
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Integration of Text Editor
with Code-Analysing Tool

Diploma Thesis

Bc. Ľubomír Žák, 2014

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Integration of Text Editor
with Code-Analysing Tool

Diploma Thesis

Study program: Informatics

Field of Study: 2508 Informatics

Department: Department of Computer Science

Advisor: RNDr. Tomáš Kulich, PhD.

Bratislava, 2014 Bc. Ľubomír Žák

47159092

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Ľubomír Žák
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický

Názov: Integrácia textového editora s nástrojom analyzujúcim kód

Cieľ: Nadizajnovať abstraktnú vrstvu medzi textovým editorom a nástrojom, ktorý
automaticky analyzuje kód. Implementovať prototyp tohto prístupu pre niektorý
dynamický jazyk a niektorý editor.

Vedúci: RNDr. Tomáš Kulich, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 21.11.2012

Dátum schválenia: 28.11.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

I hereby declare I wrote this thesis by myself, only with the

help of referenced literature, under the careful supervision

of my thesis supervisor.

. .

iv

I would like to thank my supervisor RNDr. Tomáš Kulich, PhD. for his great help,

advices and supervising.

v

Abstract
Integrating supportive extensions to various development environments can be a very

complicated task. Every IDE has different API providing different functionality for

user willing to spend some time on improving given product. Main goal of the thesis

was to design and implement solution which would be as IDE-independent as possible

while providing better communication and extensibility for other programming lan-

guages. Our idea is based on separating computation/functionality part completely

from IDE itself. As a demonstration we programmed an implementation of designed

interface for Python language and Vim text editor. In the second part of the thesis

we were focusing on providing systematic and robust solution for generating abstract

syntax tree from given Python source code.

KEYWORDS: Plugin, IDE, Dynamic language, Python, Parser, Lexer, Code anal-

ysis

vi

Abstrakt
Integrácia rozšírení do rôznych vývojových prostredí môže byť veľmi komplikovaná

úloha. Každé prostredie má rôznu API, ktorá poskytuje rozdielnu funkcionalitu pre

používateľa ochotného venovať nejaký čas vylepšovaniu daného produktu. Hlavným

cieľom diplomovej práce bolo vytvoriť dizajn a následne implementáciu riešenia, ktoré

by bolo maximálne nezávislé od vývojového prostredia a poskytovalo by jednoduchšiu

komunikáciu a rozšíriteľnosť pre ďalšie programovacie jazyky. Náš prístup je za-

ložený na separácii výpočtov/funkcionality samotnej od vývojového prostredia. Pre

demonštráciu nášho prístupu sme naprogramovali riešenie pre jazyk Python a textový

editor Vim. V druhej časti diplomovej práce sa zaoberáme tým, ako systematicky a

robustne generovať abstraktný syntaktický strom zo zdrojového kódu jazyka Python.

KĽÚČOVÉ SLOVÁ: Rozšírenia, IDE, Dynamický jazyk, Python, Parser, Lexer,

Analýza kódu

vii

List of Figures

3.1 Simple abstract tree example. 28

6.1 Results from validation with errors shown. 53

6.2 Error descriptions example. 54

6.3 Auto complete example. 54

6.4 Get all function and class definitions example. 55

viii

Contents

Intro 1

1 Plugin Creation 4

1.1 Vim . 4

1.2 Emacs . 7

1.3 Eclipse . 10

1.4 Sublime . 11

1.5 Motivation and proposed solution . 13

1.5.1 Daemon interface description 14

2 Basics 21

2.1 Dynamic and dynamically typed languages 21

2.2 Differences . 22

2.3 Choosing the language . 24

2.4 Why Python ? . 25

2.5 About Python . 25

3 Parsing 27

3.1 AST - Abstract syntax tree . 27

3.2 Using lexer and parser to produce AST 28

3.2.1 Detection of the invalid parts 29

3.2.2 Lexer . 29

3.2.3 Parser . 30

3.2.4 AST module . 32

3.3 Summarization . 32

3.4 Comparison with other solutions . 33

3.4.1 PyDev . 34

3.4.2 PyLint, PyChecker, PyFlakes 34

3.4.3 Our solution superiority . 34

4 Daemon service 36

ix

4.1 Our daemon implementation . 36

4.1.1 Asyncore . 37

4.1.2 Json . 38

4.1.3 Threading . 39

4.1.4 Handling requests . 40

4.2 Daemon for other IDE/programming language 43

5 Plugin 44

5.1 IDE - vim . 44

5.2 Vim life cycle . 45

5.3 Classes . 46

5.4 Functions . 47

5.5 Vimrc settings . 50

5.6 Client for other IDE/programming language 51

6 Results 52

6.1 Screenshots . 53

6.2 Universality of daemon . 55

Conclusion 56

Bibliography 57

Appendix 58

x

Intro

Dynamically typed languages are recently rising on popularity. And there is a very

good reason for that. Once any programmer tries any of the dynamic languages

after spending a while programming statically (in languages such as Java or C#) he

can truly "feel" the power given to him. No variable declarations, assigning almost

anything to anything else, shorter code written and more. The compile-time control

used by statically typed languages can indeed slow people down in certain situations.

But it can save the programmer from hours of debugging since there is a lot of errors

being caught during it.

Summing it up, dynamic languages are cool but that compile-time protection is some-

thing hard to give up on once you are used to it. This raises an interesting question:

Could we provide the protection of static languages to certain dynamic language ? If

it is possible, how "good" can the protection be ? How many errors are we able to

detect before run-time given only source code of dynamic language ? And that is our

goal: to try to answer these questions and implement a solution for given language

and text editor.

Whole project consists of three main parts: Parsing part, Inference part and Plugin

for given text editor. Main goal of this thesis was to design and then implement an

abstract layer between the chosen text editor and a code-analyzing tool. The tool itself

should be independent enough so that its integration with another editor in the future

would be as simple as possible. Additionally, the tool should be easily extensible for

other programming languages using the same API. We decided to divide Plugin part

into client and service parts which helps with meeting the above mentioned criteria.

Parsing part provides reliable way of generating output usable by inferencer even for

syntactically invalid code. The code-analyzing tool itself (the inference part) was

implemented by my colleague, Bc. Dominik Kapisinsky in his diploma thesis Type-

Awareness in Dynamic Languages [1].

1

1
Plugin Creation

Creating plugin to certain text editor can be very complicated issue. One needs to

learn the principles of creating such a plugin including how to display something in

an IDE, how to get some triggers from it and more. Additionally, if plugin is actually

supposed to do something useful it needs to have some features implemented in it.

In the next sections we will provide brief list of representatives of certain IDE types

with descriptions of what simple plugin creation in them look like. Moreover, we

will name an example of plugin related to our further work, e.g. related to Python

language (see section 2 for further details on why Python language was selected) and

we will look on how it is linked with the editor. At the end of the chapter we will

describe our solution idea which is much less IDE-dependent and more universal.

1.1 Vim

Vim is an open source text editor used mostly on Unix-like systems. Vim is a modal

editor, meaning that it behaves differently, depending on which mode user is currently

in. Possible modes are [2]:

• Normal mode - used for entering editor commands

• Visual mode - like Normal mode, but movement commands extend a highlighted

4

1.1. VIM

area

• Select mode - typing a printable character deletes the selection and starts insert

mode

• Insert mode - text inserted is written into buffer

• Command line mode - used for executing commands by command line located

at the bottom of vim editor

• Ex mode - like Command line mode, but after entering command user remains

in Ex mode

Generally the most used modes are Normal, Visual, Insert and Command line. Any

customization to the vim behaviour is done either by editing configuration files, usu-

ally called .vimrc and located at $HOME/.vimrc (where $HOME refers to home

directory location) or by adding customized extensions called plugins. Each of the

plugins loaded to vim have .vim extension and is (or at least some part of it) written

in Vim script language.

Configuration file can contain useful settings like color scheme setting, enabling of the

line numbers, setting the tabulator width when it is pressed and more. Additionally,

any plugin written later can fetch custom setting from this file, enabling the user to

customize some of its own settings. Last thing we will mention about vimrc con-

figuration files is remapping key bindings. For example, default option to call auto

completion in vim is usually < C−X >< C−O >, which stands for pressing Ctrl +

X followed by Ctrl + O. To remap it, for example to pressing "." key, user can add

following lines:

inoremap <expr> . AutoCompletion()

func AutoCompletion()

return ".\<C-X>\<C-O>"

endfunc

The inoremap command remaps "." to AutoCompletion() function call, which simply

acts as if the < C − X >< C − O > combination was pressed. More complicated

5

1.1. VIM

things are usually stored separately in vim script plugin files, tough.

Vim script

Vim script is a scripting language built into the Vim editor. Vim script supports well

basic principles of modern programming languages, such as control flow support or

object-oriented programming support. Vim script also provides a lot of functionality

via built in commands and functions. Additionally vim script supports adding pieces

of codes written in other interpreted languages (including Perl, Python, Lua or Ruby).

For example following construct is perfectly fine in vim script plugin with python

enabled:

function! CustomFunction()

%some vim script code here

python << PYTHONEND

#some python code here

PYTHONEND

endfunction

Previous example defines vim script function called CustomFunction(). This function

includes an arbitrary long piece of python code starting at python << PY THONEND

line and ending at PYTHONEND line.

This provides excellent support for not giving up on users favourite language. If

user for example wants to script plugins in python, he needs to study and write only

minimum of vim script code and do most of the functionality in python sections of

the plugin code.

Last thing we will mention under vim script is robust support of auto triggered calls

called auto commands. User can easily specify what should be done when he opens

vim, moves cursor, saves file, leaves buffer and many more.

6

1.2. EMACS

Commonly used plugins

Pylint is being executed every time the file is saved. We call this approach a "stan-

dard" way of triggering - some static analysis is being done on whole text once the

trigger has been activated.

Another commonly used solution, Pyflakes uses more triggers: BufEnter/Leave

(triggered once buffer is being open/closed), InsertEnter/Leave (switching between

modes), CursorHold (user did not move cursor for given amount of time) and Cur-

sorMoved (triggered every time user moved the cursor around. Summing it up, this

is again the static approach - trigger causes update and return values are displayed.

Conclusion

Plugins written for vim text editor are linked with the vim usually in a regular static

way: plugin waits for some triggers provided by vim script and calls customizable

actions accordingly. Then gathers results from any form of computation provided by

either .vim plugin file itself or some linked source file and displays them to the user.

Whole computation process is being called as some kind of a method returning some

values for the plugin. Communication between computation and the editor itself is

usually done via passing copy of current buffer or the name of file which is being

modified.

1.2 Emacs

GNU Emacs is an extensible, customizable text editor. For extending its function-

alities it uses Emacs modes written in Emacs Lisp to be able to support various

languages and texts such as C codes, python codes or more generic stuff like emails

or plain texts.

7

1.2. EMACS

Lisp

Lisp is functional programming language, which was widely used mostly for artificial

intelligence research. The name LISP is derived from LISt processing, which im-

plies that the original purpose of this programming language was working with lists

and various other data structures derived from it. Lisp uses fully-parenthesized pre-

fix notation, meaning that every function calls and expressions must be surrounded

by parentheses. For example while in most "modern" programming languages it is

allowed to write

1 + 2 * 3

Same construction in LISP looks like this:

(+ 1 (* 2 3))

Arguments are listed after operand itself. The only other functionality we will list

here is list creating in Lisp. List is Lisp object containing zero or more other Lisp

objects:

(x y (z))

Overview

Emacs is similar to vim in many ways. Mostly they provide a little unusual (compared

to "modern" IDEs) navigation between and on files. It is not (at least by default)

graphical interface, therefore previously mentioned navigation around is mostly done

via keyboard shortcuts. Knowing these shortcuts is vital for using Emacs effectively.

Emacs provides, though, way to remap default shortcuts to basically any other key

combination via simple call of (global-set-key command:

(global-set-key keysequence command)

where keysequence is sequence of keys needed to be pressed to invoke given command

(usually a name of a function). Key sequence is usually mapped to key combinations

8

1.2. EMACS

containing either CONTROL (ctrl) or META (alt) keys (or both) followed by another

key. For example placing following command in .emacs configuration file would cause

emacs to call help whenever Ctrl + ? is pressed:

(global-set-key * \C-?" ’help-command)

This way we can allow user to remap auto completion method to whatever he wants.

Emacs Lisp contains numerous macros with built-in functions which gives user an

easy way how to do . Grabbing whole buffer is pretty straightforward via buffer-

string command. For getting characters or even words under current cursor position,

thing-at-point function is used.

Another example of often proposed functionality is providing keyword or auto com-

pletion list to the user. This is solved via display-completion-list, usually preceded by

opening temporary buffer in which the options will be shown (with-output-to-temp-

buffer):

(with-output-to-temp-buffer "*Completions*"

(display-completion-list

(all-completions (buffer-string) my-alist)

(buffer-string)))

where my-alist contains completion options and buffer-string in this case represents

variable, on which the completion was called.

Conclusion and commonly used plugins

Summing it up, Emacs Lisp provides a lot of functionality by using built-in functions

and macros. It does not support auto commands in a vim-like way. Instead, it does

provide different way to achieve similar results by defining custom modes for open

buffers.

Generally code analyse tools for Emacs are using either FlyMake or its newer al-

ternative Flycheck. The best description of these modes is by the creator himself:

"Flymake is implemented as an Emacs minor mode. It runs the syntax check tool in

9

1.3. ECLIPSE

the background, passing it a temporary copy of the current buffer, and parses the out-

put for known error/warning message patterns. Flymake then highlights erroneous

lines (that is, lines for which at least one error or warning has been reported), and dis-

plays an overall buffer status in the mode line." [5] In other words, both these modes

provide a simple "interface" which expects standard output from various checking

tools to be in specific format (doing regex matching for this purpose). To integrate

tool with these modes one needs to provide results from calculations in it.

1.3 Eclipse

Eclipse is an open source developing tool which is mostly known as an IDE for Java

programming. On the top of that Eclipse provides an extensible way of adding various

plugins for support of other programming languages, such as C, C++, Python, PHP

and more.

Writing a plugin for the Eclipse IDE is a little bit more complicated. Eclipse by

itself is just some kind of "motherboard". All additional extensions to Eclipse are

done through plugins, and plugins integrate with each other through extensions on

extension points. Eclipse plugins typically provide extensions to the platform that

support some additional capability or semantics. Whole plugin code needs to be

written in Java language. Unlike Vim script and Emacs Lisp we will not provide

description of Java language here since it is not needed (Java is much more popular

and used widely all over the world).

First thing while creating Eclipse plugin is adjusting the manifest file, which is some-

thing like a header of the whole project. In manifest there are numerous things

specified including:

• Overview - describes what is plugin supposed to do plus contains general

information such as ID, version, name of the plugin and so on

• Dependencies - other plugins on which newly created one depends

• Extensions and Extension points - main mechanism for selecting what is

10

1.4. SUBLIME

plugin supposed to do. By specifying extension points we define what we expect

from Eclipse and what we want to offer.

• Build - specifying build information

Once extension points have been chosen, user can import these packages and use

provided "triggers" by extending given classes.

Commonly used plugins

PyDev is an example and most likely the most used Python development plugin for

Eclipse platform. Although it is a very complex solution providing massive function-

ality support, it is created in a "traditional" way - there is no way that one could

use PyDev features in other IDEs for one simple reason: It is almost entirely written

in Java language and is dependant on very specific interfaces and extension points

provided only by Eclipse itself. We do not want to judge PyDev qualities by this,

though, since PyDev never had the ambition to be multi-IDE development tool and

was specifically designed for Eclipse.

Conclusion

Eclipse provide huge support for plugin creation since the whole Eclipse idea is based

on linking different plugins together. By providing excessive amount of extension

points and triggers and by taking advantages of Java programming language, creating

plugin doing basically anything (in terms of functional capabilities) is possible.

1.4 Sublime

Sublime Text is modern text editor, which is based mainly on simple and intuitive

graphical interface and its adaptability.

Writing a plugin for Sublime is very user friendly, since unlike vim or Emacs it does

11

1.4. SUBLIME

not require some specific language learning: whole plugin can be written in Python

language. Sublime comes with functionality that generates a skeleton of Python code

needed to write a simple plugin which includes importing of two necessary modules:

sublime and sublime_plugin.

The API provided contains all of the needed methods. For example grabbing text in

the current view can be done by simple self.view call. Tracking view IDs is handled

by self.view.id(). This provides simple way of how to not mix up various requests if

processing is being done by threads for example.

What is the most noticeable thing about sublime is its very nice graphical interface

with very easy theme or color customizations.

Unfortunately, Sublime is not free IDE and license must be bought: "Upgrade Policy

A license is valid for Sublime Text 3, and includes all point updates, as well as access

to prior versions (e.g., Sublime Text 2). Future major versions, such as Sublime Text

4, will be a paid upgrade." [6]

Conclusion and commonly used plugins

Sublime enables extending its functionality by writing plugins in high level language

- Python. Having that granted writing custom plugin is by far the easiest from IDEs

listed here. Not only that because high level programming language is used (because

as mentioned above, Eclipse plugin creation is done in high level language - Java),

but that API provided is much easier to understand.

Pylint was also modified to work with Sublime. Integration of the plugin is pretty

simple and is provided by afore mentioned pair of sublime support modules. Whole

process is again a "static" one.

12

1.5. MOTIVATION AND PROPOSED SOLUTION

1.5 Motivation and proposed solution

We have provided a brief list of different types of IDEs with descriptions. For each

environment we also listed several basic commands to demonstrate how it is possible

to create a simple plugin/mode/extension in each of them. Moreover, we have listed

several commonly used solutions in each of the IDEs for working with Python. We

can sum up problems of plugin creating into two different non-overlapping sections:

1. Complexity of the plugin needed for tool to be able to do its job

2. Communication between the plugin and the tool

After setting up the criteria, we can divide existing solutions into two different cate-

gories depending on how do they meet each of them:

• IDE independent - easier integration but generally bad tool-plugin commu-

nication and with fewer functionality (Pyflakes or Pylint in Emacs)

• IDE dependent - usually more complex but with more complicated (often too

specific) integration (Pydev, Pyflakes for Vim, Anaconda for Sublime)

Both afore mentioned categories have their pros and cons. And that is why our

proposed solution is indeed a little different. We wanted to keep up the positive things

from both of the approaches. Therefore we have decided to create universal service

running on given computer somewhere in the background listening on certain port.

Once user starts any of the IDEs, respective plugin is only connecting to the service

which is doing all of the computations. Plugin is only responsible for grabbing the

data and providing feedbacks to the user from what has been received by the service.

How is it different/better than existing solutions ?

• Easier IDE integration - plugin is responsible only for sending requests to

the service and then receiving the output. Although since some kind of socket-

client communication is needed, integration can be easier in some other existing

solutions, which statically call given tool for the answer. Our approach has

one big advantage in other area of communication though: there is no need to

13

1.5. MOTIVATION AND PROPOSED SOLUTION

extract big archives at specific locations or do massive step by step installations

per each of the IDEs. One instance of service is running for any of the IDEs.

Plugin is there only to connect to it which makes its role much more specific

and equivalent at the same time in all of the IDEs.

• Better communication - there is no need to parse enormous amount of com-

mand line flags and parameters to distinct different requests. Moreover, it is

not necessary to somehow parse standard output from the tool to decode it and

then provide the feedback. Since service is not accessing any files in any way, it

does not depend on root access or any other kind of access. Service just listens

and responds to specific question with the specific answer.

• Extensibility - it is very easy to extend the daemon such that it would respond

to other types of requests (for example possibly other programming languages,

another IDEs) without the need of installing additional tools for different lan-

guages or different IDEs. One Service can cover all of the programming lan-

guages and IDEs.

• Dynamism - that opens huge amount of possibilities like that there is no need

to send whole file all the time (speeding up the process greatly), computing

useful information while idle (no incoming requests for certain amount of time),

and generally avoiding doing certain kinds of work all over again on each request

(iterating trough imports for example).

The whole idea and its realization for one language and one IDE (but still easily

extensible for more) is discussed in further details in chapters 4 and 5.

1.5.1 Daemon interface description

Since we wanted our daemon to be universal and as IDE independent as possible,

we designed simple interface for the daemon via which (potentially any) plugin can

communicate with it. Following list summarizes requests accepted by the daemon and

provides description of the request, input parameters, description of which variables

given trigger modifies, what is an output (what is sent back to the client) and whether

14

1.5. MOTIVATION AND PROPOSED SOLUTION

this method call is language dependent or not.

Each of the requests is described informally since for further details one could check

daemon code documentation. The key thing mentioned above can also be seen here:

it would be very simple to extend the daemon in a way that it would listen to other

type of requests (possibly for other languages and other IDEs).

Whole interface description is provided in JSON (JavaScript Object Notation)-like

syntax since our implementation also uses this approach. Daemon requests are simple

maps with key : value pairs (see below).

All requests need to contain given three properties:

1. type - specifies which request should be triggered

2. pid - process id which helps to distinct between clients

3. tab_page_number - additional number used if there are more than one of the

buffers open at the same time by single process

Note: Parameters noted in square brackets - [] - are optional. All data read by

daemon are expected to be in bytes format (string transformed to plain bytes).

sendCurrentWorkingDirectory

Description: receives directory and tries to find root file (specified by parameter)

to get all function and class definitions in given project.

Input:

{

"type" : "sendCurrentWorkignDirectory",

"pid" : int,

"tab_page_number" : int,

"current_working_dir" : string,

["root_filename" : string, "language" : string]

}

Modified variables: updated buffer holding correct list of function and class def-

initions for given project

15

1.5. MOTIVATION AND PROPOSED SOLUTION

Output: -

Language dependent: Yes. Calculating all class and function definitions would

need to be slightly extended since this call uses specific parser. By adding parser

for another language, though, daemon could switch between programming lan-

guages accordingly to additional parameter language.

sendWholeFile

Description: client sent whole buffer to the daemon.

Input:

{

"type" : "sendWholeFile",

"pid" : int,

"tab_page_number" : int,

"whole_file" : string

}

Modified variables: updated buffer at given ID with data retrieved

Output: -

Language dependent: No. Request helps daemon to keep up buffers data "fresh".

For other programming languages the exactly same method can be used since

uniqueness of the IDs sent is handled by the client, not by the daemon.

updateLine

Description: updates three lines in given buffer: one being modified and both

the one line above and the following one. Number of lines input is used to

determine whether deletion of single line or insert of new line was triggered.

Input:

{

"type" : "updateLine",

"pid" : int,

"tab_page_number" : int,

"number_of_lines" : int,

"line_number" : int,

16

1.5. MOTIVATION AND PROPOSED SOLUTION

"line_text" : string,

"previousline_text" : string,

"nextline_text" : string

}

Modified variables: updated buffer at given ID with retrieved data

Output: -

Language dependent: No. Same as sendWholeFile.

parseAndValidate

Description: Most important request: Daemon parses and validates whole

buffer (found by the incoming pid and tab number) and responds with list

of errors and warnings.

Input:

{

"type" : "parseAndValidate",

"pid" : int,

"tab_page_number" : int,

"number_of_lines" : int,

"iterations" : int,

["language" : string]

}

where iterations specifies how many times the whole validation process should

be called.

Modified variables: -

Output: Responds with list of errors and warnings. Each of the problems or

warnings is another list containing two elements: line number on which the

error/warning occurred and the description of the error:

{

"problems" : array of arrays,

"warnings" : array of arrays

}

17

1.5. MOTIVATION AND PROPOSED SOLUTION

Language dependent: Yes. Daemon calls specific function on given buffer which

is supposed to do whole validation process and respond afterwards. If such a

feature was desired by the daemon for other programming languages, whole pro-

cess needs to be also written for other programming language and the daemon

would select between the languages by additional parameter.

getAutocomplete

Description: Daemon runs validation with different goal: do not check whether

there are some errors but give me list of attributes of given variable or constant

on given line. Afterwards daemon responds with options for auto completion.

Input:

{

"type" : "getAutocomplete",

"pid" : int,

"tab_page_number" : int,

"variable" : string

"line_number" : int

}

where variable is text until current cursor position and line_number is current

line number on which auto completion request was called.

Modified variables: -

Output: Responds with list for auto completion sorted alphabetically.

{

"options" : array of arrays

}

where each of the arrays in outer array contains string at first index and op-

tionally docstring (if it was present) at second index.

Language dependent: Yes. Same as parseAndValidate since it uses same

mechanisms.

getAllDefinitions

18

1.5. MOTIVATION AND PROPOSED SOLUTION

Description: Responds with a list of all function/class definitions. Additionally

recalculates definitions for given buffer to be able to provide correct data (for

example user added new class and wants to use it somewhere later in the code).

Input:

{

"type" : "getAllDefinitions",

"pid" : int,

"tab_page_number" : int,

"current_directory" : string

"filename" : string

}

Modified variables: -

Output: Responds with list of all function and class definitions in given project.

{

"options" : array of dictionary objects containing

string as keys and array as value

}

where each of keys is one of the options provided and array contains info whether

it is class or function on first index and path to file in which given definition

occurred on second index. Language dependent: No. Values stored for given ID

were already calculated (see sendCurrentWorkingDirectory request).

For further details of our implementation of the daemon and plugin communicating

with it see chapters 4 and 5.

Conclusion

Daemon service is expecting certain request types. Holding correct data in buffers is

language independent since this mechanism is the same for all of the programming

languages. On the other hand, parsing methods and methods looking for function

19

1.5. MOTIVATION AND PROPOSED SOLUTION

and class definitions are language dependent (at least slightly).

20

2
Basics

In this chapter we list and discuss some of the basic principles of dynamically typed

languages. At the end of the chapter we present our decision on which dynamically

typed language did we choose and why.

2.1 Dynamic and dynamically typed languages

Dynamic programming language is a term used broadly in computer science to de-

scribe a class of high-level programming languages that execute at run-time many

things that other languages might perform during compilation, if at all.

"In recent years the importance of dynamic scripting languages - such as PHP,

Python, Ruby and Javascript - has grown as they are used for an increasing amount

of software development. Scripting languages provide high-level language features, a

fast compile modify-test environment for rapid prototyping, strong integration with

database and web development systems, and extensive standard libraries." [8] They

also allow programs to be written more easily using high-level constructs such as

comprehensions for queries and using generic code.

As scripting languages are used for more ambitious projects, software tools to support

these languages become increasingly important. Most dynamic languages are also

21

2.2. DIFFERENCES

dynamically typed.

2.2 Differences

In a statically typed language, every variable name is bound both

• to a type at compile time

• to an object

Once a variable with given name has been bound to a certain type (in other words

it has been declared), it can be assigned only to objects of same type. There is no

possibility how to assign integer to a string, for example. An attempt to assign such

a values (or any other values together) results in type exception.

In a dynamically typed language, every variable name is (unless it is null or none)

bound only to an object. Additionally, majority of the type checking is performed

at run-time, not at compile-time. That is the biggest difference between dynamically

typed languages and statically typed languages.

Short example in python:

someVariable = 9

someVariable = ’some string’

Short code above would result in use of uninitialized variable exception in statically

typed languages. In other words, static compiler says "I do not know what it is,

therefore I do not know what the type of that variable is." To avoid this error we

could initialize variable like this:

int someVariable = 9

someVariable = ’some string’

In this case, type error would be raised. Compiler can not assign string to something

that has been declared as an integer. On the other hand, this initialization is perfectly

fine in dynamically typed languages such as python. Furthermore, the following is

22

2.2. DIFFERENCES

again perfectly fine in python (but would not work in statically typed languages):

if True:

someVariable = 9

else:

someVariable = ’some string’

Again, static compiler has no such a variable initialised. If we actually initialised

value before if block, it would not help since compiler would throw type error on else

block. One would question this behaviour since the else block would never trigger.

That is indeed true, but the static compiler can not allow us to do that. If it can not

guarantee types on all variables it can not mark such a code valid, regardless of the

fact that anyone can see that it actually is a type safe piece of code.

Going back to dynamically typed languages, names are bound to objects at execution

time by means of assignment statements, and it is possible to bind a name to objects

of different types during the execution of the program (as seen on above examples).

However, this can often lead to numerous hidden errors where the programmer relies

on the fact that some variable is for example int but in reality it contains string value.

Still, we can say that this is also the major weakness of the statically typed languages:

while protecting programmer against all of the type errors he is also protected in cases

where it might not be needed.

In dynamically typed languages we will not encounter type errors. The more "free-

dom" comes with a price tag on it, though. Dynamically typed languages often require

a lot of unit testing to cover up the static typing. Although these tests can detect a

much wider range of errors, it is often hard or impractical to write full coverage test

for a particular program.

Dynamically typed languages are often considered to be slower. It is because in such

a language the compiler always has to keep "flags" describing the actual type of the

value of the variable, and the program has to perform a data-dependent branch on

that value each time it manipulates a variable. It also has to look up all methods

and operators on it. The knock-on effect of this on branching and data locality is

lethal to general purpose run time performance. That is why the dynamic language

23

2.3. CHOOSING THE LANGUAGE

JIT benchmarks emphasize near-C speed on small inner loops but steer clear of large

data-structures and data manipulation problems.[9] Summing the above up:

• Every variable can be dynamically-typed: Need type checks

• Every statement can potentially throw exceptions due to type mismatch and so

on: Need exception checks

• Every field and symbol can be added, deleted, and changed at runtime: Need

access checks

• The type of every object and its class hierarchy can be changed at runtime:

Need class hierarchy checks[10]

With modern dynamic language compilers there are several neat tricks they can do

to specialize the hot paths you use in order to improve the overall performance.

To conclude the section, we could say that the dynamically typed languages can feel

intuitively faster and also creating certain types of solutions might take much less

time. The statically typed languages protect the programmer and guarantee that a

particular subset of errors will never occur at the cost of more time spent on typing

(declaring values, potentially more blocks in code etc.).

2.3 Choosing the language

Here is a brief list of dynamically typed languages we have considered as potential

candidates for our thesis.

• Python

• PHP

• Perl

• Ruby

• Javascript

After consideration we have decided to implement our solution for Python.

24

2.4. WHY PYTHON ?

2.4 Why Python ?

Python is becoming more and more popular between programmers for both its sim-

plicity and very strong features. Lately it has been even used as a programming

language for numerous beginner programming courses on world renowned universi-

ties, such as MIT, Cambridge or Oxford.

Also worldwide community around Python is being very dedicated and determined

to keep it as smooth as possible, therefore Python as a language is very mature.

Number of projects being developed in it rises, too. Site www.langpop.com even

ranks Python as 6th most used programming language, falling behind only to C,

Java, PHP, JavaScript and C++.

Another reason for choosing Python is that there are several existing plugins and

solutions for Python working on similar topic, so we were able to compare our solution

with already existing ones.

2.5 About Python

Python was released by its designer, Guido Van Rossum, in February 1991 as a

reaction to interpreted language called ABC. Rossum wanted to keep some of its

features but he also wanted to improve it via correcting some specific problems.

Python is an interpreted, interactive, object-oriented programming language. It in-

corporates modules, exceptions, dynamic typing, very high level dynamic data types,

and classes. Python combines remarkable power with very clear syntax.[11] It di-

rectly provides numerous interfaces to useful system calls and libraries. Furthermore,

Python is portable across all major hardware and software platforms.

Strong Python features overview

Let us summarize strongest python features:

25

2.5. ABOUT PYTHON

• Simplicity - python syntax is very simple and minimalistic. It has very good

readability and provides programmer an option to concentrate more on the ideas

than on code itself.

• Easy to learn - as stated above, it is very popular language to start learning

programming with.

• High-Level - programmer can concentrate only on high end programming.

There is no need to care about garbage collecting or memory allocating.

• Multi platform - all python scripts can be executed on any machine and oper-

ating system, where Python interpreter is present. Interpreter can be installed

on almost all known operating systems, including Windows, Linux, Macintosh,

Solaris and more.

• Object - oriented (and still simple) - python supports object oriented

programming (object creating and manipulating)

• Interpreted - python is interpreted language. That means it can be run with-

out compilation - directly from the source code.

• Extensible with C/C++ - in case some speed is required, certain part of

the code can be written in C or C++ languages and then just included in main

python script.

Conclusion

To sum up whole chapter, we decided to concentrate on a single dynamically typed

language - Python. This decision was made due to its maturity, simplicity and due to

the fact, that there are some existing solutions written for python on similar subject

so we could compare our results with these.

26

3
Parsing

As I mentioned before in the introduction, the whole project consists of three main

parts: Parsing, Inference and Plugin part. In this chapter we will provide description

of our parsing method and what is it supposed to do and why.

The easiest way to describe what this part should do is pretty simple: We are given

some kind of an input and we need to transform it into something else. In our

specific case the input is any Python source code and an output should be something

structured enough, with enough information for Inference part to do its job - AST -

abstract syntax tree.

3.1 AST - Abstract syntax tree

An AST is a tree representation of source code written in basically any programming

language. AST contains only semantically relevant information - irrelevant details

are omitted. AST trees are usually represented as n-ary trees.

Figure 3.1 shows simple example of how would abstract syntax tree [7] look for the

following code:

x * y + z

27

3.2. USING LEXER AND PARSER TO PRODUCE AST

Figure 3.1: Simple abstract tree example.

3.2 Using lexer and parser to produce AST

We do have Python source code as an input. We need to produce AST representation

of this code as an output. To achieve this we could intuitively use Python module

called ast.

This module takes string (a python code) as an input and generates its AST repre-

sentation. Seems like the problem is already solved, but using module has one big

disadvantage: ast will not produce anything on an input, which is not syntactically

valid. And by syntactically valid we mean that whole input must fit in Python gram-

mar used by "regular" Python parser. If user makes any mistake, like writing clsas

instead of class, ast module will throw an exception and there is no output provided.

At first it looked like the ast module could not be used for our solution at all. But

what if we could detect and delete invalid parts of code (those which do not fit in

python grammar) ? After that we could use ast module on the rest of the code to

generate the correct tree while showing syntactical errors on the deleted lines.

28

3.2. USING LEXER AND PARSER TO PRODUCE AST

3.2.1 Detection of the invalid parts

If we wanted to detect the invalid parts of the code we need to split the input code

into blocks and then use the ast module to validate each of the blocks. Block finding

recursion stops on validating single lines and gives us list of lines which were not

correct.

To extract blocks from source code we could generally use one of the following two

methods:

1. Look for keywords like def, class, for etc. in code and then use some heuristic

to split it by values found

2. Generate lexer and parser similar to the original Python one which would be

more robust

First technique is intuitively not very good. Keywords could be used in docstrings,

in function or class names and writing heuristic method to cover all of the catches

would be very difficult (maybe it could not be even possible).

That is why we decided to use the more elegant way - create our own lexer and parser

tools.

For lexer and parser generation we used PLY or Python-Lex-Yacc. PLY is a pure-

Python implementation of the popular compiler construction tools lex and yacc. PLY

supports LALR(1) parsing as well as providing input validation, error reporting, and

diagnostics. [12]

3.2.2 Lexer

Lexer is used for lexical analysis - process during which the input string is broke

down into sequence of tokens. Tokens are represented via regular expressions. PLY

can generate lexer from file specifying tokens written in Python.

@TOKEN(t_RBRACE)

def t_RBRACE(t):

29

3.2. USING LEXER AND PARSER TO PRODUCE AST

r"\}"

t.lexer.paren_count -= 1

return t

This simple example explains whole idea how tokens written for PLY lexer look like.

Annotation specifies that this is indeed a token and it’s name is t_RBRACE. This

token represents right brace symbol. Second line is used to count number of braces

opened to detect syntax errors - opening braces via left brace and then not closing it.

By specifying these rules, or tokens, we generated lexer to work with Python. Notable

thing here is the indentation errors detection. In Python language the indentation

is used to specify code blocks instead of curly braces which are often used in many

popular languages (Java, C#).

Once lexer finds the indent token it remembers that the indentation is now open and

expects dedent coming (sooner or later). This process is recursive - we need to close

"brackets" (in this case indent and dedent) as many times as we have opened them.

In other words, number of indents and dedents in source code must be the same,

otherwise an indentation error is reported at the first line where matching did not

work.

Once we have specified all of the token regular expressions we generated the lexer

itself. Output from our lexer is a stream of tokens. And that is exactly what the next

part, parser, needs as an input.

3.2.3 Parser

Parser is being used for syntactical analysis. What parser actually does is trying to

match given tokens on the series of rules of given grammar.

In this paper we were using PLY parser, which is LALR(1) parser (LALR(1) stands

for look-ahead left-to-right parser with one-token lookahead). To match tokens to

the rules this parser can use not only the current token in input stream, but can also

check which token is coming next, therefore can decided better which rule to use.

30

3.2. USING LEXER AND PARSER TO PRODUCE AST

Writing the grammar for Python was actually pretty simple because input for PLY

parser generator is not some domain specific language, but regular valid Python code.

We took the original Python grammar and then we simplified it until it was good

enough to fit for our purpose.

In the next few lines there is a brief sketch of our simplified version of grammar (to

see the original Python grammar check [13]). Our grammar, compared to the original

one, is heavily simplified, having less restrictive rules (Note: capitalized names are

tokens - terminal symbols. Lower-cased names are non-terminal symbols):

file_input -> suite ENDMARKER

suite -> stmt | suite stmt

block -> block_keyword fragment COLON NEWLINE INDENT suite DEDENT

block -> block_keyword fragment COLON suite

block -> block_keyword fragment COLON NEWLINE

block_keyword -> * all Python keywords: if, elif, class, def etc. *

stmt -> fragment NEWLINE | fragment | NEWLINE | block

fragment -> * basically anything else *

Translated to human language: We do have some file_input at the beginning. That

is expanded to suite and ENDMARKER. Each suite is either only single stmt or

suite followed by another stmt, where stmt represents single line of code. This line of

code can be either NEWLINE, block or fragment. Blocks represent keywords followed

by blocks (see block rules). The biggest difference between original python grammar

and our robust implementation is hidden in fragment. Fragment is something able

to cover up much more compared to the original grammar. Lets consider following

Python input:

def some_invalid_return():

return return return return #comment

This results in invalid syntax error in original Python parser. Our parser parses it

just fine.

The reason behind whole robust parser idea is very simple: we do not want to delete

31

3.3. SUMMARIZATION

whole blocks of code if user makes a trivial mistake. We want to split code into

smaller parts and then by using ast remove as small blocks/single lines of code as

possible.

Result of parsing is therefore list of custom nodes or tokens clamped together.

3.2.4 AST module

With parser output in hands we used ast module to validate each of the nodes repre-

senting statement - single line of code using function which transforms given parser

node back to string representation. After evaluating all of the statements we had

list of deleted statements (line numbers). To get correct code (code with invalid lines

removed), we transformed root node back to string while ignoring deleted statements.

Each line marked as deleted is in the end returned as invalid syntax error.

3.3 Summarization

Summing it up, whole process of creating AST from given source code consist of

following steps:

1. Source code is given to lexer

2. Token stream from lexer is given to parser

3. Parser produces list of custom nodes (similar to ast). Each of the nodes contains

enough information for recreating part of the code it represents.

4. Special function iterates trough list of nodes and uses ast module to validate

each of the statements (lines of code). Syntactically invalid lines are marked.

5. Once recursion is completed, code is restored back to string while deleted nodes

are omitted - this gives us syntactically correct subset of original code. If there

was no syntactical errors at all, result of whole process is the same as the source

code.

32

3.4. COMPARISON WITH OTHER SOLUTIONS

6. Call ast module on correct subset to retrieve AST representation of correct part

of the code

At the end of the whole process we have the AST representation of correct subset of

the original code plus list of deleted parts (lines).

3.4 Comparison with other solutions

In this subsection we will provide brief description of how the other solutions detect

syntactically invalid parts in the code.

All of the solutions were tested on following two simple examples of invalid source

codes:

Example 1 (indent error on line 3, syntactical errors on lines 4 and 8):

1 class A:

2 def function(self):

3 print(’wrong indent’)

4 return return return something horrible

5

6 def another_function(self):

7 print(’correct indent’)

8 return return again something bad

Example 2 (syntactical errors on lines 4 and 8):

1 class A:

2 def function(self):

3 print(’correct indent’)

4 return return return something horrible

5

6 def another_function(self):

7 print(’correct indent’)

8 return return again something bad

33

3.4. COMPARISON WITH OTHER SOLUTIONS

3.4.1 PyDev

PyDev, plugin to Eclipse (see 1.3), has internal parser written in Java. Parser uses

Python grammar specified in an external file. PyDev tries to parse source code with

standard python parser and if the code is not syntactically valid, returns only first

occurrence of the error. This is because whole syntactic or indent error handling is

done via catching exceptions in the parser.

In the first example PyDev detects indent error on 3rd line, but does not report

anything on lines 4 and 8. In second example (with indent error corrected) syntax

error on line 4 is detected but then again error on line 8 is omitted.

3.4.2 PyLint, PyChecker, PyFlakes

For all mentioned solutions the exactly same thing as for PyDev applies. They are

again using regular Python parser and therefore they are not able to detect more than

one syntactical/indentation error in a single file - they only detect the first one.

3.4.3 Our solution superiority

Our solution is able to detect indent error in first example, but does not show any

additional errors. That is given by fact that lexer does not produce any output and

therefore no further analysis is possible. The only thing returned is the line number

where indentation was not valid.

On the other hand, on the second example, unlike other solutions, we are able to

detect both syntactical errors.

As described in 3.2.1, our solution is better in handling invalid inputs thanks to our

more robust parser. This key change in approach allows us to detect more syntactical

errors at once (not just first occurrence). It would be very complicated to track down

indent errors if there is more than one present. Since indentation is not something

that is being broken very often we decided to use standard approach here: detect

34

3.4. COMPARISON WITH OTHER SOLUTIONS

only first indentation error.

What is even more important is the fact that our tool does not detect syntax errors

by catching an exception during parsing process. They are all being found iteratively

without throwing whole code for validation. And that is something really huge. Why

is it so good ? Because even if there is a syntactical error in the code, our tool is still

able to parse it and then validate the rest of the code (which might be valid except

that one incorrect line) and show errors and warnings or provide auto completion as

if the entire code was valid.

This is especially helpful when there is a code with numerous errors (syntactical or

even others like non-existent attribute etc.). While using other solutions it would be

needed to repair errors one by one, our solution provides better feedback by showing

all errors at once. And that is something that can potentially save a lot of tedious

work for a programmer.

35

4
Daemon service

A daemon (or a service) is a background process that is designed to run autonomously,

with little or no user intervention. Our daemon works as a pseudo compile-time

compiler: it checks for various errors before run-time.

Plugin comunicates with this daemon running on certain port, listening for com-

mands and responding with the answers. In other words, the daemon listens and acts

as some kind of oracle - client connects and asks questions like if there are any errors

or warnings in the code, or asks for an auto completion on certain variable. The

daemon does its part of job by receiving request, deciding which action to trigger,

computing the answer and responding back to the client with the results.

4.1 Our daemon implementation

Our daemon implementation of the interface described at 1.5.1 is written in Python

and is using various python modules. As stated above, daemon is some kind of service.

It is a server listening on certain local port waiting for clients to connect. For socket

communication we used asyncore module - an asynchronous socket handler.

36

4.1. OUR DAEMON IMPLEMENTATION

4.1.1 Asyncore

This module provides the basic infrastructure for writing asynchronous socket service

clients and servers. The advantage of this module is that it does not use multi-

threading. Instead, it uses select() system call to juggle between multiple communi-

cation channels (connected clients).

Why is multiple client support needed in the first place ? User can open multiple

editors resulting in multiple requests from multiple buffers containing different texts.

It would be possible to always send whole buffers, but this would not be very effective

way how to do it. Therefore daemon is asynchronous and handles read/write opera-

tions via queues - always check if there is something in read queue. If it is, then read

it and trigger correct action. Once you are done, put response in write queue with

correct client address set. If another request came meanwhile, grab it from queue and

repeat.

Server holds information about each of the clients and corresponding text buffers.

Each text buffer is one ’open file’ in editor.

Server consist of two main classes: Host and Remote client

Remote client

Remote client is a simple class holding information about connected client. These

information stored include:

• self.host - holds reference to the instance of Host class

• self.outbox - messages which should be sent to this client

• self.address - information about address of client

Remote client must also support handle_read() and handle_write() methods. Both

are implemented pretty straightforward. Read method is handled by host handler via

given message plus client address. Write uses basic socket send() method.

37

4.1. OUR DAEMON IMPLEMENTATION

Host

Host class is ’brain’ of daemon service. It is responsible for reading from queue, writing

into queue, waiting in loop forever and handling requests correctly, distributing signals

to remote clients and more.

In __init__ method host initialises everything it needs:

• creates socket on given port

• binds itself to this socket and loops itself forever to listen for requests

• initialize list of open connections - remote clients

Once any client tries to join, __accept__() method is called. If the call is successful,

client is accepted and added to remote clients list. From this moment on, if client

writes anything into the queue, host reads it and calls handle_read() handler.

This is where whole magic is happening: host checks which request was received and

from which client (note that client must connected before, otherwise accept handler

would be called). To do so, it needs to "parse" incoming request. To avoid sending

plain strings between client and host delimited by some series of special strings we

have decided to use JSON-like formatting of the requests (see 1.5.1).

4.1.2 Json

Json is Python modul used for object serialization and deserialization implementing

a lightweight data interchange format based on a subset of JavaScript syntax. Its

usage is very simple: single call of json.dumps() method serializes given map to

string. Similarly json.loads() deserializes string into an object.

user_completion_response = json.dumps({’options’ : listOfOptions})

host.respond(bytes(user_completion_response, ’UTF-8’), client_address)

This short example presents actual piece of code from user completion method. Mes-

sage is first serialized via json.dumps() call, which returns serialized string in a JSON-

38

4.1. OUR DAEMON IMPLEMENTATION

like format. After that, this string is sent by host to given client_address. Note that

before the string is sent it is transformed to bytes since we need to be compatible

with lower python version on the client side (plugin side).

Each of the incoming requests are deserialized in handle_read() call:

requestDecoded = json.loads(client_request.decode("utf-8"))

The requestDecoded variable now contains dictionary with key : value pairs. Note

that again the request is decoded from bytes to string first.

4.1.3 Threading

We wanted our server to be truly asynchronous, meaning that user should NEVER

wait for the response in a way that once the plugin sent something it should not be

frozen waiting for the response. Similarly, if the daemon wants to handle multiple

requests at the same time (for example while it is still validating code and request

for auto completion comes), there needs to be some kind of mechanism which divides

work to separate threads, each of them responsible for carrying out one of the requests.

Python provides ideal solution for such a situation: threading module.

Threading module supports all of the standard constructs used in programming lan-

guages working with threads including creating, stopping, locking and using semaphores.

The following example shows simple way of creating and using daemon thread:

t = threading.Thread(...)

t.daemon = True

t.start()

Constructor takes mainly two arguments: name of the function which should be run

and arguments passed to the function. The significance of the daemon flag is that

the entire Python program exits when only daemon threads are left. Last line in the

example simply starts the thread.

39

4.1. OUR DAEMON IMPLEMENTATION

4.1.4 Handling requests

In the next few subsections we will try to provide brief descriptions of each of the

requests implementation.

SendCurrentWorkingDirectory

Once user opens *.py file in vim, plugin tries to connect to the daemon (see 4.1.1).

Right after connection is established plugin sends this request containing information

about current filename and directory. This thread tries to find all function and class

definitions in for given project.

Project usually consists of many directories and subdirectories with numerous files in

each of them. To find root of project, daemon tries to locate the up-most__init__.py

file. To find such a file, he starts searching in current directory - this is given in incom-

ing request. If there is no such a file found, daemon next checks for __init__.py

file in its parent directory. Whole process stops once root directory of whole file

system is reached. If daemon finds __init__.py file at more than one height of

recursion, the deeper (closer to the root of file system) one is marked as the right

one. Note: user can specify other root file name than the default by modifying their

.vimrc file (see 5.5 for further details).

Once init file is located, daemon starts process described in chapter 3:

• open file

• lexer on file data

• parser on file data

• specialised function to retrieve all function definitions and class definitions -

node_to_defs

Function node_to_defs recursively iterates trough nodes and tries to locate DEF

NAME or CLASS NAME pairs in given tree. These pairs indicate that either there

is def keyword followed by name of function or class keyword followed by name of the

40

4.1. OUR DAEMON IMPLEMENTATION

class.

And that is exactly what we need to extract. Daemon saves all function and class

definitions for given file and goes on.

If definition with certain name is provided more than once (e.g. in two separate files),

daemon holds information about both definitions and their locations.

At the end daemon holds information about project locations and list of dictionaries,

where each dictionary consists of name of definition (either class or function) as a key

and file/files, in which this definition occurred, as value.

Additionally daemon stores one char flag containing either F or C indicating that

given record is either function or class definition.

Another thread initialized during startup is responsible for keeping these data correct

- every 300 seconds daemon iterates trough all recently open projects and recalculates

all definitions. Once done, it falls asleep via time.sleep(300) call.

SendWholeFile

Daemon holds information about buffers of all connected clients plus all of the open

tabs of each client connected.

All buffers of all clients connected to the daemon are being held in simple dictionary

where the key is PID of the process plus tab number (this is needed to cover situations

where user opens more than one tab in single running Vim instance) and value is

plain string.

SendWholeFile request therefore contains PID and tab id number plus buffer data

as value. After deserialization of request daemon checks buffer dictionary for given

key. If such a key is no present, daemon does an insert of new key with new value.

Otherwise daemon updates identified record.

41

4.1. OUR DAEMON IMPLEMENTATION

UpdateLine

To minimise communication complexity we do not want to send whole buffer (contain-

ing all lines of open file) all the time on each request. Instead, UpdateLine method

updates only small window around current line which is being modified. Term small

window in this case represents one line above and one line under the current line (the

line where the cursor is).

Such a small window is needed since vim sometimes detects changes in current line

too late. During testing some of the changes being made were either not detected

correctly or, in worse case, were not detected at all. For example if the user asks for

an auto complete and selects any of the values, new line is inserted before plugin could

detect which option was actually selected. That would result in corrupted buffer data

at daemon side.

ParseAndValidate

Once daemon receives this request, it knows that plugin is asking: "Is there anything

wrong with this code ?" To answer this question, daemon needs to run complex

process consisting from few steps where each of the steps needs previous one’s output

as its input.

1. Grab actual buffer data by given PID and tab number ID.

2. Call lexer on given data

3. Call parser on given data to retrieve abstract syntax tree (AST)

4. Evaluate output from previous step via inference package and retrieve errors

and warnings

5. Respond to the client

Whole process of how lexer and parser together produce ast tree was described in

chapter 3 on page 27.

42

4.2. DAEMON FOR OTHER IDE/PROGRAMMING LANGUAGE

GetAutocomplete

After receiving this request daemon calls specialised function with incoming variable

name and line number as parameters.

Whole idea of what is done next is this: instead of asking "Does variable x have

attribute y ?" we ask "Which attributes does variable x have at line n ?". We pass

line number and variable name which should be resolved to inferencer and it returns

list of attributes on given line (if any are found).

GetAllDefinitions

This request comes once user asks for list of all definitions in given project. Since

this information was aleady calculated (see SendCurrentWorkingDirectory) daemon

responds with correct options.

4.2 Daemon for other IDE/programming language

Using our daemon for Python code validation and auto completion in other IDEs than

Vim (Vim is used in our implementation as chosen IDE, see section 5) is pretty easy

since all work which needs to be done is writing plugin for given IDE which would

sent requests described at 1.5.1 and then it would be able to display results received

to the user.

Using daemon for other programming languages means that the daemon needs to

be extended by another tool, which would be able to provide analysis for it. The

extensibility of the daemon itself is very useful and helps tremendously here: there

is no need to rewrite whole API since the requests can stay exactly the same. All

that needs to be done is attaching another analysing tool to the daemon and then

implement simple mechanism which would allow daemon to switch between the tools

accordingly to requests coming. As stated in interface description 1.5.1, this would

require only checking additional incoming parameter.

43

5
Plugin

Daemon service is running, ready to answer questions and provide valuable advice

and info. To be able to actually use its potential, we needed to implement client side

of process which would both communicate with daemon service and translates given

information to readable form for user.

5.1 IDE - vim

After considering all of the given facts we decided to implement our client side for

vim text editor. Main arguments speaking for Vim were:

• experienced community

• vim script and its ability to easily implement own plugins with support of other

scripting languages (including Python)

• extensive and helpful documentation for vim script

• a lot of users are using vim for Python development

After choosing the IDE we had to summarize the features we needed to implement

at client side of the project:

1. Connect to the daemon

44

5.2. VIM LIFE CYCLE

2. Support request/receive operations in specified format while communicating

with the daemon

3. Calculate correct requests by listening to the actions of the user

4. Show errors and warnings

5. Provide custom auto complete functions

5.2 Vim life cycle

As mentioned before in section 1.1, vim script supports powerful feature called auto

commands. For our purpose we have used these auto commands:

• VimEnter - handles startup function plus sends whole buffer at start, sets auto

complete function and user complete function

• VimLeavePre - closes open connection

• BufWritePost - synchronizes buffers by sending whole buffer to the daemon

service

• CursorHold and CursorHoldI - triggered once user does not move cursor for set

period of time. This is where code validation handler is triggered

• BufAdd - user opens new tab (send whole buffer to daemon) and clear marked

errors

• TabEnter - once tab is entered/switched - again clear the errors

• CursorMovedI and CursorMoved - updates given line while user is moving

around

45

5.3. CLASSES

5.3 Classes

All of classes used by the plugin are written in Python language and are being created

during StartupFunction() call.

References to variables and class and function definitions are being passed between

various vim script functions so there is no need to store all results vim variables and

then transform them back and vice versa.

Client

Client class is asyncore implementation of client side of communication process. Dur-

ing initialization it tries to connect to the daemon service and establish socket for

further exchange of information. Client holds information about server address and

socket opened if the connection was successful. If for some reason the connection

failed, plugin stops all other activity.

Implementation of message sending is pretty simple: client holds queue of messages

which should be sent. Method send_message() simply appends given message to the

queue. After that handle_write actually calls send() method.

Noticeable thing is that both write and read methods are called only if client actually

can write/read to/from queue. If the server is busy responding to some other client,

daemons queue is closed for write and client waits given amount of time if it opens up.

Similar mechanism is used on read: client calls handle_read() method. If there was

no check implemented on socket availability then this scenario could trigger pretty

often: Client sends request to daemon. Daemon works on getting an answer, but since

client wants that answer straight away (via possibly unprotected recv() call) there is

nothing in the queue and the client is left with empty hands. Server responds a second

later but client does not wait for the answer anymore since it gave up already. Whole

process results in unaccepted message appearing in queue which further results in

problems during next processing next of the requests.

To avoid this behaviour, availability check method is being called before every write or

46

5.4. FUNCTIONS

read. Client checks if socket is ready (using select.select() call in specialised function).

If it’s not, client falls asleep for small period of time and tries again until the timeout

occurs.

This elegant solution grants us consistent behaviour for each client connected to the

daemon.

5.4 Functions

As described in section 4, plugin needs to create requests in such a way that the

daemon would be able to deserialize them, trigger correct action and respond with

the answer. Lets take a look at how our implementation handles this. List of functions

used to create requests for the daemon is:

1. StartupFunction

2. SendWholeBuffer

3. SendCurrentLine

4. ParseAndValidate

5. GetOmnicomplete

6. GetFuncAndClassDefs

Again, all of the functions which not only send some data to the daemon but expect

something in return all being handled by separate threads. This approach avoids

"freezing" of the vim while waiting for the response. Threaded calls are: ParseAnd-

Validate, Getomnicomplete and GetFuncAndClassDefs.

StartupFunction

Startup function is called whenever new instance of Vim is started. It contains defi-

nitions of all python classes (see above section 5.3). Initializes client and connects to

47

5.4. FUNCTIONS

daemon (if possible).

Once client is connected, it sends information about current directory so the daemon

can get all function and class definitions in whole project.

SendWholeBuffer

As the name implies, this function grabs whole buffer and sends it to the daemon. To

avoid opening current file again and again to get contents of file, vim script methods

are used instead. One simple command written right returns current file in a list:

let lines = getbufline(bufnr("%"), 1, "$")

After that, it is easy to just grab contents of this vim variable in Python part of

the function and send it to the daemon. To avoid mixing the buffers, identifiers are

appended to the request: PID of current process plus the tab number.

SendCurrentLine

Similar to SendWholeBuffer, but tracks only line on which user is either editing or

just moving cursor. To avoid sending this request whenever cursor is moved, plugin

holds local buffer and compares current line under cursor to the one in buffer. If there

is any change, plugin sends changed line plus both previous and next line.

ParseAndValidate

Whenever cursor moving stops, vim tracks how much time passed since this occurred.

Once the given timeout is reached, CursorHold/CursorHoldI (given on current editor

mode) auto command is triggered.

This provides us with nice functionality - whenever user does stop writing or moving

around, we can validate current code to get errors and warnings. And that is exactly

what is happening - request for validation is sent.

48

5.4. FUNCTIONS

Once plugin receives response from server, it needs to analyse it. Response contains

two lists: list of errors and list of warnings. Plugin iterates trough both and calls either

ErrorHighlight or WarningHighlight functions for each of the problems/warnings.

For errors there is red "!" on the left side of the screen shown. For warnings it is

yellow "!" (see figure 6.1).

User can also call :cope command to show error and warning descriptions for each of

the given errors.

Whole function call is being executed by separated thread (same as at ??). This

is because once the request is sent, plugin waits for the answer. If daemon does

not respond immediately, user might be experiencing time span (lasting from few

milliseconds to even few seconds for complicated and long codes) during which he

could not interact with vim at all. Once the function is being executed separately,

user can do further changes to the code while waiting for respond from the daemon.

Once one request is sent, given flag is set to true until thread is done with its job so

the daemon is not spammed with requests from same client while it is still calculating

the previous one.

Description contains generic information about the error, line on which the error/warn-

ing occurred and symbol, which is most likely the victim of causing the problem.

GetOmnicomplete

Omnicomplete, or auto complete function is heavily desirable functionality which

does not work really well in other solutions. To call auto complete method user needs

to simply press "." symbol. Whenever "." is pressed, GetOmnicomplete function is

called.

In first cycle function finds beginning of the word until cursor. This prevents acci-

dentally removing text written before position on which complete was called. Plugin

sends request to daemon once it knows correct starting position. This request contains

text until cursor (place where "." was placed) and line number.

49

5.5. VIMRC SETTINGS

Server responds with possible options. To display these options plus some additional

info , plugin iterates trough given options and adds each of them to return list in

specialized dictionary format containing word plus info. Info contains docstring of

given function or class if it is present. Resulting visual effect can be seen on picture

below.

GetFuncAndClassDefs

Sometimes while writing code user knows that he has some class or function defined

somewhere in other files under given project but he does not remember the exact

name. This feature is especially well suited for these problems.

User complete function call triggered by vim results in sending this type of request

to the daemon. Once the daemon responds with options, plugin iterates trough them

and shows both names and their corresponding occurrences in project on the right.

5.5 Vimrc settings

Since we wanted to give some space to the potential user we implemented three main

parameters which can be modified via .vimrc file. The modifiable parameters are:

1. Pynfer_root_filename -specifies the name of the root file for which daemon

should look when trying to calculate all definitions of classes and functions for

given project. Default value is __init__.py.

2. Pynfer_port_number - specifies the number of port on which client tries to

connect.

3. Pynfer_number_of_iterations - specifies how many times should be val-

idation process run. The higher the number is, the longer the process might

take.

For further details on how to change these parameters see Appendix chapter on page

58.

50

5.6. CLIENT FOR OTHER IDE/PROGRAMMING LANGUAGE

5.6 Client for other IDE/programming language

To sum it up, our client is "almost" language independent. We say almost since vim

auto commands are limited to the .py files. Rewriting this last section of the client

would make our plugin perfectly usable for other languages also. That is possible

because one of the biggest features of our approach: plugin is not calculating anything.

It is just responsible for creating requests, sending them to the daemon and afterwards

handling the responses.

Rewriting client for other IDEs is a little more complicated, since this would require to

study new materials about plugin creation in other development environments. Still,

there is no need to rewrite parsing or validating process since that is being handled

separately at the daemon side. And that makes it much, much easier.

51

6
Results

In this chapter we will provide results of our thesis divided into two sections. In the

first section there are some screenshots from working solution shown. They cover

each of the possible options shown by plugin in vim. In the second section we discuss

how the daemon was created and that our plugin - daemon solution is truly more

complex and universal than the usual approach to plugin creation.

52

6.1. SCREENSHOTS

6.1 Screenshots

Figure 6.1: Results from validation with errors shown.

53

6.1. SCREENSHOTS

Figure 6.2: Error descriptions example.

Figure 6.3: Auto complete example.

54

6.2. UNIVERSALITY OF DAEMON

Figure 6.4: Get all function and class definitions example.

6.2 Universality of daemon

Our goal was to create daemon service that would not depend on certain IDE. If we

wanted to integrate our solution to another IDE, we would only need to implement

plugin, which would communicate with the service with way described in more detail

in chapters 4 and 5.

Any client able to connect on given port on localhost and communicate via JSON

format messages with the daemon is able to use daemon services while the daemon

itself handles all the dirty work consisting of validating the code, providing needed

feedbacks and doing all of the calculations.

55

Conclusion

We successfully completed all of our main goals given for this diploma thesis:

1. Propose and implement new approach to plugin creation and integration

2. Implement this approach for one dynamically typed language and one text editor

3. Provide reliable and better method of how to generate input for symbolic exe-

cution on dynamically typed language - Python

In the parsing part we first created the lexer and the parser tools robust enough to

transform as much of the input Python source code as possible to abstract syntax

tree while keeping track of deleted lines which are marked as invalid in the output

provided for the user. This approach is better than existing solutions, which generally

use only regular python parser for syntactical error detection and therefore can only

detect single error (while our approach allows us to detect possibly all of them).

In the integration part we provided an unusual approach to plugin creation by sepa-

rating IDE from the tool itself entirely. Afterwards we designed an abstract interface

for communication between these two by describing the API. Lastly we implemented

this solution for single IDE - Vim and programming language - Python. Plugin is

communicating with the daemon service which is running independently on its own.

Our implementation keeps door open for further extending the whole project with

more programming languages and for more IDEs easily, which is indeed the key fea-

ture of this approach.

56

Bibliography

[1] Dominik Kapišinský "Type-Awareness in Dynamic Languages" Faculty of math-

ematics, physics and informatics, Comenius University, Bratislava, 2014.

[2] "Vim documentation: intro", http://vimdoc.sourceforge.net/htmldoc/

intro.html

[3] Steve Oualline "Vi iMproved (VIM)", New Riders Publishing, 2001.

[4] Bob Glickstein "Writing GNU Emacs extensions" Kismet McDonough-Chan and

Ellie Fountain Maden, 1997.

[5] Pavol Kobiakov, Sam Graham "FlyMake" http://www.emacswiki.org/emacs/

FlyMake

[6] "Sublime upgrade policy", http://www.sublimetext.com/sales_faq

[7] Asger Feldhaus, Jan Midtgaard, Michael I. Schwartzbach, "Abstract Syntax

Trees" http://cs.au.dk/~mis/dOvs/slides/37a-abstractsyntaxtrees.pdf

[8] Paul Biggar and David Gregg "Static analysis of dynamic scripting languages."

Draft: Monday 17th August (2009).

[9] William Edwards "Why Dynamic Programming Languages Are

Slow" http://williamedwardscoder.tumblr.com/post/19538827844/

why-dynamic-programming-languages-are-slow

[10] Kazuaki Ishizaki "Adding Dynamically-Typed Language Support to a Statically-

Typed Language Compiler" http://www.cl.cam.ac.uk/research/srg/netos/

vee_2012/slides/vee18-ishizaki-presentation.pdf

[11] “The Python Programming Language” http://groups.engin.umd.umich.edu/

CIS/course.des/cis400/python/python.html

[12] “PLY (Python Lex-Yacc).” http://www.dabeaz.com/ply/ply.html.

[13] “Python grammar” https://docs.python.org/3.4/library/ast.html

57

http://vimdoc.sourceforge.net/htmldoc/intro.html
http://vimdoc.sourceforge.net/htmldoc/intro.html
http://www.emacswiki.org/emacs/FlyMake
http://www.emacswiki.org/emacs/FlyMake
http://www.sublimetext.com/sales_faq
http://cs.au.dk/~mis/dOvs/slides/37a-abstractsyntaxtrees.pdf
http://williamedwardscoder.tumblr.com/post/19538827844/why-dynamic-programming-languages-are-slow
http://williamedwardscoder.tumblr.com/post/19538827844/why-dynamic-programming-languages-are-slow
http://www.cl.cam.ac.uk/research/srg/netos/vee_2012/slides/vee18-ishizaki-presentation.pdf
http://www.cl.cam.ac.uk/research/srg/netos/vee_2012/slides/vee18-ishizaki-presentation.pdf
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/python/python.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/python/python.html
http://www.dabeaz.com/ply/ply.html
https://docs.python.org/3.4/library/ast.html

Appendix

Installation and usage

To install and use our tool either use following steps are required:

1. Make sure that python3 is installed (easily doable with running python3 com-

mand in console) and vim text editor is installed. To check that try running

vim command in console. If unknown command error is returned, install vim

by running following:

sudo apt-get install vim

2. Download the solution from https://github.com/pynfer/pynfer

3. Extract the downloaded archive.

4. Either run pynfer_install_vim.sh script (which will try to complete all of the

steps automatically) by typing

sudo sh pynfer_install_vim.sh $1

where $1 is location, where pynfer should be installed (for example /opt/pynfer

) or follow step-by-step guide provided in the following steps.

5. Note: Only follow these steps if install.sh was not successful.

Move extracted folder to somewhere more appropriate (for example /opt/pynfer

folder (Note: location of your download might be different):

sudo mv ~/Downloads/pynfer-master/tool /opt/pynfer

6. Make sure that there exists directory in which vim checks for plugins. To create

such a directory write

mkdir ~/.vim/plugin

7. Copy plugin.vim file to the directory created in the above step

58

https://github.com/pynfer/pynfer

cp ~/Downloads/pynfer-master/plugins/pynfer.vim ~/.vim/plugin

8. Optional : Add port number and number of iterations to local vim configuration

file (vimrc - usually located at /.vimrc). There are default values specified, so

this step is completely optional. Example of lines added to /.vimrc file:

"Default value for python is __init__.py

let g:Pynfer_root_filename =’something.py’

"Default value is 10003

let g:Pynfer_port_number = 10003

"Default value is 10

let g:Pynfer_number_of_iterations = 1

"Default value is 0

let g:Pynfer_default_python_settings = 0

9. Run daemon.py at /opt/pynfer directory:

python3 /opt/pynfer/daemon.py

To specify other than the default port to be used, add it as an integer argument

following the command:

python3 /opt/pynfer/daemon.py *PortNumber*

10. Optional: To avoid always navigating to the source folder where daemon.py is

located and running above mentioned command, create symbolic link to shell

script executing this command for you. First of all set executable permission

on daemon_start.sh file located in /opt/ directory:

chmod +x /opt/pynfer/daemon_start.sh

After that create symbolic link to this script:

sudo ln -s /opt/pynfer/daemon_start.sh /usr/bin/pynfer

From now on, running

pynfer

in console starts our daemon service.

11. Open any *.py file with vim and enjoy our tool !

vim example.py

Note: Daemon gets closed on reboot or shut down of the computer, therefore before

next usage it needs to be started again. Once our project will be ready for release

our installation will add daemon to "run on system start" list and this step will be

omitted.

Settings

Plugin also contains three settings especially useful for setting vim as python editor.

To enable these, set g:Pynfer_default_python_settings in /.vimrc file to 1 by adding

the following line:

let g:Pynfer_default_python_settings = 1

Settings included are:

• number - shows line numbers on the left side of the editor.

• showmode - shows current vim mode

• tabstop = 4 - changes tab width from 8 (vim default setting) spaces to 4 (used

in Python).

	Intro
	Plugin Creation
	Vim
	Emacs
	Eclipse
	Sublime
	Motivation and proposed solution
	Daemon interface description

	Basics
	Dynamic and dynamically typed languages
	Differences
	Choosing the language
	Why Python ?
	About Python

	Parsing
	AST - Abstract syntax tree
	Using lexer and parser to produce AST
	Detection of the invalid parts
	Lexer
	Parser
	AST module

	Summarization
	Comparison with other solutions
	PyDev
	PyLint, PyChecker, PyFlakes
	Our solution superiority

	Daemon service
	Our daemon implementation
	Asyncore
	Json
	Threading
	Handling requests

	Daemon for other IDE/programming language

	Plugin
	IDE - vim
	Vim life cycle
	Classes
	Functions
	Vimrc settings
	Client for other IDE/programming language

	Results
	Screenshots
	Universality of daemon

	Conclusion
	Bibliography
	Appendix

