by a BehavioralEntity in a particular context (e.g. interaction or social). We say that the
BehavioralEntity, called entity role player (or simply player), plays a given EntityRole.
One BehavioralEntity can play several EntityRoles at the same time and can dynamically
change them. The EntityRole exists only while a BehavioralEntity plays it. EntityRole is
an abstraction of features required from the BehavioralEntities which can play it. Each
EntityRole should be realized by a specific implementation possessed by its player. Thus
an EntityRole can be used as an indirect reference to BehavioralEntities, and as such can
be utilized for the definition of reusable patterns (usually defined at the level of types).

EntityRole
�(. . . , player)
StructuralSemiEntity
BehavioralSemiEntity
MentalSemiEntity
SocializedSemiEntity
DeployableSemiEntity

player : ↓BehavioralEntity

self ∈ player .play

The Object-Z class EntityRole inherits from StructuralSemiEntity, BehavioralSemiEntity,
MentalSemiEntity, SocializedSemiEntity, and DeployableSemiEntity. Each EntityRole has
a player that plays it.

14.4.6 OrganizationUnit

OrganizationUnit is a concrete specialized Environment type (see section 14.3 MAS Semi-
entities and Entities) used to represent a social environment or its part. Organization-
Units are usually used to model different kinds of societies, e.g. groups, organizations,
institutions, etc. From an external perspective, OrganizationUnits represent coherent
AutonomousEntities which can have external structure, perform behavior, interact with
their environment, offer services (see section 14.7 Behaviors), possess mental attitudes (see
section 14.8 Mental Aspects), play roles, etc. Properties and behavior of OrganizationUnits
are both:
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• emergent properties and behavior of all their constituents, and

• the properties and behavior of organization units themselves.

From an internal perspective, OrganizationUnits are types of environment that specify
the social arrangements of Entities in terms of structures, interactions, roles, constraints,
norms, etc.

OrganizationUnit
�(. . .)Environment

OrganizationUnit is represented as an Object-Z class, that inherits from Environment.

14.5 MAS Deployment and Mobility

The MAS deployment specifies a set of concepts that are used to define the execution
architecture of a MAS in terms of deployment MAS entities to a physical execution envi-
ronment. The execution environment is modeled by one or more, possibly interconnected
and nested, agent execution environments. The placement and operation of entities at
agent execution environments is specified by concept of hosting. The AML deployment
model supports also mobility, i.e. movement or cloning of entities among different agent
execution environments, that is modeled by dynamic reallocation of hostings. A moving
entity changes its present hosting by a new one located at another agent execution envi-
ronment. Cloned entity creates its copy (called clone) with a new hosting placed at the
same or different agent execution environment. [1]

14.5.1 HostingKind

HostingKind is introduced to define possible values of the kind attribute of the Hosting
relationship.

HostingKind ::= resident | visitor

HostingKind is defined as enumeration type, which can have resident, and visitor values.

14.5.2 Hosting

Hosting is a relationship between an DeployableSemiEntity and the AgentExecutionEnvironment
where the DeployableSemiEntity runs. It can be characterized by the HostingKind, which
is one of the following:

• resident - the DeployableSemiEntity is perpetually hosted by the AgentExecution-
Environment, or

• visitor - the DeployableSemiEntity is temporarily hosted by the AgentExecution-
Environment.
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Hosting
�(kind , deployableSemiEntity , agentExecutionEnvironment)

kind : HostingKind
deployableSemiEntity : ↓DeployableSemiEntity
agentExecutionEnvironment : AgentExecutionEnvironment

self ∈ deployableSemiEntity .hosting
self ∈ agentExecutionEnvironment .hosting

INIT

deployableSemiEntity .Init
agentExecutionEnvironment .Init

Hosting is an Object-Z class that forms an association class between DeployableSemiEntity
and AgentExecutionEnvironment.

14.5.3 AgentExecutionEnvironment

AgentExecutionEnvironment is a concrete specialized StructuralSemiEntity and Beha-
vioredSemiEntity (see section 14.7 Behaviors), used to represent an execution environment
of multi-agent system. AgentExecutionEnvironment provides the physical infrastructure
in which MAS DeployableSemiEntities can run. One DeployableSemiEntity can run in
at most one AgentExecutionEnvironment at one time. It can run at one computational
resource (computer) or is distributed among several nodes possibly connected by a net-
work. It can provide (use) a set of services that DeployableSemiEntities use (provide)
at run time. Owned hostings specify DeployableSemiEntities hosted by (running at) the
AgentExecutionEnvironment.

AgentExecutionEnvironment
�(. . . , hosting , deployed , Init ,AddHosting ,RemoveHosting ,
AlterHosting ,DeployObject ,TerminateObject ,ReplaceObject
Move,Clone)

StructuralSemiEntity
BehavioralSemiEntity

hosting : P Hosting
deployed : P ↓Object

∀ h : hosting • h.agentExecutionEnvironment = self
∀ d : deployed • self ∈ d .deployedAt

INIT

hosting = ∅

deployed = ∅
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AddHosting =̂ AddElement [hosting ,Hosting ]
∧[y?.agentExecutionEnvironment = self ]
∧[{host : Hosting | host ∈ y?.deployableSemiEntity .hosting •

host = y?} = ∅ ⇒ y?.deployableSemiEntity .AddHosting(y?)]
RemoveHosting =̂ RemoveElement [hosting ,Hosting ]

∧[y?.agentExecutionEnvironment = self ]
∧[{host : Hosting | host ∈ y?.deployableSemiEntity .hosting •

host = y?} �= ∅ ⇒ y?.deployableSemiEntity .RemoveHosting(y?)]
AlterHosting =̂ [old? : Hosting ; new? : Hosting ]

∧RemoveHosting(old?)∧AddHosting(new?)
DeployObject =̂ AddElement [deployed , ↓Object ]

∧[self �∈ y?.deployedAt ⇒ y?.Deploy(self )]
TerminateObject =̂ RemoveElement [deployed , ↓Object ]

∧[self ∈ y?.deployedAt ⇒ y?.Terminate(self )]
ReplaceObject =̂ [old? : ↓Object ; new? : ↓Object ]

∧TerminateObject(old?)∧DeployObject(new?)

Clone
Δ(hosting)
h? : Hosting
aee? : AgentExecutionEvironment
kind? : HostingKind

h? ∈ hosting
host : Hosting • host .kind = kind?

∧ host .deployableSemiEntity = h?.deployableSemiEntity
∧ host .agentExecutionEnvironment = aee?

host �∈ aee?.hosting ⇒ aee?.AddHosting(host)

Move =̂ Clone ∧ RemoveHosting(h?)

AgentExecutionEvironment is specialized StructuralSemiEntity and BehavioralSemiEntity.
DeployableSemiEntities (and their subclasses) can be here deployed, terminated, and re-
placed. AgentExecutionEnvironment defines additional operations – Clone creates a copy
of existing hosting in an another AgentExecutionEvironment, Move additionally removes
existing hosting from itself.

14.6 Communicative Interactions

Communicative interactions specify a set of concepts defining communication between
objects, entities, etc.

14.6.1 Message

Message is a specification of the conveyance of information from one instance to another,
with the expectation that activity will ensue. [10]
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Message
�(payload , receiver , sender)

sender : ↓Object
receiver : P ↓Object
payload : P MessagePayload

#payload ≤ 1
#receiver = 1

Message is represented as an Object-Z class that knows its sender, receiver, and encapsu-
lates MessagePayload.

[MessagePayload ]

MessagePayload is a given set of all possible message payloads, that can be send in a
message.

14.6.2 MultiMessage

MultiMessage is a specialized Message, which can be send to multiple receivers. If the
toItSelf attribute is set to true and the sender belongs to the group of receivers, then the
MultiMessage is sent also to its sender.

MultiMessage
�(. . . , toItSelf )
Message

toItSelf : Boolean

#self .receiver ≥ 0

Object-Z class MultiMessage inherits from Message and overrides Message’s condition.
MultiMessage can now be send to multiple receivers.

14.6.3 DecoupledMessage

DecoupledMessage is a specialized MultiMessage which is used to model a specific kind of
communication, particularly the asynchronous sending and receiving.

DecoupledMessage
�(. . .)
MultiMessage

DecoupledMessage is a specialized MultiMessage class.
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14.6.4 SendMessageCapability

SendMessageCapability represents the capability to send message.

SendMessageCapability
�(. . .)
Capability

input : P ↓Message

SendMessageCapability is a specialized Capability that specifies the input set to be a set
of Message instances.

14.6.5 ReceiveMessageCapability

ReceiveMessageCapability represents the capability to receive message.

ReceiveMessageCapability
�(. . .)Capability

output : P ↓Message

ReceiveMessageCapability is a specialized Capability that specifies the output set to be a
set of Message instances.

14.7 Behaviors

This part of the conceptual MAS metamodel specifies the concepts used to model behav-
ioral aspects of MAS entities, namely:

• behavior abstraction and decomposition,

• communicative interactions,

• services, and

• observations and effecting interactions.

14.7.1 Perceptor

Perceptor is a means to enable its owner, BehavioredSemiEntity, to observe, i.e. perceive
a state of and/or to receive a signal from its environment (surrounding objects, entities,
etc.).
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Perceptor
�(. . . , owner , perceivingAct)
Object

owner : ↓BehavioredSemiEntity
perceivingAct : P ↓PerceivingAct

self ∈ owner .hasPerceptor

Perceptor is specialized Object, that has capability to perceive its environment. Each
Perceptor has defined its owner.

PerceivingAct is a Perceptor ’s capability to perceive.

PerceivingAct
�(. . .)Capability

PerceivingAct is a specialized Capability.

Effector is a means to enable its owner, BehavioredSemiEntity, to bring about an effect on
others, i.e. to directly manipulate with (or modify a state of) some other objects, entities,
etc.

14.7.2 Effector

Effector
�(. . . , owner , effectingAct)
Object

owner : ↓BehavioredSemiEntity
effectingAct : P ↓EffectingAct

self ∈ owner .hasPerceptor

Effector is specialized Object, that has capability to effect its environment. Each Effector
has defined its owner.

EffectingAct is a Effector ’s capability to perceive.

EffectingAct
�(. . .)
Capability

EffectingAct is a specialized Capability.
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14.7.3 Service

Service is a coherent block of functionality provided by BehavioredSemiEntity, called ser-
vice provider, that can be accessed by other BehavioredSemiEntity, called service clients.

Service
�(. . . , owner , provide)
Object

owner : ↓BehavioredSemiEntity
provide : P ↓ServiceFunctionality

self ∈ owner .providesService

Service is a specialized Object, that has capability to run some functionality. This fact
express the provide attribute. Each Service has its owner.

ServiceFunctionality is Service’s capability to provide functionality.

ServiceFunctionality
�(. . .)
Capability

ServiceFunctionality is a specialized Capability.

14.7.4 BehavioredSemiEntity

BehavioredSemiEntity is a semi-entity used to represent the ability of an entity to have
communicative capabilities, interact with other BehavioredSemiEntity, provide and use
Services, to percept and effect, and to be decomposed into BehaviorFragments.
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BehavioredSemiEntity
�(hasPerceptor , hasEffector , comprise, interact , receiveMessageCapability ,
sendMessageCapability , providesService, usesService, Init ,AddPerceptor ,
RemovePerceptor ,AlterPerceptor ,AddEffector ,RemoveEffector ,AlterEffector ,
AddBehaviorFragment ,RemoveBehaviorFragment ,AlterBehaviorFragment ,
AddInteraction,RemoveInteraction,AlterInteraction,AddOwnedService,
RemoveOwnedService,AlterOwnedService,AddUsedService,
RemoveUsedService,AlterUsedService)

hasPerceptor : P Perceptor c©
hasEffector : P Effector c©
comprise : P BehaviorFragment
interact : P ↓BehavioredSemiEntity
receiveMessageCapability : P ↓ReceiveMessageCapability
sendMessageCapability : P ↓SendMessageCapability
providesService : P Service c©
usesService : P Service

BehavioredSemiEntity = ∅

INIT

hasPerceptor = ∅

hasEffector = ∅

comprise = ∅

interact = ∅

receiveMessageCapability = ∅

sendMessageCapability = ∅

providesService = ∅

usesService = ∅

AddPerceptor =̂ AddElement [hasPerceptor ,Perceptor ]
RemovePerceptor =̂ RemoveElement [hasPerceptor ,Perceptor ]
AlterPerceptor =̂ AlterElement [hasPerceptor ,Perceptor ]
AddEffector =̂ AddElement [hasEffector ,Effector ]
RemoveEffector =̂ RemoveElement [hasEffector ,Effector ]
AlterEffector =̂ AlterElement [hasEffector ,Effector ]
AddBehaviorFragment =̂ AddElement [comprise,BehaviorFragment ]
RemoveBehaviorFragment =̂ RemoveElement [comprise,BehaviorFragment ]
AlterBehaviorFragment =̂ AlterElement [comprise,BehaviorFragment ]
AddInteraction =̂ AddElement [interact , ↓BehavioredSemiEntity ]
RemoveInteraction =̂ RemoveElement [interact , ↓BehavioredSemiEntity ]
AlterInteraction =̂ AlterElement [interact , ↓BehavioredSemiEntity ]
AddOwnedService =̂ AddElement [providesService,Service]
RemoveOwnedService =̂ RemoveElement [providesService,Service]
AlterOwnedService =̂ AlterElement [providesService,Service]
AddUsedService =̂ AddElement [usesService,Service]
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RemoveUsedService =̂ RemoveElement [usesService,Service]
AlterUsedService =̂ AlterElement [usesService,Service]

Object-Z class BehavioredSemiEntity includes the capability to percept an effect (at-
tributes hasPerceptor and hasEffector), to be decomposed into BehaviorFragments (com-
prise attribute), to interact with other BehavioredSemiEntity (interact attribute), to have
the capability of sending and receiving messages (attributes receiveMessageCapability and
sendMessageCapability), to provide its own Services (providesService attribute), and to
use somebody else’s Services (usesService attribute). We also define basic operation of
addition, removal, and alteration on all defined attributes.

14.7.5 BehaviorFragment

BehaviorFragment is a concrete specialized BehavioredSemiEntity used to represent a co-
herent re-usable fragment of behavior. It is used to decompose a complex behavior into
simpler and possibly concurrently executable fragments. BehaviorFragment can be shared
by several BehavioredSemiEntities and behavior of BehavioredSemiEntity can be (possibly
recursively) decomposed into several BehaviorFragments.

BehaviorFragment
�(. . .)
BehavioredSemiEntity

BehaviorFragment is defined as a specialized BehavioredSemiEntity class.

14.8 Mental Aspects

Autonomous entities can be characterized by their mental attitudes (such as beliefs, goals,
and plans), which represent their informational, motivational and deliberative states. This
part of the conceptual MAS metamodel deals with modeling these aspects.

14.8.1 ContributionKind

ContributionKind defines three kinds of contribution.

ContributionKind ::= sufficient | necessary | iff

ContributionKind is an enumeration, which has sufficient, necessary, and iff values.

14.8.2 Contribution

Contribution represents a logical relationship between MentalStates. Contribution specifies
the manner in which the contributor (a MentalState which contributes) influences its
beneficiary (a MentalState which is contributed to). Contribution refers to the conditions
which characterize related MentalStates (e.g. pre- and post-conditions, invariants, etc.)
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and specifies their logical relationship in terms of logical implication. AML thus defines
three kinds of contribution: necessary, sufficient, and equivalent. Contribution’s degree
can be used to specify the extent to which the contributor influences the beneficiary.

Contribution
�(degree, kind ,mentalState, Init)

degree : Degree
kind : ContributionKind
mentalState : ↓MentalState

self ∈ mentalState.contribution

INIT

mentalState.Init

Object-Z class Contribution represent association class between MentalState, which owns
Contribution, and MentalState that is linked to Contribution by Contribution’s mental-
State attribute. Each relationship (between two MentalStates) has degree and kind.

Degree is given set of values, which specifies the extent to which the contributor influences
the beneficiary.

[Degree]

Degree is a given set of values.

14.8.3 MentalAttitude

MentalAttitude is a relationship between a MentalSemiEntity and a MentalState repre-
senting that the MentalSemiEntity possesses the MentalState as its MentalAttitude, i.e. it
believes a Belief, is committed to a Goal, or is intended to perform a Plan. MentalAttitude
is characterized by the degree attribute, of which semantics varies with concrete type of
the linked MentalState. It represents either the subjective reliability or confidence of the
linked MentalSemiEntity in the information specified by Belief, relative importance of a
Goal, or preference of a Plan.

MentalAttitude
�(degree,mentalState,mentalSemiEntity , Init)

degree : Degree
mentalState : ↓MentalState
mentalSemiEntity : ↓MentalSemiEntity

self ∈ mentalState.mentalSemiEntity
self ∈ mentalSemiEntity .mentalState

INIT

mentalState.Init ∧ mentalSemiEntity .Init
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Object-Z class MentalAttitude represents association class between MentalState and Mental-
SemiEntity.

14.8.4 MentalState

MentalState is an abstract concept serving as a common superclass to all the metaclasses
which can be used to specify MentalAttitudes of MentalSemiEntities. MentalState can be
related by Contributions. MentalState referred to by several MentalSemiEntities simulta-
neously represent their common MentalStates, e.g. common Beliefs or common Goals.

MentalState
�(contribution,mentalSemiEntity , Init ,AddContribution,
RemoveContribution,AlterContribution,AddMentalSemiEntity ,
RemoveMentalSemiEntity ,AlterMentalSemiEntity)

contribution : P Contribution
mentalSemiEntity : P MentalAttitude

MentalState = ∅

∀m : mentalSemiEntity • m.mentalState = self

INIT

contribution = ∅

mentalSemiEntity = ∅

AddContribution =̂ AddElement [contribution,Contribution]
∧[y?.mentalState �= self ]

RemoveContribution =̂ RemoveElement [contribution,Contribution]
AlterContribution =̂ [old? : Contribution; new? : Contribution]

∧RemoveContribution(old?)∧AddContribution(new?)
AddMentalSemiEntity =̂ AddElement [mentalSemiEntity ,MentalAttitude]

∧ [y?.mentalState = self ]
RemoveMentalSemiEntity =̂ RemoveElement [mentalSemiEntity ,MentalAttitude]

∧[y?.mentalState = self ]
AlterMentalSemiEntity =̂ [old? : MentalAttitude; new? : MentalAttitude]

∧RemoveMentalSemiEntity(old?)∧AddMentalSemiEntity(new?)

MentalState is an abstract Object-Z class that comprises of contribution and mentalSemi-
Entity attributes. We also define basic operation of addition, removal, and alteration on
all defined attributes.

14.8.5 MentalSemiEntity

MentalSemiEntity is a semi-entity used to represent the capability of an entity to possess
MentalAttitudes by connection the entity to MentalStates.
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MentalSemiEntity
�(mentalState, Init ,AddMentalState,RemoveMentalState,AlterMentalState)

mentalState : P MentalAttitude

MentalSemiEntity = ∅

∀ms : mentalState • ms.mentalSemiEntity = self

INIT

mentalState = ∅

AddMentalState =̂ AddElement [mentalState,MentalAttitude]
∧[y?.mentalSemiEntity = self ]

RemoveMentalState =̂ RemoveElement [mentalState,MentalAttitude]
∧[y?.mentalSemiEntity = self ]

AlterMentalState =̂ [old? : MentalAttitude; new? : MentalAttitude]
∧RemoveMentalState(old?)∧AddMentalState(new?)

MentalSemiEntity is an abstract Object-Z class that includes mentalState attribute and
defines operation of addition, removal, and alteration on this attribute.

14.8.6 Belief

Belief is a concrete specialized MentalState used to model information which MentalSemi-
Entities have (believe) about themselves or their environment, and which does not need
to be objectively true.

Belief
�(. . .)
MentalState

Belief class is a specialized MentalState class.

14.8.7 Goals

Goal is an abstract specialized MentalState used to model conditions of states of affairs,
the achievement or maintenance of which is controlled by an owning (committed) Mental-
SemiEntity. Goals are thus used to represent objectives, needs, motivations, desires, etc.
of MentalSemiEntities.

Goal
�(. . .)
MentalState

Goal class is a specialized MentalState class.
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DecidableGoal is a concrete specialized Goal used to model goals for which there are clear-
cut criteria according to which the MentalSemiEntity controlling the Goal can decide
whether the Goal has been achieved or not.

DecidableGoal
�(. . .)
Goal

DecidableGoal class is a specialized Goal class.

UndecidableGoal is a concrete specialized Goal used to model Goals for which there are
no clear-cut criteria according to which the MentalSemiEntity controlling the Goal can
decide whether the Goal has been achieved or not.

UndecidableGoal
�(. . .)
Goal

UndecidableGoal class is a specialized Goal class.

14.8.8 Plan

Plan is a concrete specialized MentalState used to represent an activity (expressed e.g. by
a series of steps) that a MentalSemiEntity is intended to perform.

Plan
�(. . .)
MentalState

Plan class is a specialized MentalState class.

14.9 Autonomy Aspects

In this section we present an optional extension of AutonomousEntity, which is based
on belief-desire-intention reasoning. Belief-Desire-Intention (BDI) model has come to be
possibly the best known and best studied model of practical reasoning agents. For more
details see [9].

Following classes do not belong to the conceptual AML metamodel presented in [1], but
rather demostrate its extensibility capabilities.

14.9.1 BDIAutonomousEntity

BDIAutonomousEntity is an abstract specialized AutonomousEntity that incorporates
BDI model.
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BDIAutonomousEntity
�(. . . , beliefs, goals, plans, alterBeliefs, alterGoals,
alterPlans, alterMentalState, chooseGoal , choosePlan, chooseEffector ,
Init ,ExamineEnvironment ,Act ,Activity)

AutonomousEntity

beliefs : P Belief
goals : P ↓Goal
plans : P Plan
alterBeliefs : P ↓PerceivingAct × P Belief → P Belief
alterGoals : P Belief × P ↓Goal → P ↓Goal
alterPlans : P Belief × P ↓Goal × P Plan → P Plan
alterMentalState : P Beliefs × P MentalAttitude → P MentalAttitude
chooseGoal : P ↓Goal × P MentalAttitude → ↓Goal
choosePlan : P Plan × ↓Goal → Plan
action : P ↓ActionCapability
chooseAction : P ↓ActionCapability × Plan → ↓ActionCapability

BDIAutonomousEntity = ∅

domfirst alterBeliefs ⊆ self .hasPerceptor .perceivingAct
dom second alterBeliefs ⊆ beliefs
domfirst alterGoals ⊆ beliefs ∧ dom second alterGoals ⊆ goals
∀(x1, x2, x3) ∈ dom alterPlans • x1 ⊆ beliefs ∧ x2 ⊆ goals ∧ x3 ⊆ plans
domfirst alterMentalState ⊆ beliefs

∧ dom second alterMentalState ⊆ self .mentalState
domfirst chooseGoal ⊆ goals ∧ dom second chooseGoal ⊆ self .mentalState
ran chooseGoal ∈ goals
domfirst choosePlan ⊆ plans ∧ dom second choosePlan ⊆ goals
ran choosePlan ∈ plans
domfirst chooseAction ⊆ action ∧ dom second chooseAction ∈ plans
ran chooseAction ∈ action

INIT

beliefs = ∅

goals = ∅

plans = ∅

ExamineEnvironment

ExamineEnvironment
Δ(beliefs, goals, plans, self .mentalState)

#self .hasPerceptor ≥ 1 ⇒ beliefs ′ =
alterBeliefs(self .hasPerceptor .perceivingAct , beliefs)

beliefs ′ �= ∅ ⇒ goals ′ = alterGoals(beliefs ′, goals)
(beliefs ′ �= ∅ ∧ goals ′ �= ∅) ⇒ plans ′ = alterPlans(beliefs ′, goals ′, plans)
beliefs ′ �= ∅ ⇒ self .mentalState ′ =

alterMentalState(beliefs ′, self .mentalState)
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Act
Δ(goals, plans)

goals �= ∅

goal : ↓Goal • goal = chooseGoal(goals, self .mentalState)
goals ′ = goals \ {goal}
plan : Plan • plan = choosePlan(plans, goal)
plans ′ = plans \ {plan}
a : ↓ActionCapability | a = chooseAction(actions, plan) •

a.Run

Activity =̂ ExamineEnvironment o
9 Act

�(♦(Activity occurs))

BDIAutonomousEntity is a specialized AutonomousEntity that incorporates a set of in-
stances of Belief (beliefs attribute), of Goal (goals attribute), and of Plan (plans in-
stances). BDIAutonomousEntity owns capability to act. This is depicted by the set of
ActionCapability instances (action attribute). We also define a set of functions. These are
described in subsequent operations.

ExamineEnvironment is an operation of examining BDIAutonomousEntity ’s environment,
of altering BDIAutonomousEntity ’s beliefs, goals, plans, and mentalStates. When BDI-
AutonomousEntity has at least one Perceptor, then it runs perceivingAct capability and us-
ing alterBeliefs function, it alters its beliefs attribute. BDIAutonomousEntity must believe
in something to alter its goals. The alteration of goals is processed by alterGoals function.
To change plans the alterPlans function is called. MentalStates of BDIAutonomousEntity
are changed by call of alterMentalState function.

Act operation chooses goal and subsequently plan that will be run. It also chooses an
action from the set of all possible actions that BDIAutonomousEntity is able to perform
and process Run of selected ActionCapability.

Activity operation comprises of ExamineEnvironment and Act operation, which are run
sequentially. That means, that when Activity operation is called, then firstly the Exami-
neEnvironment operation is processed and secondly the Act operation is runned.

The �(♦(Activity occurs)) temporal invariant says that always (�) the Activity operation
eventually (♦) occurs.

Lastly, we present the ActionCapability class.

ActionCapability is an abstract capability representing all possible actions that BDI-
AutonomousEntity can perform.

ActionCapability
�(. . .)
Capability

ActionCapability is a specialized Capability.
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Summary of Achievements
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Chapter 15

Conclusions and Future Works

“Formal methods for software development are becoming increasingly nec-
essary as software becomes an important part of everyday life. To handle the
complexities inherent in large-scale software systems these methods need to
be combined with a sound development methodology which supports modular-
ity and reusability. Object orientation, based on the concept that systems are
composed of collections of interacting objects whose behaviors are specified by
classes, is such a methodology.”

— Graeme Paul Smith
An Object-Oriented Approach to Formal Specification, 1992

This thesis has presented a formal specification of Agent Modeling Language using the
formal specification language Object-Z. We showed a way how to transform models based
on UML Infrastructure and we demonstrated that this approach generic enough. There-
fore, metamodels that exist purely in OMG metamodelling framework can be transformed
analogously to Object-Z formal specifications. We also outlined a way how to formally
specify OCL constraints. In this part of our work we see possible extensions of the formal
specification of AML. One such extension is to formally specify classes taken from UML
2.0 metamodel and the functions defined in section 5.3 on page 16. In general, we can
say that the resulting formal metamodel of AML can serve as a basis for further formal
verification and validation, model-based testing, and possible re-engineering.

Our thesis also presented an abstract multi-agent system based on concepts originated
in [1] that can serve as a start line for future multi-agent theories operating on aspects.
The intention was not to provide a comprehensive metamodel for all aspects and details
of MAS, but rather to explain the concepts that were used as the underlying principles
of AML. To define autonomous behavior, we used BDI logic, but the extensibility of
our model ensures addition of others, more specific behavioral models. We also presented
simple life cycle by defining operations of addition, removal and alteration on objects. This
simple maintenance of properties can also be extended in a more specific way. Another
important area of future could be a formal specification of real time interactions between
entities in our abstract multi-agent system. For this purpose the Timed Communicating
Object-Z (TCOZ) would be appropriate. Finally, we can say that our abstract MAS can
serve as a base for further formal or informal models of multi-agent systems.
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[2] Radovan Cervenka. Modeling Multi-Agent Systems. PhD Thesis. Department of Com-
puter Science. Faculty of Mathematics, Physics and Informatics. Comenius University
in Bratislava, 2005.

[3] Radovan Cervenka and Ivan Trencansky. Agent Modeling Language: Language Spec-
ification. Version 0.9. Technical report, Whitestein Technologies, December 2004.
http://www.whitestein.com/pages/solutions/meth.html

[4] Ivan Trencansky and Radovan Cervenka. Agent Modeling Language (AML): A Com-
prehensive Approach to Modeling MAS. Informatica, Vol. 29, No. 4. (2005), pp. 391-
400.

[5] Soon-Kyeong Kim and David Carrington. A Formal Mapping between UML Models
and Object-Z Specifications. In Proceedings of the 1st International Conference on Z
and B Users (ZB’2000), York, UK, August, 2000, LNCS 1878, Springer.
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Abstrakt

Diplomová práca nadväzuje na dizertačnú prácu R. Červenku, Modeling Multi-Agent Sys-
tems, v ktorej bol detailne poṕısaný agentový modelovaćı jazyk AML (Agent Modeling
Language). Ciel’om tejto práce je formálne vyjadrit’ metamodel AML využit́ım Object-Z
notácie a formálne špecifikácia multi-agentový systém (MAS) použit́ım AML konceptov.

Kl’účové slová: AML, Agent Modeling Language, MAS, Multi-Agent Systems, Object-
Z, OZ, formal specification.


