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Abstrakt 

Code Virtualizer je silný náastroj na obfuskáciu kódu Windows-ových aplikácií, ktorý slúži na 

ochranu citlivých častí kódu proti reverznému inžinierstvu pomocou použitia virtualnych 

strojov. Okrem virtuálnych strojov, tento systém navyše zavádza niekoľko ďalších 

obfuskáčných techník, ako napríklad vkladanie irelevantného kodu, kódovanie virtuálnych 

operandov, duplikácia virtuálnych opkódov, falošný tok riadenia, zlučovanie virtuálnych 

inštrukcií a ďalší vnorený virtuálny stroj. Virtuálne stroje Code Virtualizer sa stále častejšie 

používajú na škodlivé účely, ako napríklad na ochranu malvéru. V tejto práci analyzujeme 

súčasti virtuálneho stroja Code Virtualizer použitého vo vybranej vzorke malvéru a 

popisujeme náš poloautomatický prístup k prekonaniu jeho obfuskáčných techník v 

primeranom čase. Demonštrujeme tento prístup na niekoľkých častiach bajtkódu obfuskovanej 

vzorky malvéru a porovnávame výsledky s neobfuskovanou vzorkou na potvrdenie správnosti 

metódy. Náš prístup je založený na známej deobfuskačnej metóde, ktorá extrahuje sémantiku 

virtuálnych opkódov pomocou symbolického vykonávania s optimalizačnými pravidlami. 

Ďalej spracovávame časti bajtkódu a niektoré konštrukcie virtuálneho stroja ako konkrétne 

hodnoty namiesto symbolických, čo umožňuje spomínanej známej deobfuskačnej metóde 

automaticky prekonať aj ostatné obfuskáčné techniky. V práci postupne analyzujeme súčasti 

virtuálneho stroja, navrhujeme našu metódu deobfuskácie a popisujeme implementáciu tejto 

metódy. 

 

 

 

 

 

 

 

 

 

 

 



  

 

Abstract 

Code Virtualizer is a powerful code obfuscation system for Windows applications that helps 

developers to protect sensitive code areas against Reverse Engineering with very strong 

obfuscation code, based on code virtualization. Apart from virtual machines, the obfuscation 

system additionally introduces several other obfuscation techniques such as insertion of junk 

code, encoding of virtual operands, duplication of virtual opcodes, opaque predicates, merging 

of virtual instructions, and another nested virtual machine. Code Virtualizer's virtual machines, 

with rest of the obfuscation techniques, have been increasingly being used for illicit purposes 

such as protection of malware. In this thesis we analyze the internals of a Code Virtualizer's 

virtual machine used in a malware sample and describe our semiautomatic approach to seeing 

through the obfuscation techniques in reasonable time. We demonstrate the approach on a few 

chunks of bytecode of the protected malware sample and compare the results against a non-

obfuscated sample to confirm the validity of the method. Our approach is based on a known 

deobfuscation method that extracts the semantics of the virtual opcodes, using symbolic 

execution with simplifying rules. We further treat the bytecode chunks and certain internal 

constructs of the virtual machine as concrete values instead as symbolic ones, which enables 

the known deobfuscation method to deal with the additional obfuscation techniques 

automatically. In summary, we analyze the underlying parts of the virtual machine and 

gradually shape our deobfuscation approach. We describe our implementation of the approach 

at the end of the thesis. 
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Introduction 

 

Reverse engineering is in terms of software-engineering process of analyzing function-

ality and behavior of certain software in order to get insight into its overall capabilities or 

achieve utter understanding of how its features are implemented and work. Initially, one often 

needs to partially recover the original source code out of an already compiled binary to per-

form reverse engineering – the source code cannot be usually completely recovered since 

some information is lost during the compilation process. 

 Techniques intended to hinder reverse engineering – make the source code difficult to 

read and understand – are called obfuscation techniques. Such techniques emerged as a way to 

address the need to protect intellectual property against infringements, such as counterfeiting 

and patent abuse in both software and hardware products. The protection aspect is a strong 

motivation for investing in research and development of the obfuscation techniques. The tech-

niques are not meant to be bullet-proof, they are just supposed to discourage majority of the 

adversaries by forcing them to invest a substantial amount of time and means into overcoming 

the protection to recover the original source code. 

Obfuscation techniques became later misused for illicit purposes such as protection of 

malware. Obfuscation often breaks patterns in the code and behavior of malware and that turns 

previous detection rules for non-obfuscated versions useless. Moreover, patterns in the obfus-

cated code can be different from sample to sample or contain significant overlaps with legiti-

mate applications obfuscated using the same obfuscator – one cannot just consider all obfus-

cated code to be malicious. 

This naturally resulted in an evolution of sort of counter-countermeasures – deobfusca-

tion techniques that recover the original source code and revert the effects of the obfuscation 

techniques. They are primarily intended to facilitate analysis and detection of protected mal-

ware. The thesis deals with a specific type of protection – virtual-machine based obfuscation. 

The first chapter is a comprehensive introduction into the field and thesis with several 

subchapters that describe general structure of virtual machine based obfuscators and compare 

them against the standard virtual machines; summarize known and unique techniques to deal 

with the obfuscation; introduce featured libraries and the virtual machine based obfuscator that 
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we are going to analyze in the further chapters. The remaining chapters progressively analyze 

underlying parts of the chosen obfuscator and shape the design of our deobfuscation method. 

This thesis has been written in cooperation with ESET, published at blog WeLiveSecu-

rity [1], and presented at few international cyber-security and reverse-engineering confer-

ences: REcon (Montreal), CodeBlue (Tokyo), and SecTor (Toronto). 
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1 Starting points 

 

This chapter initially summarizes known information about virtual machine based obfuscators 

and methods to recover the underlying original code. It afterwards introduces the analyzed vir-

tual machine and tools used to design our deobfuscation method. 

 

General structure of virtual machines. Virtual machines (VMs) can be divided into two 

main categories: 

1. System virtual machines – support execution of complete operating systems (e.g., vari-

ous VMWare products, VirtualBox) 

2. Process virtual machines – execute individual programs in an OS-independent environ-

ment (e.g., Java, the .NET Common Language Runtime) 

Here, we are interested only in the second category – process virtual machines – and we 

will briefly describe certain parts of their internal anatomy necessary to understand the rest of 

this paper. 

Process virtual machines run as normal applications on their host OSes, and in turn run 

programs whose code is stored as OS-independent bytecode (Figure 1) that represents a series 

of instructions – an application – of a virtual ISA (instruction set architecture) [2]. 

 

Figure 1. Illustration of bytecode, where all opcodes and operands are virtual 

One can also think about bytecode as a sort of intermediate representation (IR); an 

abstract representation of code consisting of a specific instruction set that resembles assembly 

more than a high-level language. It is also known as intermediate language. 

The use of IR is convenient in terms of code reusability – when one needs to add sup-

port for a new architecture or CPU instruction set, it is easier to convert it to the IR instead of 

writing all the required algorithms again. Another benefit is that it can simplify the application 

of some optimization algorithms. 
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One can generally translate both high- and low-level languages into an IR. Translation 

of a higher-level language is known as “lowering”, and similarly translation of a lower-level 

one, “lifting”. 

The following example lifts an assembly block bb0 into a block with the pseudo-IR 

code irb0. All assembly instructions are translated into a set of IR operations and individual 

operations in sets do not affect each other, where ZF stands for zero flag and CF for carry flag: 

bb0: 

MOV R8, 0x05 

SUB AX, DX 

XCHG ECX, EDX 

irb0: 

R8 = 0x05 

 

EAX[:0x10] = EAX[:0x10] – EDX[:0x10] 

ZF = EAX[:0x10] – EDX[:0x10] == 0x00 

CF = EAX[:0x10] < EDX[:0x10] 

... 

 

ECX = EDX 

EDX = ECX 

Modern process VMs usually provide a compiler that can lower code written in a high-

level language -- one that is easy to understand and comfortable to use – into the respective 

bytecode. 

A VM’s ISA generally defines the supported instructions, data types and registers, 

among other things, that naturally must be implemented by a virtual ISA as well. 

Instructions consist of the following parts: 

• opcodes – operation codes that specify an instruction 

• operands – parameters of the instructions 

ISAs often use two well-known virtual registers: 

• virtual program counter (VPC) – a pointer to the current position in the bytecode 

• virtual stack pointer – a pointer to pre-allocated virtual stack space used internally by 

the VM 
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The virtual stack pointer does not have to be present in all VMs; it is common only in a 

certain type of VM – stack-based ones. [3] 

We will refer to the instructions and their respective parts of a virtual ISA simply as vir-

tual instructions, virtual opcodes, and virtual operands. We sometimes omit the explicit 

use of “virtual” when it is obvious that we are talking about the virtual representation. 

An OS-dependent (Figure 2) executable file – interpreter – processes the supplied 

bytecode and sequentially interprets the underlying virtual instructions thus executing the vir-

tualized program. 

 

Figure 2. Illustration of the relationship between bytecode and the VM’s interpreter 

Transfer of control from one virtual instruction to the next during interpretation needs to 

be performed by every VM. This process is generally known as dispatching. There are several 

documented dispatch techniques such as: [4] 

• Switch Dispatch – the simplest dispatch mechanism where virtual instructions are de-

fined as case clauses and a virtual opcode is used as the test expression (Figure 3) 

• Direct Call Threading – virtual instructions are defined as functions and virtual op-

codes contain addresses of these functions 
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• Direct Threading – virtual instructions are defined as functions again; however, in 

comparison to Direct Call Threading, addresses of the functions are stored in a table 

and virtual opcodes represent offsets to this table. Each function should indirectly call 

the following one according to the specification (Figure 4) 

The body of a virtual opcode in the interpreter’s code is usually called a virtual handler 

because it defines the behavior of the opcode and handles it when the virtual program counter 

points to a location in the bytecode that contains a virtual instruction with that opcode. 

By context, regarding VMs, we mean a sort of virtual process context: each time a process 

is removed from access to the processor during process switching, sufficient information on its 

current operating state – its context – must be stored such that when it is again scheduled to 

run on the processor, it can resume its operation from an identical position. [5] 

 

Figure 3. Illustration of Switch Dispatch (jump table in assembly), where R0 is a virtual regis-

ter 
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Figure 4. Illustration of Direct Threading 

Obfuscation techniques are a kind of software protection intended to make code hard to un-

derstand and hence conceal its objectives. Such techniques were initially developed to protect 

the intellectual property of legitimate software, i.e., to hamper reverse engineering. 

Virtual machines used as obfuscation engines are based on process virtual machines, as de-

scribed above. The primary difference is that they are not intended to run cross-platform appli-

cations and they usually take machine code compiled or assembled for a known ISA, disas-

semble it and translate that to their own virtual ISA. It is also usually the case that the VM en-

vironment and the virtualized application code are contained in one application, whereas tradi-

tional process VMs usually consist of a process that runs as a standalone application that loads 

separate, virtualized applications 

The strength of this obfuscation technique resides in the fact that the ISA of the VM is 

unknown to any prospective reverse engineer – a thorough analysis of the VM, which can be 

very time-consuming, is required to understand the meaning of the virtual instructions and 

other structures of the VM. Further, if performance is not an issue, the VM’s ISA can be de-

signed to be arbitrarily complex, slowing its execution of virtualized applications, but making 
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reverse engineering even more complex. Understanding of the VM is necessary for decoding 

the bytecode and making the virtualized code understandable. 

Context has a bit of a different meaning in regard to obfuscating virtual machines: each time 

we want to switch from the native to virtual ISA or vice-versa, sufficient information – context 

– on the current operating state must be stored so that when the lSA has to be switched back, 

execution can resume with only the relevant data and registers modified. 

Additionally, obfuscating VMs usually virtualize only certain “interesting” functions – 

native context is mapped to the virtual one and bytecode, representing the respective function, 

is chosen beforehand. The built-in interpreter is invoked afterwards (Figure 5). Beginnings of 

the original functions contain code that prepares and executes the interpreter – entry of the 

VM (vm_entry); the rest of their code is omitted in Figure 5. 

Interpreter, bytecode, and virtual ISA code with data of obfuscating VMs are often all 

stored in a dedicated section of the executable binary, along with the rest of the partially virtu-

alized program.  

Figure 5 shows the way a function, Function 1, in the original application targeting 

a common ISA can be virtualized for an obfuscating VM’s ISA. It needs to be converted into 

bytecode, for example using a generate_bytecode method. Its body is afterwards over-

written by a call into vm_entry and zeroes. The vm_entry function chooses the respective 

bytecode, for example, based on the calling function’s address, then conducts a context switch, 

and next interprets the bytecode. Finally, it returns to the code where the virtualized function, 

Function 1, would return. 
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Figure 5. Overview of the virtualization process 

In VMs hosted on x86 architectures, such context switches usually consist of a series 

of PUSH and POP instructions. For example: 

PUSH EAX 

PUSH EBX 

PUSH ECX 

... 

MOV ECX, context_addr 

POP DWORD PTR [ECX] 

POP DWORD PTR [ECX + 4] 

POP DWORD PTR [ECX + 8] 

... 

When the bytecode is fully processed, virtual context is mapped back to native context 

and execution continues in the non-virtualized code; however, another virtualized function 

could be executed in the same manner, right away. 

Note that several context switches can occur in one virtualized function, for example 

when a native instruction from the original ISA could not be translated to virtual instructions 

or an unknown function from the native API needs to be executed. 
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1.1 Documented techniques for deobfuscation of virtual 

machines 

 

Obfuscating VM techniques have become widely misused for illicit purposes such as obfusca-

tion of malware samples as they hinder both analysis and detection. Hence there is motivation 

to overcome these obfuscation techniques so as to facilitate analysis of such malicious code 

and to achieve overall improvement of detection methods. 

But first, we want to clarify several terms that are used in this and following sections 

and might not be known to all readers. 

Symbolic execution is a code analysis technique, where specific variables are represented 

with symbolic values instead of concrete data. Arbitrary operations with these symbolic values 

produce symbolic expressions. It is usually applied on the code’s IR and the symbolic expres-

sions include flags. 

One can visualize the symbolic expressions like mathematical formulas as can be seen 

in the following example, where irb1 contains a block of pseudo-IR: 

irb1: 

R13 = R13 + 0x027D3930 

RBX = RCX + 0x05 

R13 = R13 + -RSI 

R13 = R13 + RBX 

irb1_symb: 

RBX = RCX + 0x05 

R13 = R13 + RCX + 0x05 + -RSI + 0x027D3930 

ZF = R13 + RCX + 0x05 + -RSI + 0x027D3930 == 0x00 

... 

The state of symbolically executed code consists of: 

• Values of all variables 

• Program counter 

• Accumulated constraints that the program’s inputs need to satisfy to reach the associ-

ated location from the entry point 
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Accumulated constraints can be understood as a theory in logic. In order to find concrete 

values of the initial variables with symbolic values – inputs – we need to find a satisfying 

model, which can be done with an SMT (satisfiability modulo theories) [6] solver. 

Path coverage is another code analysis technique that determines all possible paths in a piece 

of code. It is usually implemented using symbolic execution instructed to explore all reachable 

paths – reachability of newly discovered paths is verified by an SMT solver and already 

known paths are marked to prevent infinite loops. 

Microsoft describes program synthesis as “the task of automatically discovering an 

executable piece of code given user intent expressed using various forms of constraints such as 

input-output examples, demonstrations, natural language, etc.”. [7] 

Several techniques to deal with VM-based obfuscation have been proposed in the past. 

Here we briefly walk through them and discuss their advantages and disadvantages. 

Rolf Rolles described several standard steps to manually recover the original code, where 

the drawback is time-complexity: [8] 

1. Reverse engineer and understand structures of the VM 

2. Detect entries into the VM 

3. Develop a disassembler for the instruction set by identifying the purpose of individual 

virtual opcodes or matching them against already known ones 

4. Disassemble the bytecode and convert it into intermediate representation – the seman-

tics of some instructions might be hard to comprehend in basic blocks without further 

translation (e.g., stack-based VMs would contain a lot of confusing PUSH and POP 

machinations”) 

5. Apply compiler optimizations to get rid of additional obfuscation techniques 

6. Generate the deobfuscated code 

He additionally suggested the use of pure symbolic execution on the virtual opcodes in the 

fourth step to obtain a representation, where each opcode is a mathematical function that is a 

map from its input space into itself. The pure symbolic execution technique was later inde-

pendently implemented in a Miasm blogpost [9]. 

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet proposed a fully automatic ap-

proach to overcome obfuscating VM protection on samples with a finite number of executable 

paths. The approach consists of the following steps: [10] 

1. Identification of the sample’s inputs 

2. Isolation of pertinent instructions dependent on the identified inputs on an execution 

trace 

3. Performance of a path coverage analysis to reach new paths – traces 
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4. Reconstruction of the original program from the resulting traces – they are combined 

and compiler optimizations partially recover the control flow graph 

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Hol produced a semi-

automatic approach, based on program synthesis, that uses instruction traces as a black-box 

oracle to produce random input and output pairs. The I/O pairs are subsequently used to learn 

the code’s underlying semantics with the synthesizer. [11] 

These pairs and semantics are generated for the virtual opcodes that must be identified be-

forehand – the VM needs to be partially reverse engineered to locate its components. 

The approach does not seem to be applicable to some complex (particularly obfuscating) 

VMs due to its time complexity, as it reportedly took almost three hours to process 36 virtual 

opcodes of a VM – duplication of handlers, which is a simple and common obfuscation tech-

nique, would be a huge issue. 

 

1.2 The Miasm framework 

 

Miasm is a free and open-source reverse-engineering framework that aims to analyze, modify 

and generate binary programs. It has a number of useful features that we use throughout our 

analysis: [12] 

• Opening, modifying and generating binary files – PE and ELF 

• Assembling and disassembling of various architectures such as x86, ARM, MIPS… 

• Representing assembly semantics using intermediate representation 

• Simplification rules for automatic deobfuscation 

• Symbolic execution engine 

• ... 

There are several frameworks for reverse-engineering that provide the features that we 

needed; we decided to use Miasm in this project simply because it is actively maintained, and 

we are already familiar and satisfied with it. 

The features that we want to use are covered in the example section of its GitHub reposi-

tory description and its documentation. [13] 

Semantics of Miasm’s IR are summarized in  

Table 1, since they are going to be used repeatedly. 
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Table 1. Miasm’s IR semantics 

Element Example 

ExprId EAX 

ExprAssign A=B 

ExprInt 0x18 

ExprLoc location_1 

ExprCond A ? B : C 

ExprMem @16[ESI] 

ExprOp A + B 

ExprSlice AH = EAX[8:16] 

ExprCompose {EAX 0 32, 0x0 32 

64} 

 

The destination address of a symbolic execution performed over a block of code is 

saved in the respective program counter such as RIP and additionally in a special variable 

IRDst. 

Note that during Miasm’s symbolic execution: initial values of registers, which are 

treated as variables, are symbolic and their format is <register name>_init. Simplifi-

cation rules are applied automatically to the symbolic expressions. For example, the symbolic 

expression RAX = RCX + 0x2 + 0x3 is automatically simplified into RAX = 

RCX_init + 0x5. 

 

1.3 Choice of virtual machine 

 

We are going to analyze a VM that is used to protect a sample of a malicious loader called 

Wslink [14]. The sample does not appear to contain any artifacts that would link it to any 

known commercial code protection product right away. 

However, further analysis revealed that it behaves and contains structures just like 

VMs generated by CodeVirtualizer (CV) [15], which is a modern and commercial program for 

code protection, and we assess with high confidence that it is indeed the used obfuscator. 

We are going to analyze the applied VM in the rest of the thesis, propose methods to 

deal with the VM and recover a part of the original code to prove the effectivity of the sug-

gested method. 
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To conduct the analysis, we decided to use disassembler and decompiler IDA Pro, 

which is a standard tool in the industry along with reverse-engineering framework Miasm in-

troducing some useful IDA Pro plugins and means to better understand and deobfuscate the 

code. 
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2 CV’s virtual machine entry – vm_entry 

 

Let's get to the analysis of CV’s VM now. There are several function calls that enter the VM, 

all of which are followed by some gibberish data that IDA attempts to disassemble – the data 

most likely just overwrites the function’s original code before virtualization (Figure 6). 

 

Figure 6. Entry point to the virtual machine 

The vm_entry of the VM: 

• calculates the actual base address by subtracting the expected relative virtual address 

from the actual virtual address of a place in the code 

• unpacks code and data related to the VM on the first run; it uses the calculated base ad-

dress to determine the location of the packed VM and destination of the unpacked data 

• executes an initialization function – one of the vm_pre_init() functions to be de-

scribed is based on the caller’s relative address that is mapped to the respective 
vm_pre_init() 

Packer. CV’s VM is packed with NsPack to reduce the size of the huge executable file; addi-

tional obfuscation is probably just a side effect. Similarities between CV’s unpacking code and 

ClamAV’s unspack()function are clearly visible (Figure 7 and Figure 8). Note that Ghidra 

has optimized out calculation of the base address.  
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Figure 7. A part of vm_entry of the virtual machine decompiled with Ghidra 

 

Figure 8. Function used to unpack NsPack in ClamAV 
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The vm_pre_init_dispatch_table in Figure 7 is the structure that maps call-

ers’ addresses of the vm_entry to the respective vm_pre_init() functions that are to be 

described. 

 

Junk code. Each part of the unpacked VM is obfuscated with lots of junk code – unnecessary 

additional instructions significantly decreasing readability of the code. It often uses instruction 

pairs with opposite effects. 

Neither the IDA nor the Ghidra decompiler is able to deal with such obfuscation; how-

ever, Miasm’s symbolic execution was able to make the code easily readable (Figure 9). 

 

Figure 9. A block of code in Miasm’s symbolic execution (left) and a part of the same block in 

IDA’s decompiler (right) 

  



18 

 

3 Virtual machine initialization 

 

Initialization of the VM consists of several steps, such as saving values of the native registers 

on the stack and later moving them to the virtual context, relocation of its internal structures, 

or preparation of bytecode. We cover these steps more thoroughly in this chapter. 

vm_pre_init() functions are meant only to prepare parameters for another stage of initial-

ization (Figure 10). These functions call a single vm_init() function (explained in the next 

section) with specific parameters. The supplied parameters are: 

• CPU flags, RFLAGS, which are stored on the stack with a PUSHF instruction at the be-

ginning of each function 

• hardcoded offset to a virtual instruction table that represents the first virtual instruction 

to be executed (its opcode) 

• hardcoded address of the bytecode to be interpreted 

 

Figure 10. Miasm’s symbolic execution of a vm_pre_init() showing parameters supplied 

to vm_init() 
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vm_init() pushes all the native registers and the supplied CPU flags from parameters (con-

text) onto the stack; one can actually see it in Figure 9. The native context will later be moved 

to the virtual one that, in addition, holds several internal registers. 

One of the internal registers determines whether another instance of the VM is already 

running – there is only one global virtual context and only one instance of the VM can run at a 

time. Figure 11 shows the part of the code busy-waiting for the virtual register, where RBP 

contains the address of the virtual context and RBX the offset of the virtual register – the inter-

nal register is stored in [RBX + RBP]. 

The entire function is summarized in Figure 12. 

 

Figure 11. Busy-waiting for interpreter in vm_init() 

The bytecode’s address, supplied in the parameters, is added to the virtual context 

along with the address of the virtual instruction table, which is hardcoded. Both have a dedi-

cated virtual register. 

The VM calculates the base address again in the same way as was described for 

vm_entry; in addition, it stores the address in another internal register that is used later, 

should an API be called. Then the base address is used to relocate the instruction table, its en-

tries, and the bytecode’s address. 

The calculated base address is simply added to all the function addresses if they have 

not already been relocated. 



20 

 

 

Figure 12. vm_init() summary 
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4 Virtual instructions 

 

There are only 45 instructions in the virtual instruction table (Figure 13). 

 

Figure 13. Virtual instruction table 

Let us look at the first one in the table. Initially, we need to relocate it; our dump of the 

VM starts at address 0x00 and it is expected to be at base + 0x0F33F5, so the target ad-

dress is 0x1EC74E – 0x0F33F5, which is 0x0F9359 (Figure 14). 

 

Figure 14. The first virtual instruction in the table 

The JMP in Figure 14 leads us to a function at 0x0FF2DB whose behavior is remarka-

bly similar to vm_pre_init() (Figure 15 and Figure 16 for comparison). The function ap-

pears to be pushing another bytecode address, the opcode of the initial virtual instruction, and 

CPU flags. 
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Figure 15. One of the vm_pre_init() functions 

 

Figure 16. Miasm’s symbolic execution of the first virtual instruction (function at 0x0FF2DB) 

Inspecting the function at 0x0F7FFF (Figure 17), into which our virtual instruction 

jumps, reveals that it appears to be another vm_init() (Figure 18). When we compare it to 
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the previous one, we can see that their behaviors are, indeed, the same. We will refer to these 

functions simply as vm2_pre_init() and vm2_init(). 

 

Figure 17. Miasm’s symbolic execution of the first block of vm2_init() 
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Figure 18. Miasm’s symbolic execution of the first block of vm_init() 

Inspection of the other instructions revealed that they all execute this second VM with 

different vm2_pre_init() functions – this clearly shows that there are two layers of VMs. 

Virtual instructions of the first VM execute vm2_pre_init() directly without any 

dispatch table based on the caller’s address. The number of virtual instructions in the second 

VM is significantly higher – 1071 (Figure 19). 
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Figure 19. A part of the second virtual instruction table 

 

4.1 Virtual instructions of the second virtual machine 

 

We start by looking at the first few executed virtual instructions to observe the behavior of the 

second VM and then try to process the rest of them in a partially automated way. 

The diagram in Figure 20 highlights with blue, where the virtual instructions of the 

second VM are in the structure of the VMs. 
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Figure 20. Virtual instructions in the structure of the virtual machines 

 

The first virtual instruction is, exceptionally, not obfuscated, as can be seen in Figure 21. Fi-

nally, we can see some operations in the virtual context. 

By inspecting the modified memory and calculated destination address of the instruction, it 

is clear that the instruction does three things: 

1. Zeroes out a virtual 32-bit register at offset 0xB5 in the virtual context (highlighted in 

gray in Figure 21), which is stored in the RBP register. 

2. A virtual 64-bit register at offset 0x28 is increased by 0x04: it is the pointer to the 

bytecode – virtual program counter. The size of the virtual instruction is hence four 

bytes (highlighted in red in Figure 21). 

3. The next virtual instruction is prepared to be executed, the offset to the virtual instruc-

tion table – virtual opcode – is fetched from the virtual program counter. The virtual 
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instruction table is at offset 0xA4 (highlighted in green in Figure 21). This means that 

the VM uses the Direct Threading Dispatch technique. 

 

Figure 21. The initial virtual instruction of the second VM 

Note that the size of the next instruction’s opcode is only two bytes and the remaining 

word is left unused. We can see that it is just a zero when we look at virtual operands (Figure 

22). Sizes of the other instructions differ – it is not just padding that preserves the same size 

for all instructions. 

 

Figure 22. Bytecode of the virtual instruction 

 

The second virtual instruction does not do anything special; it just zeroes out several virtual 

registers and jumps to the next instruction (Figure 23). 

 

Figure 23. Destination address and memory modified by the second virtual instruction 
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The third virtual instruction stores the address of the stack pointer in a virtual register (Fig-

ure 24); the offset of the register is determined by one of the operands, and its offset is 

0x0141 in our case. 

 

Figure 24. Destination address and memory modified by the third virtual instruction 

 

The fourth instruction contains two immediately visible anomalies in comparison with previ-

ous instructions – the stack pointer’s delta is lower at the end of the function and it contains a 

conditional branch (Figure 25). 

 

Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruc-

tion 
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Symbolic execution of the first block reveals that a value is popped from the stack into 

a virtual register (Figure 26), which makes sense as the values of the native registers remain 

on the stack after being saved there by vm2_init(). They are now being moved to the vir-

tual context – the context switch is partially performed by a number of virtual instructions, 

each of which pops one value off the stack into a different register. 

 

Figure 26. Destination address and memory modified by the fourth virtual instruction 

The virtual register, where the value of the native register is to be saved, is determined 

by an operand and two other virtual registers at offsets 0x0B and 0x70. However, their initial 

value is already known: they were set to zero by the second virtual instruction (Figure 23), 

which means that we can calculate the offset of the register and simplify the expressions – 

they are used just to obfuscate the code. 

 

Rolling decryption. Analysis of other virtual instructions confirmed that the virtual registers 

at offsets 0x0B and 0x70 are meant just to encode operands. This technique is called rolling 

decryption and it is known to be used by the VMProtect obfuscator. However, it is the only 

overlap with that obfuscator and we are highly confident that this VM is different. 

The obfuscation technique is certainly one of the reasons for the enormous number of 

virtual instructions – use of the technique requires duplication of individual instructions since 

each uses a different key to decode the operands. 

 

Simplification. The expressions can be simplified to the following when we apply the known 

values of the virtual registers: 

IRDst = (-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038 == 

@16[@64[RBP_init + 0x28] + 0x6])?(0x7FEC91ABD1C,0x7FEC91ABCF6) 

@64[RBP_init + {-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038, 0, 

16, 0x0, 16, 64}] = @64[RSP_init] 

Now let us take a look at the expression in the conditional block: 

https://back.engineering/17/05/2021/#rolling-decryption
https://back.engineering/17/05/2021/#rolling-decryption
https://vmpsoft.com/
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@64[RBP_init + {@16[@64[RBP_init + 0x28] + 0x6], 0, 16, 0x0, 

16, 64}] = @64[RBP_init + {@16[@64[RBP_init + 0x28] + 0x6], 0, 

16, 0x0, 16, 64}] + 0x8 

We can now see that the virtual instruction is definitely POP – it moves a value off the 

top of the stack to a virtual register, whose offset is still obfuscated with a simple XOR; it ad-

ditionally increases the stack pointer when the destination register is not the stack pointer. 

As values in the bytecode are known too, we can apply them and simplify the instruc-

tion even further into the following final unconditional expressions: 

IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8] 

@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8 

@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8 

@64[RBP_init + 0x12A] = @64[RSP_init] 

 

Automating analysis of the virtual instructions. As doing this for more than 1000 instruc-

tions would be very time consuming, we wrote a Python script with Miasm that collects this 

information for us so we can get a better overview of what is going on. We are particularly in-

terested in modified memory and destination addresses. 

Just as in the fourth virtual instruction, we will treat certain virtual registers as concrete 

values to retrieve clear expressions. These registers are dedicated to the rolling decryption and 

perform memory accesses that are relative to the bytecode pointer, e.g. [<obf_reg_1>] = 

[<bytecode_ptr> + 0x05] ^ 0xABCD. 

Subsequently we concretize the pointer to the virtual instruction table too and, by the 

end of the virtual instruction: calculate addresses of the next ones, clear the symbolic state, 

and start with the following virtual instructions. 

We additionally save aside memory assignments that are not related to the internal reg-

isters of the VM and gradually build a graph based on the virtual program counter (Figure 27). 
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Figure 27. Call graph generated from memory assignments and the VPC 

We stop when we cannot unambiguously determine the next virtual instructions to be 

executed; one can automatically process most of the virtual instructions in this way. 

Note that instructions featuring complex loops cannot be processed with certainty and 

need to be addressed individually due to the path explosion problem of symbolic execution, 

which is described for example in the paper Demand-Driven Compositional Symbolic Execu-

tion [16]: “Systematically executing symbolically all feasible program paths does not scale to 

large programs. Indeed, the number of feasible paths can be exponential in the program size, 

or even infinite in presence of loops with unbounded number of iterations.” 

 

Getting back to the first virtual machine. Before diving into the virtual instructions of the 

first VM, let us recap where we currently are. We have just described a way to semiautomate 

processing of the bytecode belonging to the second VM (blue in Figure 28) that interprets vir-

tual instructions of the first VM (red in Figure 28). Now we move on to inspect instructions of 

the first VM with this approach. 
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Figure 28. Virtual instructions in the structure of the virtual machines 

 

4.2 The initial virtual instruction 

 

In this section we describe the results of processing of the initial virtual instruction of the first 

VM in the semiautomatic manner that was described in the previous section. 

We performed all the processing on a virtual machine with i7-4770 CPU and 4GB of 

memory. Statistics in Table 2 have been extracted from the processing of the initial virtual in-

struction. 
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Table 2. Statistics of the initial virtual instruction 

Size of the bytecode block in bytes 1,145 
Total number of processed virtual instructions 109 
Total number of underlying native instructions 17,406 
Total number of resulting IR instructions (including IRDsts) 307 

Execution time in seconds 10.6509 
 

The resulting control flow graph built out of the semantics extracted from the virtual 

instructions of the second VM’s bytecode that interprets the initial virtual instruction from the 

first VM can be seen in Figure 29. We can divide the series into a few parts. 

 

Figure 29. Control flow graph of the initial virtual instruction 
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Prologue. As expected, the graph starts with a series of POP instructions that move values of 

the native registers saved beforehand in vm2_init() to the virtual ones (Figure 30). To de-

termine positions of the native registers on the stack, we could symbolically evaluate the first 

block of vm2_init() and map the virtual registers to their native versions, which would 

make the code easier to read, but that is not important now. 

Remember that the virtual register at offset 0x1E contains the stack pointer, and that a 

POP instruction moves a value off the top of the stack and usually increases the stack pointer. 

  

Figure 30. Beginning of the prologue finishing context switch of the second VM 
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Epilogue. To map the virtual registers back to the native ones, the second VM pushes them all 

onto the stack and then subsequently pops them off one by one to the native ones. Note that 

we set up an exclusion in our algorithm and disabled optimizations to show assignments to 

registers in the last virtual instruction (Figure 31). 

 

Figure 31. Virtual registers of the second machine being mapped back to the native ones at 

the end of the virtual instruction 
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Analysis of the virtual context. In this section we analyze the behavior of the first VM based 

on the results of the Error! Reference source not found. section. 

Figure 32 shows: 

• virtual registers being pushed onto the stack at the beginning of the prologue (red) 

• partially the way the next virtual instruction is prepared to be executed (green) 

• the virtual program counter being increased (blue) 

In particular, the virtual program counter is represented by @64[@64[RBP_init + 

0x38] + 0x2C], where the register at @64[RBP_init + 0x38] holds the address of 

the virtual context. We can see that size of the initial virtual instruction was 8 bytes, since the 

virtual program counter is increased by 8 in the line highlighted with blue in Figure 32. 
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Figure 32. Last few virtual instructions executed before mapping the virtual registers back to 

the native ones 

As one can see in Figure 31 (IRDst = @64[RBP_init + 0x74]), the virtual 

register at offset 0x74 determines IRDst – the address of the next instruction. If we follow 

the virtual register @64[RBP_init + 0x74] in Figure 32, we can see that it appears to be 

preparing to execute the next virtual instruction similarly to the second VM. Its code slice is 

the following series of expressions: 

@64[RBP_init + 0x30] = @64[@64[RBP_init + 0x38] + 0x2C] 

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] + 0x2 

@64[RBP_init + 0x30] = {@16[@64[RBP_init + 0x30]] 0 16, 0x0 16 

64} 

https://en.wikipedia.org/wiki/Program_slicing
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@32[RBP_init + 0x30] = @32[RBP_init + 0x30] + 0x8E839329 

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] & 0xFFFF 

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] << 0x3 

@64[RBP_init + 0xDE] = @64[@64[RBP_init + 0x38] + 0xEE] 

@64[RBP_init + 0xDE] = @64[RBP_init + 0x30] + @64[RBP_init + 

0xDE] 

@64[RBP_init + 0x74] = @64[@64[RBP_init + 0xDE]] 

The entire slice of @64[RBP_init + 0x30] is meant just to acquire the offset of 

the next virtual instruction (opcode): it gets the virtual instruction’s offset from the bytecode 

whose pointer is stored in the @64[@64[RBP_init + 0x38] + 0x2C] register, and the 

offset is subsequently increased by 0x8E839329… which could have been omitted and 

serves solely to obscure the virtual instruction. 

The virtual register @64[@64[RBP_init + 0x38] + 0xEE] contains the ad-

dress of the virtual instruction table. Now it is clear that the first VM is obfuscated using 

known values from the bytecode too and that the code indeed executes a next virtual instruc-

tion as well – it definitely uses Direct Threading. 

One can additionally see that @64[RBP_init + 0x50] stores the RFLAGS in Fig-

ure 32. 

 

Behavior. The virtual instruction behaves similarly to the virtual instructions from the second 

VM – offsets of the virtual registers to be used are fetched from the virtual instruction’s oper-

ands. 

Subsequently a virtual register’s value is moved to a memory address stored in another 

one: [<virt_reg_1>] = <virt_reg_2>. The target register is then either increased or 

decreased by 8: <virt_reg_1> = <virt_reg_1> +- 8. This is most likely a PUSH 

instruction prepared also for environments where the stack grows upwards. 

4.3 Initially executed virtual instructions 
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We will have a look at a few other virtual instructions to confirm our findings and the correct-

ness of methods for analysis of the first VM. Specifically, the virtual instructions that are ini-

tially executed as we can compare the first VM’s initial behavior to the second VM’s. 

 

The first executed virtual instruction. We can see in the highlighted line of Figure 33 that 

the first executed instruction of the first VM behaves indeed just like the one in the second 

VM – it just zeroes out an internal register and prepares another virtual instruction to be exe-

cuted. 
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Figure 33. Zeroing out an internal register 

Statistics in Table 3 have been extracted from the processing of the first executed virtual in-

struction. 
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Table 3. Statistics of the first executed virtual instruction 

Size of the bytecode block in bytes 548 
Total number of processed virtual instructions 62 
Total number of underlying native instructions 9,444 
Total number of resulting IR instructions (including IRDsts) 195 

Execution time in seconds 6.4810 
 

The second executed virtual instruction. The second virtual instruction just zeroes out sev-

eral internal registers, which are most likely about to be used for obfuscation, as in the second 

VM. 

Statistics in Table 4 have been extracted from the processing of the second executed 

virtual instruction. 

Table 4. Statistics of the second executed virtual instruction 

Size of the bytecode block in bytes 755 
Total number of processed virtual instructions 83 
Total number of underlying native instructions 13,740 
Total number of resulting IR instructions (including IRDsts) 259 

Execution time in seconds 7.7718 
 

The third executed virtual instruction. The third virtual instruction behaves just like the 

third one of the second VM too – it stores the stack pointer (highlighted in Figure 34). The ad-

dition of 0x98 is present due to applied optimizations which took into account the previously 

executed POP instructions in the Prologue section. 
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Figure 34. Storing the stack pointer in an internal register 
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Statistics in Table 5 have been extracted from the processing of the third executed vir-

tual instruction. 

Table 5. Statistics of the third executed virtual instruction 

Size of the bytecode block in bytes 586 
Total number of processed virtual instructions 66 
Total number of underlying native instructions 10,263 
Total number of resulting IR instructions (including 

IRDsts) 

207 

Execution time in seconds 6.8428 
 

The fourth executed virtual instruction. We naturally expect this instruction to be a POP as 

in the second VM; however, it is hard to confirm statically as the already described obfusca-

tion techniques make it too hard to understand. One can see part of the virtual instruction in 

Figure 35. 

Statistics in Table 6 have been extracted from the processing of the fourth executed 

virtual instruction. 

Table 6. Statistics of the fourth executed virtual instruction 

Size of the bytecode block in bytes 4,883 
Total number of processed virtual instructions 425 
Total number of underlying native instructions 71,192 
Total number of resulting IR instructions (including 

IRDsts) 

1,038 

Execution time in seconds 28.1638 
 

 

Figure 35. Part of the fourth virtual instruction 
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When we look closely at certain parts of Figure 35, it appears to be able to behave as a 

POP instruction. The part of the virtual instruction in Figure 36 clearly behaves just like the 

fourth one of the second VM – it moves a value off the top of the stack, and if the target regis-

ter is different from the stack pointer, the stack pointer is increased. 

 

Figure 36. Part of the fourth virtual instruction performing a pop-like operation 

 

Instruction merging. However, the instruction also seems to be capable of performing a 

PUSH and other operations as well, based on the operands (Figure 37), which means that it 

consists of several other instructions merged into one, which is a kind of obfuscation tech-

nique. It most likely merged several instructions with different rolling keys into one. 

 

Figure 37. Part of the fourth virtual instruction performing a PUSH operation 

  

https://tigress.wtf/merge.html
https://tigress.wtf/merge.html
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5 Automating analysis of the first virtual machine 

 

Now that we know what the internal structure of the first VM is like, we can process the VM 

as the second one since analyzing all the virtual instructions would be complicated due to the 

additional obfuscation techniques – we can again effectively eliminate them with symbolic ex-

ecution. 

We definitely need to concretize the virtual instruction table and internal registers dedi-

cated for obfuscation as in the previous one, which is not complicated. The question is: What 

do we do with the second VM? 

There is a pretty simple solution – instead of preserving the entire context of the sec-

ond VM and working with both at once, we can simply concretize the entire second VM as we 

know what memory ranges belong to the VMs. 

We will also ignore all memory assignments to the second VM’s context and not pre-

serve any information about its structure. This will enable us to focus only on the first one and 

build the same graph as before. 

We could also preserve the obfuscated IR of all the virtual instructions of the first VM 

and use them instead – it would save a significant amount of time during the processing since 

we would not repeatedly disassemble, translate and deobfuscate the second VM for each op-

code in the bytecode blocks of the first VM. However, we want to show that it is possible to 

process both layers at once. 

 

Processing the initial bytecode block. We processed the very first bytecode block as was de-

scribed in the previous section. The resulting code still appears to be too complex since we ex-

pected a series of POPs, the deobfuscated code and then a series of PUSHes and finally map-

ping back to the native registers. However, there are additional, multiple branches. One can 

see part of the code in Figure 38. 
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Figure 38. The first processed bytecode block 

 

Opaque predicates. Looking at the code more closely, we notice two types of expressions 

that can be further simplified. The first is the value of RBP_init, which is the address of the 

virtual context and it is known (Figure 39). 
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Figure 39. Expressions that can be further simplified 

Both paths that follow the initial block in Figure 39 contain the same code, hence this 

is not the same case as with the POP virtual instruction, where it was important to know what 

the target register was because it determined the subsequent behavior of the virtual instruction. 

These checks are, on the other hand, unimportant and we can just get rid of them – they can be 

considered as a sort of opaque predicate [19]. 

Note that the branch of the POP virtual instruction was now optimized out automati-

cally since offsets of the registers were present in the bytecode and directly known. 

Finally, these were the last obfuscation techniques, and we can look at the simplified 

code. 

 

Overview. We are finally greeted with a familiar, even pleasant, view in Figure 40 – as ex-

pected the code begins with a series of POPs (red) and ends with a series of PUSHes (green) 

that represent parts of the context switches. 

Another interesting detail is that the VM uses a special internal register to store the 

destination address – the final jump is not visible, but the code jumps to @64[RBP_init + 

0x133]. As was mentioned earlier, the VM also stores the base address of its code section; 

this is stored in virtual register @64[RBP_init + 0x80] in our case. 

One can see that the code in Figure 40 also accesses certain data using the base ad-

dress, specifically at offset 0x0E3808 (blue). After looking up the address, we found that it 

belongs to a ServiceStatus structure (Figure 41). 
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Figure 40. Code of the processed bytecode 

 

Figure 41. Data accessed by the code – ServiceStatus 

It additionally sets a register before recovering the native state to a data address at off-

set 0x2FB0 (yellow). The address contains a non-obfuscated function shown in Figure 42. 
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Figure 42. Function whose pointer is used in the code 

Let us now focus on the destination address (gray) – it is set to <base address> + 

0x8C038. Looking up that address in the sample, we see it belongs to the Windows API 

RegisterServiceCtrlHandlerW, which makes sense as the application is a service 

(Figure 43). 

 

Figure 43. Destination address of the bytecode 

The question is now, what is the return address of the API call. When we look at the 

end of the code, we see that it sets the return address – the highlighted assignment in Figure 44 

appears to be 0x88 bytes above the stack pointer, but we need to keep in mind that we started 

below the stack pointer because we did not perform the initial context pushing from 

vm_init() and in reality, it is the return address. 

The return address is set to another vm_pre_init(). 
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Figure 44. Setting return address of the API call 

The last part of the code that needs to be analyzed is the body of the loop (Figure 45). 

It is pretty simple – it zeroes out a memory range. If we look back at Figure 40 and look up 

what is in @64[RBP_init + 0x74], we see that it is set to the address of the Ser-

viceStatus structure (blue) – this piece of code zeroes out the structure. Meanwhile, 

@64[RBP_init + 0x4F] (pink in Figure 40) initially contains the constant 0x1C – size 

of the structure – and @64[RBP_init + 0xCC], the CPU flags. 

 

Figure 45. Body of the code’s loop 

Now we look at the discovered non-obfuscated sample and compare it against our find-

ings. We can confirm that we deobfuscated the first bytecode block successfully (Figure 46). 
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Figure 46. The same part of code in the non-obfuscated binary 

Statistics in Table 7 have been extracted from the processing of the first bytecode 

block. 

Table 7. Statistics of the first processed bytecode block 

Size of the bytecode block in bytes 695 
Total number of processed virtual instructions 62 
Total number of underlying native instructions 3,536,427 
Total number of resulting IR instructions (including IRDsts) 192 

Execution time in seconds 382.5678 
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6 Description of our final VM analyzer code 

 

Our final analyzer code consists of several classes that interact together, as described in the 

following sections. The full code listing is available in our GitHub repository 

github.com/eset/wslink-vm-analyzer. The classes follow the high-level descrip-

tions from the previous Automating analysis sections. 

 

Class Wslink. Wslink is a mediator that handles interaction of the remaining classes, its 

constructor processes the supplied memory dump, and its method process() accepts the 

value of the virtual program counter – pointer to the bytecode – with the opcode of the initial 

instruction. The bytecode is subsequently processed using classes VirtualContext, Sym-

bolicCFG and MySymbolicExecutionEngine; the resulting control flow graph is 

written into a DOT [17] file vma.dot. 

Parts of the VM, such as address of the instruction table or offsets of the virtual regis-

ters for obfuscation, should be overwritten to provide specific values for individual VMs. 

 

Class VirtualContext. This class represents the virtual context – it contains most notably the 

initial values of the virtual registers for obfuscation, virtual program counter, and the address 

of the instruction table. 

It also provides several methods for working with the context described in the follow-

ing sections. 

 

Method VirtualContext::get_next_instr(). The method get_next_instr() applies the 

address of the instruction table to the destination address to simplify the corresponding expres-

sion and attempts to unambiguously determine the address of the next virtual instruction to be 

executed. 

 

Method VirtualContext::get_irb_symbs(). This method simply acquires the expressions that 

should be preserved in the nodes of the resulting control flow graph. 
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Method VirtualContext::get_updated_internal_context(). The method get_up-

dated_internal_context() updates values of the internal registers that need to be pre-

served between virtual instructions, such as the virtual program counter or the obfuscation reg-

isters. 

 

Method VirtualContext::get_state_hash(). This method calculates a hash for virtual instruc-

tions – the hash is used to specify the actual position in the bytecode to reconstruct the control 

flow graph without duplicate nodes or paths and to avoid infinite loops in cycles. It is calcu-

lated just from the virtual program counter. 

 

Class MySymbolicExecutionEngine. This class overrides the method mem_read() of Mi-

asm’s class SymbolicExecutionEngine primarily to transform memory accesses rela-

tive to the virtual program counter and the virtual instruction table into concrete values. It is 

additionally meant to make the second VM completely concrete when we are processing the 

first one. 

 

Class SymbolicCFG. This class is meant to construct the resulting control flow graph. It uses 

class Node to process individual virtual instructions, to acquire the expressions that need to be 

preserved, and to determine addresses of the next virtual instructions. 

Each Node is tied to a hash generated by get_state_hash() (as described above) 

and the address, StateID, of the block of code that is being processed. This means that vir-

tual instructions containing unbounded loops cannot currently be processed correctly because 

when we connect a state to an already processed one, it will not take into account the changes 

introduced in the body of the loop. 

 

Class Node. This class simply represents a node in the resulting control flow graph – it most 

notably contains the values of the obfuscation registers and virtual program counter that are 

together called init_symbols. These are the values required to determine the addresses of 

the next virtual instructions. 
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It provides a method process_addr() that can get the following Nodes classes 

that have not yet been processed and return them along with the expressions that should be 

preserved in a data-class ContextResult. 

The new Nodes are created based on the supplied addresses using method 

_get_next(), which accepts several arguments. The arguments can instruct the function to 

slightly modify the resulting Node – make a copy of the actual symbolic state when there is a 

branch, or update init_symbols for a new virtual instruction. 
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7 Future work 

 

Once we discovered a non-obfuscated sample, we were not motivated to completely deobfus-

cate the rest of the code. 

Our next steps would consist of: 

1. Getting rid of the prologue and epilogue and mapping the virtual registers directly to 

the native ones. 

2. Automatically processing the subsequent bytecode blocks and extending the graph 

with resulting code listings to get an overview of the whole function. 

3. Optionally addressing individual instructions with unbounded loops that cannot be 

fully processed using symbolic execution (e.g., instructions like DEC_RC4 mentioned 

in Miasm’s blog [9]) and manually creating their IR to be added to the graph. We 

could also experiment with some enhancements of symbolic execution that attempt to 

mitigate the issue [18]. 

4. Optionally matching resulting IR expressions against known IR expressions of assem-

bly instructions to recover assembly code. 
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Conclusion 

 

We have described internals of an advanced multilayered virtual machine of CodeVirtualizer 

and successfully designed and implemented a semiautomatic solution capable of significantly 

facilitating analysis of the program’s code. This virtual machine introduced several other ob-

fuscation techniques such as junk code, encoding of virtual operands, duplication of virtual 

opcodes, opaque predicates, merging of virtual instructions and a nested virtual machine to 

further obstruct reverse engineering of the code that it protects, yet we successfully overcame 

them all. 

To deal with the obfuscation we modified a known technique that extracts the semantics of the 

virtual opcodes using symbolic execution with simplifying rules. Additionally, we made con-

crete the internal virtual registers for obfuscation along with memory accesses relative to the 

virtual program counter to automatically apply known values and deobfuscate semantics of the 

virtual instructions – this additionally broke down boundaries between individual virtual in-

structions. Boundaries are necessary to prevent path explosion of the symbolic execution; we 

would lose track of the virtual program counter – our position in the interpreted code – without 

them. We defined new boundaries by symbolizing the address of the virtual instruction table, 

since it is required to get the next instruction, and concretized it only when we needed to move 

to the following virtual instructions. We subsequently constructed a control flow graph of the 

original code in an intermediate representation from one of the bytecode blocks based on the 

virtual program counter, and extracted deobfuscated semantics of individual virtual instruc-

tions. We finally extended the approach to process both virtual machines at once by entirely 

concretizing the nested one. 
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