
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Security Analysis of TP-Link Tapo Family
of Home Security Cameras

Diploma Thesis

2022
Bc. Jakub Šimo



ii



Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Security Analysis of TP-Link Tapo Family
of Home Security Cameras

Diploma Thesis

Study Programme: Computer Science
Field of Study: Information Security
Department: Faculty of Informatics
Supervisor: RNDr. Richard Ostertág, PhD.

Bratislava, 2022
Bc. Jakub Šimo



iv



Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Jakub Šimo
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Security Analysis of TP-Link Tapo Family of Home Security Cameras
Bezpečnostná analýza domácich bezpečnostných kamier rodiny TP-Link Tapo

Anotácia: Keď sa výrobcovia snažia ušetriť pri vývoji svojich produktov, tak je to
často na úkor ich bezpečnosti. Zneužitá inteligentná domáca kamera umožní
útočníkovi prístup k jednému z najsúkromnejších miest v našom živote – našim
domovom.

Preto cieľom tejto práce je analyzovať (z hľadiska IT bezpečnosti) konkrétnu
skupinu domácich bezpečnostných kamier od známeho výrobcu. Prvým
krokom bude popis vonkajšej aj vnútornej činnosti skúmaného zariadenia.
Potom sa zameriame na firmvér, jeho aktualizačný mechanizmus a pokúsime sa
zistiť, či existuje spôsob, ako upraviť systémové súbory a trvalo kompromitovať
zariadenie.

Vedúci: RNDr. Richard Ostertág, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 27.04.2021

Dátum schválenia: 28.04.2021 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce



vi



iii

I would like to thank my supervisor RNDr. Richard Ostertág PhD. and RNDr.
Jaroslav Janáček, PhD. for their advice, help and trust during the course of the creation
of this thesis and my studies.

I would also like to thank my partner, family, and friends, both for their support
and understanding during these trying times.



iv

Abstrakt

Bezpečnostné domáce kamery sa stali jedným z najpopulárnejších zariadení smart home
trendu. Vďaka pokrokom sa stali bezpečnostné kamery v domácom prostredí ľahšie
použiteľnými a zároveň dostupnými zariadeniami. Pri vpúšťaní kamier do našich do-
movov je ale bezpečnosť týchto zariadení veľmi dôležitá. V našej práci sa pozrieme, či
sú najpopulárnejšie modely kamier dobre chránené pred útočníkmi.

Kľúčové slová: kamera, bezpečnosť, domácnosť, smart



v

Abstract

Home security cameras have become one of the most popular devices of the smart
home trend. Thanks to the advances in technology, they have become more usable,
while becoming more affordable than ever before. However, when we let cameras into
our homes, their security should be up to the task. In our thesis, we take a look at
one of the most popular camera line-ups and see whether they are well secured against
potential attackers.

Keywords: camera, security, home, smart



vi



Contents

Introduction 1

1 Security Cameras 5
1.1 Manufacturer choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Tapo line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 System-on-a-chip . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4 Rest of the hardware . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Companion app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Exploration 13
2.1 Past and current research . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Heartbleed and Pass-the-Hash attack . . . . . . . . . . . . . . . 13
2.1.2 pytapo project . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Personal blog of Davide Depau . . . . . . . . . . . . . . . . . . 14
2.1.4 Personal blog of DrmnSamoLiu . . . . . . . . . . . . . . . . . . 14
2.1.5 nervous-inhuman Github repository . . . . . . . . . . . . . . . . 14

2.2 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 GPL source code . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 UART connection and shell access . . . . . . . . . . . . . . . . . 16
2.2.3 Inside of the system . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Analyzing the firmware . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Analyzing programs . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Security evaluation 29
3.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Current developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Our findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Remote attacker . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii CONTENTS

3.3.2 Attacker with physical access . . . . . . . . . . . . . . . . . . . 34
3.3.3 Severity and Recommendations . . . . . . . . . . . . . . . . . . 35
3.3.4 Reporting of the Vulnerability . . . . . . . . . . . . . . . . . . . 36



Introduction

In this chapter, we will try to paint a picture of the current state of affairs in the space
we will be taking a look at. There is a myriad of factors that all contributed to the
current situation we have found ourselves in at the time of writing. We will try to state
the points in somehow chronological order, to the best of our ability.

Real life situation

Globalisation, at least before the COVID-19 pandemic, has been at its highest point.
The vast majority of items were and still are, produced in China. This is even more
true when it comes to electronics. Shenzhen is the world’s hub for manufacturing,
assembly, and other things to do with the creation of electronics. This is thanks to the
economic policies introduced by the Chinese government in recent decades. Thanks
to this heavy concentration and the labor force available there, electronics can be
manufactured and shipped around the world for almost unbeatable prices. The Chinese
government has been able to turn what once used to be a rather regular village into
the world’s manufacturing hub in less than half a century.

The cheap cost of concentrated just-in-time manufacturing helped give birth to a
new era. With the price of electronics being so low, more and more people are now able
to afford to buy new gadgets each year. What once used to cost multiple months of
salaried income now costs but a fraction of the minimum monthly wage. In effect, this
has brought something of smartphone ubiquity. Smartphones have become the major
computing devices in households of developed countries, whilst hyper-accelerating the
development of poorer countries. At the time of writing, some governments are even
mandating processes that can only be done with a smartphone. Governmental bodies
are traditionally one of the slowest to adopt new technologies, so it should be apparent
that smartphones have reached critical mass. A new era, the Age of the Smartphone!

Thanks to smartphones, electronics could be made even cheaper. In the past, man-
ufacturers needed to include various components in their devices, such as displays,
buttons, speakers, etc. for the user to be able to interact with them. This adds cost
and complexity, especially if you happen to be including moving parts, such as buttons
or potentiometers. However, brilliant minds have been able to progressively get rid of

1



2 Introduction

these problems. Long story short, virtually everything is moving towards capacitive
controls. Manufacturers can save costs by not needing to include moving parts. This
includes both the parts themselves and the related design and manufacturing costs.
Manufacturers have been able to sell these cost-cutting measures as premium features,
which has been fascinating to witness, as many times, the capacitive controls were
much inferior to their physical counterparts. The current pinnacle of this optimisation
process is a device with a small number of or no controls, exclusively controlled by a
smartphone. Nowadays, an increasing number of electronics have a companion smart-
phone app with which you can control said device. No need to include any displays,
buttons, or anything of the sort. In this manner, manufacturers have been able to
reach price points unheard of even ten to twenty years back.

There are further cuts to be made. The software has been able to steadily replace
parts of the hardware. A debouncing capacitor here, some analog logic there, and
suddenly, you are left with an almost bare board with a single microcontroller and a
few sensors. This is much cheaper to manufacture, even when we take into account
the cost of developing the microcontroller software. In addition, you can differentiate
your product stack with software. This saves further costs as you reduce the number
of assembly lines. It is so efficient, that some car manufacturers sell their cars fully
kitted out and selectively enable some features, such as heated seats. This is of course
possible even without software - the most basic implementation being a dip switch or
a zero Ohm resistor. However, the software version has a much higher barrier to entry
and can be further strengthened through cryptographic methods.

Now that we have arrived at software, let us talk about the cost optimisations here.
As with everything, the cost of software development depends on the importance and
severity/cost of a failure. With consumer goods, there is usually no immediate risk, e.g.
death of the user, so the stakes are not that high. In the past, without the Internet,
software needed to be working out of the gate, as it was distributed through physical
media. Patching the software afterward was many times simply not possible. Nowa-
days, companies can ship the devices in an unfinished state and continue developing
the software whilst the hardware is being manufactured, shipped, and sold. However,
developers are more often than not being rushed to meet an arbitrary deadline. This
leads to prioritisation and the security of the product is usually the first thing on the
cutting board.

The security of the devices we use is an afterthought. The tides are slowly turning,
but we cannot run away from the fact that, due to mostly business reasons, the security
of our devices ranges from poor to non-existent. Today’s homes usually have two
particular pieces of electronics - a modem/router/wifi combo box (colloquially referred
to with a misnomer router) and smartphones. In both cases, they are kept woefully
out of date. In an overwhelming majority of the cases, firmwares are never updated by



Introduction 3

its users. This is simply due to the fact that users do not know that their router needs
to be kept up to date. Manufacturers do not provide user-friendly ways of finding out
about new firmwares or do not even provide the updates themselves. Manufacturers
are currently trying to provide companion smartphone apps, but this is still in its
infancy and user benefit is usually a side effect - more on this later. As for smartphone
firmwares, the situation is a little better, at least when looking at more reputable
manufacturers. They do tend to provide some form of updates for a year or two,
but they quickly stop and the quality of the new software is usually lacking. It is
such a norm, users have already learned that it is not worth it to update, as they risk
breakage and possibly a new, unfamiliar interface. The need for better software support
is becoming apparent as we are currently at a point where even five to seven-year-old
phones are perfectly capable of executing their duties all those years later.

Unfortunately, software support and the survival of a company are going in the
opposite directions. There are a few business models that have been tried out, but
currently, we have ended up on a live-service wave. Prices of hardware have hit prover-
bial rock-bottom, the differentiating factor is becoming the ecosystem and companion
offerings, such as the companion apps or related services. This is a double-edged sword,
as while the idea is sound, more often than not, the companion offerings are lackluster
and used mostly to subsidize the cost even further by collecting user data. This would
be fine, but regular users are not aware of the fact. In addition, we have gotten to a
point where devices can become literal e-waste if the user stops paying or the company
goes under. It is one thing when your television stops working, it is another when your
"smart" door suddenly cannot be opened. This finally leads us much closer to the topic
of this thesis.

We have a new wave of home automation on our hands. There have been flashes of
this in the past, such as home alarms, CCTV camera systems, automatic garage door
openers, etc. Currently, the market has become flooded with various home automation
appliances - the marketing term is "the smart home". Instead of a washing machine,
which can be set to run at a certain time, it can run when you leave work so that it
finishes when you arrive home. Forgot a window open? An app on your smartphone
can let you know. The useful ideas and devices will stick around - especially when
it comes to home appliances. However, home appliances have lifetimes of a different
magnitude compared to other consumer electronics - a ten-year-old oven is perfectly
functional and commonplace, but a ten-year-old smartphone is practically ancient and
a security risk. This brings us to an impasse. Manufacturers should keep supporting
their devices if they put a "smart" label on their products, but people are not educated
enough to care and force them to do so.

In addition, privacy concerns are mounting up. A case study example is the Ring
smart camera doorbell. It is a doorbell with a camera, you can access the camera



4 Introduction

feed through your smartphone, from anywhere, thanks to the magic of the Internet.
However, doorbells are naturally set up to face opposite from the home they are serving,
usually recording the sidewalk or neighbours on the other side of the street without their
consent. Let us not get into additional problems, such as someone hacking the camera
over the Internet, because it is not being patched, or the cameras being used by law
enforcement without an informed consent of the camera owner. Especially the latter is
legally possible due to impossible to understand EULAs of manufacturers who gorge
on the data gathered by such devices. As is the tradition, the laws have not caught
up with the technology we possess today, so it is a bit of a wild west out there. We
have just scratched the surface in regards to the privacy in a digital, always-connected
world.

So finally, we have come to the devices which we will be taking a look at as a goal of
this thesis. People want to secure their homes and cameras are one way to do it. They
act as a deterrent and a way of identifying potential culprits. CCTV cameras have been
the traditional way of doing this, but they are cumbersome, due to their analog nature.
Modern cameras are digital and usually connect to the local computer network, hence
their name, IP cameras. In fact, the cameras are computers themselves. IP cameras
are a valuable target to hackers. They can be used for a multitude of nefarious goals,
such as blackmail, stalking, or burglary. One would think that these devices, which are
supposed to protect our homes, would be the ones that receive care both from their
users and manufacturers alike. However, that is not the case and even these devices
are left unattended and insecure, becoming parts of bot-nets.

In the first chapter, we will choose the cameras we will be examining. In the
second chapter, we will explore how they have been developed and how is their security
handled. In the third chapter, we will evaluate our findings and their severity, and try
to present possible solutions.



Chapter 1

Security Cameras

The market is currently flooded with various consumer-level cameras, mostly targeted
at home or small business use. We are interested in the home use segment as it is
the more problematic one in regards to security. This is simply due to the fact that
businesses are usually more risk-averse, and they make an actual effort to secure their
networks. In this chapter, we will take a look at what are the most popular cameras.

1.1 Manufacturer choice

Naturally, there exist camera lines available from various manufacturers, ranging from
no-name ones from the Chinese grey market to reputable ones which you can buy in
any electronics store. We have chosen the cameras in a rather simplistic way. We have
taken a look at the best-selling security cameras in the biggest eshop in Slovakia (and
Czechia), Alza.sk. At the time of our choice, five of the TOP10 best-selling cameras
have been from only two manufacturers - Xiaomi and TP-Link. After a little research,
the Xiaomi cameras seemed to have piqued the interest of mostly homebrew hackers
already, but TP-Link offerings did not seem to incite many researchers or hackers.
Therefore, we have chosen to take a look at the TP-Link Tapo line-up. This choice has
proven to be a good one, as for a long stretch of almost two years, the TP-Link Tapo
line has had all of its cameras stay in the TOP10, the C200 model being the top-selling
product in the home section for the full period.

Let us then delve deeper into what kind of a manufacturer TP-Link is. When we
try to search for the brand name, we come up with the manufacturer’s official website
- always a good sign. Visiting the website, we can find the “About us” section at the
bottom of the page. It is a simple page with the following text:

Founded in 1996, TP-Link is a global provider of reliable networking devices
and accessories, involved in all aspects of everyday life. With a proven her-
itage of stability, performance, and value, TP-Link has curated a portfolio

5



6 CHAPTER 1. SECURITY CAMERAS

of products that meet the networking needs of all individuals.

Now, as the connected lifestyle continues to evolve, the company is expand-
ing today to exceed the demands of tomorrow.

This is a rather nondescript on its own, but if we take a look at other information
sources, it starts to make sense. TP-Link has been a network equipment manufacturer
since its inception, think switches, routers, Wi-Fi access points, etc. Due to vari-
ous circumstances, they have decided to pivot to being a “lifestyle”-oriented brand in
September 2016. On September 30, 2019, this branch has been spun off as a separate
daughter company called Tapo[11].

It is safe to say that TP-Link is a recognizable brand. They are not a household
name, but they might as well be, as their cheaper offerings are being used by a majority
of small-to-medium-sized European Internet service providers [13]. In addition, if we
take a sample from Alza.sk, after opening the "WiFi routers" TOP section, we are
greeted by a page on which seventeen out of twenty-four products are made by TP-
Link. If we switch over to the "Most sold" tab, this number decreases to fourteen,
which is still a majority, rather impressive showing. This makes the pivot to a separate
brand name for their home offerings a little confusing, as they could have kept using
their renown. Nevertheless, even if a manufacturer is popular, it does not mean that
they are keeping their devices safe.

We can gauge the seriousness of the manufacturer by taking a look at the support of
their low-to-mid-end offerings. Naturally, the higher-end products should receive better
support, so we are not that interested in them. Taking a look at their current cheapest
available consumer router, TL-WR820N, coming in at just shy of 12 euros, it is apparent
from the price that we should not be expecting much. There are currently two “versions”
of this device. At least the way TP-Link does it, they have “versions” and “revisions”.
Revisions are usually a minor design or Bill of Materials (BOM) change, designated
by a decimal point bump (v1.0 to v1.1), while versions are revisions, but more drastic,
think changing the CPU/System-on-a-Chip (SoC) used in the device, designated by a
major number increase (v1 to v2). Because of this, revisions traditionally share the
firmware while versions require completely different firmware. These changes can be
done for a multitude of reasons:

• the manufacturer might simply want to lower costs by optimising the design

• some parts might have become unavailable throughout the years, either due to
the semiconductor fabs discontinuing some chips used or closing down altogether

• software support for an older chip might be getting too expensive compared to
other offerings. This can be for example due to the chip manufacturer no longer
providing support, which puts the onus on the router manufacturer



1.2. TAPO LINE-UP 7

• the product requires a newer feature, which is not possible with the older plat-
form. Naturally, the manufacturer could then create a product with a different
name, but this is just a matter of syntax.

• and other probably business-related reasons

However, more often than not, older versions are left unsupported, in favour of their
newer counterparts. It is enough to take a look at the latest update on the v1 vs v2
of TL-WR820N in question. The latest update for the v2 version has been released on
21st January 2022 - not stellar - but at least it is from the current year (at the time
of publishing of this work). The update has even added WPA3 support, a pleasant
surprise. But, if we take a look at the v1, the story gets a little sadder. With an initial
firmware release on 10th October 2018, the last, second update (so a third firmware),
has been released on 17th of September 2019. At the time of writing, the device has
not been formally discontinued yet, so there is at least the possibility that further fixes
for major exploits will be released.

Nevertheless, it is more of a question of ethics, whether companies should be re-
leasing devices they are not willing to support. There are currently no laws that would
forbid them from releasing a new model, whilst abandoning the old one. TP-Link is one
of the better players in this regard, but as we have shown, even they are not perfect.
Let us then take a look at the Tapo line of products and see, whether the story there
is different or more of the same.

1.2 Tapo line-up

As previously mentioned, the Tapo line has been launched on the 30th of September
2019, before being spun off as a separate company. At the time of writing, they offer
three product categories - smart bulbs, smart plugs, and smart cameras. The term
“smart” is just a marketing term, in reality, all of these products are just able to be
connected to the user’s Wi-Fi network and controlled from a companion app. We are
interested in the cameras.

There are three lines to choose from - C1xx, C2xx, and C3xx. The original lineup
was C100, C200, and C310, but last year a C110 and C210 has been added to the
roster and this year, they have been joined by a C320 model.

The cameras all seem to offer identical features, only adding things like the servo
motor in C2xx and water-proofing and ethernet in the C3xx. To make this work
shorter, we will be taking a look at and describing only the C1xx line, highlighting any
important differences if we encounter them.



8 CHAPTER 1. SECURITY CAMERAS

Figure 1.1: TP-Link Tapo C100

1.3 Hardware

The full specifications can be found in the appendix. To summarize the main hardware
features of the camera based on the specifications provided by the manufacturer:

• a 1920x1080p camera - no Frames Per Second stated, but we will find out later
it is 15

• night vision - an array of IR LED lights

• a microphone

• a speaker - an interesting addition

• an SD card slot - supports up to 128GB cards

• Wi-Fi connectivity

• C2xx only - two-axis motorised movement

• C3xx only - ethernet, water resistance, “3MP” camera

Not too bad for around 20-25 euros. Let us take a look at what we are actually getting
for our money.

1.3.1 Disassembly

The device has no obvious screws or access holes through which it can be opened. After
a little bit of prying, the front black plastic part can be separated from the body, to



1.3. HARDWARE 9

which it is attached by four retention clips, each located in the center of each of the
sides of the device’s body. After the black front piece is removed, the whole assembly
can be easily slid out of the plastic body. We are left with the motherboard.

Inspecting the board, it indeed looks to be designed in-house, by TP-Link them-
selves - they take pride in this, as many manufacturers use pre-made designs. Two nice
surprises are present on the board:

• there are nicely labeled UART serial connection pads available

• there is an unused header labeled ETH - possibly Ethernet - unfortunately, there
are no further labels to indicate its pinout. The connector used here is a 4-pin
Molex PicoBlade Wire-to-Board.

Otherwise, there seems to be nothing of special note. The heart of the camera appears
to be a Realtek RTS3903 SoC, paired together with a 64Mbit XMC XM25QH64A SPI
NOR flash. The board or the camera sensor bears no markings to indicate its origins.

1.3.2 System-on-a-chip

Focusing on the SoC, searches for the RTS3903 model come up with practically no
results. Realtek’s website does not contain any information about this SoC, not even
acknowledging its existence. The only results are research blogs discussing cameras,
product pages of cameras, and Chinese suppliers selling the chip, the latter two only
briefly mentioning the name. It is of course possible, that this SoC model and its
corresponding documentation is only provided after signing a non-disclosure agreement.
After further search, we were able to find some leads pertaining to the family of chips.
We have been unfortunately unable to record the site itself before its disappearence.
However, we have a picture of the website with useful pieces of information. The
information was most probably supposed to be inaccessible, as after fully loading the
website, its contents were replaced by a Chinese text indicating unauthorized access.

The website indicates the existence of RTS3901, RTS3902, RTS3903 and RTS390X
chips with different variations. Curiously, searches for these variations did not come up
with much in the way of products, but we did find a few “leaked” SDKs and datasheets
with “confidential” watermarks. This corroborated our speculation about the non-
disclosure agreements. The chip family is, according to the materials, designed specifi-
cally for the development of IP camera devices, containing a moderately fast single-core
CPU paired with hardware video and audio encoders and networking capabilities. The
CPU has a Lexra core. Lexra is a 32-bit variant implementation of the MIPS archi-
tecture, leaving out some instructions covered by patents. The architecture seems to
be almost an industry secret at this point. According to a former Lexra engineer,
“Many Lexra licensees do not want their use of Lexra to be known.”. In our opinion,



10 CHAPTER 1. SECURITY CAMERAS

Figure 1.2: Realtek RTS390x family of SoC topology

this cumbersome situation is probably a culmination of different factors. Realtek, the
manufacturer of the SoC, presumably does not want to pay licensing costs for a MIPS
or an ARM license. TP-Link and others are happy to be provided a tightly integrated
chip with an SDK for this specific purpose.

1.3.3 Networking

The device contains a USB-connected RTL8188-based Wi-Fi chipset. After tracing the
ETH header, it indeed seems to be connected to the correct pins on the SoC. After
creating an adapter, we were able to get the device to connect to the network. The
device appears to switch off the Wi-Fi when Ethernet is connected.

1.3.4 Rest of the hardware

There is not much else of note on the board - a generic microphone, IR LEDs, a speaker.
C200 contains two servo motors and their respective drivers.

Now that we have become acquainted with the hardware, let us take a look at the
provided software, the companion app.

1.4 Companion app

TP-Link provides the Tapo smartphone app. The logo of the app is a house, indicating
that it is supposed to be more of a smart home ecosystem app than an app specifically
for cameras. The app is not functional without a TP-Link Cloud account. After
creating the account, you are let into the app, where you are able to set up your smart



1.4. COMPANION APP 11

devices, after which you can access them from anywhere with an Internet connection.
The interface for the cameras provides access to all of the features of the devices and
from our experience work well and is simple to use. Here are the most notable functions
available:

• transmitting audio to be played one-way through the camera

• two-way audio communication through the camera

• playback of recordings

• inverting the camera image

• turn on/off the status LED

• microSD card setup and management

• device sharing

• management of the account used to access RTSP/ONVIF streams

• other settings, mostly image correction related



12 CHAPTER 1. SECURITY CAMERAS

Figure 1.3: Tapo smartphone app



Chapter 2

Exploration

2.1 Past and current research

There have been only two research efforts about these cameras that we were able to
initially find. A few months down the line, a little community has managed to spring
up around these cameras. Sharing our different findings, we were all able to progress
on various fronts.

2.1.1 Heartbleed and Pass-the-Hash attack

Probably the first published piece, Dale Pavey of NCCGroup published research[9]
about a few different cameras, one of them being our C200. He was able to identify
that the device is vulnerable to the Heartbleed vulnerability, which allows the attacker
to extract the working memory of the target. Through this, he was able to extract
the MD5 hash, which is used for the authentication of the mobile app. This in turn
allowed him to silently control the camera, with the original user being none-the-wiser.
He has reported the vulnerability and the manufacturer has fixed it in a subsequent
release.

2.1.2 pytapo project

pytapo is a project reverse-engineering the communication between the app and the
camera, trying to provide a way to programmatically control the cameras. They were
able to identify the protocol on which the communication is based. It has led to
the creation of a plugin that integrates the Tapo cameras with the popular home
automation Home Assistant platform.

13



14 CHAPTER 2. EXPLORATION

2.1.3 Personal blog of Davide Depau

Another effort[4] that documents the camera-app communication, this time by reverse-
engineering the Java Android application itself. He also created a proof of concept
trying to decode the custom video stream used by the app, however, it only works
somewhat, having low framerates and no audio compared with the app.

2.1.4 Personal blog of DrmnSamoLiu

General research around the cameras. He was able to capture and analyze parts of the
firmware by analyzing the network traffic. After we shared our findings, he was able to
identify a shell injection format string vulnerability in the ART partition configuration
parsing. The execution is a little cumbersome, but it allowed him to enable a telnet
server on the device. However, if the server crashes, the camera needs to be restarted
to restore the functionality due to the nature of how it is started.

2.1.5 nervous-inhuman Github repository

The repository compiled a few pieces of information. The main discussion[2] regarding
the shell access happened here, Mr. Depau, DrmnSamoLiu, and we discussed our
findings here.

2.2 Our work

As the mobile app has seen partial analysis from the pytapo project, we have decided
to start tackling the camera from the hardware side.

2.2.1 GPL source code

The camera came with a “GNU General Public License Notice”. This meant that
the software of the camera uses some open-source source code licensed with the GPL
license, presumably the Linux kernel. TP-Link is one of the manufacturers who have
one of the better track records of upholding their end of the bargain when using any
open-source code. They generally provide either the modified source code or patches
on the product support page, together with the firmware files. Unfortunately, as we
have already mentioned, the product support page for our device contained neither
the firmware nor the GPL source code. TP-Link does have a designated email address
to which GPL source requests can be sent. After contacting a representative, they
promptly made the sources available on the product page, where they are still currently
available.



2.2. OUR WORK 15

Initially, we were able to gather from the provided source code that the camera
indeed uses a Linux based system. More precisely, a rather old OpenWRT release from
2012. This is most probably due to the chip which has been used in the device. The
sources for our product came with patches for either old versions of the tooling or
seemingly irrelevant changes0. In addition, our search turned up a few leaked SDKs
from Realtek, contents of which support our hypothesis. With devices becoming in-
creasingly locked down, the fact that we have received what is essentially the bare
legally required minimum, if even that, is not doing us much good. In fact, it is a bit
unsettling just how outdated the software our cameras use is.

Upon further inspection, the sources are missing various configuration files and
folders referenced in scripts. This further cements our inability to verify the firmware
running on device. In addition, TP-Link has also provided the GPL sources for the
C200 model. At first, we thought that there was an error, as the C200 sources were
the same as the C100 sources. However, a representative assured us that this was
indeed correct. We were able to independently confirm this after gaining access to the
firmware files for each of the models.

We will come back to this point in the next chapter, as the issues surrounding the
proper use of GPL licenced source code are complicated and culturally nuanced.

Firmware

Traditionally, TP-Link provides firmware files for their products on the support page of
the respective device. Unfortunately, this does not seem to be the case when it comes
to the whole Tapo product line - product pages of neither cameras, smart plugs nor
smart bulbs contain any firmware files. After a brief look at the update process in the
smartphone app, it appears that the firmware can only be updated through there, so
the manufacturer presumably did not consider it useful to provide the firmware files.
This is unfortunate, as:

• as researchers, we are unable to easily access different firmware versions for anal-
ysis

• as users, we have no good way of fixing a device with a corrupted firmware

• as researchers, the previous point holds even more true as we are at a higher risk
of bricking the device

With this route being halted, we try to move on to other possible data sources.

0For example, see gpl-code/c100_GPL_v1/torchlight/toolchain/gcc/patches/4.4.7/

930-avr32_support.patch - the camera uses Lexra (MIPS), not AVR32

gpl-code/c100_GPL_v1/torchlight/toolchain/gcc/patches/4.4.7/930-avr32_support.patch
gpl-code/c100_GPL_v1/torchlight/toolchain/gcc/patches/4.4.7/930-avr32_support.patch


16 CHAPTER 2. EXPLORATION

2.2.2 UART connection and shell access

Checking for port activity

During our hardware overview, we have identified what presumably are serial UART
connection pads. After connecting a USB TTL adapter and trying out various baud
rates, we were able to determine that the port is indeed active. After finding the correct
baud rate, we were presented with a login prompt.

Login

Unfortunately, none of the username/password combinations that are common for TP-
Link devices worked. Fortunately, after combing through the provided GPL source
code, we were able to find a configuration file, which mentioned a default password set
in the SoC SDK - it was found in the buildroot config file:

tapo-c200-gpl-code/camera_slp_realtek_c200/torchlight/product_config/

ALL/buildroot.config

Line␣450:␣CONFIG_SLP_LOGIN_PASSWORD="slprealtek"

Fortunately for us and unfortunately for the security of the device, this password has
been left unchanged. We were able to gain root prompt access by logging in as the user
root with password slprealtek. We have shared our finding with the community, who
was stumped at the time - the flash storage of the device has been dumped, but people
were unable to break the hashed password they found within it. From this point on,
we had root access and could explore inside of the device.

2.2.3 Inside of the system

After gaining root access, we confirmed that indeed, the system is using OpenWRT as
its base. This makes our work a little easier, as OpenWRT comes standard with tools
such as mtd for managing the flash storage, and its well-liked uci configuration interface.
After determining that those tools have not been left out by the manufacturer, we were
able to make a backup of our flash for analysis. The files can be extracted either by
storing them on the SD card or by using devices busybox which has been compiled
with netcat enabled.

Dumping and analysing the configuration

Running uci export produces some 1600 lines of configuration. Most of it is a standard
configuration of different OpenWRT utilities, however, TP-Link engineers have used
this mechanism for storing all of their configuration too. Let us take a look at some
interesting sections.



2.2. OUR WORK 17

Wireless configuration

config wlan ’ap0 ’

option broadcast_ssid ’on ’

option region ’CN ’

option band ’2g’

option channel ’6’

option hwmode ’bgn ’

option channel_width ’ht20 ’

option security ’none ’

option encryption ’ccmp ’

option wps ’off ’

option auto_disable_time ’0’

option isolation ’off ’

option acl ’none ’

option ssid ’Tapo_Cam_603C ’

option on_boot ’off ’

config wlan ’sta0 ’

option on_boot ’on ’

option network_id ’0’

option rssi ’0’

option freq ’0’

option security ’psk -mixed ’

option encryption ’auto ’

option key ’ORALwCpfdh+xPk4sfou8gg ==’

option ssid ’doma ’

option bssid ’d8 :47:32:50:95:2a’

option connect_onboot ’on ’

The device seems to be set to the Chinese region regardless of which region it is
operating in, without the ability to change it from the app. This might be problematic
in certain regions of the world, but it should not compromise security in any way.

The access point used for the device setup has an SSID in the form of Tapo_Cam_XXXX
where XXXX are the last four digits of the devices MAC address. This is helpful when
setting up multiple devices. The communication is encrypted, however, the access
point is open, meaning there is a timeframe in which the device could be compromised
during setup. This issue can be alleviated by using a random default password set at
the factory. This practice has already been forced onto the manufacturers by the Euro-
pean Union, as it has been standard practice to use traditional admin-admin username



18 CHAPTER 2. EXPLORATION

and password, which has been deemed unsafe. Interestingly, this requirement does not
seem to apply to these devices. WPS functionality is also explicitly turned off, which
has been the recommendation for a long time now.

The key parameter is interesting, as, on standard OpenWRT devices, it is stored
in plain text. We have not been able to determine what is the exact encoding and
lifepath of the key that we are seeing in the configuration. We believe that it would be
just a question of time and we invested our time elsewhere, as if someone has gotten
their hands on this configuration, there was already something that has gone wrong
elsewhere.

Video feed credentials

package user_management

config root ’root ’

option username ’admin ’

option passwd ’9BF1EF469286D8B1907F0E48F02136E4 ’

option ciphertext ’<long string >’

config third_account ’third_account ’

option username ’---’

option passwd ’---’

option ciphertext ’<long string >’

config authentication ’authentication ’

option basic_enabled ’0’

This section holds the credentials which are used for authenticating the user with the
camera. The admin account seems to always be populated, with the password being
the traditional admin phrase if the camera has not been set up yet. However, the
credentials cannot be used to access the stream. Our second assumption was that the
default credentials could be used by the app to authenticate itself during the setup, but
we were not able to confirm this nor make it work. Before the camera is set up, they are
not accepted, after the camera is set up, the admin password is changed, presumably to
something derived from the user’s password. We presume that this is something that is
stored internally in the app and used for seamless authentication. The third_account
is the account that can be set up under Advanced Settings - Camera Account in the
app. These credentials are then used to access the standard RTSP or ONVIF streams
directly from the camera. We do not see an obvious problem with this setup apart from
the use of MD5 hashes instead of something stronger. We were able to determine that
it is an MD5 hash from the length, from the fact that the hash of the phrase admin is



2.2. OUR WORK 19

used as a stand-in before setup, and as we will see later, from the names of functions
in the decompiled binaries.

upnpc configuration

package upnpc

config on_off ’upnpc_info ’

option enabled ’off ’

option mode ’manual ’

config entry ’uhttpd ’

option proto ’TCP ’

option ext_port ’80’

option desc ’uhttpd ’

config entry ’rtsp ’

option proto ’TCP ’

option ext_port ’554’

option desc ’rtsp ’

config entry ’onvif_service ’

option proto ’TCP ’

option ext_port ’2020’

option desc ’onvif_service ’

config entry ’vhttpd ’

option proto ’TCP ’

option ext_port ’8080’

option desc ’vhttpd ’

From this part of the configuration file, we can see which ports are being exposed
through UPnP. Without commenting on the issues surrounding UPnP, the router on the
user’s network is more important in regards to the security of this particular protocol.
The fact that the camera uses UPnP is not problematic in itself - the user just needs
to take more care and device whether it is worth the risk to have UPnP enabled in
their network.

HTTP server configuration



20 CHAPTER 2. EXPLORATION

config uhttpd ’main ’

option listen_https ’443’

option home ’/www ’

option rfc1918_filter ’1’

option max_requests ’6’

option cert ’/tmp/uhttpd.crt ’

option key ’/tmp/uhttpd.key ’

option cgi_prefix ’/cgi -bin ’

option lua_prefix ’/luci ’

option lua_handler ’/usr/lib/lua/luci/sgi/uhttpd.lua ’

option script_timeout ’180’

option network_timeout ’180’

option tcp_keepalive ’0’

The camera uses the standard OpenWRT uhttpd server, the config looks pretty stan-
dard too. One interesting part is the key setting, as /tmp is mounted as a tmpfs on
this device. After looking around how this file is created, we have been able to find
that is it generated at each boot. However, the server is not set up to use ephemeral
keys derived from these keys for each connection - this can be seen from the network
capture of the communication with the smartphone app. All of the communication
that is happening is being encrypted only by these keys directly, the non-ephemeral
version of the Diffie-Helman key exchange. This is not recommended nowadays, as
there is no forward secrecy. The fact that the key is re-generated on each boot is a
plus, but since the device is a security camera, its uptime will be long-lived, negating
the usefulness of this step.

tp_manage

package tp_manage

config tp_manage ’factory_mode ’

option enabled ’0’

config tp_manage ’bind_info ’

option owner ’93185 CC75BC0C0872E3C744B9F92D41B ’

We are not hundred percent sure how to work with these settings, but the first one
seems to indicate whether the device has been set up and the second one is presumably
some hash or id for the cloud account. There is also a binary of the same name.



2.2. OUR WORK 21

cloud - firmware update

config cloud_reply ’upgrade_info ’

option type ’1’

option version ’1.0.17 Build 201112 Rel .29622n’

option release_date ’2020-12-16’

option download_url ’http :// download.tplinkcloud.com/firmware

/Tapo_C100v1_en_1 .0.17 _Build_201112_Rel .29622 n_

_1608109639905.bin ’

option release_log ’Modifications and Bug Fixes: \n1. Fixed

the bug that the auto -reboot feature does not take effect

on certain dates .\n2. Optimized the SD card detection

mechanism.’

option release_log_url ’undefined yet ’

option location ’0’

This is a section that is normally unpopulated. After being prompted by the app, the
camera checks for the newest available update and stores it in this config. Afterward,
if the camera is told to start the update procedure, the update stored in the config
is applied. The firmware is downloaded through http, but we will find out that it is
signed, so it is not a problem. However, we can now download at least the newest
firmware update for analysis, as we have the URL to it now. Unfortunately, there
appear to be random numbers, so we cannot access any older firmwares.

Rest of the config

The rest of the config does not appear to contain anything we identified as relevant.
There are different settings for the cloud connection with TP-Links servers, camera-
related settings, and standard OpenWRT settings. The full dump of the config can be
found in the appendix.

2.2.4 Analyzing the firmware

After making a backup of the camera’s flash memory and downloading a few firmware
updates over time, we have been ready to start analyzing and comparing the firmware
files.

Identifying the sections

Using the standard binwalk tool, we took a look at one of the firmwares:



22 CHAPTER 2. EXPLORATION

> binwalk Tapo_C100v1_en_1 .0.10 _Build_200519_Rel .66820

n_1594610788996.bin

DECIMAL HEXADECIMAL DESCRIPTION

--------------------------------------------------------------------------------

25088 0x6200 LZMA compressed data , ...

66560 0x10400 LZMA compressed data , ...

1531392 0x175E00 Squashfs filesystem , ...

8062720 0x7B0700 gzip compressed data , ...

8127408 0x7C03B0 gzip compressed data , ...

This result is a little surprising, as usually there are more sections when analyzing a
regular router firmware, which this should be. However, we have realised that binwalk
does not support Lexra architecture, so it could not give us any other useful pieces of
information. Thankfully, this output has indeed been correct and helpful in identifying
the different parts of the firmware. The first and second “LZMA compressed data” are
both bootloaders, “Squashfs filesystem” is the root filesystem, “gzip compressed data”
are both configs, the first config is the fixed factory one while the second one is the user
config, in a regular overlayFS form used in stock OpenWRT. Since we already have
access to the console, we can try checking the partitions with mtd:

cat /proc/mtd

dev: size erasesize name

mtd0: 0001 d800 00010000 "factory_boot"

mtd1: 00002800 00010000 "factory_info"

mtd2: 00020000 00010000 "art"

mtd3: 00010000 00010000 "config"

mtd4: 00010000 00010000 "boot"

mtd5: 00165 c00 00010000 "kernel"

mtd6: 0054 a400 00010000 "rootfs"

mtd7: 000 f0000 00010000 "rootfs_data"

mtd8: 007 a0000 00010000 "firmware"

and taking a look at the bootlog:

[ 0.405000] 0x000000000000 -0 x00000001d800 : "factory_boot"

[ 0.434000] 0x00000001d800 -0 x000000020000 : "factory_info"

[ 0.464000] 0x000000020000 -0 x000000040000 : "art"

[ 0.474000] 0x000000040000 -0 x000000050000 : "config"

[ 0.485000] 0x000000050000 -0 x000000060000 : "boot"

[ 0.495000] 0x000000060000 -0 x0000001c6000 : "kernel"



2.2. OUR WORK 23

[ 0.521000] 0x0000001c6000 -0 x0000006f0000 : "rootfs"

[ 0.549000] 0x0000006f0000 -0 x000000800000 : "rootfs_data"

[ 0.561000] 0x000000060000 -0 x000000800000 : "firmware"

This is indeed a standard OpenWRT layout, so we will not be going into it. The only
interesting thing is the fact that there are two bootloaders, which is a little unusual,
and the system is not aware of one of the bootloaders.

We were able to identify header offsets and confirm the previously identified offsets
from these three files:

# End of the file contains partition sizes for flash

torchlight/product_config/ALL/buildroot.config

# TP_BOOT_MAGIC bytes in

factory_boot/rts3903_src/include/configs/rlxboard.h

# config constants

factory_boot/rts3903_src/bsp/RTS3903/rlxboard.h

The important bits turned out to be the fact the firmware info headers are 0x200 bytes
in size. This meant that the firmware starts with 0x200 byte header, which is followed
by a 0x10000 bytes of a bootloader, then at the address 0x10200 (offset is because of the
first header) is the second bootloader, after which at 0x176200 is the root filesystem.

Looking at the header, it is reminiscent of the traditional TP-Link header[7][14]
used in their routers (only part is shown as the rest are zeroes):

> xxd −c16 \
Tapo_C100v1_en_1 . 0 . 1 0 _Build_200519_Rel .66820 n_1594610788996 . bin \
| head −n18
00000000: 0000 0100 55aa 4 c5e 831 f 534b a1f8 f7c9 . . . . U.L^ . .SK . . . .
00000010: 18 df 8 f b f 7da1 aa55 0200 0000 0000 001 f . . . . } . . U . . . . . . . .
00000020: 1be5 a4a8 1 b9f b7f3 0a1b e84c a735 f f 6 7 . . . . . . . . . . . L . 5 . g
00000030: 0 cc9 919 f 9238 a84d c5d4 e28d 9277 45 f c . . . . . 8 .M. . . . . wE.
00000040: 0 f 6 f a075 28 c f 91 ac 99 fd 1b24 c f29 2 f c7 . o . u ( . . . . . . $ . ) / .
00000050: 5b64 8928 7ba0 bcee 4 f69 a044 40 e4 700a [ d . ( { . . . Oi .D@. p .
00000060: 8029 8532 3b11 d281 3 f55 a7f6 8d97 0003 . ) . 2 ; . . . ?U . . . . . .
00000070: e2e6 61a6 bba3 1515 09 f e e99c 2023 ad36 . . a . . . . . . . . . #.6
00000080: 33ba ea68 282 e 8ded 2dbc 00 e1 47 e5 e29c 3 . . h ( . . . − . . .G . . .
00000090: 9116 f24e 0185 3609 77 ac eca3 e5a3 43aa . . . N . . 6 .w . . . . . C.
000000 a0 : 0001 0003 0002 c000 0000 0000 0000 0000 . . . . . . . . . . . . . . . .
000000b0 : 0000 16 f3 4 f c 2 8 e5c 7cd4 2249 8 e7e f0c4 . . . . O . . \ | . " I . ~ . .
000000 c0 : a69 f 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . .
000000d0 : 0000 4857 4445 5343 0000 0000 0000 0000 . .HWDESC . . . . . . . .
000000 e0 : 0001 edc f 1d37 890 c 9d55 4b59 4 b8f 5679 . . . . . 7 . . .UKYK.Vy
000000 f0 : 46d2 3bc1 ad10 721 c 8926 36ab 9172 3c45 F . ; . . . r . . & 6 . . r<E



24 CHAPTER 2. EXPLORATION

00000100: f276 2667 1554 45da 1a81 806 c 0c37 0ed4 . v&g .TE . . . . l . 7 . .
00000110: 8278 0000 0000 0000 0000 0000 0000 0000 . x . . . . . . . . . . . . . .

And one from a newer firmware:

> xxd −c16 \
Tapo_C100v1_en_1 . 0 . 1 6 _Build_200929_Rel .65405 n_1604655483096 . bin \
| head −n18
00000000: 0000 0100 55aa 4 c5e 831 f 534b a1f8 f7c9 . . . . U.L^ . .SK . . . .
00000010: 18 df 8 f b f 7da1 aa55 0200 0000 0000 001 f . . . . } . . U . . . . . . . .
00000020: 8 f64 a691 f947 0e02 9618 d005 97 e5 d4ba . d . . .G . . . . . . . . . .
00000030: 02bd f c36 fd47 be10 2 f1d 48d1 7e88 ce0c . . . 6 .G. . / .H . ~ . . .
00000040: d650 b40f ee74 de0b 1b73 f f 2 f a f8a 2 e1 f .P . . . t . . . s . / . . . .
00000050: a3b0 dc13 50 f9 e278 e073 663 c ba18 d663 . . . . P . . x . s f < . . . c
00000060: d8df 8285 03d3 5924 7e27 9e72 a5c f a827 . . . . . . Y$~ ’ . r . . . ’
00000070: 6103 768b ae8e 35 e1 04b0 c f06 f7cd a3bc a . v . . . 5 . . . . . . . . .
00000080: d fca 7 c70 58a1 0a33 1 bf5 489 e 1e08 0114 . . | pX . . 3 . .H . . . . .
00000090: 7c4d 8314 b09a f6be f3ac 7 c0c f39d fa73 |M . . . . . . . . | . . . . s
000000 a0 : 0001 0003 0002 c000 0000 0000 0000 0000 . . . . . . . . . . . . . . . .
000000b0 : 0000 16 f3 4 f c 2 8 e5c 7cd4 2249 8 e7e f0c4 . . . . O . . \ | . " I . ~ . .
000000 c0 : a69 f 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . .
000000d0 : 0000 4857 4445 5343 0000 0000 0000 0000 . .HWDESC . . . . . . . .
000000 e0 : 0001 edc f 1d37 890 c 9d55 4b59 4 b8f 5679 . . . . . 7 . . .UKYK.Vy
000000 f0 : 46d2 3bc1 ad10 721 c 8926 36ab 9172 3c45 F . ; . . . r . . & 6 . . r<E
00000100: f276 2667 1554 45da 1a81 806 c 0c37 0ed4 . v&g .TE . . . . l . 7 . .
00000110: 8278 0000 0000 0000 0000 0000 0000 0000 . x . . . . . . . . . . . . . .

We can see that some parts are the same and some change. The changed ones have
a correct length to be MD5 hashes, but we cannot confirm that at this point without
some further information. Let us continue with the filesystem.

Root filesystem

At first, we were not able to find out what version of the SquashFS filesystem is
being used here. The GPL sources did not contain any script or configuration which
would indicate how the filesystem was put together and we could not get it to unpack
either. Fortunately, we were able to unpack it with squashfs-tools from the archlinux
repository after a few hours of trying to do it with different libraries. While it might
seem stupid after reading this, it was rather non-trivial to figure out. Other versions of
the standard tools did not work and most of the information we were able to find was
pointing to the fact that manufacturers do non-standard things in regards to SquashFS
implementations. After some trial and error, the command and settings to repack the
filesystem turned out to be:



2.2. OUR WORK 25

mksquashfs new -squashfs -root new.sqsh -comp xz -b 256K \

-no-xattrs -all -root

Config partitions

The configuration partitions are standard OpenWRT setup, nothing appears to have
been changed.

2.2.5 Analyzing programs

After unpacking the root filesystem, we were able to start analyzing the available
programs. We have decided to use the open-source reverse-engineering tool Ghidra for
exploring and decompiling the binaries. There were a few candidates for exploring,
namely tp_manage, uhttpd and slpupgrade. In addition, there were a few scripts that
did not belong to a standard OpenWRT install too.

Architecture

The unusual architecture of the system turned out to be our first problem when trying
to analyze the available programs. Lexra[3] does not seem to be supported by any
modern software and as previously mentioned, more of an industry secret[10]. While
not perfect, since the architecture is still MIPS, just without a few instructions and
some quirks, we were able to use the MIPS profile in Ghidra and go through the code.
Since we were missing the standard libraries for this architecture many functions were
not identifiable. Thankfully, there were some parts that we were able to make some
sense of.

tp_manage

We started with tp_manage, however, this has proven to be a dead-end. It is a program
that takes care of the communication with TP-Link’s servers and there did not appear
to be anything out of the ordinary.

uhttpd

We had uhttpd source code available since it is part of OpenWRT, but it has proven to
be practically useless. TP-Link used a heavily modified version of this program. The
server indeed handles all of the communication with the app, as we have suspected.
It also handles the video streaming into the app, which is separate from the RTSP
server on the camera. Unfortunately, we were unable to easily decode the video or
audio stream. The community has also failed to do so, spawning only the previously



26 CHAPTER 2. EXPLORATION

mentioned proof of concept which can get a few frames in before falling apart. How-
ever, the server is running as root and there are quite a few exec calls that appear
to indiscriminately insert parameters into format strings. We suspect that these are
exploitable. Looking further, the server is also the one responsible for starting the
firmware update procedure, leading us into the next program.

slpupgrade

The slpupgrade binary is directly executed by the uhttpd server. It accepts a single
file path as a parameter. It takes the file at this path and it does approximately the
following:

1. Check for the existence of the file

2. mmap the file

3. Validate the RSA signature of the firmware

4. Validate the checksums of the file

5. Validate the information such as the device type, revision, etc.

6. If everything was ok, write the firmware into the flash memory.

We are interested in the signature and checksum validation. The decompilation con-
firms that the changed values in the headers were indeed an RSA signature and MD5
checksums. We were able to gather the correct offsets and identify what some parts of
the header mean. We would like to try and alter the firmware. We could do it by hand
and write it into the flash, but we would like to use the slpupgrade utility to make it
easier.

Since we now know the offsets, we can recalculate the checksums after changing
parts of the firmware. The only problem that is left is the signature. Curiously, the
program copies the signature into a string from the firmware file for validation. After
it copies it, it then overwrites the spot at the header with zeroes. This is because
the checksum is calculated with the header included and since the signature cannot be
known beforehand, zeroes are put as a placeholder. However, the program then does
not come back to write the signature back, so the signature is lost and the firmware is
written into the flash memory with zeroes instead of the signature. This fact made it
easy to modify the program to ignore the signature, as the signature check happens as
the first thing, so the jump into the validation procedure can be easily replaced with a
NOP instruction.

After playing around with this, our first attempt at modifying the firmware failed
with a bricked camera - as we later found out, we have not calculated the checksums



2.2. OUR WORK 27

correctly. This led to a finding that the bootloader validates the checksums during the
boot process. However, as mentioned, it does not check the signature, as it cannot
because it is not there. After analyzing the bootloader, we found that it contains a
whole recovery HTTP server, accessible through the hidden ethernet interface, which
validates the signatures of submitted files. We have been able to recover our camera
through this functionality.

Telnet

The original firmware does not contain a busybox distribution with a telnet client
compiled into it. However, all of the subsequent firmwares appear to do. We have
realised this only after a few people in the community have pointed out that they were
trying to get it to work. We have no idea why did they decide to include this hidden
functionality when it was not there in the original release.

The telnet server runs by default but is bound only to the localhost interface, so we
cannot access it from the outside. With our acquired know-how, we were able to modify
the firmware and change the service file so that telnet would accept all connections.

Other scripts

We were able to identify other custom scripts created by TP-Link’s developers. Only
one of them has proven particularly interesting - check_upgrade init service file.

> cat / e tc / i n i t . d/check_upgrade
#!/bin / sh / e tc / rc . common

START=13

s t a r t ( ) {
i f [ ! −d "/tmp/ sdcard " ] ; then

mkdir −p /tmp/ sdcard /
f i

i f [ −b /dev/mmcblk0p1 ] ; then
mount −t v f a t /dev/mmcblk0p1 /tmp/ sdcard /

e l s e
e x i t 0

f i

echo " check f irmware upgrade"

i f [ −e /tmp/ sdcard / factory_up_boot . bin ]



28 CHAPTER 2. EXPLORATION

then
echo " s t a r t f irmware upgrade . . . "
s lpupgrade −n "/tmp/ sdcard / factory_up_boot . bin "

whi l e t rue
do

s l e ep 10
done

e l s e
umount /tmp/ sdcard

f i
}

As we can see, it is a simple script. When the device starts up, it checks whether
the SD card partition is available. If yes, it checks if there is a particularly named
file. Upon finding this file, it starts the upgrade process with this file. This is a
completely undocumented functionality, on its own, not that useful. It cannot be
used to recover from a brick, it could be used to update the device offline, but once
again, undocumented. However, due to the way the slpugprade works, we are able to
downgrade firmwares with this. slupgrade does not check whether the firmware version
is higher, it just checks the signature, checksums, and various other things such as
camera type, revision, etc. but not the firmware version. This has proven quite useful,
as we were able to downgrade to older firmwares to explore them while in action.



Chapter 3

Security evaluation

In this chapter, we evaluate our findings, and if any problems were found, we propose
ways in which they could be resolved. We will evaluate it from two viewpoints, from
the viewpoint of a remote attacker and from the viewpoint of an attacker with access
to the device at various points in time.

3.1 The Environment

As a quick reminder from the previous chapter, we have been able to obtain the GPL
licensed source code from the manufacturer. During our investigation, we have come
to the conclusion that many parts are missing. In this section, we would like to explore
the realities of open source software and how they pertain to the security of our devices.

The spirit of the open source community is about giving back. This can be done
directly, by helping better the code itself, by providing well-researched bug reports, or
by contributing to the discussion in the appropriate channels. One can also contribute
indirectly, for example by spreading the word about the project or by helping other
users resolve their problems. Unfortunately, many manufacturers either do not know
about this or they do not care, as there is usually no immediate monetary value in
doing so. The severity of this behaviour is affected by many variables, one of the major
ones being the culture, especially when it comes to Asia-based companies. If we take
Chinese companies as an example, copying or imitation is not a thing that is frowned
upon - it is seen as paying homage to the original. This is naturally only a part of the
story; saying that you are doing something for reason x does not absolve you from the
repercussions of breaking laws. However, when your country is willing to turn a blind
eye, which coincidentally helps advance its bottom line, it is workable. Putting on our
economist hat, it is often the case for developing countries to be rather lax regarding
the enforcement of intellectual property (IP) laws. As can be seen from the website
of the Chinese government[6], they are not coy about it. There is a similar problem

29



30 CHAPTER 3. SECURITY EVALUATION

pertaining to Android smartphones. Android smartphones use the Linux kernel at
their core, so the manufacturers are obligated to release the so-called “device source
trees” by the GPL license. Unfortunately, that happens either rarely or later in the
device’s lifespan.

For more than a decade, the vast majority of manufacturers supported their devices
for only a year or two, if the devices received any updates at all. While it is a great
undertaking, enthusiasts from places such as XDA-Developers forum, CyanogenMod
(nowadays known as LineageOS), Modaco, and many others have supported these
devices with the latest and greatest for as long as possible. This was done by creating
and maintaining “custom ROMs”, which is a build of Android with the required Linux
kernel changes (previously mentioned device trees) plus some quality-of-life features.
From this fact alone, it is obvious that these devices were capable of doing the feat of
running newer versions of their operating systems. It could be argued that in the early
2010s, mobile phones were progressing so fast in regards to year-on-year performance
improvements that it did not make sense to support the older devices. This does not
hold true today. Devices have been stagnating in regards to performance increases;
you can easily use a smartphone from six or more years ago and it is able to cope just
fine. What has not changed are the practices - they have gotten even worse.

Manufacturers are window-dressing security features. Smartphones have become
the the poster child for this problem. We will illustrate on one of the most egregious
examples - boot signature verification (usually referred to as secure boot). Manufac-
turers are disallowing bootloader modification, which is required in order to run a
different system image. This makes sense on the surface. The user can be relatively
sure that their device is using the original firmware from the manufacturer. This is a
double-edged sword; initially, the previous statement holds true, but as time goes on,
the manufacturer becomes disinterested in providing security fixes for the device. As
a consequence, the user is left with a vulnerable device with no recourse. Naturally,
manufacturers are not doing it to spite the users. At least with smartphones, the prob-
lem that this was trying to solve was resellers modifying the system image in various
ways. Arguably, it did solve this problem, but at the afore-mentioned cost.

Some manufacturers do allow the unlocking of device’s bootloader, but it is riddled
with hoops. Some require the user to pay (Huawei), some require the user to wait
for a certain amount of time, create an account, link their email and phone number
(Xiaomi, OnePlus). None of these make sense from the technological point of view,
as there already are mechanisms to load the firmware files into the device. In the
case that the device would be reporting an unsigned firmware image, the user could
easily load the original image from the manufacturer. We are expected to blindly trust
the manufacturers in this regard. Unfortunately, functionally no one has a good track
record of this. This leads to unnecessary electronic waste when the devices could be



3.1. THE ENVIRONMENT 31

reused for other purposes. As an example from our personal experience, people are
using older phones as security cameras or as controllers for 3D printers. Let us wrap
back around to our cameras though.

We are encountering similar problems with the security cameras we have been
investigating. Apart from the firmware version being reported in the app, we have
no official way to verify what firmware is the camera actually running. We have no
official way to load a different version of firmware in the case a bug was introduced,
or something had changed not to our liking. We have no way to recover a bricked
device after an unsuccessful firmware update. It is apparent from our investigation
that mechanisms for this do exist in the device, they are just not exposed to the user.
Our best guess is that it is a business decision.

TP-Link has already gated some features behind a subscription service with a
firmware update[12]. This sort of thing has become commonplace in recent decades.
We are not sure what has been the first occurrence of this behaviour with modern
electronics, but the best example is heavily subsidised inkjet printers. The cheapest
ones sell in the 40-100USD range, while the replacement ink cartridges cost a similar
amount, usually even more; printer ink from companies like HP is much more expensive
than gasoline or a bottle of good champagne[1]. This is not the case, ink is relatively
cheap, companies just try to make up the cost of the printers by locking down their
devices to be able to use only their cartridges, which they sell for exorbitant prices,
comparatively speaking. The same principle is applied to user data, which can be
gathered from our devices.

Current era will be known as the era of data and era of advertising. Maybe it is a
start of something which is here to stay, maybe it will come to a close when the laws
catch up. However, the reality is that user data has become something of a digital gold.
Companies gathering it are either using it for targeted advertising or selling it other
companies who are. The subsidising is not too obvious to the layperson and because
the devices themselves are cheap. People have gotten used to the subscription model of
business, hence no one really pays attention. This unfortunately results in a behaviour
where manufacturers keep releasing new models of devices and prompting people to buy
those, leaving the older devices unsupported, again and again. In addition, severe chip
shortages of early 2020s have accelerated this behaviour, with manufacturers releasing
different revisions of their devices.

We are facing a complicated problem that does not have a simple solution. What
are the things that we can do?



32 CHAPTER 3. SECURITY EVALUATION

3.2 Current developments

The landscape is changing quite rapidly. A few short years back, the idea of a smart
home was just a pipe dream. Nowadays, it is a reality, one in its infancy, but a reality
nonetheless.

We are, unfortunately, unable to keep up. Starting from the inherently slow law-
makers, going through uneducated users, and ending with security researchers and even
the manufacturers themselves! Just taking a look at what happened while working on
this thesis, the different cameras we were investigating have received multiple revisions
and even new models! Across 4 camera models (C100, C110, C200, C210), there are 7
hardware revisions in total (3, 1, 2, 1 respectively). These new models are rather con-
fusingly being sold next to the old ones for just a minor price difference. In addition,
those hardware revisions are not indicated if you are buying online, so you might be
buying older stock which will lose support faster. We need to give the benefit of the
doubt that they are not misrepresenting their products. However, they need to disclose
what they are providing. Only “technically” fulfilling their marketing points should not
be enough. If, for example, we evaluate a product, deeming it secure and using a line
of processors that historically had good software support, the manufacturer should not
be able to silently bait-and-switch the consumer.

Fortunately, it is not all doom and gloom. One could think that the manufacturers
are blatantly ignoring their responsibilities, but there have been reports of, shall we
say, successful negotiations. Chinese Maker and Youtuber Naomi Wu has gotten herself
involved after one user was told to come to the Shenzhen office of Umidigi, a smartphone
manufacturer if he wanted to be given the GPL source code for the device he had
purchased. This is, naturally, preposterous, nothing is stopping them from just sending
the files. Naomi, who by coincidence lives in Shenzhen, took it upon herself to visit
the Umidigi office and obtain the source code. After explaining the situation to them,
they did release the code. From the video, it appears that they were doing things in
good faith, but were mostly unaware of the situation. Given the workplace culture in
the country, the dismissiveness appears drilled into the workers. It just goes to show
that we might be able to go a little further even without getting the courts involved,
but the cultural differences need to be better understood.

When it comes to the data collection point, we are between a rock and a hard
place. On one hand, users are not willing to pay higher prices for their devices. The
abstractness of collecting data does not seem to phase many people, even when it
comes to audio and video collection. On the other hand ... there does not appear to be
any other hand. People just do not seem to care. Would improving general computer
literacy help? Possibly yes, but there does not appear to be any value in it for people.
We would draw a parallel to video-conferencing. When the pandemic started, only



3.2. CURRENT DEVELOPMENTS 33

a small percentage of people bothered to get better audio or video solution for their
school or work needs. The non-obvious parallel here is that if they did, these changes
did not bring an immediate change to the user himself. If you buy a better microphone
or a better camera, only the other side sees an immediate benefit. Similarly here with
security cameras, if someone is or is not collecting information about you, it does not
make a difference to the user, unless he understands the situation. The idea of using
the videos, or god forbid, metadata, to train some neural net to do something is simply
too esoteric. Of course, we can try scaring users that someone might be watching them
through their camera, but that is just fear-mongering, which is counter-productive;
realistically, almost no one is doing that.

When it comes to the bootloader question, the situation has been getting from
bad to worse. More and more manufacturers are locking smartphone bootloaders with
no recourse in the name of security, more and more applications are requiring it via
schemes such as Google SafetyNet. It could make sense for bank apps. It is completely
non-sensical when you find out that known vulnerable devices which have not been
updated can use those apps no problem because they use the original firmware. The
same devices with newer custom firmwares with the latest security patches are reported
as unsafe at the same time. The extrapolation can continue; rooted Android devices
are deemed less safe, but Windows PCs are deemed safe in any configuration.

As mentioned in the previous chapter, developers probably intended for our cameras
to also only boot signed firmware images, but it did not materialise. This is solvable
quite easily. First, the manufacturer needs to enforce boot signature verification. In
our case, this is trivial as everything is already there. Second, provide a mechanism
to disable this verification. We were able to come up with two schemes. The first one
involves the manufacturer. They would keep a database of serial numbers of devices
for which a firmware update that disables signature verification was issued. In this
way, the users could be shown in the app that their devices might be compromised.
The second one involves using e-fuses. The manufacturer would provide a firmware
update, which would disable the signature verification, but it would blow the relevant
e-fuses, notifying the user that the device is compromised. Naturally, this could be
circumvented, but if we take a look at game consoles, it is incredibly unlikely. Some of
the most talented security researchers of our time are breaking the security on those
devices and it usually takes them years to get somewhere.

Let us now continue to a more direct evaluation of our findings.



34 CHAPTER 3. SECURITY EVALUATION

3.3 Our findings

3.3.1 Remote attacker

We will first define our situation. We must assume that the camera will be accessible
directly from the Internet, i.e. it has a public IP address. We would love to be able to
assume otherwise, but there have been many reported cases of security cameras being
directly accessible whilst having the default admin credentials set. We will assume a
reasonably skilled attacker with no significant computing resources, but as we will see,
the computing resources will not play a role.

From our exploration, it appears that there is some viable attack surface. First,
there is the HTTP server, which appears to be a heavily modified version of uhttpd. It
employs direct exec calls with unsanitized formatting strings (calling other processes
through ubus or directly setting the configuration through uci). After we shared our
findings with the community, there has already been one RCE exploit[5] found ex-
ploiting this error. We are unsure whether we want to call this a success, but the
vulnerability has been fixed nevertheless. We suspect that if more time was invested
here, more vulnerabilities would be found, but there is just a fundamental problem
with how things are handled, so we are leaving this as an exercise to the reader. The
RTSP and ONVIF are other possible points of ingress, but they appear to have a lower
attack surface. While they are inherently more complicated programs, dealing with
audio-video streaming, their authentication appears to be set up mostly correctly. Un-
fortunately, they are using MD5 hashes for storing the passwords of the so-called “third
account”, stored in a configuration which is encrypted by DES with a fixed password.
Twenty years back, this would be acceptable, but the world has moved on. It is a little
better than plaintext, but not by much. Buffers used during the authentication could
be mishandled, but there does not appear to be a programming error here. The only
remaining point is the telnet server. Since it is not used, we do not see any reason why
it should be running, or even be present. However, it is bound to localhost and hence
it does not respond to any requests. Unfortunately, everything is running as the user
root, so any single exploit in the afore-mentioned places can take over the whole device
without the user noticing.

3.3.2 Attacker with physical access

An attacker which is in the possession of the camera has a few options. He can down-
grade the device with an SD card to a vulnerable firmware version - this is viable as
there already exists an RCE exploit which has been fixed just recently (February 2022).
It is also possible to open the device without any signs of tampering, even without turn-
ing the device off. This is important as the user will not be notified and we can extract



3.3. OUR FINDINGS 35

the keys used for decrypting the communication, as they are lost on reboot. After pop-
ping the cover off, the serial UART pads are directly accessible, on all of the models.
This is not bad per se, on the contrary, we would like to praise the physical design,
as everything is easily accessible. However, since the console is enabled, it allows the
attacker to compromise the device if left alone for a few minutes. All of these issues
are thankfully solvable without losing the functionality. As an example, the updating
from an SD card could be triggered from the app. As for the UART console, this could
be disabled and enabled only if the user enables an advanced mode in the app.

3.3.3 Severity and Recommendations

Let us list and try to assign vulnerability scores based on the Common Vulnerability
Scoring System (CVSS), version 3.1:

Attacker modifying the firmware in a supply chain

Base Metrics

Attack Vector Physical The attacker needs to be in physi-
cal possession of the device

Attack Complexity Low There are no special conditions
Privileges Required None The attacker just has to authenti-

cate with the default known pass-
word

User Interaction None
Scope Unchanged The attacker cannot influence

manufacturer’s servers and already
runs as root

Impact Metrics

Confidentiality Complete The attacker has full control
Integrity Complete The attacker has full control
Availability Complete The attacker has full control

After plugging these numbers into the official calculator[8] , this attack comes out to
a score of 6.8. Recommendations for alleviating the issue are validating the signature
during the boot process. However, the manufacturer should also provide firmware that
disables the signature check, both during boot and during an update, for hobbyists
and researchers.



36 CHAPTER 3. SECURITY EVALUATION

Attacker downgrading the firmware

Base Metrics

Attack Vector Physical The attacker needs to be in physi-
cal possession of the device

Attack Complexity Low There are no special conditions
Privileges Required None Just inserting the SD card
User Interaction None
Scope Changed The attacker can exploit a vulner-

ability in the older firmware

Impact Metrics

Confidentiality Complete The attacker has full control
Integrity Complete The attacker has full control
Availability Complete The attacker has full control

This comes out to a score of 7.6.
This can be solved by properly checking if the version of the firmware we are

updating to is higher than the one currently on the device during the update process.

Other reported issues

An RCE vulnerability CVE-2021-4045 found by our Spanish colleagues regarding the
C200 model has been evaluated as having a score of 9.8.

The severity of this could be lowered by not running all of the processes as the root
user and having better sanitisation practices when using formatting strings for exec
commands.

3.3.4 Reporting of the Vulnerability

We started a disclosure by contacting the manufacturer through a designated form
on their website on May 10th. On May 11th, we received a response inquiring for
further information. After supplying this information on May 18th, we have not heard
anything until June 10th, when we were informed that our reports have been taken
into consideration. The mail has been a little hard to understand, but we did not
get the impression that they evaluated these issues as anything significant. All email
conversations with TP-Link can be found in the attached files in the folder emails.

We are currently working on obtaining CVE numbers for the discovered issues,
however TP-Link does not appear to be a CVE Numbering Authority (CNA). The



3.3. OUR FINDINGS 37

only CNA that operates in Slovakia is ESET and according to their listing, they only
number issues discovered by their laboratories. We will be investigating other avenues
of obtaining the CVE numbers. For future readers, we will mention the models C100
and C200 in the CVE listing, so if we manage to obtain the numbers, they will be
findable with these keywords.



38 CHAPTER 3. SECURITY EVALUATION



Conclusion

We have taken a look at one of the most popular emerging market segments in the
recent years. A young segment in which renowned manufacturers are just getting their
feet wet, not being ready to fully jump in. Our choice of taking a look at the security
cameras of the smarthome craze has proven to be a good one. Same can be said about
our choice of the manufacturer. This being a consumer oriented segment, the security
of the devices, while not completely missing in action, is not stellar. This is important
because with more and more devices being connected, it is just a question of time
when it will become a target of people developing ransomwares and botnets. People
are putting their trust into these companies, into their products which they put into
their houses.

Looking into the security of one of the most popular security cameras in the mar-
ket was an interesting challenge. People over at TP-Link certainly played to their
strengths, given that the cameras turned out to be routers with USB cameras and
some optics. It was unfortunate that our findings were a mixed bag. Many times, de-
velopers tried to implement the right ideas, but then have gone astray for an unknown
reason. Using a standard proven distribution, OpenWRT, but using an archaic version
of it; debugging features, such as the UART console or the unchecked SD card update
mechanism, while having good ergonomics for hackers and developers, left enabled in
the production release; configuration partition encrypted, but with a fixed string using
the DES algorithm; firmware signature verification, applied only at some points. In
many ways, this is not surprising. While TP-Link has a pretty solid track record, it
is enough to look over at the OpenWRT device pages for various consumer routers
produced by them to find this behaviour popping up time and time again. It appears
that their institutional knowledge is not expanding, which is not a good sign going into
the future. While they appear to be open and willing to cooperate, as we have shown
via our dealings with them concerning the GPL source code and security disclosures,
if they do not learn from their mistakes, it is questionable how much trust we can put
into their products.

We would recommend these devices only to people who know what they are doing
when it comes to network security. The hardware is a great bargain, but it comes at
a considerable cost of uncertain software support and questionable security practices.

39



40 CHAPTER 3. SECURITY EVALUATION

If the manufacturer goes under or becomes disinterested in this market segment, you
will be left with a glorified paperweight. Or you would be, if it were not for projects
such as pytapo and people who are investing their free time into making these devices
into the best version of what they can be. They are fighting an uphill battle and we
hope that the manufacturers will take notice and be more open to cooperation.

Future work

Seeing as TP-Link managed to release various new models and revisions of older models
while we were working on this thesis, we would like to apply the acquired knowledge
to these products too. We already have the C110 model on our table and it is looking
promising so far. With the help of the community, we have been able to find the UART
headers and gain access to the root console. We will be poking around and reporting
our findings going into the future.



Bibliography

[1] Tercius Bufete. The high cost of wasted printer ink. https://www.

consumerreports.org/printers/the-high-cost-of-wasted-printer-ink/

#graphic. Accessed: 2022-07-31.

[2] Community. Discussion regarding the camera on github. https://github.com/

nervous-inhuman/tplink-tapo-c200-re/issues/1. Accessed: 2022-07-31.

[3] Community. Lexra. https://www.linux-mips.org/wiki/Lexra. Accessed:
2022-07-31.

[4] DrmnSamoLiu. drmnsamoliu’s blog. https://drmnsamoliu.github.io/telnet.
html. Accessed: 2022-07-31.

[5] Víctor Fresco. Tapo c200 rce. https://www.hacefresko.com/posts/

tp-link-tapo-c200-unauthenticated-rce. Accessed: 2022-07-31.

[6] Chinese Government. New progress in china’s protection of intellectual property
rights. https://www.mfa.gov.cn/ce/cegv//eng/bjzl/t193102.htm. Accessed:
2022-07-31.

[7] Devon Kearns. Firmware layout of tp-link firmware - firmware-mod-kit.
https://gitlab.com/kalilinux/packages/firmware-mod-kit/-/blob/

a98105cfc1ab98ebd157f52b1458b129e2bcad45/src/tpl-tool/doc/Image_

layout. Accessed: 2022-07-31.

[8] NIST. Common vulnerability scoring system calculator. https://nvd.nist.gov/
vuln-metrics/cvss/v3-calculator. Accessed: 2022-07-31.

[9] Dale Pavey. Lights, camera, hacked! an insight into the world of
popular ip cameras. https://research.nccgroup.com/2020/07/31/

lights-camera-hacked-an-insight-into-the-world-of-popular-ip-cameras/.
Accessed: 2022-07-31.

[10] Jonah Probell. Lexra story. https://www.probell.com/lexra. Accessed: 2022-
07-31.

41

https://www.consumerreports.org/printers/the-high-cost-of-wasted-printer-ink/#graphic
https://www.consumerreports.org/printers/the-high-cost-of-wasted-printer-ink/#graphic
https://www.consumerreports.org/printers/the-high-cost-of-wasted-printer-ink/#graphic
https://github.com/nervous-inhuman/tplink-tapo-c200-re/issues/1
https://github.com/nervous-inhuman/tplink-tapo-c200-re/issues/1
https://www.linux-mips.org/wiki/Lexra
https://drmnsamoliu.github.io/telnet.html
https://drmnsamoliu.github.io/telnet.html
https://www.hacefresko.com/posts/tp-link-tapo-c200-unauthenticated-rce
https://www.hacefresko.com/posts/tp-link-tapo-c200-unauthenticated-rce
https://www.mfa.gov.cn/ce/cegv//eng/bjzl/t193102.htm
https://gitlab.com/kalilinux/packages/firmware-mod-kit/-/blob/a98105cfc1ab98ebd157f52b1458b129e2bcad45/src/tpl-tool/doc/Image_layout
https://gitlab.com/kalilinux/packages/firmware-mod-kit/-/blob/a98105cfc1ab98ebd157f52b1458b129e2bcad45/src/tpl-tool/doc/Image_layout
https://gitlab.com/kalilinux/packages/firmware-mod-kit/-/blob/a98105cfc1ab98ebd157f52b1458b129e2bcad45/src/tpl-tool/doc/Image_layout
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://research.nccgroup.com/2020/07/31/lights-camera-hacked-an-insight-into-the-world-of-popular-ip-cameras/
https://research.nccgroup.com/2020/07/31/lights-camera-hacked-an-insight-into-the-world-of-popular-ip-cameras/
https://www.probell.com/lexra


42 BIBLIOGRAPHY

[11] TP-Link. Tapo brand announcement. https://www.tp-link.com/en/press/

news/17086/. Accessed: 2022-07-31.

[12] TP-Link. Tapo care website. https://www.tapo.com/ae/tapocare/. Accessed:
2022-07-31.

[13] TP-Link. Tp-link ranks as world’s no.1 wi-fi products provider for 10 years. https:
//www.tp-link.com/se/press/news/19549/. Accessed: 2022-07-31.

[14] Martin "xdarklight" Blumenstingl. Firmware tool for tp-link firmwares with the
version 3 header. https://github.com/xdarklight/mktplinkfw3. Accessed:
2022-07-31.

You can explore the websites, as accessed at the time of the writing by exploring the
index.html file in the attached files.

https://www.tp-link.com/en/press/news/17086/
https://www.tp-link.com/en/press/news/17086/
https://www.tapo.com/ae/tapocare/
https://www.tp-link.com/se/press/news/19549/
https://www.tp-link.com/se/press/news/19549/
https://github.com/xdarklight/mktplinkfw3

	Introduction
	Security Cameras
	Manufacturer choice
	Tapo line-up
	Hardware
	Disassembly
	System-on-a-chip
	Networking
	Rest of the hardware

	Companion app

	Exploration
	Past and current research
	Heartbleed and Pass-the-Hash attack
	pytapo project
	Personal blog of Davide Depau
	Personal blog of DrmnSamoLiu
	nervous-inhuman Github repository

	Our work
	GPL source code
	UART connection and shell access
	Inside of the system
	Analyzing the firmware
	Analyzing programs


	Security evaluation
	The Environment
	Current developments
	Our findings
	Remote attacker
	Attacker with physical access
	Severity and Recommendations
	Reporting of the Vulnerability



