
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Distilling the Knowledge of SlovakBERT
Diploma Thesis

2022
Bc. Ivan Agarský



ii



Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Distilling the Knowledge of SlovakBERT
Diploma Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: prof. Ing. Igor Farkaš, Dr.
Consultant: Mgr. Marek Šuppa

Bratislava, 2022
Bc. Ivan Agarský



iv



Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Ivan Agarsky
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Distilling the Knowledge of SlovakBERT
Destilácia znalostí modelu SlovakBERT

Anotácia: Veľké predtrénované jazykové modely sa stali štandardným základným
prvkom pre modely riešiace rôzne úlohy spracovania prirodzeného jazyka.
V posledných rokoch sa značná časť výskumu venovala ich prispôsobeniu
pre viacjazyčné prostredie, ako aj pre konkrétne jazyky, ako napríklad
SlovakBERT pre slovenčinu. Tieto modely sú však vo všeobecnosti veľké,
čo ich robí neuplatniteľnými pre praktické aplikácie. Jedným z prístupov
znižovania veľkosti modelu je destilácia znalostí, ktorá priniesla priaznivé
výsledky pre anglické modely, ale nebola extenzívne testovaná pre iné jazyky.
Cieľom tejto práce je preskúmať jej aplikáciu na model SlovakBERT so
zameraním na zmenšenie jeho veľkosti a minimálnym dopadom na jeho výkon.

Cieľ: 1) Preskúmajte súčasný stav v oblasti destilácie znalostí veľkých
predtrénovaných jazykových modelov. 2) Navrhnite, implementujte
a vyhodnoťte prístup k destilácii znalostí pre model SlovakBERT.

Literatúra: Pikuliak, Matúš, et al. SlovakBERT: Slovak Masked Language Model.
arXiv:2109.15254 (2021).
Sanh, Victor, et al. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter." arXiv:1910.01108 (2019).
Goldberg, Y. (2017). Neural network methods for natural language processing.
Synthesis lectures on human language technologies, 10(1), 1-309.

Vedúci: prof. Ing. Igor Farkaš, Dr.
Konzultant: Mgr. Marek Šuppa
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 16.09.2021

Dátum schválenia: 21.09.2021 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce



vi

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Ivan Agarsky
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Distilling the Knowledge of SlovakBERT

Annotation: Large pre-trained language models have become a standard building block for
models tackling various Natural Language Processing (NLP) tasks. In the recent
years, a significant body of research has been devoted to adapting them to
the multilingual setting, as well as for specific languages, such as for instance
the SlovakBERT model for the Slovak language. These models, however, are
generally large in size, rendering them unfeasible for practical applications. One
of the approaches of decreasing the model size is knowledge distillation, which
has yielded favorable results for English models but has not been extensively
tested for other languages. This thesis aims to investigate its application on
the SlovakBERT model, with the intent to decrease its size while minimally
affecting its performance.

Aim: 1) Review the current state of the art of knowledge distillation of large pre-
trained language models. 2) Propose, implement and evaluate a knowledge
distillation approach for the SlovakBERT model.

Literature: Pikuliak, Matúš, et al. SlovakBERT: Slovak Masked Language Model.
arXiv:2109.15254 (2021).
Sanh, Victor, et al. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter." arXiv:1910.01108 (2019).
Goldberg, Y. (2017). Neural network methods for natural language processing.
Synthesis lectures on human language technologies, 10(1), 1-309.

Supervisor: prof. Ing. Igor Farkaš, Dr.
Consultant: Mgr. Marek Šuppa
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 16.09.2021

Approved: 21.09.2021 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor



v

Acknowledgements: I wish to express my gratitude to my consultant Marek for
his valuable help and time devoted to guiding me through the makings of this thesis.
My thanks also go to my supervisor prof. Farkaš for his helpful remarks and text
reviews.



vi

Abstrakt

Hlboké neurónové siete sa stali úspešným prístupom k modelovaniu prirodzeného jazyka.
Presnosť modelov má tendenciu rásť s veľkosťou siete. Jazykové modely stále vyžadujú
viac a viac pamäte na trénovanie a používanie. Do centra pozornosti výskumnej komu-
nity sa dostala technika na zmenšenie veľkosti neurónovej siete pri zachovaní takmer
celého jej výkonu, nazývaná znalostná destilácia.

V práci sa zaoberáme jazykovo špecifickou destiláciu znalostí a ukazujeme, že je
to životaschopná technika na zníženie veľkosti modelu pri zachovaní takmer celej jeho
presnosti. Destilované modely hodnotíme na štyroch úlohách na porozumenie jazyka,
z ktorých niektoré sú strojovo preložené do slovenčiny, a to STS a BoolQ. Okrem toho
sme ukázali, že spriemerňovanie logitov a skrytých stavov pri vykonávaní destilácie
vedomostí od viacerých učiteľov, ktorí videli rovnaký súbor údajov o školení, neposky-
tuje výhodu študentskému modelu. Naše destilované modely dosahujú 91% až 99%
presnosti pôvodného modelu, pričom majú o 46% menej parametrov.

Kľúčové slová: destilácia znalostí, BERT, slovenčina
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Abstract

Deep neural networks have become a successful approach to natural language modeling.
Model accuracy tends to increase with network size. The language models require more
and more memory to train and use. A focus on reducing the size of the neural network
while maintaining almost all of its performance, called knowledge distillation, has come
to the forefront of the research community.

In this work we deal with language-specific knowledge distillation and show that it
is a viable technique for reducing the size of the model while maintaining almost all
its accuracy. We evaluate distilled models on four language understanding tasks, some
of which are machine-translated into Slovak, namely STS and BoolQ. In addition, we
show that averaging logits and hidden states when performing knowledge distillation
from multiple teachers, who have seen the same set of training data, does not provide
an advantage to the student model. Our distilled models achieve from 91% to 99%
accuracy of the original model, but have 46% fewer parameters.

Keywords: knowledge distillation, BERT, Slovak language
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Chapter 1

Introduction

Supervised deep neural network training in most cases requires a significantly large
dataset. Collecting or generating such datasets for specific Natural Language Process-
ing (NLP) tasks can be expensive and non-practical. Problems with creating large
enough datasets made researchers find ways for improving language model perfor-
mance, besides increasing dataset size. Unsupervised pre-training of large language
models demonstrated a significant increase in performance across all NLP tasks and
presented itself as a viable alternative to the need for creating large datasets for ev-
ery specific task. The process of adapting a pre-trained language model to a specific
task is called fine-tuning. These specific tasks are also called downstream tasks. Large
pre-trained language models like BERT and GPT caused a rise in interest in natu-
ral language processing and understanding (Brown et al., 2020; Devlin et al., 2019).
Lately, researchers devoted significant time to creating multilingual models, as well as
models for specific non-English languages, such as SlovakBERT (Pikuliak et al., 2021).
It has been shown that increasing the model size and adding additional layers positively
influences model performance across all downstream tasks. This creates problems with
model practicality, especially on mobile and edge devices. The most recent largest
models are unusable even on high-end PCs, due to a large number of parameters and
long inference time.

Recently, knowledge distillation was shown to be a viable approach to decreasing
model size while retaining nearly all of its performance (Gou et al., 2021; Sanh et
al., 2020). Decreasing the model size automatically decreases its inference time, too.
Knowledge distillation yielded favourable results for English models but has not been
extensively tested for other languages. We aim to apply this method to the SlovakBERT
model and experiment with various modifications to the distillation setup, including
distillation with multiple teachers. Additionally, we evaluate the distilled models on
four downstream tasks which to some extent require language understanding. Two of
the tasks are fine-tuned on a machine-translated dataset.

1



2 CHAPTER 1. INTRODUCTION

This thesis is split into four main parts. Chapter Preliminaries introduces language
modelling, briefly describes neural networks and presents an established text vector
representation called word embedding. Chapter Related work presents an overview
of modern language modelling using deep neural networks, knowledge distillation and
evaluation of language models. Chapter Proposed solution describes in detail the con-
ducted experiments and datasets used. Finally, chapter Results presents and compares
the results of the conducted experiments. Some ideas for further work can be found in
the Conclusion chapter.



Chapter 2

Preliminaries

For the purposes of this thesis, any human language can be considered a natural
language, excluding programming languages. Constructed languages, such as Es-
peranto (Korzhenkov, 2010), can also be considered natural languages for the purposes
of natural language processing.

2.1 Language model

A language model is constructed by assigning probabilities to either every sentence or
every sequence of tokens. Tokens can be words, characters or bytes. The language
model also assigns a probability for the likelihood of a given word following a sequence
of words. If we denote a sentence with w then its probability is the probability of all
words wi in that sentence appearing in that order:

P (w) = P (w1, w2, . . . , wk) (2.1)

The most straightforward way to make a language model for any natural language
would be to assign probabilities to sentences based on the number of occurrences in
the whole available corpus:

P (w) =
#(w)

S
(2.2)

where S is the number of sentences in the whole corpus. With infinite data, this
language model would be "correct" — but in practice, this model needs to calculate
the probabilities for every possible sentence, while drawing from a limited corpus. To
make language models more practical, n-gram models introduce a simplification.
Instead of looking at the whole sequence when assigning likelihood for the next word
(or a sequence of words) they consider only the last n− 1 words :

P (wk | wk−1, . . . , w1) ≈ P (wk | wk−1, . . . , wk−n+1) (2.3)

3
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A bigram (2-gram) language model would calculate the probability of a three-token
sequence in the following way:

P (w1, w2, w3) = P (w1 | START ) · P (w2 | w1) · P (w3 | w2) · P (END | w3) (2.4)

With a small n, the model will fail to capture longer sentence-spanning contexts. Large
n will perform better, but will also demand exponentially more data.

N-gram models are used to predict the next word in a sequence. A straightforward
way to assign a probability to the last token in a sequence is to count the number of
sequences in the corpus containing the same beginning with and without that specific
token at the end and divide them:

P (w3 | w1, w2) =
P (w1, w2, w3)

P (w1, w2)
(2.5)

Finally, we choose the token with the highest probability. This simple method can fail
when the denominator is zero. We can alleviate this problem by introducing smoothing
to the probability distribution. The simplest way is to add one to the number of
occurrences of every possible combination of tokens. This smoothing is called Laplace
smoothing.

2.2 Word embedding

In order to better represent textual data inside a computer, a common strategy is to
assign vector representation to each word. A word-to-vector mapping is called a word
embedding. The simplest maps are one-hot vectors which for ith word in the vocabulary
contain one in ith dimension and zeros otherwise. It is easily seen that the distances
between all words in the dictionary produced by this word-to-vector map are equal to
√

2. This is problematic because we want to be able to detect similar words by looking
at their vectors. One way to check if vectors of semantically similar words are mapped
closer to each other than dissimilar words is to calculate cosine similarity as shown
below:

cos(x,y) =
xT · y
‖x‖ · ‖y‖

(2.6)

where ‖x‖ represents the Euclidean norm of the real-valued vector x = (x1, x2, . . . , xn),
defined as

√
x21 + x22 + · · ·+ x2n.

The following Python code snippet demonstrates cosine similarity for embedded
vectors1:

pr in t ( king . s im i l a r i t y ( banana ) ) # 0.2175
pr in t ( king . s im i l a r i t y (man) ) # 0.4088

1Using spacy library (Honnibal & Montani, 2017)
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pr in t ( king . s im i l a r i t y ( emperor ) ) # 0.5809
pr in t ( king . s im i l a r i t y ( king ) ) # 1.0

Arithmetic operations can be applied to embedded vectors, to some extent, as can be
seen in the following example:

v = king . vec to r − man . vec to r + woman . vec to r
torch_v = torch . FloatTensor ( v )
torch_queen = torch . FloatTensor ( queen . vec to r )
r e s u l t = co s i n e_s im i l a r i t y ( torch_v , torch_queen , dim=0)
p r in t ( r e s u l t ) # 0.7881

where the vector "king − man + woman" is semantically similar to the vector "queen".
The example was taken from (Mikolov, Yih, et al., 2013). On the other hand, a similar
example using the words bookkeeper, book and keeper does not produce the same result.

v = bookkeeper . vec to r − book . vec to r
torch_v = torch . FloatTensor ( v )
torch_keeper = torch . FloatTensor ( keeper . vec to r )
r e s u l t = co s i n e_s im i l a r i t y ( torch_v , torch_keeper , dim=0)
p r in t ( r e s u l t ) # 0.0597

Although this may be an issue with the library used, there are limitations to apply-
ing arithmetic operations to embedded vectors due to some words having multiple
meanings.

One of the earliest methods for constructing word embedding was counting word co-
occurrences (Lund & Burgess, 1996). A matrix N is constructed such that Nij equals
to number of times word wi appears near wj in a L-sized window. Word vector is then
simply the row/column of the matrix with the appropriate index. Early topic models,
such as LSA (Deerwester et al., 1990), were assigning vectors to whole documents,
which were then compared using cosine similarity to measure the similarity of their
contents.

2.2.1 Word2Vec

Word embeddings, such as Word2Vec, construct real-valued and high-dimensional vec-
tors of semantically similar words that are close together in vector space (Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). Word2Vec achieves this by en-
coding information about the context of the word inside its vector representation. The
context of a word is the words appearing in a fixed-size window around the target word.
Word2Vec algorithm has two variants: Skip-grams (SG) and Continous Bag of Words
(CBOW). SG is an iterative algorithm which can predict the context of a word. It
builds a probability distribution over words in the vocabulary. It can be summarised
as follows:
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1. slide a fixed-size window centred at every word in the text corpus

2. compute probabilities of context words for the current central word

3. adjust the word vectors to increase these probabilities

More specifically, we maximize the following function:

J ′(θ) =
T∏
t=1

∏
−m≤j≤m

j 6=0

P (wt+j | wt;θ) (2.7)

where T is the corpus, m is the sliding window and θ are the parameters of the model.
i.e. the word vectors. This objective function is more commonly rewritten as the
average negative log-likelihood of the original function:

J(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

logP (wt+j | wt;θ) (2.8)

Probabilities are computed by applying the softmax function on the dot-product of
word vectors of central and context words. The Word2Vec model usually has two
vectors for every word, one when the word is in the centre and one when it is outside
the centre. Therefore the probability calculation looks as follows:

P (wt+j | wt) =
exp(uTwt+j

· vwt)∑v
z=1 exp(uTz · vwt)

(2.9)

The objective function is optimized by using gradient descent. When the optimization
finishes, we usually throw away the context vectors and use only central word vectors.
This allows us to arrive at word vectors which fulfill the similarity requirements for
word embedding. A modification of SG that causes much faster training is called
negative sampling. It does not update every context word vector in each step, but only
a randomly chosen subset of a fixed size. The CBOW variant of Word2Vec is similar,
albeit it optimizes for predicting the central word based on context words.

2.2.2 GloVe

Skip-gram model contains an inherent downside. It trains only on local context win-
dows, therefore poorly utilizes the statistics of the corpus and global co-occurrence
counts. A new model, called Global Vectors (GloVE), was proposed to fix this down-
side (Pennington et al., 2014). This model combines prediction methods, such as
Word2Vec, with count-based methods, such as simple co-occurrence counts. The au-
thors propose optimizing the following function:

J(θ) =
∑

wi,wj∈V

f(Nij) · (uTwj
· vwi

+ bwj
+ bwi

− logNij)
2 (2.10)
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Figure 2.1: The weighting function used in GloVE model.

where V is the vocabulary, N is the co-occurrence matrix, bwi
and bwj

are bias terms,
and f is a weighting function that penalizes rare events and prevents frequent events
from over-weighting. The weighting function is defined in parts as follows:

f(x) =


(

x
xmax

)α
if x > xmax

1 otherwise
(2.11)

where xmax and α are hyper-parameters usually set to 100 and 0.75, respectively. The
weighting function with the most common hyper-parameters is shown in Figure 2.1.

2.3 Neural networks

A neural network is a powerful model which can approximate any real continuous
function. Suppose a continuous function f : Rn → R and the desired accuracy ε > 0 is
given, then we are guaranteed, by the universal approximation theorem (Hornik et al.,
1989), that there exists a neural network whose output g(x) satisfies |g(x)−f(x)| < ε,
for all inputs x.

The simplest neural network is the single-layer perceptron, which contains just the
input and the output neurons. Single-layer perceptron was shown to be incapable of
learning some functions, such as XOR (Minsky & Papert, 1969). On the other hand,
a perceptron with a hidden layer, which is a layer between the input and the output
layer, could approximate any function f from the universal approximation theorem
to arbitrary precision, albeit with a potentially very large number of neurons in the
hidden layer. The number of layers in a neural network is considered to be its depth.
The number of neurons in a layer is considered to be the layer width.

The most common type of neural network is the fully-connected feed-forward neural
network. The fully-connected network consists of fully-connected layers, which contain
connections between each neuron from the previous layer and the neurons from the
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Figure 2.2: Common activation functions. From left to right: The sigmoid, The Rec-
tified Linear Unit (ReLU), The Exponential Linear Unit (ELU).

current layer. Feed-forward networks do not contain a cycle in the graph that the
network connections make. Each neuron contains an activation function, which is
applied to the combined inputs entering the neuron. The fully-connected layer can be
mathematically modelled with a weight matrix W , a bias term b and an activation
function f :

y = f(W · x+ b) (2.12)

The most common activation functions are S-shaped logistic functions:

f(x) =
L

1 + exp(−k(x− x0))
(2.13)

where x0 is the location of midpoint, L is the function’s maximum and k is its steepness.
The most common logistic function is the sigmoid with L = 1, k = 1, x0 = 0. Common
activation functions are shown in Figure 2.2.

Changing the weights of the neural network to better approximate a given loss
function (objective) is called training of the network. Networks are usually trained
through an algorithm called backpropagation (Rumelhart et al., 1986). While training
the network, the loss function is continuously evaluated, its gradient is calculated and
the parameters of the network are updated using the backpropagation algorithm. This
operation can be written as

θ = θ − α∇θJ(θ) (2.14)

where θ are the network parameters, α is the learning rate and ∇θJ(θ) is the gradient
of the loss function w.r.t. the parameters θ. In this process, the parameters θ are
moving in the opposite direction of the gradient, therefore moving closer to the local
minima of the parameter space. This is called gradient descent.

Calculating the gradient for a large dataset can be very expensive. A modification
of the original algorithm in which we calculate the gradient for either every example
separately or a randomly drawn batch of examples is called stochastic gradient descent
(SGD). This is the most common learning algorithm for neural networks. The batch
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size can be a very important hyperparameter for the training process. A large batch
size might not fit into memory, but we can simulate a large batch size by doing gradient
accumulation. Instead of updating the parameters of the model after every batch, we
instead do an update every n batches. This technique can be useful in situations with
limited resources.

One pass through every example in the dataset is called a training epoch. Most
neural networks require multiple epochs to learn to approximate the desired function.
The learning rate is usually changed during the training, depending on the epoch or
closeness to the local minimum point of the parameter space. Sometimes the update of
the parameters can be too large, therefore preventing us from reaching the minimum
point. This can be resolved by doing gradient norm scaling, which is a method that
rescales the values of the gradient if the gradient norm exceeds a given threshold.

Choosing the right loss function for the neural network is very important. Three
loss functions will be mentioned in this work: cross-entropy, KL divergence and cosine
embedding. Cross entropy is a loss function suitable for classification tasks. For n-class
problem it is defined as:

LCE = −
n∑
i=1

ti log(si) (2.15)

where t = (t1, t2, . . . , tn) is the ground truth and s = (s1, s2, . . . , sn) is the network
output for the ith example. Kullback–Leibler (KL) divergence measures how much is
a probability distribution Q different from a reference probability distribution P :

LKL(P || Q) =
n∑
i

(pi log pi − pi log qi) (2.16)

where Q is the ground truth distribution and P is the model output distribution.
This loss function is used when comparing two output token probability distributions
from two language models. Cosine embedding loss measures whether two given vectors
x1 and x2 that should be similar/dissimilar are actually similar/dissimilar. This is
measured using cosine similarity:

LEMB =

1− cos(x1, x2), if they should be similar

max(0, cos(x1, x2)) if they should be dissimilar
(2.17)

When optimizing loss functions we can encounter highly non-convex parameter spaces
that can prevent us from easily finding the minimum point. Various modifications
of SGD, such as Adam (Kingma & Ba, 2014), improve its convergence speed and
behaviour in saddle points and flat surfaces.

The adaptive moment estimation (Adam) is an optimization method which adap-
tively sets the learning rate for each parameter. It accumulates exponentially decaying
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average of past gradients and squared gradients:

mt = β1mt−1 + (1− β1)∇θJ(θ) (2.18)

vt = β2vt−1 + (1− β2)∇2
θJ(θ) (2.19)

where β1 and β2 are the hyperparameters of the Adam optimizer usually set to 0.9 and
0.999, respectively. The final update rule is

θt+1 = θt −
α√
vt

1−βt
2

+ ε
· mt

1− βt1
(2.20)

where α is the learning rate and ε is the third hyperparameter usually set a very small
value, such as 1 · 10−7. The Adam algorithm has become the default choice for most
researchers.



Chapter 3

Related work

In this chapter, we look at language modelling using deep neural networks. We explain
how the attention layer in the Transformer (Vaswani et al., 2017) works. Various
BERT (Devlin et al., 2019) variants are described, including SlovakBERT (Pikuliak
et al., 2021). Several approaches to knowledge distillation are presented. Finally, we
touch upon the modern evaluation of language models.

3.1 Recurrent neural networks

Natural language consists of letters, words, sentences and higher-level units such as
documents. Ordering of letters in a word, words in a sentence and sentences in a
document is very important. Ideally, we would want a neural network to be able to
remember some short-term or even long-term dependencies in text.

Early recurrent neural networks (RNNs), like simple recurrent networks (Elman,
1990), were shown to be computationally stronger than standard multilayer perceptrons
because they can have a representation of a state, making them sensitive to sequential
information. The output of these networks is affected by all previous inputs, in theory.
In practice, training early RNNs with backpropagation proved to be computationally
difficult due to vanishing or exploding gradients that occurred only in tasks with long-
term dependencies. This is caused by the multiplicative nature of the backpropagation
algorithm.

3.1.1 LSTM

A new RNN architecture called Long short-term memory (LSTM) was introduced by
Hochreiter and Schmidhuber (1997) to solve the vanishing gradient problem. However,
it can still suffer from the exploding gradient problem. LSTM architecture is used
in time series prediction, speech recognition, handwriting recognition and many other
applications.

11
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Figure 3.1: Unfolded LSTM network.
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Figure 3.2: LSTM inner structure.

LSTM introduces a more complex inner structure, consisting of the forget gate, the
input gate, the output gate and the cell state. The cell state at time t is denoted by
ct. Input and output at time t are denoted by xt and ht respectively. An unfolded
LSTM network is depicted in Figure 3.1. Each input can change the cell state, therefore
affecting subsequent outputs.

The forget gate determines how much of the previous cell state to consider for the
current input. Result ft of the forget gate, which operates on the concatenation of the
current input and previous output, is multiplied by the previous cell state.

ft = σ(Wf · (ht−1,xt) + bf ) (3.1)

The input gate determines how the current input changes the cell state. The cell
state is then calculated by summing the adjusted previous cell state and the change
introduced by the input gate.

ct = ft � ct−1 + ∆ct (3.2)

it = σ(Wi · (ht−1,xt) + bi) (3.3)

c′t = tanh(Wc · (ht−1,xt) + bc) (3.4)

∆ct = it � c′t (3.5)

The output gate calculates what the network will output at a specified time t. It
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combines the cell state with concatenated previous output and the current input.

ot = σ(Wo · (ht−1,xt) + bo) (3.6)

ht = ot � tanh(ct) (3.7)

LSTM inner structure is depicted in Figure 3.2. For many years LSTM architecture
was the best performing architecture for natural language processing, until the arrival
of the Transformer architecture (Vaswani et al., 2017).

3.2 The Transformer

Recurrent models have a fundamental constraint of having sequential inference. This
prevents the parallelization of the training process, which is desirable for proper scal-
ing. The Transformer architecture was proposed by (Vaswani et al., 2017) to enable
parallelization. The Transformer is a sequence-to-sequence model using multi-head self-
attention without recurrent or convolutional layers. The Transformer uses an encoder-
decoder structure. Both encoder and decoder stacks are composed of 6 identical layers.
This is shown in Figure 3.3, where N is the number of encoder and decoder layers.

Each encoder layer consists of a multi-head self-attention mechanism and a fully
connected feed-forward network. There are residual connections which speed up the
training around both sublayers followed by layer normalization. Each decoder layer uses
an additional sublayer for the encoder output. The self-attention sublayer is modified
so that it does not refer to future outputs.

BiLingual evaluation understudy (BLEU) (Papineni et al., 2002) is a way to calcu-
late the quality of a machine-translated text. The Transformer was shown to outper-
form previous sequence-to-sequence models on machine translation tasks by more than
2 BLEU percentage points while being trained faster than previous models (Vaswani
et al., 2017), which was a significant achievement at that time.

3.2.1 Attention

In the basic encoder-decoder architecture, the encoder produces a fixed-length vector
which the decoder uses to produce an output sequence. Since fixed-length representa-
tion is a bottleneck in this architecture, by allowing the model to focus on parts of the
input relevant to predicting the target output, without explicitly constructing them,
this bottleneck is mitigated. This is called attention, as first introduced by Bahdanau
et al. (2014).

Attention mechanism at a step t uses all encoder outputs x1,x2, . . .,xn and the
current decoder output yt to calculate the next decoder output yt+1. It first calculates
attention scores for every xi with respect to the yt: score(yt,xi), i = {1, . . . , n}. This
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Figure 3.3: The Transformer architecture (Vaswani et al., 2017).

score is used to calculate attention weight wi for the corresponding xi using the softmax
function across all encoder outputs:

wi =
exp(score(yt,xi))∑n
k=1 exp(score(yt,xk))

(3.8)

The final attention output is a weighted sum of the encoder outputs and the corre-
sponding attention weights:

yi =
n∑
i=1

wixi (3.9)

The score function doesn’t have to be a specific one. Multiple score functions are used
in the literature. Bahdanau et al. (2014) used a multi-layer perceptron. Luong et al.
(2015) used a bilinear function. The authors of the Transformer (Vaswani et al., 2017)
used a simpler method — the scaled dot-product.

The Transformer additionally uses self-attention between each encoder and decoder
layer. Self-attention is a mechanism in which each token looks at other tokens to update
its weight based on their relevance. The current asking token is called a query. Other
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tokens produce a key–value pair each. The key is used to calculate the weight of
the corresponding token. The value is used to update the asking token based on the
weights. Query, key and value are assigned by computing three linear transformations
on n tokens:

qi = Wqxi (3.10)

ki = Wkxi (3.11)

vi = Wvxi (3.12)

where i = {1, . . . , n}, Wq,Wk,Wv ∈ R d
h
×d, xi ∈ Rd, d is the dimensionality of token

embedding and h is the number of attention heads. Dot-product self-attention for
output token yi is then computed as follows:

wi = softmax(qTi ki) (3.13)

yi = wivi (3.14)

The result is a token representation yi ∈ R d
h . The authors of the Transformer addi-

tionally scale the dot-product by dividing it with the square root of the embedding
dimension, because they suspect it helps push the softmax out of extremely small
gradients. This division on average compensates for the increase in length produced
by added dimensions, as it is known that a unit vector of dimension d has a Euclidean
norm

√
d. The scaled dot-product self-attention can be efficiently implemented using

matrix multiplication by packing all queries, keys and values to matrices.
Multi-head attention (MHA) concatenates the output of each attention head. The

output is then projected through a feed-forward layer back to a vector with d dimen-
sions:

z = Concat(y1, . . . ,yh)
TWo (3.15)

where z ∈ Rd is the output of the Transformer block and Wo ∈ Rd×d is the weight
matrix of the feed-forward layer (Vaswani et al., 2017). Further experiments with multi-
head attention were conducted by Voita et al. (2019). They discovered that attention
heads played interpretable roles within the model. They were either positional heads,
syntactic heads (shown in Figure 3.4) or rare token heads. With a larger number of
heads, some heads became less useful and could be removed without noticeably affecting
the accuracy of the model. A similar multi-head analysis was conducted by Michel et
al. (2019). They have similarly concluded that a large amount of heads is redundant.
In some cases, one attention head was enough.

3.2.2 Positional encoding

Since neither recurrence nor convolution is present in the model, position information
must be added alongside input of both encoder and decoder stack. The positional
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Figure 3.4: A visualization of weights inside a syntactic attention head detecting
subject-verb relationship. Taken from Voita et al. (2019).

encodings have the same dimension as the embeddings and are summed with them as
shown in Figure 3.3. The authors used sine and cosine in the following way:

PEpos,2i = sin

(
pos

10000
2i
d

)
(3.16)

PEpos,2i+1 = cos

(
pos

10000
2i
d

)
(3.17)

where pos is the position and i is the dimension. Learned positional embeddings were
also explored, but yielded comparable results. The authors chose the sinusoidal version
"because it may allow the model to extrapolate to sequence lengths longer than the
ones encountered during training" (Vaswani et al., 2017).

3.3 GPT

Researchers at OpenAI combined unsupervised generative pre-training (GPT) with the
Transformer (Radford et al., 2018). Unsupervised pre-training creates a generalized
language model, which is then fine-tuned to a specific task using supervised learning.
Pre-training is done on a large and diverse corpus to allow the model to collect highly
accurate statistical information from language. This allows models to scale as labelling
data is a time consuming and expensive process. During unsupervised pre-training on
a corpus U = {u1, . . . un}, the objective is to maximize the likelihood of predicting the
next token based on k tokens before it:

L(U) =
n∑
i

logP (ui|ui−k, . . . , ui−1;θ) (3.18)

where θ is the parameters of the neural network. GPT neural network is made up of
12 blocks of decoder-only transformers with masked self-attention heads. Authors ex-
changed ReLU for Gaussian Error Linear Unit (GELU) activation function (Hendrycks
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Figure 3.5: Comparison of ReLU and GELU activation functions.

& Gimpel, 2016). GELU is defined as xΦ(x), where Φ(x) is the standard Gaussian
cumulative distribution function. Their differences are shown in Figure 3.5.

Some of the datasets for natural language understanding tasks that were used to
evaluate the model include Story Cloze (Mostafazadeh et al., 2016), Reading Compre-
hension dataset from Examinations (RACE) (Lai et al., 2017), MultiNLI (Williams
et al., 2018) and other GLUE (Wang et al., 2018) datasets. Ablation studies showed
that lack of pre-training hinders performance across all studied tasks.

The follow-up research showed that high-capacity models like GPT-2 are capa-
ble of state-of-the-art performance on downstream tasks without explicit supervised
fine-tuning (so-called zero-shot performance) (Radford et al., 2019). However, GPT-2
zero-shot performance is not satisfactory for real-world problems. By applying further
scaling of these models, researchers managed to achieve close to human-level news arti-
cle generation using GPT-3 (Brown et al., 2020). GPT-3 was later fine-tuned for book
summarization using a combination of recursive summarization with human feedback,
which yielded sensible summaries of entire books, sometimes matching human-level
performance (5% of the books) (Wu et al., 2021).

3.4 BERT

BERT (shorthand for Bidirectional Encoder Representations from Transformers) is a
language representation model introduced by (Devlin et al., 2019). The architecture
consists of a stack of encoder-only transformer blocks. The input is modified by intro-
ducing special tokens [CLS], [SEP] and [PAD]. [CLS] token is used as a beginning of a
sequence, [SEP] is used to separate sentences and [PAD] token is used to optionally pad
the input to the batch length. The authors describe two BERT models: BERTBASE
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and BERTLARGE. BERTBASE has 12 transformer blocks and 12 attention heads and is
similar in size to GPT. BERTLARGE has 24 transformer blocks and 16 attention heads.
BERT uses GELU activation function.

Training BERT is similar to training GPT. It is done through unsupervised pre-
training and supervised fine-tuning. The transformer stack is pre-trained on a large
wide-domain corpus. Pre-training takes an input sequence, masks out some words
using the [MASK] token (usually 15% of the words) and asks the model to predict the
masked out words. This way the model is forced to learn the representations for every
word in the sequence in a bidirectional context. The authors refer to this process as
masked language modelling (MLM) (Devlin et al., 2019). Using a pre-trained model
for mask language modelling is very simple. A code snippet is shown in Listing 3.1.

from trans fo rmer s import p i p e l i n e

model = p i p e l i n e ( ’ f i l l −mask ’ , model=’ bert−l a rge−uncased ’ )
p r e d i c t i o n s = model ( "The i n c i d en t happened i n s i d e the [MASK] . " )
f o r p r ed i c t i on in p r e d i c t i o n s :

p r i n t ( p r ed i c t i on [ ’ token_str ’ ] + ’ : ’ + s t r ( p r ed i c t i on [ ’ s c o r e ’ ] ) )

Listing 3.1: A simple input with one masked word for BERTLARGE model.

BERTLARGE predicts that the masked word in the sentence "The incident happened
inside the [MASK]" is one of the words shown with their probability scores in List-
ing 3.2.

church : 0.1105656549334526
bu i l d i ng : 0.08972711116075516
house : 0 .07968667894601822
schoo l : 0 .0639437660574913
ho t e l : 0 .026174457743763924

Listing 3.2: Output of the BERTLARGE model.

Additionally, pre-training does a second task called next sentence prediction (NSP) (De-
vlin et al., 2019) to improve the model’s ability to understand the relationship between
sentences. When choosing two sentences for each pre-training input, half of the pairs
won’t be neighbouring sentences, but sentences chosen at random. The model is then
asked to predict whether the sentence pair is neighbouring or random.

Goldberg (2019) analysed the syntactic abilities of the BERT model and determined
that it captures the hierarchy-sensitive dependencies and syntactic dependencies very
well. Based on previous analysis, Goldberg concluded that BERT did not overly rely
on memorising the training data and is instead doing real syntactic generalization.

The pre-trained BERT is good at filling masked words in a sentence. To use this
model for other tasks such as token classification, question answering, translation,
summarization, text generation and others, the model is fine-tuned on a dataset for



3.4. BERT 19

this task. After pre-training, a task-specific layer is added to the model and the whole
model is then fine-tuned for that specific task (Devlin et al., 2019).

Some authors argue that the BERTBASE is heavily overparametrised (Kovaleva et
al., 2019). This could explain why some lightweight BERT variants show good results.

3.4.1 BERT-like models

Various modifications of the original BERT model can be found in the literature. What
follows is a brief overview of a few of these models.

RoBERTa
Authors of RoBERTa (Liu et al., 2019) found that the original BERT was signifi-
cantly undertrained. They proposed a modified training process in which training is
longer, with increased batch size. They removed the NSP training task and dynam-
ically changed the masking pattern applied to the training data, which resulted in
state-of-the-art performance. The introduced modifications showed that MLM-only
pre-training can be competitive with other methods. Instead of performing masking
once during data preprocessing (static masking) RoBERTa approach generates mask-
ing each time sequence is fed to the model. The results showed that dynamic masking
is comparable to or slightly better than static masking (Liu et al., 2019).

ALBERT
Two techniques for parameter reduction were proposed by Lan et al. (2020) to decrease
the memory needs of BERT and speed up the training. Both BERT and RoBERTa
have matching sizes of WordPiece embedding E and hidden layer H. With a large
vocabulary size V , the embedding matrix, which has size V × E (V × H), increases
too and causes most of the weights to be updated only rarely during training. The au-
thors reduce the embedding parameters by decomposing a matrix of size V ×H to two
matrices of size V ×E and E ×H. This reduction becomes meaningful when H � E.
They call this technique factorized embedding parameterization. The second parameter
reduction technique is to share all parameters across layers. The authors compared the
results with Deep Equilibrium Models, which have similar parameter sharing, but the
results differed as input and output embedding of a certain layer in ALBERT didn’t
converge (Bai et al., 2019; Lan et al., 2020). The authors also introduce an alternative
for the NSP task called sentence-order prediction (SOP) in which the model needs to
predict if two given sentences are in the correct order.

BART
The authors of BART (Lewis et al., 2019) introduced a BERT modified to be a de-
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noising autoencoder which reconstructs corrupted text. In addition to token masking,
BART is pre-trained on four new pre-training tasks: token deletion, text infilling, sen-
tence permutation and document rotation. In token deletion, some tokens are randomly
deleted and the model needs to correctly predict which tokens are missing and where
to fill them in. Text infilling entails masking of a span (multiple tokens), therefore
teaching the model to fill in more tokens when necessary. Sentences in a document are
randomly permuted in sentence permutation, forcing the model to learn to detect this.
Finally, document rotation entails finding the original beginning in a rotated document,
i.e. document beginning with a chosen random token from the document. The authors
conclude that token masking and token deletion are the most important pre-training
tasks. BART was shown to perform similar to RoBERTa on discriminative tasks, but
was better at a number of text generation tasks (Lewis et al., 2019).

3.5 SlovakBERT

SlovakBERT is one of the first two Slovak-only models trained on a large corpus that
appeared in September 2021 (the other being FERNET-cc_sk) (Lehečka & Švec, 2021;
Pikuliak et al., 2021). The model has RoBERTa architecture and was trained on an
undisclosedWeb-crawled corpus. The corpus consists of Wikipedia text, Open Subtitles
and OSCAR corpus (5.3 GB in total from public datasets). Additionally, crawled
Slovak webpages stripped of HTML tags were added to the corpus. Post-processing and
deduplication yielded 19.35 GB of text. SlovakBERT uses a BPE tokenizer (for BPE
algorithm summary see Appendix A) and has a vocabulary consisting of 50264 tokens.
The authors evaluated SlovakBERT on 4 downstream tasks, namely part-of-speech
tagging, semantic textual similarity, sentiment analysis and document classification.
In all 4 downstream tasks SlovakBERT confirms or exceeds state-of-the-art results.

Part-of-speech (POS) tagging is a task to mark up words in a text as correspond-
ing to their particular part of speech. The dataset used for fine-tuning POS tagging was
the Slovak Dependency Treebank from the Universal Dependencies dataset (Nivre et
al., 2020). Probing the fine-tuned model showed that the morphosyntactic information
needed for POS tagging was located mainly in the middle part of the model.

Semantic textual similarity (STS) is a task in which semantic similarity between
pairs of sentences is measured. As no native Slovak STS dataset existed, the authors
translated English STS datasets, namely STSBenchmark (Cer et al., 2017), SICK
(Marelli et al., 2014), SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018).
They decided to use sentence embeddings with cosine similarity to assign a specific
semantic similarity value. Probing of the fine-tuned model showed that the last layers
were the best performing, unlike the POS fine-tuned model.
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Sentiment analysis is a task where a positive, neutral or negative label is assigned
to a given text based on its sentiment. The authors post-processed a Twitter dataset
(Mozetič et al., 2016) and used it to fine-tune the model. SlovakBERT was shown to
beat previous models on 3-class sentiment analysis on this dataset.

Document classification is a task where a document is assigned to one of the
6 news categories. To fine-tune the model, the authors used the Slovak Categorized
News corpus by (Hladek et al., 2014). SlovakBERT narrowly beats all previous models,
achieving the highest F1 score.

3.6 Knowledge distillation

It has been shown that large-scale deep models achieve great performance, however, it
is challenging to deploy these models on mobile and embedded devices due to compu-
tational complexity and storage requirements. Multiple compression and acceleration
techniques are used to alleviate these problems, one of them being knowledge distilla-
tion (KD) (Gou et al., 2021; Hinton et al., 2015). In knowledge distillation, a smaller
student model is supervised by a larger teacher model. The student model is forced to
mimic the teacher model in order to achieve similar results while having fewer param-
eters.

There are different types of knowledge that can be passed from the teacher model
to the student model. The most simple knowledge is the final output of the teacher
model. This type of knowledge is called response-based knowledge (Gou et al., 2021).
BERT uses a softmax output layer to convert the logit zi into a probability for that
token P (zi) by comparing zi with other logits:

P (zi) =
exp(zi/T )∑
j exp(zj/T )

(3.19)

Usually, the parameter T (called temperature) is set to 2. Higher values make the token
probability distribution softer (Hinton et al., 2015). The student model loss function
is usually a linear combination of the distillation loss LD and the standard student
loss L. More specifically, LD = LKL(P (zt), P (zs)), where LKL is Kullback-Leiber (KL)
divergence, zt are teacher logits and zs are student logits. The standard student loss
employs cross-entropy between the ground truth and the output probabilities of the
student model: L = LCE(y, P (zs)), where y is the ground truth.

Another approach is to provide the student with outputs of the intermediate layers
of the teacher model in order to help it learn similar inner representations. This
type of knowledge is called feature-based knowledge. In this case, the student loss
function is different from response-based distillation. Instead of distillation loss being
KL divergence, it is a similarity function used to match the layer activations, also
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Figure 3.6: Three main categories of distillation schemes (Gou et al., 2021).

called feature maps, of teacher and student models. When feature maps are not of the
same shape (the case when student layers are thinner) additional transformations are
applied to bring them to a common representation (Gou et al., 2021).

The knowledge that captures the relationship between feature maps can also be
used to train a student model. This approach is called relation-based knowledge. It is
usually modelled as a correlation between feature maps.

3.6.1 Distillation schemes

The distillation schemes can be divided into three categories based on the fact whether
the teacher model is trained simultaneously with the student model or not: online
distillation, offline distillation and self-distillation.

In offline distillation, a pre-trained teacher model is distilled into a student model.
This scheme is useful when we already have a large teacher model. In online distillation,
both the teacher and the student model are updated simultaneously, thus allowing the
scheme to be end-to-end trainable. This scheme is useful when a large high-performance
teacher model is not available. The self-distillation uses the same network for the
teacher and student models. This scheme allows us to distil features from the deeper
layers to the shallow layers of the network. The schemes are shown in Figure 3.6 (Gou
et al., 2021).
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3.6.2 Non-standard distillation algorithms

Acquiring knowledge from the teacher model can be done in various ways. It is also
possible for one student to have multiple teachers.

Adversarial distillation was proposed as a way to mitigate the problem of non-
availability of data used to train the teacher model. Pseudo-examples are generated ad-
versarially and those are used to match the student to the teacher (Micaelli & Storkey,
2019). Generative adversarial networks (GANs) can also be used to augment the train-
ing dataset or to generate hard examples for knowledge transfer (Gou et al., 2021).

Multi-teacher distillation employs multiple teachers. Each teacher could poten-
tially have been trained on a different corpus, thus the student can benefit from the
diverse knowledge that each of the teachers brings. Besides averaging teacher logits
and hidden states, it can be challenging to find appropriate functions to merge teacher
outputs. Alternatively, each teacher can provide different types of knowledge, for ex-
ample, one can provide logits while the other provides feature knowledge in the form
of hidden states (Chen et al., 2019). Initializing the student network with layers from
multiple teachers could also have a potential benefit for the student.

Quantized distillation reduces the computation complexity of neural networks by
converting high-precision networks using 32-bit floating-point weights into low-precision
networks using only 8-bit or even only 2-bit floating-point weights. Knowledge distil-
lation enables these low-precision models to achieve comparable performance to high-
precision teacher models (Gou et al., 2021). Distillation loss can also be calculated by
first converting the teacher feature maps to lower precision and then comparing them
to student feature maps (Mishra & Marr, 2017).

3.6.3 BERT with knowledge distillation

Various approaches have been proposed on how to use knowledge distillation algorithms
on BERT models. What follows is a brief overview of a few of them.

DistilBERT
The authors of DistilBERT (Sanh et al., 2020) applied knowledge distillation during the
pre-training to obtain a distilled version of the BERT model which is smaller by 40%
and faster by 60% while maintaining 97% of model accuracy. The training objective
was to minimize the triplet loss function consisting of distillation loss, masked language
modelling loss and cosine embedding loss. Student architecture is similar to the teacher
architecture, albeit token-type embedding and pooler layers are removed, the number
of layers is cut in half and the student is initialized with every second layer from the
teacher model. The authors used dynamic masking and the next sentence prediction
was removed from training. Investigation into the influence of various components of
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Figure 3.7: a) BERT b) Inverted bottleneck BERT, c) MobileBERT (Sun et al., 2020)

the triplet loss showed that masked language modelling loss had little impact, while
two other components were dominant.

TinyBERT

A two-stage learning framework (Jiao et al., 2019) combines general distillation with
task-specific distillation. Task-specific distillation enables the unnecessary knowledge
for these tasks to be pruned from the distilled general model, thus reducing model size
significantly. TinyBERT with four layers can retain 96.8% of the original performance
on a concrete downstream task while having only 14.5M parameters — 13.3% of the
original 109M parameters in BERTBASE. Multiple ablation studies conducted by the
authors showed that general distillation contributes more to some specific datasets that
require linguistic acceptability judgements, such as the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2018).

MobileBERT

Bottlenecks inside BERT encoder blocks were introduced by Sun et al. (2020) to reduce
the dimensionality inside encoder blocks. This was realised by adding two linear layers
to convert 512 dimensions to 128 dimensions and later back to 512 dimensions. Ad-
ditionally, to balance the parameters in attention layers and linear layers, the authors
added more linear layers inside each block as shown in Figure 3.7.

To alleviate problems with training a narrow network, the authors first trained a
BERT with inverted bottleneck layers to convergence and then performed feature map
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and attention transfer to the model with MobileBERT architecture. The MobileBERT
was shown to outperform all previous compressed and distilled models with smaller or
comparable sizes (Sun et al., 2020).

3.7 Evaluation of language models

It can be cumbersome to directly compare pre-trained general language models. They
are usually compared by fine-tuning them on several downstream tasks and comparing
their scores on those tasks. What follows is a brief summarization of two widespread
evaluation benchmarks for language models.

3.7.1 GLUE

The General Language Understanding Evaluation benchmark (GLUE) is a collection
of nine sentence-understanding tasks (Wang et al., 2018). The Corpus of Linguistic
Acceptability (CoLA) and The Stanford Sentiment Treebank (SST-2) are both single
sentence tasks, in which the language model should correctly predict the grammati-
cal acceptability of a sentence or sentiment of a given sentence, respectively. GLUE
also contains three tasks in which the model needs to correctly predict whether the
two sentences are semantically equivalent. The Microsoft Research Paraphrase Corpus
(MRPC) contains sentences from news sources, the Quora Question Pairs (QQP)
contains question pairs from question-answering website Quora, while the Semantic
Textual Similarity Benchmark (STS-B) contains sentences from news headlines, im-
age captions and other sources. Additionally, GLUE contains four inference tasks.
The Multi-Genre Natural Language Inference Corpus (MNLI) and The Recogniz-
ing Textual Entailment (RTE) are tasks in which the model needs to correctly predict
whether a given premise and hypothesis sentences are entailed, contradicted or neither.
Question-answering NLI (QNLI) is a task made by converting the Stanford Question
Answering Dataset (SQuAD), which is not part of GLUE, to context-question pairs,
where the model is tasked to correctly predict whether the context contains the answer
to the given question. The Winograd Schema Challenge (WNLI) is a task in which
the model gets a sentence with a pronoun and must choose the referent of that pronoun
from given choices.

3.7.2 SuperGLUE

The SuperGLUE benchmark contains eight language understanding tasks (Wang et al.,
2019). Boolean questions (BoolQ) is a question answering dataset containing para-
graphs and accompanying yes/no questions, which the model needs to correctly answer
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either yes or no. The Choice of Plausible Alternatives (CoPA) is a reasoning task in
which the model chooses between two alternatives that answer the given question about
a given premise sentence. Multi-Sentence Reading Comprehension (MultiRC) is a task
in which the model needs to determine the truthfulness of the answers to the question
that is related to the given paragraph. Reading Comprehension with Commonsense
Reasoning Dataset (ReCoRD) is a task in which the model needs to correctly fill in
the masked word in a question related to the given paragraph. Recognizing Textual
Entailment (RTE) is a task in which a text-hypothesis pair is to be classified either as
entailment or not entailment. Word-in-Context (WiC) is a task in which the model
needs to predict if the polysemous word appearing in two sentences is having the same
sense or not. In Winograd Schema Challenge (WSC) the model needs to correctly
predict the referent of a pronoun in the given sentences while having multiple choices
present. Finally, CommitmentBank (CB) is a classification task in which the model
needs to correctly determine if a person who wrote the text containing an embedded
clause is committed to the truth of the clause.



Chapter 4

Proposed solution

We propose six different experimental setups for distilling SlovakBERT. Two exper-
iments contain training of a 6-layer student model, while four contain training of a
4-layer student model. One 4-layer student model is trained using two teacher models.
All students are based on the RoBERTa architecture with the same hidden and inter-
mediate size as SlovakBERT. We evaluate all experiments on four downstream tasks:
NER, UPOS, STS and BoolQ. Datasets for STS and BoolQ are machine-translated
into the Slovak language.

4.1 Dataset

Effective pre-training of a language model requires a very large text corpus. The
size of the clean text from Slovak Wikipedia is currently around a couple of hundred
megabytes. SlovakBERT was trained on almost 20 gigabytes of clean text. An effec-
tive knowledge distillation requires at least a couple of gigabytes of clean text. This
requirement forced us to find alternative larger sources of Slovak text. In addition, the
Wikipedia style of writing is not general enough for wide-domain applications and mod-
els trained or distilled only on Wikipedia texts may underperform on some downstream
tasks.

Every downstream task requires finding an appropriate training dataset. Slovak
datasets for downstream tasks are not very common. We resort to machine-translating
two of the mentioned downstream datasets.

4.1.1 Common Crawl

Common Crawl is a non-profit organization that maintains a copy of the internet data,
called the Common Crawl corpus. It provides it to researchers, companies and others
for research purposes (Common Crawl, 2022). The Common Crawl corpus has been
accumulating data since 2008 by resorting to web crawlers, which are programs that
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systematically browse the web and download the pages they encounter. Crawlers are
nowhere near to visiting every available web page. Nonetheless, they can accumulate
a significant amount of data this way. The current size of the uncompressed data is
more than 360 TB. It contains raw web page data, extracted metadata and extracted
text.

4.1.2 C4 dataset

C4 dataset is a large collection of web crawled text that was put together by Google
researchers in 2020 (Raffel et al., 2020; Xue et al., 2021). The authors did not offer
it for download, but instead, they published open-source tools, which can re-create it
from the original Common Crawl data. The C4 dataset was re-created by people from
a non-profit research institute AI2, created by Microsoft co-founder Paul Allen (AI2,
2022; GitHub, 2021). This dataset contains 5 sets of data:

en 305 GB
en.noclean 2.3 TB
en.noblocklist 380 GB
realnewslike 15 GB
multilingual 9.7 TB

Multilingual set is divided into specific languages. We are interested in Slovak data
inside the multilingual set. This data comes in compressed JSON format in which
each JSON object contains: text, timestamp and url (of the website from which it
originated). After decompressing and removing the timestamp and url we are left with
more than 53 GB of clean Slovak text data. We use a 1,9 GB subset for knowledge
distillation1.

Besides this dataset, we needed datasets that would be used to fine-tune and evalu-
ate SlovakBERT and distilled student models on downstream tasks. These fine-tuning
datasets are significantly smaller in size.

4.1.3 WikiANN dataset

WikiANN (Pan et al., 2017; Rahimi et al., 2019) is a dataset for supervised named-
entity recognition (NER) training. NER is a task that aims to locate and classify named
entities from unstructured text into pre-defined categories. WikiANN dataset contains
labels for persons, locations and organizations, therefore supporting three categories.
Optionally, unclassified entities can be considered as belonging to the background class.
Slovak subset contains 20,000 train, 10,000 dev and 10,000 test examples.

1In particular, the subset consists of all files that start with c4-sk.tfrecord-005.
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We used the macro-averaged F1 score to evaluate the performance of models on this
downstream task. It is most commonly used to assess the performance of models on
tasks with multiple binary labels or multiple classes. Values range from 0 (worst) to
1 (best). Macro-averaged F1 score is calculated by averaging all single-class F1 scores.
Single-class Fβ scores are calculated as follows:

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(4.1)

where TP is the number of true positive examples, FN is the number of false negative
examples (type II error) and FP is the number of false positive examples (type I error).
Single-class F1 score is therefore:

F1 =
2 · TP

2 · TP + FN + FP
(4.2)

A visualization of example output from a model fine-tuned on WikiANN dataset is
shown in Figure 4.1.

Figure 4.1: A visualization of a correct NER labelling of an organization (red) and a
location (green).

4.1.4 Universal dependencies dataset

Universal dependencies is a collection of treebanks for various world languages (Nivre
et al., 2020). A treebank is a collection of texts that contain annotations for syntactic or
semantic sentence structure. Universal dependencies contain universal part-of-speech
tags for the Slovak language (Zeman, 2017). A list of all tags can be found in the
Appendix A. We used the macro-averaged F1 score to evaluate the performance of
models on this downstream task.

A visualization of example output from a model fine-tuned on this dataset is shown
in Figure 4.2.

Figure 4.2: A visualization of UPOS tagging in a Slovak sentence.
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4.1.5 Translated STSB dataset

STSBenchmark is a dataset used to fine-tune language models on semantic textual
similarity (STS) task in which a model needs to predict how similar is the semantic
meaning of two given sentences (Cer et al., 2017). The output is a floating-point
number between 0 and 5, where 5 means the highest similarity. A more detailed guide
for numerical labels is shown in Table 4.1.

Score Explanation
5 The two sentences are completely equivalent, as they mean the same thing.

4
The two sentences are mostly equivalent, but some unimportant details
differ.

3
The two sentences are roughly equivalent, but some important information
differs/missing.

2 The two sentences are not equivalent but share some details.
1 The two sentences are not equivalent but are on the same topic.
0 The two sentences are completely dissimilar.

Table 4.1: A guide for sentence similarity scores.

The dataset contains 5,749 train, 1,500 dev and 1,379 test examples. We trans-
lated the dataset to Slovak using the English-Slovak translation model opus-mt-en-sk
by Helsinki-NLP (2020). The pre-trained models are usually fine-tuned to generate
sentence embeddings that are then compared using scaled cosine similarity. Fine-
tuned models can be evaluated by looking either at the Pearson’s or Spearman’s rank
correlation coefficient between their outputs and the ground truth. Former measures
the linear correlation between two variables, while the latter measures how well the
relationship between two variables can be described using a monotonic function. Intu-
itively, we want the scores to be increasing with sentences that are more similar, but
a good enough model does not necessarily have to return the same scores as another
good model. The Spearman’s rank correlation coefficient fits this intuition.

4.1.6 Translated BoolQ dataset

In the Boolean questions (BoolQ) (Clark et al., 2019) dataset each entry contains a
text passage, a question related to that passage and a yes/no answer to this question.
The models are fine-tuned using this dataset to learn to extract simple yes/no answers
from the given passages. The dataset contains 15,942 examples. We translated this
dataset to Slovak using opus-mt-en-sk model. We show an example of a translated
question-passage pair:
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passage: Pitie na verejnosti v Dánsku je vo všeobecnosti legálne. Zákon zakazuje
narušiť "verejné právo a poriadok". Preto je všeobecne prijímaná spotreba. Niekoľko
kaviarní majú vonkajšie služby v rovnakých zónach.
question: Môžete piť alkohol na verejnosti v Denmark?

Some limitations of machine translation can be seen in the example. The names of
the countries are sometimes not translated correctly, some sentences lose information
and some verbs may contain wrong suffixes. Nonetheless, we were satisfied with the
translation quality and used it to fine-tune models on the BoolQ task. BoolQ authors
note that the best performance is achieved when fine-tuning the model previously fine-
tuned on MultiNLI (Clark et al., 2019).

4.2 Experiments

We performed experiments with different weights of loss function components and
different starting student weights initialization. The weights were chosen in a way to
test whether the principal knowledge is located across the whole network or just in
specific parts, such as the beginning. An overview of the experiment configurations is
shown in Table 4.2. Student weight initialization is shown in Figure 4.3.

KL divergence Cross-entropy Cosine embedding Weight init

Experiment 1 0.625 0.25 0.125 [1, 3, 5, 8, 10, 12]

Experiment 2 0.625 0.25 0.125 [1, 2, 4, 6, 9, 11]

Experiment 3 0.6 0.2 0.2 [1, 5, 8, 11]

Experiment 4 0.7 0.2 0.1 [1, 2, 3, 4]

Experiment 5 0.7 0.2 0.1 [1, 3, 5, 7]

Experiment 6 0.7 0.2 0.1 [1, 2, 3, 4]

Table 4.2: Experiment configurations. The KL divergence, Cross-entropy and Cosine
embedding represent the weight of each of these components in the final loss function
that the distilled model is trained to optimize. The Weight init column represents
the weight layers that are initialized from the layers of SlovakBERT as illustrated in
Figure 4.3.

All experiments used the AdamW optimizer (Loshchilov & Hutter, 2017) with an ep-
silon value of 1 ·10−6. This optimizer is very similar to Adam but has decoupled weight
decay. The starting learning rate was 5 · 10−4, while the maximum gradient norm was
set to 5.0. We used 50 steps for gradient accumulation, while the batch size was set
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6

Figure 4.3: A visualization of the student weights initialization. Each block represents
one Transformer encoder. The leftmost blocks are the input blocks. Each experiment
has its configuration outlined in Table 4.2.

to 12. Sentences of similar lengths were grouped together in batches. Sequences that
were longer than the maximum position embedding size were split (27,915 in total).
Sequences shorter than 11 tokens were removed from the training data (1,051,944 in
total). Finally, 6,861,437 sequences were used for training. The proportion of masked
tokens was set to the most common value of 15%. We trained for 3 epochs on a dataset
of 1.9 GB in size. We applied smoothing to masked language modelling to empha-
size rare tokens. The temperature value in knowledge distillation was set to 2 in all
experiments.

Student models all had RoBERTa architecture with frozen positional and token
type embeddings. Student models had hidden size (768) and intermediate size (3,072)
the same as in SlovakBERT. Dropout in hidden and attention layers was set to 0.1.

Experiment 6 had two teacher models, namely models trained in Experiment 1 and
Experiment 2. To be able to calculate the student loss, the outputs of the teachers need
to be merged somehow. We simply calculated average values for logits and hidden states
respectively. This enables any number of teachers to be used in future experiments.

The first five experiments took around 30 hours each, while the last experiment
with two teachers took around 53 hours. Knowledge distillation was done on one
Nvidia 3090 GPU with 24 GB of VRAM. All knowledge distillation experiments were
conducted with the help of the transformers library (Wolf et al., 2020).
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4.2.1 Fine-tuning

We utilized transformers library for fine-tuning models on NER and UPOS tasks.
Fine-tuning ran for 10 epochs for NER and 5 epochs for UPOS, with linearly scheduled
learning rate starting at 5 · 10−5. We used AdamW optimizer with default epsilon
(1 · 10−8) and beta values (0.9, 0.999). We used batch size 32 for training. For STS
task we used sentence-transformers library (Reimers & Gurevych, 2019) for fine-
tuning. The training ran for 4 epochs with batch size 32. Models were fine-tuned on
BoolQ for 10 epochs with batch size 16 and learning rate 1 ·10−5. We utilized gradient
accumulation and updated the weights after every 10 batches. Both STS and BoolQ
fine-tuning also used AdamW optimizer.
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Chapter 5

Results

Results of the conducted experiments are shown in Table 5.1. We also compare the
FERNET-cc_sk model with the SlovakBERT. The two models show differences in per-
formance on four downstream tasks. SlovakBERT achieves better performance on part-
of-speech tagging and boolean questions, while the FERNET-cc_sk performs better on
named-entity recognition and semantic textual similarity. Nevertheless, the differences
are mostly small.

Model
NER POS STS BoolQ

# Params
(Macro-F1) (Macro-F1) (Spearman) (Accuracy)

SlovakBERT 0.939 0.983 0.781 0.709 124M

FERNET-cc_sk 0.941 0.980 0.788 0.663 162M

Experiment 1 0.929 0.976 0.713 0.649 82M

Experiment 2 0.931 0.979 0.734 0.662 82M

Experiment 3 0.907 0.972 0.720 0.646 67M

Experiment 4 0.916 0.974 0.743 0.668 67M

Experiment 5 0.915 0.973 0.740 0.645 67M

Experiment 6 0.916 0.975 0.693 0.642 67M

Table 5.1: Distillation results of various tested configurations on four downstream
tasks. Each entry is the mean of at least 3 runs. The used score for each task is shown
in brackets. Higher is better.

Despite learning from two different teachers, the student model from Experiment 6
slightly underperforms student models from other experiments. This is most probably
caused by the high nonlinearity of the parameter space combined with the averag-
ing teacher logits and hidden states. Additional experiments with SlovakBERT and
FERNET-cc_sk as two teacher models did not yield results, because of the great dif-
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Model 300 examples (s) Single example (ms)
fernet-cc-sk 3.88 12.93
slovakbert 3.58 11.93
Experiment 1 2.35 7.83
Experiment 2 2.33 7.77
Experiment 3 1.85 6.17
Experiment 4 1.86 6.21
Experiment 5 1.86 6.20
Experiment 6 1.90 6.33

Table 5.2: Inference speed tested using Pipeline from the transformers library (Wolf
et al., 2020).

Model Size in MB
slovakbert 476
fernet-cc-sk 624
Experiment 1, 2 313
Experiment 3, 4, 5, 6 260

Table 5.3: The size of the models saved in PyTorch format (Paszke et al., 2019).

ficulty in combining mixed-vocabulary teachers. We did not find an elegant way to
map a vocabulary the size of 100,000 from FERNET-cc_sk to a vocabulary the size of
50,264 from SlovakBERT.

Another interesting phenomenon can be observed in the performance of the student
from Experiment 4, which obtained the best results on both the semantic text similarity
as well as the boolean questions tasks, the latter being slightly better than the second
teacher model FERNET-cc_sk. We hypothesize that this might be thanks to the model
being initialized from the first four layers of the teacher model. This would suggest
that it is indeed these layers that hold the information necessary for reasoning over
longer sequences, which both of these tasks require.

In summary, when we look at the scores of the 6 layer model, we get from 91% to
99% of the original performance while having around 35% fewer parameters. Distilled
models with 4 layers retained similar performance while having 46% fewer parameters.
In absolute numbers that is 82 million parameters for 6-layer models and 67 million
parameters for 4-layer models, while the original SlovakBERT has 124 million param-
eters. This shows that distillation is a viable approach to decreasing model size with
minimal impact for non-English languages even with a low amount of training data.

In addition to testing performance on four downstream tasks, we also compare
inference speed and memory requirements. Inference time is tested by both measuring



37

Figure 5.1: The deployed SlovakBERT NER model is available for inline inference.

the time needed to process one example and 300 examples. Decreases in inference time
and size in memory are very promising. Results are shown in Table 5.2 and Table 5.3,
respectively.

We publish the machine-translated datasets on HuggingFace. We also publish the
distilled models for further study at https://huggingface.co/crabz. Fine-tuned Slovak-
BERT NER model is published online and can be accessed and used for inline inference
at https://huggingface.co/spaces/crabz/sk-ner. A screenshot from the UI interface of
the deployed model is shown in Figure 5.1.

Appendix B contains an overview of the electronic attachment that is provided with
this work.

https://huggingface.co/crabz
https://huggingface.co/spaces/crabz/sk-ner
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Chapter 6

Conclusion

We showed that language-specific knowledge distillation is a viable technique for lower-
ing the model size while retaining nearly all of its original performance. Furthermore,
we demonstrated the importance of choosing the right initial student weights. We
achieved from 91% to 99% of the original performance across all four downstream
tasks, while the distilled models at the same time had up to 46% fewer parameters.
We further demonstrated that the principal knowledge needed for a specific task can
be located in specific layers of the original model, therefore enabling us to initialize
the student with the weights from these layers and consequently achieve better task-
specific performance. In addition, we showed that averaging logits and hidden states
while performing knowledge distillation from multiple teachers, which had seen the
same training dataset, did not provide an advantage to the student model.

Machine translation has some limitations and those can be seen throughout the
translated datasets. This negatively impacts model performance. Translation models
with a larger maximum input size could provide better translations for longer sentences.
Regardless, an expert human translation of these datasets is very desired.

A promising further work would be to apply techniques introduced in TinyBERT
and MobileBERT to the distillation setup for SlovakBERT. This could potentially yield
models with even fewer parameters with comparable performance on downstream tasks.
Another research direction would be to implement mixed-vocabulary distillation with
SlovakBERT and FERNET-cc_sk as teachers. These two models had seen slightly
different datasets and could provide useful information for the student which could
potentially be even better than its teachers on some downstream tasks.

We published distilled models, translated datasets and training scripts on Hugging-
Face and in the electronic attachment for further study.
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Appendix A

Slovak UPOS tags

The following is a list of UPOS tags for the Slovak language. Examples are taken from
Slovak Dependency Treebank1.

ADJ: veľký, prvý, celý, nový, ďalší, druhý, dobrý, starý, posledný, slovenský
ADP: v, na, s, z, do, o, k, po, za, od
ADV: veľmi, potom, tu, tam, kde, tak, opäť, vtedy, ako, nikdy
AUX: byť, by, bývať
CCONJ: a, ale, aj, alebo, i, ani, či, však, lebo, no
DET: to, ktorý, jeho, svoj, ten, všetok, môj, jej, táto, tento
INTJ: mhm, haló, pozor, bum, aha, amen, klap, ach, pche, preboha
NOUN: rok, vláda, deň, človek, chvíľa, oko, ruka, mama, tvár, život
NUM: jeden, dva, tri, oba, ii, 1, štyri, 11, 2, mnoho
PART: aj, však, nie, len, už, a, až, iba, ani, ešte
PRON: sa, ja, on, ona, si, čo, ty, my, niečo, nič
PROPN: maja, chris, winston, aladin, vilko, Mauglí, jazmína, lori, bush, marga
PUNCT: ., „ “, !, ?, ", ), (, :, „
SCONJ: že, keď, ako, aby, ak, kým, keby, akoby, čo, pretože
SYM: %, +, =, –
VERB: mať, byť, povedať, môcť, chcieť, ísť, vedieť, musieť, prísť, stať
X: o, tzv, sv, po, česko, km, c, r, the, č

Byte-pair encoding

Byte-pair encoding is a compression algorithm first introduced by (Gage, 1994). The
algorithm replaces the most frequent pair of bytes with a new byte not present in the
data. Replacing stops when no byte-pairs are repeated. A table of replacements is

1https://github.com/UniversalDependencies/UD_Slovak-SNK
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kept, so the original bytes can be restored. An example can look like this:

aacbaacaa→ XcbXcX → Y bY X

The replacement table would in this example contain two entries: X = aa and Y = Xc.



Appendix B

The electronic attachment contains all distilled models in folders named experiment-
[1-6]. All models are saved in PyTorch format along with their configurations, vocab-
ularies and tokenizers. Folder masters-thesis contains various scripts, including the
training scripts. It also contains machine-translated datasets. Slovak STSBenchmark
is in comma-separated values (CSV) format, while the Slovak BoolQ dataset is in JSON
lines format. The C4 dataset is not included due to its large size. Specific versions
of the libraries sentence-transoformers and transformers are also included in the
electronic attachment.
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