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Abstrakt

Študovali sme popisnú zložitosť zásobníkových automatov na regulárnych a bezkontextových
jazykoch. Predstavili sme transformaciu z ľubovolného konečného automaton použivajúceho
n stavov na zásobníkový automat použivajúci p zásobníkových symbolov, ktorá redukuje
počet stavov na ⌈ n

p
⌉. Analyzovali sme popisnú zložitosť zásobníkových automatov na dvoch

postupnostiach regulárnuch jazykov L1[n] a L2[n]. Ľubovolný konečný automat potrebuje
aspoň n stavov na akceptovanie L1[n] a L2[n]. Ukázali sme, že preľubovolné n existuje
minimálny zásobníkový automat použivajúci dva zásbnikové symboly a jeden stav a akceptuje
jazyk L2[n]. Na druhej strane, zásobníkový automat používajúci jeden stav potrebuje aspoň n
zásobníkovýh symbolov, aby akceptovalL1[n]. Následne sme definovali čiastočné usporiadanie
na stavoch a zásobníkových symboloch a ukázali, že neexistuje funkcia, ktorá kombinuje tieto
miery tak, že záchovava zložitosť medzi minimálnymi zásobnikovými automatmi pre daný
jazyk. Na základe týchto výsledkov, sme definovali dve podtriedy zásobníkových automatov,
jedno stavové PDA a dvojo zásobnikovo symbolové PDA. V podtrede jedno stavové PDA sme
ukázali tesný odhad z hora aj z dola počtu zásobníkových symbolov a v druhej triede PDA s
dvoma zasobnikovymi symbolmi sme ukázali horné odhady. Nakoniec sme sa pozreli na horne
odhady zlozitosti pre operacie v týchto podtriedach. Konkretne sme skumali zjednotenie,
zreťazenie a iteráciu.

Keywords: automaty, zložitosť, odhady
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Abstract

We study descriptional complexity of push down automata recognizing regular languages and
context free languages. We presented the transformation for any finite state automaton A using
n states and given a number of stack symbols p, which reduces the number of states to ⌈ n

p
⌉. We

analyzed descriptional complexity of PDA on the two sequences of regular languages L1[n]
and L2[n]. An FSA requires at least n states to accept L1[n] and L2[n]. We have shown that
for any n two stack symbols and one state are sufficient for PDA to accept the language L2[n].
In the other hand, PDA using one state requires at least n stack symbols to accept L1[n]. Then,
we defined partial ordering on the state and the number of stack complexity measures and
show that there does not exist any function, which combines these measures in such a way that
it maintains complexity from one minimal automaton to another one. Based on these results,
we define two subclasses of push down automata, one state PDA and two stack symbols PDA.
In these subclasses, we have shown tight bounds for one state PDA subclass and upper bounds
for two stack symbols PDA subclass. Finally, we study the costs of operation in these two
subclasses. In particular, we considered union, concatenation and Klenee-Star.

Keywords: automata, complexity, bounds
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Introduction

The study of decriptional complexity describes various methods of specifying objects. It
dates back to 1950s and one of the first measures used to compare the complexity of regular
languages was the number of states measure on finite state automata. The first results compared
the number of states complexity of deterministic versus nondeterministic finite state automata
(which were shown to define the same family of languages). It was shown that nondeterminism
can offer exponential state savings compared to determinism [13]. In particular, the exponential
growth is always sufficient and is in some cases necessary [10].

The application of finite state automata is frequent in computer science. Still, there are
many unresolved problems. One of these problems were how many states are sufficient and
necessary for operations on finite and infinite regular languages. Especially, the costs of
operations over unary and arbitrary alphabets represented by NFAs or DFAs [6, 14].

The other complexity measures considered for regular languages were investigated, e. g.
boolean circuit complexity of regular languages [12] or the number of transitions. The number
of transitions measure gives, in some sense, a more realistic measure for the size of an NFA
than the number of states [2]. However, most of the work on complexity of regular languages
yields worst-case results. Hermann Gruber and Markus Holzer investigated the average-case
state and transition complexity of deterministic and nondeterministic finite automata for finite
languages. [5].

Similar measures can not be easily defined on push down automata. Especially the
number of states measure and the number of stack symbols measure. Both states and stack
symbols are depended on each other. Goldstine, Price and Wotschke showed that there exists a
transformation for any PDA using n states and p stack symbols reducing the number of states
to any desired number n0 ≥ 1 [3]. This is one of the main reasons, why many descriptional
complexity studies focus on context free grammars [9, 1] or some modifications of push down
automata [11, 7].

In this thesis, we shall study the descriptional complexity measures as state measure and
the number of stack symbols on PDA. We define partial ordering on the these measures and
show there does not exists any function, which combines these measures in such a way that it
maintains complexity from one minimal automaton to another one. Therefore, we consider
two equivalent subclasses of PDA, one state PDA and two stack symbols PDA. In the one state
PDA subclass, we fix the number of states to one and use the number of stack symbols as the

1



2 Introduction

measure. In the second subclass, we fix the number of stack symbols to two and measure the
number of states. Note that both these subclasses of PDA can define all context-free languages.

In the Chapter 2, we study descriptional complexity of PDA accepting regular languages.
We show the effect of stack symbols on the complexity of any regular language and then prove
tight complexity bounds for some regular languages.

In the Chapter 3, we study two particular subclasses of PDA and show that empty stack
acceptance mode and final state acceptance mode are equivalent in the two stack symbols PDA
subclass. Unfortunately, these two acceptance modes are not equivalent in the one state PDA
subclass. Moreover, we prove tight bounds for one state PDA subclass and upper bounds for
two stack symbols PDA subclass.

In the last Chapter 4, we investigate the costs of operations on context free languages in
the two subclasses. In particular, we consider union, concatenation and Klenee-Star. All of
the bounds are in the exact number of stack symbols for the first subclass and exact number
of states for the second subclass. We do not show tight bounds, but only the upper bound
constructions in both subclasses.



Chapter 1

Preliminaries and Definitions

In this thesis, we shall analyze the complexity measures of push down automata. We shall
recall the definition of a nondeterministic push down automaton and then we shall show some
basics results, which shall be used later in this thesis.

Finally, we shall analyze the problem of defining a "good" complexity measure on the
PDA. In particular , we shall show that there does not exist any mapping function f over states
and stack symbols, which for every two minimal automata for a particular language assigns
the same value. That is why we shall define two subclasses of PDA. In the first, we fix the
number of states to one and in the second we fix the number of stack symbols to two. Note
that both can accept all context free languages.

1.1 Definitions

Definition 1. Anondeterministic push down automaton (PDA) is a 7-tupleA = (Q,Σ,Γ, �, q0, Z0, F )
where

• Q is a finite set of states
• Σ is a finite set of symbols - input alphabet
• Γ is a finite set of symbols - stack alphabet
• � is a finite subset of Q × (Σ ∪ {�}) × Γ ×Q × Γ∗ - transition function
• q0 ∈ Q is the initial state
• Z0 ∈ Γ is the initial stack symbol
• F ⊆ Q is the set of accepting states

Definition 2. A configuration of a nondeterministic push down automaton is a triple (q, v, ) ∈
Q × Σ∗ × Γ∗, where q is a state, v is the unread portion of the input word and  is the content
of the stack.

3



4 CHAPTER 1. PRELIMINARIES AND DEFINITIONS

Definition 3. A computation (transition) step of a PDA A is the relation ⊢A on configurations
defined by

(q, au, Z) ⊢A (p, u, �) ⟺ (p, �) ∈ �(q, a,Z)

where p, q ∈ Q, a ∈ Σ ∪ {�}, Z ∈ Γ and , � ∈ Γ∗
The relation ⊢∗A is the reflexive and transitive closure of the relation ⊢A.

Definition 4. Given a PDA A = (Q,Σ,Γ, �, q0, Z, F ), the language accepted by the set of
accepting (final) states F is

L(A) = {w ∈ Σ∗|∃q ∈ F and ∃ ∈ Γ∗ such that (q0, w,Z) ⊢∗ (q, �, )}

Definition 5. Given a PDA A = (Q,Σ,Γ, �, q0, Z, F ), the language accepted by the empty
stack is

N(A) = {w ∈ Σ∗|∃q ∈ Q such that (q0, w,Z) ⊢∗ (q, �, �)}
We can think of a PDA as finite state automata with memory. This memory is simply

a stack that can be manipulated during the moves by the finite automaton . The stack is
initialized by initial stack symbol. Usually it is denoted by Z. The computatoin (transition)
step of PDA is similar to the transition of FSA, but the PDA can push some stack symbols on
the stack. The automaton can empty the stack by pushing � in the transition. We shall often
say popping from the stack instead of pushing � on the stack. The PDA has two acceptance
modes, empty stack and final state. These two modes are equivalent.
Definition 6. Given an alphabet Σ, the Shuffle of two languages L1, L2 ⊆ Σ∗ is

Sℎuf (L1, L2) = {w|∃n ∈ N, u1,… , un, v1,… , vn ∈ Σ∗; such that

w = u1v1u2v2… unvn ∧ u1… un ∈ L1 ∧ v1… vn ∈ L2}

Notation 1. D (n, p) is the family of pushdown automata using at most n states and at most p
stack symbols.
Definition 7. Let L be a context-free language. The stack symbol complexity of L, Γc(L), is
the smallest number of stack symbols of any A in D (1, p) that accepts L.
Definition 8. Let L be a context-free language. The state complexity of L, Qc(L), is the
smallest number of states of any A in D (n, 2) that accepts L.

1.2 Basic Results

In this section, we shall introduce some known results on the push down automata. Mainly,
the reduction of stack symbols or states shown by Goldstine, Price and Wotschke in [3, 4].
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Moreover, they have compared the PDA with context free grammars and proved some lower
bounds in. We shall focus on lower bounds and upper bounds for PDA. Therefore, we omit
constructions of lower or upper bounds based on context-free grammars.

1.2.1 Reducing the Number of Stack Symbols

In 1993, Goldstine, Price andWotschke showed a deterministic and nondeterministic reduction
of stack symbols of any push down automaton. For any PDAM using n states and p stack
symbols, assigns to each computational step ofM a unique sequence of computational steps
of the simulating PDA M̂ . Thus the construction does not introduce "more nondeterminism"
to M̂ and reduces the number of stack symbols to any p̂ ≥ 2. This reduction results in an
equivalent push down automaton with O(np∕p̂) states. The nondeterministic construction
introduces more nondeterminism to the automaton M̂ , but reduces the number of states to
O(n

√

p∕p̂). In the end, they showed that these constructions are essentially the best possible.
Before we show the ideas of these constructions, it is important to note that these constructions

work only if the automatonM accepts by empty stack and constructs an equivalent PDA,
which accepts by empty stack.

Note 1. We present the idea of the construction of Goldstine, Price and Wotschke with minor
change in description. We are used to write the content of the stack in configuration with top
of the stack on the right hand side of the word. Since they decided to write the content of
the stack in configuration with top of the stack on the left hand side our description of the
construction uses reverse.

Deterministic Reduction

In this subsection, we shall present the main idea of the transformation of an arbitrary PDAM
to an equivalent PDA M̂ having a desired number of stack symbols p̂ ≥ 2, which simulates
M without increasing nondeterminism. The automaton M̂ has fewer stack symbols thenM ,
so all stack symbols Z from the automatonM are represented by a string ℎ(Z)R. The ℎ(Z)
is a variable-length encoding and the mapping ℎ is chosen to be a prefix code. The state of
automaton M̂ is represented by a pair [q, ], where q is a state ofM and  is proper prefix1 of
ℎ(Z).

The automaton M̂ reads the encoded stack symbolZ as ℎ(Z)R from the stack on �-moves
and then reaches state [q, ]. On this state, the automaton simulates one computation step of
automatonM and moves to state [r, �]. During the simulated computation step, it pushes the
ℎ(Xk)R…ℎ(X1)R on the stack, where w = Xk…X1 is the word pushed byM on the stack.
The simple transition can be seen in the Table 1.1.

1The string x is a proper prefix of xy if y ≠ �.
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Figure 1.1: Deterministic simulation of one computation step ofM by M̂ [4].

Goldstine, Price and Wotschke proves that such mapping ℎ exists for any PDAM and
results in O(np∕p̂) states.

Nondeterministic Reduction

In the previous part, we have discussed the ideas of deterministic stack symbols reduction.
Now, we shall introduce ideas of a nondeterministic reduction, which produces a PDA with
fewer states. Instead of using one mapping function ℎ, we shall use 3 mapping functions
f, g, ḡ over the stack alphabet of M̂ . Each stack symbol is encoded as g(Z)Rf (Z)R.

Goldstine, Price and Wotschke have chosen the mappings f, g, ḡ such that they satisfy
these conditions:

• (f (Z), g(Z)) uniquely determines Z

• ḡ(Z) uniquely determines g(Z)

• f (Z) ≠ ḡ(Y ), and neither f (Z) nor ḡ(Z) is a proper prefix of f (Y ) or ḡ(Y )

• g(Z) is not a proper prefix of g(Y )

These are necessary conditions that mappings f, g, ḡ has to satisfy. Thanks to these condition,
the automaton M̂ can guess and then check his guess correctly.2

The automaton M̂ can be in two possible states

• [q, $�], where q is a state ofM and � is a proper prefix of f (Z) or ḡ(Z) for some stack
symbol Z ofM

• [q, �$], where q is a state of M and � is a non-empty suffix of g(Z) for some stack
symbol Z

2More details can be found in the article [4].
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During the simulation, M arrives to the point, where M̂ is in the state [q, $] with
g(Z)Rf (Z)R on the stack.3 As in the deterministic simulation, it removes all but the last
symbol in f (Z)R from the stack and stores it in the state. Then automaton guess the stack
symbol Y from set of all stack symbols, which have the same f (Z) and stores

ḡ(Y)Rg(X1)Rf (X1)R… g(Xn)Rf (Xn)R

on the top of the stack. The ḡ(Y ) represents the guessed stack symbol.
The guess will be tested, when the automaton M̂ reaches any state [q, $] and the top of

the stack is g(Z)Rḡ(Y )R. Then again the automaton M̂ reads the ḡ(Y )R from the stack and
stores it in the state. After this, the automaton M̂ knows the string ḡ(Y ) and now it can test
the guesses by moving to the state [q, g(y)$] (The ḡ(Y ) uniquely determines g(Y )). Finally,
M̂ is using a sequence of � moves to verify, if g(Y ) = g(Z). If they are not equal then the
automaton halts. The four conditions guaranties that the automaton M̂ can not be mistaken in
verifying his guess. The simulation of one computation step can be seen in the Table 1.2.

Figure 1.2: Nondeterministic simulation ofM by M̂ [4].

1.3 Descriptional Complexity on PDA

In this section, we shall introduce the descriptional complexity of nondeterministic push
down automata. We shall see that to define a "good" complexity measure on PDA is not easy
compared to finite state automata4. The typical measure is number of states. This measure has
a big flaw on PDA automata. Any context free language can be accepted by one state push

3Before M̂ starts simulating the automatonM , it replaces the initial symbol by g(Z)Rf (Z)R and starts the
simulation ofM , where Z is the initial symbol.

4The typical complexity measure is number of states.
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down automaton. The automaton simulates a context free grammar derivation in his stack and
compares the input word with the derived word on the stack. On the other hand, using just
number of stack symbols complexity measure results in the similar problem. Every context
free language can be accepted by a PDA using just two stack symbols.

The promising solution would be to use some measure combining states and stack symbols.
We shall show that such a "good" combination does not exist, which satisfies our conditions
such as total ordering and two minimal automata for the same language have the same
complexity.

Let us use similar approach as Labath and Rovan did for the deterministic push down
automata [8]. We shall start with an easy measure, which solves the easier cases:
Definition 9. ⪯, ≺ are relations (partial orderings) on ℕ × ℕ defined by:

(a, b) ⪯ (â, b̂)
def
⟺ a ≤ â ∧ b ≤ b̂

(a, b) ≺ (â, b̂)
def
⟺ a < â ∧ b < b̂

Definition 10. Let A, Â be push down automata. We say that A is simpler then Â, iff
(|QA|, |ΓA|) ≺ (|QÂ|, |ΓÂ|).
Definition 11. Let A, Â be push down automata. We say that A is not more complex then Â,
iff (|QA|, |ΓA|) ⪯ (|QÂ|, |ΓÂ|).

This measure does not allow us to compare all PDA. For example two push down automata
can accept the same language, but the first one using two stack symbols and one state and the
second using one stack symbol and two states.

We would like to find a measure, which solves this issue, but respects the definitions 10
and 11. For any measure, which satisfies these definitions, we can define minimal automata
recognizing some language as follows:
Definition 12. Let ≺ be a partial ordering on ℕ × ℕ. Let PDA A recognizes a language L
using n states and p stack symbols. We say, that A is a minimal automaton recognizing L, iff
there does not exist a PDA Â recognizing L using n̂ states and p̂ stack symbols such that:

(n, p) ≺ (n̂, p̂)

The question arises, if there exists any function , which for all pairs of minimal PDA
returns the same value. This function would allow us to easily define complexity measure
on context free languages. Also, it would allow us to choose the number of states or stack
symbols we want to use. Unfortunately, this kind of function does not exists.

Before we show any proof of this claim, we shall introduce a sequence of languages

L2[n] = {akn1 |k ≥ 0}
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also used later in Chapter Push-Down Automata on Regular Languages.
In this chapter, we showed in the Corollary 2.2.4.1 that for any n there exists a minimal

PDA using 2 stack symbols and 1 state and accepting L2[n]. On the other hand, any finite
state automaton needs at least n states to accept L2[n]. (In each state, it saves the reminder
after division by n). Now, we are ready to show that this function f does not exist.
Theorem 1.3.1. There is no function f ∶ ℕ × ℕ → ℕ meeting the following conditions:

1. For every two PDA A and Â recognizing the language L:

(n, p) ≺ (n̂, p̂)→ f (n, p) < f (n̂, p̂)

2. If A and Â are two minimal PDA recognizing L then:

f (n, p) = f (n̂, p̂)

Proof. Let us show (by contradiction) that function f does not exist. Let f satisfies both
conditions 1 and 2. If we fix the number of stack symbols to two then any minimal push
down automaton uses just one state for any n by Corollary 2.2.4.1. If we fix the number
of stack symbols to 0, then minimal automaton needs at least n states to accept L2[n] and
n − 1 states to accept L2[n − 1]. Therefore f (2, 1) = f (n, 0) and f (2, 1) = f (n − 1, 0),
so f (n, 0) = f (n − 1, 0). But according to condition 1, f (n − 1, 0) < f (n, 0). This is a
contradiction.

Because there is no function, which maintains complexity from one minimal automaton to
another one, we look for some alternatives. Especially, a function which maintain complexity
under some transformation. Labath and Rovan had the same problem on the deterministic
push down automata and they introduced function, which preserves complexity under the
stack symbol reduction to two.

1.3.1 Defining the Complexity

We shall presents our two ways to address this problem. Using just one state and count the
number of stack symbols or fix the number of stack symbols to two and count the number of
states. Both classes and measures have their positives and negatives. As it was proved in the
Theorem 1.3.1 that complexity preserving function does not exist so our defined measures on
this complexity classes preserve complexity measures under well known transitions. These
transitions are:

• Reducing number of stack symbols [4].
• Reducing the number of states [3].
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One state PDA Due to the fact that any context free language can be represented by a
grammar, we can define a measure to be the number of stack symbols using just one state PDA.
It is clear that this class defines all context free languages, due to the fact, that any context
free grammar can be simulated by one state push down automaton.

In this class the automata shall accept by empty stack. Having just one state, the acceptance
by final state means that the automaton accepts � and not every context free language has �.
Therefore, we shall use just empty stack acceptance mode in this class. In other words, these
two types of acceptance modes are not equivalent in this class.

Two stack symbols PDA Another possibility is to fix the number of stack symbols. Push
down automata need at least two stack symbols to accept all context free languages. That
is why, we define a second class, where we allow just two stack symbols and measure the
number of states.

In this class, we shall show that both acceptance modes are equivalent. However, the
minimal automaton depends also on the type of accepting mode we allow to use.



Chapter 2

Push-Down Automata on Regular
Languages

Before we consider the context free languages, we shall introduce the complexity properties
of push down automata on regular languages and compare them to nondeterministic finite
automata. At the beginning, we shall show constructions of push down automata from FSA.
We expect state complexity reduction due to stack symbols, which can be used as additional
state in some constructions. Then we show that some complexity hierarchies of FSA can
totally collapse using just two stack symbols. If we allow any acceptance modes the hierarchy
still collapses. Then we shall study this fact by reducing the number of stack symbols to one
and comapre accepting modes again. We shall see that the empty stack acceptance allows to
collapse this hierarchy again, but using the final state acceptance mode on one stack symbol
automaton does not have the same effect.

2.1 Saving States by Adding Stack

We shall study the effect of using stack symbols on the state complexity. We shall thus compare
finite state machines to push down automata. For an arbitrary finite state machine, we shall
construct a push down automaton. We have to decide, how many stack symbols we allow to
use by the push down automaton. Clearly, it does not make sense to allow any number of
stack symbols. If we allow that, then it is always possible to find enough stack symbols p such
that one state would be enough to accept that language.

Therefore, we shall fix the number of stack symbols for the push down automaton. More
precisely, for a given p (p indicates the maximum number of stack symbols of push down
automaton is allowed to use) find a push down automaton, which accepts the same language
as the given finite state automaton and uses less states.

By definition, the PDA determines the next step based on the top stack symbol in its state.
So, the push down automaton can encode one state of an FSA using his own state and some

11
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stack symbol. Therefore, with p stack symbols it needs just ⌈ n
p
⌉ states compared to n state

finite state automaton to accept a regular language.
Now, we have to decide on the acceptance mode of the push down automaton. There are

two options: by empty stack or by accepting state. In our construction, the automaton can
not accept by accepting state, because in some states, the push down automaton can have on
the top of the stack a stack symbol, which in combination with that particular state does not
represent an accepting state of the finite state automaton. We shall therefore use the empty
stack acceptance mode. In a particular state, the automaton can nondeterministically pop the
top stack symbol and accepts the input word or halts.

The whole idea can be written down as the next theorem:

Theorem 2.1.1. For any n state FSA A1 there exists a PDA A2 with ⌈

n
p
⌉ states and p stack

symbols such thatN(A2) = L(A1)

Proof. Let A1 = (Q1,Σ, q1, F , �1) be a finite state automaton with n states. We shall construct
a PDA A2 = (Q2,Σ,Γ, �2, p1, Z1, ∅) with ⌈

n
p
⌉ states, where Γ = {Z1,… , Zp} and Q2 =

{p1,… , p
⌈

n
p ⌉
}

(qf (k), Zg(k)) ∈ �2(qf (j), a, Zg(j)) ⟺ qk ∈ �1(qj , a)
(qf (k), �) ∈ �2(qf (k), �, Zg(k)) ⟺ qk ∈ F
where f (x) = ⌈

x
p
⌉ and g(x) = x mod p.

The construction idea of A2 is similar to the construction for intersection of regular
languages given two finite state automata. Instead of using cross product of the states, the push
down automaton represents each state of the finite state automaton A1 by a pair consisting
of the state and the stack symbol on the top of the stack. The stack of A2 shall contain at
most one symbol. Each transition of the automaton A1 from a state q to s is represented
by a corresponding transition of the state and in the top stack symbol in the automaton A2.
Additionally, any accepting state sa of A1 has a corresponding pair s and Z. The A2 in the
state p with the Z stack symbol on the top of the stack can nondeterministically decide to pop
this stack symbol and empty its stack. If the stack is emptied before the automaton A2 has
finished the processing of an input word, A2 shall halt, otherwise A2 accepts this word if and
only if the automaton A1 accepts.

The proof of Theorem 2.1.1 shows a construction of a push down automaton accepting by
empty stack. The question arises, how the upper bound would change, if we want to construct
a push down automaton using the final state acceptance mode. We can use the previous
construction and instead of popping the stack symbol on the current pair of state and top stack
symbol, the automaton moves to a new accepting state.

Theorem 2.1.2. For each n state FSA A1 exists a PDA A2 with ⌈

n
p
⌉ + 1 states and p stack

symbols such that L(A2) = L(A1)
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Proof. We use the same construction as in the proof of Theorem 2.1.1, but the push down
automaton A2 uses a new accepting state qfin. Formally, let A1 = (Q1,Σ, q1, F , �1) be a finite
state automaton with n states. We construct a PDA A2 = (Q2,Σ,Γ, �2, p1, Z1, {qfin}) with
⌈

n
p
⌉ states, where Γ = {Z1,… , Zp} and Q2 = {p1,… , p

⌈

n
p ⌉
} ∪ {qfin}

(qf (k), Zg(k)) ∈ �2(qf (j), a, Zg(j)) ⟺ qk ∈ �1(qj , a)
(qfin, Zg(k)) ∈ �2(qf (k), �, Zg(k)) ⟺ qk ∈ F
where f (x) = ⌈

x
p
⌉ and g(x) = x mod p.

The PDA A2 instead of popping a symbol from the stack on the accepting pair, moves to
the accepting state qfin.

This upper bound construction introduces one more state, the accepting state compared
to the previous upper bound construction. Due to the accepting state, the number of states
will be all the time higher in this construction then in the previous. In some cases, it is just a
constant factor, but we shall show cases with bigger improvement in our complexity measures.

We can find similarity with one state push down automata. Any push down automaton
with one state accepts by empty stack. Accepting by state with one state only allows to accept
∅ or Σ∗. That is why push down automaton needs at least two states to accept arbitrary context
free language by state.

2.2 Lower Bounds for PDA on Regular Languages

In the previous section, we have found upper bounds for push down automata on regular
languages using the pair of a stack symbol and a state for representing a state of a finite state
automaton. Clearly, this construction applies to all of the finite state automata and does not
use any properties of the language, which is accepted by that particular automaton.

In this section, we shall introduce regular languages and push down automata, which on
some of these languages can use their stack cleverly and reduce the complexity and on the
others do not.

Before we show particular lower bounds, we shall introduce some particular regular
languages.
Notation 2. Let a1,… an be distinct symbols for any n ≥ 1. Let

• L1[n] = a∗1a
∗
2… a∗n

• L2[n] = {akn1 |k ≥ 0}

For both of these languages, we can construct a finite state automaton with n states. The
FSA for the language L1[n] processes each ai in a separate state, which allows it to remember,
where it is in any currently processed input word. The FSA for the language L2[n] also uses n
states. In each state, the automaton represents the reminder after dividing by n. Moreover,
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both automata are minimal (considering the number of states) for these languages. In the
next part, we shall show that using upper bound constructions for these minimal automata
shall result in the minimal push down automatons for the language L1[n] and not minimal
automaton for the language L2[n] in our complexity measures.

2.2.1 The complexity of L1[n]

Let us consider the first introduced language L1[n]. Using the construction from the proof of
the Theorem 2.1.1 on the minimal finite state automaton shall result in a minimal push down
automaton for the language L1[n] ,if we set number of stack symbols p equal to n. These
means, that any one state automata needs at least n stack symbols to accept L1[n].

Let us start with a simple property that any one state automaton has to have to accept
L1[n]. The automaton can not have the same stack symbol on two different input symbols on
the top of the stack.

Lemma 2.2.1. Let A in D (1, p) be an automaton and accepting the language L1[n], where
p, n ∈ N . Suppose �(q0, ai, Z) ≠ ∅ and �(q0, aj , Ẑ) ≠ ∅ for i ≠ j. Then Z ≠ Ẑ.

Proof. Suppose that one state push down automaton A accepting the language L1[n] can do
computation step on ai and aj on the same stack symbol Z, for i ≠ j.

The A accepts wi = ami and wj = amj , for m ≥ 2p.
During the accepting computation on the word wi, the automaton A cycles on ai and

pushes word i on the stack . The |i| > 0, otherwise it could not accept ami for any m ∈ N .
Therefore, the automaton has some �-cycle, which pops |i| from the stack, so the automaton
A can accept wi by the empty stack.

The same apply for word wj . The automaton pushes j on the stack while reading the
input symbol aj and |j| > 0. A also have �-cycle, which pops |j| from the stack.

Without loss of generality, let i < j. Now, let us show that A accepts word ŵ = ajai ∉
L1[n]. We know that the automaton A accepts word ajaj . After the automaton A processes
the first input symbol aj , it has to keep the stack symbolZ on the top of the stack, otherwise it
could not continue processing any other aj . Therefore, the automaton A can do a computation
step on ai after processing aj . Then after processing the input word ŵ, it has ji on the stack,
but we showed earlier that there exists �-cycles, which pops both j and j from the stack.

Now, we are ready to prove that p stack symbols are necessary and sufficient to accept1
L1[p]. We shall divide the proof into the two parts. In the first part, we shall construct a PDA
accepting L1[p] using p stack symbols. Note that this automaton behaves similarly as the
minal FSA accepting L1[p], but it uses the top stack symbol as a representation of the state of

1For a better understanding, we shall use L1[p] = L1[n], for n = p, where p should represents the number of
stack symbols needed by any one state push down automaton to accept L1[p].
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minimal FSA. In the second part, we prove by contradiction that p − 1 stack symbols do not
suffice to accept L1[p].
Theorem 2.2.2. Γc(L1[p]) = p,∀p ∈ N .

Proof. We shall show that Γc(L1[p]) ≤ p. We shall construct a push-down automaton
Ap = ({q0}, {a1,… , ap}, Z1,… , Zp, �p, q0, Z1, ∅), where

�p(q0, ai, Zi) = {(q0, Zi)},∀i ∈ {1,… , p}
�p(q0, aj , Zi) = {(q0, Zj)},∀i, j ∈ {1,… , p} ∧ i ≤ j
�p(q0, �, Zi) = {(q0, �)},∀i ∈ 1,… , p

The automaton Ap uses the top stack symbol Zi as a "state". If Zi is on the top of the
stack, the automaton knows that it already has processed all input symbols a1,… , ai−1. The
automaton can pop in any time the top stack symbol and empty his stack.

We shall prove Γc(L1[p]) ≥ p by contradiction.
Let Ap in D (1, p − 1) be an automaton accepting the language L1[p]. By Lemma 2.2.1,

the automaton Ap has to use a distinct stack symbol for each ai. Thus it has to have p stack
symbols and can not be in D (1, p − 1).

We showed that any one state push down automaton needs at least p stack symbols to
accept L1[p]. We can expand this idea. More precisely, any push down automaton accepting
L1[n] using s states and p stack symbols has to satisfy: s ∗ p ≥ n.

Due to shortage of time, we were unable to create a precise proof. That is why, we present
it as a hypothesis.
Hypothesis 1. Let A in D (s, p) be an automaton accepting the language L1[n]. Then A has
to satisfy: s ∗ p ≥ n.

We think that some idea should apply as in the Lemma 2.2.1. That the automaton on two
different input symbols will be in the same state and have the same stack symbol on the top of
the stack.

2.2.2 The complexity of L2[n]

Similarly, we can use the upper bound construction in the proof of Theorem 2.1.1 on minimal
finite state automaton for the language2 L2[n]. However, this does not result in a minimal push
down automaton in our complexity measures. Instead of using the combination of state and a
top stack symbol to represent the state of minimal FSA, the minimal push down automaton
uses his stack as a counter. Each word in the language L2[n] is just some number of blocks of
length n. The minimal push down automaton minimizes the number of states by checking the

2The minimal finite state automaton requires exactly n states.
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length of each block on the stack instead of using states. Due to this property, the minimal
push down automaton needs two stack symbols and one state only to accept L2[n], n ≥ 2.

Before we introduce the proof and the construction, we shall first prove that no push down
automaton with one state and one stack symbol can accept L2[n] for n ≥ 2.3

The Lemma 2.2.3 is based on the idea that the automaton with one state and one stack
symbol cannot pop up the stack symbol from the stack on any input symbol, otherwise the
automaton would accept also the input symbol alone.4. The last option is that the automaton
pops on � the stack symbol, but than the automaton can accept any input word consisting of a
symbols.

Lemma 2.2.3. No PDA using one state and one stack symbol can accept L2[n], n ≥ 2.

Proof. By contradiction, let there exist a push down automaton A with one state q and one
stack symbolZ accepting L2[n], n ≥ 2. We know that A must use the empty stack acceptance
mode. Therefore A has to pop Z from the stack on the input symbol a1 or �.

If A pops Z on the input symbol a1 then A accepts the word a1 ∉ L2[n] for any n ≥ 2.
If A pops Z on � and pushes on a1 a word w ∈ Z∗ on the stack then A accepts the word

a1 ∉ L2[n] for any n ≥ 2.

Let us introduce informally the construction of the automaton accepting L2[n] using one
state and two stack symbols. The automaton uses the initial stack symbol Z2 as a marker
for the beginning of a new block of symbols a1. The additional block of Z1 of length n is
pushed on the stack, if the automaton nondeterministically decides to process additional block
of symbols a1 and each Z1 represents one a1 in the block. The automaton can be seen in the
Figure 2.1 below.

q0start

(�, Z2), Z1…Z1
⏟⏞⏟⏞⏟

n

(a1, Z1), �

(�, Z2), �

Figure 2.1: The push down automaton accepting L2[n] using one state and two stack symbols.

Theorem 2.2.4. Γc(L2[n]) = 2, for any n ≥ 2.
3A finite state automaton using one state can accept L = {a1}∗ = L2[n], for n = 1.4The initial stack symbol is poped by the input symbol
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Proof. We shall prove that Γc(L2[n]) ≤ 2. We shall construct a push down automaton
A = ({q0}, {a1}, {Z1, Z2}, �, q0, Z2, ∅) and �(q0, �, Z2) = {(q0, �), (q0, Z1…Z1

⏟⏞⏟⏞⏟
n

)}

�(q0, a1, Z1) = {(q0, �)}

The automaton uses the Z2 stack symbol as indication for staring point of block. It can
nondeterministically decide to start processing a next block or empty the stack. The automaton
pushes n sized block of Z1 on stack and for each a1 it pops Z1 from the stack until it reaches
the symbol Z2. Then the process repeats again.

The Γc(L2[n]) ≥ 2 has been already shown in the Lemma 2.2.3.

Moreover, this theorem proves the lower bound in our state complexity measure. We can
use the same construction of the push down automaton to construct a push down automaton
using two stack symbols only. Clearly, this automaton is minimal in this complexity measure
(We can not have a push down automatons with zero states). This can be summarized in the
next corollary.

Corollary 2.2.4.1. Qc(L2[n]) = 1, for any n ≥ 1.

The previous construction results in a minimal push down automaton that accepts L2[n] by
empty stack. The question arises, how many states uses a minimal push down automaton using
two stack symbols accepting the language L2[n]? Clearly, it can not be one state. Therefore
the minimal PDA needs at least two states.

Let us introduce a minimal5 push down automaton using two states and two stack symbols
accepting the language L2[n]. The construction of the minimal PDA is similar as in the proof
of the Theorem 2.2.4. Instead of popping nondeterministically the symbol Z2 from the stack
and then accept by empty stack, this automaton transit nondeterministicaly to the accepting
state, as it can be seen in the figure 2.2 below.

q0start q1

(�, Z2), Z1…Z1
⏟⏞⏟⏞⏟

n

(a,Z1), �

(�, Z2), Z2

Figure 2.2: The push down automaton accepting L2[n] with two states and two stack symbols.

5by number of states
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Theorem 2.2.5. Let A be a push down automaton using two stack symbols accepting the
language L2[n], n ≥ 2. Then 2 states are necessary and sufficient to accept L2[n] by final
state.

Proof. We first show that 2 states are sufficient to accept the language L2[n] by final state. We
shall construct automaton a PDA A = (Q = {q0, q1},Σ = {a1},Γ = {Z1, Z2}, �, q0, Z2, q1)
�(q0, �, Z2) = {(q1, Z2), (q0, Z1…Z1

⏟⏞⏟⏞⏟
n

)}

�(q0, a1, Z1) = {(q0, �)}

We now show (by contradiction) that two states are necessary to accept the language L2[n]
by final state using just 2 stack symbols. Let assume that an automaton A using one state and
two stack symbols exists. Hence it has just one state, then this state has to be accepting state.
Also, the automaton accepts a word an1, so it has some transitions on a1. Therefore automaton
accepts word a1 ∉ L2[n].

2.3 The complexity of one stack symbol PDA

In the previous part, we proved that any push down automaton needs at least two stack symbols
to accept the language L2[n] with one state. Similarly, we formalized hypothesis that this is
not the same case for the L1[n] language and one state push down automaton needs at least
n stack symbols to accept the language L1[n]. Clearly, two stack symbols were enough to
collapse our complexity measures hierarchy on the L2[n] language.

So the question arises, is this the same case for one stack symbol only6? Formally, does
there exist a push down automaton using one stack symbol accepting L2[n], which number of
states does not depends on n? If yes, how many states it needs to accept L2[n]. Surprisingly
the answer is yes. The minimal push down automaton with one stack symbol exists and needs
two states only to accept L2[n].

Before starting a proof, we shall realize that acceptance mode can have effect on the
complexity. As in the previous Section 2.1, the stack acceptance construction has a lower
state complexity compared to the state acceptance construction. This case also happens in
this scenario and has a higher impact on the complexity measures. In the stack acceptance
mode, the hierarchy collapses (it does not depend on n),but the complexity measure on one
stack symbol automata accepting by state depends on n.

2.3.1 Accepting by empty stack

Let us consider push down automata using one stack symbol and accepting by empty stack.
In this setup, we can construct for the sequence of languages L2[1], L2[2],… the automata

6The automatons with one stack symbols are called counter automatons.
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A1, A2,… and each one shall use one stack symbol and two states.
Let us describe the construction of the push down automaton An. In the first state, it cycles

on � and guesses the number of blocks of a1 symbol by pushing the Z1…Z1
⏟⏞⏟⏞⏟

n

on the stack.

Then it nondeterministically transits on � to the next state and pops one stack symbol. In the
second state, it compares the guessed number of a1 symbols to the actual input word. It is
clear, that this automaton accepts the L2[n] by empty stack. The automaton can be seen in the
Figure 2.3.

q0start q1(�, Z1), �

(�, Z1), Z1…Z1
⏟⏞⏟⏞⏟

n

(a,Z1), �

Figure 2.3: The push down automaton accepting L2[n] using two states and one stack symbol.

Theorem 2.3.1. The smallest number of states for any counter automaton accepting the
language L2[n] by empty stack is two, for any n ≥ 2.

Proof. We shall prove that there exists a push down automaton with one stack symbol and
number of states equal to two. We shall construct a push down automaton
A = ({q0, q1}, {a1}, {Z1}, �, q0, Z1, ∅) and �(q0, �, Z1) = {(q1, �), (q0, Z1…Z1

⏟⏞⏟⏞⏟
n

)}

�(q1, a1, Z1) = {(q1, �)}

The automaton guesses the number of blocks of length n in the state q0 by pushing blocks
of Z1 on the stack. Then, in the q1 state, the automaton compares number of Z1 to a1 symbols
from the input.

By Lemma 2.2.3, the automaton A accepting L2[n], n ≥ 2 with one state and one stack
symbol does not exists. So our automaton A is minimal given the number of states with one
stack symbol.

2.3.2 Accepting by state

Finally, we focus on the push down automata using one stack symbol accepting by final state.
Even though, the previous automata have one stack symbol, we were able to construct a
sequence of automata, which accept each language L2[n] using two states only. Let us show
that this is not the case for automata using one stack symbol and accepting by final state.
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Theorem 2.3.2. The smallest number of states for any push down automaton using one stack
symbol accepting language L2[n] by final state is n, for any n ≥ 2.

Proof. We shall show the upper bound. The automaton looks the same way as the finite state
automaton accepting L2[n] language, ignoring the stack entirely.

We shall show (by contradiction) that number of states has to be at least n. Let A be a push
down automaton with one stack symbol and n − 1 states accepting language L2[n]. Moreover,
let A accepts w = am1 , n divides m, m ≥ 2n. Then A cycles on a1-symbol during the accepting
computation on the input word w. Let the size of the cycle be j, 1 ≤ j ≤ n− 1. Let ŵ = am−j1 .
The automaton A cycles on ŵ one time less then on the accepting computation on thew. That
is why, the automaton A accepts ŵ ∉ L2[n], because it can not detect the difference between
the ŵ and w.
Note 2. In this proof, we have not referenced anything about the stack and the top stack symbol.
Having only one type stack symbol does not help the automaton to have different behavior
on the same state compare to any finite automaton. The automaton can increase, decrease
or not change the size of the stack at all during the cycle in the accepting computation. The
acceptation is not affected by the size of the stack. The only one problem can occur, when
the stack is emptied before the accepting state is reached. Taking a shorter word then any
accepted input word from L2[n] allow us to bypass this issue7.

2.4 Conclusion

In this chapter, we showed some constructions on the FSA and PDA. These constructions
allow us to reduce the number of states of FSA by using the stack symbols. In some cases
the constructions could be optimal. We have shown cases, when these constructions are not
optimal under the state complexity measure. Especially, the hierarchy collapses under the
PDA and one stack symbol PDA. The main reason is that they can use nondeterminism and
the stack to guess the number of input symbols and save that guess on the stack. Then the
verification of the guess for each language require the same number of states or stack symbols.

7If the automaton A does not halt on the accepting computation of the longer input word then it can not halt
on the shorter word on the same cycle.



Chapter 3

Push down automata on context free
languages

In the previous chapter, we have studied the complexity of push down automata on the regular
languages. In some cases, improvement in the complexity measure was achieved. As discussed
in the Chapter 1, there is no function, whichmaintains complexity from oneminimal automaton
to another for the same language. We have introduced two subclasses, where we shall study
the complexity measure on the PDA. These subclasses are: one state push down automata
and PDA using just two stack symbols. For the first one, we shall measure the number of
stack symbols and for the second one, we shall measure the number of states. In case an
automaton uses more then two stack symbols, we can use standard construction (mentioned in
the Chapter 1) to construct an equivalent automaton in our subclasses.

We shall start with the number of stack symbol complexity on one state automata. We
shall show a lower bound in this subclass for this measure and analyze the acceptance modes.
Then we shall study the second subclass and introduce the equivalence between the accepting
modes in this subclass. In the end, we shall analyze the upper bound in the subclass.

3.1 The Number of Stack Symbols

In this section, we shall consider the stack symbols complexity on one state push down
automata. We define a sequence of languagesLp and then prove that any push down automaton
accepting Lp and using one state needs at least p + 1 stack symbols

Let us consider the following sequence of context free languages.

Notation 3. Let a1,… , ap, b1,… , bp be distinct symbols for any p ≥ 1.
Let Σp = {a1,… , ap, b1,… , bp}

Lp = {w(ℎ(w))R|w ∈ {a1, a2,… , ap}∗}
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where ℎ is the homomorphism defined by ℎ(ai) = bi, for each ai ∈ {a1, a2,… , ap}

Knowing that we consider only one state PDA, we can analyze, how the minimal automaton
could accept the language Lp. The easiest option to analyze is the final state acceptance mode.
The final state can be only the initial state. That is why automaton accepts any prefix of any
word w ∈ Lp.

Before starting to formulate any lemmas and theorems about the lower and upper bound for
any push down automaton accepting Lp, it is worth mentioning that any push down automaton
can pop maximally one stack symbol at any computation step. Our proofs of lower bounds
use this property.

We shall present some simple observations:
Note 3. Simple observation on push down automata:

• By definition a push down automaton can pop max one stack symbol from the stack in
one computation step.

• Let A in D (1, s) be an automaton accepting the language Lp, where p, s ∈ N . Then A
has to use empty stack acceptance mode.

Our intention is to prove that the number of stack symbols complexity of the language
Lp for one state PDA is exactly p + 1. To prove the lower bound, we shall first prove several
lemmas. Each lemma exhibits a property, each push down automaton accepting Lp has to
have.

Let us start with the first property. Any one state push down automaton accepting Lp has
to change the stack on each input symbol, otherwise the automaton would not be able to match
ai with the corresponding bi.
Lemma 3.1.1. Let A in D (1, i) be an automaton accepting the language Lp, where p, i ∈ N .
Let x ∈ Σp be an input symbol. Then in each accepting computation on w ∈ Lp, w =
uxjv, j ≥ 1, u, v ∈ Σ∗p, A has to modify the stack while reading x.

Proof. Let x ∈ Σp be a symbol, which does not modify the stack in an accepting computation
and let A accepts w = uxjv ∈ Lp, j ≥ 1, u, v ∈ Σ∗p. Then A also accepts ŵ = uxj+1v ∉
Lp.

The previous lemma exhibits the behavior of any one state push down automaton accepting
the language Lp. The next property shows that any one state push down automaton accepting
the language Lp has to pop some stack symbol from the stack on the input symbol bi during
the accepting computation . Otherwise we can show that the automaton can accept a word
with multiple bi not having a corresponding ai counterpart.
Lemma 3.1.2. Let A in D (1, p) be an automaton accepting the language Lp, where p ∈ N .
Then ∀i ∃Z ∈ Γ such that (q0, �) ∈ �(q0, bi, Z).
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Proof. Let bk be such input symbol that on bk A does not pop any stack symbol from the stack
on the bk Formally, ∀Z ∈ Γ(q0, �) ∉ �(q0, bk, Z) and let A accepts w = amk b

m
k , m > |Γ|. By

the Lemma 3.1.1, the automaton A has to modify the stack on the bk. Then there exists only
two options, what A can do on the input symbol bk.

Then automaton A:

1. does not change the size of the stack on the input symbol bk. Formally, ∃Z, Ẑ ∈
�(q0, Ẑ) ∈ �(q0, bk, Z). Hence the A accepts w = amk b

m
k for m > |Γ|, then automaton

has to cycle on bk and some stack symbol have to reappear on the top of the stack. Let
the size of the cycle be j.
Then A accepts a word ŵ = amk b

m+j
k ∉ Lp.

2. increases the size of the stack.
The automaton A accepts w = amk b

m
k using the empty stack acceptance mode. Therefore

A has to have some �-cycle, which pops stack symbols from the stack, which are pushed
on the input symbol bk. This �-cycle has to be able to pop any number of stack symbols
pushed on input symbols bk in the word w = amk b

m
k . Then automaton A has to accept

ŵ = amk b
m+1
k ∉ Lp.

In the previous lemma, we proved that any push down automaton accepting the language
Lp has to pop some stack symbol on each b symbol. The next lemma exhibits these symbols
have to be different for different b symbols.

Lemma 3.1.3. Let A in D (1, p) be an automaton accepting the language Lp, where p ∈ N .
Suppose (q0, �) ∈ �(qo, bi, Z) and (q0, �) ∈ �(qo, bj , Ẑ) for i ≠ j. Then Z ≠ Ẑ.

Proof. Suppose that one state push down automaton A accepting the language Lp pops on bi
and bj the same stack symbol Z from the stack and let A accepts w = ami b

m
i . Then A accepts

ŵ = ami b
m
j ∉ Lp.

Combining the previous lemmas 3.1.2 and 3.1.3, we can infer that one state push down
automaton needs at least p stack symbols to accept Lp. The next theorem shows that in fact
p + 1 stack symbols are required. Before we show the proof of a lower bound and construct
upper bound, we shall infer some properties about the � function from previous lemmas.

Corollary 3.1.3.1. Let A = ({q0}, {a1,… , ap, b1,… , bp}, {Z1, Z2,… , Zp}, �, q0, Zi, ∅) in
D (1, p) be an automaton accepting the languageLp, where p ∈ N . Then (q0, �) ∈ �(q0, bi, Zs(i)),
where the function s defines some permutation on {1,… , p}.
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We have prepared everything to prove the complexity theorem for the language Lp. We
divide the proof into the two parts. In the first part, we construct a push down automaton
accepting the language Lp with p + 1 stack symbols. In the second part, we shall show that
the automaton is minimal.

Obviously, the push down automaton has to satisfy the necessary conditions (the previous
lemmas) to accept the language Lp. The necessary conditions only require p stacks symbols,
but our constructed push down automaton uses one more stack symbol as the initial symbol.
Then the initial symbol is used as an indicator of a processing phase of the automaton. The
automaton can be in the two phases:

• processing a symbol
• processing b symbol

The initial stack symbol "helps" the automaton to recognize the phase.
Theorem 3.1.4. Γc(Lp) = p + 1, ∀p ∈ N

Proof. We shall show that Γc(Lp) ≤ p + 1. We shall construct a push-down automaton Ap =
({q0}, {a1, ..., ap, b1, .., bp}, {Z1, ..., Zp+1}, �p, q0, Zp+1, ∅), where
�p(q0, ai, Zp+1) = {(q0, ZiZp+1)}; ∀i ∈ {1… p}
�p(q0, �, Zp+1) = {(q0, �)}
�p(q0, bi, Zi) = {(q0, �)}; ∀i ∈ {1… p}

The automaton pushes on each input symbol ai the stack symbolZi on the stack. Similarly,
the automaton pops the Zi from the stack on the input symbol bi. The initial stack symbol is
Zp+1 and is kept on the top of the stack while reading ai symbols. On any ai input symbol, can
nondeterministically change the top stack symbol to Zi instead of pushing the new Zi on the
stack. This moves the push down automaton to the next phase. In this phase it is comparing
the reverse order of b symbols to a symbols by poping Z symbols from the stack. In the end
of computation, the push down automaton Ap accepts by empty stack.

We shall prove Γc(Lp) ≥ p + 1 by contradiction.
Let A in D (1, p) be an automaton accepting the language Lp and let Zi be the initial stack

symbol. By corollary (3.1.3.1): (q0, �) ∈ (q0, bi, Zs(i)), where the function s defines some
permutation on {1,… , p} for some i ∈ 1… p. Then A accepts w = bs(i) ∉ Lp.

This theorem shows the last condition that any push down automaton has to satisfy to
accept the language Lp. It shows that it needs exactly p + 1 stack symbols. Any other push
down automaton with p stack symbols would accept some bi ∉ Lp.

Also, we showed that the complexity hierarchy is not bounded. We expected this result,
because the number of nonterminals in context free grammars can not be bounded. Using
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the construction from a minimal context free grammar to an equivalent one state push down
automaton shows an unbounded hierarchy.

3.2 The Number of States

In the previous section, we went through push down automata using one state. In this section
we shall consider automata using only two stack symbols and any number of states. It is clear,
that this family also defines all context free languages. At the beginning, we shall discuss the
equivalence of acceptance modes. The one state family of PDA was forced to use the empty
stack acceptance mode since the final state acceptance mode was limited to specific languages.
In the end, we shall introduce some upper bounds on some languages.

3.2.1 Equivalence of Acceptance Modes

This family of automata allows two types of acceptance mode, empty stack or final state. Both
of them can be used to accept any context free language. This is in contrast with the one state
push down automata. They could not use a final state acceptance mode to accept all context
free languages.

Let us prove the equivalence between these two acceptance modes. We can not use the
standard constructions to prove equivalence, because both of them introduce a new stack
symbol. The family of automata we consider allows two only. The problem can be solved by
prefix encoding. Since the new automaton has fever stack symbols, each stack symbol Z is
represented by a string ℎ(Z). The same method was used by Goldstine, Price and Wotschke
in their research On reducing the number of stack symbols[4]. This constructions was briefly
introduced in the Chapter Preliminaries and Definitions.

The question arises, which of these constructions should we use? We would like to
reduce the three stack symbols to two stack symbols. The nondeterministic reduction looks
promising, mainly because of the square root in comparison to the deterministic reduction.
The nondeterministic reduction requires three mapping functions f, g, ḡ. Moreover, the
nondeterministic reduction requires states [q, $�] and [q, $�], where � ranges over all prefixes
of f (Z) and ḡ(Z) and � ranges over all nonempty suffixes of g(Z). These requirements
already double the number of states. The deterministic reduction also results in doubling the
number of states, but with simpler construction.

That is why we shall use the deterministic construction with some small changes. In
our construction, let A in D (s, 3) be an automaton using stack symbols H1,H2,H3. Then
we construct an automaton B using two stack symbols Z1, Z0 and each stack symbolHi is
represented in B by a string ℎ(Hi) of symbols Z1 and Z0. The states of B are pairs of the
form [q, ], where q is a state of A and  is a proper prefix1 of ℎ(Hi). The idea is that the

1The string is a proper prefix of xy if y ≠ �
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automaton B reads the encoded stack symbol from the stack and saves it to the current state.
Then automaton B does the same computation as A. For mapping ℎ, we have chosen:

• ℎ(H1) = Z1

• ℎ(H2) = Z0Z0

• ℎ(H3) = Z1Z0

.This encoding is prefix encoding and variable-length encoding. The variable-length encoding
results in slightly fewer states compared to fixed length encoding. In the fixed length encoding,
the symbol H1 would be encoded to Z0Z1. In our case, the automaton would need states
[q, �], [q,Z1], [q,Z0], but our encoding ℎ needs just [q, �], [q,Z0] states, where q is a state of
A. Let us see the example in the table 3.1.

PDA A PDA B
State Stack State Stack
q …Hj [q, �] …Zi1…Zis

⏟⏞⏞⏟⏞⏞⏟
ℎ(Hj )

[q,Zis …Zi2] …Zi1
p …Hj1…Hjk [p, �] … Zf1…Zfn

⏟⏞⏞⏞⏟⏞⏞⏞⏟
ℎ(Hj1

)…ℎ(Hjk )

Figure 3.1: Example of one computation step of PDA A simulated on PDA B using
(p,…Hj1…Hjk) ∈ �(q, a,…Hj), where a is some input symbol. The s can be maximally
equal to two.

Finally, the accepting states of B shall be all states [q, �], where q is an accepting state
in A. The last item to decide is the initial stack symbol of B. Without loss of generality, we
assume thatH1 is the initial stack symbol of A. Otherwise, we can rename the stack symbols
and set name of initial stack symbol toH1.
Note 4. Note that in case of A having an initial symbolH2 orH3, our encoding would result
in the initial content of the stack of B to have two stack symbols.

We shall now write down our construction.
Lemma 3.2.1. Let A in D (s, 3) be an automaton. Then there exists a push down automaton
B using two stack symbols and 2s states such that L(B) = L(A).

Proof. Let A = (Qa,Σ,Γa = {H1,H2,H3}, �a, qa,H1, Fa) be a push down automaton with s
states. We shall construct a PDA B = (Qb,Σ,Γb = {Z0, Z1}, �b, [qa, �], Z1, Fb), where
Qb = Qa × {�, Z0}



3.2. THE NUMBER OF STATES 27

We construct �b for every s ∈ Σ and pa, qa ∈ Qa as follows:
If Z1 is on the top, we can simulate the step immediately.

([qa, �], ℎ(Hi1)…ℎ(Hin)) ∈ �b([pa, �], s, Z1) ⟺ (qa,Hi1…Hin) ∈ �a(pa, s,H1), s ∈ Σ
if Z0 is on the top, the automaton needs one more stack symbol to decode the right symbol.
([qb, Z0], �) ∈ �b([qb, �], �, Z0)
([qa, �], ℎ(Hi1)…ℎ(Hin)) ∈ �b([pa, Z0], s,Z1) ⟺ (qa,Hi1…Hin) ∈ �a(pa, s,H3)
([qa, �], ℎ(Hi1)…ℎ(Hin)) ∈ �b([pa, Z0], s,Z0) ⟺ (qa,Hi1…Hin) ∈ �a(pa, s,H2)

Finally, we set Fb = Fa × �.
The construction uses the ℎ function as an encoding function for stack symbols of the

automaton A to stack symbols of the automaton B. Then B simulates the automaton A by
decoding the encoded stack symbols from the stack. If Z1 is on the top of the stack and the
automaton is in the state [q, �] then it can simulate the step of the automaton A in the state q
andH1 as the top stack symbol. On the other hand, if the top stack symbol is Z0 and it is in
the state [q, �] then the automaton B needs to read one more stack symbol from the stack. So
it saves the symbol read in the state. Then it reads the next stack symbol in the state [q,Z0]
and simulates a computation step of A.

Now we can write construction from empty stack acceptance mode to final state acceptance
mode. We omit a formal description of the transformation since it straightforward.
Theorem 3.2.2. For a push down automaton A using two stack symbols and s states, there
exists a push down automaton B using two stack symbols and 2s + 2 states such that L(B) =
N(A).

Proof. Let us use a general construction, which constructs a new automaton C . This push
down automaton accepts the language L(C) = N(A), but it uses three stack symbols and s+1
states. By the previous Lemma 3.2.1, there exists a push down automaton B using two stack
symbols and 2s + 2 states such that L(B) = L(C).

We would like to use the same Lemma 3.2.1 for opposite implication, but the construction
in the proof of the Lemma reduces a three stack symbols automaton to a two stack symbols
automaton accepting by final state. That is why, we formulate similar lemma, which reduces
to two stack symbol automata accepting by empty stack.
Lemma 3.2.3. Let A in D (s, 3) be an automaton. Then there exists a push down automaton
B using 2 stack symbols and 2s states such thatN(B) = N(A).

Proof. Let A = (Qa,Σ,Γa, �a, qa,H1, ∅), where Γa = {H1,H2,H3}. We construct B =
(Qb,Σ,Γb, �b, [qa, �], Z0, ∅), where Γb = {Z0, Z1} as in the Lemma 3.2.1, but we do not set
any accepting final state. The automaton B shall have the states: Qb = Qa × {�, Z0} and
we shall use the same encoding2 ℎ. Using the deterministic reduction and mapping ℎ, we

2ℎ(H1) = Z1, ℎ(H2) = Z0Z0, ℎ(H3) = Z1Z0
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construct the �b similarly as in the proof of Lemma 3.2.1. The automaton B uses two stack
symbols and 2s states andN(B) = N(A).

Now, we are ready to prove the opposite implication.

Theorem 3.2.4. For a push down automaton A using two stack symbols and s states, there
exists a push down automaton B using two stack symbols and 2s + 2 states such thatN(B) =
L(A).

Proof. Let us use a general construction, which constructs a new automatonC . The automaton
C is using three stack symbols and s + 1 states. By the previous Lemma 3.2.3, there exists a
push down automatonB using two stack symbols and 2s+2 states such thatN(B) = L(C).

We showed that both acceptance modes are equivalent within the class D (s, 2) and both
at least double the number of states.

3.2.2 Upper bounds

In the previous section, we proved the equivalence between the empty stack acceptance mode
and the final state acceptance mode in D (s, 2). In this section we shall consider the state
complexity of push down automata using two stack symbols (D (s, 2)) accepting by empty
stack and then by final state.

Let us consider the following sequence of context free languages.

Notation 4. Let a, b, c be distinct symbols. Let Σ = {a, b, c}. For each r ≥ 1 let

• L = {w = ambm|m ≥ 1}

• L1[r] = {cm|0 ≤ m ≤ r}

• L2[r] = Sℎuf (L,L1[r])

At first, let us discuss the properties of the language L. Note that the language L coincides
and thus has the same properties as the language Lp (defined in the Section 3.1), for p = 1.
We proved that one state automaton needs at least two stack symbols to accept Lp, p = 1.
Then using the general idea from Theorem 3.1.4, we can construct the minimal one state PDA
accepting L.

We shall now modify the L in order to "force" the PDA to check some additional property.
Both stack symbols are used for keeping track of symbols a and b. Adding another property to
this language should result in increasing the number of states. The property we shall use is the
language L1[r], the number of c symbols should be equal or less then r. Mixing properties of
L and L1[r] languages results in the language L2[r]
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Finally, we should decide, which acceptance mode we shall use. Let us use the same
acceptance mode as in the previous Section 3.1, empty stack acceptance mode. This results in
an easier upper bound construction.

Our automaton has r + 1 states. Each state represents the number of c symbols read. If
automaton reads the r + 1 symbol, then the automaton halts.

Let us consider the PDA using two stack symbols and accepting the language L2[r] by
empty stack.
Theorem 3.2.5. there exists a PDA Ar using two stack symbols and r + 1 states such that
N(Ar) = L2[r].

Proof. We shall construct a PDA Ar = ({q0,… , qr}, {a, b, c}, {Z1Z2}, �r, q0, Z2, ∅)
(qi, Z1Z2) ∈ �r(qi, a, Z2),∀i ∈ {0,… , r}
(qi, ) ∈ �r(qi+1, x, ),∀i ∈ {0,… , r − 1},  ∈ {Z1, Z2}, x ∈ Σ
(qi, �) ∈ �r(qi, b, Z1)

The stack symbol Z1 is used as a counter. On input symbol a, the automaton pushes Z1

on the stack and it keeps the stack symbol Z2 on the top. The automaton keeps Z2 on the top
of the stack. This indicates Ar is still reading the part of the input containing the a symbols.
The automaton Ar can nondeterministically pop Z2 on � and start to pop Z1 on each b. On
symbol c, the automaton changes the state from qi to qi+1. In case Ar is in the state qr and
reads the input symbol c, it halts.
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Chapter 4

Complexity of Operations

In previous chapters, we have introduced two subclasses: one state push down automata
D (1, p) and two stack symbols push down automata D (s, 2) and show in some complexity
bounds in these subclasses. In this chapter, we shall study complexity of operations on
languages. Thus for context free languages L1 and L2 given by PDA A1 and A2 inD (1, p) [or
D (s, 2)] for L1 ∪ L2 (L1.L2 or L∗1) based on the complexity A1 and A2.

4.1 Stack Symbols Complexity

In this section, we shall present constructions for Union, Concatenation, Klenee-Star in the
class D (1, p) of push down automata. The idea behind the constructions is to use additional
stack symbol, which represents the bottom of the stack and helps the constructed automaton
to simulate another state of push down automaton and detect the acceptance. We shall omit
the formal description of the constructions since it is straightforward.

Union

Theorem 4.1.1. Let A in D (1, p1) be an automaton and B in D (1, p2) be an automaton for
any integers p1, p2 ≥ 1. Then p1 + p2 + 1 unique stack symbols are sufficient for a one state
push down automaton to accept the languageN(A) ∪N(B).

Proof. In order to construct a one state push down automaton C with p1+p2+1 stack symbols
for the languageN(A) ∪N(B) we simply use a new initial stack symbol. On this initial stack
symbol automaton reads � and nondeterministically decides to replace it with initial stack
symbol of push down automaton A or B and continues the computation as that particular
automaton.

31
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Concatenation

Theorem 4.1.2. Let A in D (1, p1) be an automaton and B in D (1, p2) be an automaton for
any integers p1, p2 ≥ 1. Then p1 + p2 + 1 unique stack symbols are sufficient for a one state
push down automaton to accept the languageN(A)N(B).

Proof. Let us construct a push down automatonC using one state and p1+p2+1 stack symbols
and accepting the languageN(A)N(B). The automaton C has a new initial stack symbol Z.
On this stack symbol, the automaton pushes the initial stack symbol of the automaton A and
starts a simulation of A. When the simulation reaches the bottom stack symbol Z, then C
replaces Z by the initial stack symbol of B and starts a simulation of B. The automaton C
accepts by empty stack.

Klenee-Star

Theorem 4.1.3. Let A1 in D (1, p1) be an automaton for any integer p1 ≥ 1. Then p1 + 1
unique stack symbols are sufficient for a one state push down automaton to accept the language
N(A1)∗.

Proof. Let us construct a push down automaton C using one state and p1 + 1 stack symbols
and accepting the languageN(A1)∗. The automaton C uses exactly same stack symbols as A1
and has one additional initial stack symbol Z. If the automaton C has on the top of the stack
symbol Z then it can pop it and accept by empty stack or add the initial stack symbol of the
automaton A1 and simulates it until it reaches the top stack symbol Z again. Then the process
repeats.

Summary

We shall summarize our findings in the Table 4.1 below. The p1 represents the number of
stack symbols of the first automaton and p2 represents the number of stack symbols of the
second automaton.

operation number of stack symbols
∪ p1 + p2 + 1
. p1 + p2 + 1
∗ p1 + 1

Table 4.1: Sufficient number of stack symbols.

The proofs shown resemble standard proofs showing closure of context free languages
under these operations. In particular, the additional stack symbol is similar to a new additional
nonterminal in context free grammars constructions. This nonterminal is also used as the
initial nonterminal for the new grammar. This similarity is due to the equivalence of push
down automata and context free grammars.
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4.2 State Complexity

We shall do the same as in the previous section, but on the second subclass. In this subclass,
we showed that final state acceptance mode and empty stack acceptance mode are equivalent.
Therefore, we shall show proofs for construction of empty stack acceptance mode and add a
note for a state acceptance mode construction.1

We shall omit a formal description of the constructions since it is straightforward.

Union

Theorem 4.2.1. Let A in D (r, 2) be an automaton and B in D (s, 2) be an automaton for any
integers r, s ≥ 1. Then r + s + 1 states are sufficient for a push down automaton using two
stack symbols to accept the languageN(A) ∪N(B).

Proof. Let C be a push down automaton such thatN(C) = N(A) ∪N(B). The automaton C
in its initial state nondeterministically decides, if the input word w belongs toN(A) orN(B).
Then it starts the simulation of the corresponding push down automaton.

Without loss of generality, we can say that both automata A and B use the same stack
symbols. Then r + s + 1 states are sufficient to simulate both automata by C .
Note 5. The same construction works, if the automata A uses r states and B uses s states both
accept by final state. Then C accepts L(A) ∪ L(B) by final state using r + s + 1 states.

Concatenation

Theorem 4.2.2. Let A in D (r, 2) be an automaton and B in D (s, 2) be automaton for any
integers r, s ≥ 1. Then 2(r + s) states are sufficient for a push down automaton using two
stack symbols to accept the languageN(A)N(B).

Proof. We shall present the idea of the construction of a push down automaton C such that
N(C) = N(A)N(B). We shall start by using a new stack symbolH . The automaton C starts
with the new stack symbolH and places on the top of the stack the initial stack symbol of A,
Z0,A. The stack should look likeHZ0,A, where Z0,A is on the top of the stack. Then C starts
the simulation of automaton A until A reaches the bottom stack symbolH . Then automaton C
replaces the stack symbolH by initial stack symbol of automaton B and starts the simulation
of the automaton B.

The automaton C uses 3 stack symbols and r + s + 1 states. By Lemma 3.2.3, there exists
an equivalent push down automaton Ĉ using 2 stack symbols and 2(r + s) + 2 states.
Note 6. The same construction works for the final state acceptance mode. We similarly
construct an automaton C using three stack symbols, which works as follows. It keepsH2

1Both constructions will be similar.
2the additional stack symbol
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and pushes Z0,A
3 on the stack and starts simulation of the automaton A. When simulation of

A reaches the final state of A, it leaves some "garbage" on the stack withH on the bottom
of this "garbage". Then C ignores it and pushes theHZ0,B

4 on the stack and simulates the
automaton B until it reaches the final state of B. Then C accepts by final state. If any of the
simulated automata, A or B encounterH as the top symbol on the stack, C halts. The C uses
three stack symbols and r + s + 1 states.

Then by Lemma 3.2.1, there exists an equivalent automaton using two stack symbols and
2(r + s) + 2 states.

Klenee-Star

Theorem 4.2.3. Let A in D (r, 2) be an automaton for any integers r ≥ 1 . Then 2r states are
sufficient for a push down automaton using two stack symbols to accept the languageN(A)∗.

Proof. We start by constructing a push down automaton using three stack symbols. The two
stack symbols are the same as the automaton A is using and a new stack symbol H is the
initial stack symbol of C . Let Z0 be an initial stack symbol of A. Then C withH on the top
of the stack pushes Z0 on the stack or pops theH from the stack in its initial state. When it
pushes Z0, it moves to the initial state of A and starts simulation of A. When the simulated A
reachesH on the top of the stack then C returns on �-move to its initial state.

The C accepts L(A)∗ using three stack symbols and r + 1 states. By Lemma 3.2.3,there
exists an equivalent push down automaton using 2 stack symbols and 2r + 2 states.
Note 7. A similar constructions works for a final state acceptance mode. We set the initial
state of C as the final state. The initial stack symbol isH again and it represents a new bottom
of the stack for the simulated automaton A. Then C pushes5 Z0 and starts the simulation of
A. When A reaches its final state then C pushesH on the top of the stack and returns to the
initial state on an �-move. If the simulated A reaches this stack symbol, the simulated A halts.
Therefore C halts.

Then by Lemma 3.2.1, there exists an equivalent automaton using two stack symbols and
2r + 2 states.

Summary

We shall summarize our findings in the Table 4.2. The r represents the number of states of the
first automaton and s represents the number of states of the second automaton.

We have seen that in our constructions the sufficient number of states for a particular
operation does not depend on acceptance mode.

3the initial stack symbol of automaton A
4Z0,B is initial stack symbol of automaton B
5An initial stack symbol of A
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Acceptance mode empty stack final state
∪ r + s + 1 r + s + 1
. 2(r + s) + 2 2(r + s) + 2
∗ 2r + 2 2r + 2

Table 4.2: Sufficient number of states
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Conclusion

In this thesis, we have studied descriptional complexity and effect of stack on the descriptional
complexity of push down automata on regular and context free languages. Two transformations
are presented which, for any finite state automata using n states, reduce the number of states
to ⌈

n
p
⌉ for a given number of stack symbols p. We have shown that these constructions are

optimal, if we want to construct one state push down automaton for any given finite state
automaton. In the same cases these constructions are not even close to optimal. We have
shown that for a particular regular language there exists a minimal finite state automaton using
n states while there exists an equivalent push down automaton using two stack symbols and
one state. In both cases, we have shown that these automata are minimal.

The descriptional complexity of PDA was not extensively studied, we had to dedicate
some part of the work for descriptional complexity on push down automata. We focused
on a definition of a "good" measure on push down automata. Two measures have been
presented, the state measure and the number of stack symbols measure. Both measures are
not "good" measures, because each context free language can be accepted by one state push
down automaton or push down automaton using two stack symbols. That is why, we tried to
combine these measures and defined a partial ordering on these measures, but in the ordering,
we could not compare some minimal automata and we showed that there does not exists any
function. which combines these measures in a such way that it maintains compelxity from
one minimal automaton to another one for the same language. Therefore, we defined two
subclasses of PDA - one state PDA and two stack symbols PDA.

In the first subclass, we have shown tight bounds for the number of stack symbols. In the
second subclass, we have shown equivalence of accepting modes and presented an upper bound
for state complexity measure in this subclass. Finally, we investigated the costs of operations
in the subclasses. In particular, we condisered union, concatenation and Klenee-Star.

There are a lot of possibilities to expand this work. Due to the lack of time, we did not
prove our hypothesis, which generalizes and proves that our transformation from finite state
automaton to push down automaton is optimal. Moreover, we have not shown any tight bounds
for two stack symbols PDA subclass and we miss lower bounds for the operations. Another
option is to use totally different descriptional measure. For example the size of the definition
of the delta function.
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