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Abstrakt

Pojem signovaného grafu je zovšeobecnením tradičného pojmu graf. Máčajová, Ras-
paud a Škoviera vyslovili hypotézu, že veta o 4 farbách platí aj pre signované planárne
grafy. Táto hypotéza bola zakrátko vyvrátená Kardošom a Narbonim, ktorí škonštruo-
vali protipríklad. Našim cieľom je nájsť menší protipríklad tým, že sa budeme zaoberať
štruktúrou duálneho grafu. Navrhli a implementovali sme počítačové prehľadávanie,
ktoré overuje vlastnosti indukovaných podgrafov duálneho grafu.

Kľúčové slová: protipríklad, kubický graf, signovaný planárny graf, duálny graf
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Abstract

A signed graph is a generalisation of the traditional concept of a graph. A conjec-
ture that the four colour theorem for planar graphs holds for signed planar graphs
as well was brought up Mačajova, Raspaud and Škoviera. It got soon disputed by
Kardoš and Narboni who constructed a counterexample. Our goal is to find a smaller
counterexample by studying the properties of the dual. We implement an exhaustive
computer-assisted search that verifies the properties on induced subgraphs of the dual.

Keywords: counterexample, cubic graph, signed planar graph, dual graph
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Introduction

From ancient ages, humanity has been competition-driven. In the past, being among
the best was a matter of survival. Fortunately nowadays, it’s mostly matter of bragging
rights and other related benefits. Who can throw the javelin the furthest? Who can
run a track in the shortest period of time? Those are great areas to be competitive
in. But why stop there? Why not extend this concept to the realm of intellect?
Fortunately again, it is not a novel idea. Novel or poem, who can write the most
intriguing one? Highly subjective, but we are getting closer. Who can solve the most
mathematical equations in an hour? Impressive, but those equations have been solved
before. How about answering a question that no one ever answered before? That
must be truly rewarding. It resembles of what science is about. Literature, chemistry,
physics. Computer science? Is that even a science? Inventing new gadgets, crafting new
theories just to research them? Sounds like a thing a lunatic would do. Fortunately
(again), I can call myself a lunatic to a degree. To improve this degree, I present
you, dear reader, my master thesis. A concept of signed graph was introduced by
Thomas Zaslavsky in 1982. It is a generalisation of the usual concept of a graph. In
2016 Máčajová, Raspaud and Škoviera brought up a conjecture that the four colour
theorem holds for signed planar graphs as well. This got disputed in 2019 by Kardoš
and Narboni who constructed a counterexample. The topic of this work will be a
computer-assisted search that verifies if the counterexample is the smallest possible or
there exists a smaller one. Firstly, we are going to introduce necessary notions and
notation, then present the known results, followed by an introduction of our concepts
and theoretical observations and finished by the implementation and results of the
work.

1
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Chapter 1

Notions, notations & known results

1.1 Basic notations

In this work we will use commonly used terminology in the field of graph theory. For
that purpose we will adopt notions and notation used by Diestel [2].

A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E
are 2-element subsets of V . To avoid notational ambiguities, we shall always assume
tacitly that V ∩E = ∅. The elements of V are the vertices (or nodes, or points) of the
graph G, the elements of E are its edges (or lines). A graph with vertex set V is said
to be a graph on V . The vertex set of a graph G is referred to as V (G), its edge set as
E(G). These conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W,F ) is still referred to as V (H), not as W (H). We
shall not always distinguish strictly between a graph and its vertex or edge set. For
example, we may speak of a vertex v ∈ G (rather than v ∈ V (G)), an edge e ∈ G, and
so on.

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. The two
vertices incident with an edge are its endvertices or ends, and an edge joins its ends.

Two vertices x, y of G are adjacent, or neighbours, if xy is an edge of G. Two edges
e ̸= f are adjacent if they have an end in common vertex. If all the vertices of G are
pairwise adjacent, then G is complete. A complete graph on n vertices is denoted as
Kn.

The degree (or valency) dG(v) = d(v) of a vertex v is the number of edges at v; by
our definition of a graph, this is equal to the number of neighbours of v. A vertex of
degree 0 is isolated. The number δ(G) := min{d(v)|v ∈ V } is the minimum degree of
G, the number ∆(G) := max{d(v)|v ∈ V } its maximum degree. If all the vertices of
G have the same degree k, then G is k-regular, or simply regular. A 3-regular graph is
called cubic.

The hand-shaking lemma (which is considered to be folklore) states that the sum

3



4 CHAPTER 1. NOTIONS, NOTATIONS & KNOWN RESULTS

of the degrees of all vertices of a graph equals twice its number of edges, and hence it
is always even. As a consequence, every graph has an even number of vertices of odd
degree. In particular, a cubic graph always has an even number of vertices.

As each edge is incident to precisely two vertices, the sum off all vertex degrees in a
graph G is double the number of its edges. If we subtract the degrees of all even-degree
vertices, we are left with an even number, which is a sum of all degrees of odd-degree
vertices in G. To produce an even number through addition of odd numbers, we must
sum an even number of them.

A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk},

where the xi are all distinct.

If P = x0, . . . , xk−1 is a path and k ≥ 3, then the graph C := P + xk−1x0 is called
a cycle. As with paths, we often denote a cycle by its (cyclic) sequence of vertices; the
above cycle C might be written as x0 . . . xk−1x0. The length of a cycle is its number of
edges (or vertices); the cycle of length k is called a k-cycle and denoted by Ck.

If a cycle C contains all vertices of a graph G, we say that C is a Hamilton cycle.

Let (X, Y ) be a partition of V (G), i.e., X ∩ Y = ∅ and X ∪ Y = V (G). Then
E(X, Y ) := {xy ∈ E(G)|x ∈ X, y ∈ Y } is an edge-cut. If |X| = 1 or |Y | = 1 then
E(X, Y ) is trivial.

For a vertex set X, we denote by ∂(X) the boundary edges of X, i.e., the set
E(X, V (G) \X) of edges having one endvertex in X and the other one outside X.

A non-empty graph G is called connected if any two of its vertices are linked by a
path in G. Instead of ‘not connected’ we usually say ‘disconnected’.

G is called k-connected (for k ∈ N) if |G| > k and G−X is connected for every set
X ⊆ V with |X| < k. In other words, no two vertices of G are separated by fewer than
k other vertices. The greatest integer k such that G is k-connected is the connectivity
κ(G) of G.

If |G| > 1 and G − F is connected for every set F ⊆ E of fewer than l edges,
then G is called l-edge-connected. The greatest such that G is l-edge-connected is the
edge-connectivity λ(G) of G. In particular, we have λ(G) = 0 if G is disconnected.

An acyclic graph, one not containing any cycles, is called a forest. A connected
forest is called a tree. Thus, a forest is a graph whose components are trees.

Let G = (V,E) and G∗ = (V ∗, E∗) be two graphs. We call G and G∗ isomorphic, and
write G ≃ G∗, if there exists a bijection ϕ : V → V ∗ with xy ∈ E ⇐⇒ ϕ(x)ϕ(y) ∈ E∗

for all x, y ∈ V . Such a map ϕ is called an isomorphism.
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1.2 Planar graphs

Informally, a graph drawn on a piece of paper so that no two edges intersect in a point
other than a vertex is called a plane graph. An abstract graph that can be drawn in
this way is called planar. To define them properly, we first need some basic topological
definitions and facts. We will once again use those by Diestel.

A straight line segment in the Euclidean plane is a subset of R2 that has the form
{p + λ(q − p)|0 ≤ λ ≤ 1} for distinct points p, q ∈ R2. A polygon is a subset of R2

which is the union of finitely many straight line segments and is homeomorphic to
the unit circle S1, the set of points in R2 at distance 1 from the origin. A polygonal
arc is a subset of R2 which is the union of finitely many straight line segments and
is homeomorphic to the closed unit interval [0, 1]. The images of 0 and of 1 under
such a homeomorphism are the endpoints of this polygonal arc, which links them and
runs between them. Instead of ‘polygonal arc’ we shall simply say arc. If P is an arc
between x and y, we denote the point set P \ {x, y}, the interior of P , by P̄ .

Let O ⊆ R2 be an open set. Being linked by an arc in O defines an equivalence
relation on O. The corresponding equivalence classes are again open; they are the
regions of O. A closed set X ⊆ R2 is said to separate O if O \X has more than one
region. The frontier of a set X ⊆ R2 is the set Y of all points y ∈ R2 such that every
neighbourhood of y meets both X and R2 \X.

A plane graph is a pair (V,E) of finite sets with the following properties (the
elements of V are again called vertices, those of E edges):

• V ⊆ R2;

• every edge is an arc between two vertices;

• different edges have different sets of endpoints;

• the interior of an edge contains no vertex and no point of any other edge.

A plane graph (V,E) defines a graph G on V in a natural way. As long as no confusion
can arise, we shall use the name G of this abstract graph also for the plane graph
(V,E), or for the point set V ∪⋃

E.
For every plane graph G, the set R2 \ G is open; its regions are the faces of G.

Since G is bounded — i.e., lies inside some sufficiently large disc D — exactly one of
its faces is unbounded: the face that contains R2 \D. This face is the outer face of G;
the other faces are its inner faces. We denote the set of faces of G by F (G). A face is
incident to an edge e if e is a subset of its frontier. Size of a face f is the length of f ’s
frontier, where the doubly-incident vertices are counted twice.
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A triangulation is a graph where each face is of size 3. Formally:

∀f ∈ F (G) : |f | = 3.

An embedding in the plane, or planar embedding, of an (abstract) graph G is an
isomorphism between G and a plane graph H. The latter will be called a drawing of
G. It is considered folklore that a planar graph can be embedded into a plane if and
only if it can be embedded into a sphere. The latter has a neat property that we do
not need to deal with the concept of outer face. We say that two planar embeddings
are equivalent if they have a common unique embedding into sphere. If that is the case
then cyclical sequence of neighbours for a face f is the same in any embedding of G.

Theorem 1.1 (Whitney 1932) Any two planar embeddings of a 3-connected graph
are equivalent.

A plane multigraph is a pair G = (V,E) of finite sets (of vertices and edges, respec-
tively) satisfying the following conditions:

• V ⊆ R2;

• every edge is either an arc between two vertices or a polygon containing exactly
one vertex (its endpoint);

• apart from its own endpoint(s), an edge contains no vertex and no point of any
other edge.

Let G = (V,E) and (V ∗, E∗) be any two plane multigraphs, and put F (G) =: F

and F ((V ∗, E∗)) =: F ∗. We call (V ∗, E∗) a plane dual of G, and write (V ∗, E∗) =: G∗,
if there are bijections

F → V ∗ E → E∗ V → F ∗

f 7→ v∗(f) e 7→ e∗ v 7→ f ∗(v)

satisfying the following conditions:

• v∗(f) ∈ f for all f ∈ F ;

• |e∗ ∩G| = |e∗ ∩ e| = |e∩G∗| = 1 for all e ∈ E, and in each of e and e∗ this point
is an inner point of a straight line segment

• v ∈ f ∗(v) for all v ∈ V .

From the point of view of G∗, G is its plane primal. See Figure 1.1 for a visual example.

Dual graph G∗ of a graph G that is not 3-connected may be a multigraph, because
it may contain loops or parallel edges. Moreover, there may be more embeddings of G
resulting in non-isomorphic dual graphs.
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Figure 1.1: An example of a dual graph (red) of a multigraph (black).

Lemma 1.1 The dual planar graph G∗ of a 3-connected planar graph G is a planar
graph.

Proof. According to Whitney’s theorem 1.1, all embeddings of G are equivalent which
means its dual is well defined. Parallel edges in G∗ would correspond to a 2-edge-cut
in G and loops in G∗ would correspond to bridges in G, i.e., edges belonging to an
1-edge-cut. □

Note that in this work, we are only interested in graphs that contain no parallel
edges, and no loops, i.e., edges incident to a single vertex on both ends. When assuming
multigraphs as graphs, we call such graphs simple graphs. As mentioned, we are strictly
interested in simple graphs, so if we will need to speak of multigraphs, we will explicitly
state so.

Theorem 1.2 (Euler’s formula) Let G be a connected planar graph, where n, m

and f the numbers of vertices, edges and faces in G respectively, then

n−m+ f = 2.

This formula is considered folklore in the field of graph theory, but for the sake of
completeness, we will provide a simple proof.

If G contains only one vertex, then 1 − 0 + 1 = 2, therefore it holds. Let’s now
assume that it holds for all connected plane graphs on n vertices. Consider a plane
graph G on n + 1 vertices. Pick an edge e of G. If e is incident to two distinct faces,
then the graph G′ obtained from G by removing e is connected, and it has n vertices,
m−1 edges and f −1 faces. By induction, we have n− (m−1)+(f −1) = 2, and thus
also n−m+f = 2, as desired. If e is incident to the same face twice, then by removing
e we obtain two connected components, say G1 and G2, having n1 and n2 vertices, m1
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and m2 edges, and f1 and f2 faces, respectively, where n1 + n2 = n, m1 +m2 = m− 1,
and f1 + f2 = f − 1. By induction, n1−m1 + f1 = 2 and n2−m2 + f2 = 2. Therefore,

n−m+f = (n1+n2)−(m1+m2+1)+(f1+f2−1) = (n1−m1+f1)+(n2−m2+f2)−2 = 2.

As a simple consequence of this theorem, the following Lemma will come in handy.

Lemma 1.2 Let G be a cubic planar graph, then G contains at least one face of size
5 or less.

Proof. Let G be a cubic planar graph that does not contain a face of size 5 or
smaller. Let n = |V |, m = |E| and f = |F |. Since G is cubic, each vertex is incident
to 3 vertices. Each edge is naturally incident to 2 vertices, therefore n = 2

3
m. Now, we

can substitute than into Euler’s formula.

2

3
m−m+ f = 2

1

3
m+ 2 = f

Additionally, we know that each face is incident to at least 6 edges. Each edge is
incident to 2 faces, therefore f ≤ 1

3
m. As a result, we get the following equation

1

3
m+ 2 ≤ 1

3
m

2 ≤ 0

which is obviously a contradiction, therefore Lemma 1.2 holds. □

1.3 Colouring

When speaking of colouring we usually want to assign colours to vertices (or edges) of
a graph so that no two adjacent vertices or edges are of the same colour. The most
obvious question to ask is how many colours are sufficient to colour a given graph. We
will once again follow Diestel’s way to present these notions and concepts formally.

A vertex colouring of a graph G = (V,E) is a map c : V → S such that c(v) ̸= c(w)

whenever v and w are adjacent. The elements of the set S are called the available
colours. All that interests us about S is its size: typically, we shall be asking for the
smallest integer k such that G has a k-colouring, a vertex colouring c : V → {1, . . . , k}.
This k is the (vertex-) chromatic number of G, it is denoted by χ(G). A graph G

with χ(G) = k is called k-chromatic; if χ(G) ≤ k, we call G k-colourable. Note that a
k-colouring is nothing but a vertex partition into k independent sets, now called colour
classes.
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Theorem 1.3 (Brooks 1941) Let G be a connected graph. If G is neither complete
nor an odd cycle, then

χ(G) ≤ ∆(G).

Theorem 1.4 (Four Colour Theorem) Every planar graph is 4-colourable.

We decided to quote some remarks of Diestel to this theorem as it is the subject
that this work is revolving around. The proof technique mentioned in these remarks
is still polarising and it will to some extend resemble the proof techniques used in the
latter parts of this work.

The four colour problem, whether every map can be coloured with four colours so
that adjacent countries are shown in different colours, was raised by a certain Francis
Guthrie in 1852. He put the question to his brother Frederick, who was then a mathe-
matics undergraduate in Cambridge. The problem was first brought to the attention of
a wider public when Cayley presented it to the London Mathematical Society in 1878.
A year later, Kempe published an incorrect proof, which was in 1890 modified by Hea-
wood into a proof of the five colour theorem. In 1880, Tait announced ‘further proofs’
of the four colour conjecture, which never materialised. The first generally accepted
proof of the four colour theorem was published by Appel and Haken in 1977. The proof
builds on ideas that can be traced back as far as Kempe’s paper, and were developed
largely by Birkhoff and Heesch. Very roughly, the proof sets out first to show that every
plane triangulation must contain at least one of 1482 certain ‘unavoidable configura-
tions’. In a second step, a computer is used to show that each of those configurations
is ‘reducible’, i.e., that any plane triangulation containing such a configuration can
be 4-coloured by piecing together 4-colourings of smaller plane triangulations. Taken
together, these two steps amount to an inductive proof that all plane triangulations,
and hence all planar graphs, can be 4- coloured.

Appel & Haken’s proof has not been immune to criticism, not only because of their
use of a computer. The authors responded with a 741 page long algorithmic version of
their proof, which addresses the various criticisms and corrects a number of errors (e.g.
by adding more configurations to the ‘unavoidable’ list): K. Appel & W. Haken[1].
A much shorter proof, which is based on the same ideas (and, in particular, uses a
computer in the same way) but can be more readily verified both in its verbal and
its computer part, has been given by N. Robertson, D. Sanders, P.D. Seymour & R.
Thomas[5].

1.4 Signed graphs

In 1982, Thomas Zaslavsky [6] introduced a concept of colouring on signed graphs. This
concept was further explored by Máčajová, Raspaud and Škoviera[4]. To understand
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these and further results we need to introduce additional notation. For that purpose,
we will paraphrase Zaslavsky’s definitions.

A signed graph Gσ consist of an unsigned graph H = (V,E) and a mapping σ :

E(H)→ {±1}, the signature. We denote such graph as G = (H, σ). In this case, both
V (G) and V (H) address the same vertex set. Similarly for edges and eventually faces
if H is planar.

Switching is and operation on signed graphs defined as follows. Suppose G = (H, σ)

is a signed graph and ω : V (G)→ {±1} is any sign function. Switching G by ω means
forming the switched graph Gω = (H, σω), whose underlying graph is the same but
whose sign function is defined on an edge e = uv by

σω(e) = ω(u)σ(e)ω(v).

In other words, the sign function ω partitions the vertex set into two parts. The sign
of an edge is switched if and only if its endvertices belong to different parts.

Balance. Any path P = e1e2 . . . ek has a value, obtained by multiplying the signs
of its edges:

σ(P ) = σ(e1)σ(e2) . . . σ(ek).

A cycle whose value is positive is called balanced. An edge set is called balanced when
every cycle in it is balanced.

Assume (G, σ) is a signed graph and k is a positive integer. Let

Nk =

{±q,±(q − 1), . . . ,±1}, if k = 2q is even,

{±q,±(q − 1), . . . ,±1, 0}, if k = 2q + 1 is odd.

A proper k-colouring of (G, σ) is a mapping f : V (G) −→ Nk such that for any edge
e = xy of G f(x) ̸= σ(e) · f(y).

In other words, two vertices joined by a positive edge are not allowed to have
identical colours, whereas two vertices joined by a negative edge are not allowed to
have opposite colours.

Máčajová, Raspaud and Škoviera [4] have proven an array of theorems related to
signed graphs and their colouring. We would like to highlight that Brooks theorem
also holds for a signed planar graph G, if we give put stronger restriction on G.

Theorem 1.5 (Brooks theorem for signed graphs) [4] Let G be a simple con-
nected signed graph. If G is not a balanced complete graph, a balanced odd cycle,
or an unbalanced even cycle, then

χ(G) ≤ ∆(G).
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At the end of their paper they stated a conjecture that is the origin for this work.
The conjecture is as follows.

Conjecture 1.1 [4] Every simple signed planar graph G has χ(G) ≤ 4.

This conjecture got disproved by Kardoš and Narboni [3], when they found a coun-
terexample. Its structure will be essential to our work and we will analyse it in a latter
section of this work. Before that we need to look at signed non-4-colourable graphs in
general.

1.5 Non-4-colourable signed graphs

When constructing their counter-example, Kardoš and Narboni [3] translated the prob-
lem of 4-colouring of a signed graph to a different problem on its dual. In this section
we want to describe the translation in detail.

First and foremost we need to define what the dual of a signed planar graph is.
Let Gσ = (G, σ). Let H be the dual graph of G, and let σv be a labelling function on
V (H) defined as

σv(v
∗) =

∏
e∈Nv∗

σ(e) for v∗ ∈ V (H),

where Nv∗ is the set of all edges incident to the face corresponding to v∗ in the primal
graph Gσ. Hσv = (H, σv) is then called the signed dual plane graph of Gσ. Note that
Hσv is no longer a signed planar graph, but a vertex-signed planar graph.

In other words, the underlying graph H of Hσv is the dual of G and the labelling
works as follows. The label of a vertex v∗ in V (Hσv) is negative if its corresponding face
f in F (Gσ) is incident to an odd number of negative edges. Otherwise, v∗ is positive.

Lemma 1.3 Vertex-signed planar graph Hσv obtained as a dual of a signed planar
graph always contains an even number of negative edges.

Proof. Let’s observe the relationship between σ and σv. If Gσ contains no negative
edges, i.e. ∀e ∈ E(G) : σ(e) = 1, then each face is incident to 0 negative edges. 0 is
an even number, therefore each vertex in Hσv is positive. Assume we have two edge-
labelling functions σ1 and σ2, where σ1(e) = σ2(e) for all edges from E(G) but one,
denoted as e ̸=. Without loss of generality, let’s say that σ2(e ̸=) = −1. If e̸= is negative,
it effects polarity of precisely two vertices v∗1, v∗2 in Hσv . If σ1(v

∗
1) = σ1(v

∗
2) that means

that σ2(v
∗
1) = σ2(v

∗
2) as well so the parity of negative vertices is not going to change,

as it either increases or decreases by 2. If σ1(v
∗
1) ̸= σ1(v

∗
2), then σ2(v

∗
1) ̸= σ2(v

∗
2), which

means that one vertex is going to become positive and the other negative which will



12 CHAPTER 1. NOTIONS, NOTATIONS & KNOWN RESULTS

not affect the parity as well. As the parity does not change in neither case we can
clearly see that Hσv will always contain an even number of negative edges. □

A valid vertex-signed plane graph is a graph that contains an even number of
negative vertices. When speaking of a vertex-signed cubic planar graph, we will always
assume it is valid.

Lemma 1.4 For a fixed signed plane graph G, the vertex-signature of it vertex-signed
dual plane graph G∗ is invariant to the switching operation on G.

Proof. Let f ∗ be a vertex in G∗ corresponding to a face f in G. If we switch a
vertex v incident to f in G, polarities of precisely two edges incident to f are going to
flip, which does not change the parity of negative edges incident to f . For that reason,
G∗ is invariant to switching operation on G. □

Having described the setting, we will continue with the problem itself. Edge la-
belling is a mapping E(H)→ L, where L is a set of labels. In this context, most often
we will use L = {0, a, b}. Let dx(v) denote the number of edges labelled x adjacent to
v and dH(v) the degree of v in H.

Definition 1.1 [3] Let H be a 3-connected planar graph with an even number of nega-
tive vertices and let c be a {0, a, b}-edge-labelling of H. The labelling c is a weak signed
edge-labelling of H if

• d0(v) ≡ dH(v) (mod 2), and

• da(v) ≡ db(v) ≡ dH(v) (mod 2) if v is a positive vertex, or

• da(v) ≡ db(v) ≡ dH(v) + 1 (mod 2) if v is a negative vertex

Definition 1.2 [3] Let H be a 3-connected planar graph with an even number of neg-
ative vertices. A {0, a, b}-edge-labelling c of H is a strong signed edge-labelling if

• c is a weak signed edge-labelling of H, and

• d0(v) < dH(v) for every odd-degree vertex v of H.

Theorem 1.6 (Kardoš and Narboni [3]) A signed planar graph G is signed 4-colourable
if and only if its dual H does not admit a weak edge-labelling.

In their work, they used the strong edge-labelling to enforce some further restrictions
so they could construct their counter-example. They showed that the strong edge-
labelling is essentially equivalent to constructability of a consistent 2-factor, which is
a 2-factor, where each cycle must contain an even number of positive edges. As we
will not be looking for a graph that does not admit a strong edge-labelling, we will
introduce a semi-2-factor which is equivalent to the weak edge-labelling. In the next
chapter we will discuss and analyse these definitions in more detail.



Chapter 2

Semi-2-factor in the dual

In this chapter we will discuss the process of searching for the smallest non-4-colourable
signed planar graph. In the first section, we will analyse the definitions by Kardoš and
Narboni [3].

2.1 Problem translation

Lemma 2.1 If there is a non-4-colourable signed plane graph on n vertices, then there
is a non-4-colourable signed plane triangulation on n vertices.

Proof. Consider there is a signed non-4-colourable planar graph G which is not a
triangulation. Then it contains a face f which is greater in size than 3. In such face,
there are 2 vertices v, u that are not connected by an edge, implying that those two
vertices are non-adjacent in G (otherwise there would be an edge crossing in G). As
each edge is an extra restriction on colouring, then G ∪ uv is signed non-4-colourable
as well. Through iteration of this process, until G is a triangulation, we see that the
Lemma holds. □

We will not look for the non-4-colourable graph itself, but a dual which does not
admit a weak signed edge-labelling. When speaking of the dual of a triangulation, we
are dealing with a cubic plane graph. It is easy to see as all faces in a triangulation
are of size 3, hence all vertices in the dual must be of degree 3 as well. A graph with
all degrees of size 3 is by definition 3-regular, i.e., cubic. We will discuss the impacts
of definition 1.1 on 3-connected cubic planar graphs below.

Lemma 2.2 Let G be a signed cubic planar graph. Then a {0, a, b}-edge-labelling of
G is a weak signed edge labelling if and only if

• each positive vertex is incident to edges labelled with three different labels,

• each negative vertex is either incident to three edges labelled 0 or one edge labelled
0 and two edges labelled with the same label a or b.

13
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Proof. We prove both implications at the same time.
The first condition of definition 1.1 claims that the number of edges labelled 0

incident to a fixed vertex is always odd, in our case 1 or 3.
The second condition deals with positive vertices and claims that each positive

vertex must be incident to an odd number of edges labelled 0, a or b. In our case the
only option is that each positive vertex is incident to exactly one edge of each label.

The last condition deals with negative vertices and claims that each vertex must
be incident to an even number of edges labelled a or b, in our case 0 or 2. □

Lemma 2.3 Let G be a vertex-signed plane triangulation with an even number of
negative vertices. Let φ be a weak edge labelling of G. Then the set of edges labelled a

or b induces a collection of disjoint cycles, each containing an even number of positive
vertices.

Proof. It follows directly from the characterisation of weak edge labellings in defi-
nition 1.1 that at each vertex, (positive or negative) the number of edges labelled a or
b is either 2 or 0, and so the set of edges labelled a or b induces a collection of disjoint
cycles.

Moreover, alongside each cycle the label of the traversed edge remains invariant if
we traverse an negative vertex and switches to the opposite (from a to b or vice versa)
if we traverse a positive vertex. If we traverse the entire cycle so that we stop at the
edge we started at, the number of switches from a to b and back must have been an
even number (we must switch back to the original starting label). Since a switch is
equivalent to a traversal of a positive vertex, the number of positive vertices of a cycle
must be even. □

Kardoš and Narboni [3] defined a consistent 2-factor of a vertex-signed planar graph
H as a set of cycles covering all positive vertices, where each cycle consists of an even
number of positive vertices. This concept is an alternation of the usual interpretation
of a 2-factor as it adds a restriction on each cycle to contain an even number of positive
vertices. This however does not allow negative vertices to be of degree 0, i.e., to have
all 3 of their adjacent edges labelled 0. As explained above, we need to allow some
negative vertices to be of degree 0.

Definition 2.1 (Semi-2-factor) Semi-2-factor is a collection of disjoint cycles cov-
ering all positive vertices of G, such that every cycle in the collection contains an even
number of positive vertices.

Given the explanation above, it should be obvious that a vertex-signed planar graph
G admits a weak edge-labelling if and only if it admits a semi-2-factor. Therefore, we
will not be looking for a graph that does not admit any concrete weak edge-labelling,
but a graph that does not admit a semi-2-factor.
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2.2 Reducible Configurations

Let E(X, Y ) be an edge cut of G. There are two types of edges uv in G:

1. both u and v are in X or both of them are in Y ,

2. u is in X, but v is not (or vice versa).

We will call the second type of edges open edges or semi-edges, when considering X

only, disregarding Y . Simply put, those are the edges connecting X with the rest of
G. These are exactly the edges of ∂(X).

Let G be a graph class and P ⊆ G be a graph property. H∗ is a reductor of H if
for all G ∈ G such that H is a subgraph of G, the graph G∗ obtained by replacing H

by H∗ is in G, moreover, whenever G∗ ∈ P , then also G ∈ P . A subgraph H of G ∈ G
is a reducible configuration if H has a reductor H∗.

Obviously, we want to introduce reducible configurations with respect to existence of
a semi-2-factor. The importance of these reducible configurations is simple. Suppose,
we have a vertex-signed planar graph G that does not admit a semi-2-factor, but
contains a reducible configuration. On one hand G is a valid counter-example, but by
the definition of the reducible configuration, there exists a smaller graph G< which is a
counter-example as well. That is why we will be strictly interested in graphs containing
no reducible configurations. Below, we list all reducible configurations known prior to
this work. This list will be expanded in future parts of this work.

Lemma 2.4 A triangle is reducible into a single vertex.

Proof. The idea of the proof is very simple. We want to prove that for every
possible signature of H, for each way a semi-2-factor can cover the semi-edges of a the
corresponding reductor H∗ (a single vertex) there is a way the semi-2-factor can be
extended to a semi-2-factor in H. See Figures 2.1 and 2.2 for illustration. □

Lemma 2.5 Two adjacent faces of size 4 are reducible into a single edge.

Proof. Similarly as for Lemma 2.4, we want to prove that for every possible signature
of the configuration, there is a choice of a signature of the reductor such that for every
possible way how a semi-2-factor can traverse the reductor it is possible to extend it
into a semi-2-factor in the configuration. In this case there are more cases to consider,
therefore we will only illustrate one of them (see Figure 2.4); we leave the rest for the
reader. □

As mentioned before, this list will grow in the latter parts of the work.
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Figure 2.1: If H is a positive triangle (i.e., it contains an odd number of positive
vertices), then H∗ is a positive vertex. All positive vertices of H can be covered by a
semi-2-factor, hence H∗ is a valid reductor of H.

2.3 Tripoles

Let (X, Y ) be an edge-cut in G. If |E(X, Y )| = k, then X (or Y ) is a k-pole. In this
section we are interested in properties of 3-poles, referred to as tripoles. Note that we
also assume the edges in E(X, Y ) to be part of the k-pole, but not containing edges
from the other set. Hence, those edges are only considered as semi-edges. Moreover,
∂(T ) will denote the set of semi-edges of a tripole T , whose size is obviously always
equal to 3.

We will research tripoles contained in the potential smallest counter-example. We
want to know their structure and properties. When building their counter-example,
Kardoš and Narboni[3] used concrete gadgets, i.e., building block that are tripoles.

Lemma 2.6 Any tripole in a 3-connected cubic planar graph is of odd degree.

Proof. Let T be a non-trivial tripole in G. Let’s now remove its semi-edges s1, s2, s3.
What we are left with is a graph with 3 vertices of degree 2. The other vertices are of
degree 3 as we have not removed any edge incident to them. We know there must be an
even number k of vertices of degree 3. Hence, k+3 gives an odd number, which proves
that T must contain an odd number of vertices. Note that the removal of semi-edges
will always yield 3 vertices of degree 2. If that were not the case, then there would
be a vertex v incident to 2 semi-edges s1 and s2. Then G would contain a 2-edge-cut
{s3, ev}, where ev is the edge incident to v other than s1, s2. □

Let’s now define the polarity or a signature of a tripole T , denoted as σ(T ). If T
contains an odd number of positive vertices, then σ(T ) is positive. Otherwise σ(T ) is
negative. This should correspond to how the tripole affects the graph containing it. If
the tripole is positive, then any semi-2-factor covering T will contain an odd number
of positive vertices of T .
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Figure 2.2: If H is a negative triangle (i.e., it contains an even number of positive
vertices), then H∗ is negative vertex, say x. If x is covered by a cycle of a semi-2-
factor, then all (positive) vertices of H can be covered by the corresponding cycle in a
semi-2-factor. If x is not covered by any cycle of a semi-2-factor, then a new cycle of
length 3, covering an even number of positive vertices, can be introduced. Hence H∗

is a valid reductor of H.

We are now going to analyse how precisely a semi-2-factor can traverse a tripole.
The following observation is straightforward.

Lemma 2.7 Let X be a positive tripole in a vertex-signed cubic plane graph G and let
C be a semi-2-factor. Then |C ∩ ∂(X)| is even.

Therefore T behaves as a positive vertex when it comes to a semi-2-factor composi-
tion, which means precisely 2 of T ’s semi-edges must be included in any semi-2-factor.
On the other hand, if T is negative then any semi-2-factor must contain an even num-
ber of positive vertices. Therefore, any semi-2-factor containing any two semi-edges of
T must contain an even number of positive vertices in T . Since T contains an even
number of positive vertices that opens up a possibility for a semi-2-factor to not use
any of the semi-edges. Therefore, such tripole may act as a negative vertex.

Let T be a tripole and p = {si, sj}, i ̸= j be a pair of its semi-edges. We say that
p is coverable if there exists a semi-2-factor in T containing both semi-edges of p.

Let’s now classify non-trivial tripoles based on how many pairs of its semi-edges are
coverable. Let T be a tripole and s1, s2, s3 be its semi-edges. Based on the structure
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Figure 2.3: A non-signed example of the reducible configuration (on the left) and its
reductor (on the right).

Figure 2.4: An example of a signature for the reducible configuration an its correspond-
ing reductor signature, together with all possibilities that a semi-2-factor can cover the
reductor, extended into the reducible configuration.
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of T , T may not admit a semi-2-factor containing a concrete pair of its semi-edges.
In total, there are 3 pairs of semi-edges in T . Therefore, there are 4 ways as to how
many pairs are coverable. Additionally, we are interested in the polarity of T . For
positive tripoles, these are the only 4 options. However, for negative tripoles, there
are 8 options. For each option of semi-edge pair count, there is an additional option
of whether T admits a semi-2-factor containing no semi-edge of T . We will determine
a type for each tripole T . Firstly, we will refer to it as P if T is positive or N if T is
negative. Additionally, we will add a lower index containing an integer from the range
of 0 to 3. Moreover, if T is negative, we may add an optional upper index ∗ if T admits
a semi-2-factor containing no semi-edge of T . To make it a little more clear, let’s look
at a few examples. We will always refer to the tripole in the picture as a tripole T .

As seen in the picture above, T is positive, because all of its 7 vertices are positive.
All 3 semi-edge pairs in T are coverable due to symmetry. Therefore, T is of type P3.

As seen in this picture, T is negative, because none of its 7 vertices is positive. All
3 semi-edge pairs are coverable due to symmetry. However, as seen in the right picture,
T admits a semi-2-factor covering no pair of its semi-edges. Therefore, T is of type N∗

3
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The final example, seen in this picture, is an example of the type N3 tripole. It is
a negative tripole because it contains an even number of positive vertices. Moreover,
all of its semi-edge pairs are coverable in similar fashion as in the previous examples.
However, it does not admit a semi-2-factor not containing any of the semi-edges. It is
easy to prove. If we do not want the semi-2-factor to contain any of the semi-edges,
then all three vertices adjacent to the semi-edges must have the other 2 edges included
in the semi-2-factor, because they are positive and we must cover them. Therefore, as
seen on the right picture, we inevitably create a cycle that not only contains 3 positive
vertices, but there is no way to cover the central vertex as well. That proves that T is
of type N3.

This tripole was essential for Kardoš and Narboni in their construction of the
counter-example. It is not difficult to verify that this, indeed, is the smallest tripole of
its type. We leave that as an exercise for an enthusiastic reader. We may refer to this
tripole as a cube in this work.

Let s1 ∈ T1 and s2 ∈ T2 be two semi-edges. Let v1 and v2 be their respective
endvertices. Then, if we connect s1 and s2, we end up having a graph G, where V (G) =

V (T1) ∪ V (T1), E(G) = E(T1) ∪ E(T2) ∪ {v1v2} and S(G) = S(T1) ∪ S(T2) \ {s1, s2}.
Observe that G no longer is a tripole, as |S(G)| = 4. However, from the point of view of
a tripole T , it remains a tripole as the set of its semi-edges ∂(T ) has not changed, even
though we know that it is an actual edge in the bigger picture. For better imagination,
one might think of a tripole, as a building block of the graph.

Let Ta and Tb be tripoles with semi-edges s1,a, s2,a, s3,a ∈ Ta and s1,b, s2,b, s3,b ∈ Tb.
If we connect all 3 pairs (si,a, si,b) to each other, we say that Ta and Tb are now fully
connected. Note that the indexation of semi-edges belonging to a tripole is not fixed,
therefore this definition admits any combination of semi-edge pairs. The only condition
is that each semi-edge in one tripole has a paired semi-edge in the other one.

Lemma 2.8 Let G be a 3-connected vertex-signed cubic planar graph. Additionally
let T1 and T2 be tripoles in G, i.e., V (T1) ∪ V (T2) ⊆ V (G). Then T1 and T2 are not
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connected or connected by a single edge. If T1 or T2 is non-trivial then they can be fully
connected as well.

Proof. To prove the first two option, i.e., when they are not connected or connected
by a single edge, let’s assume T1 and T2 to be just vertices. Clearly, they can be not
connected, or connected by a single edge, if those vertices are incident. To prove the
last point, let’s assume G to be any vertex-signed cubic planar graph and T1 be a tripole
consisting of a single vertex v. Then clearly, T and G \ v is an example of two fully
connected tripoles. Now, let’s discuss the option where we T1 and T2 were connected by
2 edges. If they are connected by a single edge, then there are 4 semi-edges in T1 ∪ T2.
If we connect on more pair of semi-edges, the resulting graph will have 2 semi-edges.
If it has two semi-edges and they are not connected to each other that means that
|V (G \ (T1 ∪ T2))| > 0. But that also implies that T1 ∪ T2 is connected to the rest of
the graph with precisely 2 edges, which means that G would not be 3-connected. □

We say that two tripoles are incompatible if there is a way to fully connect them,
so that the resulting graph does not admit a semi-2-factor. Let’s take a look at the
combination of tripoles that Kardoš and Narboni used.

One of the two tripoles T1 was of type P2. If a tripole is of type P2, it means that
2 pairs of its semi-edges can be covered by a semi-2-factor. In other words, T1 admits
no semi-2-factor containing the third pair of semi-edges. Since there are only 3 semi-
edges in a tripole, that implies that there exists a semi-edge sunavoidable that is in any
semi-2-factor that T1 admits. We call such edge or semi-edge unavoidable. The second
tripole T2 was of type P1. If T2 admits only semi-2-factors that cover only on pair of
semi-edges, it means that there is a semi-edge suntouchable in T2 that is not contained in
any semi-2-factor that T2 admits. Similarly, we call such edge or semi-edge untouchable.
Now, if we fully connect T1 and T2 so that sunavoidable is connected to suntouchable, we
get a graph that does not admit a semi-2-factor. This can be generalised into following
lemma.

Lemma 2.9 Let G be a counterexample (a 3-connected cubic planar graph that does
not admit a semi-2-factor). Let (X, Y ) be a 3-edge-cut. Then the types of the tripoles
X and Y are incompatible.

Proof. Assume that X and Y are compatible. That means there is a way to fully
connect them so that G admits a semi-2-factor. That is a contradiction with G being
a counterexample. □

Note that the polarity of X and Y must be the same, because otherwise G would
not be a valid dual vertex-signed planar graph. Without further analysis which would
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be mostly equivalent to the one prior to this lemma, let’s list the possible combinations
of X and Y ’s types. For the positive tripoles, we already mentioned the combination
of P2 and P1, however P3 and P0 works as well. For the negative tripoles, let’s first
do a following observation. If X and Y were both tripoles that admit a semi-2-factor
not containing any of its semi-edges (types marked with asterisk) then G would admit
a semi-2-factor. Therefore there are 6 combinations of tripole types found in the
counterexample G: N∗

3 and N0; N3 and N∗
0 ; N3 and N0; N∗

2 and N1; N2 and N∗
1 ; and

finally N2 and N1.

The goal of this work is to find the smallest tripole of each type. Prior to this work,
we already knew of 3 that are the smallest. Moreover, we knew of the existence of 4
other types.

The smallest tripole of type P3 is a single positive vertex v. A positive vertex v

allows any pair of its edges to be in a semi-2-factor and it is a positive tripole.
Similarly, the smallest tripole of type N∗

3 is a single negative vertex v. It admits
any pair of its edges to be in a semi-2-factor and it is a negative tripole. Additionally,
v admits a semi-2-factor that uses no edges adjacent to v, i.e., a semi-2-factor avoiding
v.

The last known smallest tripole is a tripole of type N3. It is the aforementioned
cube, which we proved to be of type N3.

Since we already mentioned what tripole types Kardoš and Narboni used, we know
of the existence of tripoles of types P2 and P1. However, we do not know if those used
are the smallest possible. Lastly, we know of tripoles of type P0 and N0, as those are
tripoles gathered by a removal of a positive or negative vertex, respectively, from the
known counter-example.

Let’s discuss the tripole of type P2 used by Kardoš and Narboni. When William
Thomas Tutte published the first counterexample to Tait’s conjecture that every planar
cubic graph has a Hamilton cycle, he used a tripole now called Tutte’s fragment. It has
a special property, that each Hamilton cycle must contain one of its semi-edges e. The
tripole consist of 15 vertices and is the smallest tripole with this property. Kardoš and
Narboni used this tripole as a base for their tripole of type P2. They found a signature
of this Tutte’s fragment and substituted two of its vertices by a negative irreducible
cube (a tripole of type N3). Such tripole has 27 vertices and they proved that it is of
type P2 where e is unavoidable.

Similarly for the tripole of type N1 they used a tripole from the counterexample of
Tait’s conjecture. The very first counterexample to that conjecture was a K4 where
three of its vertices were substituted by a Tutte’s fragment so that the only non-
substituted vertex is incident to three edges that must be in every Hamilton cycle,
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Figure 2.5: Two cases how a tripole T without triangles can be obtained from a graph
G with one triangle. In both cases, the unavoidable edge is marked with red colour.
In the first picture, the unavoidable edge e1 is incident to the triangle in G. In the
second picture, the unavoidable edge e1 is not incident to the triangle in G but one of
its endvertices is.

which is a contradiction with the graph being Hamiltonian. Kardoš and Narboni used
the same structure, however they substituted the modified signed version of Tutte’s
fragment into K4 resulting in a graph not admitting a consistent 2-factor. The tripole
of type P1 is then a tripole obtained from an edge cut (X, Y ) in the counterexample
where X is the modified signed Tutte’s fragment and Y the rest. The size of Y is 55.
Kardoš and Narboni found a smaller counterexample where the tripole of type P1 is of
size 47. That is the smallest know tripole of type P1.

2.4 Derivation of tripoles

Let G be an counter-example containing an edge cut splitting G into tripoles T and
T ∗ of types N2 (or N1) and N1 respectively. We know that G contained no triangles,
however if we complete the tripoles to a proper graphs (by an addition of a single vertex
incident to all the semi-edges), such graphs may contain a triangle.

Let’s focus on a tripole T of type N2 or N∗
2 obtained through removal of a single

vertex from a graph G. There are precisely two situations how the triangle could be
positioned in G in relation to the unavoidable edge so that T contains no triangles.
For illustration, see Figure 2.5.

Let’s first analyse the first case in the Figure 2.5, where the unavoidable edge is
incident to the triangle of G. We want to prove the following lemma.

Lemma 2.10 Let T be tripole of type N∗
2 or N2, with the structure as seen in Figure

2.5 on the left, then T ∗ must be of type P2, N
∗
2 , N2 or something even more restrictive.



24 CHAPTER 2. SEMI-2-FACTOR IN THE DUAL

Proof. Let T ∗ admit a semi-2-factor containing edge e∗1 and e∗3. Then such semi-2-
factor can be extended to a semi-2-factor in T containing edges e3, e∗1, v1, v2 and e2,
which is in contradiction with T being a tripole of type N∗

2 . □

Lemma 2.11 Let T be a tripole of type N∗
2 , N2, with the structure as seen in Figure

2.5 on the left. Then v1 must be positive.

Proof. Let v1 be negative. According to the lemma 2.10, T ∗ must not admit a
semi-2-factor containing edges (semi-edges) e∗1 and e∗3. However, a combination e∗2, e∗3
is perfectly viable. Such semi-2-factor however, can be extended to a semi-2-factor
containing edges e3, e∗2 and e2 in T , which is in contradiction with T being of type N∗

2 .
□

Now we have a choice at v2. Let’s cover both cases with lemmas.

Lemma 2.12 Let T be a tripole with a structure as seen in Figure 2.5 on the left;
moreover, conforming to lemmas 2.10 and 2.11. Then if v2 is negative, T is of type
N∗

2 .

Proof. Note that T ∗ must be a positive tripole, so that T is negative. Let’s now
assume there exists a semi-2-factor in T containing semi-edges e2 and 3. As we know
from lemma 2.10, T ∗ does not admit a semi-2-factor containing edges e∗1 and e∗3. As
e∗3 is already covered, then e∗2 must be covered as well. Then however there are two
edges incident to v2 contained in a semi-2-factor, which implies that the vertex v1,
which is positive according to lemma 2.11, remained uncovered. That proves that T

does not admit a semi-2-factor containing edges e2 and e3, rendering e1 an unavoidable
edge. Moreover, T ∗ admits a semi-2-factor containing vertices e∗1 and e∗2. Through an
extension of the semi-2-factor with the edge v1v2, we see that T admits a semi-2-factor
not using any of its semi-edges, hence T is of type N∗

2 . □

Lemma 2.13 Let T be a tripole with a structure as seen in Figure 2.5 on the left;
moreover, conforming to lemmas 2.10 and 2.11. Then if v2 is positive, T is of type N∗

2 .

Proof. The reasoning is equivalent to the previous lemma. □

Let’s now discuss the consequences of lemmas 2.12 and 2.13. The second one says
that a tripole of type N∗

2 or N2 can be transformed to N∗
2 . When speaking of the

tripoles in the smallest counter example, a transformation from N∗
2 to N∗

2 is reducible,
as the nested tripoles has the same properties and is smaller. When it comes to the
transformation from N2 to N∗

2 , that is highly redundant as N2 is more restrictive than
N∗

2 and the tripole of type N2 is even smaller in this case. However, the first lemma
might be very useful as we transformed a positive tripole into a negative one. Note
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that the transition from a negative one to a positive one works too, but we do not find
it relevant enough.

Let’s now analyse the second case in the Figure 2.5.

Lemma 2.14 Let T be tripole of type N∗
2 or N2, with the structure as seen in Figure

2.5 on the right, then T ∗ must be of type P2, N
∗
2 , N2 or something even more restrictive.

Proof. Assume T ∗ admits a semi-2-factor containing e∗2 and e∗3. Then such two
factor could be extended to a two factor in T containing edges e∗2, e2, e∗3 and e3. That
is however a contradiction with T being of type N2 or N∗

2 . □

Lemma 2.15 Let T be a tripole with the structure as seen in Figure 2.5 on the left.
If T ∗ is positive and one of the two vertices v1 and v2 is positive, then T is of type N2.

Proof. According to the lemma 2.14, we know that there is no semi-2-factor in T

containing e2 and e3, rendering edge e1 unavoidable. Moreover, all vertices of T must
be covered therefore the semi-2-factor covers an even number of vertices in T as T ∗ was
a negative tripole. Furthermore, T does not admit a semi-2-factor containing none of
its semi-edges. Assume it does, then T ∗ would have to admit a semi-2-factor containing
edges v1v2, e∗2 and e∗3 which we know is not possible. That proves that T is of type N2.
□

In other words, lemma 2.15 claims that if we have a tripole of type P2 and we add
two vertices in the special way, we produce a tripole of type N2.
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Chapter 3

Search for the smallest tripoles

As the first step in our research, we wanted to find the smallest tripoles of types that
Kardoš and Narboni used. At that point in time, we did not have a formal classification
of tripoles as described in the previous chapter. We were interested in the existence
of tripoles that would have an unavoidable or untouchable edge that is smaller in size
that the one used by Kardoš and Narboni. The tripole of type P2 has 27 vertices and
the tripole of type P1 has 47 vertices. For that reason, we focused on tripoles of type
P2.

Let G be a valid vertex-signed planar graph. If we remove a vertex v from G and
retain its edges as semi-edges, the remaining graph is a tripole T . If v was a positive
vertex, then T is a positive tripole, otherwise T is negative. As G contains an even
number of positive vertices, removal of a single positive vertex yields an odd number
of positive vertices in T . Similarly for the other case.

For that reason, we do not need to go through all tripoles and for each one verify
if it contains an unavoidable semi-edge. We need to go through all 3-connected cubic
planar graphs and verify whether one of them has an unavoidable edge. If one does,
by removal of one of its endvertices, we get a tripole with an unavoidable edge. If the
removed vertex was positive, we found a tripole of type P2. If it was negative then we
found a tripole of type N2 or N∗

2 , but more on those later.

As a result, we need to somehow obtain all vertex-signed cubic planar graphs and
then evaluate each obtained graph. For reasons that will become apparent later, we
chose to generate such graphs.

3.1 Canonical code of 3-connected cubic planar graphs

The first step in generating all vertex-signed cubic planar graphs is to generate all
3-connected cubic planar graphs. When doing so, we want to avoid generating a graph
multiple times. For that reason we need a way to differentiate between graphs and

27
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establish a hierarchy amongst them. The concept of a canonical code will serve that
purpose.

Let G be a 3-connected planar cubic graph. Let f be a face in G of size k and
NCS(f) = {f0, . . . , fk−1} be a cyclical sequence of adjacent faces, which contains faces
adjacent to f , where fi is adjacent to fi−1(mod k) and fi+1(mod k). We say such sequence
is cyclical, as a rotation of the elements defines the same sequence. For each f there are
precisely two sequences, where one is the inverse of the other. In other words, if fi was
followed by fi+1 in one sequence, then fi+1 is going to be followed by fi in the other.
These represents the sequences of faces in a plane embedding of G. According to 1.1 all
embeddings of a 3-connected graph are equivalent, therefore these two sequences are, in
fact, the only two such sequences. Based on the direction of the enumeration, we get the
respective sequence. We will refer to this sequences as clockwise and counter-clockwise.

A spanning tree ST in G is a subgraph of G that is a tree and contains all vertices
of G.

Let G be a 3-connected cubic planar graph and G∗ be its dual. Let ST be a spanning
tree in G∗. We say that ST is a face-spanning tree of G, if we can reference its vertices
by corresponding faces in G.

A Breadth First Search algorithm (BFS) is a graph covering algorithm. It covers
a graph layer by layer. In such algorithm, there are two important attributes of each
vertex v. The first attribute is visited which is a Boolean attribute indicating whether
the algorithm already visited v. The other attribute, called covered, is again a Boolean
attribute indicating whether all adjacent vertices of v are visited. We construct a
traversal sequence of vertices in the order they become visited. Beginning with the
starting vertex v0, we add it to the sequence and mark it visited. Now, until there are
any non-covered vertices in the traversal sequence, we do the following. We take the
first non-covered vertex vi from the traversal sequence, add all non-visited adjacent
vertices of vi to the traversal sequence and mark vi covered.

As the graph is finite, this terminates at some point and we are left with a fully
traversed graph. The traversal sequence may be interpreted a spanning tree of G. If
we keep only those edges vivj of G corresponding to the addition of an adjacent edge
vj of vi to the traversal sequence, then such graph is indeed a spanning tree.

We would like to run a BFS algorithm on the faces of a 3-connected cubic planar
graph G. We know, there exists a dual G∗ of G which allows us to run BFS on G∗. For
convenience purposes, we would like to reference the vertices of G∗ by the corresponding
faces of G.

The definition above is general, i.e., non-specific to a special class of graphs. We
would like to specify it for the class of 3-connected cubic planar graphs. The only
aspect that needs a specification is in what order will we add adjacent non-visited
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faces of a face to the traversal sequence. Let G be a plane cubic graph. Each face
has a clockwise and a counter-clockwise cyclical sequence of adjacent faces. When
running the algorithm, we will fix the direction to one of the two. In other words, if
the adjacent faces of the starting face were added in a clockwise order, all faces will
add their non-visited adjacent faces to the traversal sequence in clockwise order. As
the sequence is cyclical, we must specify the leading element. The leading element of
f ’s sequence will always be the face that added the f to the traversal sequence, with
an exception of the starting face as it was not added by a face from traversal sequence.

Let S be a traversal sequence produced by a BFS algorithm in G. Then sequence
of integers obtained from S by mapping faces onto their sizes is called BFS code.

We say, that a BFS code S is lexicographic-ally smaller than a BFS code T , if there
exists a non-negative integer i such that si < ti and ∀j, 0 ≤ j < i sj = tj. For example
{4, 5, 5, . . . } is lexicographic-ally smaller than {4, 5, 6, . . . }.

Let G be a 3-connected cubic planar graph G. Let S be a set of all BFS codes in
G. Let S ∈ S be a BFS code that such it is lexicographic-ally the smallest in S, then
S is called the canonical code of G.

Let G be a 3-connected cubic planar graph G and f be a face in G. Let Sf be a set
of all BFS codes obtained from traversal sequences of a BFS starting with face f . Then
the lexicographic-ally amongst those S is called lexicographical code of f . Moreover, if
S is the canonical code of G as well, then f is referred to as the origin face of G.

To get the canonical code of a 3-connected cubic planar graph G, we must choose
from 6|V (G)| BFS codes. This is not an arbitrary number as each BFS code starts
with 3 faces that have a one mutually incident vertex. From the point of view of a
fixed vertex v, there are precisely 3 faces in which the BFS code can start if the first
3 faces of the code are meant to be incident to v. For each face there are 2 direction,
which gives a product of 6 distinct possibilities for each fixed vertex; 6|V (G)| for all
vertices. That gives us a motivation to perform some optimisations.

To find the lexicographic code of a face f , the cyclical sequence of adjacent faces
of f which adds faces to the traversal sequence must be lead by a face of smallest size
adjacent to f . Secondly the direction of the sequence can be chosen based on which
direction continues with a smaller face. To find the canonical code of a graph G, it is
sufficient to choose amongst lexicographic codes of faces of the smallest degree in G.

As mentioned, the construction of a canonical code c in a 3-connected cubic planar
graph G traverses a face-spanning tree G. As we cover each face exactly once, which
is equivalent to one edge for each non-origin face in G, such structure must, indeed, be
a tree. To better understand this concept, see Figure 3.1.
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Figure 3.1: In this example, faces of the graph G are denoted according to their index
in the traversal sequence S sequence. We chose f1 as the origin face. Therefore, at the
moment S = {f0}. As we can see, it is adjacent to two faces of degree 5 and two faces of
degree 6. Lets take the two cyclical sequences of adjacent faces and shift them so that
they are lead by a face of the smallest size. We end up having 4 different sequences, two
clockwise ({f2, f3, f4, f5} and {f4, f5, f2, f3}) and two counter-clockwise ({f2, f5, f4, f2}
and {f4, f3, f2, f5}). For demonstration purposes, we chose the first clockwise sequence.
Following the first step, we have all faces from the chosen sequence into S which is now
equal to {f1|f2, f3, f4, f5} where | splits the covered and open faces. Let’s now take
to second part of the algorithm, where we want to cover all faces in S. First up, we
need to cover f2. Therefore, we take the clockwise cyclical sequence of adjacent faces
of f2, shifted so that it is lead by f1. Let’s now add all faces that are not already in
S into S. The second face in this sequence is f5, so we do not add it to S. Similarly,
the last face is f3, so we do not add that one either. However, we need to add f6 and
f7 as those have not yet been added. At this point we have covered f2 and S looks
as follows {f1, f2|f3, f4, f5, f6, f7}. The next face to cover is f3. Again we take the
clockwise sequence lead by f1. For the same reasons, we only add f8 and f9 to S. Now,
S = {f1, f2, f3|f4, . . . , f9}. After covering f4, S = {f1, f2, f3, f4|f5, . . . , f10}. At this
point, all faces of G are in S, so for the rest we can just check that they are covered
and finish the process. Therefore, our pre-lexicographic sequence S looks as follows
{f0, . . . , f10}, which makes the lexicographic code l look as {4, 5, 6, 5, 6, 4, 4, 5, 4, 4}.
Observer that l ̸= γ(G), because l starts with {4, 5, . . . } and G contains two adjacent
faces of size 4 (for example f6, f7), so γ(G) will start as {4, 4, . . . }.
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Lemma 3.1 Let G and H be two 3-connected cubic planar graphs. Then G ≃ H if
and only if γ(G) = γ(H).

Proof. For the implication from left to right, we know that G and H are isomor-
phic. Non-formally said, G and H are the same graph, therefore the canonical code
construction will yield the same result.

For the opposite implication, let γ(G) = {c1, . . . , cn} be a canonical code. Addi-
tionally γ(G) = γ(H). Let H be a graph non-isomorphic to G. Let’s try to rebuild
G and H from γ(G). As we know, c1 is the size of the origin face in both G and H,
which means it is surrounded by c1 faces f2, . . . , fc1+1. Therefore both G and F must
contain a subgraph consisting of these c1 + 1 faces. At this point we have covered c1,
as all its adjacent faces have been rebuilt. Let’s now take an open element from γ(G)

which is an integer ci corresponding to the size of an open face fi. At this we have j

(i < j) faces rebuilt in G and H. Through silent induction assumption, we know that
all the faces placed into G so far create the same subgraph as in H. In other words, the
rebuilt subgraphs are isomorphic. According to the placement of fi, there are k ≥ 0

faces adjacent to fi that we have not yet rebuilt. After rebuilding those in G and H

the known subgraphs are still isomorphic as we did precisely the same steps in both
graphs. We repeat the process until we cover all the elements in γ(G). In the end
the induction assumption still holds as in it did not break in none of the iterations.
Now we have rebuilt both graphs and they are still isomorphic, we can clearly see a
contradiction with the assumption that G and H are not isomorphic, therefore lemma
3.1 holds. □

3.2 Hierarchy of 3-connected cubic planar graphs

Let C be a class of 3-connected cubic planar graphs. Moreover, C≤n is a subclass of C
containing only graphs of size n and smaller. Lastly, Cn will denote a subclass of C≤n

containing only graphs of size n. Our goal will be to generate all graphs of C≤n for
some fixed n.

Let f be a face of size 3 in a 3-connected planar cubic graph G = (V,E). Let f

be incident to vertices a, b and c, which implies the incidence of f to edges ab, bc and
ca. Let xa, yb, zc be edges not incident to f but incident to a, b and c respectively.
Let G∗(V ∗, E∗) be a 3-connected cubic planar graph, where V ∗ = V \ {b, c} and E∗ =

E ∪ {ya, za}. Note that edges incident to removed vertices are not in E∗ as well.
An operation G → G∗ is called reduction-3, whereas an operation G∗ → G is called
operation-3.
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Let f be a face of size 4 in a 3-connected planar cubic graph G = (V,E). Let f

be incident to vertices a, b, c and d, which implies that f is incident to edges ab, bc, cd

and da as well. Let xa, yb, zc and vd be edges not incident to f , but incident to
a, b, c and d respectively. Let G∗(V ∗, E∗) be a 3-connected cubic planar graph, where
V ∗ = V \ {b, c} and E∗ = E ∪ {ya, zd}. Edges incident to b or c are not present in G∗

either. An operation G → G∗ is called reduction-4 and its inverse operation G∗ → G

is called operation-4.

a b

d c

a

d

operation-4

reduction-4

xa ya

vd zd

xa yb

vd zc

Lastly, let f be a face of size 5 in a 3-connected planar cubic graph G = (V,E).
Let f be incident to vertices a, b, c, d and e, which implies that f is incident to edges
ab, bc, cd, de and ea as well. Let xa, yb, zc, vd and we be edges not incident to f , but
incident to a, b, c, d and e respectively. Let G∗(V ∗, E∗) be a 3-connected cubic planar
graph, where V ∗ = V \ {a, e} and E∗ = E ∪ {xb, wd}. Edges incident to a or e are
not present in G∗ either. An operation G → G∗ is called reduction-5 and its inverse
operation G∗ → G is called operation-5.
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We say that G is reducible into G∗ if there exist a reduction-3,4 or 5 such that G∗

is the result of such reduction.

As a consequence of Euler’s formula, each 3-connected cubic planar graph G con-
tains a face f0 of size smaller then 5 which is also the origin face of G. If we apply a
corresponding reduction on f0 the resulting graph G∗ is the parent of G. Additionally,
if G∗ is the parent of G then, then G is the child of G∗.

Let Q = (V,E) be an oriented graph. If Q has the following properties:

• Each vertex represents a 3-connected cubic planar graph.

• If v1, v2 are vertices, then Q contains an arc from v1 to v2 if and only if the graph
represented by v2 is a child of graph represented by v1.

• Q is rooted at a vertex representing the smallest planar cubic graph K4.

Then Q is a search tree.
A subtree of a vertex v in a tree Q usually refers to a subgraph of Q where all the

vertices are connected to V , i.e., there is a directed path from v to any vertex in the
subtree. Since Q is a search tree, we will refer to a subtree as a search branch.

An eagle-eyed reader may have noticed that the parent-child relation is defined
rather vaguely. For example, there are two ways to perform the reduction-4 for G’s
origin face of size 4. That would mean that G has two parents which is not desired.

We do not need to bother with a proper definition of the parent-child relationship
for reduction-3 as there is only one way to perform it. What we however need to specify
is the relationship when it comes to the reduction-4 and 5. The reduction from child
to parent will be called canonical.

Let f0 be the origin face of G of size n (= 4 or 5). Let γ(G) = {n, . . . } be
the canonical code of G corresponding to a sequence of faces {f0, f1, . . . }. Then the
reduction which removes the edge between faces f0 and f1 is the canonical reduction.
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Lemma 3.2 Let R be the canonical reduction G∗ → G, where the origin face f of G∗

is a square.

Proof. Assume G is not 3-connected. That implies that the edge between f and f1

(the second face in G∗’s canonical code) has been removed by the canonical reduction.
If f is a square then f1 must be at least of size 6 so that G∗ is 3-connected. We know
that the canonical code starts as {4, 6, . . . } which implies that if G∗ contains squares
other than f , they must not be incident to a face of size smaller than 6. Due to high
amount of cases, we omit the technical details, but it can be shown that with these
restrictions, G∗ cannot be completed, i.e., such G∗ does not exist. □

Lemma 3.3 Let R be the canonical reduction G∗ → G, where the origin face f of G∗

is of size 5.

Proof. Similarly as before, for G to be non-3-connected, the edge between f and
f0 must have been removed. For G∗ to be 3-connected, f0 must be at least of size
5. Naturally, G∗ must not contain any squares or triangles. Once again, due to high
amount of cases, we omit the technical detail as to why G∗ cannot be completed, i.e.,
why G∗ with these restrictions does not exist.

It is next to impossible to determine all the children for a given 3-connected cubic
planar graph G. We must do all admissible operations and later verify, if the newly
discovered graph is a child of G. For that reason we need to traverse a larger acyclic
graph that contains the entire search tree. Formally, let Q be a search tree and P

be an acyclic graph such that V (Q) = V (P ) and E(Q) ⊆ E(P ). Then P is a search
pseudo-tree.

Figures 3.2, 3.3 demonstrate all applications of operations-3 and 4. These are in
fact all the possibilities as all the other operations-3 and 4 produce isomorphic graphs
due to symmetry.

3.3 Scaling the search pseudo-tree

Let P = (V,E) be a search pseudo-tree, then |V | is called the size of Q. Moreover, |E|
is called the density of P .

In order to improve the complexity of our algorithm, we will want to make both
size and density of the search pseudo-tree as small as possible.

To get all the 3-connected cubic planar graphs, we have to do do the operations
3,4 and 5 at each vertex v of the search pseudo-tree at all viable places in the graph
represented by v. Each operation represent an edge in the search pseudo-tree. Our
ultimate goal is to make an operation from G to G∗ only if G is the parent of G∗.
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4555645545

36665454546 36664556464

35665554645 35675554455

Figure 3.2: An example of a graph G16 (on the top) and all the graphs that can be
obtained from it by applying the Operation 3, together with their canonical codes.
Note that all these graphs are children of G16 as the newly added triangles are the only
triangles meaning that the canonical code will start in them.
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∗

45556555545 4555555554

Figure 3.3: The graphs that can be obtained from the graph G16 depicted in the
previous Figure, by applying Operation 4, together with their canonical codes (first
and third column). A newly created face is shaded, whereas the face that defines the
canonical code is marked with an asterisk. If a graph is not a child of G16, then its
parent is depicted to the right of it. Observe that there are always two ways to apply
Reduction-4 to a 4-face, but only one of them is canonical. That’s the reason why for
the last graph, the asterisk coincides with the shades face, however, the graph has a
different parent.
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That however is not possible, because to determine if G is a parent of G∗, we have to
know G∗ to compute its canonical code which we cannot do before we do the actual
operation. Fortunately, there are situations when we know for sure that G is not the
parent, so we might avoid doing the operation, hence removing an edge in the search
pseudo-tree. The following set of lemmas is going to describe the situations in more
detail.

We say that an operation ω : G → G∗ is futile if it is guaranteed that G is not
a parent of G. Otherwise, ω is plausible. In other words, an operation is futile if its
corresponding edge in the search pseudo-tree is not present in the search tree.

Let f be a face in a 3-connected cubic planar graph G. Let Sf = {f0, . . . , fn−1} be
a cyclical neighbour sequence of f . We say that the distance of faces fi, fj, i < j at
face f is min(j − i, i+ j mod n), denoted as distG,f (fi, fj).

Let’s see what happens when we perform and operation-4 ω in G. First we need
to parameterise the operation. The first argument is the face in which we do the
operation, lets denote it as f . Second argument is an edge incident to f , referred to
as a start edge, denoted as es. We will use the notation of ω(face, edge). When we
perform ω. Firstly, the start edge will be split in half by a vertex v1. Therefore, the
face fs incident to es other than f will grow in size by one. Let’s now take a face that
is in distance of 2 at f from fs, denoted as fs+2. The edge shared by both and fs+2 will
be denoted as es+2. The face and edge between these two faces at f will be denoted as
fs+1 and es+1 respectively. Similarly as for es, es+2 will be split in half by v2, rendering
fs+2 bigger by one. Now, by connecting v1 to v2, f will be split into half by v1v2. In
the end, there is a new face adjacent to fs, fs+1, fs+2, f called a new face. Note that
the size of face f and fs+1 did not change, whereas the size of fs and fs+2 increased by
one.

Lemma 3.4 The parameter of an operation-4 ω must be a face of size 4 or greater.

Proof. Assume we perform ω in a triangle t. As we know, t will not grow in size,
therefore G∗ will contain a triangle, rendering ω futile. □

Lemma 3.5 Let ω : G → G∗ be an operation-4. ω is plausible only in one of these
cases:

• G contains no triangles.

• G contains one triangle and G∗ contains no triangle.

• G contains two triangles fa, fb. Moreover there exists a face fm in G at which fa

and fb are in distance of 2. Furthermore, G∗ must contain no triangles.
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Otherwise, ω is futile.

Proof. Firstly, for all the cases. If G∗ contained a triangle, than the triangle would
be the origin face of G∗ and not the new face added by ω. Now, let’s go case by case.

• The first case is simple. By doing an operation-4, all faces in G remain the same
or grow in size by one. If G contained no triangles, then G∗ will not contain any
as well. Therefore the origin face of G∗ will be a face of size 4, potentially the
new face.

• In this case, ω must add a new face next to the triangle t, so that it no longer
is adjacent to just 3 faces, hence making it a square. That means that the
parameters of ω are a face f adjacent to t and an edge incident to both f and t.
Therefore, t will grow in size by one and G∗ will contain no triangles.

• The third case is the trickiest. If we do not want any triangles in G∗, ω must
eliminate both triangles. Therefore they must be in a precise position so that it is
possible. That is precisely when the triangles are in a position as described in the
lemma. Therefore, by performing ω, where the parameters are fm and an edge fs

incident to both fm and fa (we assume that fa precedes fb in the given cyclical
neighbour sequence). Therefore fs+2 is precisely the edge incident to both fm

and fb. We know that performing ω with such parameters will increase size of
faces fa and fb by one, therefore G∗ will contain no triangles.

Suppose that G contains more than 2 triangles. A single operation-4 ω is only capable
of removing 2 triangles, therefore G∗ will contain a triangle which renders ω futile. □

Note that this lemma also proves lemma 3.4, but we decided to point out the content
of lemma 3.4 separately.

Let ω1 : G→ G∗
1 and ω2 : G→ G∗

2 be operations-4. If G∗
1 ≃ G∗

2 then we say, ω1 and
ω2 are duplicate. Naturally, each operation is duplicate to itself. A pair of duplicate
operations corresponds to parallel edges in the search pseudo-tree. We will want to
avoid doing duplicate operations.

Lemma 3.6 Let e be and edge in a 3-connected cubic planar graph G incident to fl

and fr, where both faces are greater in size than 3. Let Sl = {fl,0, fr, fl,2, . . . } and
Sr = {fr,0, fl, fr,2, . . . } be the cyclical neighbour sequences of fl and fr respectively.
Furthermore, let ω1 = ω(fl, el,0), ω2 = ω(fr, er,0) be two operations-4, where el,0 is an
edge incident to both fl and fl,0, and er,0 is an edge incident to both fr and fr,0. Then
ω1 is duplicate to ω2.
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Proof. without loss of generality, lets assume that both Sl and Sr are clockwise
sequences. Then it is easy to see, that fl,0 is the same face as fr,2, denoted as f1, and
fl,2 is the same face as fr,0, denoted as f2. We know that ω1 will increase the size of
f1 as it is the parameter and f2 as it is in distance of 2 at fl. The size of fl and fr

will not change, but both will be adjacent to a new face fn. Similarly for ω2. The size
of f2 will increase because it is the parameter and the size of f0 will increase as it is
in distance of 2 from f2 at fr. Both fl and fr will have their size unchanged and both
will be adjacent to the new face. □

To discuss operation-5 in more detail, we first need to parameterise it. Similarly as
for operation-4, the parameters will be a face and an edge incident to it. We will once
again use the notation ω(face, edge). There are a lot of similarities with operation-
4, therefore we will focus on the differences. Let f be the face and es the edge in
parameters. Let fs is the face incident to the start edge other than f . This time, we
will be interested in a face fs+3 in distance of 3 from fs at f . Let ss+3 be the edge
incident to both f and fs+3. Both es and es+3 will be split by a vertex and connect
by and edge e. This edge e is adjacent to f and the new face fn. As a result, the
cyclical neighbour sequence of fn looks as {fs, . . . , fs+3, f}. Observe that the only face
size that have increased are the size of faces fs and fs+3. However, the size of face f

has decreased by one as it has been adjacent to fs+1 and fs+2 in G whereas in G∗ it is
no longer adjacent to those but the new face fn.

Lemma 3.7 The parameter of an operation-5 ω must be a face of size 6 or greater.

Proof. Assume that the parameter face f is of size n < 6 or smaller. Then by
performing ω, f will be of size n− 1 in G, i.e., f will be of size 4 or smaller. Therefore,
the new face is of greater size than f , hence it will never be the origin face of G∗,
rendering ω futile. □

Lemma 3.8 Let ω : G → G∗ be an operation-5. ω is plausible only if G contains no
triangles. Moreover, one of these cases must be true.

• G contains no cubes.

• G contains one cube and G∗ contains none.

• G contains two cubes fa, fb. Moreover there exists a face fm in G at which fa

and fb are in distance of 3. Furthermore, G∗ must contain no squares.

Proof. If G contained triangles, then G∗ would contain faces of size 4 or smaller,
therefore the new face will not be the origin face. Now let’s discuss the cases. To
proofs of the first two cases are analogical to the cases first two cases in lemma 3.5.
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In the third case, we must acknowledge that the face in which we do the operation is
at least of size 6. Therefore ω will for sure not decrease its size below 5. Additionally,
the condition in the third case puts the two cubes in exact position so that the first s

is incident to the start edge es and the other one fs+3 is incident to es+3. Those are
precisely the faces that are going to increase in size, therefore G∗ will contain no cubes.
□

Our goal is to find the smallest tripole of each type. That implies that those tripoles
must not contain any reducible configurations. Therefore, we do not need to generate a
set of all 3-connected cubic planar graphs, but only a subset of the set. Unfortunately,
we cannot omit graphs that contain reducible configurations as such graphs may be
unique parents of graphs that do. However we can omit those, where the reducible
configuration cannot be gotten rid of.

The most simple of reducible configurations is a single face of size 3. Thanks to
the lemmas 3.4 and 3.8, we know that an operation σ will produce a graph without
triangles, if the conditions in the lemma 3.4 are met. We will show that a graph G

not compliant to lemma 3.4, in a sense that there exists an operation-4 ω which is not
futile, will never have a graph with no triangles in its respective search branch. We
will call such graph vain.

Let G be a 3-connected cubic planar graph, then σn(G) denotes the number of faces
of size n in G.

Lemma 3.9 Let G be a 3-connected cubic planar graph and G and ω : G→ G∗ be an
operation-3. Then σ3(G) ≤ σ3(G

∗).

Proof. Assume that σ3(G) > σ3(G
∗). Then G must contain a vertex that is incident

to at least 2 faces of size 3, as a single operation-3 can increase the size of only the
3 faces incident to the vertex in parameter. That implies G would have to contain a
2-cut, which is in contradiction with G being 3-connected. □

Lemma 3.10 Let G be a 3-connected cubic planar graph. If there exists no non-futile
operation-4 ω, then G is vain.

Proof. It should be apparent that lemma 3.8 is more restricting than lemma 3.5 in
the sense, that if there exists a non-futile operation-5, then there must exist a non-futile
operation-4.

If there exists no non-futile operation-4, then only operations-3 are viable, which
means that G∗ will always have at least as many triangles as G. Let’s now analyse why
the operation-4 might be non-futile in G and what consequence it will have on G∗.
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• G contains more than n > 2 triangles. Then according to lemma 3.9, G∗ will
contain at least n triangles. Therefore, there will be no non-futile operation-4 in
G∗.

• G contains 2 triangles that do not have a mutual adjacent face. By doing an
operation-3, no faces will merge so that those triangles could have a mutual
adjacent face. The rest of the reasoning is analogical to the previous case.

• G contains 2 triangles t1, t2 that have a mutual adjacent face f , but their distance
at f is greater that 2. If ω adds the new face so that it is not adjacent to f , we
can do the same reasoning as in the previous cases. If it does, then it either adds
a third face adjacent to f , or it makes one of the triangles a square. It happens,
if ω has one of the vertices incident to t1 or t2 as its argument. Let’s look at the
cyclical neighbour sequence S of f . Since t1 and t2 are in distance of at least 3

there is a minimum of 2 faces between t1 and t2 in S. Operation-3 is basically an
insertion of a face of size 3 in to the sequence. As we know, it will next to t1 or
t2. That however will not shrink the gap between t1 and t2. For that reason, G∗

will not admit any non-futile operation-4.

In each case, the resulting graph does not admit a non-futile operation-4. Through
induction, we can clearly see that G is vain. □

As all the graphs that do admit a non-futile operation-4 have at most 2-triangles,
moreover those triangles are both adjacent to a face f , at which they are in distance
of 2, we will denote a class of these graphs as C2∆.

Lemma 3.11 Let G be a 3-connected cubic planar graph, where σ3(G) = 2 and there
exists a non-futile operation-4. Moreover, let ω : G → G∗ be a non-futile operation-4,
then G is not the parent of G∗.

Proof. As G admits an non-futile operation-4, there exist a face f that is adjacent to
both triangles. Face f must be at least of size 5, otherwise there would be a 2-edge-cut
in G. G∗ as the result of ω contains a new face fn of size 4 adjacent to two faces of size
4, i.e., the former triangles and two faces of size at least 5, one of which is f . If fn is
the origin face in G∗ then the canonical code will for sure start as {4, 4, . . . }. By the
definition of parent-child relationship, the canonical reduction is the one that removes
an edge between the first two faces in the canonical code. As f is bigger than 4, the
canonical reduction will never result in G. □

As a consequence of this lemma, and the fact that we only care for graphs containing
two triangles because of their children that don’t contain any, we do not need to bother
with them at all. In other words, if we eliminate all graphs containing two triangles
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from the search tree, we will not loose any 3-connected cubic planar graphs that do
not contain reducible configurations. The class of 3-connected cubic planar graphs
containing only one triangle will be denoted as C∆.

3.4 Verifying semi-2-factors

Now that we have obtained a set of 3-connected cubic planar graphs, we want to verify
if it contains a graph G for which exists a way to assign polarities to its vertices so
that it behaves as one of the desired tripole types if we remove one of its vertices. A
concrete assignment of polarities to vertices of a graph is called polarity distribution
on G. The desired tripole types are those containing an unavoidable and untouchable
edge. For each graph there are 2|V (G)−1| possible polarity distributions. Note that the
power is |V (G) − 1| and not just |V (G)|, because we need G to be a valid dual of a
a signed planar graph, i.e., contain an even number of vertices. Furthermore, for each
polarity distribution, we need to check if G contains an unavoidable or untouchable
edge. It is obvious that the complexity of such approach is inadmissible.

We say, that an edge e is ham-unavoidable, if there exists no Hamilton cycle not
containing e.

Similarly, if there exists no Hamilton cycle containing an edge e, then e is ham-
untouchable.

Lemma 3.12 Let G be a vertex-signed planar graph G. Moreover, let e be an edge in
G. Then if e is unavoidable then it must ham-unavoidable.

Proof. Assume that e is unavoidable but not ham-unavoidable. That means there
exists a Hamilton cycle C not containing e. Such Hamilton cycle must contain and
even number of positive vertices, as it contains all vertices of G. That means that C is a
semi-2-factor in G not containing e, which is in contradiction with e being unavoidable.
□

Lemma 3.13 Let G be a vertex-signed planar graph G. Moreover, let e be an edge in
G. Then if e is untouchable then it must be ham-untouchable.

Proof. Similarly as before, assume that e is untouchable but not ham-untouchable.
That means there exists a Hamilton cycle C containing e, which in itself is a semi-2-
factor, which is in contradiction with e being untouchable. □

We said that for each polarity distribution we need to verify if there is an un-
avoidable or untouchable edge. Obviously, this statement is invertable. As Hamilton
cycles do not deal with polarities it means that the concepts of ham-unavoidable and
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ham-untouchable edges are polarity-independent. For that reason we can first check
if a 3-connected cubic planar graph contains an edge e of one of these edge types,
and for each such edge deal with polarities later. That will allow us to avoid polarity
distribution that would guarantee that e will not unavoidable or untouchable.

For each edge that is ham-unavoidable or ham-untouchable, we sort vertices of the
graph into two groups. Firstly, it’s the forced positive vertices, which is a set of vertices
that we will for sure know about that must be positive, otherwise the edge would not
be unavoidable or untouchable. The rest of the vertices are gonna be called ambiguous.

Lemma 3.14 Let G be a 3-connected cubic planar graph and v a vertex in G. More-
over, let e be a ham-unavoidable edge in G. If G \ {v} admits a Hamilton cycle not
containing e then v must be forced positive otherwise e would not be unavoidable.

Proof. Assume that e is unavoidable but v is negative. Note that v being negative
allows a semi-2-factor to avoid v same as the removal of v from G allows Hamilton
cycle to not cover v. If G\{v} admits a Hamilton cycle C not containing e then C is a
semi-2-factor in G not containing e, which is in contradiction with e being unavoidable.
□

Lemma 3.15 Let G be a 3-connected cubic planar graph and v a vertex in G. More-
over, let e be a ham-untouchable edge in G. If G \ {v} admits a Hamilton cycle con-
taining e then v must be forced positive otherwise e would not be untouchable.

Proof. Similarly as in the previous lemma, assume that e is untouchable but v is
negative. If G \ {v} admits a Hamilton cycle C containing e then C is a semi-2-factor
in G containing e, which is in contradiction with e being untouchable. □
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Chapter 4

Implementation and results

As previously mentioned, the goal of our work will be to find the smallest tripoles of
each type. That however is impossible to do in hand, therefore we utilised computer
assisted search. For this purpose we need to do all the steps described in the previous
chapter. First we need to generate all the graphs that we will test for presence of
semi-2-factors in some of their polarity distributions. First and foremost we need to
interpret the concept of a graph so that a computer can do all the necessary operations
with it efficiently.

4.1 Representation

The programming language of choice in this work was Java. Java is famous for its
object oriented design. Therefore, All the concepts of a graph will be represented by
their own class. Moreover, for reasons that will be explained later, we always keep the
instances of these classes in such states so they represent a concrete plane embedding.

First lets describe the representation of a vertex. A vertex is represented by a class
Vertex. All that an instance of Vertex needs to remember is a list of its incident edges
in such order that it represents a fixed embedding.

Secondly, an edge is represented by a class Edge. An instance of Edge remembers
the vertex it goes from and the vertex it goes to. Note that class Edge does not
represented an oriented edge. Secondly, an instance remembers the face on the right
and the face on the left from the point of view of the starting vertex. The point of this
is to know the position of faces in the given embedding.

The last component of the graph is a face. A face is represented by a class Face,
whose instance remembers a cyclical sequence of its incident edges.

Lastly, there is the class Graph, whose instance represents a graph. It remembers
all of its vertices, edges and faces.

45
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4.2 Generation

Our algorithm will traverse the search tree as described in the previous chapter. The
only problem is that the search tree as defined is not finite. For that reason we will
only traverse the tree to some predetermined depth that will be a parameter of the
algorithm called search tree depth. For example, if the search tree depth is 26, the
output of the generation will be all the graphs of degrees up to 26.

The operations corresponding to the edges in the search tree are performed by
methods on the instance of class Graph itself. Each method has its reverse method
same as for each operation there is a reduction. The necessity of the reverse operations
is simple. We only want to maintain one instance of the graph.

Methods have exactly the same parameters as their corresponding operation.

• Method op3, corresponding to operation-3 takes as a parameter a vertex and
performs operation-3. Its reverse method, called undoOp3, corresponding to
reduction-3, takes as a parameter the face created by op3.

• Similarly, method op4, which corresponds to operation-4 takes as a parameter a
face f of size at least 4 (lemma 3.4 and an edge incident to that face; and performs
operation-4. Its reverse method, called undoOp4 corresponds to reduction-4, and
takes as a parameter the edge that is incident to both f and the new face.

• Lastly, method op5, which corresponds to operation-5 takes as a parameter a
face f of size at least 6 (lemma 3.7) and an edge incident to f ; and performs
operation-5. Its reverse method, called undoOp5 corresponds to reduction-5, and
takes as a parameter the edge incident to both f and the new face.

Another necessary component is an utility constructing canonical codes. For that
purpose, we have a class BFSCoder, which has a several neat methods. Note that a
canonical code is represented as a list of integers. First of the methods is getLexCode-
ForFace that computes the lexicographic code of a face. The algorithm is pretty much
copy of the lexicographic code’s definition. The second important method is isMinimal
which returns true if the lexicographic code provided as parameter is the canonical
code of the graph. Otherwise it returns false.

The last component is a class which provides operands for operations. It is hosted in
class called OperandProvider, which has 3 crucial methods. getOp3Operands returns a
set of operands for operation-3 so that neither of the operations described in the results
is futile or leads to a vain graph. getOp4Operands does the same as getOp3Operands,
but for operation-4 and getOp5Operands for operation-5.

The algorithm traversing the search tree is implemented in class TopVerifyingGen-
erator. The process begins with an initial graph, which will be represented by the root
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node in the search tree. To traverse the edges of the search tree, we do operations-
3,4 and 5 performed by the above mentioned methods and reductions-3,4 and 5 when
we are coming back from a search tree branch. For each step in the recursion, the
algorithm does the following.

• Checks if the newest face is the origin face in the current instance. If not it
immediately returns, as the current instance is not the child of the graph in the
previous step of the recursion.

• Checks if the graph with given canonical code was already discovered (necessary
because of symmetries). If yes, it returns immediately, otherwise it adds its
canonical code into the set of discovered codes and proceeds with the search
branch.

• Checks if the graph size is equal to search tree depth. If yes, it proceeds with ver-
ification of semi-2-factor existence which we will discuss later. If not it proceeds
as follows.

• Uses getOp3Operands, getOp4Operands and getOp5Operands to get operands
for respective operations and proceeds to do all of them one by one.

• Finally, returns from the search branch.

Observe that we only verify semi-2-factor existence if the current depth of recursion
is equal to the search tree depth. For example, if we set the search tree depth to 28,
we will only verify semi-2-factors in graphs of size 28.

The effectivity of this algorithm is dependent on the amount of operands provided.
We know that the number of 3-connected cubic planar graphs grow exponentially with
n, where n is the size of graph. It is difficult to state the complexity of this algo-
rithm, but the explicit measurements of the search tree size and density should be
a good measure of how the improvements caused by several improvements effect the
complexity.

As a naive approach, we wanted to generate all cubic planer graphs to some fixed
size n, i.e., all graph classes C4, . . . , Cn We knew that we will be using canonical codes
to determine the isomorphism of generated graphs. From the very beginning, we were
aware that operations-4 and 5 can result in G∗ which is child of G only if G∗ will not
have triangles or squares respectively. We also took into account that operations-4 are
duplicate if they are performed around the same edge, which corresponds to lemma
3.6. The last thing we did account for was that the operand of an operation-4 must be
a face of size greater than 4 (lemma 3.4) and the operand of an operation-5 must be a
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face of size greater than 6 (lemma 3.7). The tables bellow demonstrate how the density
and tree size changed when we incorporated the claims of lemmas 3.10 and 3.11 into
the algorithm. For comparisons, see tables 4.1, 4.2 and 4.3.

Depth 8 10 12 14 16 18 20 22 24 26 28
Graphs 2 5 14 50 233 1249 7594 49543 339427 2403389 17452555
Density 9 38 107 319 1150 5281 29180 187382 1307208 9609985 73368003

Table 4.1: The number of graphs of size equal to the search tree depth n together with
the density of the search tree. In this version, our algorithm was doing operation-3
at all vertices of a graph. Since we did not avoid any graphs, the number in the row
graphs represents the total number of 3-connected cubic planar graphs of that size, i.e.,
graphs from class Cn.

Depth 8 10 12 14 16 18 20 22 24 26 28
Graphs 2 3 6 17 61 241 1124 5601 29592 161963 910240
Density 9 32 69 153 406 1231 4254 18020 84546 435435 2776582

Table 4.2: The number of graphs of size equal to the search tree depth n together with
the density of the search tree. The algorithm corresponding to this search tree was
using claims of lemma 3.10, i.e., graphs from the class C2∆n . We can see a dramatic
decrease in density and the number of graphs for each n.

4.3 Semi-2-factor verification

Based on the results of lemmas 3.12 and 3.13, we must first check if the graph in
question contains a ham-unavoidable or ham-untouchable edge. After we have done
that, we will look for ambiguous vertices for the special edge. Both of these tasks re-
volve around Hamilton cycle construction, therefore we host an utility which constructs
Hamilton cycles in class called AbstractPreProcessor. The key method in this class is
called cycleConstructible which returns true if we can construct a Hamilton cycle in
the provided graph. Otherwise it returns false. Then, for of the sub-tasks there is a
class which extends this parent task. But more on that later, let’s first take a closer
look at how the cycleConstructible works.

We will remember a state of each edge and vertex. There are 3 states that an edge
can be in.

• UNDISCOVERED. If an edge is UNDISCOVERED it means that it has not yet
been decided, whether this edge will be in the Hamilton cycle or not. In the
beginning.
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Depth 8 10 12 14 16 18 20 22 24 26 28
Graphs 1 2 4 12 45 179 844 4261 22670 124829 704631
Density 0 20 51 123 340 1018 3420 14204 65502 335031 2227489

Table 4.3: The number of graphs of size equal to the search tree depth n together with
the density of the search tree. The algorithm corresponding to this search tree was
using claims of lemma 3.11, i.e., graphs belonging to a class C∆n . Note that the density
is offset, as we had to start with a graph on 8 vertices, which is the smallest graph
containing at most 1 triangle.

• INCLUDED. If an edge is INCLUDED, it means that it is part of the Hamilton
cycle being constructed.

• EXCLUDED. If an edge is EXCLUDED, it means that it is not part of the
Hamilton cycle being constructed.

Secondly, lets describe the vertex states. There are 6 states that a vertex can be in.

• UNDISCOVERED. If a vertex is UNDISCOVERED it means that it is incident
to only UNDISCOVERED edges.

• CHOICE. If a vertex is in CHOICE state, it means that it is incident to 2
UNDISCOVERED edges and one INCLUDED edge. Therefore, there is a choice
as to which of the UNDISCOVERED edges will be INCLUDED.

• DETERMINISTIC_INCLUDE_REST. If a vertex is in this state, it means that
it is incident to 2 UNDISCOVERED edges and one EXCLUDED edge. That
means that the two UNDISCOVERED edges must become INCLUDED.

• DETERMINISTIC_INCLUDE_REMAINING. If a vertex is in this state, it
means that it is incident to an INCLUDED edge, an EXCLUDED edge and
an UNDISCOVERED edge which must be become INCLUDED.

• DETERMINISTIC_EXCLUDE_REMAINING. If a vertex is in this state, it
means that it is incident to two INCLUDED edges and the third UNDISCOV-
ERED one must become EXCLUDED.

• COVERED. If a vertex is COVERED it means that it is incident to two IN-
CLUDED and one EXCLUDED edge.

For an illustration, see Figure 4.1.
Method cycleConstructible is recursive, therefore at each point it handles the graph

in some state. State of a graph means, that all edges and vertices are in some state.
Note that there may be many edges INCLUDED, yet not forming a single path or a
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v3

v1

v2

v4

v5

Figure 4.1: Included edges are coloured green, excluded red and undiscovered are
black. In this example, v1 is COVERED as none of its incident edges is undiscovered,
v2 is DETERMINISTIC_INCLUDE_REMAINING as it is incident to one edge of
each state. v3 is CHOICE as it is incident to only one included edge and the rest is
undiscovered. Both v4 and v5 are DETERMINISTIC_INCLUDE_REMAINING as
they are incident to one excluded edge and the rest is undiscovered. The remaining
vertices are UNDISCOVERED.

cycle. That is why we need a way to tell in order not to close a cycle prematurely. For
that purpose, we use a union-find algorithm enhanced by a disunion method hosted
in SimpleUnionFindSet class. An union-find algorithm maintains elements in sets. Its
find method can for any element tell what set it is in. Its union method can merge two
sets into one. It is implemented as a tree, so the set of a vertex is the root of the tree
it is in. As the algorithm is recursive, we need a way to disunion a set into two former
sets when coming back from a recursive branch. Recursion has one neat feature, which
is that a sequence of operations union and disunion always resembles a stack, therefore
by using a tree implementation, we can easily disconnect a tree so that we are left with
two former ones. A set in our case will represent a path in the graph.

The pseudo code in algorithm 4.3 uses simplified structure for explanatory purposes.
In real implementation it is a little more tangled up. For the sake of completeness let’s
explain purpose of all the methods used in this pseudo code. First up, there is a method
cycleClosed. It is a Boolean method which returns true, if there is Hamilton cycle
constructed in the graph. Next, there is the pollVertex method which returns a vertex of
the graph according to the following pattern. If there is a vertex in a DETERMINISTIC
state, pollVertex returns such vertex. If not it returns a CHOICE vertex if there is
one, otherwise it returns an UNDISCOVERED vertex. Vertex’s getUndiscoveredEdge
method returns any UNDISCOVERED edge incident to the vertex. The key method
in this algorithm is operationsFor. For a given edge uv it returns a set of possible
operations. For example, if u is DETERMINISTIC_INCLUDE_REMAINING and
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v is CHOICE, then the returned set will only contain operation INCLUDE. If there
is no mutual operation, it will return an empty set. Moreover, INCLUDE will be in
the returned set only if u and v are from different paths or by including this edge,
we close a valid Hamilton cycle. Finally, there are include, undoInclude, exclude and
undoExclude methods, whose purpose is just to properly set the new states to the
vertices and edges.

1: procedure cycleConstructible

2: if cycleClosed = true then
3: return true
4: end if
5: vertex← pollVertex

6: edge← vertex.getUndiscoveredEdge

7: operations← operationsFor(edge) ▷ operations is a set
8: result← false;
9: if operations.contains(INCLUDE) then

10: include(edge)
11: union(edge)
12: result← cycleConstructible

13: disunion(edge)
14: undoInclude(edge)
15: end if
16: if operations.contains(EXCLUDE) then
17: exclude(edge)
18: results← cycleConstructible

19: undoExclude(edge)
20: end if
21: return result

22: end procedure

Having described the method, let’s describe its use. According to lemma 3.12, if
an edge is unavoidable then it must be ham-unavoidable. We want to use this method
to determine if an edge of a graph is ham-unavoidable. This process is hosted by a
class called HamUnavoidableEdgeGetter. It contains a method called getResult which
returns all ham-unavoidable edges. Let’s remind what it means that an edge is ham-
unavoidable. It means that there exists no Hamilton cycle not containing it. That is
precisely what we want to verify. If there exists a Hamilton cycle not containing the
edge, we know for sure it is not ham-unavoidable. The implementation of the getResult
is very simple. For a given edge, it excludes it from the Hamilton cycle, i.e., sets its
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state to EXCLUDED and calls the cycleConstructible method. If the method returns
true, we know that the edge in question is not ham-unavoidable. Therefore, the result
of the getResult method is a set of edges for which the cycleConstructible method
returned false.

Similarly, according the lemma 3.13, if an edge is untouchable it must be untouch-
able. A class hosting getResult method for this verification is hosted in HamUntouch-
ableEdgeGetter. In this case, we are looking for an edge that is not contained in any
Hamilton cycle in the given graph. In other words, if there exists no Hamilton cycle
containing the edge, then it is ham-untouchable. Therefore the implementation of the
getResult method is again very simple. First, we include the edge in the Hamilton cycle
and union the endvertices by union-find. The we call the cycleConstructible method.
If it returns true, then the given edge is not ham-untouchable, otherwise it is.

There is a simple optimisation to be done. In the case of HamUnavoidableEdgeGet-
ter.getResult, if we close a Hamilton cycle for a an edge, then all edges not contained in
the Hamilton cycle, i.e., all EXCLUDED edges are not ham-unavoidable either as there
exists a Hamilton cycle not containing them. For that reason, we do not need to verify
the property for them again. Similarly for HamUntouchableEdgeGetter.getResult, if
we close a Hamilton cycle, then all the edges contained in the cycle, i.e., all INCLUDED
edges are not ham-untouchable either as there exists a Hamilton cycle containing them.

Let e be an edge of a graph G that is ham-unavoidable or ham-untouchable. To
verify, whether e is unavoidable or untouchable, we need a signature of G. Starting with
the case that e is ham-unavoidable, we want to establish which vertices must be positive.
According to the lemma 3.14 a vertex v is forced positive, if there exists a Hamilton cycle
in G \ {v} not containing edge e. Otherwise, v is ambiguous by definition. An utility
that returns a set of ambiguous vertices for a given ham-unavoidable edge is hosted in
getResult method ofUnavoidableAmbiguousVertexGetter class. The implementation
of the method looks as follows. We do no physically remove v from G, but instead we
exclude all its incident edges from the Hamilton cycle. Next we exclude e and call the
cycleConstructible method. If the return value of the call is false, then v is ambiguous
so we add it to the set that gets returned once we process all vertices of G by the
getResult method.

Similarly for the case if e is ham-untouchable. According to lemma 3.15 a vertex v

is forced positive if there exists a Hamilton cycle in G \ {v} containing edge e. Oth-
erwise, v is ambiguous by definition. An utility returning a set of ambiguous vertices
for a given ham-untouchable edge is hosted in getResult method of UntouchableAm-
biguousVertexGetter class. Firstly, we set all edges incident to v to EXCLUDED and
then set e to INCLUDED. After that we call the cycleConstructible method. If it
returns false, then v is ambiguous and we add it to the set of ambiguous edges that
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gets returned at the end of the getResult method.

The last step before semi-2-factor verification is to assign the underlying graph a
signature. We have constraints on some vertices (forced positive vertices) and for the
rest we have to verify all possible combinations (ambiguous vertices). This task is
handled by a class named VertexPolarityDistributor. Its constructor method takes the
underlying graph and the set of ambiguous vertices. The produced signatures of the
underlying graph can be accessed through an iterator exposed by this class, where each
iteration contains a different valid (the number of positive vertices is even) signature
of the underlying graph.

Now that we described all utilities necessary to produce a vertex-signed cubic pla-
nar graph with a potentially unavoidable (ham-unavoidable) or untouchable (ham-
untouchable) edge, let’s proceed to the description of the semi-2-factor verification
itself. Firstly, we need to describe the states of edges and vertices. When it comes to
edges, there are precisely the states as there were during Hamilton cycle construction,
however for vertices we need dedicated states for positive and negative vertices. For
clarity, states of positive vertices will be prefixed with P_ whereas states of negative
vertices will be prefixed with N_.

• All the vertex states used in Hamilton cycle verification will be used by semi-2-
factor builder as well. This will precisely be the states of positive vertices just
prefixed by P_. For example, the formerly introduced state CHOICE will be
called P_CHOICE.

• If a vertex is N_UNDISCOVERED all its incident edges are UNDISCOVERED.

• If a vertex is N_END_PATH_CHOICE it means that it is incident to two
UNDISCOVERED edges and one INCLUDED edge.

• If a vertex is N_IN_EX_CHOICE it means that it is incident to two UNDIS-
COVERED edges and one EXCLUDED edge.

• If a vertex is N_DETERMINISTIC_INCLUDE it means that it is incident to
one edge of each state.

• If a vertex is N_DETERMINISTIC_COVER_EXCLUDE it means that it is
incident to one UNDISCOVERED edge and two INCLUDED ones.

• If a vertex is N_DETERMINISTIC_EXCLUDE it means that it is incident to
one UNDISCOVERED edge and two EXCLUDED ones.

• If a vertex is N_COVERED it means that it is incident to one EXCLUDED edge
and two INCLUDED ones.
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• If a vertex is N_EXCLUDED it means that it is incident to three EXCLUDED
edges.

When building two factors, we need to keep track of the paths and cycles built in
the graph. For that purpose we use modified union-find set hosted in a class named
CountingUnionFindSet. The main difference between the CountingUnionFindSet and
SimpleUnionFindSet is that it it remembers the number of positive vertices in each
path.

Finally, we can get to the component responsible for semi-2-factor verification. It
all revolves around a method called canBuildSemiTwoFactor hosted in a class named
AbstractBuilder. Its pseudo code is pretty much the same as the one in 4.3, however
the behaviour of some used methods is altered. Firstly, the cycleClosed method returns
true if there is a semi-2-factor built in the graph. Secondly, we need to address the
pollVertex method as there are new vertex states. The pattern stays the same. If
there is vertex in a state whose name contains the word DETERMINISTIC, then such
vertex will get polled. If there is no such vertex a vertex whose state contains the word
CHOICE will get polled, otherwise an UNDISCOVERED vertex would get polled.
Lastly, we need to describe the operationsFor method. The principle stays the same as
it returns non-conflicting actions to both endvertices, however there is a new constraint
for edge inclusion, i.e., setting the edge state to INCLUDED. The edge can be included
only if it will connect two distinct paths or if it closes a cycle containing an even number
of positive edges.

We would like to show some statistics as to how effective the verification was. For
more detail see Table 4.4. Compared to the Table 4.3, we can see how few graphs actu-
ally contain no reducible configurations. Moreover, the existence of an ham-unavoidable
edge is very rare. Lastly, we can see that the number of ambiguous vertices is signifi-
cantly lower than the size of the graph.

Depth 8 10 12 14 16 18 20 22 24 26 28
Graphs 1 0 0 2 3 5 20 60 242 1088 5180
Edges 0 0 0 0 3 2 1 12 45 168 713

Vertices x x x x 6 6 10 12.667 13.333 14.744 16.856

Table 4.4: The number of graphs at each depth that contain no reducible configuration,
together with the total number of ham-unavoidable edges in all of them. Lastly, an
average number of ambiguous vertices for an ham-unavoidable edge in graphs of given
size.

Lastly, lets demonstrate, how long the verification takes compared to the generation.
For more detail, see Table 4.5. We can clearly see that the time spent on verification is
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Depth 12 14 16 18 20 22 24 26 28
Generation 31ms 47ms 73ms 132ms 355ms 1.03s 4.3s 23.2s 128.4s
Verification 31ms 51ms 105ms 165ms 428ms 1.16s 4.6s 25.2s 287.1s

Table 4.5: The length of generation compared to the length of generation and verifica-
tion for each depth.

marginal compared to the time spent on generation up to the depth of 26. From there
on, The verification seems to be the bigger expense.

4.4 Results

The main goal of this work was to find the smallest tripoles of given types. Prior to
this work, we knew the smallest tripoles of type P3, N

∗
3 and N3. The minimal size of

the rest was an open problem. Through verification of all 3-connected cubic planar
graphs we came to the following results.

Lemma 4.1 The smallest tripole of type P2 has 27 vertices.

Proof. Our algorithm did not find any positive tripoles of size smaller than 27

containing an unavoidable edge. □

In other words, we have verified that the tripole used by Kardoš and Narboni is
the smallest tripole o type P2. Together, we have found four distinct graphs for which
there exists a signature such that they contain an unavoidable edge, i.e., by removal
of a positive vertex incident to that edge we get a tripole of type P2. Moreover,
both vertices incident to that edge were in each case positive, therefore we get 8 non-
isomorphic tripoles of type P2. All of these tripoles have one thing in common. They
are Tutte’s fragment with a different placements of cubes (tripoles of type P3). This
was an expected result. The only possibility how there could be a smaller tripole of
this type is, if there was a graph with greater number of vertices than Tutte’s fragment
that would need less cubes than 2 to be substituted into. However, we have not found
such graph, hence the smallest tripole of type P2 is of size 27.

Lemma 4.2 The smallest tripole of type N∗
2 has 27 vertices.

Proof. Our algorithm did not find any negative tripoles of size smaller than 27
containing an unavoidable edge while admitting a semi-2-factor not containing any
semi-edges. □

Similarly as for tripoles of type P2 we exhaustively searched the class of 3-connected
cubic planar graphs and found no tripoles smaller than 27. As we mentioned in the
remark after the previous lemma, there are 4 distinct graphs that result in 8 distinct
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tripoles of type P2. There is an interesting observation. For graphs for which exists
a signature resulting in tripoles of type P2 exists a signature such that the resulting
tripoles are of type N∗

2 . In other words, let G be a vertex-signed cubic planar graph
of size 28 and type P2. Then then there exists a different signature of G such that the
tripoles produced from G are of type N∗

2 . That means that both vertices incident to
an unavoidable edge are negative which results in 8 distinct tripoles of type N∗

2 . This
is a new result as these tripoles have not been known before.

Lemma 4.3 The smallest tripole of type N2 has 29 vertices.

Proof. Our algorithm has not found any tripoles of type N2 with 27 or less vertices.
By the claims of the lemma 2.15, we know that we can produce a tripole of type N2

from P2 by adding two vertices. As the smallest tripole of type P2 has 27 vertices, a
tripole of type N2 obtained through this means has 29 vertices. □

We have not verified that these are the only tripoles of type N2 of size 29, but we
know that there are none smaller than that.
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Conclusion and remarks

The goal of the work was achieved as we found tripoles of types that were not discovered
before, i.e., N∗

2 of size 27 and N2 of size 29. Moreover, the set of reducible configurations
can be extended to contain all the tripoles that are not the smallest known tripoles of
each type.

Unfortunately, we were not able to find a smaller tripole of type P1, N∗
1 or N1; or

verify if the one known is the smallest one. The reason for that is simple. As seen in
the table 4.3, the number of graphs at each depth n is exponential with n even if we
account for all the known optimisations. Moreover, due to the need to remember all
the canonical codes because of symmetries, the program ran out of heap memory at
depth 32.

We have observed, that if we restrained operation-3, we could generate all the
3-connected planar cubic graphs that contain no non-trivial tripoles. As there are
very few non-trivial tripoles that are irreducible to a smaller tripole with the same
properties, we propose the following algorithm.

Firstly, we need to account for orbits, i.e., classes of symmetry in a given graph. If
we then perform the operations for only one element of each orbit and strictly follow the
definitions of the parent-child relationship, we do not need to bother with remembering
all the canonical codes.

Moreover, the aforementioned observation that each non-trivial tripole can be re-
duced into a smaller one of the same type can be abused in our favour as well. From
the global point of view, a tripole has the same interface for the rest of the graph as a
single vertex, i.e., its three semi-edges. Therefore, instead of building tripoles manually,
encountering many that are reducible in the end, we can do the following. Each vertex
will carry additional values, i.e., the type of the tripole it represents. If it represents a
tripole of type P2, N∗

2 or N2 it will also remember which of its edges is the unavoidable
one.

This approach has 2 benefits. First one is obvious, as we only need to search a

57
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smaller class of graphs. Secondly, the verification will also be enhanced as we do not
need to verify all the possibilities how the semi-2-factor can traverse the inside of a
tripole.
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