
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Algorithms for Segmentation of
Biological Sequences

Master’s thesis

2022
Bc. Dávid Simeunovič

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Algorithms for Segmentation of
Biological Sequences

Master’s thesis

Study program: Computer Science
Branch of Study: 2508 Computer Science
Department: Department of Computer Science
Supervisor: doc. Mgr. Bronislava Brejová, PhD.

Bratislava, 2022
Bc. Dávid Simeunovič

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Dávid Simeunovič
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Algorithms for Segmentation of Biological Sequences

Annotation: DNA and protein sequences can often be viewed as a mosaic of regions of
diverse evolutionary origin. This complex structure is the result of evolutionary
mechanisms which move or copy segments of DNA to new locations in the
genome. Some portions of DNA can be also lost or gained from outside
sources. Study of the underlying evolutionary mechanisms is simplified if we
can first identify atomic segments which were likely not disrupted by any large-
scale mutations in recent evolutionary history. The goal of the thesis is to
develop algorithms for finding such atomic segments in input sequences. Most
related approaches are not based on any clear formulation of the computational
problem, and thus an important part of the thesis is also development of suitable
formalizations.

Supervisor: doc. Mgr. Bronislava Brejová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 14.12.2016

Approved: 14.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Dávid Simeunovič
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Algorithms for Segmentation of Biological Sequences
Algoritmy pre segmentáciu biologických sekvencií

Anotácia: Sekvencie DNA a proteínov sú často tvorené mozaikou oblastí s rôznymi
evolučnými pôvodmi. Táto zložitá štruktúra je výsledkom evolučných
mechanizmov, ktoré presúvajú alebo kopírujú oblasti DNA na nové miesta
v genóme. Niektoré oblasti DNA môžu byť tiež zmazané alebo získané
z externých zdrojov. Štúdium týchto evolučných mechanizmov sa zjednoduší,
ak sa nám podarí identifikovať atomické oblasti, ktoré počas nedávnej evolučnej
histórie neboli prerušené žiadnou mutáciou väčšieho rozsahu. Cieľom práce
je vyvinúť algoritmy na hľadanie takýchto atomických oblastí vo vstupných
sekvenciách. Väčšina súvisiacich prác nie je založená na jasnej formulácií
výpočtového problému a preto dôležitým aspektom práce bude aj vyvinutie
vhodného formalizmu.

Vedúci: doc. Mgr. Bronislava Brejová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 14.12.2016

Dátum schválenia: 14.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgment: I would like to thank my supervisor doc. Mgr. Bronislava Bre-
jová, PhD. for her invaluable guidance and support. Without her knowledge, patience
and motivation, this thesis would not have come into existence.

iv

Abstract

DNA and protein sequences can often be viewed as a mosaic of regions of diverse
evolutionary origin. This complex structure is the result of evolutionary mechanisms
which move or copy segments of DNA to new locations in the genome. Some portions
of DNA can be also lost or gained from outside sources. Study of the underlying
evolutionary mechanisms is simplified if we can first identify atomic segments which
were likely not disrupted by any large-scale mutations in recent evolutionary history.
The goal of the thesis is to develop algorithms for finding such atomic segments in
input sequences. Most related approaches are not based on any clear formulation of the
computational problem, and thus an important part of the thesis is also development
of suitable formalization.

Keywords: DNA sequence, evolution history, local alignment, synteny blocks, atoms

v

Abstrakt

Sekvencie DNA a proteínov sú často tvorené mozaikou oblastí s rôznymi evolučnými
pôvodmi. Táto zložitá štruktúra je výsledkom evolučných mechanizmov, ktoré presú-
vajú alebo kopírujú oblasti DNA na nové miesta v genóme. Niektoré oblasti DNA
môžu byť tiež zmazané alebo získané z externých zdrojov. Štúdium týchto evolučných
mechanizmov sa zjednoduší, ak sa nám podarí identifikovať atomické oblasti, ktoré
počas nedávnej evolučnej histórie neboli prerušené žiadnou mutáciou väčšieho rozsahu.
Cieľom práce je vyvinúť algoritmy na hľadanie takýchto atomických oblastí vo vs-
tupných sekvenciách. Väčšina súvisiacich prác nie je založená na jasnej formulácií
výpočtového problému a preto dôležitým aspektom práce bude aj vyvinutie vhodného
formalizmu.

Kľúčové slová: DNA sekvencia, evolučná história, lokálne zarovnanie, syntenické
bloky, atómy

Contents

Introduction 1

1 Background, related work and problems 3
1.1 Basic biological terms and processes . 3

1.1.1 Evolution of DNA sequence . 3
1.1.2 Additional terms . 4
1.1.3 Local alignment . 5
1.1.4 Problem of atomization . 5

1.2 Related works . 6
1.2.1 Iterative homology mapping . 6
1.2.2 Segmentation problem . 7
1.2.3 Atom classification . 9

1.3 Alternative approach . 10
1.3.1 Genes as atoms . 10
1.3.2 Sibelia and SibeliaZ . 10

1.4 Usage of atoms . 11
1.5 Related problems . 12

2 Atomization 13
2.1 Basic notation . 13
2.2 Atoms . 14

2.2.1 Formal definition of atomization 15
2.3 Pseudoatomization . 17

2.3.1 Simple dynamic programming 18
2.3.2 Algorithm speed-up . 20
2.3.3 Boundary neighborhood exploration 21

2.4 Atomization . 23
2.4.1 Relevant pseudoatoms . 23
2.4.2 Splitting position . 25
2.4.3 Breaking rule 4 . 27
2.4.4 Atomization algorithm . 29

vi

CONTENTS vii

2.4.5 Negative strand alignments . 30
2.5 Pre and post processing . 30

3 Experiments and results 33
3.1 Methodology . 33

3.1.1 Quality measurements . 33
3.1.2 Data sets . 34

3.2 Atomization settings . 35
3.3 Results . 36

3.3.1 Simulated data . 36
3.3.2 UGT1A gene . 39
3.3.3 Plague genomes . 40

Conclusion 45

List of Figures

1.1 An alignment of sequences T1 and T2. 5
1.2 An example of an atomization of sequence X which evolved into Z, with

middle step Y . Every letter represents one atom. First BCD is copied,
creating B’C’D’. If this was the end of the history, atoms would have been
{A,BCD,BCD’,FG}. Then, C’ is transposed in between FG, breaking
BCD’ into three atoms B’ C’ D’, and this breakage is back-propagated
into BCD, leaving us with atoms {A,B,C,D,E,F,G,B’,C’,D’}. [17] . . . 6

1.3 An alignment between A and C was not found, leading to a wrong seg-
mentation. This situation can be fixed by proposed mapping of bound-
ary of C through alignment between A and B marked as a dotted line
[3]. 7

1.4 An example of imprecise boundary mapping. Boundaries x and y are in
a slightly different spots, resulting in x′ and y′ not being mapped into a
single boundary in A. If these boundaries are further mapped back as
x′′ and y′′, creating new short atoms. [3] 8

1.5 An example of Sibelia synteny finder for two sequences of Helicobacter
pylori : F32 and Gambia94/24. Each layer represents atoms created in
one stage of the iteration, outermost layer being the first stage. As can
be seen in the zoomed panel, blocks are iteratively merged to create new
larger blocks.[14] . 11

viii

LIST OF FIGURES ix

3.1 Four figures illustrating differences in atomizations produced by IMP
and ACS on UGT1A gene cluster. Complete atomizations of three se-
quences (Human, Chimp and Orangutan) were created, and selected
fragments from them are shown in figures. Each figure contains frag-
ments from three IMP and three ACS atomizations, with L = [50, 100, 500],
created from LASTZ alignments. Atoms depicted are from the Human
and Chimp sequence, Orangutan sequence was also atomized, but it is
not used in image. When we mark each atomization by L, we have, in
lines from top, for Human IMP50, IMP100, IMP500, ACS50, ACS100,
ACS500, and the next six lines are the same atomizations for Chimp.
Numbers assigned to atoms are their classes, and are comparable only in
the same atomization. Atoms in the same regions from different atom-
ization were assigned the same color, as those represent the same true
atom. Individual sub-figures are discussed in Section 3.3.2. 38

Introduction

Evolution theory assumes that all life on Earth shares the last universal common an-
cestor (LUCA), and genetic mutations affecting DNA play a crucial part in species
evolution. Ideally, if we knew genomes of all species at every moment of evolution
history, we would be able to fully reconstruct tree of life, all its nodes, connecting all
species to LUCA, and for every present and past species reconstruct succession of evo-
lutionary events that led to its genome. This is a nontrivial task due to the time scale
of evolution, spanning billions of years from the LUCA to a present day species. As a
result of this long timescale, information about genomes of past species is lost and it
is hard to reconstruct events that led from one observed sequence to another, or which
connects them to a common ancestor.

In practice, studies reconstructing the tree of life, its parts (phylogenetic trees), or
rearrangements between two sequences often rely on the maximum parsimony princi-
ple, which minimizes the total number of evolutionary events. Study of the underlying
evolutionary mechanisms is simplified if we can first identify atomic segments which
are parts of the sequences that were likely not disrupted by any large-scale mutations
in recent evolutionary history. Further analysis may then, instead of the whole DNA
sequence, work only with a sequence of atomic segments placed in classes. An example
of such atomic segments frequently used are genes, as protein coding regions of DNA
often show higher extent of conservation. In the case of using genes as atomic segments,
apart from problems with finding and annotating genes, we also lose information con-
tained in non coding regions, which may be valuable mainly in study of closely related
sequences, which show a high level of similarity.

In this work, we study the approach of finding such conserved segments based on
information about segment similarity obtained from local alignments. We call such
conserved segments which we want to obtain atoms, and the set of atoms for single
or multiple input sequences is called atomization. The main goal of the thesis is to
introduce a formal definition of a computational problem that matches our intuition
of what atoms are. For the newly created definition, we also want to develop an
algorithmic way to obtain atomization. Our work is based on the previous work by
Višňovská et al. [17], and our proposed definition is inspired by the definition presented

1

Introduction 2

there.
In Chapter 1 we present basic biological terms and processes necessary for this

thesis. We introduce the problem of atomization, show previous works that are prede-
cessors of our approach, as well as alternative approaches to atomization and closely re-
lated problems. Chapter 2 introduces our formal definition of atomization and presents
algorithms used to construct it. Lastly, in Chapter 3, we compare atomizations created
by our algorithm with atomizations by two different algorithms on simulated as well
as real data.

Chapter 1

Background, related work and
problems

This chapter offers introduction into basic biological terms needed for understanding of
this thesis, shows progress in the field made by earlier research and introduces problems
that are very similar to ours.

1.1 Basic biological terms and processes

The genome is the entire genetic material of a living organism. It’s made of DNA
and encodes information needed to create, maintain and reproduce the organism. The
Deoxyribonucleic acid (DNA) is the carrier of genetic information in every living or-
ganism. A DNA molecule consists of two complementary anti-parallel strands, coiled
around each other to form a double helix. Those strands are composed of nucleotides,
which contain one of four bases: adenine, thymine, cytosine, guanine. DNA is usually
written down as a sequence of bases on one strand; each base is abbreviated to its first
letter {A, T, C, G}. DNA forms larger structures called chromosomes. A gene is a
functional sequence of DNA; most genes encode proteins.

1.1.1 Evolution of DNA sequence

According to evolutionary theory, DNA sequences mutate over time. We recognize two
kinds of mutations, based on the length of DNA they affect. Local changes, affecting
one or few adjacent nucleotides, include such as single-nucleotide variants, short inser-
tions or deletions. In contrast, large-scale mutations affect long DNA sequences, and
include the following types of events.

• Insertion - DNA sequence is inserted into the original DNA sequence, resulting
in a longer sequence

3

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 4

• Deletion - a contiguous part of the original DNA sequence is removed, shortening
the DNA sequence

• Transposition - a part of a DNA sequence is moved into a new location within
that sequence.

• Inversion - like transposition, but the inserted DNA strand is rotated

• Duplication - a part of the sequence, called the source sequence is copied, and a
newly formed copy is then inserted somewhere in the former DNA sequence.

• Speciation - this event represents creation of a new species, thus creating an exact
copy of the original genome, and in each copy the evolution proceeds indepen-
dently.

Such large-scale mutations as mentioned above, due to their key role in species evo-
lution, are often referred to as evolutionary events [3]. A sequence of evolutionary
events leading from one common ancestral species to one or several present-day species
is called evolutionary history, and speciations in such evolutionary history are often
visualized with use of phylogenetic tree, where the common ancestor is the root of the
tree, and branches represent evolutionary events leading from one species to another.
Leaves are either present-day species or terminated branches of evolution ended due to
extinction.

1.1.2 Additional terms

Homology is the relationship of two entities based on their common descent, without
specification of evolutionary event [10]. In particular we are interested in homology of
two genes or other DNA sequences. Such genes or sequences are called homologs.
Possible source of homology is duplication, where source and its copy are homologs.

Orthology is a specific case of homology, created by speciation. Two homologs,
which were created by speciation, are called orthologs [10].

De Bruijn graph is graph representation of sequence of symbols, based on k-mers,
substrings of the sequence of length k. For instance, the sequence GATA, for k = 2,
has three k-mers, GA, AT , TA. Vertices of the graph are k-mers from the sequence,
and identical k-mers are represented by a single vertex. Vertices for subsequent k-mers
from the sequence, obtained by single symbol shift, are connected by an edge. The
sequence corresponds to a walk in the graph.

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 5

sequence T1 : G A T - - C A G C A
sequence T2 : G A T T A C A - C A

Figure 1.1: An alignment of sequences T1 and T2.

1.1.3 Local alignment

Sequence alignment is a computational problem, where we try to align two sequences
by inserting gap symbols optimizing a selected scoring scheme. If nucleotide bases in an
alignment column match, the score is increased. Gaps and non-matching bases decrease
the score or leave it unchanged. Usually, high-scoring alignments represent significant
similarity between sequences, and nucleotides in the same column are thought to share
evolutionary origin. An example of an alignment can be seen in Figure 1.1. Local
alignment tries to find alignment of segments of sequences that align nicely, instead of
aligning whole sequences. In sequences that underwent evolutionary events, and share
common ancestor, segments from one species, that were either transposed, inversed
or duplicated, will align with their orthologs in second species, indicating existence
of underlying evolutionary events. In a similar manner, deletion is indicated, when
segment from one species do not have the counterpart in the second species to align
with. Segments affected only by short evolutionary events also align, and are present
at similar positions in both sequences. We can even apply local alignment to one
sequence, to identify segments within the sequence with a desired level of similarity to
each other (typically homologs resulting from a duplication). Local alignments can be
found for example with the help of programs such as LASTZ [6] or LAST [9].

1.1.4 Problem of atomization

Evolution history typically happens at very long time scales. For instance, the Last
Universal Common Ancestor (LUCA), the most recent organism that is ancestral to
all life on earth, has lived 4.5 billion years ago [2]. Thus, the evolutionary history
is unknown, and subject to study and reconstruction. In the past, studies compared
fossils and present day organisms, based on observable traits, for example shape of
bones. DNA sequencing brought another reliable source of information, earned from
present-day species, as well as recently (in a scale of evolution) extinct species as Woolly
Mammoth [12] and Neanderthal [15]. Often, studies trying to reconstruct some part
of an evolutionary history are based on the parsimony principle. That means, the
resulting evolutionary history uses the lowest number of evolutionary events to get
from an unknown DNA sequence of the common ancestor to the DNA sequences of the
present-day species, which can be obtained by DNA sequencing.

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 6

X: ABCDEFG
Y: ABCDEB’C’D’FG
Z: ABCDEB’D’FC’G’

Figure 1.2: An example of an atomization of sequence X which evolved into Z, with
middle step Y . Every letter represents one atom. First BCD is copied, creating B’C’D’.
If this was the end of the history, atoms would have been {A,BCD,BCD’,FG}. Then, C’
is transposed in between FG, breaking BCD’ into three atoms B’ C’ D’, and this break-
age is back-propagated into BCD, leaving us with atoms {A,B,C,D,E,F,G,B’,C’,D’}.
[17]

We can imagine DNA sequence as a simple string, and all evolutionary events as
operations that cut that string into pieces, reordering, copying, removing or inserting
those pieces, and then tying them back together. Imagine that we model the evolution-
ary history in this manner, but with a simple condition, that all cutting has to be done
in advance. DNA sequence of the common ancestor would be split into shorter pieces
called atoms (conserved segments), meaning pieces of sequence that were never split
during the reconstructed evolution. Such an example of sequence evolution consisting
of atoms is illustrated in Figure 1.2.

1.2 Related works

There is an ongoing research about sequence segmentation at our faculty [3], [17],
primarily targeted at fine-scale analysis of events, which are relatively recent. Shared
characteristic of both papers is the effort to use the whole DNA sequence to obtain
atoms.

1.2.1 Iterative homology mapping

In early work by Brejová et al. [3] atomization is constructed with the help of local
alignments. Local alignments are used to find segments with high similarity among
multiple sequences. Such similar segments are presumably orthologs, and indicate the
existence of evolutionary events and their boundaries. As shown in Section 1.1.4, atoms
are pieces of sequence that were never split, and atoms affected by a single evolutionary
event are affected in their entirety, thus boundaries of alignments are likely boundaries
of atoms. Based on this assumption, the presented approach is to create an atom
between every two adjacent boundaries of local alignments. This approach would work
well, if we found every homology and aligned it perfectly. In the example seen in
Figure 1.3, one homology was not found, leading to a missed boundary, and a wrong

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 7

Figure 1.3: An alignment between A and C was not found, leading to a wrong segmen-
tation. This situation can be fixed by proposed mapping of boundary of C through
alignment between A and B marked as a dotted line [3].

resulting segmentation. To avoid this, all boundaries are mapped through overlapping
alignments. Mapping a boundary through an alignment can be easily done, if it’s
located at an aligned nucleotide. If it’s located at a nucleotide aligned with a gap, the
boundary is moved to the nearest aligned nucleotide for the purpose of mapping. This
has to be done iteratively, so that newly created boundaries can be mapped further.
Another problem which arises with iterative mapping is that boundaries of alignments
are spread around the real boundary. If those spread boundaries were mapped through
overlapping alignments, it might result in a long chain of iteratively mapped boundaries
that are of the same origin and very short atoms between them. An illustration of this
problem is shown in Figure 1.4. To avoid it, no two boundaries can be closer than
L. Nearby boundaries are clustered, and replaced with a new set of boundaries, which
doesn’t violate this rule. The new set is selected so that it minimizes squared distances
between replaced boundaries and closest newly selected ones. So the algorithm in each
iteration maps overlapped boundaries and clusters them into new ones. Boundaries
aren’t mapped multiple times, even if their position changed slightly.

1.2.2 Segmentation problem

In later work, which continues in attempt to obtain atomization from local alignments,
Višňovská et al. [17] provides a more formal approach to the problem, formulating
an optimization problem, proving its NP hardness and providing a heuristic algorithm
leading to an approximate solution. Reimplementation of this algorithm in C++,
supporting parallel computation, is presented by Rubert et al. [16] under name GEESE.

Formal definition

Beginning with sequence S, set of alignments α, and length parameter L, segmentation
of sequence S is a set of atoms A, for which the following conditions are valid:

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 8

Figure 1.4: An example of imprecise boundary mapping. Boundaries x and y are in a
slightly different spots, resulting in x′ and y′ not being mapped into a single boundary
in A. If these boundaries are further mapped back as x′′ and y′′, creating new short
atoms. [3]

C1. No two atoms from A overlap.

C2. The length of each atom is at least L.

C3. If the source or the destination of alignment a ∈ α overlaps some atom, it also
covers that atom.

C4. If the source of alignment a ∈ α covers some atom E, then the region a(E),
obtained by mapping atom E through alignment a, overlaps with exactly one
atom from A.

In other words, condition 3 ensures that boundaries of alignment are not inside any
atom, because alignment boundaries might be seen as breaks in the sequence. Condi-
tion 4 covers the problem like the one in example Figure 1.3, where single atom A is
aligned with two atoms in B, in order to satisfy this condition, we will have to split
A into multiple atoms. In contrast to Iterative Homology Mapping, and in order to
be able to satisfy conditions, Višňovská et al. approach does not have to cover the
whole sequence with atoms. Regions not covered by atoms are called waste regions.
Such waste segments are for instance spanning between alignment boundaries that are
too close for placement of the atom, as it would not achieve length L. They also offer
another way to satisfy condition 4 when A is aligned to multiple atoms. Part of A
might be then turned into waste, so that the rest of A will align only with a single
atom.

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 9

Cost function

Višňovská et al. also introduces a cost function, preferring the lowest number of nu-
cleotides in the waste regions (maximal coverage by atoms), and with a lower priority,
it’s also preferred to have a small number of atoms.

The problem is proved to be NP-hard. Its NP-hardness is proved by a reduction
from the one-in-three 3SAT problem.

Algorithm

Because the problem is NP-hard, the paper describes a practical heuristic algorithm.
Starting with a set of evolutionary related sequences or a single sequence, LASTZ is
used to obtain local alignments, alignment preprocessing is used to discard short and
weak alignments. Initial waste regions are created at beginning and end of sequence,
and at location of every alignment boundary. If any two waste regions are closer than
L, they are merged into a single waste region, because it is impossible to create an atom
between them, due to condition 2. This results in a set of proto-atoms that satisfies
conditions 1, 2 and 3.

If condition 4 isn’t satisfied, some proto-atoms map to a region overlapping multiple
proto-atoms or a region completely covered by waste. Such a proto-atom is either split
into multiple atoms, or shortened by expanding waste region on one of its ends. There
may be multiple possible places, at which a proto-atom might be split. To do so
effectively, splitting requirements from all alignments covering the currently studied
proto-atom are collected, and an optimal (cost effective) solution is found using an
algorithm called IMP (Inverse Mapping to Proto-atom).

1.2.3 Atom classification

After finding a set of atoms, those atoms can be classified into classes, where all atoms
from one class are considered to be homologous, and atoms from different classes share
minimal resemblance. Višňovská et al. present a solution to the atom classification
problem based on graph structure. Atom classification is solved as a graph clustering
problem, where vertices represent atoms, and alignments between atoms form the edges
of the graph. Given the cost of adding and deleting edges, the goal of graph clustering
is to turn the graph into cliques (fully connected components) at minimal cost. Adding
and deleting edges corresponds to missed alignments between homologs, and incorrect
alignments between unrelated atoms. This problem can be solved independently for
each component of the graph, because atoms from different components will be in
different clusters. Also components that form a clique don’t need to be processed, as
they are already a cluster. For the rest of the components, edges are added and deleted

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 10

to turn the component into clusters at lowest price based on cost of edge deletion and
addition.

1.3 Alternative approach

1.3.1 Genes as atoms

As we have mentioned at the beginning of Section 1.2, atomization created from local
alignments on the whole genome is targeted at fine-scale analysis of events, which are
relatively recent. While homologs and orthologs are same when created, accumulation
of mutations in distantly related sequences leads to significant drop in their similarity.
This may render our approach to create atomization from local alignments unfeasible,
and similarity between organisms have to be found otherwise. Coding parts of DNA
(genes) often exhibit a significant extent of conservation, due to mechanisms protecting
them from harmful mutations. This makes genes ideal candidates for atoms in study
of distantly related species.

Cons of using genes as atoms Brejová et al. [3] show various cases, in which
protein coding genes selected as atoms are problematic. Firstly, we need to find and
annotate genes and to find homologies or orthologies among them. This required
preprocessing is a non-trivial task, and may introduce errors. Brejová et al. proceed
to show problem with gene having multiple copies mutated into inactive form (pseudo
genes); chimeric genes assembled from two parts with independent ancestry; UGT1A
cluster containing 13 copies of the first exon (segment of gene translated into protein),
created by duplication.

1.3.2 Sibelia and SibeliaZ

The tools named Sibelia [14] and SibeliaZ [13] allow finding synteny blocks (highly
conserved non-overlapping segments) in multiple closely related bacterial genomes.
Genomes are concatenated into a single sequence S0, and special delimiter symbols
are inserted. Instead of finding local alignments, which can be time consuming with
a rising number of genomes, Sibelia and SibeliaZ use de Bruijn graphs. Iteratively,
multiple de Bruijn graphs are created for different values of k. In the first iteration,
a small k is selected, the graph is created, and non-branching paths are merged into
a single node. Sequence S0 is modified by sequence modification algorithm, to remove
short bulges (branching of similar walks) caused by single point mutations or indels,
sequence S1 is obtained, and the next de Bruijn graph for larger k may be created.
Iteration continues, until it reaches k large enough to reveal large-scale synteny blocks.

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 11

Figure 1.5: An example of Sibelia synteny finder for two sequences of Helicobacter
pylori : F32 and Gambia94/24. Each layer represents atoms created in one stage of the
iteration, outermost layer being the first stage. As can be seen in the zoomed panel,
blocks are iteratively merged to create new larger blocks.[14]

This process reveals synteny blocks of different granularity, as can be seen in Figure
1.5.

1.4 Usage of atoms

One of the frequent problems in reconstruction of evolutionary history is to recon-
struct evolutionary events leading from one genome to another minimizing the number
of operations (maximum parsimony principle). The extension of this problem is recon-
struction of a phylogenetic tree, where either shape of the tree is known, and minimal
number of operations is computed to get from genome in one vertex to another, or shape
of the tree is being reconstructed as well. Often, instead of using original sequence in
such studies, blocks or markers, holding information about large scale events, are de-
rived from original sequence and used to replace the original sequence. One example of
such blocks are genes, for instance used by Lajoie et al. [11] to reconstruct a phyloge-
netic tree of tandemly arrayed gene clusters (copies of gene adjacent to original). Using
atoms instead of genes brings additional valuable information into process, as we are
using data with finer granularity. Example of usage of such fine grained data for recon-
struction is found in paper by Drillon et al. [5], where they present PhyChro, tool for
phylogenetic reconstruction working with synteny blocks (highly conserved segments),
and show its robustness to different definitions of synteny blocks. Note that we have
abstained from referring to our atoms as synteny blocks, due to different definitions of
synteny blocks, of which some of them align with our definition of atoms and some do
not, but our atoms may be viewed as a kind of synteny blocks. Accordingly, in the
context of PhyChro, our atoms represent possible candidates for synteny blocks used
in reconstruction.

CHAPTER 1. BACKGROUND, RELATED WORK AND PROBLEMS 12

1.5 Related problems

The problem of sequence segmentation, is related to the problem of multiple sequence
alignment, where the goal is to arrange k sequences into a matrix with k rows, so
that each column contains homologous symbols (or gaps). However, duplications and
rearrangements make it impossible to represent an alignment of longer sequences in
this linear form, so the programs often split the genomes into smaller blocks and align
each block separately [1] [4]. These blocks are similar to our atoms, but the goal of
multiple alignment programs is not the creation of optimal blocks, but rather the best
alignment.

Also a very similar problem can be found in the field of protein decomposition,
where the goal is to split proteins into modular domains. These domains resemble
atoms, because new proteins often evolve by rearrangement or modification of existing
domains, not from scratch. Heger et al. [7] present a method for protein decomposition
and family classification based on sequence, thus strongly resembling the problem of
atomization. Family classification is viewed as a graph partitioning problem, with
weighted edges due to different degrees of similarity between proteins.

Chapter 2

Atomization

In this chapter, we present our approach to obtain atomization from local alignments.
We first present an updated definition of atomization and scoring scheme, and design
new algorithms for finding a pseudo-atomization and a full atomization. In comparison
to previous work by Višňovská et al. [17], we account for inaccuracies of alignment ends
in rule 3, and tighten requirements in rule 4.

2.1 Basic notation

Sequence indexing In the sequence we want to atomize, we are indexing the posi-
tions between the nucleotide bases. The sequence of length n has n nucleotide bases,
indexed from 0 to n− 1 and n+ 1 indexed positions from 0 to n. The k-th nucleotide
base is bounded by indexed position k and k + 1.

Segment An atomization of sequence S is a set of segments which satisfies some
specific conditions, which we describe in section 2.2.1. A segment ranging from index
j to index i will be denoted as [j . . . i], and contains nucleotide bases from j-th to
(i− 1)-th. We reserve the name sequence for the input sequences of nucleotide bases,
and segment for sub-sequences of given inputs, created by some of our algorithms.
Individual segments in an atomization are also called atoms.

Alignment Local alignment a describes a bidirectional relationship of two segments
E1 and E2. The first segment is referred to as the source of the alignment, and the
second is the target. For every alignment a, we can easily create an alignment a′ by
switching the source with the target. This allows us to consider an alignment as a
uni-directional relationship where the source is aligned to the target. This also eases
up definition of atomization, and description of algorithms.

Matched pair is composed of two nucleotide bases, one from the source and one
from the target of alignment, which are aligned - matched to each other. A base is

13

CHAPTER 2. ATOMIZATION 14

either matched to a single base in alignment or not matched to any. The number of
matched bases in the alignment source and target is equal. Ordering of matched bases
from the alignment source is the same as ordering of their matched counterparts in
the alignment target. Inverse alignments and their effect on atomization are discussed
separately in subsection 2.4.5 and ignored until that point.

Alignment boundaries are borders of alignments source and target. In line with
sequence indexing, alignment boundaries for the segment E1 denoted as [p . . . q] are
placed at indexed positions p and q, before first base and after last base. Boundaries
for the target of the alignment E2 are obtained in the same way. We will keep a set
of all indexes of alignment boundaries, together with their count for a given index, as
multiple boundaries might be placed at a single position.

Segment projection In our definition of atomization as well as in the algorithms,
we will need to take a segment that is inside the alignment source and search for its
counterpart in the alignment target. For segment E and alignment a we construct the
projection a(E) by finding the first base qf and the last base ql from E, which are
matched to base in alignment target. For those two bases, we find tf and tl, bases they
are matched to, in the target sequence of alignment a. Segment [tf . . . tl + 1] starting
with tf and ending with tl is then the projection of segment E through alignment a
denoted as a(E).

Note that some segments cannot be projected very well. We obtain an empty pro-
jection if none of the bases from segment E is part of any matched pair in alignment a.
Similarly, we obtain a single-base projection if only one base of E belongs to a matched
pair. An alignment with overlapping source and target might lead to a projection a(E)
overlapping with segment E.

Segment match with tolerance Given segments E1, E2 and constant x, we say
that segment E1 matches segment E2 with tolerance x, if the start of E1 is within
distance x from the start of E2 and the end of E1 is analogously within distance x from
the end of E2.

2.2 Atoms

We continue in the approach used by Višňovská et al. to use local alignments as a
source of information for finding an atomization. We propose a changed definition
of atomization which aims to tackle the problem of inexact alignment ends. In pre-
processing, we filter out alignments with a low score and very short ones, which would
cause problems in finding real atomization. Even in correct alignments, alignment ends
are prone to error, as they might be shifted slightly from the position where the true

CHAPTER 2. ATOMIZATION 15

atom would end. To tackle this problem, we introduce the terms core and edges of an
atom (or any other segment of the sequence). Edges of an atom are the regions of a
given fixed length d1, spanning the first and last d1 bases inside the atom. The center
of an atom, between the edges, is then called its core. To differentiate between two
edges of a single atom, the atom start edge spans the first d1 bases and the atom end
edge spans the last d1 bases.

2.2.1 Formal definition of atomization

Consider sequences S1, S2, . . . , Sn, set of alignments α, length parameter L, constants
d1 for length of segment edges and d2 for segment matching. Atomization of sequences
S1, S2, . . . , Sn is a set of segments A, for which the following conditions hold:

C1. No two segments from A overlap.

C2. The length of each segment from A is at least L.

C3. If the source of some alignment a ∈ α overlaps the core of some segment from A,
it also completely covers the core of that segment.

C4. If the source of alignment a ∈ α covers the core of some segment E ∈ A, then
the projection a(E) matches exactly one segment from A with tolerance d2.

Segments from atomization A are called atoms. If a set of segments A satisfies the
first three conditions, but not necessarily C4, it is called a pseudoatomization, and its
segments are pseudoatoms. Both d1 and d2 are user-set parameters, and we can assume
d1 � L and d2 � L.

Rules C1 and C2 are the same as in the definition by Višňovská et al. (see Section
1.2.2). Rule C3 is altered to allow alignment boundaries inside atoms, but only in
the atom edges, not in their core, with the goal of countering the influence of inexact
alignment boundaries. Finally, rule C4 reflects the fact that if there is some atom
E inside the alignment source, a similar atom E ′ is expected to be present in the
alignment target. In comparison to the previous definition of rule C4 by Višňovská et
al., which accepted overlap between E and E ′ of any length, even a single base, our
definition requires that these atoms match with tolerance d2, which for small values of
d2 means that most of their bases overlap. Also, if for the atom projection e(A) there
is one matching atom B, short overlaps of e(A) with its successor and predecessor
are tolerated by our new definition. Those overlaps cannot be longer than d2, as
the atom projection can not extend further past the matching atom. We allow those
overlaps because they could have been caused by incorrect alignment boundaries, which
shortened the matching atom B.

CHAPTER 2. ATOMIZATION 16

Atomization waste segments For nucleotide bases present in a gap between two
subsequent atoms, not covered by the atomization - that is not inside any atom, we
introduce the term waste segment. Other than between two atoms, bases not in atom
might be preceding the first atom or succeeding last atom, those are also covered by
waste segments. Special case of waste segment of length 0 is allowed. That is a waste
segment containing 0 bases, placed at an indexed position between two bases. Such a
waste segment exists for the purpose of scoring and algorithm description. Each pair
of the subsequent atoms is delimited by some waste segment, a single waste segment
covers a continuous stretch of bases, and no two waste segments are touching. Waste
segment of length 0 is placed as a delimiter between two consecutive atoms. Waste
segments of length 0 or longer are also placed at the sequence beginning and end, thus
the number of the atoms in each sequence is equal to the number of waste segments
minus one.

Scoring scheme

Among many possible atomizations of a given sequence we want to select the one that is
optimal according to some scoring scheme. Our main goal is to maximize the coverage
by atoms, so first we penalize atomization for each nucleotide base that ends up in
a waste region with a penalty p1. Secondly we want the minimal number of atoms
to avoid unnecessary fragmentation of atoms into smaller parts. As the number of
atoms is the same as the number of waste segments minus one, we will add a penalty
p2 for each new waste segment started. The tertiary penalty p3 will penalize atoms
for alignment boundaries inside them, in particular for each boundary inside an atom
edge, as alignment boundaries cannot be inside an atom core. We will add this penalty
as squared distance of an alignment boundary from the closest atom border multiplied
by p3.

The importance of primary, secondary and tertiary penalty is set so that we con-
sider the penalty of a higher order in comparison of two atomizations only if previous
penalties are equal. This can be achieved by setting an appropriate weight for each
penalty and adding them up to a single value, with weight of primary penalty, p1 = 1.
and p2 = 1/(n + 1) where n is the total number of nucleotide bases in all input se-
quences. Finally, p3 = w2/(|B| · d21 + 1), where |B| is the number of atom boundaries,
and d21 is the maximum tertiary penalty for a single boundary. In our implementation,
the same effect is achieved by storing the overall penalty as 3-tuple instead of using
these weights.

Let us now illustrate the influence of the tertiary penalty in two different scenarios.
First, consider two adjacent atoms and alignment boundaries scattered at their border

CHAPTER 2. ATOMIZATION 17

region. If the boundaries are not scattered too widely, those two atoms will likely touch
and the optimal position of the border is in the place where the combined tertiary
penalty is minimal. This corresponds to our intuition where border of such atoms
should be placed. Unfortunately, if we had several alignments starting at the same
place, but the atom starting in this location would be preceded by a waste region, our
scoring scheme would favor the atom to be extended maximally until the alignment
boundaries touch the core of the atom. This is not very intuitive, as in this case it
would be more desirable to have the atom start at the alignment boundary. To handle
cases like this, it might be a good idea to modify the scoring function so that there
is a balance between the first and the third penalization weights, or to allow atom
extension past alignment boundaries only if it is extending towards some different
nearby alignment boundary.

2.3 Pseudoatomization

In the first part of our algorithm, we create a pseudoatomization, which is a segmen-
tation satisfying the first three rules from the definition. With our scoring scheme
and alignments boundaries, we construct the optimal pseudoatomization. This pseu-
doatomization will be later further processed. All pseudoatoms will be checked for
rule C4 and modified if needed. The constructed pseudoatomization is optimal with
respect to the scoring scheme, but unfortunately we have no guarantee that an optimal
pseudoatomization leads to the optimal atomization.

If we take a look at the first three rules, the goal of pseudoatomization is to split
a sequence into non-overlapping segments (pseudoatoms), meeting the minimal length
criteria and not having any alignment boundaries inside their cores. Višňovská et
al. [17] in their work also construct a pseudoatomization as an intermediate product,
before computing atomization. Their algorithm processes input sequence S and places
a pseudoatom into every gap between alignment boundaries that is at least L bases
long. This simple algorithm is not usable with our definition, because we allowed for
alignment boundaries to reach into atom edges. This may lead to scenarios where each
of two possible pseudoatoms exclude the existence of the other one, because both can
reach sufficient length only if they extend past the alignment boundary. We describe
three algorithms to find the optimal pseudoatomization. The first is a simple dynamic
programming, and the other two decrease its running time. Note that if we have
multiple input sequences S1, S2, . . . , Sn we can construct the optimal pseudoatomization
for each of them separately (but the set of alignment boundaries will also include the
boundaries of alignments between different sequences).

CHAPTER 2. ATOMIZATION 18

2.3.1 Simple dynamic programming

For sequence S with length n, and a set of alignment boundaries B, we can create
the optimal pseudoatomization using a simple dynamic programming algorithm 1. For
every index i from 0 to n + 1, we will compute the lowest penalty achievable in a
pseudoatomization of subsequence [0 . . . i]. For each index, we will store this penalty in
array subsequence. We will also store additional information that tells us if an atom or
a non-zero length waste segment is ending at the position, and where it started. This
will allow us to reconstruct the pseudoatomization.

We start our justification of the algorithm with the observation that if we have
pseudoatomization A with waste region ending at a certain position i, we can compute
the penalty for the whole A as the sum of penalties for regions [0 . . . i] and [i . . . n], and
we compute penalties for each of these two regions independently without knowing how
the other region looks like. Therefore, if we place a waste end somewhere, it splits the
problem into two sub-problems. If we know the best score we can achieve for all previous
indexes, we can compute the lowest penalty for position i by considering all previous
positions j. For each j we take the pre-computed penalty for subsequence [0 . . . j] and
sum it with the score for [j . . . i]. Function atomize tells us whether [j . . . i] is an atom
or a waste. In computation of atomize(j, i) we are checking if segment [j . . . i] can be a
pseudoatom. Firstly we check if that region is long enough. Then we check alignment
boundaries from B overlapping with [j . . . i]; if there are none reaching into the core, we
can place a pseudoatom there. The penalty will be computed for alignment boundaries
inside the atom, plus the penalty for a new waste region of length 0 (the number of
atoms penalty). If an atom cannot be placed there, the penalty for the number of
wasted bases will be returned, as we are not creating new waste or a new atom.

The previously described algorithm will create an optimal set of pseudo-atoms in
O(n2(log(|B|) + d1)) time where n is the length of the sequence we want to split, and
|B| is the number of alignment boundaries. The factor n2 comes from the nested loops.
Function atomize runs in time log(|B|)+d1, where we use the binary search to find the
index of the pseudoatom core start and end in B, which we keep in a sorted order. This
allows us to quickly figure out if some alignment boundary breaches into the core. We
compute b_penalty by traversing the previous and next boundaries from the returned
indexes, while in the range of the pseudoatom edge. In the worst-case scenario we will
traverse d1 indexes on each side of the pseudoatom.

CHAPTER 2. ATOMIZATION 19

Algorithm 1 Dynamic programming
1: region_type[0] = 1 . We manually set first index to waste end, starting at 0
2: region_start[0] = 0

3: subsequence[0] = p2

4: for i = 1, 2, . . . , n do
5: for j = 0, 1, 2, . . . , i− 1 do
6: seq_type, seq_penalty = atomize(j, i)

7: whole_penalty = subsequence[j] + seq_penalty
8: if whole_penalty < subsequence[i] then . update penalty
9: region_type[i] = seq_type

10: region_start[i] = j

11: subsequence[i] = whole_penalty
12: end if
13: end for
14: end for

Function atomize(start, end) checks if it is possible to create an atom
from j to i. If so, it returns the penalty for alignment boundaries in-
side edges of that atom and for a new waste region. If an atom cannot
be created, it returns the penalty for the number of wasted bases. The
first returned parameter marks if an atom or a waste penalty is returned
Def atomize(start,end):

15: len = end− start
16: if len < L then
17: return 1, p1 ∗ len
18: end if
19: if Boundary in [start+ d1 + 1, end− d1 − 1] then
20: return 1, p1 ∗ len
21: end if
22: b_penalty = 0

23: for Boundary b in [start, start+ d1] do
24: b_penalty+ = p3 · (b− start)2

25: end for
26: for Boundary b in [end− d1, end] do
27: b_penalty+ = p3 · (end− b)2

28: end for
29: b_penalty+ = p2 . penalty for new region
30: return 0, b_penalty

CHAPTER 2. ATOMIZATION 20

2.3.2 Algorithm speed-up

With a few simple observations, we can speed up the algorithm described in the previous
section. Firstly, let us consider the part, where we are checking all sub-indexes j for
some value of index i. For an easier explanation, we will iterate over values of j in the
reversed order from i− 1 to 0. In each step, we would be checking the score obtainable
for the region [j . . . i], which is getting longer in every step. For the first L indexes, the
region is not long enough to be an atom, but after L steps the region might constitute
a pseudoatom if no alignment boundary is reaching into its core. Every next decrease
of index j then shifts potential boundaries closer to the core. Once a boundary reaches
the core, every lower value of j will result in a waste region.

So we have a sweet spot of values of j, where we are finding pseudoatoms; elsewhere
we are adding waste. We can further extend this idea by showing that it is sufficient
to check only certain positions around a specific alignment boundary. A dummy align-
ment boundary is placed at index 0 and at the last indexed position, they don’t affect
pseudoatomization or its score, and only serve to simplify algorithm description.

First, for index i we will find its restricting alignment boundary. That is the
alignment boundary b with the largest index from [0, i − d1 − 1]. Any index i < L

is processed automatically as a waste segment, and for all other indexes a dummy
boundary at index 0 guarantees the existence of a restricting alignment boundary.
This alignment boundary is decisive for placement of j, setting smallest viable j to
b− d1 as any previous index j would place b into the atom core of [j . . . i], thus leading
to a waste region. Placement of j is not limited by any alignment boundary with
greater index. For any atom ending at index i, alignment boundary with the index
from [i− d2 . . . i] would end in the atom edge closer to i regardless of atom start index
j. Also, alignment boundary b′ preceding b is insignificant for determining smallest
viable j, as for any atom [j . . . i] where b′ is inside the atom core, b have to be inside
atom core also.

Next, we will show it is sufficient to check for atoms starting between b − d1 and
b+ d1. As any index lower than b− d1 ends in waste and any index greater than b+ d1

is unnecessary to check due to Lemma 2.3.1.

Lemma 2.3.1. For index i and its restricting alignment boundary b, if pseudoatom
[j . . . i] exists in optimal pseudoatomization then j ≤ b+ d1.

Proof. Assume we have optimal pseudoatomization containing atom E = [j . . . i] while
j > b + d1. We will show the existence of a pseudoatomization with a lower penalty,
thus contradicting that the initial pseudoatomization was optimal. We inspect base
j − 1, which is either covered by some other atom or by waste segment. There either
exists a waste segment [k . . . j] longer than 0 or atom [k . . . j].

CHAPTER 2. ATOMIZATION 21

If there is a waste segment, we construct new pseudoatomization where waste
[k . . . j] and atom [j . . . i] is replaced with waste [k . . . j − 1] and atom [j − 1 . . . i],
improving primary penalty - covering more bases by atoms, without effect on the num-
ber of waste regions (atoms) and alignment boundaries inside atom edges. All atoms
except E remain intact.

If there is atom E ′ = [k . . . j] its core has to be placed after b, because atom with
core before b ends at most at index b + d1 ≤ j − 1 thus not covering base j − 1. We
replace E ′ and E with a single atom Enew = [k . . . i] and remove the waste segment
[j . . . j] while doing so. As there are no boundaries between b and E core, and the core
of E ′ has to be placed after b, there are also no boundaries between core of E ′ and core
of E. This guarantees there are no boundaries in the core of Enew as it spans cores of
original atoms and gap between them. This leads to a new pseudoatomization, with
improved penalty for the number of atoms, as we subtracted one, and no change to
primary and tertiary penalty. Tertiary penalty remains the same because Enew end
edge is the same as E end edge and Enew start edge is the same as E ′ start edge. There
are no boundaries between those two edges (in Enew core) so there was no penalty for
E start edge and En end edge. We have contradicted that original atomization was
optimal.

Iterative waste build The next realization is that for waste segments, it is enough
to check the score while adding a single base of waste to the previous indexed position.
If for index i the optimal penalty is achievable with waste [k . . . i], then for every index
z from (k, i) the optimal penalty is achieved with waste [k . . . z]; for k + 1 optimal
penalty is achieved by adding single waste to atom ending at position k. So we know
that it is sufficient for each index i to add a penalty for one base in a waste to the
score stored in subsequence[i− 1] and then to check of a better score can be achieved
by an atom starting in the region around the alignment boundary that is restrictive
for pseudoatom start.

When those changes are incorporated into the previously described simple dynamic
programming algorithm, new algorithm with running time of O(n ·d1 ·(log(|B|)+d1)) is
obtained. As we no longer need to go through all nested indexes, element n2 becomes
n · d1. Function atomize is not modified, and keeps running in time O(log(|B|) + d1).

2.3.3 Boundary neighborhood exploration

It is possible to create an even faster algorithm if we smartly select the set of indexes
for which we compute subsequence score. Previously we have pointed out that for
index i, its restricting alignment boundary b and pseudoatom ending at index i, its

CHAPTER 2. ATOMIZATION 22

start will be placed at index from [b− d1, b+ d1] as there is no way it can extend more
than d_1 past b, and also no reason to place its start at index greater than b + d1.
As the start of each atom is placed in the d1 neighborhood of some boundary, in an
analogous way we can show that the end of each atom is in the d1 neighborhood of
some boundary. Specifically, for start index j of pseudoatom, we can find its restricting
alignment boundary bj (the first boundary index greater than j + d1), in this case
limiting pseudoatom end index i, as i > bj + d1 results in bj inside [j . . . i] atom core.
The same construction of proof as for Lemma 2.3.1 is used to show that i < bj − d1
leads to suboptimally short pseudoatom.

This allows us to compute the achievable penalty only for indexes around bound-
aries. Given a set of alignment boundaries B, we will create a set of indexes C for which
we want to compute subsequence. Namely, for every b from B we add [b − d1, b + d1]

to C, restricting the set to indexes that are at least 0 and at most the last indexed
position of sequence.

In the algorithm, we will pass through indexes in C in order from smallest, and
process them, while keeping two LIFO queues for boundaries possibly after and before
the atom core. For each considered value of i, we check if an alignment boundary exists
at that index, if so, it is added to the back of the first queue, and queues are then shifted
accordingly. Each new alignment boundary firstly gets into the queue for alignment
boundaries within distance d1 from the current index i. Once index i moves and the
front of the first queue is smaller than i− d1, the boundary at the front is popped, and
placed in the back of the second queue. The front of the second queue is maintained so
that it is at distance at most d1 from its back. Any alignment boundaries not satisfying
this condition are removed from the queue. For every processed value of index i, we
then either add a waste region to a previously processed index, or try placements of
pseudoatoms starting within distance d1 around the back of the second queue, which
is the same as restricting boundary alignment for i. As we are computing the value
of subsequence only for certain indexes, and the last previously processed index might
be distant from the current index i, we are no longer adding a waste region of length
1 to the previous index, but possibly a longer waste region. This is sufficient because
there is no logic in starting or ending waste regions at different indexes than atoms,
and similarly as in iterative waste build a longer waste segment can still be built up
iteratively, but the increments are not fixed to length of a single base.

This newly created algorithm has running time of O(|B| ·d1 · (log(|B|)+d21)). As we
have at most |B| ·2d1 indexes for which we compute subsequence score (where the atom
end is possibly placed), and for each of these indexes, we go through 2d1 sub indexes for
atom start position. We no longer use the original atomize function, but for each atom
(index and sub index combination), compute its penalty based on boundaries stored

CHAPTER 2. ATOMIZATION 23

in the first and the second queue. Each of those queues holds at most d1 boundaries.
Managing the queues has amortized complexity of O(1) for each of |B| boundaries, as
each boundary is moved once in each queue. This leads to running time of O(|B| ·d31)).
Initial sorting of |B| ·2d1 indexes has running time of O(|B| ·d1 · log(|B| ·d1). Resulting
running time is a combination of those two.

2.4 Atomization

Once pseudoatomization, as described in previous Section 2.3 is constructed, we have
a set of segments fulfilling conditions 1, 2 and 3 from definition of atomization in
Section 2.2.1. To obtain a full atomization, each pseudoatom needs to satisfy condition
4. For the pseudoatoms that do not, we introduce three operations to alter them
to satisfy it if possible. Those operations are shortening a pseudoatom, splitting one
pseudoatom into two or removing a pseudoatom. If a pseudoatom is shortened or split,
the new pseudoatoms have to be at least L long; this will guarantee that the first three
conditions are satisfied all the time. This should guarantee that:

1. The algorithm will end in a finite number of steps as atoms are only getting
shorter, and once they are split, there is no way to combine them back.

2. The first three rules for atomization will be satisfied all the time, so in each step
it is enough to check rule 4 and alter pseudoatoms accordingly.

2.4.1 Relevant pseudoatoms

For pseudoatom E and alignment a, where the core of E is in the source of a, we will
go through all pseudoatoms Ex overlapping the target of a, and find those relevant
for E and a. For pseudoatom E and alignment a we consider pseudoatom Ex in the
alignment target relevant, if it passes one of these conditions:

1. a(E) covers Ex.

2. The overlap of a(E) with Ex has length at least L− d2.

3. Ex covers a(E) and a(E) is at least L− 2d2 long.

These rules consider Ex relevant, if there is a possibility that the projection of some
sub-segment of E will match with the tolerance some sub-segment of Ex, while both
those sub-segments will be at least L long. If a(E) is not at least L− 2 · d2 long, it can
match with tolerance only with segments shorter than L, and there is no way it will
satisfy condition 4.

CHAPTER 2. ATOMIZATION 24

Symmetry of matching atoms

In Lemma 2.4.1 we show that matches with tolerance d2 (d2 < L/2) between atoms E1

and E2 in final atomization have to be symmetrical, if E1 matches with tolerance E2,
E2 matches with tolerance E1. From now on, we will use terms matches and matches
with tolerance interchangeably to describe match with tolerance between two atoms,
and assume d2 < L/2.

Lemma 2.4.1. For atomization A, alignment a and atoms E1 and E2, if a(E1) matches
with tolerance E2, then a′(E2) matches E1.

Proof. First, we will show that projections a(Es) and a(E ′s) of two distinct atoms Es

and E ′s from source cannot match the same atom Et, based on two facts:

1. As the Es and E ′s are not overlapping, their projections a(Es) and a(E ′s) are also
not overlapping.

2. If for one of the atoms, let us say Es, a(Es) matches Et, then Et can extend at
most d2 past a(Es), and its farther end would be at least L−d2 from a(E ′s). This
means that this edge of Et is too distant from a(E ′s) because L− d2 > d2.

Next, if a(E1) matches E2, but a′(E2) does not match E1, it has to match some
other atom, otherwise it would violate condition C4 from Section 2.2.1, so let us say
a′(E2) matched E3 successor of E1. Iteratively a(E3) has to match some different atom
E4 and a′(E4) matches E5 and so one, as one atom cannot be matched by multiple
atoms. This would lead to a long zig-zagging chain of atoms each matching atom next
to the one they are matched by, until we get to the atom that has to match the atom
already matched by his predecessor, because there is no other atom left. The same
ordering of aligned bases in alignment source and target also prevents matched atoms
from forming a cycle, as that would be possible only if for some atom E ′ successor of
E1, a(E ′) preceded a(E1). Argument applies analogously if we picked E3 as predecessor
of E1.

Pseudoatom trimming position

One of the modifications of pseudoatoms we will perform in order to obtain atomization
is trimming of existing pseudoatoms. We will take pseudoatom E1 = [j . . . i], and
shorten it to E ′1 = [l . . . k], sub-segment of [j . . . i]. Bases that were covered by [j . . . i],
but are not covered by [l . . . k] have turned into waste, so we want to trim away as
few bases as necessary. Consider pseudoatom E1 = [j . . . i], alignment a and relevant
pseudoatom E2 = [f . . . e], we want to find minimal index l and maximal index k to

CHAPTER 2. ATOMIZATION 25

which E1 can be trimmed to match the E2 or its sub-segment. If we take a look at l,
it is determined by one of the three factors.

(i) Projection a(E ′1) can start at most d2 indexes before E2 starts. So the first
matched base qx from E ′1 has to be aligned to the base tx in the alignment target that
is either at most d2 indexes before f or inside E2. After finding the leftmost qx with
this property, this limits l to be to the right of qx−1, the matched base that precedes
qx.

(ii) If the projection of E ′1 through a will match E2, then E2 through a′ has to
match E ′1 in the final atomization. If the first aligned base tz from E2 is aligned with
base qz from the target of a′, this limits E1 to start at most d2 indexes before qz.

(iii) As we are not adding any new bases into pseudoatoms, l is limited by the
position j where E1 already starts.

To find the earliest position where E ′1 can start, we pick the maximum from all
three. In similar fashion, we can find the last index where E ′1 can end given the current
end of the E1, index before base that is aligned to base too far from e and position
where E2 can match end of E ′1.

This way we obtain trimming segment [l . . . k], where the l is the earliest start index
and the k is the last end index. If [l . . . k] is shorter than L, we will remove E1 instead
of trimming. When we trim the E1 into segment [l . . . k], we have wasted only bases
for which there is no way to be preserved in the final atomization (given we are not
allowing any extension of existing pseudoatoms or addition of new ones, and if E2 is
the only pseudoatom relevant for E1 and a). For trimmed E1 we have no guarantee it
is matching E2 yet, as additional trimming of E2 might be needed first.

2.4.2 Splitting position

For the pseudoatom E and alignment a which have two relevant pseudoatoms E1 and
E2, we could select a single one of them, and trim E accordingly, but this would lead
to a lot of wasted bases. A better strategy is to split E into two pseudoatoms while
wasting a minimal number of bases. Newly created atoms have to be at least L long
to satisfy condition C2. To do so, we want to find the optimal index inside E where
the split will be placed. To find an ideal position, we will collect trimming segments
[b . . . a] and [d . . . c] for relevant atoms E1 and E2, respectively. As before, trimming
segments tell us the earliest start and end of E so a(E) match E1 and E2 respectively.
We will take a look at the end of the first segment [b . . . a] and the start of the second
segment [d . . . c]. For indexes a and d one of three scenarios will occur:

1. a > d, segments are overlapping, and bases included in that overlap might belong
into both new pseudoatoms, and splitting point s is placed into that overlap
d ≤ s ≤ a, any different placement would lead to unnecessary wasted bases.

CHAPTER 2. ATOMIZATION 26

2. a = d, segments are touching, E can be split at index a, and split will not result
in wasted bases.

3. a < d, segments are separated by a gap; for the bases in the gap, there is no way
they could be included in atomization, and they have to be converted to a waste,
which splits atom E.

In the second and third case, we have an optimal split position, as both resulting
pseudoatoms will end up with maximum possible length. We will call this soft splitting
as we have certainty of the ideal splitting position. We will call the first scenario force
splitting, as we have to pick one among multiple splitting positions.

In the description of splitting we used two relevant pseudoatoms E1 and E2, but
the same principle applies for any number of relevant pseudoatoms. If two subsequent
relevant pseudoatoms generate non overlapping trimming segments, the split can be
placed safely there and all such splits will be selected at once. If some of the trimming
segments is shorter than L, it can be ignored. If all of the segments overlap we will
place a split between the two segments based on rules in the following paragraph.

Force splitting continued Not all force splitting scenarios are equally good, and
once we are performing force splitting, we want to avoid ones where we are placing
split between very short segments, as this could lead to bases from overlap assigned
to one of the atoms being wasted together with that atom in the future. We will
select force split with preference of lowest category, and secondary shortest overlap.
For the pseudoatom E, alignment a, and relevant pseudoatoms Ek−1, Ek, El, El+1 and
[sk−1 . . . ek−1], [sk . . . ek], [sl . . . el], [sl+1 . . . el+1] - their trimming segments for E, first
we compute their split position p between Ek and El as following:

We will take the last aligned base from Ek and the first aligned base from El, and
put p as centered between bases in the source they are aligned to as possible.

Once we have precomputed split position p, we categorize this split between Ek and
El as following:

1. We place split in lowest category if [ek−1 . . . sl] and [ek . . . sl+1] are both at least L
long - this means there is enough non-overlapping bases in Ek and El trimming
segments to create atom on their own, even if we placed splits around them
in least favorable position. If Ek does not have a predecessor in E relevant
atoms we inspect [sk . . . sl], similarly we inspect [ek . . . el] if El has no successor
in relevant atoms. For split in this category, split position p is used once splitting
is performed.

2. For the second category, we modify the previous one to consider real placement
of p and inspect segments [ek−1 . . . p] and [p . . . sl+1] if they are at least L long. -

CHAPTER 2. ATOMIZATION 27

meaning if we make a split now, future splits should not turn them into waste,
even if placed in least favorable positions. For no predecessor or successor, we
check [sk . . . p] and [p . . . el+1] respectively.

3. In the third category, we reduce the consideration of what effect will future splits
have on our newly created segments. We inspect only [sk . . . p] and [p . . . el] for
length L. - meaning if we make a split now, ideal placement of future splits will
not turn them into waste (if placed at sk and el). Third category is same as
previous if there were no Ek−1 and El+1, we inspect only [sk . . . p] and [p . . . el]

for length L.

4. If previous condition failed, instead of p we will consider all possible split positions
p′ in overlap, and check if at least one exist such [sk . . . p

′] and [p′ . . . el] are both
at least L long, if so, split is placed in the fourth category.

5. Last category is for splits where all placements of p′ in overlap leads to at least
one of trimming segments becoming shorter than L. We place split to preserve
one, such p′ have to exist, since both [sk . . . ek], [sl . . . el] are at least L long so sl
or ek as p′ both conserve one of the trimming segments long enough.

Initial selection of split position might end up with two equally centered positions p.
Split position p is used (split is placed there) for splits in the first three categories, but
not in the condition of the first category. Second and third conditions are evaluated
individually for each position p. If both of them result in the same category of split,
we pick one at random, same as in the first category. If one of them places split in
a higher category than the other, only the former is considered. Similarly, if we have
multiple positions p′ in the last two categories, we pick one at random. We have no
guarantee this selection of split position is optimal.

2.4.3 Breaking rule 4

To summarize the previous discussion, the algorithm proceeds as follows. Consider
pseudoatom E and alignment a, to assess if E passes rule 4, or can be modified to
pass rule 4, we will first compute a list of relevant atoms for E and a. There are three
possible outcomes: 1, list of relevant atoms will be empty, E can not be modified to
pass rule 4, and can be removed. 2, One relevant atom exists, we want to modify
E to match w.t. this relevant atom, bases from start and end of E can be trimmed
3, There are multiple relevant atoms, we want to split E into an equal number of
pseudoatoms, where each pseudoatom created by splitting will have one relevant atom
through alignment a.

CHAPTER 2. ATOMIZATION 28

Algorithm 2 Atomization
1: We start with a set of p.a. P , alignments α and constant d2
2: Qprocess = {}
3: Qsplit = {}
4: for each E from P and a from α do
5: if a source covers E core then
6: if |a(E)| < L− 2 ∗ d2 then delete E and continue with next E
7: E.linked_alignments add a
8: a′.target_atoms add E
9: Qprocess.add(E, a)

10: end if
11: end for
12: while len(Qprocess) + len(Qsplit) > 0 do
13: if len(Qprocess) > 0 then
14: E, alignment← Qprocess.pop()

15: tasks = {alignment}
16: while tasks not empty do
17: alignment← tasks.pop()

18: process(E, alignment)

19: if E was trimmed or soft splitted then
20: tasks = E.linked_alignments
21: else E was deleted
22: tasks = None

23: end if
24: end while
25: If E was modified or deleted then Notify(E.linked_alignments)
26: else
27: E, alignment← Qsplit.pop()

28: split(E, alignment, force)

29: Notify(E.linked_alignments)
30: end if
31: end while

CHAPTER 2. ATOMIZATION 29

2.4.4 Atomization algorithm

We have presented two key parts of the algorithm, how to compute atom trimming
position, and how to compute atom splitting position. Those computations will be
used to perform one of three basic operations in our algorithm when processing existing
pseudoatom. We will either trim pseudoatom, split pseudoatom or delete pseudoatom.
Pseudoatom deletion wasn’t discussed yet, but it is a simple step in which an atom
is removed. There is one other possible outcome of pseudoatom processing, when we
don’t take any action, which happens in two cases. In the first case, the inspected
pseudoatom satisfies condition 4, and none of its relevant pseudoatoms require it to
trim itself, so it does not need to be processed. In the second case, in order for the
pseudoatom to satisfy condition 4, its relevant atom has to trim itself, and no trimming
or splitting is currently required for inspected pseudoatom.

Starting with a set of pseudoatoms P , a set of alignments α and constant d2 and
two empty sets Qprocess and Qsplit we will take the steps outlined in Algorithm 2 to
obtain atomization. We will keep in Qprocess pseudoatoms that need to be processed
and in Qsplit pseudoatoms requiring force splitting. First, we will link the alignments
with the pseudoatoms, we want to have ability to say in which sources of alignments
lays the core of a pseudoatom, and which pseudoatoms lay in the targets of alignments.
Linked alignments are the ones we need to project pseudoatoms through, and match
those projections with other pseudoatoms.

We will construct a projection of all pseudoatoms through all their linked align-
ments, and check if they are at least L−2d2 long. If not, the pseudoatom gets deleted,
if yes, we add it to Qprocess which keeps the set of atoms and alignments we need to
process. For initial processing, we want to process the pseudoatom through all its
linked alignments.

Main loop While there is some element either in Qprocess or Qsplit we keep processing
pseudoatoms in the main loop (line 12 to 31 in Algorithm 2). We process elements
from Qprocess and trim or soft split those. When there is no element in Qprocess left, we
take one from Qsplit and force split it, preferring one with the lowest category of force
splitting.

When we trim or split some atom Ep it triggers a cascade of reprocessing. We need
to reprocess Ep, or pseudoatoms produced by split, through all of their linked align-
ments, even if previously those did not require any processing. We also notify all atoms
in all alignments linked to Ep because those should need to reprocess themselves if Ep is
relevant to them. In Algorithm 2, this step is written as Notify(Ep.linkedalignments).
We put the aforementioned atoms into Qprocess together with alignment that they are
linked to Ep through. If some pseudoatom Er in target of alignment a linked to Ep is

CHAPTER 2. ATOMIZATION 30

notified, and does not need to reprocess itself through a′ there is no need to re-check
it through other of its linked alignments.

As trimming and soft splitting are optimal steps, we can perform those anytime,
and perform force splitting only if Qprocess is empty as there is no other action to be
taken. Pseudoatoms created by split inherit list of linked alignments from the original
pseudoatom.

2.4.5 Negative strand alignments

To simplify the explanation of the atomization algorithm, we have not discussed inverse
alignments, where the segment from the forward strand is aligned to the segment on
the reverse strand. For computation of pseudoatomization, this does not make any
difference, as in those algorithms, only information taken from the alignment is the
start and end index of each aligned segment, on the forward strand, regardless of their
orientation. For the atomization algorithm, we are using aligned bases from alignment
to construct projection of segment through that alignment, and based on pseudoatoms
this projection is overlapping either split or trim original pseudoatom. Projection
through inverse alignment leads to rotated projection, where the end of the pseudoatom
is projected first followed by its start. This effect can be easily counteracted. Consider
segment E and alignment a with forward strand source aligned to reverse strand target.
To create projection, we will take the same steps as for non-inverse alignments, and
find aligned bases from E and their counterparts in the a target. The first aligned
base from E is used to define the end of a(E), and the last aligned base from E is
used to define the start of a(E). For projection constructed this way, rule number 4
from the definition of atomization remains the same. From there, for a(E) and some
relevant atom E ′ we can compute the trimming position for start of E based on end of
a(E) and end of E ′. Cutting away aligned bases from E start will lead to shortening
of a(E) end which can end at most d2 indexes after E ′. The last aligned base from
E ′ projected through a′ has to match with tolerance E start. We obtain rules similar
to those used to compute trimming positions in regular alignments. The trimming
segments for pseudoatoms in inverse alignment are then used to find splitting position
in the same way as in a regular alignment, when put in the right order.

2.5 Pre and post processing

In addition to our core atomization algorithm, we need to run several other steps in
order to prepare data used by our algorithm, and post process atomization it produces.
Full pipeline begins with a fasta file, containing, for all sequences we want to atomize,
their name and nucleotide bases; and ends with full atomization with atoms divided in

CHAPTER 2. ATOMIZATION 31

classes. The goal is to show how full atomization is obtained using our scripts, enabling
replication of results and usage of pipeline. Following steps are taken, and scripts run,
to obtain atomization:

PSL alignment file is created by an external program; in our work we used either
LASTZ [6] or LAST [9] aligner to obtain alignments in psl file format, where each
alignment is represented by single line containing details about this alignment. Scripts
align.sh and align2.sh, taking fasta file as argument, are wrappers of LASTZ and LAST,
producing output in psl file format. Script filter-psl.py is then used to filter out weak
and short alignments from a given psl file. Parameters for score and minimal length
can be provided as well to override defaults. Script align.sh is taken from work by
Brejová et al. [3]; script filter-psl.py is our python reimplementation of filtering also
presented by Brejová et al.; align2.sh is our wrapper of LAST, obtained by modifying
align.sh.

Atomize.py is the main file in our project, as it orchestrates usage of other bits of
code to obtain atomization. As arguments, it takes input file (.psl file with alignments),
minimal length of atom L, constants d1 and d2 for atom edges slack and tolerance of
match. Alignments from the input file are loaded with help of load_psl.py. From there
pseudoatomization is created first, using code from pseudosementation.py, and this is
later processed into atomization with code from segmentation.py. Additional helper
functions used in this process are stored in tools.py. Once atomization that satisfies
our definition is created, it is stored in file format, where each atom is represented by a
single line, containing sequence name, atom id, class, strand, start and end index. Atom
id is a unique number assigned to each atom, atom class and strand are assigned to
atoms based on graph where atoms are vertices, and alignments are edges, connecting
two atoms that match with tolerance. Traversal of connected components in such a
graph is used to assign the same class to its atoms, and assign strand placement to
atoms based on whether they are connected by regular or inverse alignment. Strand
assignment for all atoms in a component is flipped if this leads to the majority of atoms
on positive strand. All the scripts mentioned in this paragraph are our own original
work.

Perl-atoms.pl is used instead of atomize.py if we want to obtain IMP atomization.
Alignment filtering might be skipped, as it is included in perl-atoms.pl. Output format
is the same as in atomize.py. This is the original script for atomization presented by
Višňovská et al. [17].

CHAPTER 2. ATOMIZATION 32

Ilp-atoms.pl is used to further improve placement of atoms into classes. For the
graph constructed from atoms connected by alignments, same as in atomize.py, graph
clustering problem as mentioned in Section 1.2.3 is solved. In this problem, edges are
either added or removed to turn graph into cliques at minimal costs. Ideally, classes that
were previously connected by a misplaced alignment are separated, and only strongly
connected atoms are left in the same class. Strand is also reassigned, based on the
updated graph. Previously created atoms file together with file for alignments are used
as an input. This script is taken from work by Brejová et al. [3].

Collapse-atoms.py is the last step used in post processing of atoms. Two atoms
E1 from class C1 and E2 from class C2 are merged together, if all atoms from C1 are
adjacent to some atoms from C2 and vice versa, while the gap between them is smaller
than the set parameter for maximum gap. Consistent strand placement of atoms is
also required, meaning that atoms from C2 have to be the successor to C1 atoms on the
positive strand or the successor on the negative strand. The successor on the negative
strand is an atom with lower indexes for start and end, as we are indexing all atoms
with respect to the positive strand. If this condition is met, all pairs of atoms from C1

and C2 are collapsed together, each creating one new atom, which keeps the strand and
class of its parental atom from class C1, and covers the original pair of atoms together
with a gap between them. The insight behind this step is to restore longer real atoms,
that might have been split due to a misplaced short alignment, or a short evolutionary
event inside them. This script is our python reimplementation of the script presented
by Brejová et al. [3].

Chapter 3

Experiments and results

To prove feasibility of our approach to atomization, and show its performance, we
introduce three data sets, on which our algorithm was run and evaluated. Two of
them are real data, and one of the data sets is simulated data. Running atomization
on simulated data allows us to compare the results of our atomization algorithm ACS
(Atomization with core and slack) with known correct atomization, and compare its
accuracy with IMP, the algorithm previously introduced by Višňovská et al. [17],
directly.

3.1 Methodology

3.1.1 Quality measurements

To evaluate the atomization, we have adopted previously used approaches of matching
atoms from two atomizations, Reciprocal best matches (BRM) and boundary fitting
matches (BFM). BRM was introduced by Brejová et al. [3]. Two atoms Et from
atomization At and Ep from atomization Ap are BRM to each other if Et and Ep

overlap, and overlap of Et with any atom from Ap and Ep with any atom from At

is shorter than their mutual overlap. BFM was introduced by Višňovská et al. [17].
Previously mentioned atoms Et and Ep are BFM to each other, if their start and end
indexes are at most in distance k from each other, where k is set parameter. Using
k < L/2 guarantees each atom has at most one BFM match, which if exists, is also a
BRM match. In practice, we are using k = L/4 for BFM. For atoms matched by BRM
and BFM we may then measure their sensitivity and specificity, as well as sensitivity
and specificity for their classes. For true atomization At with the number of atoms
tatoms, predicted atomization Ap with the number of atoms patoms, mbrm atom pairs
matched by BRM and mbfm atom pairs matched by BFM, we measure the following
four metrics: BRM specificity as mbrm/patoms, BRM sensitivity as mbrm/tatoms, BFM
specificity as mbfm/patoms and BFM sensitivity as mbfm/tatoms.

33

CHAPTER 3. EXPERIMENTS AND RESULTS 34

In a similar fashion, we may measure BRM \BFM matches between two atom
classes, Ct from At and Cp from Ap. Classes Ct and Cp are BRM \BFM matched, if
every atom from Ct is BRM \BFM matched to an atom in Cp and vice versa. Since
each atom has at most one BRM \BFM match, this means atoms from a matched
class are not matched to the atoms from any other class. We say classes Ct and Cp are
partially BRM\BFM matched if atoms from Ct are only matched to atoms from Cp

and atoms from Cp are only matched to atoms from Ct, dropping requirement for all
atoms from class to have some BRM \BFM match. Specificity (sp) is then calculated
as matched/predicted and sensitivity (sn) as matched/true for both BRM \BFM and
both fully (sp \sn) or partially (sp_p \sn_p) matched.

Apart from specificity and sensitivity there is one additional metric for BRM\BFM
and one for BRM only. The fraction of sequence covered by bases in BRM\BFM pair
overlaps is marked as nucl in tables. Metric BOUND measures what portion of BRM
atom pairs have its end in distance up to dx

2
e from each other.

For data sets without known true atomization BRM \BFM metric may still be used
to compare two different atomizations, as the output shows similarity between the two
compared atomizations.

Other than BRM and BFM metrics, we inspect coverage - what fraction of input
sequence is covered by atoms, the number of atoms and the number of classes as well
as the median and mean length of atoms in an atomization.

3.1.2 Data sets

We have inspected the performance of our algorithm on the three data sets described
below.

Simulated data actually contains ten individually simulated data sets with known
atomization. Those datasets were previously introduced by Brejová et al. [3] and used
by Višňovská et al. [17]. The data sets were generated as a simulation of sequence
evolution, including substitutions, short insertions and deletions, as well as large-scale
duplication and deletion events. Each simulation started with a single sequence and
followed human, chimpanzee and rhesus macaque phylogeny. This resulted in three
sequences, one for each organism, each in length of roughly 400 kb. Main benefit of
simulation is the existence of the real atomization, corresponding to shared ancestor
relationships in the simulated evolution.

UGT1A primate gene cluster data set contains three sequences for human, chim-
panzee and orangutan. Lengths of sequences are 90, 87 and 108 kb respectively. Data
for the UGT1A cluster were taken from work by Višňovská et al. [17].

CHAPTER 3. EXPERIMENTS AND RESULTS 35

L m.a.l. d_1 d_2 BFM parameter
50 13 10 13 13
100 25 13 20 25
250 63 20 40 63
500 125 25 80 125

Table 3.1: Overview of parameters selected for atomization and evaluation based on
selected minimal atom length L. M.a.l. represents minimal length of alignment, as
shorter alignments were filtered out, also alignments with score lower than 0.8 were
filtered out, regardless of L. BFM parameter sets maximal distance between ends of
two atoms to be considered BFM match. Both m.a.l. and BFM are set to L/4. d1
and d2 are used only for the ACS algorithm, where d1 sets atom edge length, and d2
sets tolerance of match between atom projection and another atom.

Plague data set contains three strains of bacteria Yersinia pestis, that causes plague.
Strains Shasta, El Dorado and PBM19 were used [8]. Each strain contains one chro-
mosome and three plasmids. Each chromosome has length of 4.6 mb and plasmids are
in length of 96, 70 and 9 kb.

3.2 Atomization settings

For each data set and each run, we first create local alignments, and filter out alignments
with low score or length shorter than L/4. To obtain alignments either LASTZ [6] or
LAST [9] was used. Those alignments were used to construct atomization by IMP and
our ACS algorithm. One of four minimal lengths of atoms L = [50, 100, 250, 500] was
used in each run, and the rest of parameters was selected accordingly to L (see Table
3.1). Same program was used for IMP and ACS atoms to put them in classes and
collapse them, (see collapse-atoms.py in Section 2.5). SibeliaZ (SBZ) created atoms
directly from sequence data and atoms shorter than L were discarded. Thus, data for
(SBZ) are same for both LASTZ and LAST runs, as alignment file has no effect on
SibeliaZ atomization.

Atomizations created on simulated data were then directly compared with
known true atomization, and metrics for BRM and BFM were computed. Baseline for
atomization was created from true atomization, where we filtered out atoms shorter
than L and compared it with full true atomization. This is listed in the table under
algorithm TRUE. We have repeated this process eight times, for four different minimal
lengths of atoms L = [50, 100, 250, 500], and two different aligners LASTZ and LAST.
Known real atomization corresponding to shared ancestor relationships in the simu-

CHAPTER 3. EXPERIMENTS AND RESULTS 36

lated evolution enables us to compare our algorithm directly with the IMP algorithm
presented by Višňovská et al. [17].

UGT1A and plague do not have known real atomization, which might be compared
with created atomizations. Thus, for atomizations created on those data sets, we
may only draw an indirect comparison or compute BRM \BFM matches between two
created atomizations. In this case BRM \BFM metrics serve as a form of similarity
measurement, and should be interpreted only in this way. For UGT1A and Plague
data sets, we have not created atomization for L = 250.

3.3 Results

3.3.1 Simulated data

Each of the ten data sets from simulated data was atomized individually, for each
combination of alignments source and L. For the sake of clarity, we compiled scores
for all ten data sets in a single run and provided their average.

ACS versus IMP In Table 3.2 we have comparison of TRUE atomization, IMP
atomization and ACS atomization for each minimal atom length L, and rest of pa-
rameters from Table 3.1. If we take a look at IMP and ACS performance, we may
see a change in trends between L = 100 and L = 250. For small d2 in L = 50 and
L = 100 we require atoms in ACS to match with high precision, because tolerance of
match (d2) is either 13 or 20 bases long, even if median atom is over 1500 bases long.
This leads to a lot of trimming and deletion of some atoms that cannot be trimmed to
match, as seen in lower BRM sensitivity, lower coverage, and lower number of atoms
than in IMP. On the other hand, IMP in those cases cares only about the existence of
a single overlap of each atom projection, regardless of its quality. Thus ACS leads in
BRM specificity, as some of the weak atoms were deleted, but loses in sensitivity and
coverage a little.

With larger L, d2 may be set larger, and match of atom projection is given more
freedom. ACS is able to keep high coverage, and produces more atoms than IMP.
This may be attributed to two reasons, first ACS may create more pseudoatoms due
to tolerance of alignment boundaries in atom edges, and once those pseudoatoms are
created, their projections may overlap other atoms slightly, as long as they match some
atom with the tolerance. On the other hand, each such overlap needs to be trimmed
down in IMP. While both IMP and ACS achieve 100% specificity in BRM, ACS has
slightly higher sensitivity, presumably due to the higher number of atoms produced.

CHAPTER 3. EXPERIMENTS AND RESULTS 37

In BFM metrics, ACS atomization outperforms IMP for each selected L, this was
expected behavior, as BFM match corresponds to our definition of atoms projection
match, while IMP leaves more freedom in the size of overlap.

LASTZ versus LAST The second table, Table 3.3, holds results for TRUE atom-
ization, and ACS atomization obtained from LASTZ and LAST alignments. LAST
creates more alignments (see Table 3.6 in Appendix). For low L, this leads to higher
number of shorter atoms, higher sensitivity (BRM) and coverage at the cost of low
specificity when compared to atomization created from LASTZ alignments. This can
be seen mainly in L = 50, where specificity of LAST atomization is over 20 percentage
points lower than that of LASTZ, the number of atoms for LAST atomization is over
28 percent higher than true number of atoms. Increasing L limits placement of very
short atoms in LAST atomization. Number of atoms, as well as median and mean
atom length gets closer to TRUE and LASTZ atomization. Coverage gets slightly
worse than for LASTZ, specificity improves, LAST loses lead in sensitivity.

This makes LASTZ preferred source of alignments for, as atomization created from
those alignments has overall better performance, clearly leads in BFM metrics, and is
better reconstruction of true atomization - this can be seen at specificity, number of
atoms and their lengths as well as coverage of sequence by BRM \BFM overlaps (nucl
metric).

SibeliaZ atomization

For all data sets mentioned, we have constructed atomization using SibeliaZ [7], as a
comparison of different approaches to atomization. SibeliaZ takes only sequence file,
and skips the step of local alignments creation. To perform in a similar manner, SibeliaZ
threshold value for minimal length of blocks outputted was used to limit minimal atom
length. This does not only filter out blocks that are too short, but affects the whole
creation of atomization by SibeliaZ. We have not added SibeliaZ atomization into
Table 3.2 to compare with IMP and ACS on simulated data as detailed comparison
is unnecessary. For instance, for L = 50, SibeliaZ achieved coverage of 76.7%, BRM
atom_sp of 81.8% and atom_sn of 88.8%. While sensitivity is only 5 percentage points
lower, other metrics dropped by 15 percentage points or more. Results for BFM are
even worse, as SibeliaZ, for L = 50, has achieved score in all BFM metrics in range
from 13.7% to 18.6%, that is over 50 percentage points lower than IMP or ACS. While
approach used by SibeliaZ may have its benefits, or yield better results in certain
scenarios, for our data sets, and using our measurements, direct comparison with IMP
or ACS does not show them.

CHAPTER 3. EXPERIMENTS AND RESULTS 38

(a) Figure A (b) Figure B

(c) Figure C (d) Figure D

Figure 3.1: Four figures illustrating differences in atomizations produced by IMP and
ACS on UGT1A gene cluster. Complete atomizations of three sequences (Human,
Chimp and Orangutan) were created, and selected fragments from them are shown in
figures. Each figure contains fragments from three IMP and three ACS atomizations,
with L = [50, 100, 500], created from LASTZ alignments. Atoms depicted are from
the Human and Chimp sequence, Orangutan sequence was also atomized, but it is not
used in image. When we mark each atomization by L, we have, in lines from top, for
Human IMP50, IMP100, IMP500, ACS50, ACS100, ACS500, and the next six lines
are the same atomizations for Chimp. Numbers assigned to atoms are their classes,
and are comparable only in the same atomization. Atoms in the same regions from
different atomization were assigned the same color, as those represent the same true
atom. Individual sub-figures are discussed in Section 3.3.2.

CHAPTER 3. EXPERIMENTS AND RESULTS 39

3.3.2 UGT1A gene

In Table 3.4 we introduce statistics for ACS and IMP atomizations for three different
values of L, created from LASTZ and LAST alignments as well as three SibeliaZ
atomizations. In atomizations from LASTZ alignments, we can see the number of
atoms dropping significantly in IMP for longer L, while in ACS the change is subtle,
as the number was lower from beginning. Also, coverage for IMP drops, while for ACS
it rises with longer L. This can be explained by differences in algorithms, which we
illustrate in Figure 3.1 and discuss below. Main difference is, while ACS struggles with
placement of atoms for low L, where d2 is also low (atoms have to match precisely),
and short alignments are not filtered out, IMP fills nearly the whole sequence with
short atoms. This reflects in all statistics, number of atoms and classes, their mean
and median, as well as ACS shortest atom in L = 100 being 214 bases long (it was
not created by collapsing two shorter atoms). Once L is set to 500, ACS and IMP
create similar atomizations, this shows in the table, but also when we take ACS as true
atomization and compute their BRM and BFM matches. BRM achieves specificity of
99% and sensitivity of 97%, in BFM those scores are 67% and 66% respectively. And
while SibeliaZ is also able to score in BRM (sp 60%, sn 90% to ACS, L = 500), in
BFM its scores are less than 1%.

In LAST atomizations, we see a similar effect as discussed in LASTZ versus
LAST, where LAST creates more alignments, leading to a higher number of shorter
atoms. As we do not know true atomization, we can not verify if this also leads to
lower BRM\BFM sensitivity and specificity.

In Figure 3.1a we want to point out two differences between IMP and ACS. Both
found presumably correct purple atom, but for shorter L, IMP is able to fill space left
of that purple atom with very short atoms (IMP50 and IMP100), and then in Human
IMP500 (3rd line) extend purple atom to cover that region, once its not occupied by
short alignments. We see discrepancy between purple atoms in IMP500 and ACS500,
while they roughly match in Chimp, and ACS one from Human has to match the one
from Chimp, for IMP overlap is enough.

In Figure 3.1b we may observe contra intuitive behavior, where ACS is able for
L = [100, 500] to place an orange atom, which it did not manage to place for L = 50.
This can be explained with increase in constant d2 for longer L, increasing tolerance
of match of orange atom with its other copies.

Figure 3.1c shows us, that while IMP finds some variant of blue atom for each L,
ACS needs ideal combination of L and d2, to filter out some alignments, while having
enough tolerance d2 and being allowed to place short enough atoms.

Lastly Figure 3.1d illustrates multiple behaviors, brown atom on negative strand
(in class -1) was created in ACS500, but not IMP500. This is due to one of the copies

CHAPTER 3. EXPERIMENTS AND RESULTS 40

of the atom being longer than L only because parameter d1 allowed boundary in its
edge. Other than that, we see IMP placing very short atoms of questionable quality
whenever possible; for instance atom in class 62, left of previously discussed brown
atom, is the only atoms in its class.

3.3.3 Plague genomes

Table 3.5 holds comparison of atomization created by SibeliaZ and two atomizations
created by ACS and IMP algorithm from LASTZ and LAST alignments. In table,
we can see differences between algorithms described in Section 3.3.2 and illustrated in
Figure 3.1 having similar effect, but not amplified to same extent, presumably due to
different structure of data as we are atomizing whole genomes, not just a gene cluster.
In atomizations from LASTZ alignment, ACS is able to achieve high coverage even
for short L. ACS still produces fewer atoms in fewer classes than IMP, leading to
greater atoms mean and median (also longer longest atom). In comparison to UGT1A
atomization, ACS drop in the number of atoms for different L is more noticeable, and
such drop was not observed even in simulated data.

With exception of this drop, we see patterns we have observed previously. For
example, using LAST alignments leads to a higher number of shorter atoms and higher
coverage compared to LASTZ, and we can only assume how they would compare to the
true atomization. Again, ACS and IMP atomizations created from LASTZ alignments
for L = 500 are similar. As IMP matched to ACS has BRM sensitivity and specificity
of 97.8% and 100% respectively and BFM sensitivity and specificity of 95% and 97%

respectively. SibeliaZ matched to ACS keeps high sensitivity in BRM (93.5%), but
BFM sensitivity and specificity drops below 1%.

We can see that selection of threshold for shortest block SibeliaZ outputs in atom-
ization affects it significantly. In an unexpected manner it produces the highest number
of atoms among the three atomizations when threshold is set to 500, as it affects whole
computation of atoms.

C
H

A
P

T
E

R
3.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

41

min. atom length L = 50 L = 100 L = 250 L = 500
algorithm TRUE IMP ACS TRUE IMP ACS TRUE IMP ACS TRUE IMP ACS

COVERAGE 100.0% 99.8% 98.6% 99.9% 99.8% 99.8% 99.7% 99.5% 99.7% 98.6% 98.5% 99.0%

BRM

BRM_sp 100.0% 98.0% 98.2% 100.0% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
BRM_sn 97.4% 95.9% 94.2% 95.0% 93.7% 93.2% 89.7% 88.1% 88.7% 79.5% 77.2% 78.7%
BRM_nucl 100.0% 98.9% 97.2% 99.9% 98.8% 98.6% 99.7% 98.5% 98.5% 98.6% 96.9% 97.2%
CLS_sn 98.4% 96.1% 94.5% 96.8% 94.8% 94.6% 93.0% 91.0% 91.5% 85.5% 82.6% 84.0%
CLS_sn_p 98.4% 96.8% 94.9% 96.8% 95.1% 94.6% 93.0% 91.5% 91.5% 85.5% 83.2% 84.0%
CLS_sp 100.0% 97.3% 98.0% 100.0% 99.2% 100.0% 100.0% 99.4% 100.0% 100.0% 99.4% 100.0%
CLS_sp_p 100.0% 98.0% 98.4% 100.0% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
BOUND 100.0% 88.6% 90.0% 100.0% 94.7% 96.2% 100.0% 98.9% 98.4% 100.0% 97.8% 98.0%

BFM

ATOM_sp 100.0% 77.2% 80.9% 100.0% 88.1% 91.1% 100.0% 96.5% 96.7% 100.0% 97.6% 97.9%
ATOM_sn 97.4% 75.6% 77.6% 95.0% 82.7% 84.9% 89.7% 85.0% 85.8% 79.5% 75.3% 77.0%
ATOM_nucl 100.0% 75.6% 75.8% 99.9% 85.4% 87.6% 99.7% 94.5% 94.0% 98.6% 91.8% 92.8%
CLS_sn 98.4% 66.7% 72.8% 96.8% 78.3% 82.6% 93.0% 86.4% 87.7% 85.5% 80.1% 81.7%
CLS_sn_p 98.4% 81.6% 81.4% 96.8% 86.8% 88.4% 93.0% 88.6% 89.2% 85.5% 80.8% 81.7%
CLS_sp 100.0% 67.5% 75.5% 100.0% 81.9% 87.3% 100.0% 94.4% 95.8% 100.0% 96.3% 97.3%
CLS_sp_p 100.0% 82.6% 84.4% 100.0% 90.8% 93.5% 100.0% 96.8% 97.5% 100.0% 97.1% 97.4%

atoms 375.2 377.1 369.4 365.8 361.6 359 345.6 339.2 341.7 306.3 297.2 303
classes 111.6 112 109.4 109.8 108.4 107.3 105.5 103.8 103.8 97 94.3 95.2
atoms median 1620.5 1601 1590.5 1698 1688.5 1737.5 1863 1879 1882 2191 2222 2198
atoms mean 3549.01 3526.17 3555.49 3638.30 3674.33 3700.79 3841.12 3906.52 3887.80 4288.68 4413.95 4350.25

Table 3.2: Atomization of simulated data set with IMP and ACS algorithm. TRUE atomization was created from true atoms, with atoms shorter than
L filtered out. BRM and BFM metrics for all atomizations were computed with matches in full true atomization. For selected L, rest of the parameters
can be found in Table 3.1

C
H

A
P

T
E

R
3.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

42

min. atom length L = 50 L = 100 L = 250 L = 500
algorithm TRUE LAST LASTZ TRUE LAST LASTZ TRUE LAST LASTZ TRUE LAST LASTZ

COVERAGE 100.0% 99.6% 98.6% 99.9% 99.9% 99.8% 99.7% 99.6% 99.7% 98.6% 98.5% 99.0%

BRM

BRM_sp 100.0% 77.4% 98.2% 100.0% 89.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
BRM_sn 97.4% 97.2% 94.2% 95.0% 95.4% 93.2% 89.7% 89.1% 88.7% 79.5% 78.7% 78.7%
BRM_nucl 100.0% 92.7% 97.2% 99.9% 96.8% 98.6% 99.7% 98.6% 98.5% 98.6% 96.8% 97.2%
CLS_sn 98.4% 97.3% 94.5% 96.8% 96.5% 94.6% 93.0% 92.2% 91.5% 85.5% 84.1% 84.0%
CLS_sn_p 98.4% 98.0% 94.9% 96.8% 96.6% 94.6% 93.0% 92.2% 91.5% 85.5% 84.1% 84.0%
CLS_sp 100.0% 73.9% 98.0% 100.0% 88.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
CLS_sp_p 100.0% 74.5% 98.4% 100.0% 88.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
BOUND 100.0% 80.8% 90.0% 100.0% 90.1% 96.2% 100.0% 96.5% 98.4% 100.0% 94.6% 98.0%

BFM

ATOM_sp 100.0% 60.6% 80.9% 100.0% 78.9% 91.1% 100.0% 94.1% 96.7% 100.0% 92.1% 97.9%
ATOM_sn 97.4% 76.0% 77.6% 95.0% 84.0% 84.9% 89.7% 83.8% 85.8% 79.5% 72.5% 77.0%
ATOM_nucl 100.0% 68.4% 75.8% 99.9% 85.5% 87.6% 99.7% 92.7% 94.0% 98.6% 87.9% 92.8%
CLS_sn 98.4% 75.7% 72.8% 96.8% 84.7% 82.6% 93.0% 87.0% 87.7% 85.5% 77.7% 81.7%
CLS_sn_p 98.4% 79.5% 81.4% 96.8% 87.7% 88.4% 93.0% 88.4% 89.2% 85.5% 78.9% 81.7%
CLS_sp 100.0% 57.5% 75.5% 100.0% 77.6% 87.3% 100.0% 94.4% 95.8% 100.0% 92.3% 97.3%
CLS_sp_p 100.0% 60.5% 84.4% 100.0% 80.4% 93.5% 100.0% 95.9% 97.5% 100.0% 93.8% 97.4%

atoms 375.2 483.5 369.4 365.8 409.9 359 345.6 343.1 341.7 306.3 303 303
classes 111.6 149.2 109.4 109.8 123.7 107.3 105.5 104.6 103.8 97 95.4 95.2
atoms median 1620.5 1142 1590.5 1698 1405 1737.5 1863 1846 1882 2191 2188.5 2198
atoms mean 3549.0 2744.9 3555.5 3638.3 3246.0 3700.8 3841.1 3866.9 3887.8 4288.7 4327.7 4350.2

Table 3.3: Atomization of simulated data set with ACS algorithm, for two different sources of alignment generated by LASTZ and LAST. TRUE
atomization was created from true atoms, with atoms shorter than L filtered out. BRM and BFM metrics for all atomizations were computed with
matches in full true atomization. For selected L, rest of the parameters can be found in Table 3.1

C
H

A
P

T
E

R
3.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

43

L = 50 L = 100 L = 500
algo. ACS IMP SBZ ACS IMP SBZ ACS IMP SBZ

LASTZ

atoms 147 420 631 128 258 457 128 126 193
classes 29 69 138 25 45 103 22 22 47
coverage 76.31% 93.67% 88.48% 79.70% 92.30% 88.01% 83.98% 87.19% 73.57%
shortest at. 50 51 49 214 101 99 501 503 515
at. mean 1483.0 637.1 400.6 1778.9 1022.0 550.2 1874.3 1976.9 1089.1
at. median 685 133 140 1075 501.5 201 1155 1139 708

LAST

atoms 431 526 631 361 355 457 97 100 193
classes 86 108 138 59 64 103 20 21 47
coverage 87.18% 95.85% 88.48% 91.75% 91.63% 88.01% 75.99% 73.34% 73.57%
shortest at. 50 51 49 100 101 99 507 501 515
at. mean 577.9 520.6 400.6 726.1 737.4 550.2 2237.9 2095.3 1089.1
at. median 153 164.5 140 268 295 201 1420 984 708

Table 3.4: UGT1A data set atomization statistics. Atomization created with IMP, ACS and SibeliaZ (SBZ). Statistics for both
atomizations created from LASTZ and LAST alignments. As the alignment file is not used for SBZ atomization, it contains the
same data for both. For selected L, rest of the parameters can be found in Table 3.1

C
H

A
P

T
E

R
3.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

44

L = 50 L = 100 L = 500
algo. ACS IMP SBZ ACS IMP SBZ ACS IMP SBZ

LASTZ

atoms 1875 3485 5959 1447 2219 4853 803 821 6365
classes 347 511 1360 263 338 1191 160 163 1912
coverage 98.46% 99.00% 99.73% 98.42% 99.09% 99.67% 98.75% 98.67% 95.30%
longest at. 115600 67508 25794 115606 97390 25794 223425 223375 25793
at. mean 7632.5 4128.9 2432.6 9886.8 6490.7 2985.1 17874.0 17468.5 2176.3
at. median 997 348 805 1443 625 1354 2874 2666 1089

LAST

atoms 2712 3414 5959 2249 2357 4853 1194 801 6365
classes 427 559 1360 339 369 1191 223 160 1912
coverage 99.66% 99.35% 99.73% 99.62% 99.41% 99.67% 98.72% 98.77% 95.30%
longest at. 73848 68452 25794 97404 97391 25794 106612 223472 25793
at. mean 5341.4 4230.0 2432.6 6438.5 6130.5 2985.1 12017.9 17923.2 2176.3
at. median 467 495 805 544 548 1354 2056 3077 1089

Table 3.5: Yersinia pestis strains data set atomization statistics. Atomization created with IMP, ACS and SibeliaZ (SBZ). Statistics
for both atomizations created from LASTZ and LAST alignments. As the alignment file is not used for SBZ atomization, it contains
the same data for both. For selected L, rest of the parameters can be found in Table 3.1

Conclusion

In this thesis, we have revisited the problem of atomization created from local align-
ments, presented in earlier works by Brejová et al. [3] and Višňovská et al. [17].
We introduced a new formal definition of the problem, inspired by the definition by
Višňovská et al., which aligns better with our understanding of what atoms really are.
The main goal of our improved formal definition of atomization was to tighten require-
ments of how two atoms in alignment source and target should match, as well as to
account for slight errors in alignment end placements.

Atomization is produced in two steps, first we create pseudoatoms, segments ful-
filling the first three conditions of our definition. We have presented a dynamic pro-
gramming algorithm leading to an optimal set of pseudoatoms, and improved its time
complexity with multiple modifications. In the second phase, atomization is created
by modification of pseudoatoms. We modify pseudoatoms by trimming and splitting
to satisfy all conditions.

We have tested and compared the accuracy of our new algorithm with an older
algorithm (IMP [17]) on simulated as well as real data. On simulated data, with known
true atomization, atomization created with our algorithm was able to outperform the
one created with IMP in most measures in all scenarios. On real data, we may see
differences in observable characteristics of our atomizations, and those created with
IMP and SibeliaZ [13], however we have no way of telling which one is correct and may
only make assumptions, based on similarities with atomizations created on simulated
data with known true atomization.

The result of this thesis is a computer program, which creates atomization of input
sequences satisfying our definition. Created atomization might then be used in further
analysis of inspected sequences, simplifying reconstruction of large-scale evolutionary
events.

In the end, we list several possible improvements to our algorithms and definition.
In the current algorithms, in situations where particular bases could be placed in one
of two pseudoatoms or atoms, we have no guarantee that our approach leads to the
optimal atomization. This may happen when two pseudoatoms touch, and their ends
might be placed at one of multiple indexes, or when we are force splitting. In the first

45

Conclusion 46

case, bases in that overlap might end up wasted if assigned to one pseudoatom, or
preserved in other. This could be possibly counteracted by expansion of atoms once
atomization is created, if such an expansion will not break atomization definition. In
case of force splitting, collecting all splits through all alignments, for all atoms, and
placing the split based on this information might improve accuracy. This proposed
solution resembles the step present in the IMP algorithm, but due to differences in
definitions (namely restriction to match of atoms in condition 4), its implementation
for our atomization is more complicated. Alternatively, we may try to improve the
performance of force splitting by running an atomization algorithm multiple times for
one pseudoatomization. In this scenario, the algorithm has to be modified, to select
order of force splits at random, maybe even select a split position randomly from
overlap, and in the end output single atomization with highest score.

We propose two changes of atomization definition, based on observed behavior of our
algorithm in experiments. In the first modification, a pseudoatom might be allowed to
extend past alignment boundary, only if it is getting closer to the boundary of another
alignment, which covers its core. The second possible change worth exploring might
be to allow the atom edge length (d2) to scale dynamically, giving longer atoms higher
tolerance in their projection match with tolerance. As currently, to achieve higher
tolerance, we have to increase L and lose very short atoms. Ideally this would lead to
atomization with short atoms included, and long atoms not trimmed extensively. For
such atomization, the BFM measure might also be adapted accordingly.

Bibliography

[1] Samuel V. Angiuoli and Steven L. Salzberg. Mugsy: fast multiple alignment of
closely related whole genomes. Bioinformatics, 27(3):334, 2010.

[2] Holly C Betts, Mark N Puttick, James W Clark, Tom A Williams, Philip CJ
Donoghue, and Davide Pisani. Integrated genomic and fossil evidence illuminates
life’s early evolution and eukaryote origin. Nature ecology & evolution, 2(10):1556–
1562, 2018.

[3] Brona Brejova, Michal Burger, and Tomas Vinar. Automated Segmentation of
DNA Sequences with Complex Evolutionary Histories. In Teresa M. Przytycka
and Marie-France Sagot, editors, Algorithms in Bioinformatics, 11th International
Workshop (WABI), volume 6833 of Lecture Notes in Computer Science, pages 1–
13, Saarbrücken, Germany, September 2011. Springer.

[4] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski,
Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[5] Guénola Drillon, Raphaël Champeimont, Francesco Oteri, Gilles Fischer, and
Alessandra Carbone. Phylogenetic reconstruction based on synteny block and
gene adjacencies. Molecular biology and evolution, 37(9):2747–2762, 2020.

[6] Robert S Harris. Improved pairwise alignment of genomic DNA. The Pennsylvania
State University, 2007.

[7] Andreas Heger and Liisa Holm. Exhaustive enumeration of protein domain fami-
lies. Journal of Molecular Biology, 328(3):749 – 767, 2003.

[8] Shannon L Johnson, Hajnalka E Daligault, Karen W Davenport, James Jaissle,
Kenneth G Frey, Jason T Ladner, Stacey M Broomall, Kimberly A Bishop-Lilly,
David C Bruce, Susan R Coyne, et al. Thirty-two complete genome assemblies of
nine Yersinia species, including Y. pestis, Y. pseudotuberculosis, and Y. entero-
colitica. Genome announcements, 3(2):e00148–15, 2015.

47

BIBLIOGRAPHY 48

[9] Szymon M Kiełbasa, Raymond Wan, Kengo Sato, Paul Horton, and Martin C
Frith. Adaptive seeds tame genomic sequence comparison. Genome research,
21(3):487–493, 2011.

[10] Eugene V. Koonin. Orthologs, paralogs, and evolutionary genomics 1, December
2005.

[11] Mathieu Lajoie, Denis Bertrand, and Nadia El-Mabrouk. Inferring the evolution-
ary history of gene clusters from phylogenetic and gene order data. Molecular
biology and evolution, 27(4):761–772, 2010.

[12] Vincent J Lynch, Oscar C Bedoya-Reina, Aakrosh Ratan, Michael Sulak, Daniela I
Drautz-Moses, George H Perry, Webb Miller, and Stephan C Schuster. Elephantid
genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic.
Cell reports, 12(2):217–228, 2015.

[13] Ilia Minkin and Paul Medvedev. Scalable multiple whole-genome alignment and lo-
cally collinear block construction with SibeliaZ. Nature communications, 11(1):1–
11, 2020.

[14] Ilya Minkin, Anand Patel, Mikhail Kolmogorov, Nikolay Vyahhi, and Son Pham.
Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely
Related Microbial Genomes, pages 215–229. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[15] Kay Prüfer, Fernando Racimo, Nick Patterson, Flora Jay, Sriram Sankararaman,
Susanna Sawyer, Anja Heinze, Gabriel Renaud, Peter H Sudmant, Cesare De Fil-
ippo, et al. The complete genome sequence of a Neanderthal from the Altai
Mountains. Nature, 505(7481):43–49, 2014.

[16] Diego P Rubert, Fábio V Martinez, Jens Stoye, and Daniel Doerr. Analysis of local
genome rearrangement improves resolution of ancestral genomic maps in plants.
BMC genomics, 21(2):1–11, 2020.

[17] Martina Višňovská, Tomáš Vinař, and Broňa Brejová. DNA Sequence Segmenta-
tion Based on Local Similarity. In Tomáš Vinař, editor, Information Technologies
- Applications and Theory (ITAT), volume 1003 of CEUR-WS, pages 36–43, 2013.

Appendix

This thesis comes with digital attachment either published at same web page, or down-
loadable from web https://gitlab.com/simeunovic/atomization under name digi-
tal_attachment.zip.

It contains following folders and files:
Folder code contains code and scripts created by us, as well as other scripts created

by Višňovská et al. [17] and Brejová et al. [3] (sub-folders scripts-tina and scripts
respectively). Sub-folder git is a copy of the aforementioned git repository, and contains
scripts for ACS atomization plus a few extra scripts that are our reimplementation of
existing scripts.

We have three folders, one for each data set, inside them, we may find sub-folders
for each atomization run encoded by combination of L and source of alignment (lastal
\al for LAST and lastz \z for LASTZ). Inside we keep SibeliaZ atoms (*.sbz_atom),
IMP atoms (*.tatoms3) and ACS atoms (*.newdatoms4).

For UGT1A, we have also a folder with input fasta file, and created LASTZ
(ugt1a.fasta.psl) and LAST (ugt1a.fasta.2.psl) alignments. Folder ugt1a_stats con-
tains a file with basic statistics for each algorithm, L and alignment.

Similarly for plague, the sub-folder plague_stats contains basic statistics for combi-
nation of algorithm, L and alignment. Fasta file is not included due to size restrictions,
but the README file contains instructions for creation of the input fasta file.

For a simulated data set, we provide a folder with fastas and alignments, and two
folders with summed stats. One for LAST and one for LASTZ atomizations. Inside
are not basic statistics of atomizations, but files with BRM \BFM metrics for SibeliaZ
atoms (sbz_atom.*), IMP atoms (comp.*) and ACS atoms (newdat.*).

Each of the sub-folders with atomization also contains Makefile that was used to
create contained atomization. Due to restructuring of folders, it is no longer working,
but provides an easy to follow outline of how to create atomization. Other than correct
paths, the correct alignment wrapper has to be selected in a Makefile.

49

https://gitlab.com/simeunovic/atomization

Appendix 50

filtered none low score low score and shorter than minLen
minLen 13 25 63 125

Simulated
data set

LAST
count 643 643 643 643 643 629
median 2272 2272 2272 2272 2272 2339
mean 6521 6521 6521 6521 6521 6670

LASTZ
count 502 502 502 502 499 488
median 2904 2907 2907 2907 2950 3031
mean 8363 8366 8366 8366 8413 8603

UGT1A

LAST
count 2444 1469 1469 1469 1469 1321
median 472 744 744 744 744 968
mean 1089 1461 1461 1461 1461 1613

LASTZ
count 2300 942 942 942 890 830
median 764 1132.5 1132.5 1132.5 1336 1832.5
mean 1502 2535 2535 2535 2680 2868

Plague

LAST
count 153051 131038 131038 131038 131038 118928
median 375 711 711 711 711 715
mean 929 1031 1031 1031 1031 1126

LASTZ
count 283842 161089 161089 161089 149479 125254
median 166 196 196 196 220 715
mean 587 864 864 864 927 1088

Table 3.6: Basic statistics of alignments produced by LAST and LASTZ for each data
set. Number of alignments, their median and mean length are presented. First two
columns contain statistics for all unfiltered alignments, and alignments where only
those with low score were filtered out, however no atomization was created from the
set of alignments filtered this way. Last four columns correspond to alignments used
for atomization with L = [50, 100, 250, 500] as we are filtering alignments shorter than
L/4. For sample data set, number of alignments is average of all ten included data
sets.

	Introduction
	Background, related work and problems
	Basic biological terms and processes
	Evolution of DNA sequence
	Additional terms
	Local alignment
	Problem of atomization

	Related works
	Iterative homology mapping
	Segmentation problem
	Atom classification

	Alternative approach
	Genes as atoms
	Sibelia and SibeliaZ

	Usage of atoms
	Related problems

	Atomization
	Basic notation
	Atoms
	Formal definition of atomization

	Pseudoatomization
	Simple dynamic programming
	Algorithm speed-up
	Boundary neighborhood exploration

	Atomization
	Relevant pseudoatoms
	Splitting position
	Breaking rule 4
	Atomization algorithm
	Negative strand alignments

	Pre and post processing

	Experiments and results
	Methodology
	Quality measurements
	Data sets

	Atomization settings
	Results
	Simulated data
	UGT1A gene
	Plague genomes

	Conclusion

