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Abstract

Title: Comparison of Handwritings
Author: Miroslava Božeková
Department: Department of Applied Informatics
Supervisor: Doc. RNDr. Milan Ftáčnik, CSc.

Abstract: The goal of this paper is to contribute to the solution of a follow-
ing problem. Having one and more scanned images with handwritten text as
input, our task is to create methods which can determine whether the documents
are written by the same person or not. We concentrate on a fundamental problem
- comparison of two images and decision whether two images are written by the
same person or not - so-called writer verification problem. We present three ap-
proaches consisting of preprocessing, feature vector extraction and combination
with graphemes clustering. The first approach is based on feature vector, the
second is combination of the first and Kohonen’s Self-Organizing Map and finally
the third joins the first approach and modified hierarchical clustering. We made
our experiments on 100 images from 40 different writers. These images were taken
from the IAM Handwriting Database which contains 1539 pages of scanned text
from 657 writers. In these experiments we have tested three approaches men-
tioned on two input images. We achieved 96,5 % accuracy by the third approach.
A working implementation is presented together with experimental results.

Keywords: handwriting, writer verification, grapheme, clustering
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1 Introduction

Handwriting is one of the most fundamental stone of civilization. It is a sys-
tem of graphic signes which are agreed by certain human society. Handwriting
serves for recording of ideas, feelings, emotions and postures which can be ex-
pressed by language. Birth of the handwriting essentially sped up evolution of
civilization. Massive expansion of handwriting was accompanied by a new sign
- individuality of handwriting of single writers. People differ from each other
e.g. by their expressions of speech, i. e. physical attitudes, gestures, postures,
mimicry, handwriting, colouring and modulation of voice etc. Writing is possible
to understand as an automatic process. From school age, children study and
pick up writing movements. They modify movements to write the most exactly
according to given school model. Fluency of writing movement increases by drill
and it becomes more involuntary. Writer doesn’t have to think of writing move-
ment after its total automation. W. Preyer (1841 - 1897) understands writing
movement (which is performed by 500 muscles) as a process controlled by brain,
relatively independent on hand movement. We can find two same neither people
nor handwritings. Legal significance of signature is based on the individuality of
handwriting and on its relative uniformity. On the other hand, handwriting can
be temporary influenced by short-term psychical state [1] [2].
We would like to show that everybody writes differently. Individuality in hand-
writing can be illustrated as in figure 1. In this example, eight authors provide
three handwriting samples each of the word ”referred”. As can be see, the vari-
ation within a person’s handwriting (within-author variation) is less than the
variation between the handwriting of two different people (between-author vari-
ation) [3].

Figure 1: Variability in handwriting. Eight authors provided three handwriting
samples each, showing within and between author variations. Figure comes from
[3].
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1.1 The analysis of handwriting

The analysis of handwriting crops up in many diverse applications [3] as given in
figure 2.

Figure 2: Taxonomy of topics in handwriting analysis by [3].

1.1.1 Recognition

Handwriting recognition is the task of transforming a language represented in
its spatial form of graphical marks into its symbolic representation. For English
orthography, as with many languages based on the Latin alphabet, this symbolic
representation is typically the 8-bit ASCII representation of characters [4].

1.1.2 Handwriting interpretation

Handwriting interpretation is the task of determining the meaning of a body of
handwriting, e.g., a handwritten address [4].

1.1.3 Indexing and searching collections of handwritten historical doc-
uments

Libraries contain an enormous amount of handwritten historical documents. Such
collections are interesting to a great range of people, be it for historians, students
or just curious readers. Efficient access to such collections (e.g. on digital media
or on the Internet) requires an index, for example like in the back of a book.
Handwriting recognizers do not perform well on such noisy documents as histori-
cal. The wordspotting idea has been proposed as an alternative to OCR solutions
for building indexes of handwritten historical documents, which were produced by
a single author: this ensures that identical words, which were written at different
times, will have very similar visual appearances. This fact can be exploited by
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clustering words into groups with image matching techniques. Ideally, each clus-
ter of word images consists of all occurrences of a word in the analyzed document
collection [5].

1.1.4 Signature verification

Signature is a socially accepted authentication method and is widely used as proof
of identity in our daily life. Automatic signature verification by computers has
received extensive research interests in the field of pattern recognition. In the
context of signature verification, tested signatures whether genuine or skillfully
forged, usually have similar shapes with the registration ones (if a tested signature
has a shape very different from the registration, it can be easily identified as a
forgery) [6].

1.1.5 Writer verification

Writer verification involves a one-to-one comparison with a decision as to whether
or not the two samples are written by the same person [7] (see figure 3). Writer
verification can based on natural writing, forgery or disguised writing (see figure
2).

Figure 3: (1) A writer identification system retrieves, from a database containing
handwritings of known authorship, those samples that are the most similar to
the query. The hit list is then analyzed in detail by a human expert. (2) A writer
verification system compares two handwriting samples and makes an automatic
decision as to whether or not the input samples were written by the same person.
Figure comes from [7].

1.1.6 Writer identification

A writer identification system performs a one-to-many search in a large database
with handwriting samples of known authorship and returns a likely list of candi-
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dates [7] (see figure 3).

1.1.7 Graphology

Graphology is the analysis of the psychological structure of the human subject
through his or her handwriting. The central nervous system provides a direct
and undistorted link to the deeper self. Every human mind comprises a unique
and immensely complex blend of character and accumulated experiences of life.
Handwriting reflects this by evolving constantly. No two samples are the same
[8].
The way we learn to write in school is standard. Every teacher in school teaches
their students to write cursive in a uniform way. However, we choose to ’deviate’
or to do things differently then the teacher taught us. That is why every single
person’s individual handwriting reflects what is unique about them [9].
Graphology is based on approximately 250 signs which are grouped under the
following headings: layout, dimension, pressure, form, speed, continuity and di-
rection [10].

1.2 Categories of methods

1.2.1 Text-dependent versus text-independent methods

The text-dependent methods are very similar to signature verification techniques
and use the comparison between individual characters or words of known semantic
content. These methods therefore require prior localization and segmentation of
the relevant information, which is usually performed interactively by a human
user. The text-independent methods for writer identification and verification use
statistical features extracted from the entire image of a text block. A minimal
amount of handwriting (e.g. a paragraph containing a few text lines) is necessary
in order to derive stable features insensitive to the text content of the samples
[7].

1.2.2 Off-line and on-line methods

Handwriting data is converted to digital form either by scanning the writing on
paper or by writing with a special pen on an electronic surface such as a digitizer
combined with a liquid crystal display. The two approaches are distinguished
as off-line and on-line handwriting, respectively. In the on-line case, the two-
dimensional coordinates of successive points of the writing as a function of time
are stored in order, i.e., the order of strokes made by the writer is readily available.
In the off-line case, only the completed writing is available as an image. The on-
line case deals with a spatio-temporal representation of the input, whereas the
off-line case involves analysis of the spatio-luminance of an image [4].
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2 Theoretical background

We would like to explain some terms from image processing and make clear cluster
analysis.

2.1 Image processing

2.1.1 Thresholding

Converting a greyscale image into a binary image is an important step. Fore-
ground (in our case handwriting) must be separated from the background of
the image. After the thresholding, background has white color and foreground
black. Obtained handwriting should be unchanged (according to comparation
with the original image). If background doesn’t contain black pixels and fore-
ground doesn’t contain white pixel, the resulting binarization is acceptable.

Classification
Most of the existing thresholding methods can be allocated into four main classes
[12].

• histogram-based techniques
The structure of the peaks, valleys and curvatures in the smoothed grey-
scale histogram is analysed to determine the final global threshold value
(e.g. Otsu’s method, Solihin and Leedham,...).

• entropy-based techniques
Entropy is used to separate the global thresholding classes. For example,
the optimal threshold value can be calculated by maximising the sum of
the foreground and background entropies. i.e. maximally separating re-
gion intensities of the foreground and background (e.g. Pun, Kapur et al.,
Brink,...).

• local adaptive techniques
(e.g. Niblack, Zhang and Tan, Bernsen,...)

• other global techniques
(e.g. Gorman, Gu et al.,...)

In global thresholding, a single threshold value is used to separate the foreground
and the background of an image. Global thresholding is attractive because it is
simple and is sufficient in many cases. However, when the image is unevenly illu-
minated, local thresholding may be necessary. In local thresholding, a threshold
value is assigned to each pixel to determine whether it is a foreground or back-
ground pixel using local information from the image [13].
Methods can be also classified into two categories [13]:

• one stage thresholding and
Traditional thresholding finds a threshold value in one stage.
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• multi-stage thresholding
The multi-stage thresholding approach is a generalisation of traditional
thresholding.

Global Multi-stage Thresholding
Global multi-stage thresholding can be viewed as a process of reducing the search
space of threshold candidate values stage by stage where each stage uses different
information from the image until the final stage chooses the final threshold value
[13]. The difference between traditional thresholding, iterative thresholding, and
multi-stage thresholding techniques is illustrated in figure 4.

Figure 4: Three different approaches to global thresholding. The figure comes
from [13].

2.1.2 Horizontal and vertical projection profile

The horizontal/vertical projection profile (HPP, VPP) is the histogram of the
number of black pixels along horizontal/vertical scan lines [15] (see figure 5).
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Figure 5: Horizontal (in the center) and vertical projection profile (below) of the
image occuring upwards.

2.1.3 Averaging filter

The averaging filter is the most simple method for smoothing of input image. A
new grey level value of pixel is obtained as arithmetic average of values from its
neighbourhood. The most used is 3x3 filter window:

h1 =
1

9

 1 1 1
1 1 1
1 1 1

 , h2 =
1

10

 1 1 1
1 2 1
1 1 1

 , h3 =
1

16

 1 2 1
2 4 2
1 2 1


5x5 (7x7) filter window is made analogically [14].

2.1.4 Contour Tracing

Contour Tracing (or boundary following) is a technique that is applied to digital
images in order to extract their boundary [16].

Moore-Neighborhood Tracing [16]
The Moore neighborhood (also known as the 8-neighbors or indirect neighbors)
of pixel P, is the set of 8 pixels which share a vertex or edge with that pixel (these
pixels are namely pixels P1, P2, P3, P4, P5, P6, P7 and P8 shown in figure 6).
Let’s introduce the idea behind Moore-Neighborhood tracing. Given a group of
black pixels on a background of white pixels, we locate a black pixel and declare
it as our ”start” pixel. We start at the top left corner of the grid, scan each
column of pixels from the top going below - starting from the leftmost column
and proceeding to the right - until we encounter a black pixel. We declare that
pixel as our ”start” pixel. Now, we stand on the start pixel. Without loss of
generality, we extract the contour by going around the pattern in a clockwise
direction. (It doesn’t matter which direction you choose as long as you stick with
your choice throughout the algorithm). The general idea is: every time you hit
a black pixel P, backtrack i.e. go back to the white pixel you were previously
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Figure 6: Moore neighborhood. The figure comes from [16].

standing on, then go around pixel P in a clockwise direction, visiting each pixel
in its Moore neighborhood, until you hit a black pixel. The algorithm terminates
when the start pixel is visited for a second time. The black pixels you walked
over will be the contour of the pattern.
Table 1 describes a formal algorithm. An animated demonstration and more
contour tracing algorithms can be found in [16].

2.2 Clustering

Clustering can be considered the most important unsupervised learning problem
(i.e., the training data doesn’t specify what we are trying to learn). So, as every
other problem of this kind, it deals with finding a structure in a collection of un-
labeled data. A loose definition of clustering could be “the process of organizing
objects into groups whose members are similar in some way”. A cluster is there-
fore a collection of objects which are “similar” between them and are “dissimilar”
to the objects belonging to other clusters [17].
Clustering algorithms can be applied in many fields, for instance [17]:

• Marketing (finding groups of customers with similar behavior given a large
database of customer data containing their properties and past buying
records)

• Biology (classification of plants and animals given their features)

• Libraries (book ordering)

• Insurance (identifying groups of motor insurance policy holders with a high
average claim cost; identifying frauds)

• City-planning (identifying groups of houses according to their house type,
value and geographical location)

• Earthquake studies (clustering observed earthquake epicenters to identify
dangerous zones)

• WWW (document classification; clustering weblog data to discover groups
of similar access patterns).
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Input: A square tessellation T containing a connected component P of
black cells.
Output: A sequence B (b1, b2, ..., bk) of boundary pixels i.e. the contour.
Define M(a) to be the Moore neighborhood of pixel a.
Let p denote the current boundary pixel.
Let c denote the current pixel under consideration i.e. c is in M(p).

Begin

• Set B to be empty.

• From top to bottom and left to right scan the cells of T until a
black pixel, s, of P is found.

• Insert s in B.

• Set the current boundary point p to s i.e. p = s

• Backtrack i.e. move to the pixel from which s was entered.

• Set c to be the next clockwise pixel in M(p).

• while c not equal to s do

If c is black

– insert c in B

– set p = c

– backtrack (move the current pixel c to the pixel from which p
was entered)

else

– advance the current pixel c to the next clockwise pixel in M(p)

end while

End

Table 1: A formal description of the Moore-Neighborhood tracing algorithm. The
algorithm comes from [16].

Clustering algorithms may be classified as listed below:

• Hierarchical algorithms

• Non-hierarchical algorithms
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2.2.1 Hierarchical algorithms

Hierarchical algorithms can be classified as follows [21]:

• Agglomerative (build-up) methods (produce a classification in a bottom-up
manner; at the beginning, each object is an individual cluster and gradually
in each step two the closest clusters are joined into one until one big cluster
containing all objects doesn’t create)

• Divisive methods (generate a classification in a top-down manner; at the
beginning one big cluster containing all objects is given and objects are
gradually divided into smaller clusters)

In agglomerative clustering, we have several methods for definition of similar-
ity between groups (clusters). Methods differ each other by distances between
clusters [20] (see figure 7):

• single linkage (the nearest neighbor method)

• complete linkage (the furthest neighbor method)

• average linkage (unweighted pair-group method using arithmetic averages)

• centroid method (unweighted pair-group method using centroids)

Figure 7: 1) single linkage, 2) complete linkage 3) average linkage. Figures come
from [20].

Result of hierarchical algorithm is represented by a dendrogram, see figure 8.
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Figure 8: A dendrogram. Figure comes from [18].

2.2.2 Non-hierarchical algorithms

A non-hierarchical method generates a classification by partitioning a dataset,
giving a set of (generally) non-overlapping groups having no hierarchical rela-
tionships between them [19]. Four of the main categories of non-hierarchical
method are [19]:

• relocation (such as k-means, assign objects to a user-defined number of
seed clusters and then iteratively reassign objects to see if better clusters
result. Such methods are prone to reaching local optima rather than a global
optimum, and it is generally not possible to determine when or whether the
global optimum solution has been reached)

• single-pass methods (produce clusters that are dependent upon the order
in which the objects are processed)

• nearest neighbour (such as the Jarvis-Patrick method, assign objects to
the same cluster as some number of their nearest neighbours. User-defined
parameters determine how many nearest neighbours need to be considered,
and the necessary level of similarity between nearest neighbour lists)

• other non-hierarchical methods (e.g. Self-Organizing Map)

Kohonen’s Self-Organizing Map
The self-organizing map (SOM) was developed by professor Teuvo Kohonen in
1995. SOM network is a special type of neural network that can learn from
complex, multi-dimensional data and transforn them into visually decipherable
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clusters. The theory of the SOM network is motivated by the observation of the
operation of the brain. Various human sensory impressions are neurologically
mapped into the brain such that spatial or other relations among stimuli corre-
spond to spatial relations among the neurons organized into a two-dimensional
map [22].
The SOM network performs unsupervised training; that is, during the learning
process the processing units in the network adjust their weights primarily based
on the lateral feedback connections. Unsupervised learning does not require the
knowledge of target values. The nodes in the network converge to form clusters to
represent groups of entities with similar properties. SOM networks combine com-
petitive learning with dimensionality reduction by smoothing the clusters with
respect to an a priori grid and provide a powerful tool for data visualization.
However, the output of an SOM network does not automatically provide group-
ings of the points on the map. The current practise is to design the Kohonen
SOM map so that the number of nodes on the map matches the desired number
of clusters. For example, a 2x2 network has four nodes hence forms four groups.
However, often times it is difficult to design a two-dimensional map for a problem
with small and/or odd number of clusters (e.g. 3 clusters). A common problem
when using SOM network is that the number of nodes on the output map is more
than the number of target groups [22].
The SOM network typically has two layers of nodes, the input layer and the Ko-
honen layer. The input layer is fully connected to a two-dimensional Kohonen
layer. During the training process, input data are fed to the network through the
processing elements (nodes) in the input layer. An input pattern ~xv(v = 1, ..., V )
is denoted by a vector of order m as: ~xv = (xv1, xv2, ..., xvm), where xvi is the ith
input signal in the pattern and m is the number of input signals in each pattern.
An input pattern is simultaneously incident on the nodes of a two-dimensional
Kohonen layer. Associated with the N nodes in the n x n (N = n x n) Kohonen
layer, is a weight vector, also of order m, denoted by: ~wi = (wi1, wi2, ..., wim),
where wij is the weight value associated with node i corresponding to the jth
signal of an input vector [22].
As the training process proceeds, the nodes adjust their weight values accord-
ing to the topological relations in the input data. The node with the minimum
distance is the winner and adjusts its weights to be closer to the value of the
input pattern. The most common way of measuring distance between vectors is
Euclidean distance [22].

Weight adaptation function
After the finding the winner, the next step is adaptation of weights - learning:

~wi(t + 1) = ~wi(t) + α(t).h(i∗, i).[ ~xv − ~wi(t)] (1)

where t is time, α(t) ∈ (0, 1) is adaptation coefficient represents various rate
of learning which descents with time to zero what ensures the end of process
of learning, i∗ is an index of the winner neuron, h(i∗, i) is neighborhood kernel
centered on the winner unit and defines region of cooperation between neurons
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(how much weight vectors corresponding to neurons in neighborhood of the winner
will be adapted) (see figure 9) [23].

Figure 9: An example of neighborhood of the winner neuron i∗, defined for dif-
ferent time moments, t1 < t2 < t3. Image comes from [23].

The most simple used function is orthogonal neighborhood:

h(i∗, i) =

{
1 if dM(i∗, i) ≤ λ(t)
0 otherwise

(2)

where dM(i∗, i) represents distance of type ”Manhattan” between neurons i∗ and
i in grid of map. The second often used choice is Gaussian type neighborhood:

h(i∗, i) = exp
(
−d2

E(i∗,i)

λ2(t)

)
(3)

where dE(i∗, i) represents euclidean distance of neurons i∗ and i in grid. Param-
eter λ(t) decreases with time to zero what ensures decreasing of neighborhood
during learning [23].
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3 Recent research

In this section, we will survey the related work of preprocessing of handwritten
images (thresholding, line segmentation, slant detection and correction, word seg-
mentation and grapheme segmentation and normalization) and writer verification
problem.

3.1 Thresholding

3.1.1 Characteristics of handwriting images [13]

1. The foreground (handwriting) has far fewer pixels compared to the back-
ground.

2. The location of the peak of the foreground is usually near the darkest in-
tensity, while the location of the peak of the background often varies con-
siderably.

3. Though the foreground pixels are fewer, they tend to be more scattered than
the background pixels. The distribution of the foreground depends heavily
on the type of writing implement. For example, a fibre-tipped pen has a
concentrated distribution, but a ballpoint pen or a pencil has a scattered
distribution. It is often observed that the foreground pixels lie very near to
the background peak if the handwriting is written using a ballpoint pen or
a pencil.

4. Experiments show that the best threshold values for handwriting images lie
nearer to the background peak than the foreground peak.

3.1.2 A brief summary of thresholding techniques

If you are interesting in thresholding methods, in [24] are compared 40 selected
thresholding methods from various categories. We chose the following algorithms
which are used for handwritings or for historical document images (with hand-
written text). A voluminous summary of thresholding methods for historical
document images can be found in [12].
Otsu’s thresholding algorithm 1979 [25] chooses the optimal threshold value
by maximizing the between-class variance. If the gray level of pixels on an image
ranges in L [1, 2,..., L] and the number of pixels at level i is denoted ni, the total
number of pixel can be calculated by equation: N=n1+n2+n3+...+ni+...+nL.
For bi-level thresholding, the pixels sets [1, 2,..., L] are divided into two classes;
C1 = [1, 2,..., t] and C2= [t+1,..., L]. Otsu’s algorithm determines the optimal
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threshold value (t) that maximizes the between-class variance, σ2
B

σ2
B(t) = ω1(t)ω2(t)(µ2(t)− µ1(t))

2

where

ω1(t) =
∑t

i=1 pi, ω2(t) =
∑L

i=t+1 pi

µ1(t) =
∑t

i=1 ipi/ω1(t), µ2(t) =
∑L

i=t+1 ipi/ω2(t),
and pi = ni/N [26].

(4)

Pun 1981 [27] presented a maximum-entropy-based method. It used Shannon’s
concept to define the entropy of an image. Pun used this concept to derive an
expression for an upper bound of the aposteriori entropy. The expression was
finally used to threshold an image [12].
Kapur et al 1985 [28] reported an improvement of Pun’s method. It is a
histogram analysis and maximum-entropy-based technique, which uses the max-
imum of the sum of the entropy of the grey-level distribution of the foreground
and background [12].
Bernsen 1986 [29] proposed a local thresholding technique based on neighbours
of each pixel. It has proven to be a fast algorithm. The disadvantage is that it
does not work well when the background regions have varying greylevel intensities
and contain ghost images [12].
Niblack’s algorithm 1986 [31] is a local thresholding method based on the
calculation of the local mean and of local standard deviation. The threshold is
decided by the formula:

T (x, y) = m(x, y) + k • s(x, y), (5)

where m(x, y) and s(x, y) are the average of a local area and standard deviation
values, respectively. The size of the neighborhood should be small enough to
preserve local details, but at the same time large enough to suppress noise. The
value of k is used to adjust how much of the total print object boundary is taken
as a part of the given object [30].
Yanowitz and Bruckstein 1989 [32] suggested using the grey-level values at
high gradient regions as known data to interpolate the threshold surface of image
document texture features. The key steps of this method are [30]:

1. Smooth the image by average filtering.

2. Derive the gradient magnitude.

3. Apply a thinning algorithm to find the object boundary points.

4. Sample the grey-level in the smoothed image at the boundary points. These
are the support points for interpolation in step 5.

5. Find the threshold surface T (x, y) that is equal to the image values at the
support points and satisfies the Laplace equation using Southwell’s succes-
sive over relaxation method.
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6. Using the obtained T (x, y), segment the image.

7. Apply a post-processing method to validate the segmented image.

Wang and Pavlidis 1993 [33] assumed that the grey-scale image is a surface
with top logical features corresponding to the shape features of the original im-
age. Each pixel of the image was classified as: peak, pit, ridge, ravine, saddle,
flat or hillside. Rules can be built based on the estimated first and second direc-
tional derivatives of the underlying image intensity surface. The characters can
be extracted according to the rules and the features [12].
Brink 1995 [34] proposed a minimum-spatial-entropy based global thresholding
algorithm [12].
Solihin and C.Leedham 1999 [35] investigated two global techniques: native
integral ratio (NIR) and quadratic integral ratio (QIR). The QIR method is a
global two-stage thresholding approach. In the first stage, the image is divided
into three classes of pixels: foreground, background and a fuzzy class where it
is hard to determine whether a pixel actually belongs to the foreground or the
background. During the second stage, a final threshold value is chosen in the
fuzzy region [30].
Zhang and Tan 2001 [36] proposed an improved version of Niblack’s method:

T (x, y) = m(x, y) • [l + k • (1− s(x,y)
R

)], (6)

where k and R are empirical constants. The improved Niblack method uses
parameters k and R to reduce its sensitivity to noise [30].

3.2 Line Segmentation

Many approaches such as Yanikoglu and Sandon 1998 [38], Kavallieratou et
al 2003 [39] and Weliwitage et al 2005 [40], use global/piece-wise projection
profile but fail to recognize when the projection profile information is useful and
when it is not.
The method explained in Feldbach and Tönnies 2001 [41], requires parameters
to be set, according to the type of handwriting.
The Cut Text Minimization method (Weliwitage et al [40]), fails to detect
short lines and those which do not begin in the beginning of the document. Skew
detection methods [42], [43] and baseline estimation methods [41], [42], are not
flexible to capture the variation in handwriting.
The method in Nicolas, Paquet and Heutte 2004 [44] assumes that each
connected component belongs to one line, which is not the case in documents
with lines running into each other. Clustering algorithm based on heuristics have
been used for line segmentation in the CEDAR-FOX system [45], [46]. The sys-
tems algorithm was originally designed for handwritten postal envelopes but the
heuristics do not generalize well to the varations encoutered in other handwritten
documents [37].
Arivazhagan, Srinivasan and Srihari 2007 [37] proposed an approach involv-
ing the use of bivariate Gaussian densities to model lines. In this way, the skew of
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the document is captured by the covariance of the Gaussian density. Piece-wise
projection profiles are used to obtain an initial set of candidate line starting posi-
tions. The line drawn traverses around any obstructing handwritten component
by associating it to the above or the below line. The algorithm also automatically
recognizes lines running into each other and cuts through at the most appropriate
position.

3.3 Slant correction

Slant is deviation of average near-vertical strokes from the vertical direction [48]
(see figure 10).

Figure 10: Slant angle

Several techniques for estimating word slant have been proposed. Uniform slant
correction techniques work with the assumption that each word is written with
a constant slant. However, it is a more widely acceptable assumption that the
slant angle fluctuates in a word due to various factors such as writer’s habit, the
inherent shape of each character, and writing position. Therefore nonuniform
techniques (work with this assumption) estimate local slant angles [47].
Bozinovic and Srihari 1989 [49] and Kim and Govindaraju 1997 [50] have
proposed slant correction techniques where the average slant angle is estimated
from the angles of extracted vertical strokes [47].
Guillevic and Suen 1994 [51], Kavallieratou et al. 2000 [52], and Nicchiotti
and Scagliola 1997 [53] analyzed a set of projection histograms for the estima-
tion of the average slant angle [47].
Kavallieratou et al. 2000 [52] proposed a slant estimation algorithm based on
the use of vertical projection profile of word images and the Wigner-Ville distri-
bution [48].
Kimura et al. 1993 [54], Simoncini and Kovács 1995 [55], Ding et al. 2000
[56] and Britto et al. 2000 [57] utilized statistics of chain-coded stroke contours
[47].
Vinciarelli et al. 2001 [58] proposed a technique based on a cost function
which measures slant absence across the word image. The cost function is eval-
uated on multiple shear transformed word images. The angle with the maximal
cost is taken as a slant estimate [48].
Uchida et al. 2001 [47] presented a nonuniform slant correction technique where
the slant correction problem is formulated as an optimal estimation problem of
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local slant angles at all horizontal positions. The optimal estimation is governed
by a criterion function and several constraints designed to evaluate global and lo-
cal goodness of the estimated local angles. The optimal local slant angles which
maximize the criterion function satisfying the constraints are searched for effi-
ciently by a dynamic programming (DP)-based algorithm [47].
Hase et al. 2001 [60] have proposed a realignment technique for inclined and
curved texts, where the inclination and the curve of a text is approximated by
some quadratic functions and then its component characters are realigned hori-
zontally and slant-corrected using those functions. This technique, however, will
not be appropriate for the slant correction of handwritten words whose compo-
nent characters have slants regardless of the shape of their text line [59].
Dong et al. 2005 [48] presents fast and robust algorithm for slant corrections
based on Radon transform. Radon transform is used to estimate the long strokes
and a word slant is measured by the average angle of these long strokes. Com-
pared with the previous methods, these two algorithms do not require the setting
of parameters heuristically. Moreover, the algorithms perform well on words of
short length, where the traditional methods usually fail [48].

3.4 Word segmentation

Line separation is usually followed by a procedure that separates the text line
into words. Few approaches in the literature have dealt with word segmentation
issues [4].
Among the ones that have dealt with segmentation issues, most focus on identify-
ing physical gaps using only the components, like Mahadevan and Nagabush-
nam 1995 [65] and Seni and Cohen 1994 [66]. These methods assume that
gaps between words are larger than the gaps between the characters. However, in
handwriting, exceptions are commonplace because of flourishes in writing styles
with leading and trailing ligatures [4]. Seni and Cohen [66] evaluate eight
different distance measures between pairs of connected component for word seg-
mentation in handwritten text. In Mahadevan and Nagabushnam [65] the
distance between the convex hulls is used [69].
Srihari et al 1997 [67] present techniques for line separation and then word seg-
mentation using a neural network [69]. Another method Kim and Govindaraju
1998 [68] incorporates cues that humans use and does not rely solely on the one-
dimensional distance between components. The author’s writing style, in terms
of spacing, is captured by characterizing the variation of spacing between adja-
cent characters as a function of the corresponding characters themselves. The
notion of expecting greater space between characters with leading and trailing
ligatures is enclosed into the segmentation scheme [4].
Feldbach and Tonnies 2003 [62] present a system using constraints on the se-
mantics to segment the date from church registers using a neural network. Marti
and Bunke 2001 [63] propose a full-page word segmentation algorithm and the
evaluation is done by using the IAM database. Manmatha and Rothfeder
2005 [64] described a scale space approach for segmenting words from historical
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handwritten documents [61].
Huang and Srihari 2008 [61] proposed a gap metrics based approach. Their
approach has two main differences from previous methods. First of all, the gap
metrics is computed by combining three different distance measures (see figure
11), which avoids the weakness of each of the individual one and thus provides a
more reliable distance measure. Secondly, besides the local features, such as the
current gap, a new set of global features are also extracted to help the classifier
to make a better decision. The classification is done by using a three-layer neural
network [61].

Figure 11: Examples of types of distance measures between a pair of connected
components. The bounding box method and minimum run-length method are
shown in (a), and the convex hull distance is shown in (b) (image was taken from
[61]).

3.5 Writer verification

Several widely acknowledged efforts have been presented in recent years in the
writer verification problem.
Cha and Srihari [70] model the problem as a two class classification problem:
authorship or non-authorship. Feature distance is computed and the dichotomizer
takes this feature distance vector as an input and outputs the authorship. They
use 12 feature distances and achieved 97% accuracy on 1000 writers with 3 sample
documents per writer.
Bensefia et al. [71] use sample set of 88 writers and extract the set of graphemes
in two input handwritten documents. A grapheme feature set G is extracted
thanks to a particular sequential clustering technique: G = { g1 , g2 , g3 ,..., gN

}. Some of these features may occur on the two documents while the others may
occur specifically on one single document. Writer verification is based on the
mutual information between the grapheme distributions in the two handwritings
that are compared.
Schlapbach and Bunke [72] use HMM based recognizers. For each writer, they
build an individual recognizer and train it on text lines of that writer. This gives
their recognizers that are experts on the handwriting of exactly one writer. In
the identification or verification phase, a text line of unknown origin is presented
to each of these recognizers and each one returns a transcription that includes the
log-likelihood score for the considered input. Using over 8,600 text lines from 120
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writers an Equal Error Rate(EER) of about 2.5% is achieved (EER quantifies in
a single number the writer verification performance).
A statistical model of the task and a large number of features divided into two
categories: macro-features which capture the global characteristics of the writers
individual writing habit and style and micro-features which capture finer details
at the character/word level are proposed by Srihari et al. [73]. Same writer
accuracy was 94.6% and different writer accuracy was 97.6%.
Bulacu and Schomaker 2007 [7] developed new and very effective techniques
for automatic writer identification and verification that use probability distri-
bution functions (PDFs) extracted from the handwriting images to characterize
writer individuality. Their methods operate at two levels of analysis: the texture
level and the character-shape (allograph) level. The probability distribution of
grapheme usage is computed using a common codebook of shapes obtained by
clustering. Combining multiple features yields increased writer identification and
verification performance. They use data sets from 3 databases Firemaker, IAM
and ImUnipen.

3.6 CedarFox - Forensic Document Examination System

CedarFox [74] is a system for analyzing complex documents, particularly those
that are handwritten. The system is primarily designed for interactive use by
Forensic/ Questioned Document Examiners. It is also document image process-
ing system for use with scanned documents. The system also can be used to
archive documents and search them. Software functionalities:

• Handwriting Identification

• Writer and Signature Verification

• Image Processing - CedarFox has several image processing tools such as
underline and rule-line removal, background removal, etc.

• Handwriting Segmentation - CedarFox is able to separate words of text in
a handwritten document.

• Searching handwritten documents

• Handwriting Recognition

• Legibility and Readability Analysis - Word gap comparison and comparison
with Palmer metrics is supported.

• System Utilities - CedarFox has user interfaces for scanning documents
directly as well as for entering the results directly into spread-sheets and
for printing intermediate results.
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4 Analysis and design of application

Our approach is to create methods which can determine whether one and more
input documents (with handwritten text) are written by the same person or
not. We concentrate on a fundamental problem - comparison of two images and
decision whether two images are written by the same person or not. We decided
for off-line (described in section 1.2.2) and text-independent methods (described
in section 1.2.1). Our primary approach is method based on natural writing,
we don’t detect forgery. We try to minimize human intervention to system. A
working implementation is presented together with experimental results. Our
application works on English handwritten text, but should be applicable to any
Latin-based language.

4.1 Name and Logo of application

• Name: Adel

• Logo: see figure 12

Figure 12: Logo

4.2 Input data

Input data are scanned images. We decide to use the IAM Handwriting Database
because it’s a huge database suitable for our experiments. The IAM Handwriting
Database [75] contains forms of handwritten English text which can be used on
training and testing handwritten text recognizers and performing writer iden-
tification and verification experiments. The database contains forms of uncon-
strained handwritten text, which were scanned at the resolution of 300 dpi and
saved as PNG images with 256 gray levels (see figure 13).

4.3 Integrated development environment

We use programming language Java and an open development platform Eclipse.
Another option is NetBeans IDE. Both Eclipse and Netbeans are popular and it
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Figure 13: The IAM Handwriting Sample

depends on programmer what prefers.

4.4 Libraries

• GUI (Graphical User Interface) libraries - Swing and Awt (Abstract Win-
dowing Toolkit)

• Jimi (Java Image Management Interface) [77] - is a class library for man-
aging images. Its primary function is image I/O. Jimi’s range of supported
formats includes GIF, JPEG, TIFF, PNG, PICT, Photoshop, BMP, Targa,
ICO, CUR, Sunraster, XBM, XPM, and PCX, although some of these for-
mats do not have complete support for all features.

• ImageJ (Image Processing and Analysis in Java) and its plugins which are
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available in [76].

4.5 Application

Firstly, each input image is adapted by preprocessing to form which is suitable
for next algorithms. Preprocessing consists of:

• Thresholding

• Line segmentation

• Slant detection and correction

• Word segmentation

• Grapheme segmentation and normalization

The next step depends on amount of input images. Let’s describe the following
three cases:

• Two input images - this is the fundamental problem.
The handwriting features are extracted from the images. For each image
we create feature vector consisting of the set of numbers which represent
features. Then a new vector is created by the subtraction of two feature
vectors and its coordinates are changed into absolute values. Result is given
by the comparation of this new vector and vector of our thresholds (obtained
from experiments). The first approach, solving our task, is based on this
feature vector.
Next, graphemes which were obtained from preprocessing, are clustered
using two different clustering methods, namely Kohonen’s self-organizing
map (SOM) and our modification of hierarchical clustering. Result from
each clustering determines how much the input images are similar. These
results (from each clustering) are compared with unique thresholds obtained
from our experiments. We join results from the first approach and results
from SOM to the second approach. The third approach is based on results
from first approach and results from modified hierarchical clustering. These
three approaches are compared experimentally.

• Three and more input images
Given n input images, take first and second image and apply on them the
methods from the second case. If the result is that two images aren’t written
by the same writer, we finish with the same result. Otherwise (two images
are written by the same writer), we continue with comparison of the second
and third image. We repeat mentioned steps until we get two images which
aren’t written by the same writer or until we reach the last two images -
n− 1 and n, which are written by the same writer (see table 2).
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Input: number of input images (n)
Output: true (images are written by the same writer) or false (images
are written by different writers)

boolean verifyThreeAndMoreImages (int n) {
for (int k = 0; k < n; k++) {

if (verifyTwoImages(k, k+1) ! = true ) return false;
}
return true;

}

Table 2: Algorithm for the second case (three and more input images). Method
verifyThreeAndMoreImages returns true if all input images are written by the
same writer and return false if aren’t. Method verifyTwoImages compares two
input images and return true or false.

• One input image
The handwriting features are extracted from the image. Each feature is rep-
resented by a vector of numbers F = (n1, n2, ..., nk) where k is number of
lines of image and ∀i ∈ {1, ..., k} : ni ∈ R and ni represents feature obtained
from ith line. If the whole image is written by the same writer, all coor-
dinates of vector F should be similar, i.e. differences between coordinates
|ni − nj| for ∀i, j ∈ {1, ..., k} : i 6= j are smaller than a threshold (unique
for each feature) obtained from our experiments. Features are described in
section 4.7.

4.6 Preprocessing

4.6.1 Thresholding

We implement Otsu’s algorithm described in section 3.1.2. This method has been
often used for images with handwritten text in recent research (see figure 14).

4.6.2 Line segmentation

The document is divided across its width into chunks, each represents 5%. Then
the horizontal projection profile (described in section 2.1.2) and averaging filter
are applied for every chunk. The averaging filter smooths HPP. We use 7x7 filter
window of type h1 described in section 2.1.3. Afterwards the image is converted
to binary form. At the moment, we have prepared chunks for next processing.
Algorithm finds a global maximum in each chunk. Next, global minimums be-
tween neighbouring chunks in vertical direction are defined. Algorithm sequen-
tially traverses and joins obtained global minimums in horizontal direction and
the result are color dashes which separate single lines (see figures 15 and 16).
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Figure 14: Otsu’s thresholding: on upper image is an input greyscale image and
on bottom image is the result of Otsu’s thresholding - a binary image. Background
has white color and foreground (handwriting) has black color. Result is good if
background doesn’t contain black pixels and foreground doesn’t contain white
pixels.

We are inspired by the paper [37] but they involve the use of bivariate Gaussian
densities to model lines. Their method is robust to handle skewed documents
with lines running into each other. In respect of our uncomplicated input images,
we implement simpler version of line segmentation.

Figure 15: Detail of chunks. Green horizontal lines through chunks are places
where maximums were found.
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Figure 16: Line Segmentation

4.6.3 Slant detection and correction

Handwriting has tendency to slant to the right or left side or it can be vertical,
too. We analyze a set of vertical projection profiles (described in section 2.1.2) for
the estimation of the average slant angle like in [51], [52] and [53]. Our algorithm
works on lines of handwriting. We determine 20 different slants (angles) between
-1.0 rad (approximately -57,295◦) and 1.0 rad (approximately 57,295◦). For every
slant, line is corrected. Then the vertical projection profile is applied. From these
20 tries, one is chosen as the best slant for particular line. The choosing criteria
involves the fact that the projection profile has to contain the largest amount
of the highest peaks and also maximum gaps (see figure 17). An example of
corrected document is shown in figure 18.

4.6.4 Word segmentation

Word segmentation is based on the idea that gaps between words (inter-word
gaps) are larger than gaps between characters (inter-character gaps). We takeover
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Figure 17: Slant correction: on the top of the image is original line. Under it,
corrected lines (only 7 for illustration) are depicted with corresponding VPPs.
The chosen segmented line is shown in the red rectangle.

Figure 18: Slant correction: on the left side is input image and on the right side
is the result of slant correction.

this idea from [66]. In this paper, they explored eight algorithms that compute
the distances between pairs of connected components. One of them is the bound-
ing box method which computes the minimum horizontal distance between the
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bounding boxes of the connected components (see figure 19). The distance be-
tween bounding boxes that overlap horizontally, is considered to be zero. The
bounding box is the smallest rectangle which surrounds the handwritten text.
We extract contours from image (using Moore’s algorithm which is described
in section 2.1.4) and then we count distances between horizontally neighbouring
bounding boxes of contours for every line. If the distance between bounding boxes
is larger than threshold (which is obtained by analyzing all distances), we obtain
a inter-word gap. An example of segmented words is shown in figure 20.

Figure 19: The bounding boxes.

Figure 20: Word segmentation.

4.6.5 Grapheme segmentation and normalization

We takeover this method from [7]. Lower and upper contours are extracted from
the image (see figure 21). Then we find local minimums which occur in places
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where the upper contour is close to the lower contour. It means that the distance
between lower and upper contour is the width of line of handwriting. Words are
segmented into graphemes (grapheme may or may not overlap a complete charac-
ter) at these local minimums by vertical lines (see figure 22). After segmentation,
graphemes are normalized to 30x30 pixels.
The essential idea is that the ensemble of these simple graphemes still manages
to capture the shape details of the allographs emitted by the writer [7].

Figure 21: Lower and upper contours: on the left side is the original image and
on the right side are extracted contours. Upper contours are illustrated by red
curves and lower contours by blue curves.

Figure 22: Grapheme segmentation: upper contours are illustrated with green
curves and lower contours with red curves. Word ’veile’ is divided into graphemes
by vertical blue lines. Original image comes from [7].

4.7 Extraction of features

Individuality of handwriting is based on the idea that the variation within a
person’s handwriting is less than the variation between the handwriting of two
different people. We use the following features:

• Proportion of handwriting

• Height of handwriting and distance between lines

• Slant

• Density
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• Block letters

Each feature is described in more detail.

4.7.1 Proportion of handwriting

Four baselines are computed for every line (see figure 23):

• Ascender line passes through the topmost point of the line (Asc)

• Descender line passes through the bottom point of the line (Des)

• Upper baseline goes through the top of the lower case characters (Upp)

• Lower baseline goes through the bottom of the lower case characters (Low)

Figure 23: Four baselines

Proportion is defined as following ratio:

(Upp− Asc) : (Low − Upp) : (Des− Low) (7)

Therefore we obtain three numbers for each line:

(Upp− Asc) : (Low − Upp)
(Low − Upp) : (Des− Low)
(Upp− Asc) : (Des− Low)

(8)

Children in the elementary schools are taught to write in a way that yields a 1:1:1
proportion. But later on, when each of us forms his/hers writing, the proportion
is changed and that is characteristic for our handwriting. Baselines are a basic
feature in handwriting and more of them can be found in [78].

4.7.2 Height of handwriting and distance between lines (DBL)

Height of handwriting is computed for every line as (Des - Asc). Distances be-
tween lines are obtained by line segmentation. Because we don’t want to obtain
result in pixels, we compute ratio of distance between lines to height of handwrit-
ing for each couple (see figure 24).

4.7.3 Slant

Slant angle is obtained for each line by slant detection which is part of prepro-
cessing.
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Figure 24: Image figures distance between lines (DBL) and height of handwriting.

4.7.4 Density

We compute number of black pixels for each line.

4.7.5 Block letters

Nowadays humans often use block letters because of its readibility. They some-
times mix both types, block letters and court hand. We define so-called ’measure
of using block letters’. This measure is determined by the next criteria: the more
gaps are in the words the more block letters writer use (see figure 25). Measure
is obtained from each line of handwriting.

Figure 25: Block letters. On the left side is an example of handwriting close to
court hand and on the right side close to block letters. Court hand has characters
in words mostly connected contrary to block letters where characters mostly stand
alone. Red vertical lines divide each line into words and blue vertical lines are
depicted in places where occur gaps in word.
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4.7.6 Additional features

Design of our system enables to add another features or to change actual features
(e.g. distances between words).

4.8 Feature vector

Each feature (which characterises the document with handwritten text) is repre-
sented by a number (apart from proportion of handwriting which has 3 numbers)
and is computed as an average of features obtained from segmented lines. So, for
n features we get a vector of numbers.
We have two images as an input. For every image a feature vector is computed,
therefore we have two feature vectors:

F = (f1, ..., fn), G = (g1, ..., gn) (9)

Then a new vector is created by the subtraction of two mentioned vectors and its
coordinates are changed into absolute values:

H = (| f1 − g1 |, ..., | fn − gn |) (10)

A threshold vector is obtained from our experiments. We have unique threshold

Figure 26: Result of the first approach. On the right side, two input images from
different writers are depicted. After running the first approach, application gives
message which notifies that input images are written by different writers. The
message also writes features which aren’t similar for input images.
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for each feature (proportion 10, 10, 10, ratio of distance between lines to height
0.5, slant 0.2, density 300 and finally block letters 0.6):

T = (t1, ..., tn) (11)

Then each coordinate of vector H (hi) is compared with corresponding coordinate
of threshold vector (ti). If hi is smaller than ti, it’s a sign of similarity, if it is
bigger, it’s a sign of dissimilarity. If we have at least one coordinate of vector
H bigger than corresponding coordinate of threshold vector, two input images
are marked as written by the different writers. Otherwise the images are marked
as written by the same writer. It means that the only one dissimilar feature is
enough to determine different writers:

if ∃i ∈ {1, ..., n} : hi > ti then different writers
otherwise same writer

(12)

4.8.1 First approach

Our first approach is based on comparing two feature vectors as described above.
An example of application of first approach is shown in figure 26.

Figure 27: The result of SOM on two input images written by the same writer.
Input images are shown on the left side and result from SOM on the right side.
The red graphemes come from grapheme segmentation from the first input image
and the blue graphemes come from the second input image. SOM groups the
similar graphemes to the same cluster. All clusters are placed abreast on the
image. You can see that SOM places similar graphemes abreast.
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4.9 Graphemes clustering

The features mentioned in section 4.7 represent only a half of the whole solution.
An important role is played by the individual graphemes and their clustering.
Graphemes are segmented from each image and clustered afterwards.
The second approach
Inspired with [7], we use Kohonen’s self-organizing map (SOM). SOM groups
graphemes from both images according to the similarity of graphemes into the
clusters. Similarity of two graphemes is determined by their Euclidean distance
(see figure 27). We look at each cluster and find out whether it contains graphemes
from both images or only from one image. The more clusters with ’mixed’
graphemes exist, the more similar images are. The second approach is based
on results from first approach and results from SOM.
The third approach
The second clustering method which we use is our modification of hierarchical
clustering. As the input we use graphemes from both images. First step is find-
ing for each grapheme the ’closest’ grapheme (using Euclidean distance). Hence
we have grapheme pairs (clusters). Second step is finding for each cluster the
closest cluster (analogue with first step) using average linkage (see figure 7). The
result is realized by percentage of clusters which contain graphemes coming from
the same image. The third approach is based on results from first approach and
results from modified hierarchical clustering.

Figure 28: Result of the third approach. Two input images from the same writer
are depicted on the right side. After running the third approach, application
gives message which notifies that input images are written by the same writer.
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Input: two input images i1, i2
Output: true (images are written by the same writer) or false (image
are written by different writers)

boolean secondApproach (i1, i2) {
double som = SelfOrganisingMap(i1, i2);
if (som < 55) return false;
else if (som > 70) return true;
else return firstAproach(i1, i2);

}

boolean thirdApproach (i1, i2) {
double[] cluster = ModifiedHierarCluster(i1, i2);
if (cluster[0] < 55) return true
else if (cluster[0] > 65) return false
else {

if (cluster[1] < 20) return true
else if (cluster[1] > 30) return false
else return firstAproach(i1, i2);

}
}

Table 3: A formal description of the second and third approch.

Result from each approach (second and third) is a measure which determines
how input images are similar. This measure is compared with two thresholds
which are unique for each approach (we got them experimentally, for SOM the
thresholds are 55 and 70 and for modified hierarchical clustering 55 and 65 after
the first step and 20 and 30 after the second step).
If the result from SOM (modified hierarchical clustering) is smaller than the first
threshold, it’s a sign of dissimilarity (similarity), if it is bigger than the second
threshold, it’s a sign of similarity (dissimilarity) and if it fits between first and
second threshold, it’s uncertain and we rely on another method. Therefore SOM
resp. modified hierarchical clustering is combined with the first approach (which
is based on features). If measure fits between first and second threshold, we take
the result from the first approach. Otherwise, result from SOM resp. modified
hierarchical clustering is taken. Algorithm is described formally in table 3.
An example of application of third approach is shown in figure 28.
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5 Implementation and results

5.1 Results

5.1.1 Experiments

We performed our experiments on 100 images from 40 different writers. We made
100 experiments on 2 different images from the same writer and 100 experiments
on 2 images from 2 different writers. We tested 3 mentioned approaches (see
table 4).

Approach writer NOE NOCR NOIR accuracy average
1. same 100 85 15 85% 91%

different 100 97 3 97%
2. same 100 86 14 86% 92%

different 100 98 2 98%
3. same 100 93 7 93% 96,5%

different 100 100 0 100%

Table 4: Results of our experiments: signification of shortcuts - NOE (number
of experiments), NOCR (number of correct results), NOIR (number of incorrect
results). As seen in the table, the best results gives the third approach. The
first approach gives good results in respect of its complexity. However the second
approach doesn’t bring expected enhancement.

5.1.2 Sources of errors

Results strongly depend on preprocessing. In some cases preprocessing can give
incorrect output. For example line segmentation fails if lines are too close and
touch each other. Also word segmentation has problem with image where gaps
between words and gaps between characters are similar. If the slant has more
directions in the line, for example at the beginning of the line handwriting has
tendency to slant to left and at the end to right, it can be problem for our
algorithm. Now we explain source of errors for each approach:

1. the first approach
errors in experiments on images from 2 different writers: images were
marked as written by the same writer because it didn’t find any dissim-
ilarity. It is not available to detect differences. We can solve it by adding
another features.
errors in experiments on images from 2 same writers: this errors are more
serious because of their quantity. It can be caused by choosing an unsuitable
threshold. Another problem is failure of some algorithms (slant detection,
proportion of handwriting) which give bad result for particular input.

2. the second and third approach
SOM and hierarchical clustering tend to cluster some particular graphemes
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that are not significantly similar with respect to the goals of our effort. Er-
rors can be also caused by choosing two unsuitable thresholds. When result
of SOM resp. modified hierarchical clustering fits between these thresh-
olds, approaches take the results from the first approach. So in this case
the second resp. third approach takes over errors from the first approach.
We have no errors in experiments on images from 2 different writers in the
third approach, but we should do more experiments to detect defection of
the approach.

5.1.3 Performance

We made experiments using Intel Core 2 CPU 1,66 GHz with 1 GB RAM. Average
elapsed times: preprocessing 5 seconds, extraction of features less than 1 second,
modified hierarchical clustering 14 seconds and SOM 52 seconds. Average elapsed
times of three approaches is shown in table 5 and compared in respect of average
accuracy.

Approach average elapsed time average accuracy
1. 13 sec 91%
2. 67 sec 92%
3. 27 sec 96,5%

Table 5: Elapsed time vs. accuracy: Experiments show that the second approach
(with SOM) computes 5 times slower than the first and it brings only 1 % en-
hancement. Therefore it seems to be the least appropriate. The third approach
computes 2 times slower than the first and it brings 5,5 % enhancement. So this
is our winning approach.
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6 Conclusion

We have presented a combination of particular steps that creates a workflow for
identification and decision whether one and more documents are written by the
same author or not. Our effort was concentrated on a comparison of two im-
ages as on a fundamental problem. We proposed three approaches consisting of
preprocessing, feature vector extraction and combination with graphemes clus-
tering. We brought a voluminous review of preprocessing and writer verication
and presented implementation of mentioned task. Our experiments were made
on 100 samples from the IAM handwriting Database. We tested 3 approaches
described above and the best result was achieved by the third approach (96,5 %
accuracy). The presented results show the efficiency of our method. Our appli-
cation is user-friendly with simple control and minimization of interaction. No
special knowledge is expected for control our application.



7 FUTURE WORK 42

7 Future work

Our future work is to bring a better preprocessing (deskew document, noise re-
duction, deskew lines, rule line removal), include more handwriting features, ac-
celerate our approaches, implement another clustering techniques, compare the
results for different thresholds in each approach and make more experiments, also
with another handwriting databases.
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8 List of Symbols and Abbreviations

SOM Self-Organizing Map
HPP Horizontal projection profile
VPP Vertical projection profile
OCR Optical Character Recognition
DBL Distance between lines
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9 Glossary

Allograph a variant shape of a letter; i.e. one particular letter from an
alphabet can be realized using a number of shapes.

Grapheme (sub or supra-allographic fragments) may or may not overlap
a complete character, it’s the smallest meaningful unit of a
written language.

Connected
component is a set of black pixels, P, such that for every pair of pixels

pi and pj in P, there exists a sequence of pixels pi, ..., pj such
that:

1. all pixels in the sequence are in the set P i.e. are black,
and

2. every 2 pixels that are adjacent in the sequence are
”neighbors” language.
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Názov práce: Porovnávanie ručne ṕısaných textov
Autor: Miroslava Božeková
Katedra: Katedra aplikovanej informatiky
Vedúci diplomovej práce: Doc. RNDr. Milan Ftáčnik, CSc.

Abstrakt: Ciělom tejto práce je prispieť k riešeniu nasledujúceho problému. Ako
vstup máme jeden alebo viac naskenovaných obrázkov s ručne ṕısaným textom
a našou úlohou je vytvorǐt metódy ktoré určia, či obrázky sú naṕısané tou istou
osobou alebo nie. Sústreďujeme sa na základný problém - porovnávanie dvoch
obrázkov a rozhodnutie či sú dva obrázky naṕısané rovnakou osobou alebo nie
- takzvaná verifikácia autora. Predstavujeme tri pŕıstupy pozostávajúce z pred-
spracovania a extrakcie pŕıznakového vektora v spojeńı so zhlukovańım grafém.
Prvý pŕıstup je založený na pŕıznakovom vektore, druhý je kombináciou prvého
pŕıstupu a Kohonenových samoorganizujúch sa máp a nakoniec tret́ı spája prvý
pŕıstup a modifikované hierarchické zhlukovanie. Urobili sme experimenty na 100
obrázkoch od 40 rôznych autorov. Použ́ıvame obrázky z databázy IAM Handwrit-
ing Database, ktorá obsahuje 1539 naskenovaných strán s textom od 657 autorov.
V týchto experimentoch sme testovali tri spomenuté pŕıstupy na dvoch vstupných
obrázkoch. Pomocou tretieho pŕıstupu sme dosiahli 96,5 % úspešnosť. V tejto
práci predstavujeme našu implementáciu a taktiež výsledky.

Kľúčové slová: rukopis, verifikácia autora, graféma, zhlukovanie
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