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Abstract

The antibandwidth problem for graph G consists of labelling n vertices vi

of the graph with distinct integers f(vi) in range [1, n] in such manner that

value

min{|f(vi) − f(vj)| : (vivj) ∈ E(G)}

is maximized over all labellings. The problem was originally introduced

like dual variation of well-known bandwidth problem, but it can be reinter-

preted in many ways – as special multiprocessor scheduling problem , spe-

cial linear layout problem or variant of obnoxious facility location prob-

lem. The antibandwidth problem is NP-complete, there are very few exact

results for nontrivial graph classes and some classes of graphs where time

for finding the parameter is polynomially bounded. No general heuris-

tics are known so far. In this paper, we give necessary overview of all

fundamental information about the problem and then introduce idea of

general heuristic for obtaining constructive lower bounds of antibandwidth

parameter of arbitrary bipartite graphs. We describe some variations in

the technique and their influence on the results and efficiency of the algo-

rithm. We give statistical comparison to few known results and analyze

reasonability for using proposed heuristic.

Keywords: graph theory, antibandwidth, dual bandwidth
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Chapter 1

Introduction

The origin of interest about antibandwidth problem can be found in [11].

Motivation in this work was to explore some variants of the bandwidth

minimization problem, which is usually presented in following form: For

a graph G the problem is to label the n vertices vi of G with distinct integers

f(vi) from {1, 2, . . . , n} so that the value

max{|f(vi − f(vj))| : (vivj) ∈ E(G)}

is minimized over all labellings. In contrast to antibandwidth problem

which is its dual form, research on bandwidth problem was induced from

practical needs in engineering. In 1950s structural engineers first analyzed

steel frameworks by computer manipulation of their structural matrices.

In order that operations like inversion and finding determinants take as

little time as possible, the attempt was made to discover an equivalent

matrix in which all the nonzero entries lay within a narrow band about the

main diagonal — hence the term bandwidth [3]. In exact form problem was

as follows. For a real symmetric matrix M to find a symmetric permutation

M ′ of M so that the maximum value of

|i − j|

taken over all nonzero entries m′
ij is minimal. The equivalence of these

two problems is made clear by replacing the nonzero entries of M by 1’s

6



CHAPTER 1. INTRODUCTION 7

and interpreting the result as the adjacency matrix of a graph. Then the

labelling of the graph is equivalent to symmetrical permutation of its ad-

jacency matrix. It can be interesting that bandwidth problem for graphs,

meanwhile, originated independently, but also from practical needs of the-

ory of coding and searching for codes which minimize the maximum error.

It can be seen that despite this two problems are closely related in math-

ematical sense, naturally more attention was paid to bandwidth problem.

It is much more explored and there are numerous papers on various as-

pects of problem. In context of the fact, that both of these problems are NP-

complete, especially important point is, that there exists heuristic called

Cuthill-McKee [4] for obtaining reasonable estimates of bandwidth pa-

rameter for arbitrary graph. The technique of implementation improve-

ments and analysis of algorithm complexity and quality of results can be

found in various works e.g. [6]. Algorithm for performing this estimate

is widely used in applied field and is often included in standard mathe-

matical matrix transformation libraries. On the other hand, no such gen-

eral heuristic is known for antibadwidth problem, even for such important

subclass like bipartite graphs.

1.1 Motivation

Although the original problem arose like a variation of bandwidth prob-

lem, today there are more direct motivations for solving it at least approx-

imately, finding another classes of graphs where there can be produced

exact results or classes of graphs, where polynomial algorithms or rea-

sonable heuristics can be used. According to [16], basic motivations are

these: First of them to consider is radio frequency assignment problem.

The problem is to assign n different frequencies to n different transmitters

in such manner that physically neighbouring transmitters have as differ-

ent frequencies as possible [8]. The transmitters are represented by the

vertices of a graph G and their frequency neighbourhood is represented
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by the adjacency in graph G. This is a special interpretation of more gen-

eral obnoxious facility location problems [2]. Given an “enemy graph”,

vertices of which are some entities and edges represent relation of their

mutual intolerance, task is to arrange them on the line so that the minimal

distance between any couple of enemies is maximized. This is a special

case of more complex so-called antidilatation problem, where the “host

graph” is a path. In general we can try to embed guest enemy graph into

arbitrary graph structure with intention to maximize minimal distance be-

tween vertices of embedded guest graph. There are many interesting ap-

plications of this general problem in various fields, e.g. when the host

graph is a hypercube Qn and the guest graph is a complete graph Kp [14].

Then the solution for antidilatation problem for p ≤ 2n is equal to Ham-

ming distance of a binary code with p words of length n, which is the basic

parameter in theory of coding to determine error correcting property of

given code.

Scheduling problems are another area, where more information about

antibandwidth problem can be applied. E.g. when given a graph of tour-

nament where players are represented by vertices and planned matches by

adjacency in this graph, we need to schedule these games in such way, that

time breaks between any two games involving same players are longest as

possible thus giving players maximal rest. Although this case requires

transformation of the tournament graph to kind of corresponding edge

graph before the solution becomes eqivalent to finding antibandwidth pa-

rameter, idea of usage remains the same. Similar problem can be consid-

ered in area of multiprocessor or multitask scheduling [11], where we re-

quire some related problems sharing particular resources to be computed

in biggest possible time or space distance as possible.

Last field of motivation for finding new results about antibandwidth

parameter to mention, is from area of interconnection networks [16]. Since

there has been big advance in VLSI technology in recent years, intercon-

nection networks are becoming very complex, focusing more on integra-
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tion of big number of computational units rather than increasing their

computational power. The overhead of communication between them is

becoming very complex and one important problem is to find proper topo-

logical structure for the network satisfying various requirements. When

thinking about one dimensional (linear) layout, we are again in touch with

antibandwidth problem [16].

1.2 Goals and results

The goal of this work is to investigate ideas that could lead to finding

heuristics or algorithms for computing reasonable lower bounds of an-

tibandwidth parameter of arbitrary bipartite graphs. Complexity of the

problem for bipartite graphs is not known and no algorithms exist either.

After summarizing known issues about the problem focusing on algorith-

mic and computational part, we propose idea of one such heuristic. We

analyze its parameters and how their selection affects the results and ef-

ficiency of the algorithm. Then we give statistical comparison of results

obtained by our implementation of the heuristic. Even though testing the

quality of heuristic is problem because of non-availability of many refer-

ence results, for existing ones we compare obtained values and discuss the

convenience of heuristic for every particular tested class. We give results

also for some examples of random bipartite graphs where no reference

results are known and so our values are first available general approxima-

tions for this cases. Finally we offer algorithmical and complexity analysis

of the heuristic.



Chapter 2

Preliminaries, notation and

definitions

2.1 Terminology

In this place, there is a need to make a basic terminology of problem

clearer, because there are some inconsistencies in naming the same prob-

lem in various papers. The original paper [11], which in fact introduced

the problem, was using the name separation number of graph. But during

recent years this name was adopted for another kind of graph linear lay-

out problem, where it seemed more natural. In another paper [12] Lin and

Yuan are introducing the same problem under term dual bandwidth. Fi-

nally, in work [15] the term antibandwidth is proposed and we will use this

one, because it seems most appropriate and least confusing.

2.2 Notation

We use the following notation and conventions. Only finite simple nonori-

ented graphs G with vertex set V (G) and edge set E(G) will be consid-

ered. As above let [1, n] denote the set of integers from 1 to n inclusive. Let

G ⊆ H denote that G is isomorphic to a subgraph of H . We let dxe, and bxc

10
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v1 v2 v3 v4 v5 v6 v7

v2 v4 v6 v1 v3 v5 v7

Figure 2.1: Optimal antibandwidth layout for P7. Formal labelling of ver-

tices is f(v1) = 4, f(v2) = 1, f(v3) = 5, f(v4) = 2, f(v5) = 6, f(v6) = 3,

f(v7) = 7

be the usual ceiling and floor functions, i.e., the smallest (resp. greatest)

integer greater then (resp. less than) or equal to x. We further use common

conventions like δ(G) for smallest degree of a graph, ∆(G) for the largest

degree and D(G) for graph diameter. χ(G) is used for chromatic number

of graph, α(G) for independence number. G stands for graph which is the

complement of G.

2.3 Definitions

Definition 2.3.1 (Antibandwidth parameter) For a nonempty graph G = (V, E)

let f be a one-to-one labelling

f : V → {1, 2, . . . |V |}

We define the antibandwidth of G according to f as

ab(G, f) = min
uv∈E(G)

|f(u) − f(v)|
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The antibandwidth of G is defined as

ab(G) = max
f

ab(G, f)

It is useful to imagine the antibandwidth problem also as a linear layout

problem. The labelling maps vertices of the graph on a line of integer

points in range [1, n] in such manner that minimal distance of adjacent

vertices is maximized and so “spreading the graph from inside” as much

as possible. Simple example of the optimal antibandwidth layout of P7 is

on Figure 2.1.

Definition 2.3.2 (kth power of a graph) The kth power of a graph G = (V, E)

is the graph Gk with the same vertex set and xy ∈ E(Gk) if and only if the

distance between x and y in G is at most k.

Later in the chapter we are considering kth powers of Hamiltonian

paths contained in other graphs. We say that G contains the kth power

of a Hamiltonian path if |V | = n and if G has a subgraph isomorphic to

P k
n , where Pn is the path on n vertices. In terms of labelling, this is equiv-

alent to following: G contains the kth power of a Hamiltonian path if the

vertices can be labelled by unique integers from [1, n] in such way that

|i − j| ≤ k implies ij ∈ E(G).



Chapter 3

Previous results

In this chapter we summarize known results on the problem. As we men-

tioned in the introduction, there are few results that can be considered

significant. Anyway, we give an overview of them focusing on the ones,

that have importance to subject of this thesis. Since the problem is (like we

show later in this section) NP-complete, any reasonable estimation can be

an advance. From our point of view, so far known results can be roughly

divided into three main sections.

First direction of research was to connect antibandwidth problem with

other well-known and well-studied graph invariants and characteristics

like χ(G), ∆(G) or δ(G) which brought some basic facts about upper and

lower bounds. Special case is the connection with its dual and closely

related bandwidth problem. This one is much better surveyed, so any

practical result from this connection would be requisite. Nothing strong

has been proven so far.

Another set of theorems is focusing on particular (and sometimes very

narrow) classes of graphs, where exact results (usually lower bounds) are

proven, based on finding particular labelling. These include results for

paths, complete k-ary trees, hypercubes, meshes . . .

The last group of results are computational issues. These set of the-

orems proves NP-completness of problem, even of some subproblems,

13
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complementarity with the problem of finding powers of Hamiltonian path.

Further it surveys graph classes, where polynomial algorithms are appli-

cable.

3.1 Basic bounds

We start with basic upper and lower bounds and connection to other in-

variants. For closer look we recommend [13].

Theorem 3.1.1 For connected graph G = (V, E) of order n

ab(G) ≤
⌊n

2

⌋

We could see that this absolute possible upper bound can be reached

e.g. in case of paths Pn (Figure 2.1). It comes from a simple observation

that it is not possible for all edges to have length greater than n
2

in any

linear layout. The optimal labelling for paths Pn = (v1v2 . . . vn) can be

formalized as

f(vi) =
i

2
for i even

f(vi) =
⌈n + i

2

⌉

for i odd (3.1)

Obviously ab(G) can have a value of 1 (e.g. for complete graphs Kn) so

the basic bounds of antibandwidth values for connected graphs of order n

are [1, bn
2
c].

The known relations between antibandwidth parameter and other graph

invariants are presented here. They mainly present upper bounds which

can bring some theoretical information but of course, since we are search-

ing for the best possible estimate, lower bounds and especially construc-

tive ones are really what we are looking for. These are usually obtained by

(ad hoc) constructions which are usually dependent on property of some

particular class. For closer look and proofs we recommend [13] resp. [12].
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Theorem 3.1.2 For connected graph G = (V, E) with n vertices and q edges

(i) ab(G) ≤ n + 1
2
(1 −√

1 + 8q)

(ii) ab(G) < n
χ(G)−1

(iii) ab(G) ≤ 1
2
(n − δ + 1)

(iv) ab(G) ≤ n − ∆

(v) ab(G) ≤ α(G)

(vi) for G bipartite, ab(G) ≥
⌈

D(G)
2

⌉

So far, we have not spoken much about the connectivity of the exam-

ined graph. According to our definition 2.3.1, things are all right when

the graph is not connected, only if there is no edge at all parameter is un-

defined and we can fix it to ∞ by definition. Non-connectivity gives us

chance to even overcome the upper bound of n
2

for graphs with δ(G) > 0.

Interesting question can be, how does the overall antibandwidth depend

on antibandwidth of its components and if it can be constructed from

them. This problem seems to remain hard but this approach, specialized

on the copies of the same graph (considered as union) was studied in work

[7]. Some of the results can be inspiring for our later heuristic, especially

regarding the non-connected graphs and combining their vertices from

components to produce good antibandwidth estimate, like in the follow-

ing ones. Constructive proofs can be found in mentioned work [7].

Theorem 3.1.3 For graph G and k ∈ N, ab(k · G) ≥ k · ab(G).

Theorem 3.1.4 Let G be the union of paths Pi with i = qj > 0 (j=1,. . . ,m) and
∑m

i=1 qi = n. Then ab(G) = bn/2c.
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3.2 Lower bounds and exact results

There are only few results giving exact numbers or at least asymptotical

lower bounds. Most of them are quite narrow special graph classes. Rea-

son is that unless G has some nice regular structure, it is really hard to give

some general description how to label the vertices in sense of good an-

tibandwidth and prove value of lower bound. One of the biggest results in

this field is work [13] which offers outline how to proceed in construction

of the labelling for simple subclasses of bipartite graphs and determine an-

tibandwidth of this labelling afterwards. Further it uses this technique to

prove reasonable lower bounds of antibandwidth for forests, special trees,

meshes and hypercubes. Works [15] and [16] extend the results and give

also upper bounds for these cases. We will use these results later on for

comparison with our estimates, so here is the list of the main issues. More

information and proofs can be found in above referenced articles.

Theorem 3.2.1 Let F be general forest, MIN(F ) the minor bipartition of F .

Then ab(F ) ≥ MIN(F ).

Proof of this theorem is constructive and gives algorithm that arranges

vertices of tree with resulting antibandwidth of smaller bipartition.

Theorem 3.2.2 For F a forest, ab(F ) = bn
2
c if and only if F is balanced or

contains a vertex of degree 1 or 2 whose removal yiels a balanced forest.

The key theorem, which stands back behind most of theoretical results

for bipartite graphs follows.

For bipartite graph B with bipartition X, Y with |X| = m, |Y | = n−m,

with Y = {y1, y2, . . . yn−m} (fixed order), consider all labellings f : V (B) →
[1, n] for which f(yi) = m + i for all i ∈ [1, n − m]. Let ab(B, {yi}) be the

maximum value of ab(B, f) among all such labellings f . For each x ∈ X ,

let j(x) = min{i : xyi ∈ E(B)}. For each t ∈ [1, n−m], let Nb(t) = {x ∈ X :

j(x) = t}, let New(t) = |Nb(t)| and let B(i) =
∑i

t=1 New(t), the number of

vertices adjacent to any or all elements of {y1, y2, . . . yi}.
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Theorem 3.2.3 ab(B, {yi}) = m − maxi{B(i) − i}

Theorem gives us method how to determine antibandwidth value of

particular labelling for bipartite graphs. If we choose this labelling “smart”,

summation can lead to a optimal lower bound in closed or asymptotic

form. Here are the known outcomes, some improved not to be only lower

bounds, but exact values [15] [13] [16].

Theorem 3.2.4 Let Pn denotes path of length n, Cn cycle of length n, Tk,n com-

plete k-ary tree with total number n of vertices, Pm × Pn denotes mesh graph of

dimension m × n with m ≥ n and Qn the hypercube of order n. Then

(i)

ab(Pn) =
⌊n

2

⌋

(ii)

ab(Cn) =
⌈n

2

⌉

− 1

(iii) For even k ≥ 4

ab(Tk,n) =
n + 1 − k

2

For odd k ≥ 3 and h ≥ 3, h is the height of the tree

ab(Tk,n) ≥
n

2
− O(k2h)

(iv)

ab(Pm × Pn) =

⌈

n(m − 1)

2

⌉

(v)

ab(Qn) = 2n−1 − 2n

√
2πn

(1 + o(1))
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(vi) n ≥ 3, e is whichever of
⌊

n−1
2

⌋

or
⌊

n+1
2

⌋

is even

Let

F (e, n) =

(

n

e + 1

)

+

(

2e

e

)

−
(

n

e

)

−
(

2e

e + 1

)

− (n − e − 1) +

e−1
∑

j=1

[(

2e − 2j

e − j

)

−
(

2e − 2j

e − j + 1

)]

Then

ab(Qn) ≥ 2n−1 −
[(

n − 1

e − 1

)

+ (n − e − 1) + F (e − 1, n − 1)

]

if n ≡ 3 (mod 4)

and

ab(Qn) ≥ 2n−1 −
[(

n − 1

e − 1

)

+ (n − e − 1) + F (e, n)

]

otherwise

Moreover this bound is asymptotically optimal

3.3 Computational results

In this section, we are going to look closer on the computational issues

of antibandwidth problem, its complexity and known algorithmic results.

Antibandwidth problem is proven to be hard and therefore no polynomial

time algorithm can be used for solving it efficiently. More on this and the

proofs of theorems in this section can be found in [11] and [12]. Following

theorem shows, that even a subproblem is very hard to be solved.

Theorem 3.3.1 ab(G) ≥ 2 if and only if G has a Hamiltonian path.

It is useful thing to realize, how directly is our problem complementary

to well-known Hamiltonian path problem. Let ab(G) ≥ 2 and let f is opti-

mal antibandwidth labelling for G. Let v1, v2, . . . , vn is ordering of vertices

of G such that f(vi) = i. According to ab(G) ≥ 2, there cannot be any edge
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between vi and vi+1 for i = 1, 2, . . . , n − 1. Thus sequence v1, v2, . . . , vn is

defining Hamiltonian path in G.

Conversly, let v1, v2, . . . , vn is the Hamiltonian path in G. If we define

the labelling of G simply like f(vi) = i then, because there are no edges

between neighbours in linear layout ab(G) ≥ ab(G, f) ≥ 2.

The simple corollary of this result is

Theorem 3.3.2 Decision problem “is ab(G) ≥ 2” for given graph G is NP-

complete.

Proof comes out from the complementarity of problem ab(G) ≥ 2 to

problem of finding a Hamiltonian path in G (showed in the last Theorem

3.3.1) and the NP-completness of Hamiltonian path problem.

This result shows the root of the problem – even this simple decision

is in general practically incomputable and that is the real motivation why

we are searching at least for some reasonable constructive lower bounds

of the parameter.

Analogically to above, it is easy to see that for graph G of order n prob-

lems if ab(G) ≥ k and G contains kth power of Hamiltonian path Pn (Defi-

nition 2.3.2) are equivalent. Moreover there are some graph classes, where

the maximum k such that graph of this class contains kth power of Hamil-

tonian path (Hamiltonian path power problem) can be detected by partic-

ular algorithms in polynomial time. That gives us polynomial detection of

antibandwidth parameter for complementary classes.

Theorem 3.3.3 There are efficient algorithms for finding antibandwidth param-

eter in complements of

(i) interval graphs

(ii) treshold graphs

(iii) arborescent comparability graphs
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All necessary definitions of these graph classes, theorems, proofs and

algorithms can be found in [10] resp. [5].

No complexity issues are known so far for the case of bipartite graphs.

There is no similar proof that problem is hard like the above ones, nor any

known polynomial algorithm solving the problem.



Chapter 4

Heuristic for bipartite graphs

As mentioned in previous chapter, complexity of finding antibandwidth

for arbitrary bipartite graphs is not known. Despite this fact, property of

being bipartite and so offering independent sets of vertices with no edges

within is adding some convenience into heuristical search of parameter

approximation. As we can see from (ii) in Theorem 3.1.2, bipartite graphs

(synonym for having χ(G) = 2) are interesting also for being only class

that can achieve all possible values of antibandwidth parameter from 1

(for complete bipartite graphs) to bn
2
c (e.g. for path graph). We could see

in previous sections that there are some theoretical results that make use

of the fact that graph is bipartite.Work [13] introduces reasonable solution

for forests based on algorithmical approach and Theorem 3.2.3 gives ad-

vice how to proceed in showing lower bounds of antibandwidth for par-

ticular labelling of bipartite graph. Usually very nice and regular labelling

for kind of regular bipartite graph have to be used in order to be able to

calculate the summation given by theorem. Good examples of this method

are results from Theorem 3.2.4 for hypercubes or meshes.

Our aim here is different - we want to construct general heuristic for

constructing lower bounds that can just benefit from knowledge of graph

being bipartite, but nothing more. Obviously the results therefore cannot

tend to be optimal, but since there is not any known general heuristic,

21
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everything producing reasonable results can be analyzed.

4.1 Basic observations and ideas

First we can look on simple general observations of properties of our prob-

lem that could help us with the construction. We can be inspired from dif-

ferent heuristics for, at first glance, related problems. One of them can be

generalized maximum linear arrangement problem [9]. That is to compute for

a given vector x ∈ R
n and n×n non-negative symmetric matrix W = (wi,j)

permutation π of {1, 2, . . . , n} that maximizes
∑

i,j wπi,πj
|xj − xi|. If we set

vector x to (1, 2, . . . , n), it is special NP-hard case known as maximum linear

arrangement. If we take matrix W for binary incidence matrix of graph with

vector x set to (1, 2, . . . , n) we have something what we can call “average

antibandwidth problem” - we try to maximize sum of all edge distances

in linear layout given by permutation π, while in common antibandwidth

problem we just want to maximize shortest one. For the average antiband-

width problem, we can use very simple heuristic method. Since the av-

erage value of |xj − xi| in this case is n
3

, expected weight of a random

permutation is n
3

∑

i,j wπi,πj
, which is at least 1

3
optimal in expected case

[9].

We can look what random permutation would produce in common

antibandwidth problem. For purpose of simplicity, let us look on the case

of random graph on n vertices, with independent probability p for each

possible edge to exist.

Lemma 4.1.1 For Gn,p random graph on n vertices with edge probability p ∈
(0, 1), random labelling f of vertices almost always produces ab(G, f) = 1 for

any p.

Proof. Let us imagine linear layout mapping of G. Let f is random per-

mutation, that maps some vertex v to the first point of linear layout. Prob-

ability that neighbour in the linear layout is not connected to v in G is 1−p
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(like for any other vertex). Consequently, probability that there is no edge

between any neighbour vertices in linear layout is (1 − p)n−1. That means

that possibility of ab(G, f) ≥ 2 with rising n approach to 0 for any p. ¤

Randomness in this way does not seem to be very helpful approach in our

case.

Another problem property that can usually mean some benefit for find-

ing reasonable heuristic is “continuity” or “stability” or in the other words

that small change in the domain of problem cause only small change in

the result. This can lead to iterative improvement of temporary results

based on some decision algorithm. If we take the mutual change of the

labels of two vertices for minimal change in the domain, problem is not

continuous because this elementar change can obviously lead from best

possible result to the worst (consider the change of positions of vertices v4

and v1 on Figure 2.1). If we take the mutual change of two neighbouring

labels (that differ by 1) of the vertices for minimal change in the domain,

it can lead to change of antibandwidth by 1 to each side or no change

at all. On the first look, antibandwidth problem must be considered as

global problem, because any locally good situation can still mean worst

result overall. This property indicates that just local changes, which can

be relatively under control, may not lead to good overall result and big

changes of global influence are also needed, but control over them is quite

lost with high number of edges, because they can always lead to the worst

case. The heuristic working with the motivation of iterative improvements

should consider this fact and so maybe some concept of generic proba-

bilistic meta-algorithm for the global optimization allowing big changes

at least in the beginning, like simulated annealing, could bring some suc-

cess. But so far no issue is known regarding this direction.
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4.2 Description of heuristic

Basic idea of proposed heuristic is that bipartite graph can be easily de-

composed to number of independent sets of vertices - not having any

edges within. Then we can arrange them lineary in such order, that any ex-

isting edges between these sets are tried to be maximized by letting them

“go over” most possible other sets, where no edges are attached inside. In

the following we suppose G to be connected. If it is not, we are making

the same procedure for all of its components and then construct final one

afterwards as will be described later below.

Algorithm will be like follows. Let G is arbitrary bipartite graph. We

choose one vertex or independent set of vertices in it (randomly or with

some strategy resp.), which we will call seed. Then we construct decom-

position Dseed(G) of G to set of vertex layers, beginning with the seed, N

stands for neighbours.

Dseed(G) = {L1, L2, . . . , Lm}

V (G) = ∪
i
Li

Li ∩
i6=j

Lj = ∅

L1 = {seed}

Lk+1 = N(Lk) \ ∪
i<k

Li

or in non-inductive way

Lk = {u ∈ V (G) : s ∈ seed, d(s, u) = k − 1}

Important property of this decomposition is that it guarantees the edges

to exist just between neighbouring layers Li and Li+1 for i ∈ [1, m− 1] and

nowhere else due to the construction and the fact that G is bipartite. We

can use this “linearity” of decomposition for maximizing existing edges in

the same manner as with the path graph Pn. Example of such a labelling is
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on Figure 2.1. It is optimal antibandwidth labelling for path giving high-

est possible value of
⌊

n
2

⌋

and the assigning labels to vertices is given by

formula (3.1).

We will use the same technique for ordering the set of n layers of our

decomposition D. Let us consider labelling of layers g : D → [1, n]

g(Li) =
i

2
for i even

g(Li) =
⌈n + i

2

⌉

for i odd (4.1)

Vertices inside layers will be temporarily labelled in natural order or

randomly, we will discuss strategies on this point and their effect on result

later in section 4.3.2. Seed set for this moment is chosen as random ver-

tex, strategies of better selection will follow in section 4.3.1. Picture with

schematic demonstration of the procedure is on the Figure 4.1.

Given a graph decomposition D(G), the minimal width mw(D), maxi-

mal width w(D) and depth d(D) stand for mini|Li|, maxi|Li| and the num-

ber of layers respectively. By numbering G arbitrarily, layer by layer, it is

not hard to see that for such a numbering f

ab(G) ≥ ab(G, f) ≥ mw(D)(
⌊d(D)

2

⌋

− 1) + 1 (4.2)

and

ab(G, f) ≤ w(D)(
⌊d(D)

2

⌋

− 1) + 1 (4.3)

From this basic relation, we can see that the crucial factor for obtaining

best possible result is to maximize product of mw(D) and d(D) by various

choices during heuristic.

We can express the lower bound of constructed antibandwidth esti-

mate even in more complex and precise way. The value, which is the

shortest possible edge length in the constructed layout, is determined by

the minimal sum of cardinalities of the
⌊d(D)

2

⌋

−1 consecutive layers, which

are together overrun by edges of the graph (Figure 4.2). Length of the
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Figure 4.1: Trivial demonstration of proposed heuristic with seed vertex 1

producing antibandwidth of 3
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shortest possible edge overrunning particular consecutive layers is greater

by 1 than considered sum. If we consider bijection g−1 inverse to the one

defined by formula (4.1), returning number of the layer placed on desired

position (with assigned label resp.), and d = d(D) we can state

ab(G) ≥ ab(G, f) ≥ min
k∈

[

2, dd/2e+1
]

{

1 +

k+bd/2c−2
∑

i=k

∣

∣Lg−1(i)

∣

∣

}

(4.4)

In the following, we will use Hab(G) for the heuristical antibandwidth

value – estimate produced by our method.

4.3 Parameters and improvements

The rough idea of heuristic was described in previous part, but there still

are ways of affecting its result by parametrizing several steps. First is the

choice of the seed, which can affect depth and minimum width of de-

composition layers. Relevant question is which vertex or set of vertices

to choose for the seed to produce optimal decomposition while still be-

ing efficient and not trying all possibilities and how big is the difference

between sophisticated approach and random one. Another important de-

cision affecting overall result that we discuss in this section is technique of

labelling vertices inside layers. During the testing, which will be subject of

following section 4.5, many configurations of these two parameters were

tried. Although we cannot guarantee their best performance in general on

all bipartite graphs and in special classes the changes can bring benefit,

we rate following outcomes as best in average cases that we were able to

obtain.

4.3.1 Seed selection

Seed as a independent set

Basic question is whether to choose a vertex or some independent set for

a seed. Figure 4.2 shows, that choosing the suitable set could bring some
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Lmax evenL4L2 L1 L3 Lmax odd

Figure 4.2: General image of ordering decomposition layers. Thick lines

represent set of edges. Most of edges pass over L1 and Lmax even layers

benefit because almost all edges in layout given by our heuristic goes over

the seed set of vertices L1 and over the set with the highest odd label Lk

(assigned by formula (4.1) ) and their width could increase length of most

edges, making higher probability of better average result. We can hardly

affect the size of Lk when decomposing the graph, but we can choose quite

wide starting seed L1. Strategy for choosing suitable independent set can

be tough, because there are many of these and trying all of them while

being efficient is impossible. It should be set with appropriate width and

low “degree”, meaning having not so wide neighbour set L1, because we

are still trying to maximize the depth of decomposition and it is natural

that wider layers are, smaller the depth is. We can try to choose some

proportionally adequate (relatively to number of all vertices) independent

set of vertices with lowest degrees, but if the graph is dense enough, get-

ting such set could not be easy in reasonable time. Another approach is

to choose random vertex, construct decomposition and choose one of the

first layers (because of relatively smaller “degree”) that seems to be suit-

able for above conditions. During testing cases described in section 4.5

we tried these different strategies of choosing seed set, but results could

not be evaluated as any big improvement in average, compared to proper

choice of one vertex seed. For all of these reasons in following we focused

only on case of single vertex seed.
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Seed as a single vertex

If we choose only one vertex for a seed, minimum width of graph de-

composition is 1, the worst possibility and according to formula (4.2) we

have to only focus on increasing the depth of decomposition. It is possible

to pass through all decompositions (starting in every vertex) and choose

ones with biggest depth, order them within layers according to next sec-

tion 4.3.2 and then from these take the one with highest antibandwidth

as a result. We use this algorithm in the following. However, generating

all possible decompositions takes O(|V (G)|.|E(G)|) and if the order of G

is big enough, we can come to problem with efficiency. It is natural and

it was also observed that there is a correlation between vertex degree and

decomposition depth. The lower degree initial vertex has, bigger depth

of associated decomposition can be expected in average case. We can im-

prove performance of heuristic by trying only decompositions induced by

vertices of “low degree” same as it is done in Cuthill-McKee algorithm [4].

Or even better we can proceed like in Gibbs-Poole-Stockmeyer algorithm

(GPS) [6] which is an improvement of original Cuthill-McKee and search

for the endvertice of pseudo-diameter of the graph (defined by their algo-

rithm) which is in average case seed for high depth decomposition. Since

we are first interested in how appropriate results can our approach pro-

duce in general, we will use every vertex as a seed in order to get best

possible antibandwidth estimate, but in the case of high order graphs and

therefore also computational time, we can reduce the set of vertices used

for a seed according to these algorithms.

4.3.2 Ordering within the layers

In this context we studied if some more sophisticated ordering of vertices

within layers against random approach can mean significant difference in

results. During testing the heuristic, we tried various different concepts,

but the following one appeared to produce best averages. Let us have
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degrees degreesdegrees degreesdegreesdegrees

Lmax evenL4L2 L1 L3 Lmax odd

Figure 4.3: Demonstration of how the vertices are ordered within layers of

decomposition

layer L1 ordered (we let seed in natural order and in the case of one ver-

tex thing is trivial). For each successive layer Li, the vertices adjacent to

the vertex in lowest assigned position in previous layer are consecutively

placed in order of decreasing degree if the i is even and in the order of

increasing degree if the i is odd. Ties being broken arbitrarily. Then un-

placed vertices adjacent to the next vertex of lowest assigned position in

previous layer are positioned in the same way. This process continues un-

til all the vertices in the current layer are placed. Then the algorithm is

applied to the next layer in the same manner. After all layers of decompo-

sition are constructed in this way, we can order them according to formula

(4.1) (with stable position of inside vertices) and finally now we can assign

labels from 1 to |V (G)| to placed vertices to obtain sought labelling f and

compute lower bound of antibandwidth ab(G, f). Simple demonstration

of described process can be found on Figure 4.3.

Ordering neighbours in layers in sequential order relatively to their

parents is apparently best way how to prolong edges connecting them

with parents. Subordering the neighbours of the same vertex in decreas-

ing resp. increasing order dependently on parity of layer should lower the

probability of shorter edges causing worse result. If we look on Figure 4.3

we can see the reason. The vertices with high degrees should be placed as
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far as possible from places that they are connected with, lowering the pos-

sibility of short edge. Even labelled layers are placed on the left relatively

to they next odd neighbour layer and so the higher degree vertices within

should be placed most to the left. On the other hand, odd labelled layers

are to the right relatively to their neighbours and so high degree vertices

should be placed most to the right as possible. In the Table 4.1 we can

see some illustrative results for tree different types of ordering inside the

layers. We are not stating them as statistical proof, but we could observe

similar tendencies as presented during all later testing of heuristics and

therefore in the following we will use described process of ordering.

Type
of graph

Described
ordering
within
layers

Consecutive
ordering
without
considering
degree

Random
ordering
within
layers

B500,0.5 12 10 5
B500,0.5 12 11 5
B500,0.5 12 12 5
B500,0.5 12 10 5
B500,0.5 14 11 5
B1000,0.5 14 12 6
B1000,0.5 13 12 6
B1000,0.5 14 11 6
B1000,0.5 14 13 5
B1000,0.5 13 13 6
rT1000 424 410 322
rT1000 435 436 359
rT1000 415 402 308
rT1000 401 394 315
rT1000 427 419 357

Table 4.1: Illustrative comparison of the antibandwidth heuristics with dif-
ferent ordering within layers. Bn,p represents random bipartite graph with
p edge probability and random separation of vertices to bipartitions one
after another with probability 1

2
. rTn represents random tree on n vertices
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4.4 Connectivity

As we mentioned above, till this time we were considering only connected

graphs. Let us now consider that

G = C1 ∪ C2 ∪ . . . ∪ Cm

is the union of components, with depth of decompositions

di = |D(Ci)|

and heuristical antibandwidth estimate

hi = Hab(Ci)

for each component. During construction of final antibandwidth estimate,

we can proceed in two directions outlined by constructive proofs of Theo-

rems 3.1.3 and 3.1.4. First approach considers copies of the same graph,

and works on a level of consecutive combining of single vertices from

components in order to maximize overall edge length in average. We can

generalize this method for iregular components by some kind of propor-

tional merge of the component vertices based on cardinality of compo-

nent and value of antibandwidth estimate. But since our components can

largely differ in these values, proportional merging may not guarantee the

optimal increase of local short edges.

On the other hand, we have advantage of linear decomposition for

each component. We can make use of Theorem 3.1.4 for union of paths,

and construct optimal layout for union of linear decompositions (opti-

mal in sense of how many layers must the shortest possible edge over-

come) in the same manner. Let overall decomposition of G consists of all

consecutive layers from each component, Li,Cj
represents i-th layer of Cj .

D(G) = {L1,C1
, L2,C1

, . . . , Ld1,C1
, L1,C2

, L2,C2
, . . . , Ldm,Cm

}. This decomposi-

tion is “almost linear” – there are not connected neighbouring layers, if

they come from different components, but all the rest of layers are con-

nected in linear way. Now we can continue by applying the same proce-

dure of assigning labels to layers by Formula (4.1) and constructing the
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final linear layout. The depth of constructed decomposition is d =
∑m

i=1 di

and guarantees the shortest edge in the result to come over at least
⌊

d
2

⌋

− 1

layers.

4.5 Heuristic results and comparisons

In this section we are going to look on results that proposed heuristic pro-

duces on various bipartite graphs and their reasonability. Measurement of

how the results are good or bad is still hard work, because as it was men-

tioned, there are very few exact or approximative results known, but if

they are, most of them are for bipartite graphs and they are listed in The-

orem 3.2.4. Proposed heuristic and graph structures were implemented

in JAVA environment version SE 6 and run on average desktop machine.

Tested classes were random trees, meshes, hypercubes, complete k-ary

trees and arbitrary random bipartite graphs (but in this case there are no

good results to compare with). For each class hundreds to thousands of

different cases (depending on structure e.g hypercubes are exactly defined

and regular) were subject of the heuristic and the results were stored as the

ratio of heuristic result and the best known result in general (exact in some

cases). Then the mean value of RHab(G) (Heuristical antibandwidth ra-

tio) and the standard deviation σ is calculated as the evaluation of quality

showing reasonability of heuristic in every case, giving image of how the

heuristic could work on arbitrary bipartite graphs, where no exact results

nor algorithms are known.

4.5.1 Random trees

Heuristic in this case was performed on random trees rTn of different or-

der. These were chosen quite high to prove its efficiency. As a comparison

result (and best known for this time), lower bound given by Theorem 3.2.1

was used. As the order n of random tree goes high, it is natural that this
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Order of rTn Best known
result

Heuristic
result

Ratio

1000 492 440 0.89
1000 488 426 0.87
1000 498 438 0.88
1000 490 434 0.89
1000 500 424 0.85
1000 498 433 0.87
1000 499 430 0.86
1000 489 421 0.86
1000 500 432 0.86
1000 500 437 0.87
1000 493 431 0.87
1000 493 424 0.86
1000 493 425 0.86
1000 498 427 0.86
1000 499 456 0.91
1000 486 434 0.89
1000 497 428 0.86
1000 493 427 0.87
...

...
...

...

RHab(rT1000) 0.87
σ 0.02

Table 4.2: Results of the heuristic for random trees of order 1000

lower bound given by smaller bipartition of the tree tends to go to possible

maximum of antibandwidth of
⌊

n
2

⌋

(as can be seen in first column of table)

and therefore can be considered optimal (expected random tree of big or-

der has almost balanced bipartitions). Table 4.2 is just a short example of

results, but mean value and standard deviation is calculated out of 1000

random samples.

When testing the heuristic on 1000 random trees of order 10000, statis-

tical quality of results tends to go even higher to RHab(rTn) = 0.89 and

σ = 0.02. Final statistical testing is trying to be universal in the sense, that
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Order of rTn Best known
result

Heuristic
result

Ratio

13771 6855 6090 0.89
11073 5526 4841 0.88
787 387 348 0.9
6437 3207 2799 0.87
1925 953 844 0.89
4990 2475 2112 0.85
11178 5558 4903 0.88
16310 8123 7159 0.88
11232 5579 4924 0.88
18486 9222 8010 0.87
12342 6138 5601 0.91
18370 9135 8427 0.92
9015 4492 3941 0.88
2804 1389 1257 0.9
9027 4507 3919 0.87
9204 4579 4129 0.9
17838 8882 7891 0.89
7040 3510 3111 0.89
11628 5745 5116 0.89
...

...
...

...

RHab(rTn) 0.88
σ 0.02

Table 4.3: Results of the heuristic for random trees of random order up to
20000

orders of random trees are also generated randomly up to 20000 with re-

sults in Table 4.3. In this case of high order, not all the vertices are used

as a seeds because of high computation time and decomposition is started

only in chosen vertices of low degree as outlined in the end of section 4.3.1.

Anyway the results are quite satisfying.

We can conclude that our heuristic is reasonable to use for trees, when

it produces 0.88 of best known value of antibandwidth in average with

quite narrow deviation without utilizing fact that graph is tree itself.
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4.5.2 Mesh Graphs

Order of
Mm×n

Exact result Heuristic
result

Ratio

341 × 82 13940 13939 1.0
375 × 224 41888 41887 1.0
371 × 29 5365 5364 1.0
200 × 28 2786 2785 1.0
332 × 219 36245 36244 1.0
306 × 96 14640 14639 1.0
242 × 195 23498 23497 1.0
82 × 22 891 890 0.999
374 × 18 3357 3356 1.0
363 × 307 55567 55566 1.0
350 × 120 20940 20939 1.0
95 × 85 3995 3994 1.0
71 × 28 980 979 0.999
83 × 37 1517 1516 0.999
125 × 29 1798 1797 0.999
362 × 346 62453 62452 1.0
353 × 3 528 528 1.0
245 × 6 732 731 0.999
...

...
...

...

RHab(Mm×n) 0.999
σ 0.002

Table 4.4: Results of the heuristic for mesh graphs of random order

Heuristic in this case was performed on mesh graphs Mm×n, m ≥ n

of different order generated randomly up to 400 × 400. These were also

chosen quite high to prove if heuristic is efficient in cases, where no other

general algorithm can be used. As a comparison result, exact value given

by (iv) in Theorem 3.2.4 is used. Table 4.4 is just a short example of results,

but mean value and standard deviation is calculated of 1000 random sam-

ples. We could see that heuristic produces almost optimal values, most of

the time decreased just by 1 from the optimal one. Reason is that if we
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have a deeper look on the proof of the optimal value, style of labelling the

vertices is very similar to one that is made by our heuristic. But there are

differences during ordering vertices within layers and that is the reason of

this slight difference. From this result we can conclude, that our heuristic

method is almost optimal for bipartite graphs of mesh type.

4.5.3 Hypercubes

Case of hypercubes Qn is a bit special, because they are exact given regular

structures with exponentially growing number of vertices and therefore

not so many tests, which would prove statistical quality of the heuristic

could be performed. Also the seed vertex can be chosen randomly, because

of vertex symmetry of hypercubes. The highest hypercube that still could

be modeled in heap memory of testing environment in a way necessary

for heuristic algorithm was Q19 with 219 vertices. As a reference result,

asymptotically optimal lower bound (vi) from Theorem 3.2.4 enumerated

by Maple 10 mathematical software (because of its complexity) is used.

Comparison is in Table 4.5

We can see interesting result, because our heuristic in some cases even

over performed best known theoretical result for hypercubes so far and

in the rest ones is exactly equal. In the deeper look, our approach labels

the vertices in very similar way that is used in the formal proof of (vi) in

Theorem 3.2.4 in [13], but every 1(mod 4) case is special because of some

simplification during proof. Although there are not many comparison re-

sults because of the style of labelling that our heuristic performs on hyper-

cubes we can conclude that it produces asymptotically optimal results for

hypercube graphs at least as good as best known lower bound.

4.5.4 Complete k-ary trees

Heuristic in this case was performed on complete k-ary trees of different

even arity and height raising until the structure could be hold in the heap
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Order of Qn Best known
result

Heuristic
result

Ratio

21 1 1 1.00
22 1 1 1.00
23 2 2 1.00
24 4 4 1.00
25 7 9 1.29
26 19 19 1.00
27 41 41 1.00
28 85 85 1.00
29 164 178 1.09
210 364 364 1.00
211 750 750 1.00
212 1522 1522 1.00
213 2976 3108 1.04
214 6280 6280 1.00
215 12756 12756 1.00
216 25708 25708 1.00
217 50611 52041 1.03
218 104707 104707 1.00
219 211469 211469 1.00

Table 4.5: Results of the heuristic for hypercubes Qn

memory of the testing environment. Even arity is chosen, because in this

case there is exact reference value given by (iii) of Theorem 3.2.4. Because

amount of data is small (due to the structure and exponential growth of

number of vertices), we omitted statistics.

This is the case, where we can see the weakness of our method. Wide

hierarchical structure like complete trees of high arity means small decom-

position depth. Because of such structure, cardinality of the consecutive

layers is growing exponentially which leads to small number of very un-

proportional layers, starting with small ones and ending with huge layers

relatively to the starting ones. That means most of the edges between wide

layers to go over first relatively (to overall number of vertices) not so wide

ones. In such cases our style of labelling vertices has very different philos-
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Type of
graph

Best known
result

Heuristic
result

Ratio

T (4, 2) 9 4 0.44
T (4, 3) 41 17 0.41
T (4, 4) 169 68 0.4
T (4, 5) 681 273 0.4
T (4, 6) 2729 1092 0.4
T (4, 7) 10921 4369 0.4
T (4, 8) 43689 17476 0.4
T (4, 9) 174761 69905 0.4
T (6, 2) 19 6 0.32
T (6, 3) 127 37 0.29
T (6, 4) 775 222 0.29
T (6, 5) 4663 1333 0.29
T (6, 6) 27991 7998 0.29
T (6, 7) 167959 47989 0.29
T (8, 2) 33 8 0.24
T (8, 3) 289 65 0.22
T (8, 4) 2337 520 0.22
T (8, 5) 18721 4161 0.22
T (8, 6) 149793 33288 0.22
T (10, 2) 51 10 0.2
T (10, 3) 551 101 0.18
T (10, 4) 5551 1010 0.18
T (10, 5) 55551 10101 0.18
T (12, 2) 73 12 0.16
T (12, 3) 937 145 0.15
T (12, 4) 11305 1740 0.15
T (12, 5) 135721 20881 0.15

Table 4.6: Results of the heuristic for complete k-ary trees of height h T(k,h)

ophy than the optimal one used in a proof of exact value [16]. Result in

this case cannot be considered satisfying and we can see that our style of

heuristic is more convenient for kind of iregular graphs with more propor-

tional decompositions in average like random trees or “product graphs”

like meshes or hypercubes.
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4.5.5 Random bipartite graphs

Type of
graph

Heuristic
result

Type of
graph

Heuristic
result

B1000,0.05 94 B1000,0.1 60
B1000,0.05 93 B1000,0.1 56
B1000,0.05 94 B1000,0.1 57
B1000,0.05 94 B1000,0.1 55
B1000,0.05 96 B1000,0.1 56
B1000,0.05 96 B1000,0.1 56
B1000,0.05 95 B1000,0.1 55
B1000,0.05 94 B1000,0.1 56
B1000,0.05 96 B1000,0.1 58
B1000,0.05 94 B1000,0.1 56
B1000,0.05 98 B1000,0.1 57
B1000,0.05 95 B1000,0.1 57
B1000,0.05 100 B1000,0.1 54
B1000,0.05 95 B1000,0.1 58
B1000,0.05 98 B1000,0.1 59
B1000,0.05 94 B1000,0.1 54
...

...
...

...

Hab(B1000,0.05) 95.28 Hab(B1000,0.1) 55.96
σ 2.02 σ 1.28

Table 4.7: Results of the heuristic for 200 randomly generated B1000,0.05 and
B1000,0.1 bipartite graphs

Even though this class is in the centre of interest and we would like to

know how appropriate our estimate of the antibandwidth is for the av-

erage random bipartite graph, we do not have any reference values to

compare following results with and determine quality of our approach.

Anyway, it can be interesting to see real values for real graphs. We chose

to test our heuristic on graphs of type Bn,p which represents random bi-

partite graph with p edge probability and random separation of n vertices

to bipartitions one after another with probability 1
2
. It means graphs are

likely to be balanced in average. Order of the graphs was chosen to 1000
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and probability p was changed in the interval from 0.05 to 0.5. Results are

summarized in following Tables 4.7, 4.8 and 4.9, statistics is made on the

obtained values.

Type of
graph

Heuristic
result

Type of
graph

Heuristic
result

B1000,0.2 33 B1000,0.3 24
B1000,0.2 33 B1000,0.3 22
B1000,0.2 33 B1000,0.3 23
B1000,0.2 33 B1000,0.3 23
B1000,0.2 32 B1000,0.3 22
B1000,0.2 33 B1000,0.3 22
B1000,0.2 32 B1000,0.3 22
B1000,0.2 32 B1000,0.3 21
B1000,0.2 31 B1000,0.3 22
B1000,0.2 33 B1000,0.3 21
B1000,0.2 33 B1000,0.3 21
B1000,0.2 32 B1000,0.3 22
B1000,0.2 32 B1000,0.3 24
B1000,0.2 33 B1000,0.3 23
B1000,0.2 34 B1000,0.3 22
B1000,0.2 32 B1000,0.3 24
...

...
...

...

Hab(B1000,0.2) 32.7 Hab(B1000,0.3) 22.61
σ 0.85 σ 0.92

Table 4.8: Results of the heuristic for 200 randomly generated B1000,0.2 and
B1000,0.3 bipartite graphs

Interesting fact can be that for each sample, values produced by the

heuristic tend to flow round quite narrow interval. Explanation can be

found in theory of random graphs. Key factor in our procedure is the

depth of the decomposition. We are trying to maximize depth which is

closely related to the graph diameter – in fact maximal decomposition

depth is obviously greater by 1 than the graph diameter. Summarized

results on diameters of random bipartite graphs can be found in Bollobas’
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Type of
graph

Heuristic
result

Type of
graph

Heuristic
result

B1000,0.4 16 B1000,0.5 14
B1000,0.4 17 B1000,0.5 15
B1000,0.4 16 B1000,0.5 13
B1000,0.4 18 B1000,0.5 13
B1000,0.4 17 B1000,0.5 13
B1000,0.4 16 B1000,0.5 12
B1000,0.4 16 B1000,0.5 13
B1000,0.4 16 B1000,0.5 15
B1000,0.4 17 B1000,0.5 12
B1000,0.4 17 B1000,0.5 14
B1000,0.4 15 B1000,0.5 12
B1000,0.4 19 B1000,0.5 13
B1000,0.4 16 B1000,0.5 13
B1000,0.4 16 B1000,0.5 12
B1000,0.4 17 B1000,0.5 14
...

...
...

...

Hab(B1000,0.4) 17.23 Hab(B1000,0.5) 13.32
σ 0.74 σ 0.57

Table 4.9: Results of the heuristic for 200 randomly generated B1000,0.4 and
B1000,0.5 bipartite graphs

book [1]. Key fact is that for balanced bipartitions and given p, there al-

ways is an estimate for expected diameter. For example the case of bal-

anced bipartitions and p = 1
2

is proved to have expected diameter of 3,

which corresponds with the typical number of 4-layer decomposition that

we observed in this case. When the decomposition depth is almost stable

for each case and the edges are distributed randomly between layers, it

comes natural that obtained heuristic values are as similar as presented.

The estimate for real expected antibandwidth of random bipartite graphs

would be the subject of another research.
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4.6 Heuristic complexity

Let us consider full heuristic with decomposition starting in every vertex

of G, |V | = |V (G)| and |E| = |E(G)|. Every of these decompositions re-

quires to traverse all the edges to construct it. During this process there is

a local sorting on neigbours done, which can be upper bounded by sorting

of all vertices (which is the worst case that can happen at the same time,

when e.g. the seed vertex is neigbour of all other vertices and they have

to be sorted). At the end, for each of the decompositions, evaluation of

antibandwidth estimate is done, which requires traversing all edges of the

given graph. From this analysis, we can conclude that complexity of our

heuristic is O
(

|V |.(|E|+|V |.log|V |+|E|)
)

. In the worst but most usual case

of |E| ∼ |V |2 mean that our heuristic runs in O(|V |3). Improvement can be

reached by sophisticated and not exhaustive choices of the seed vertices

as outlined in section 4.3.1 and recording the actual antibandwidth during

process.



Chapter 5

Conclusions

Antibandwidth problem is one of the interesting NP-complete labelling resp.

linear layout problems on graphs. We showed the background of the prob-

lem, known theoretical results and reasons why it is hard to be obtained.

After we proposed one kind of heuristic for producing lower bound es-

timate for antibandwidth parameter of bipartite graphs, because no ap-

proximation procedure for the problem is known so far. Even though the

testing the quality of heuristic is problem because of non-availability of

many reference results, for existing ones our procedure performed quite

well in most comparable cases and we discussed the convenience of use

for every particular tested class. In the case of random bipartite graphs,

where there are no comparison data available, we can just offer our results

as the best general estimate of antibandwidth parameter which is known.

There is still a lot of work on this field, heuristic could be improved

to perform better also for hierarchical structures like complete k-ary trees,

complexity could be decreased by more sophisticated choices of seed and

modification of layers of decomposition. Results could be compared to

some standard general global optimization procedures like simulated an-

nealing or genetic algorithms. But the major challenge remains idea of gen-

eral heuristic for the antibandwidth problem.
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Abstrakt

Problém antibandwidth pre graf G = (V, E) pozostáva z označenia jeho

|V (G)| = n vrcholov vi rôznymi prirodzenými čı́slami f(vi) v rozsahu [1, n]

(f : V → {1, 2, . . . n} je bijektı́vne zobrazenie) takým spôsobom, že hodnota

výrazu

min{|f(vi)− f(vj)| : (vivj) ∈ E(G)}

je maximalizovaná, ak uvažujeme všetky možné zobrazenia f . Túto hod-

notu potom označujeme ako antibandwidth G. Niekedy býva tento prob-

lém formulovaný aj ako problém lineárneho rozmiestnenia grafu. Ak sa

na hodnoty f(vi) pozrieme ako na body umiestnenia vrcholu vi na čı́selnú

os v rozsahu [1, n] (toto lineárne rozmiestnenie grafu priradı́ každej jeho

hrane presnú dĺžku) tak hodnotu antibandwidth určuje práve také lineárne

rozmiestnenie pre graf G, kde dĺžka najkratšej hrany je maximalizovaná a

táto hodnota je práve hodnotou parametra. Tento problém sa pôvodne ob-

javil ako duálna variácia ovel’a známejšieho problému bandwidth, ale dnes

nachádza mnohé iné interpretácie - ako problém pre multiprocesorové roz-

vrhovanie úloh alebo problém umiestňovania neznášavých entı́t. Problém

antibandwidth je NP-úplný a existuje len vel’mi málo presných výsledkov

pre netriviálne triedy grafov a niektoré triedy, kde je výpočet časovo poly-

nomiálny. Zatial’ nie je známa žiadna všeobecná heuristika použitel’ná pre

tento problém. Pre triedu bipartitných grafov ani nie je známe, či je problém

tiež t’ažký alebo existuje časovo polynomiálny algoritmus pre jeho rieše-

nie. V tejto práci, po zhrnutı́ všetkých základných známych výsledkov o

probléme, predstavı́me jednu verziu heuristiky zı́skavajúcu konštrukčný

dolný odhad pre l’ubovolné bipartitné grafy. Popı́šeme jej variácie a ich

vplyv na kvalitu výsledku a zložitost’algoritmu. Potom predstavı́me šta-

tistické porovnanie výsledkov navrhnutej heuristiky k doteraz známym

faktom a zhodnotı́me jej použitel’nost’pre jednotlivé triedy grafov.

Kl’účové slová: teória grafov, antibandwidth, dual bandwidth


