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Abstract

Natural language processing has been rapidly advancing in recent years. The used
neural models in this domain are more and more complex. Different techniques have
been developed to understand their inner representations. Inspired by these techniques,
we tried to extract some linguistic features from the inner representations of a chosen
model, more precisely the BERT model. We conducted an ad hoc syntactic dependency
analysis and used the so-called probing technique to predict parts of speech. We also
present our results and discuss possible further work.

Keywords: Explainable AI, xAI, Natural Language Processing, NLP, Transformer,
probing
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Abstrakt

Spracovanie prirodzeného jazyka sa v posledných rokoch rýchlo vyvíjalo. Používané
neurálne modely v tejto doméne sú čoraz komplexnejšie, preto bolo vyvynutých niekolko
rôznych techník na pochopenie ich vnútorných reprezentácií. Inšpirovaní týmito tech-
nikami sme sa pokúsili extrahovať niektoré gramatické vlastnosti z vnútorných reprezen-
tácií zvoleného jazykového modelu, presnejšie modelu BERT. Vykonali sme ad hoc
analýzu syntaktických stromov a použili sme takzvanú probing techniku na pred-
povedanie slovných druhov. Taktiež prezentujeme naše výsledky a diskutujeme o ďalšej
možnej práci.

Kľúčové slová: vysvetliteľná UI, xAI, spracovanie prirodzedných jazykov, NLP,
Transformer, probing technika
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Introduction

In this work, we try to investigate the inner workings of given neural language
models based on the attention mechanism, namely the Transformer model-based BERT
[11]. This model has produced remarkable results in the field of natural language
processing, although its size and structure cause it to be black-box-like. For this
reason researchers have started to come up with methods providing more insight into
the inner workings and representations of these models. One such method is probing.
This technique in essence tries to predict some linguistic feature based upon a chosen
inner representation of the model. We made two sets of experiments to determine the
degree to which some morpho-syntactic features are represented inside the model. The
first experiment aims to find the correlation between the weight dynamics of the so-
called attention-heads and grammatical dependencies. The second experiment uses a
probe, in our case a simple multi-layer perceptron, to determine whether part-of-speech
is encoded in the embeddings produced by the model at the given layers.

The structure of our work is simple. At the beginning, we present the broader
context, and then we introduce some definitions regarding the topic. The second part
describes the data and techniques we used. In the third part, we discuss the results we
obtained. In the last part we hand over the conclusions we made while mentioning the
possible continuation and future work.

1



Chapter 1

Related work

Since its emergence, the field of AI has been concerned with natural language process-
ing, which is today more relevant than ever, while going through remarkable progress
in recent years. Many long-established systems are being replaced by neural networks.
Different neural models are being introduced at a rapid pace. These models are also
often more complex than their older counterparts. With the increasing complexity, the
black-box nature of models has increased too. These developments led the NLP com-
munity of researchers towards the development of novel interpretation and evaluation
techniques for these inherently uninterpretable models.

A plethora of methods [1] were used to monitor multiple features of layers in different
convolutional neural networks used for image classification. Among others the authors
utilized linear classifiers, already referring to them as probes. As they mentioned,
the term "probing" was already in use in the context of their investigation. Linear
classifier probes were initially related to reflect the nature of information flow between
the layers regarding information entropy. The authors however used linear-only probes
to investigate the inner representations of given models.

Different natural language processing analysis methods also aim to extract informa-
tion from the inner representations of neural networks. A survey of Yonatan Belinkov
and James Glass [5] collects a notable set of examples of such works, various probing
methods (also called diagnostic classifiers) including the core method of the present
thesis: non-linear probing of contextualized language models [9].

Probing sentence embeddings
One of the cornerstone studies in this field was published by Alexis Conneau et al.
[9], where 10 different probing tasks are designed to capture relatively simple linguistic
features, such as the number of words in a sentence, word content of the sentences,
tree depth of the hierarchical structure of sentences, verb tense of the sentence and
others. The authors use these tasks to examine embeddings that were generated by
three selected encoders trained in multiple ways. They report their findings on the

2
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properties of the investigated encoders and training methods alike. Since the BERT [11]
model has been introduced with its enormous amount of parameters and remarkable
performance with NLP tasks, the interest in understanding its inner workings was
immediately substantial.

Among such efforts can be listed this work of Papadimitriou et al. [31], where the
authors investigate how Multilingual BERT (mBERT) encodes grammar. They inspect
how the high-order grammatical feature of morphosyntactic alignment manifests itself
across the embedding spaces of different languages (how "subject" is defined in different
languages).

Different probing tasks were also designed for the BERT model by Tenney, Xia,
Chen et al. [39] comparing it with other NLP models in terms of explainability. Build-
ing on token-level probing the authors introduced the so called edge probing task design
and constructed a suite of sub-sentence tasks. They probed word-level contextual rep-
resentations from four selected models and studied how those models encode sentence
structure across a range of syntactic, semantic; local, and long-range phenomena. Rep-
resentin the sentences as a list of tokens and chose labelled edges (edge from one span
of embeddings of tokens to another) they tried to predict the labels on those edges. A
few examples of these tasks are part-of-speech tagging of a selected token, named entity
labeling and others. Inspired by these trends we decided to conduct our experiments
aiming to investigate:

• the object- and subjecthood representation in a finetuned BERT model.

• the Part-of-speech representation in the BERT model using non-linear probes in
line with the related work we cited above.

1.1 Artificial neural networks

In this section we describe relevant models and definitions, using the learning material
for Deep learning [44] created by Zhang et al. Artificial neural networks (ANN) (also
called multilayer perceptrons if having multiple hidden layers, see 1.1) are computing
systems designed to recognize hidden relationships in a set of data. They aim to
approximate some function on a domain of an input. They are inspired by the biological
neural networks (animal or human brains). Further on we will refer to them only as
Neural networks. In the practical sense, neural networks are a collection of nodes -
artificial neurons - that are connected. We can represent those connections as edges of
graphs. These connections, like the synapses of a biological neuron, can transmit signals
to other neurons. The strength of those connections is represented by a real value, the
weight, assigned to the given nodes, which decreases or increases the strength of the
signal. The output of the nodes is computed by a given non-linear function applied on
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Figure 1.1: An MLP with a hidden layer of 5 hidden units. [44].

the sum of the activity routing the neuron in question. The weighted output may be
part of the input of the next node. Neurons typically have a set of learnable parameters,
weights that adjusts as learning proceeds. Neurons may have a threshold such that a
signal is sent only if the aggregate signal crosses that threshold. Typically, neurons are
aggregated into layers that form the network.

An essential property of these networks is their adaptability. As a result of the learn-
ing method, they are capable of generating increasingly good results without changing
the output criteria. Even though they can be used for unsupervised learning, e.g.
KSOM (Kohonen Self-Organizing Maps [26]) being a good example, they are mostly
used in the context of supervised learning. Unsupervised learning does not need labeled
data, it can detect patterns in the data or create groupings in the data or represent the
data in a compressed format. This method often maps the input to the output while
being forced to learn about the structure of the date to be able to do this. Supervised
learning on the other hand uses labeled data and tries to map an input to a defined
output. The training data for supervised models are mostly made out of pairs of the
input data and the desired output value or supervisory signal. Let us consider this
example: the matrix X P Rnˆd denotes a batch of n input examples each having d
input features (d being 4 in the case of the example figure 1.1).

For the MLP with one hidden layer (as is our example 1.1 with h hidden units, we
denote by H P Rnˆh the outputs of the hidden layer.

The hidden and output layers being fully connected (a neuron is connected with
all neurons from the previous layer), we have hidden-layer weights Wp1q P Rdˆh and
biases bp1q P R1ˆh and output-layer weights Wp2q P Rhˆq and biases bp2q P R1ˆq. We
calculate the outputs O P Rnˆq of the MLP with one hidden layer:
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H “ XWp1q
` bp1q,

O “ HWp2q
` bp2q.

We can prove, that only adding a hidden-layer does not change the fact that with
linear operations the model can only approximate affine functions (for proof and ex-
planation see [44]).

To use the potential of the multilayer architecture a nonlinear activation function
σ is needed to be applied to each hidden unit following the affine transformation.

The outputs of these activation functions are called activations. Applying these
activation functions, it is no longer possible to substitute the MLP with a linear model
(the output often can not be modeled using a linear approximator):

H “ σpXWp1q
` bp1qq,

O “ HWp2q
` bp2q.

As the rows in X correspond to the examples of batch, let us define σ to apply to
its inputs per row (one input example at a time as defined in [44]).

Activations

An activation function is a function that is used in an artificial neural network for
improving the networks ability to learn complex patterns in the data. They decide
whether a neuron activates or not by calculating the weighted sum and adding bias to
it. Activations are differentiable operators transforming input signals to outputs, while
adding non-linearity. We will again rely on the descriptions and definitions from [44]:

Softmax
A nice feature of the softmax function [16] is that it transforms any input vector to an
other one, which will have all its components in the interval (0, 1) with the sum of 1.
It takes a vector x of n real numbers, normalizing them to a probability distribution
of n probabilities divided by sum of exponentials of the input numbers. The resulting
components can be thought about as a probability distribution, because their sum
equals one. Softmax is typically used in the output layer. It is defined with this
equation:

Softmaxpxiq “
exppxiq

ř

j exppxjq
(1.1)

where xi are the components of vector x from x1 to xn and j going through all
elements.
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Sigmoid
The sigmoid function, used by Rumelhart et al. [35] (also called squashing function
[44] transforms its inputs, for which the values are from the domain R, to outputs in
the interval of (0, 1). We can think of the sigmoid function as a special case of the
softmax.

sigmoidpxq “
1

1` expp´xq
.

ReLU
The sigmoid function has mostly been replaced by the Rectified Linear Unit or ReLU.
It is the most popular choice, due to its simple implementation and good performance.
It was introduced in 2010 by Nair et. al [30] and has good convergence on stochastic
gradient descent compared to the sigmoidal. We used this activation function in our
experiments too as we achieved faster learning rates with it. For an element x, the
ReLU function returns x if it is greater than zero and 0 otherwise:

ReLUpxq “ maxpx, 0q.

Its disadvantage is that it can "die" when in training, due to large gradients, pre-
venting it from reactivation. There is however modified versions of the ReLU function
that try to overcome its drawbacks, for example the pReLU (parameterized ReLU
[17]). This version sums a ReLU with a linear term, so the information gets through
always, even when the argument is negative:

pReLUpxq “ maxp0, xq ` αminp0, xq.

Learning algorithms

In the previous subsections, we have shown the structure of a neural network. The
key ability of neural networks is their ability to learn. We are going to describe this
learning process in this subsection, again citing from [44]. Let us look at the forward
pass in the network for the sake of simplicity without the bias term. The input example
is x P Rd The temporary inner result is:

z “Wp1qx,

Wp1q P Rhˆd being the weight parameter from the hidden layer. After running the
inner result z P Rh through the activation function φ we get the hidden activation
vector with length h,

h “ φpzq.
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The hidden variable h is also an intermediate variable. Assuming the example from
1.1 the parameters of the output layer form a weight ofWp2q P Rqˆh, we get the variable
at the output layer with a vector of length q:

o “Wp2qh.

Adam
Now we mention the optimization technique we used for the training of our model.
As it is out of the scope of this work to list all of the techniques, we will mention
only the so-called Adam (adaptive movements) optimization algorithm introduced by
Kingma et al. [25]. It is one of the widely preferred optimization techniques used in
deep learning. We cite the description of this algorithm from [44].

Adam uses exponential weighted moving averages (or leaky averaging) to estimate
the momentum and also the second moment of the gradient, that are expressed by
these variables (gt being the gradient):

vt Ð β1vt´1 ` p1´ β1qgt,

st Ð β2st´1 ` p1´ β2qg
2
t .

The β1 and β2 are non-negative weighting parameters. Often chosen as β1 “ 0.9

and β2 “ 0.999. That is, the variance estimate moves slower than the momentum
term. If they are initialized as v0 “ s0 “ 0 there is a significant amount of bias in
the initial phase towards smaller values. This is addressed by using

řt
i“0 β

i “
1´βt

1´β
to

re-normalize terms. Consequently the normalized state variables are given by

v̂t “
vt

1´ βt1
and ŝt “

st
1´ βt2

.

Having the estimates we the equations can be updated. First, we rescale the gra-
dient

g1t “
ηv̂t

?
ŝt ` ε

.

Instead of the gradient itself, the update uses the momentum v̂t. Finally, the
parameters are updated according to this equation:

xt Ð xt´1 ´ g1t.

1.2 Deep learning models

Deep neural networks or more broadly, deep-learning architectures, have been applied
to a variety of fields with tremendous success: computer vision, audio recognition, or
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more specifically machine vision and speech recognition, bioinformatics and medicine.
It is already applied in the industry e.g. in drug design, medical image analysis, social
media such as social network filtering but also board game programs, natural language
processing (NLP) and many others, where they have produced impressive results. In
many of these domains, they offer state-of-the-art solutions for given problems compa-
rable to or sometimes even outperforming top human performance.

Deep learning refers mostly refers to models that have more than 3 layers. It was
soon discovered that linear perceptrons have their limitations. [29] As a demonstra-
tive example, it was shown, that a single neuron was unable to implement an XOR
function. A network with a non-polynomial activation function with one hidden layer
of unbounded width proved to be more "capable", as it may be used as a universal
classifier given the necessary conditions are fulfilled (depth, width) [20].

1.3 Attention

Neural networks use attention in a manner that resembles the attention in cognition.
For a given task, when a model is dealing with its input, some parts of the input data are
often more relevant than others. When the attention mechanism was introduced [3], it
was inspired by the supposition that encoder-decoder models had a specific bottleneck,
which should be addressed. At the time when phrase-based translators were introduced,
the first techniques used multiple components tuned more independently from each
other. A new approach was introduced later, as in [24], where one larger neural network
was trained, being responsible for processing the input sentence and producing a correct
translation. These machine translation models from the family of encoder-decoders
encode the input sentence into a fixed-length vector. This approach is the source of
the above-mentioned bottleneck. All the information has to be encapsulated in a vector
of a given constant size, which is more and more problematic as the length of the input
sentence increases.

When addressing this issue, Bahdanau et al. [3] proposed an extension to the
encoder-decoder type. The newly introduced model, when generating a word of a
translation, looks at the source sentence for clues. A set of positions is associated with
the input sentence, in which the model soft-searches for the best relevant information.
The next prediction of the model relies on the previously generated words and the
aforementioned positions.

RNN Encoder–Decoder

The model proposed by [3] is based on the RNN Enncoder-Decoder framework by [37]
and [7]. In this framework the encoder reads the input sentence comprised of vectors



CHAPTER 1. RELATED WORK 9

v “ px1, ¨ ¨ ¨ , xTxq into an other vector c generated from the sequence of the hidden
states.

The decoder is may be designed to predict the next word from the context vector
and the previously predicted words. In the design by [3] however, an innovation was
introduced. A bidirectional RNN is used as the encoder and the decoder emulates
searching in the input sentence when decoding.

The above-mentioned architecture consists of a bidirectional recurrent neural net-
work serving as an encoder. The decoder emulates searching through a source sentence
during decoding the translation.

In the proposed architecture the conditional probabilities are defined as:

ppyi|y1, . . . , yi´1, q “ gpyi´1, si, ciq, (1.2)

where si is an RNN hidden state for time i, computed by

si “ fpsi´1, yi´1, ciq.

The context vector ci depends on a sequence of annotations ph1, ¨ ¨ ¨ , hTxq to which
an encoder maps the input sentence. For every annotation, hi information about the
whole input sequence is contained with a focus on the parts around the i-th word of
the input sequence.

The weight αij of each annotation hj is calculated as follows:

αij “
exp peijq

řTx
k“1 exp peikq

. (1.3)

eij “ apsi´1, hjq

being an alignment model which scores how well the inputs around position j and the
output at position i match. The score is based on the RNN hidden state si´1 and the
j-th annotation hj of the input sentence.

The probability that the target word yi is aligned to, or translated from, a given
source word xj can be expressed with αij. In this case, ci, the i-th context vector, is
the annotation that is expected over all the annotations with probabilities αij.

In the proposed scheme, the authors intended the annotation of each word to sum-
marize the preceding words, as well as the following words. Therefore they proposed
to use a bidirectional RNN in a way described below. The given model obtains the
annotation for each word xj by concatenating the forward hidden state and the back-
ward one for hj. In this way, the annotation hj contains the summaries of both the
preceding words and the next words. Since RNNs are prone to represent more re-
cent inputs better, the annotation hj is focused on the words near xj. The produced
sequence of annotations is processed later, by the decoder and the alignment model,
when computing the context vector.
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Figure 1.2: Sample alignments found by [3] using RNNsearch-50 (a model trained
with sentences of length up to 50 words).

Alignment

The approach put forward by the authors provides a nice intuitive way for inspecting
the (soft-)alignment between the words of the generated translation and those of the
source sentence. By soft is meant that an alignment is not given in a binary form
(aligned and not aligned), but rather weights are generated to indicate the "degree" of
the alignment of two given words.

This is done by visualizing the annotation weights αij, shown in 1.2. The x-axis
and y-axis of each plot correspond to the words in the English source sentence and
the generated French translation, respectively. The pixels show the weight matrices
composed of αij, the annotation of the j-th source word for the i-th target word using
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a grayscale visualization. For every plot, each row of a matrix indicates the weights
associated with the annotations. From the annotation matrix, it is visible which po-
sitions in the source sentence are considered more important during the generation of
the target word.

It is demonstrated in the figures 1.2, that the alignment of words between English
and French is largely monotonic. This produces strong weights along the diagonals of
the alignment matrices. However, as there are irregularities observable, a number of
non-trivial, non-monotonic alignments can be spotted too. Adjectives and nouns often
having a different order in the two languages, French and English, stronger wights were
produced outside of the diagonal of the figure 1.2 plot (a).

The figure demonstrates the alignment of words of an English sentence and its
correctly translated French counterpart. In the three-word sentence part [European
Economic Area], the correct translation has the second and third word switched: [zone
économique européen]. The RNNsearch was able to correctly align [zone] with [Area],
skipping two words ([European] and [Economic]), after which it "looked" back and
completed the whole phrase.

While neural networks working in such a way, that the encoder compresses the
information to the input of vector of a fixed length, turned out to be an impede
performance improvement. Therefore the "networks focus" should be primarily on
those more important parts. The relevance of a given part of the data is largely
determined by the context.

1.4 Transformer

Until recent years, neural networks and LSTM (long short-term memory) were used by
the models providing the best results in the domain of natural language processing in-
cluding sequence modeling, language modeling, machine translation, and many others.
In 2017 a new approach was introduced. Instead of using sequence-aligned recurrent
neural networks or convolution the proposed model, [43] relies on self-attention, some-
times also called intra-attention, for the computation of its input and output not need-
ing recurrence. The experiments done by the authors demonstrated not only superior
results on many benchmark tasks but also significantly improved the time requirements
for their training compared to the state-of-the-art up to that point. Transformer-based
models, since their introduction, got very significant attention and were applied to a
substantial amount of tasks, mostly in the field of natural language processing, but
also in computer vision.

Self-attention is an attention mechanism that relates to different positions of a
single sequence for computing a representation of that sequence. The application of
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self-attention produced good results in many tasks including summarization, reading
comprehension, and many others.

Neural sequence transduction models usually have a structure consisting of an en-
coder and a decoder. The encoder is mapping the input sequence of symbol represen-
tations to a sequence of continuous representations. The decoder is responsible for the
generation of an output sequence of symbols, each element at a time, one after another.

The introduction of the Transformer was the first transduction model (reasoning
from specific cases to also specific cases, from input to output), which relies solely on
self-attention when computing the representations of input and output and not using
convolution or a sequence aligned RNN.

The creation of the Transformer model was significantly motivated by the possi-
bility of parallelization. It made possible a shorter training time while increasing the
results on different tasks such as translation and later many others. In models such
as the ConvS2S [14] which use convolutional neural networks as their building blocks
the hidden representations are computed in a parallel manner for the input and output
positions. However, unlike in the case of Transformers, relating signals between two
input or output positions requires an increasing number of operations when increasing
their distance from each other, thus making it more difficult to learn dependencies
between points further from each other. In the case of ConvS2S this growth is lin-
ear. The Transformer requires only a constant number of operations. However, this
improvement is not for "free", due to the reduction in effective resolution because the
attention-weighted positions are averaged. The authors of the models handled this
drawback with a multi-head attention.

Architecture of the transformer

The two main components of a transformer are an encoder and a decoder part 1.6.
Both these components are organized as a stack of six layers of decoders or encoders
respectively 1.3.

• Encoder: As mentioned earlier, the encoder has a stack of six identical layers.
Every one of these layers has two main parts: a multi-head self-attention mech-
anism, and a position-wise fully connected feed-forward network. The output of
the sub-layers is described by this equation: LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the function realized by the sub-layer.

• Decoder: The decoder is composed of a stack of six identical layers too. An
important feature that differentiates the decoder from the encoder component is
that apart from the sub-layers of the encoder layers, the decoder layer contains a

1source: https://jalammar.github.io/illustrated-transformer/
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Figure 1.3: The encoder-decoder architecture high level view. 1

third sub-layer in the middle of the two original ones. The role of this additional
sub-layer is to apply multi-head attention to the input of the decoder. In the other
aspects, the decoder has a similar structure to the encoder, having connections
around the sub-layers with normalization at the end. However, the decoder’s self-
attention is prevented from reaching subsequent positions which together with the
output embeddings shifted, results in predictions depending only on the known
outputs at lesser positions.

• Attention The function which is referred to as attention by the authors is further
described as the so-called query and key-value pair set being mapped to a given
output. These three structures, the query, key, and value are different vectors.
The computation of an output is the following: the given values a summed ac-
cording to weights assigned to them. These aforementioned weights are assigned
to the values by a compatibility function of queries and keys.

The processing of the words from the input sequence by the model uses self-
attention, which enables to get information from the input sequence at different
positions which provides a context for better encoding.

The notion of self-attention is a fundamental part of [43] and therefore we should
also look at it somewhat more precisely.

A relatively in-depth intuitive description can be found at [2], from which we
extracted some explanations and a step-by-step description for understanding
the attention mechanism, which is implemented by the authors using matrix
operations.

This process of calculating the self-attention can be described in a few steps.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 1.4: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention (consists
several attention layers running in parallel). The visualizations are from [43]

At first, for each of the encoder’s input vectors, which are usually embeddings of
some words, three vectors are created: query, key, and value vectors. These are
computed as the result of the multiplication of the embedding by three respective
matrices, in which the weights were trained alongside the training process of the
whole model.

The next step is the score calculation. For a given word, every word from the
input sequence is scored against the current one. This score determines how
related are the two words, how much focus should be placed on that other word
when encoding the one the model deals with at that time. The score is calculated
by taking the dot product of the current query vector with the key vector of the
given word being scored.

For example, if the self-attention when being calculated for the word at the first
position, the first score is the dot product of q2 (the query vector for the second
world) and k1 (the key vector for the first word), then the following one is the dot
product of q2 and k2 and so on. After these operations, the scores are divided by
the square root of the key vectors dimensions. This is done for the stabilization
of the gradients. In the referenced work this number is 8, as the square root of 64.
The softmax operation is then applied to the given results for the normalization
of the scores. These softmax scores refer to the magnitude of the impact these
original words have at the position being calculated. The highest score is usually
given to the word itself, although the other scores are important too, since they
may be relevant in a given context.

After the scores are calculated, each value vector is multiplied with the appro-
priate score. This step results in the more relevant set of words standing out and
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the irrelevant ones diminishing (they are multiplied by a very small number). Fi-
nally, all these value vectors weighted by the calculated scores are summed. The
result of this sum is the output of the self-attention layer for the given position
(the given word).

As mentioned earlier, these calculations are done in the form of matrix operations
for the sake of better efficiency. The embeddings are joined into a matrix, which
is then multiplied with the query, key, and value weight matrices, which have
their elements set during the training of the whole model. The results are the
query, key, and value matrices corresponding to the input vectors. The above-
described steps in this section are expressed by this formula for the calculation
of the attention function:

AttentionpQ,K,Vq “ Softmaxp
QKT

?
dk
qV (1.4)

Scaled Dot-Product Attention

The authors refer to the above function as "Scaled Dot-Product Attention" Fig-
ure 1.4. In summary, the inputs are queries, keys (both with dimension dk) and
values (with dimension dv). The dot products of the queries and keys are calcu-
lated than scaled (divided by

?
dk, the softmax function is applied on the result

representing the wights it is multiplied by the values. Since they computed the
attention function on a set of queries simultaneously, for efficiency, they are joined
into a matrix Q, as indicated on the visualization too. The keys and values are
also joined together into the matrices K and V.

Multi-Head Attention

Another feature of the transformer model is that not a single attention func-
tion is used, but multiple ones are used in parallel. This is implemented in the
mechanism called by authors as "multi-headed: attention, which is part of the
self-attention layer. Its visualization is provided by the referenced article, also
shown in Figure 1.4.

The proposed design does not use a single attention function, but rather uses
h (the h is the number of parallel attention functions also shown in Figure 1.4)
different linear projections (learned during training) of the queries, keys, and
values. These linearly projected variants are sent into the attention function in
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parallel. The given results are then concatenated and projected again yielding
the final result of the Multi-Head Attention.

As analyzed by [2], this design provides an improvement of the performance in
two ways. Firstly it enables the model to "focus" on different positions in a
sentence, providing a better "grasp" of the concept.

Secondly, the parallel attention heads give the model the ability to get infor-
mation from multiple subspaces of representations. The model introduced by
the authors uses different sets of query, key, and value matrices which were ran-
domly initialized before the training and were trained to result in a nonequal
set of matrices. These sets project the embeddings to "a different representation
subspace".

The encoders and decoders contain a fully connected feed-forward neural network
over the attention sub-layers which is applied to every position (of the vector de-
rived from the input sequence at that position). It contains a ReLU activation
between two linear transformations. The model also uses learned embeddings
for the conversion of input/output tokens to vectors of the needed size. A linear
transformation is used along with the softmax function to retrieve the probabili-
ties of the predicted tokens.

An important aspect of the transformer model is, that it does not contain convo-
lution nor recurrence. However, it has to take into account the sequential nature
of its input. For this reason, the authors have decided to include some informa-
tion about the token positions of the input sequence. They encoded the positions
of the input embeddings both for the encoder stack and decoder stack at their
bottoms. These encodings can be chosen in many ways, as referred to [15] by
the authors. The sine and cosine function was used, with different frequencies,
to encode the positions, since this method have resulted in similar success when
using learned positional embeddings according to the authors [43]. Here is the
functions calculating the positonal encodings:

PEppos,2iq “ sinppos{100002i{dmodelq

PEppos,2i`1q “ cosppos{100002i{dmodelq

In the above formula these are the parameters: i being the dimension and pos

being the position. The dimensions of the positional encoding conform to a given
sinusoid. The authors chose this function because they hypothesized that it may
allow the model to learn to attend by relative positions, because for any fixed
offset k, PEpos`k can be represented as a linear function of PEpos.
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The authors also suggested, that the self-attention mechanism could benefit the
interpretability of the model. They analysed attention distributions from their
models came forward with an example Figure 1.5. It did not only show how
individual attention heads learn a different tasks, but some appeared to exhibit
a functionality related to the syntactic and semantic structure of the sentences.

Figure 1.5: Two attention heads from the layer 5 of 6. Indicating anaphora resolution.
Right: Full attentions for head 5. Left: Isolated attentions from just the word ‘its’ for
attention heads 5 and 6. The example and its visualization is from [43]

1.5 BERT

The BERT deep learning model (BERT stands for Bidirectional Encoder Represen-
tations from Transformers), was introduced in 2019 [11]. The authors designed it to
pretrain deep bidirectional representations from an unlabelled text using left context
and right context at every layer. It can be fine-tuned with an additional output layer for
a large variety of tasks. The Bidirectional Encoder Representations from Transform-
ers (BERT) natural language processing model has achieved state-of-the-art results on
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Figure 1.6: The architecture of the Transformer - model from [43]

many tasks becoming one of the leading models in natural language processing in the
recent years [33].

The BERT model has two important qualities. One is that it is based on a deep
Transformer encoder network, what enables the efficient processing of text inputs using
self-attention. The other is its deeply bidirectional feature, meaning that it utilizes both
left and right contexts of a text passage in all layers.

The BERT model was pretrained on two tasks. One was language modelling (where
some percentage of the tokens were masked and the model was trained to predict them
from the context) and the other was sentence prediction (predicting if a given sentence
was probable or not following the first sentence). The pre-tained weights were released
by the authors of the model, enabling the public to use them with little effort 2.

Those pretrained models come in two sizes. The Base model has 12 layers with
a transformer, with the hidden size being 768, 12 sef-attention heads at every layer
resulting in 110 million parameters. The second one is the Large model with 24 layers,
with a hidden size of 1024, 16 self-attention heads. This variant has around 340 million
parameters.

The BERT model was trained on multiple languages since it made its first appear-
2https://github.com/google-research/bert
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ance, from which the English BERT is the most relevant for us in this work. It was
initialized with weights pretrained on the so called BookCorpus, which is a dataset
prepared from more than 11 thousand books of different genres and more than two
million words from texts of the English language Wikipedia.

Currently many pre-trained variant and derivative models are available for many
use-cases. One of those is the NER-BERT [27], a model fine-tuned for entity tagging.
We used this variant our first experiment. Other variants are RoBERTa, ALBERT
or ELEECTRA, each of them having specific advantages. Those are improvement on
the masked language modeling (RoBERTa), parameter efficiency (ALBERT) and a
comparatively good efficiency even on a small scale (ELEECTRA).

BERT embeddings

Embeddings are numerical vectors that in some sense capture the meaning of words.
For example it is often the case, that similar words have numerically similar embed-
dings. They are needed so that a model can operate on them with mathematical
functions. As BERT also works with the embeddings of given words, it has to get
them from somewhere before transforming and passing them to the next layer. The
BERT models input embedding is created as the sum of three different embeddings as
seen on Figure 1.7.

These three initial embeddings are the so called token, segment, and position em-
beddings. Bert also uses special tokens such as the classification, separator and mask
token with each of them having their token embeddings. The token embeddings are
created from word tokens which are produced by a method called WordPiece tokeniza-
tion. This method sometimes separates one word into multiple subwords with their
corresponding embeddings.

The word piece tokens are later converted into a vector (with the length of 768 in
the case of the base model) by the token embeddings layer.

The segment embeddings denote to which sentence does a subword belong, when
the BERT model is dealing with more sentences (it can be fed two sentences, where
zeroes are assigned to the first one and ones to the other, as segment embeddings).

Finally, the position embeddings represent the position of a token in the input
sequence.

BERT structure

In this paragraph we overview the structure of the Base BERT model from a high
level. The vizualization of the the BERTBASE archiecture can be seen at [32]

It is composed of 12 transformer layers stacked on each other, with each of them
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Figure 1.7: The representation of the BERT input. The input embeddings are the sum
of the token embeddings, the segmentation embeddings and the position embeddings.
The image is from the article introducing BERT [11]

having 12 attention heads. When processing a sequence of tokens, the tokens are
embedded into a learned embedding vector of length 768. Those embeddings vectors
are then consecutively transformed while passing through the layers of the model.

This transformation process of an embedding in a given layer can be described in
the following steps.

At first, the a set of linear projections (which were learned by the BERT model
during its training for every layer) is applied on the input embeddings. The results are
three vectors of a length 64, that are called key, query and value (often only referred
to only as K, Q and V).

After the first step, these three types of vectors are processeed by the self-attention
head, resulting in other vectors of length 64 for every triplet of key, query and value.
This process is the one we described in more details and shown on a cited figure 1.4. It
is important to note, that the self-attention head processes the whole input sequence
thus making BERT "aware" of the context.

As the BERT model uses multi-head attention, it utilizes 12 different linear pro-
jections creating 12 different key, query, value triplets, each corresponding to a unique
self-attention head, each of them relating the tokens to each others in a different way.

The 12 outputs are than concatenated, and the result’s linear projection is summed
with previous embedding and after being normalized, the sum is sent through a feed-
forward layer and summed with a previous state. In these steps the embedding is
transformed, and ready to be sent to the next layer, unless being the last one.

1.6 Natural Language Processing

Natural Language Processing, usually shortened as NLP, is a branch of artificial intelli-
gence that deals with the interaction between computers and humans using the natural
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language.
Natural language processing, often shortened as NLP, is a subfield of linguistics,

computer science, and artificial intelligence. In this work we are mostly concerned with
the interactions between machine learning and human language. We will also refer to
human language as natural language.

We can vaguely define Natural Language Processing (NLP) as the automatic soft-
ware manipulation of natural language, speech and text alike. More precisely, we can
look at NLP in the context of given tasks or problems we want to deal with. There
is a very large variety of these possible tasks, hence we mention only a few examples
while while emphasising those relevant to this work:

Text processing

Word segmentation (Tokenization)
Separation of a text into words or tokens. In case of some artificial languages, for
example programming languages such as Python, C++ or others, it may be a more or
less straightforward task. The code is tokenized and ready for further processing. In
many cases natural languages present a trivial challenge too, when the boundaries of
the words align with those of the words in text. However, for some languages it is not
the case. For some tasks this approach is not satisfactory, since the words may contain
multiple tokens. These issues may arise from the nature of the language (e.g. Chinese,
Japanese etc.), the task, or implementation. Some words not being in the set of possible
tokens of the tokenizer may result in the splitting of words not known, to multiple sub-
words. The procedure of tokenization is sometimes also used to create a bag of words
(BOW) for example for document classification 3. The specific tokenization of words
used for the BERT model is described in the BERT section 1.5 along with the BERT
architecture.

Morphological analysis

Stemming and Lemmatization
Two different word normalization procedures are often used for pre-processing words
or whole documents. Both of these techniques are a form of reduction of derived or
inflected words to their base forms. (e.g. "observer" to the root form "observe"). The
difference between Stemming and Lemmatization is, that while the former uses a set
of rules, the latter works with a dictionary to return the so-called lemma (dictionary
form).

3https://machinelearningmastery.com/deep-learning-bag-of-words-model-sentiment-analysis/
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Morphological segmentation
This process has two parts: firstly the word is separated into its morphemes, secondly,
the morphemes are identified by their classes. The difficulty of this task varies a lot
between the languages. While in the case of the English language the morphology is
fairly simple, other languages may present a greater challenge regarding the morpho-
logical segmentation. The agglutinative languages are good examples since in their
case a simple dictionary method is not possible.

Part-of-speech (PoS) tagging
Part-of-speech (PoS) is a grammatical category of lexical items (words) that have
similar grammatical properties. Words being in the same part-of-speech category often
show similar behavior regarding their syntax, having similar roles in the grammar.
In the English language, we can list words into these main categories: noun, verb,
adjective, adverb, pronoun, preposition, conjunction, interjection, numeral, article, and
determiner. It may be noted, that often more granular categorization is used, creating
subcategories for the aforementioned ones.

The PoS tagging, or grammatical tagging, is the task to determine the part of speech
for each word in a sentence or more generally in a whole corpus. Since many words
may represent multiple different parts of speech, a naive dictionary approach is not
sufficient. Many words, especially common ones, can serve as multiple parts of speech.
For example, "cool" can be an adjective ("cool lemonade") or verb ("cool down the
reactor"); or the word "out" can be of multiple different parts of speech. Initially, PoS
tagging was a manual process. However, with the advancement of computer science, the
effort of algorithmization of this process started to increase with the growing computing
capabilities.

At first rule-based methods were used, like the Brill’s tagger [6]. Later a stochastic
approach was taken too, using for example Markov models or dynamic programming
for determining the PoS tagging. Later on, machine learning models were utilized
reaching accuracy above 97% [41]. Despite the high rates of correct tagging, there is
still room for improvement and experimentation. Possible new approaches were made
possible as evolutionary computation was introduced [36].

Syntactic analysis

There are many sub-problems related to syntactic analysis. Some examples are sen-
tence breaking, parsing, and grammar inference (grammar induction). The first one is
the process of finding the boundaries of sentences in a text. It is relevant, since some
punctuation characters may show up in a text not only indicating the end of a sentence
but also as abbreviations, fractions, ordinal numbers, and so on. Grammar inference
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or induction is a category of processes that try to "learn" a formal grammar. The goal,
in this case, is to generate a formal grammar that describes the syntax of the given
language the best.

Parsing
Parsing is one of the most relevant task types from the category of syntactic analysis
regarding this work. Its objective is to find the parse tree of a sentence, to be able to
answer questions concerning its grammar. One of the problems when parsing a sentence
is the possible ambiguity. A sentence may have a very large number of possible parse
trees. Even though most of these parses are meaningless, their algorithmic distinction is
not so obvious. For this reason, straightforward deterministic solutions are not viable.
We distinguish two main categories of parsing: dependency parsing and constituency
parsing.

A constituency parse tree breaks a text into sub-phrases. The leaves or terminals in
these kinds of trees are the words of the sentence themselves. On the other hand, the
inner nodes, or non-terminals of the tree represent different phrase types. The edges
which represent the inclusion of a super-category are not labeled. In our example 1.9
for the sentence "This tree is illustrating the constituency relation." we see a few types
of phrases: S - sentence, NP - noun phrase, VP - verb phrase, V - verb, D - determiner,
N - noun. These types are of the main categories, but larger granularity is possible too,
with more specific types, elements extended by additional information and the possible
components of these trees (dependency parsing trees too) may vary from language to
language.

In the case of dependency parsing, every node in the tree graph represents a word,
with the edges showing the relationships between those words. Words grammatically
dependent on a word are represented as child nodes of the nodes corresponding to the
latter. The example presented 1.10 is a dependency parse tree of the sentence "This
tree demonstrates the dependency relations.".

Lexical semantics

Lexical semantics studies the meaning of words, as described by [13], from where we
introduce some relevant definitions. It investigates the correlation between the meaning
of the lexical units and the structure of the language or syntax. The areas of lexical
semantics include the study of semantic relations among the elements of a vocabulary or
the structures of the words themselves. The basic blocks or units, also called syntactic
atoms, of the analysis in lexical semantics are not only the words in a language (the
lexicon) themselves, but also sub-words such as affixes (prefixes, post-fixes, and many
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others), but also extend to compound words and phrases. In other words, lexical units
can stand on their own, for example in the case of root words or as parts of compound
words, in which case they may be referred to as free morphemes. On the other hand,
they may be attached to other units such as prefixes and suffixes. These are called
bound morphemes.

Named entity recognition

Named entity recognition (NER) deals with the task of mapping given words or
groups of words from a text to defined semantic types, for example, a location, orga-
nization, event, or person. In some natural languages, such as English, capitalization
may help, but in others (e.g. German) it is of less use, therefore this task can not be
easily done with simple mechanical rules. Even in a language, such as English, capital
letters do not always indicate named entities. Some other languages do not even use
the concept of capital letters (Chinese for example). As this task logically implies the
need to automatize, more sophisticated methods were introduced. The context of a
word needs to be taken into consideration when determining if it refers to a named
entity. Named entity recognition is often the basic block of applications dealing with
natural languages, hence increasing its importance. Among others, NER is employed
in machine translation, question answering, and summarization.

Sentiment analysis Sentiment analysis is used to retrieve subjective information or
opinions from a given text, from a short comment or review to a longer one such as
documents. It may be used for public opinion scanning, on social media, or aimed at
the personalized advertisement and other forms of marketing.

Among other common NLP tasks are word sense disambiguation, or tasks dealing
with relational semantics (which often deals with the semantics of whole sentences
in relation to each other). The first one tries to tackle problems arising from the
ambiguity of natural languages. It asks the question, which is the most likely meaning
associated with a word given a specific context. We can list many problems from
the category of relationship semantics. Some examples are relationship extraction or
semantic parsing. Relationship extraction means given a specific corpus of text, the
identification of relationships among named entities (e.g. which street is in which city).
Semantic parsing is a task aimed at producing a formal representation of the semantics
of a sentence or a whole text. This is a broad task often requiring the execution of
many sub-tasks, such as semantic role labeling ( assigning labels to words or phrases
in a sentence indicating their role in the semantics of the given sentence), word sense
disambiguation.
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1.7 Explainabe AI (XAI)

Recent years have brought significant improvements of the state-of-the-art models in
different fields of machine learning and more precisely in deep learning too. However,
with the growing complexity of models, the interpretability decreases.

The broad term explainable artificial intelligence refers to such a type of AI that
produces results in a manner somewhat comprehensible to humans. It does not have
"black box" like attributes such as many models in machine learning, or at least it
provides some extra means to interpret its "behavior" giving clues why it "made" a
given decision.

XAI may be relevant due to legal reasons and in the law itself, as explanations of
algorithmic decisions may get increased trust due to their increased explainability, and
sometimes their correct interpretation may be legally required [12]. The user experience
can also be improved by XAI, when no legal requirements are made regarding the
explainability, increasing the trust in a given product. XAI is often used to explain the
current or past decisions of a system or may try to provide explanations for possible
decisions in the future. The relevant literature often distinguishes between white-
box and black-box algorithms, which has a big relevance in machine learning too. In
machine learning, we can consider those models to be white-box, that produce their
results in a way understandable by the experts in a given field. And those models, which
are hard to explain or understand (their inner workings, dynamics, or their decisions),
oftentimes even by the relevant experts, we may refer to as black-box models.

Explainable AI for Natural Language Processing

So far we have described various black-box models. From their nature arises the need
for explainable AI. In the following survey [10], in 2020, the authors made an overview
of Explainable AI (XAI), focusing on Natural Language Processing (NLP). As it was
noted in the survey, the natural language processing systems have often been based on
techniques that are inherently explainable. Into this category belong the decision trees,
logistic regressions, and hidden Markov models. In the recent past, however different
black-box techniques are more and more popular end relevant. Such is deep learning
using different language embeddings as features. These methods while increasing the
quality of models and results too, come at a price of interpretability.

Probe

As we have mentioned, neural network models are often regarded as so called black
boxes. For the reason on getting some insight into the inner working of such models
the idea of probes was proposed [1], where classifiers were trained for the purpose of
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understanding the dynamics and roles of the intermediate layers of some chosen black
box models. In the mentioned work linear classifiers were used referring to them as
probes. The training of these probes were entirely independent from the examined
models themselves. As this work observed some interesting properties on models for
computer vision, our ambitions were different. The objectives of our works aimed at
natural language models, more specifically the BERT model.

To move in this direction we got inspiration from [9], where the authors introduced
10 different probing tasks capturing different linguistic features of sentences, across
different encoders with different training settings. Their approach was to use multi-
layer classifiers, in "the case relevant properties are non-linearly encoded in the sentence
vectors." This motivated us to proceed in a similar manner, also using multi-layer
classifiers.
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Figure 1.8: The vizualization of BERT model from [32]. The first layer with the
transformer is visualized in full size while the other layer are being hidden for brevity.
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Figure 1.11: The vizualization of the probing technique on a models embeddings from
[23] The investigated model is in a static state (not in training mode) while the probe
tries to predict the chosen information from the inner representations.



Chapter 2

Experiments

In this chapter, we are going to introduce the data we used for our experiments. For
the two of those experiments, we used a different set of data. The first one is a set of
sentences with no labels, while the other one is a set of sentences with per token labels.

2.1 Cased sentences

In linguistic typology, the order of the subject, verb, and object in a sentence is an
important classificator of languages. The different languages can be categorized ac-
cording to the order these words observe in an unmarked sentence (a sentence where
this order does not differ from the typical one in the language).

Words belonging to these categories make up the basic structure of a sentence. The
English language is dominated by the S-V-O order for example (example sentence:
Tom ate a banana.). This trio makes up the structure of sentences to which other
sentence parts align too. For the Verb-Subject and Verb-Object dependency analysis
between tokens, we created a labeled one from the Kaggle dataset from [28],

The original dataset we used for this experiment was an unlabelled one, containing
unique cased sentences without punctuation. It consists of 101103 English language
sentences with a size of 6MB. The file format is csv, which stands for comma-separated
values. Each row in the file contains the sentence number (starting from zero) and
the sentence separated by a comma. The rows are separated with the end of line
character. Since we needed sentences tokenized with grammar tree tokens for our
experiment, we had to use an automatic parser to do the job, to compensate for the lack
of a large enough dataset labeled according to our needs. To generate sentences with
dependency parse tree tokens, we decided to use the SpaCy [19] open-source software
library, designed for advanced natural language processing. This library was written
in the Python [42] and Cython [4] programming languages. The SpaCy library enables
us to conveniently download from their codebase different natural language processing

30
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pipelines. There are multiple choices for different the English, with different size and
effectiveness 1. These are the small, medium, large, and the largest ones respectively.
We have chosen the small version for computational and time effectiveness, which is
reported by the authors to still have a reasonable accuracy on the needed task. For
the labeled dependency parse labeling it is 90% [18]. For the comparison, the largest
model has better accuracy by 5 %, but its size is 10 times larger.

Figure 2.1: A sentence’s dependence structure2

After reading the raw sentences and having them tokenized, we saved the result in
a text file. For a given sentence, the resulting data was saved in the following form: an
outer list containing these elements: the sentence itself, the list of its tokens, the list of
the positions of the subject related tokens, the list of the subject related tokens, the list
of the positions of the verb related tokens, the list of the verb related tokens, the list of
the positions of the object-related tokens and the list of the object-related tokens. We
also saved generated data-set to a text file in such a format, which was easily readable
by another function, when needed. In this case, the elements of the outer list were
concatenated on the hash (#) character, and the elements of the inner lists were joined
on the underscore (_) character, since these two characters were not in the data-set,
and enabled a simple extraction for the function reading the data for later usage. It
was convenient to save those data since for the next time we ran the script, we could
read the data from the saved file, saving the time needed for the pipeline to process
the sentences one by one.

1en_core_web_sm, en_core_web_md, en_core_web_lg and en_core_web_trf source:
https://spacy.io/models/en

2https://www.analyticsvidhya.com/blog/2021/12/dependency-parsing-in-natural-language-
processing-with-examples/
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2.2 BERT probe dataset

From the subject-verb-object triplets, we could have assumed that the trained BERT
model has inner representations for verbs and nouns. However, the analysis of the
attention-heads was insufficient to confidently draw such conclusions. The inner repre-
sentation can not be interpreted in themselves. However, the higher layers of the model
are able to "interpret" them with non-linear transformations, therefore we decided to
substitute/approximate those non-linear transformations with MLP probes. In this
section, we describe the dataset we have chosen for our probing task.

2.2.1 CoNLL-2000 dataset

We used a data corpus [40] created from sentences with separated words each labeled
with a part-of-speech tag and chunk tag. The description of the dataset indicates that
the dataset was created for chunking tasks, whereas "text chunking consists of dividing
a text in syntactically correlated parts of words." An example sentence is given by the
authors: "He reckons the current account deficit will narrow to only # 1.8
billion in September", which is chunked in the following way: [NP He ] [VP
reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP
only # 1.8 billion ] [PP in ] [NP September ] . The description further states,
that text chunking is an intermediate step towards full parsing, which was a shared task
for CoNLL-2000. The training and test data for this task is the one we use, but not
for parsing, but for the PoS tags. The corpus contains 211727 tokens for the training
data and 47377 tokens for the test data. The tokens belonging to different sentences
are separated by an empty line.

The PoS tags used can be found in this table 3.5. Those tokens, that did not fit
the tags (brackets, apostrophes...) were assigned the value 0.

2.2.2 Token processing

We read the dataset mentioned in the previous subsection with a Python script. We
separated the words belonging to different sentences into a class together with their
PoS and chunk tags.

In this experiment, we were using the BERT base cased model and tokenizer from
the PyTorch-Transformers library 3 to create the embeddings from our dataset con-
taining cased PoS tagged sentences.

We iterated over the sentences while tokenizing the words with the pre-trained
BERT tokenizer. The token sequence was then passed into the model, and as passed
through, we saved the input embedding and the output embeddings of all the 12 layers

3https://pytorch.org/hub/huggingface_pytorch-transformers/
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of the given BERT model. When a word was separated into multiple tokens, we saved
the embedding for the first token in the word. All these data (sentence number, word
number in sentence PoS tag, chunk tag, embedding) were saved. Due to the fact that
one run produces all the embeddings and a large number of words, this process had
to be done in multiple parts, since all the embeddings could not fit into the memory.
Then all the metadata was saved into a file, and the embeddings into separate files,
per layers they were extracted from later. One file containing the embeddings and the
other data (raw subword, sentence number, token number, and so on) of the training
set having a size of more than 2 GB, we used the PyTorch’s save function to save
the embeddings, utilizing compression, (this time excluding other data,) in the form
of dictionaries, which reduced the size of the used files during the experiments. With
these methods, we created a training set for each layer of the size of around 812 MiB,
and from the test data, the embedding files reached the size of almost 190 MiB. In
total, the size of data we worked with exceeded 13 GiB.

2.3 Dependency evaluation

With the first experiment we looked at the individual heads in a given model. The
experiment we conducted was structured in a linear manner. At first we iterated
over the raw data-set, applied the spaCy small [19] pipeline to get the parse tree
labels of the sentences. We have also saved this results in a separate file. There
was the possibility to chose the large pipeline, however we have not used it since
its accuracy is not significantly better on the task we needed it for and its size is
almost 80 larger from the small version we used. After the initial phase we applied
the dslim/bert-base-NER model on the initial sentences to produec the outputs of
the attention-heads. This version is a fine-tuned BERT model [11] for Named Entity
Recognition. More precisely, this given model is a bert-base-cased model fine-tuned
on the English version of the CoNLL-2003 Named Entity Recognition dataset. [40].
The authors trained it to recognize four entity types: location (LOC), organizations
(ORG), person (PER) and Miscellaneous (MISC). We have chosen this model due to
its accessibility, whereas it can be easily imported from the transformers Python library
and is ready to use.

We also used the corresponding tokenizer with the BERT model of our choice. Since
this tokenizer sometimes does not match its output with the used spaCy tokenizer, we
used a library which helps to effectively find the alignment between BERT and spaCy
produced tokens [38].

When applying the BERT model on the token sequences, we saved the attentions
of the model. The attentions are a tuple of torch [8] tensors of the float datatype. The
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number of elements in the tuple is the number of layers in the model, which is 12 in
our case. These tensors are of this shape:
batch_size

Ś

num_heads
Ś

sequence_length
Ś

sequence_length.
The batch size was 1 in our case since we were inserting one sentence at a time into
the model. The number of heads is also 12 in this particular model, and the sequence
length is the number of tokens produced from the input sentence (including the two
special tokens at the start and at the end of the token sequence marking the sentence
margins). For each head we extracted the corresponding tensor slice representing the
attention weight matrices between the tokens. Since the spaCy generated tokens were
labeled with their parse tree labels, we extracted those, which were the subjects of our
interest, connected them to their corresponding BERT tokens, and if in the i-th layer
the j-th head had a maximal weight between tokens corresponding to searched sentence
units, we incremented a counter, which counted the hits at given positions. In parallel,
we used another function for the same dependencies, counting the k maximal weights
in a head, in our case setting k to be equal to 3.

Whether a given token corresponds to a sentence unit was computed by the slightly
modified version of a function from an SVO (subject-verb-object) extraction script
4. When we iterated through all the sentences, we saved the frequency for the given
heads for the maximal attendance to a dependency relation, and the number of those
relations being present in a sentence.

2.4 Non-linear per-token probing

In the second and more significant set of experiments, we used a multi-linear percep-
tron (MLP) as a probe. We trained it on the embeddings of tokens from PoS tagged
sentences measuring the accuracy (in the case of single-target multi-class classification
being equal with micro-averaged F1 score). For creating the multi-layer perceptron as
the probe we used the nn class from the PyTorch library 5. The MLP class in our is the
one implementing the neural network for the probe itself. The class named data_set
inherits from the PyTorch Dataset class, containing the data. This structure of the
codebase was inspired by 6 borrowing some of its elements. We used the DataLoader
class which loaded the data from the data_set class to the network for training and
evaluation. The initial data (embeddings and tags) however was read from the disk,
where it was saved (saving a lot of time for every run) as a .pt file by the functions
in the data_handler.py script. This script contained auxiliary functions for data ma-

4https://github.com/Dimev/Spacy-SVO-extraction/blob/master/main.py
5https://pytorch.org/docs/stable/nn.html
6https://colab.research.google.com/github/bentrevett/pytorch-image-

classification/blob/master/1_mlp.ipynb
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nipulation, storage, and even graph generation from the results of probings. The MLP
was used either with two or one hidden layers throughout our experiments, with the
non-linear ReLU layer. We experimented with different sizes of the hidden layer, batch
size of training inputs utilized in one iteration, and number of epochs. The perceptron
predicted a label for an input embedding by applying the Softmax function on the final
layer and using Argmax to get the position of the most probable label. During the
training phases, we used the cross-entropy loss function imported from the nn PyTorch
library under the name CrossEntropyLoss.



Chapter 3

Results

In this chapter we will discuss the results obtained from our experiments.

3.1 Dependency analysis

The first experiment we conducted to look under the hood of the BERT model was
an analysis of its heads in relation to the subjet-verb and verb-object dependency.
We created a data-set with from unlabelled sentences using the spaCy library, with
the small English pipeline. Then we applied the BERT model on the sentences, and
examined the weights at the attention heads. We used two variations of the test. In the
first one, we only looked at the position of maximum value in the attention head, and in
the other one we looked at the k largest weights, while in our experiment k was set to 3.
If the aforementioned maximal value was at the position of the attention between the
controlled dependency, we saved the this information in a matrix indicating scores for
the heads in layers and on given positions. It can be demonstrated with the following
example. When examining the second layer, we look at the third attention head. We
search for the position of the maximal weight in this head. Let us denote this position
as pr, cq. As we described in 1 , the heads can be considered as two dimensional matrices
with the size of the input sequences token number on both dimensions. Lets consider
we are examining the subjects dependency relation from the verb. If the r-th token
is a subject related one and the c-th token is a verb related one, we increment the
the r-th row on the c-th position in the score matrix, also incrementing the counter
for the current relation being examined. With this counter we divide the score matrix
in the end, getting the ratios how those heads are involved in the dependency. From
these values we created the heatmaps 3.1. When examining the top 3 weights in the
head, we used a similar approach, treating all 3 positions as equal. This may distort
the overall picture a bit, but the tendency was the same. The heads at lower layers
were better indicators of the dependencies. These results indicates, that indeed, some

36
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(a) (b)

(c) (d)

Figure 3.1: Heatmaps of maximal head attentions per given dependencies (a) subject-
verb (b) subject-verb 3 largest per head (c) verb-object (b) verb-object 3 largest per
head

parts of the BERT model can capture a given syntactic feature better than the others.
However, this maximal weight method used in this experiment does not show to be a
reliable enough indicator of the given dependencies. As shown in [22], higher complexity
syntactic features are usually captured in the higher levels of the BERT model. This
information with our findings indicates that attention weight does not fully indicate
the tested dependency relations. Our results are also in line with the literature that
a BERT model often does represent linguistic of syntactic features in more complex
ways, as opposed to some cases, as int the example [34], where a single unit in an LSTM
(long short-term memory) was pointed out as an indicator of sentiment. However, we
also have to note the huge size difference in the size of the two models (BERT vs. the
aforementioned LSTM), what may be a factor to this phenomena. The two compared
the results of the two test variants and achieved very similar results.

The table 3.1 shows how the maximal (or top three) attentions in the heads corre-
lated with the given dependency. Here the results are summed per layer, not distin-
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layer S-V S-V% S-V(3) S-V(3)% VO VO% VO(3) VO(3)%
1 21257 39.69% 67932 26.65% 7088 20.61% 39773 23.04%
2 8056 15.04% 30395 11.93% 5048 14.68% 21190 12.27%
3 7708 14.39% 20516 8.05% 11585 33.69% 31341 18.15%
4 4693 8.76% 20137 7.90% 1296 3.77% 5266 3.05%
5 1257 2.35% 6741 2.64% 1477 4.29% 8122 4.70%
6 3625 6.77% 13121 5.15% 1045 3.04% 4494 2.60%
7 2326 4.34% 17735 6.96% 4126 12.00% 26065 15.10%
8 1742 3.25% 21325 8.37% 531 1.54% 3833 2.22%
9 305 0.57% 21467 8.42% 327 0.95% 4935 2.86%
10 269 0.50% 15708 6.16% 552 1.61% 14222 8.24%
11 888 1.66% 12836 5.04% 359 1.04% 7978 4.62%
12 1433 2.68% 6960 2.73% 957 2.78% 5414 3.14%

Table 3.1: The results shown on the heatmaps on Fig. 3.1 summed per layer

guishing the different heads, showing that the largest dependencies were in the lower
layers. An interesting development of the experiment could be to examine the type of
subject-verb dependency captured in the heads, with larger granularity maybe better
precision could be achieved.

3.1.1 Result enumeration

Here we note some basic statistical data regarding the experiment. From 101103 sen-
tences, the spaCy parser extracted 53559 verb-subject dependencies indicated by the
maximal weight in a head. For the three maximal weights in the head this result was
254873 verb-subject dependencies. For the verb-object dependencies, the maximal at-
tention indicated it 34391 times, and for the top three weights, the maximal attention
weight indicated this relation 172633 times. This was possible due to the fact, that the
BERT tokenizer oftentimes separated a single word into multiple tokens.

3.2 Probing

The probing, sometimes also called diagnostic classifiers, is the usage of encoded rep-
resentations of some model to train a classifier on a probing task in question. In the
context of NLP it is often designed in a way to capture some linguistic features. When
the probe performs well on the given task we may assume that the inner representations
encoded the linguistic phenomena we investigated.

We have decided to probe for the part-of-speech of words in sentences. As a probing
mechanism we have decided to use a multilayer perceptron.
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layer epoch1 epoch2 epoch3 epoch4 epoch5 test
0 84.35% 85.47% 85.86% 85.84% 85.83% 85.24%
1 88.62% 89.84% 90.44% 90.73% 91.00% 91.03%
2 91.60% 92.93% 93.41% 93.67% 93.96% 94.11%
3 92.26% 93.40% 93.86% 94.20% 94.26% 94.42%
4 92.88% 94.04% 94.44% 94.64% 94.84% 94.81%
5 92.98% 94.22% 94.70% 94.94% 95.04% 95.02%
6 92.92% 94.45% 94.82% 95.04% 95.24% 95.29%
7 92.59% 94.01% 94.50% 94.80% 95.03% 95.04%
8 92.17% 93.92% 94.36% 94.66% 94.81% 94.88%
9 91.65% 93.40% 94.12% 94.37% 94.48% 94.50%
10 90.96% 92.88% 93.73% 94.02% 94.23% 94.26%
11 90.57% 92.53% 93.29% 93.60% 93.88% 93.96%
12 87.73% 90.68% 91.64% 92.47% 92.73% 92.84%

Table 3.2: Validation accuracies of epochs compared to the test accuracy

In the first settings, we used two hidden-layers of size 50, a batch size of 100,
and trained the model in 5 epochs. We were probing the embeddings of the BERT
model (bert-base-cased). The results can be seen in 3.2. The first columns denote the
validation accuracy at a given epoch and the last column contains the accuracies on
the test set. As we can see, the best result was achieved on the sixth layer, for which
reason we decided to run further probing tests on that specific layer.

In the next batch of experiments we tested different hyperparameters for which we
can see the results in 3.3. From these results we can see the accuracy decline when
increasing the batch size. We also observe that an increase in the epochs of the model
training have a small impact on the final accuracy.

3.2.1 Probing with masking

Here we describe the probing test executed on masked 1 embeddings. In these settings
we applied a particular mask on the embedding vectors and probed those masked
embeddings. Here we applied the probe on the the embeddings from the sixth layer of
the BERT model, due to the fact that at that particular layer the probe has shown a
strong accuracy as shown in the table 3.2.

A trivial example is when we fully masked all the embeddings, resulting in zero
vectors of size 768. The first experiment of this kind was done with an MLP with one

1We multiplied the elements in the embeddings with the mask elements. The i-th embedding
element with the i-th mask element. We did this with every embedding of all the tokens. The mask
contained ones and zeroes only.
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Figure 3.2: Validation accuracies of the probes trained on embeddings on different
layers. The last points from the right show the test accuracies of the trained probe.
As visible, the best performance was achieved on the sixth layer.

hidden layer of size 10 learning for 1 epoch only. The test accuracy, in this case, was
10.59%, indicating that the model was only guessing, but since the number of possible
classes was 37, it meant that the predictions were not uniformly random. Since in
that case the probability of a correct prediction should have been around 2.75%. The
perceptron has most likely acquired a "sense" of the probability distribution of classes.
In the next probing, we increased the size of the hidden layer to 50 from 30. Here the
test accuracy has increased to 13.28%.

In the next set of probing tests, we increased the epoch numbers to 5. First, we
trained a perceptron with a small hidden layer of size 10. At each epoch, the validation
accuracy was near 13.40% and the final test accuracy was around 10.70%. When
increasing the hidden layer size to 50, we have achieved a test accuracy of 13.34%.
From these results we can assume that the limit of correct blind classification is a little
above 13%, stemming from the distribution of chunk types in the dataset. This seems
to be also supported by the fact that when increasing the hidden layer size to 200, the
test accuracy even decreased a little, possibly caused by overfitting.

The next probing we executed was with a less trivial mask. We masked the first
half of the embeddings and let the classifier learn for 3 epochs. This time we used a
mini-batch of size 10 and used one hidden layer of size 30. Surprisingly, the validation
accuracy at the end of the first epoch was 93.17% and increased throughout the run to
93.94% at the end of the second epoch and finally reaching 94.12%. This slight increase
indicates that the model has learned to predict the PoS tags relatively fast, possibly
due to the size of the dataset. The test accuracy was even better, reaching 94.28%.
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epochs batch dimhid acc epochs batch dimhid acc

1 10 50 94.70% 3 100 70 94.93%
1 10 70 94.91% 3 500 50 93.26%
1 100 50 93.14% 3 500 70 93.86%
1 100 70 93.62% 5 10 50 95.72%
1 500 50 84.50% 5 10 70 95.91%
1 500 70 87.80% 5 100 50 95.13%
3 10 50 95.50% 5 100 70 95.31%
3 10 70 95.62% 5 500 50 94.31%
3 100 50 94.85% 5 500 70 94.72%

Table 3.3: Test accuracies for different hyper parameters with two hidden layers of size
50 and 70

Due to the fact that the classification achieved such high accuracy, we theorized
that the relevant information is captured more in the second half of the embeddings.
For this reason, we repeated this task, but with a mask applied on the second half of
the embeddings.

In these settings, the results were similar, from initial valiadation accuracy of 92.9%
going up to the final validation accuracy 93.90%. The accuracy on the test set of the
data was 93.5%.

With this test we could rule out the previous possibility, that the relevant infor-
mation determining the PoS tag of a word in a sentence was mainly contained in the
second half of the embeddings.

From these previous experiments, we concluded that the PoS correspondence in a
given embedding is encoded more robustly and it is not concentrated in a small number
of specific elements of the embedding.

Randomized masks After the previous probe tasks we decided to randomize the
masks, which we applied to the embeddings. We compared how our probe performs
on embeddings with a different number of elements set to zero. The results can be
seen in 3.4 The first column shows how much percent of the embeddings are set to
zero by the mask. The other columns contain the training and validation accuracies at
the given epochs of the model training. In all the cases we randomized the positions
of the zeros in the masks, which we fixed and applied on all the embeddings both in
the training and test set. With this method, the probe had less and less information
available from the embeddings. The last row in the table shows the results when the
whole embedding was set to zero. In this case, the probe could rely only on the learned
probability distribution of the tags in the dataset, as we did a slightly different probe in
the previous experiment. This can be considered as a baseline of the performance of the
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masked tr1 v1 tr2 v2 tr3 v3 test
50% 86.91% 93.25% 93.66% 93.77% 94.16% 94.05% 93.82%
60% 85.18% 92.18% 92.82% 93.00% 93.43% 93.36% 93.12%
70% 82.17% 90.45% 91.34% 91.58% 92.07% 92.01% 91.43%
80% 75.96% 86.46% 87.53% 87.86% 88.53% 88.57% 87.82%
90% 59.49% 70.90% 73.06% 74.27% 75.41% 75.99% 72.08%
92% 55.65% 66.49% 68.75% 70.41% 71.33% 72.02% 67.37%
94% 50.45% 61.34% 63.20% 65.31% 65.78% 67.23% 61.80%
96% 42.55% 50.30% 52.83% 54.74% 55.40% 56.25% 51.22%
98% 33.68% 38.33% 40.25% 41.42% 42.76% 43.05% 38.80%
99% 24.04% 26.78% 27.37% 27.49% 28.26% 28.40% 25.71%
100% 13.41% 13.40% 13.56% 13.40% 13.54% 13.40% 12.74%

Table 3.4: Probing the sixth layer with different embedding masks

probe with the given hyperparameters (10 epochs, mini-batch of size 10 and 30 neurons
in the only hidden layer). The results of these random masked probings show, that
considering even only the 20% of the embeddings, the probe had an accuracy by50%
higher. Surprisingly, when 98% of the embeddings were masked, the probe performed
twice as better as the baseline. From these findings, we can conclude that only a small
random portion of an embedding has a high indication towards the PoS corresponding
to the word, of which sub-word has produced the embedding. This means that the PoS
category of the word is encoded in the embeddings of the BERT model in a redundant
way.



CHAPTER 3. RESULTS 43

(simple) (masked)

Figure 3.3: Confusion matrices of the probing results on the 6-th layer. The left one is
the result of a probe trained and tested on embedgings masked on 98%. The labels at
rows are the correct labels and the ones under the columns are the predicted ones. For
the explanation of the numerical labels see the table in the appendix A 3.5. Darker
colours represent more predictions, while a logarithmic color scale is used so that the
small errors are visible too.

(simple) (masked)

Figure 3.4: Confusion matrices of the probing results on the initial embeddings. The
left one is the result of a probe trained and tested on embeddings masked on 98%. The
labels in rows are the correct labels and the ones under the columns are the predicted
ones. For the explanation of the numerical labels see the table in the appendix 3.5.
Darker colors represent more predictions, while a logarithmic color scale is used so that
the small errors are visible too.



Conclusion and future work

When controlling the attention heads of the BERT-NER model for the largest atten-
tions (weights) and correlating them with subject-verb and verb-object dependencies,
we have concluded that these correlations are more significant in the lower layers of
the model. As we can see in the figures of 3.1, int the case of subject-verb dependen-
cies (the two top heatmaps), the maximal weight was the most correlated with the
dependency on the first layer, and with the second attention-head. Similar results were
confirmed when correlating the mentioned dependency in the sentences with the three
largest weights. When counting the maximum weight attention coincidence with the
verb-object dependency, we also found the largest correlations in the lower layers, this
time in the attentions produced by the attention-head on the third layer, with the
largest correlation at the 4-th attention head. These results were also confirmed by the
top-3 wight correlation test. We also looked at the per-head sum of correlations on the
specific layers of the pre-trained BERT model layers 3.1. With the subject-verb depen-
dency, the maximal weight correlated in almost 40% of the cases in the first layer, and
for the verb-object dependency, this sum was almost 34%. We have to note here that
these numbers are the results of sums per layers, and are not from individual heads.
The best correlation with the subject-verb dependency for a single attention-head was
only above 20% (layer 1, head 2), and for the verb-object dependency, it was around
13% (layer 3, head 4).

We also have to note, that in the case of the top-3 weight correlations we did not
differentiate those weights according to their proportions, which could have potentially
skewed the overall picture, however despite small differences, this multi-maximal cor-
relation has shown a similar picture (the figures on the right in 3.4 and 3.3). From
these findings, we could infer, that the maximal weights in any of the attention-heads
are not reliable indicators of the dependencies in question.

However, we have to note, that we assess this undertaking to investigate the
attention-heads with probing seems to be more complex regarding the time, compu-
tation power, and evaluation requirements. For these reasons we proceeded with the
second experiment where we applied a probe on the BERT models token embeddings,
probing for part of speech categories. This experiment had the benefit of not needing
to relate different tokens with each other as in the previous experiment, although the
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part of speech class is not independent of the context of a sentence, since a word form
can be of different part of speech (e.g. answer, control, experience, and many others).

As for the probe, we decided to execute the probing technique with a simple multi-
layer perceptron on the classical BERT model (having 12 transformer layers) pretrained
on on English language using a masked language modeling (MLM) objective [11]. We
applied the probe on the per-token embeddings of the model, which are the outputs of
the given layers of the BERT, when processing a token. We concluded that these layers
encode the part of speech (PoS) correspondence in a quite robust way. First, we used
a multilayer perceptron with two hidden layers with size 50, training them with batch
size 100 for five epochs 3.2. We observed the best part of speech prediction accuracy
on the middle layers, namely the sixth layer, where the accuracy was almost 95.3%.
The embeddings from the both layers around the 6. one, the 5. and 7. produced an
accuracy of over 95%. We can also note, that the worst performance was shown on the
input embeddings (layer 0), being around 85%. The fact that the embeddings from
the 1. layer have produced an accuracy of 91%, almost increasing the accuracy by 6%
compared to the input embeddings (no other increase was observed of such magnitude
among the embeddings produced by transformers), we observed that the pass through
the transformers greatly benefited the part of speech predictions. We then continued
with probings on the embeddings from the 6. layer, experimenting with different hyper-
parameters 3.1. We achieved the best accuracy when training for 5 epochs with a batch
size of 10 with two hidden layers, getting a precision rate of 95.91%. The next set of
probings we have done was on embeddings we masked to a different degree. In hose
experiments, we used only one hidden layer in our perceptron, since it did not lead to a
dramatic decrease in the accuracies. A baseline result was, when we masked the whole
embeddings, giving the machine only a chance of learning the frequency of the data
labels. After experimenting with the MLP hyper-parameters, we managed to achieve
accuracy of over 13%. If the 37 different labels had an equal chance to appear in the
dataset, this result should have been less than one percent. This indicates a drawback
of the data having the PoS tags distributed in an uneven way. This, however, may stem
from the nature of natural language sentences, where on average some kind of words
are much more likely to appear, than others. The next experiments were probings on
the embeddings, where we masked the first half of the embeddings in one case and the
second half of the embeddings in the other one. In both cases we achieved an accuracy
of over 90%, indicating that the part of speech correspondence in the embeddings is
not a matter of a few chosen positions, but rather the information is encoded in a more
robust and probably redundant way.

The final set of experiments conducted in the category of masked sentences, we
applied random masks with a given number of zeroes on the embeddings. 3.4. Here we
observed, that even with a large portion of the embeddings being masked, the accuracy
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of PoS prediction was high. Only after randomly masking more than 96% of the
embeddings has the accuracy decreased below 50%. These results were demonstrating
a degree of robustness of the PoS encoding in the model. We can also make some
interesting observations looking at the the confusion-matrices 3.4 and 3.3. When no
mask was applied on the embeddings, the errors were less wrong classification, and
even some of the wrong ones were "near" the correct ones. If we look at the legend
of labels in 3.5, we see some tags are more related than others. For example, the tags
from 7 to 9 are different adjective types, the tags 12 to 15 are noun types and from 27
to 32 are verb types. If we look at the confusion matrices, we see darker regions at the
cross-section of the previously mentioned intervals. These regions indicate that often
the wrong labelings are wrong only a "little bit". For example, instead of correctly
labeling an embedding as a singular noun (class 12), the MLP labels it as a plural noun
(class 13). The confusion matrices for the masked probing also indicate an interesting
phenomenon. As the model is unable to learn due to the large mask, it starts guessing,
producing the columns on the figures under the more frequent labels in the data.

After looking at these experiments, we have to also mention some drawbacks, based
upon which possible directions are adequate for continued work. One such problem
is, as we have already mentioned, the dataset being unbalanced regarding the number
of PoS occurrences. Comparing our results with similar probings on different datasets
could potentially provide some additional information regarding this problem. Those
results could be cross-validated based on their given characteristics.

Another issue is determining how much a given model has "actually learned" a task
or the given language it was trained on. Further work could include the introduction
of different control tasks inspired by the work of [9] For example an untrained BERT
model (initialized with random weights) could produce the token embeddings on the
same dataset as it was done in our work. Probing this untrained model a baseline
could be established for the comparison with the experiments we have conducted. An
accuracy contrast could provide more insight into the degree the pre-trained model
actually contains the given morphosyntactic information.

For future work, we see multiple possibilities based on our first experiments. As
for future work, regarding the first experiment, a possible continuation would be to
apply a probe, similarly to what we did in our second experiment, to probe the heads
of the BERT model at the layers for the given subject-verb-object connections in the
sentences. This could be contrasted with the work [39] of Tenney, Xia, et al., who
introduced the so-called edge-probing on contextualized word representations, where
among other tasks they conducted probing on dependencies. Another possibility would
be to look at the specifics of the subject-verb dependencies looking for clues that corre-
late with the maximal attention. Including some specific morphological characteristics
could increase the correlation with the maximal attention-weight. These experiments
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could easily be solved with a post hoc analysis.



Appendix A

In this appendix we included the table with the part-of-speech tags of our dataset 2.
Unmatching tokens (commas, parentheses, etc.) were given the default value of zero.

2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

48



Appendix A 49

1 CC Coordinating conjunction 19 PRP$ Possessive pronoun
2 CD Cardinal number 20 RB Adverb
3 DT Determiner 21 RBR Adverb, comparative
4 EX Existential there 22 RBS Adverb, superlative
5 FW Foreign word 23 RP Particle
6 IN Prepos./subord. conj. 24 SYM Symbol
7 JJ Adjective 25 TO to
8 JJR Adjective, comparative 26 UH Interjection
9 JJS Adjective, superlative 27 VB Verb, base form
10 LS List item marker 28 VBD Verb, past tense
11 MD Modal 29 VBG Verb, gerund/present part.
12 NN Noun, singular or mass 30 VBN Verb, past participle
13 NNS Noun, plural 31 VBP Verb, non-3rd p. sing. pres.
14 NNP Proper noun, sing. 32 VBZ Verb, 3rd p. sing. present
15 NNPS Proper noun, plur. 33 WDT Wh-determiner
16 PDT Predeterminer 34 WP Wh-pronoun
17 POS Possessive ending 35 WP$ Possessive wh-pronoun
18 PRP Personal pronoun 36 WRB Wh-adverb

Table 3.5: Part-of-speech tags enumerated



Appendix B

The software used for the experiments and visualizations can be found in the data
storage medium attached to the physical copy of this work. It contains two folders in
a zipped folder:

• svo: This folder contains the scripts for the dependency experiments. The main
script is apply_transformer.py. The files utils.py and data_handler.py con-
tain auxiliary functions and other functions for generating visualizations.

• probe: This folder contains the scripts for the probing. The main file is probe.py
while data_handler.py contains the auxiliary functions.

The datasets have to be downloaded from the sources in literature because of their
size. Some dependencies may have to be resolved before running the scripts too. For
more information see the import sections of the scripts.
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