Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Analysis of Virtual Machine Based Obfuscators
Master Thesis

Bratislava, 2023
Bc. Vladislav Hr¢ka

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Analysis of Virtual Machine Based Obfuscators

Study programme:
Field of study:
Department:
Supervisor:

Consultant:

Bratislava, 2023
Bc. Vladislav Hréka

Master Thesis

Computer Science

Computer Science

Department of Computer Science
RNDr. Jaroslav Janacek, PhD
Mgr. Peter KoSinar

85538828

Comenius University Bratislava

Faculty of Mathematics, Physics and Informatics

Name and Surname:
Study programme:

Field of Study:
Type of Thesis:

THESIS ASSIGNMENT

Bc. Vladislav Hr¢ka

Computer Science (Single degree study, master 1.
deg., full time form)

Computer Science

Diploma Thesis

Language of Thesis: English

Secondary language: Slovak

Title: Analysis of Virtual Machine Based Obfuscators

Annotation: The thesis describes a modern virtual machine based obfuscator and the
general behavior of such machines. Known principles and tools for attack-
ing this kind of protection are summarized. The thesis contains a proposal
and an implementation of a solution that significantly facilitates analysis
of code obfuscated with the modern virtual machine.

Aim: - describe virtual machine based obfuscators in general - summa-
rize methods to deal with such kind of obfuscators
- analyze a specific virtual machine
- design and implement methods to devirtualize code protected
with the specific machine

Supervisor: RNDr. Jaroslav Janacek, PhD.

Department: FMFI.KI - Department of Computer Science

Head of depart- prof. RNDr. Martin Skoviera, PhD.

ment:

Assigned: 14.12.2021

Approved: 28.04.2023 prof. RNDr. Rastislav Kral'ovi¢, PhD.

Guarantor of Study Programme

Supervisor

85538828

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Vladislav Hrcka

Studijny program: informatika (Jednoodborové studium, magistersky II.
st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomovéa

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Analysis of Virtual Machine Based Obfuscators

Analyza obfuskatorov zalozenych na virtudalnych strojoch

Anotécia: Diplomova praca opisuje konkrétny moderny obfuskator zalozeny na vir-

Ciel’:

Veduci:

tualnom stroji a vo vSeobecnosti spravanie takychto virtualnych strojov.
Taktiez poskytuje prehl’ad zndmych principov a nastrojov na prekonanie
takejto formy ochrany programov. Diplomova praca obsahuje navrh a im-
plementaciu rieSenia, ktoré zna¢ne zjednodusuje analyzu kédu obfusko-
vaného danym modernym virtualnym strojom.

- popisat’ obfuskatory zalozené na virtualnych strojoch vo vSeobec-
nosti

- zosumarizovat’ metddy na prekonanie tejto formy ochrany pro-
gramov

- analyzovat’ konkrétny virtualny stroj

- navrh a implementéacia metdd pre devirtualizovanie kodu chranen-
ého danym virtualnym strojom

RNDr. Jaroslav Janacek, PhD.

Katedra: FMFI.KI - Katedra informatiky
Veddci katedry: prof. RNDr. Martin Skoviera, PhD.

Datum zadania: 14.12.2021

Datum schvalenia: 28.04.2023 prof. RNDr. Rastislav Kralovi¢, PhD.

garant Studijného programu

Student veduci prace

Acknowledgements

Dakujem hlavne kolegom z ESETu nielen za usmeriiovanie a pomoc pri spisovani préace, ale aj
mnozstvo ziskanych skdsenosti a roky priatel'skej atmosféry pocas mojej prace vo firme.
Osobitne chcem pod’akovat’ svojmu konzultantovi Petrovi KoSinarovi za hodnotné a prijemné
odborné diskusie, koordinatorovi mojho vtedajsieho timu Antonovi Cherepanovi za pridelenie
tejto témy, a svojmu skolitel'ovi Jaroslavovi Janackovi za formalne zastreSenie a finalnu
kontrolu prace.

Abstrakt

Code Virtualizer je silny naastroj na obfuskaciu kddu Windows-ovych aplikéacii, ktory sluzi na
ochranu citlivych ¢asti kodu proti reverznému inzinierstvu pomocou pouzitia virtualnych
strojov. Okrem virtualnych strojov, tento systém navySe zavadza nickol'ko d’alSich
obfuskacnych technik, ako napriklad vkladanie irelevantného kodu, kédovanie virtudlnych
operandov, duplikécia virtualnych opkddov, faloSny tok riadenia, zluCovanie virtualnych
instrukcii a d’al$i vnoreny virtudlny stroj. Virtualne stroje Code Virtualizer sa stale astejSie
pouzivaju na Skodlivé ucely, ako napriklad na ochranu malvéru. V tejto praci analyzujeme
stcasti virtualneho stroja Code Virtualizer pouzitého vo vybranej vzorke malvéru a
popisujeme nas poloautomaticky pristup k prekonaniu jeho obfuska¢nych technik v
primeranom ¢ase. DemonStrujeme tento pristup na niekol’kych ¢astiach bajtkddu obfuskovanej
vzorky malvéru a porovnavame vysledky s neobfuskovanou vzorkou na potvrdenie spravnosti
metddy. Nas pristup je zaloZeny na znamej deobfuskaénej metdde, ktora extrahuje sémantiku
virtualnych opkddov pomocou symbolického vykonavania s optimalizaénymi pravidlami.
Dalej spracovavame &asti bajtkodu a niektoré konstrukcie virtualneho stroja ako konkrétne
hodnoty namiesto symbolickych, ¢o umoziiuje spominanej znamej deobfuskacnej metdde
automaticky prekonat’ aj ostatné obfuskacné techniky. V praci postupne analyzujeme sucasti
virtualneho stroja, navrhujeme nasu metodu deobfuskacie a popisujeme implementaciu tejto
metddy.

Abstract

Code Virtualizer is a powerful code obfuscation system for Windows applications that helps
developers to protect sensitive code areas against Reverse Engineering with very strong
obfuscation code, based on code virtualization. Apart from virtual machines, the obfuscation
system additionally introduces several other obfuscation techniques such as insertion of junk
code, encoding of virtual operands, duplication of virtual opcodes, opaque predicates, merging
of virtual instructions, and another nested virtual machine. Code Virtualizer's virtual machines,
with rest of the obfuscation techniques, have been increasingly being used for illicit purposes
such as protection of malware. In this thesis we analyze the internals of a Code Virtualizer's
virtual machine used in a malware sample and describe our semiautomatic approach to seeing
through the obfuscation techniques in reasonable time. We demonstrate the approach on a few
chunks of bytecode of the protected malware sample and compare the results against a non-
obfuscated sample to confirm the validity of the method. Our approach is based on a known
deobfuscation method that extracts the semantics of the virtual opcodes, using symbolic
execution with simplifying rules. We further treat the bytecode chunks and certain internal
constructs of the virtual machine as concrete values instead as symbolic ones, which enables
the known deobfuscation method to deal with the additional obfuscation techniques
automatically. In summary, we analyze the underlying parts of the virtual machine and
gradually shape our deobfuscation approach. We describe our implementation of the approach
at the end of the thesis.

Contents

L1 00 ¥ od 1T o SRS 1
1 SHAITING POINTS. ...ttt bbbttt b et eb et e e 3
1.1 Documented techniques for deobfuscation of virtual machinesccccoceeeenn, 10
1.2 The MIiasm FrameWOIK ..o 12
1.3 Choice of Virtual MaChINecceiiiiiiie e 13
2 CV’svirtual machine entry — VIN_ENTIYcooiiiiiiiiiiiiieieee s 15
3 Virtual maching iNtialiZationcccoiiiiniiiiie s 18
4 VIrUAL INSTIUCTIONS ..ottt bttt bbb nee e 21
4.1 Virtual instructions of the second virtual machingc.ccccceveveiiienninisice 25
4.2 The initial VIrtual INSIrUCTION.......ccoiiiiiieieee e 32
4.3 Initially executed virtual INStrUCLIONS..........ccueiieiieiecieceee e 38
5 Automating analysis of the first virtual machineccccooeeveiiiiiiic e, 45
6 Description of our final VM analyzer COAe..........ccoviiiiiiiiiiiiecee s 52
T FULUIE WOTK ..ottt et et e st e e neeste e teeneesneeteaneennees 55
@0 100 113 [o SRRSO 56

RO I S ..ttt nnnnnn 57

List of Figures

Figure 1. lllustration of bytecode, where all opcodes and operands are virtual.............cccocveeveveivcinennenne 3
Figure 2. lllustration of the relationship between bytecode and the VM’s interpreter.........ccovvvereriernenns 5
Figure 3. lllustration of Switch Dispatch (assembly jump table), where RO is a virtual register 6
Figure 4. Hlustration of DIireCt TRreAAINGcccvevieiiiiieieceeie s sre e 7
Figure 5. Overview of the VirtualiZation PrOCESSc.eiveveiieiieieie st ste s sre e re e sreens 9
Figure 6. Entry point to the Virtual Machingccociiiiiiii e 15
Figure 7. A part of vm_entry of the virtual machine decompiled with Ghidra...............ccccooeviinne, 16
Figure 8. Function used to unpack NSPack in CIAMAYV ... 16
Figure 9. A block of code in Miasm’s symbolic execution (left) and a part of the same block in IDA’s
AECOMPIIET (FIGNT) ..ottt en e nen s 17
Figure 10. Miasm’s symbolic execution of a vm_pre init () showing parameters supplied to

VI IT1EE () o 18
Figure 11. Busy-waiting for interpreter in vm Init () .o 19
Figure 12. vm_init () SUMMAIY ... 20
Figure 13. Virtual inStruCtioN TADIEceoiiiiiiic ettt sresre s 21
Figure 14. The first virtual instruction in the table ... 21
Figure 15. One of the vm_pre init () FUNCHIONS ..o, 22
Figure 16. Miasm’s symbolic execution of the first virtual instruction (function at 0x0FF2DB) 22
Figure 17. Miasm’s symbolic execution of the first block of vm2 init () .., 23
Figure 18. Miasm’s symbolic execution of the first block of vm_init () ..., 24
Figure 19. A part of the second virtual instruction table.............ccocoveiiiiiicii e 25
Figure 20. Virtual instructions in the structure of the virtual machings............cccoccovviiiiiiii e, 26
Figure 21. The initial virtual instruction of the SECONd VMccoiiiiiiiiii e 27
Figure 22. Bytecode of the Virtual INStrUCTION.coiiiiiiiieiiee e 27
Figure 23. Destination address and memory modified by the second virtual instruction....................... 27
Figure 24. Destination address and memory modified by the third virtual instruction................c.......... 28
Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruction......... 28
Figure 26. Destination address and memory modified by the fourth virtual instruction 29
Figure 27. Call graph generated from memory assignments and the VPC ..o, 31
Figure 28. Virtual instructions in the structure of the virtual machings............cccoccoovviiiiiiiiceiee, 32
Figure 29. Control flow graph of the initial virtual iNStruction...........c.cccccoeviiiii i 33
Figure 30. Beginning of the prologue finishing context switch of the second VMcccccociiiinennee. 34
Figure 31. Virtual registers of the second machine being mapped back to the native ones at the end of
the VIFTUAI INSTIUCTION ... ettt ettt e et et e st be e enes 35
Figure 32. Last few virtual instructions executed before mapping the virtual registers back to the native
(0] 0= O OO OP T OUROPRUP 37
Figure 33. Zeroing out an internal FEGISTEN..........oviiiiiiie et 40
Figure 34. Storing the stack pointer in an internal regiSterooviviiiiireneneee e 42
Figure 35. Part of the fourth virtual INSIrUCTIONccoiiiiiiee e 43
Figure 36. Part of the fourth virtual instruction performing a pop-like operationc.ccocceveveenenee 44
Figure 37. Part of the fourth virtual instruction performing a PUSH Operationccccoovvvvrervereereennen. 44
Figure 38. The first processed bytecode DIOCK...........ccoviiiiiiiiic e 46
Figure 39. Expressions that can be further Simplified............ccooeiiiii e 47

Figure 40. Code of the processed DYIECOUE.ccuiieii et 48

Figure 41. Data accessed by the CO0E — SETvVIiCeSTALUS v 48

Figure 42. Function whose pointer is used in the COOEccciiiiiiiiiiee e 49
Figure 43. Destination address Of the DYECOUEcuoiiiiieiiee e 49
Figure 44. Setting return address of the APL Call ... 50
Figure 45. Body 0f the COAe’S 100D .. .cuiiiiiiiiiiiiieie et s 50

Figure 46. The same part of code in the non-obfuscated DINArY ... 51

List of Tables

Table 1. MIASIMN’S TR SEIMANTICS ..uuvuuurururirerurersresesssssesssssssssesssssssssssssssssssssssssessssssssssssssssssssssssreressssrsrsssrsnes 13
Table 2. Statistics of the initial Virtual INSTIUCTIONooviiiiii e e 33
Table 3. Statistics of the first executed Virtual INSTTUCTIONocveiiiiiiiie e 41
Table 4. Statistics of the second executed virtual INSTIUCLIONocovveviieiiiciie e 41
Table 5. Statistics of the third executed virtual INSTTUCTION.........ccoevviiiiiiice e 43
Table 6. Statistics of the fourth executed virtual INSTIUCTION...........cocviviiiiiciic e 43

Table 7. Statistics of the first processed bytecode DIOCK............ccoerieiiiiiiiiiie 51

Introduction

Reverse engineering is in terms of software-engineering process of analyzing function-
ality and behavior of certain software in order to get insight into its overall capabilities or
achieve utter understanding of how its features are implemented and work. Initially, one often
needs to partially recover the original source code out of an already compiled binary to per-
form reverse engineering — the source code cannot be usually completely recovered since
some information is lost during the compilation process.

Techniques intended to hinder reverse engineering — make the source code difficult to
read and understand — are called obfuscation techniques. Such techniques emerged as a way to
address the need to protect intellectual property against infringements, such as counterfeiting
and patent abuse in both software and hardware products. The protection aspect is a strong
motivation for investing in research and development of the obfuscation techniques. The tech-
niques are not meant to be bullet-proof, they are just supposed to discourage majority of the
adversaries by forcing them to invest a substantial amount of time and means into overcoming
the protection to recover the original source code.

Obfuscation techniques became later misused for illicit purposes such as protection of
malware. Obfuscation often breaks patterns in the code and behavior of malware and that turns
previous detection rules for non-obfuscated versions useless. Moreover, patterns in the obfus-
cated code can be different from sample to sample or contain significant overlaps with legiti-
mate applications obfuscated using the same obfuscator — one cannot just consider all obfus-
cated code to be malicious.

This naturally resulted in an evolution of sort of counter-countermeasures — deobfusca-
tion techniques that recover the original source code and revert the effects of the obfuscation
techniques. They are primarily intended to facilitate analysis and detection of protected mal-
ware. The thesis deals with a specific type of protection — virtual-machine based obfuscation.

The first chapter is a comprehensive introduction into the field and thesis with several
subchapters that describe general structure of virtual machine based obfuscators and compare
them against the standard virtual machines; summarize known and unique techniques to deal

with the obfuscation; introduce featured libraries and the virtual machine based obfuscator that

we are going to analyze in the further chapters. The remaining chapters progressively analyze
underlying parts of the chosen obfuscator and shape the design of our deobfuscation method.

This thesis has been written in cooperation with ESET, published at blog WeL.iveSecu-
rity [1], and presented at few international cyber-security and reverse-engineering confer-
ences: REcon (Montreal), CodeBlue (Tokyo), and SecTor (Toronto).

1 Starting points

This chapter initially summarizes known information about virtual machine based obfuscators
and methods to recover the underlying original code. It afterwards introduces the analyzed vir-

tual machine and tools used to design our deobfuscation method.

General structure of virtual machines. Virtual machines (VMs) can be divided into two
main categories:

1. System virtual machines — support execution of complete operating systems (e.g., vari-
ous VMWare products, VirtualBox)

2. Process virtual machines — execute individual programs in an OS-independent environ-
ment (e.g., Java, the .NET Common Language Runtime)

Here, we are interested only in the second category — process virtual machines — and we
will briefly describe certain parts of their internal anatomy necessary to understand the rest of
this paper.

Process virtual machines run as normal applications on their host OSes, and in turn run
programs whose code is stored as OS-independent bytecode (Figure 1) that represents a series

of instructions — an application — of a virtual ISA (instruction set architecture) [2].

Virtual instruction 1 Virtual instruction 2 Virtual instruction 3
Offset 0 Offset 10 Offset 16
Opcode 0 Operand 0 Operand 1 Opcode 8 Operand 0 Opcode 0 Operand 0 Operand 1
Size 2 Size 4 Size 4 Size 2 Size 4 Size 2 Size 4 Size 4

Offset 0 Offset2 Offset 6 Offset 10 Offset12 Offset 16 Offset18 Offset 22

Figure 1. lllustration of bytecode, where all opcodes and operands are virtual

One can also think about bytecode as a sort of intermediate representation (IR); an
abstract representation of code consisting of a specific instruction set that resembles assembly
more than a high-level language. It is also known as intermediate language.

The use of IR is convenient in terms of code reusability — when one needs to add sup-
port for a new architecture or CPU instruction set, it is easier to convert it to the IR instead of
writing all the required algorithms again. Another benefit is that it can simplify the application

of some optimization algorithms.

One can generally translate both high- and low-level languages into an IR. Translation
of a higher-level language is known as “lowering”, and similarly translation of a lower-level
one, “lifting”.

The following example lifts an assembly block bb0 into a block with the pseudo-IR
code irbO0. All assembly instructions are translated into a set of IR operations and individual
operations in sets do not affect each other, where ZF stands for zero flag and CF for carry flag:
bb0:

MOV R8, 0x05

SUB AX, DX

XCHG ECX, EDX
irb0:

R8 0x05

EAX[:0x10] = EAX[:0x10] - EDX[:0x10]
ZF = EAX[:0x10] - EDX[:0x10] == 0x00
CF = EAX[:0x10] < EDX[:0x10]

ECX = EDX

EDX = ECX

Modern process VMs usually provide a compiler that can lower code written in a high-
level language -- one that is easy to understand and comfortable to use — into the respective
bytecode.

A VM’s ISA generally defines the supported instructions, data types and registers,
among other things, that naturally must be implemented by a virtual ISA as well.
Instructions consist of the following parts:

e opcodes — operation codes that specify an instruction
e operands — parameters of the instructions

ISAs often use two well-known virtual registers:

e virtual program counter (VPC) — a pointer to the current position in the bytecode
e virtual stack pointer — a pointer to pre-allocated virtual stack space used internally by
the VM

The virtual stack pointer does not have to be present in all VMs; it is common only in a
certain type of VM — stack-based ones. [3]

We will refer to the instructions and their respective parts of a virtual ISA simply as vir-
tual instructions, virtual opcodes, and virtual operands. We sometimes omit the explicit
use of “virtual” when it is obvious that we are talking about the virtual representation.

An OS-dependent (Figure 2) executable file — interpreter — processes the supplied
bytecode and sequentially interprets the underlying virtual instructions thus executing the vir-

tualized program.

ADD EAX, EDX

Windows x86 interpreter

—=]

RO =RO+R1 ADDU $2, $3,$2

Bytecode Linux MIPS interpeter

ADD WO, W1, Wo

macOS ARM64 interpreter
Figure 2. Illustration of the relationship between bytecode and the VM’s interpreter

Transfer of control from one virtual instruction to the next during interpretation needs to
be performed by every VM. This process is generally known as dispatching. There are several
documented dispatch techniques such as: [4]

e Switch Dispatch — the simplest dispatch mechanism where virtual instructions are de-
fined as case clauses and a virtual opcode is used as the test expression (Figure 3)

o Direct Call Threading — virtual instructions are defined as functions and virtual op-
codes contain addresses of these functions

e Direct Threading — virtual instructions are defined as functions again; however, in
comparison to Direct Call Threading, addresses of the functions are stored in a table
and virtual opcodes represent offsets to this table. Each function should indirectly call
the following one according to the specification (Figure 4)

The body of a virtual opcode in the interpreter’s code is usually called a virtual handler
because it defines the behavior of the opcode and handles it when the virtual program counter
points to a location in the bytecode that contains a virtual instruction with that opcode.

By context, regarding VMs, we mean a sort of virtual process context: each time a process
is removed from access to the processor during process switching, sufficient information on its
current operating state — its context — must be stored such that when it is again scheduled to

run on the processor, it can resume its operation from an identical position. [5]
Interpreter

b

S

— Fx

context.RO += *(int*)context.vpc
context.vpc += 4 j/ <operand_size>

Virtual handler 0

& —)

Fx

Fx

target = &virtual_handlers + *(short*)context.vpc*4 ~— — context.RO -= context.R1
context.vpc += 2 // <opcode_size> e

jmp target

Virtual handler1
Dispatcher

L

i

Fx

Virtual handler Exit

Figure 3. lllustration of Switch Dispatch (jump table in assembly), where RO is a virtual regis-

ter

0001] 000100000001 | 0008 0000000A | - - -

Example bytecode

Interpreter
g .
target = virt_handler_table + “(short‘)contextvpc * &
X target = virt_handler_table + *(short“)context.vpc * 4 ATgeL = Vi hanier_tbie + XShork Jcontextupe £Virtual handler init
target = virt_handler_table + init_opcode4 // +0 pabvosS bl oeloto M e context.RO += *(int*)(context.vpc+2) bsbinaeticbiond
jmp target & VPEI= struction_siz context.vpc += 6 /] <instruction_size> u e
jmp target
jmp target
Dispatch Init Virtual handler init Virtual handler 1 virt_handler_table
| i ' 1
target = virt_handler_table + init_opcode®4 // +0 Gets address of initial handler &virtual handler init context.vpe
' | 1 1
jmp target @ y 5 i
>‘< target = virt_handiler_table + *(short*)context.vpc * 4 Gets next address &Virtual handler 1 0001 ---
context.vpc += 2 // <instruction_size> : :
mp target 5 ' =
g Lo) , .
>'< target = virt_handler_table + *(short*)context.vpc * 4 -m—) gvirtual handler1 000100000001 | - - -
' 1

1
context.RO += 0X00000001

context.vpc += 6 // <instruction_size>

1
1
' 1
Jjmp target ' Ja==
1 % 1
' '
D 1
1

1
target = virt_handler_table + “(short*)context.vpc * 4 &vVirtualhandler8 0008 0000000A | - - -
' '

1
context.RO += 0X0000000A
context.vpc += 6 // <instruction_size>

1
1
1 1
Jmp target —GH 1 |=--
1
'
1
1

1
'
i

Figure 4. lllustration of Direct Threading

Obfuscation techniques are a kind of software protection intended to make code hard to un-
derstand and hence conceal its objectives. Such techniques were initially developed to protect
the intellectual property of legitimate software, i.e., to hamper reverse engineering.
Virtual machines used as obfuscation engines are based on process virtual machines, as de-
scribed above. The primary difference is that they are not intended to run cross-platform appli-
cations and they usually take machine code compiled or assembled for a known ISA, disas-
semble it and translate that to their own virtual ISA. It is also usually the case that the VM en-
vironment and the virtualized application code are contained in one application, whereas tradi-
tional process VMs usually consist of a process that runs as a standalone application that loads
separate, virtualized applications

The strength of this obfuscation technique resides in the fact that the ISA of the VM is
unknown to any prospective reverse engineer — a thorough analysis of the VM, which can be
very time-consuming, is required to understand the meaning of the virtual instructions and
other structures of the VM. Further, if performance is not an issue, the VM’s ISA can be de-

signed to be arbitrarily complex, slowing its execution of virtualized applications, but making

reverse engineering even more complex. Understanding of the VM is necessary for decoding
the bytecode and making the virtualized code understandable.

Context has a bit of a different meaning in regard to obfuscating virtual machines: each time
we want to switch from the native to virtual ISA or vice-versa, sufficient information — context
— on the current operating state must be stored so that when the ISA has to be switched back,
execution can resume with only the relevant data and registers modified.

Additionally, obfuscating VMs usually virtualize only certain “interesting” functions —
native context is mapped to the virtual one and bytecode, representing the respective function,
is chosen beforehand. The built-in interpreter is invoked afterwards (Figure 5). Beginnings of
the original functions contain code that prepares and executes the interpreter — entry of the
VM (vm_entry); the rest of their code is omitted in Figure 5.

Interpreter, bytecode, and virtual ISA code with data of obfuscating VMs are often all
stored in a dedicated section of the executable binary, along with the rest of the partially virtu-
alized program.

Figure 5 shows the way a function, Function 1, inthe original application targeting
a common ISA can be virtualized for an obfuscating VM’s ISA. It needs to be converted into
bytecode, for example using a generate bytecode method. Its body is afterwards over-
written by a call into vm _entry and zeroes. The vm_entry function chooses the respective
bytecode, for example, based on the calling function’s address, then conducts a context switch,
and next interprets the bytecode. Finally, it returns to the code where the virtualized function,

Function 1, would return.

— . N - =D -

Function 1bytecode ptr

Function 1 bytecode Function 1 bytecode ptr

Bytecode addresses
LS ~
{:} 1
o |
1
Fx generate_bytecode(Function 1) |

®
push ebp — D .
|
retn :
'
Function1 [,
3 {eF
{3 i
Fx
m choose_bytecode(caller_addr)

switch_context_virtual()
execute_interpreter()
switch_context_native()
return

call vim_entry
\x00\x00\x00...

Virtualized Function1
vm_entry

Figure 5. Overview of the virtualization process

In VMs hosted on x86 architectures, such context switches usually consist of a series
of PUSH and POP instructions. For example:
PUSH EAX
PUSH EBX
PUSH ECX

MOV ECX, context addr
POP DWORD PTR [ECX]

POP DWORD PTR [ECX + 4]
POP DWORD PTR [ECX + 8]

When the bytecode is fully processed, virtual context is mapped back to native context
and execution continues in the non-virtualized code; however, another virtualized function
could be executed in the same manner, right away.

Note that several context switches can occur in one virtualized function, for example
when a native instruction from the original ISA could not be translated to virtual instructions

or an unknown function from the native APl needs to be executed.

1.1 Documented techniques for deobfuscation of virtual

machines

Obfuscating VM techniques have become widely misused for illicit purposes such as obfusca-
tion of malware samples as they hinder both analysis and detection. Hence there is motivation
to overcome these obfuscation techniques so as to facilitate analysis of such malicious code
and to achieve overall improvement of detection methods.

But first, we want to clarify several terms that are used in this and following sections
and might not be known to all readers.
Symbolic execution is a code analysis technique, where specific variables are represented
with symbolic values instead of concrete data. Arbitrary operations with these symbolic values
produce symbolic expressions. It is usually applied on the code’s IR and the symbolic expres-
sions include flags.

One can visualize the symbolic expressions like mathematical formulas as can be seen
in the following example, where i rb1 contains a block of pseudo-IR:
irbl:

R13 = R13 + 0x027D3930

RBX = RCX + 0x05

R13 = R13 + -RSI

R13 = R13 + RBX
irbl symb:

RBX = RCX + 0x05

R13 = R13 + RCX + 0x05 + -RSI + 0x027D3930

ZF = R13 + RCX + 0x05 + -RSI + 0x027D3930 == 0x00

The state of symbolically executed code consists of:

e Values of all variables

e Program counter

e Accumulated constraints that the program’s inputs need to satisfy to reach the associ-
ated location from the entry point

10

Accumulated constraints can be understood as a theory in logic. In order to find concrete
values of the initial variables with symbolic values — inputs — we need to find a satisfying
model, which can be done with an SMT (satisfiability modulo theories) [6] solver.

Path coverage is another code analysis technique that determines all possible paths in a piece
of code. It is usually implemented using symbolic execution instructed to explore all reachable
paths — reachability of newly discovered paths is verified by an SMT solver and already
known paths are marked to prevent infinite loops.

Microsoft describes program synthesis as “the task of automatically discovering an
executable piece of code given user intent expressed using various forms of constraints such as
input-output examples, demonstrations, natural language, etc.”. [7]

Several techniques to deal with VM-based obfuscation have been proposed in the past.
Here we briefly walk through them and discuss their advantages and disadvantages.

Rolf Rolles described several standard steps to manually recover the original code, where
the drawback is time-complexity: [8]

1. Reverse engineer and understand structures of the VM

2. Detect entries into the VM

3. Develop a disassembler for the instruction set by identifying the purpose of individual
virtual opcodes or matching them against already known ones

4. Disassemble the bytecode and convert it into intermediate representation — the seman-
tics of some instructions might be hard to comprehend in basic blocks without further
translation (e.g., stack-based VMs would contain a lot of confusing PUSH and POP
machinations”)

5. Apply compiler optimizations to get rid of additional obfuscation techniques

6. Generate the deobfuscated code

He additionally suggested the use of pure symbolic execution on the virtual opcodes in the
fourth step to obtain a representation, where each opcode is a mathematical function that is a
map from its input space into itself. The pure symbolic execution technique was later inde-
pendently implemented in a Miasm blogpost [9].

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet proposed a fully automatic ap-
proach to overcome obfuscating VM protection on samples with a finite number of executable
paths. The approach consists of the following steps: [10]

1. Identification of the sample’s inputs

2. Isolation of pertinent instructions dependent on the identified inputs on an execution
trace

3. Performance of a path coverage analysis to reach new paths — traces

11

4. Reconstruction of the original program from the resulting traces — they are combined
and compiler optimizations partially recover the control flow graph

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Hol produced a semi-
automatic approach, based on program synthesis, that uses instruction traces as a black-box
oracle to produce random input and output pairs. The I/O pairs are subsequently used to learn
the code’s underlying semantics with the synthesizer. [11]

These pairs and semantics are generated for the virtual opcodes that must be identified be-
forehand — the VM needs to be partially reverse engineered to locate its components.

The approach does not seem to be applicable to some complex (particularly obfuscating)
VMs due to its time complexity, as it reportedly took almost three hours to process 36 virtual
opcodes of a VM — duplication of handlers, which is a simple and common obfuscation tech-

nique, would be a huge issue.

1.2 The Miasm framework

Miasm is a free and open-source reverse-engineering framework that aims to analyze, modify
and generate binary programs. It has a number of useful features that we use throughout our
analysis: [12]

e Opening, modifying and generating binary files — PE and ELF

e Assembling and disassembling of various architectures such as x86, ARM, MIPS...
e Representing assembly semantics using intermediate representation

o Simplification rules for automatic deobfuscation

e Symbolic execution engine

There are several frameworks for reverse-engineering that provide the features that we
needed; we decided to use Miasm in this project simply because it is actively maintained, and
we are already familiar and satisfied with it.

The features that we want to use are covered in the example section of its GitHub reposi-
tory description and its documentation. [13]

Semantics of Miasm’s IR are summarized in

Table 1, since they are going to be used repeatedly.

12

Table 1. Miasm’s IR semantics

Element Example

Exprld EAX

ExprAssign A=B

Exprint 0x18

ExprLoc location 1

ExprCond A?B:C

ExprMem @16[EST]

ExprOp A+ B

ExprSlice AH = EAX[8:16]

ExprCompose | {EAX 0 32, 0x0 32
64}

The destination address of a symbolic execution performed over a block of code is
saved in the respective program counter such as RI P and additionally in a special variable
IRDst.

Note that during Miasm’s symbolic execution: initial values of registers, which are
treated as variables, are symbolic and their format is <register name> init. Simplifi-

cation rules are applied automatically to the symbolic expressions. For example, the symbolic

expression RAX = RCX + 0x2 + 0x3isautomatically simplified into RAX =

RCX init + 0x5.

1.3 Choice of virtual machine

We are going to analyze a VM that is used to protect a sample of a malicious loader called
Wslink [14]. The sample does not appear to contain any artifacts that would link it to any
known commercial code protection product right away.

However, further analysis revealed that it behaves and contains structures just like
VMs generated by CodeVirtualizer (CV) [15], which is a modern and commercial program for
code protection, and we assess with high confidence that it is indeed the used obfuscator.

We are going to analyze the applied VM in the rest of the thesis, propose methods to
deal with the VM and recover a part of the original code to prove the effectivity of the sug-

gested method.

13

To conduct the analysis, we decided to use disassembler and decompiler IDA Pro,
which is a standard tool in the industry along with reverse-engineering framework Miasm in-
troducing some useful IDA Pro plugins and means to better understand and deobfuscate the

code.

14

2 CV’s virtual machine entry —vm_entry

Let's get to the analysis of CV’s VM now. There are several function calls that enter the VM,

all of which are followed by some gibberish data that IDA attempts to disassemble — the data

most likely just overwrites the function’s original code before virtualization (Figure 6).

] e =

Ltext:8e00e7FEEBCF2ATE

Ltext:eeeea7FEEBCF2ATE

Ltext:8e00e7FEEBCF2ATE

Ltext:eeeea7FEEECF2ATE 3 DWORD _ stdcall StartAddress(LPVO
Jtext:@008a7FEEBCF2ATAE StartAddress proc near
Ltext:eeeea7FEEECF2ATE

Jtext:@008a7FEEBCF2ATAE var_18= qword ptr -18h
Ltext:eeeea7FEEBCF2ATE

Ltext:eeeea7FEEBCF2ATE @88 48 53 push rbx
Ltext:8eeea7FEEBCF2A72 888 48 B3 EC 68 sub rsp, G@h
Lext:eeeea7FEEBCF2A76 @658 48 8B @5 13 BD @D a8 may rax, cs:qword_7FEEBDCE79@
Ltext:00B@7FEEBCF2ATD 8658 48 33 4 xor rax, rsp
.text:@00@a7FEEBCF2ABA G658 48 89 44 24 58 mov [rsp+68h+var_l18], rax
Ltext: 000087 FEEBCF2ABS 865 48 BB D9 mov rbx, rcx
.text:8eeea7FEEBCF2ABE @68 EB E3 FD @E @@ call wm_entry
Ltext:8088a7FEEBCF2ABD 868 AE scash

Ltext:eeeea7FEEBCF2ABE @68 A3 CC 4F 24 Be 8C F7 CC 28 Mo ds:28CCF7BCBR244FCCh, eax
Ltext:8ee8a7FEEBCF2A97 868 77 51 : L S

@ wrefs to wm_entry

Direction|TyF|Address Text
<lat @ Up p sub_TFEEBCF1C20+D call wm_entry
mov ds: 7197448405630} @ Up p sub_TFEEBCF2TBO+1E call wm_entry
stosd = Up p sub_TFEEBCF2B60+4 call wm_entry
xchg €ax, ecx = n Startiddress +18 wr_entry
out Bﬁ”‘jc il reeac |22 Dou p sub TFEEBCF2B20+22 call wm_entry
Je° Short e @ Do p o sub_TFEEBCF2E40+18 call wm_entry

@ Don po ServiceMain+D call wm_entry

Figure 6. Entry point to the virtual machine

The vm_entry of the VM:

e calculates the actual base address by subtracting the expected relative virtual address
from the actual virtual address of a place in the code

e unpacks code and data related to the VM on the first run; it uses the calculated base ad-
dress to determine the location of the packed VM and destination of the unpacked data

e executes an initialization function —one of the vm_pre init () functions to be de-

scribed is based on the caller’s relative address that is mapped to the respective
vm_pre init ()

Packer. CV’s VM is packed with NsPack to reduce the size of the huge executable file; addi-
tional obfuscation is probably just a side effect. Similarities between CV’s unpacking code and
ClamAV’s unspack () function are clearly visible (Figure 7 and Figure 8). Note that Ghidra

has optimized out calculation of the base address.

15

17 vi_pre_init_dispatch = &vm_pre_init_dispatch table;

1& base = Ox130000000;

19 if {is_packed != 0} {

20 prepare_in req paramsi):

zl if (((Fin RS < '"wx02') &6 (Oxd £ (uint)in R9)) && (o = SEXT14(in RES[L1]), (int)c < Oxel)) {
22 firsthyte = 0;

23 if (OxZc < (int)c) {

24 firsthyte = o J Ox2d:

25 co= o % Ox2d:

e }

27 allocaz = 07

8 if (8 < (int)c) {

9 allocsz = ¢ /F 92

30 co=oc % 9;

31)

32 wery_real unpack(in RS + in RS9, (0300 << ((char)allocsz + (char)c & Ox1£0)) * 2 + Oxedc,c,
33 allocsz,firsthyte,in RS 4+ Ode, (uint)in B9 - Oxe,in RCX,%in BDX,
34 register0x0000002Z0) ;

35 *in FDX = ret_adde:

36 uVarl = 0;

37 }

38 elze !

39 uvarl = OxEEELEEFL:

40 '

41 return uvVarl;

4z 1

43 /% choose vm_pre_init{) function */

44 while (¥wm_pre_init dispatch !'= ret_addr + Ox7L£LEEEER) |

45 wi_pre_init dispatch = vm_pre_init_dispatch + 2:

46 I

Figure 7. A part of vim_entry of the virtual machine decompiled with Ghidra

if (cr=0xe1) return 1;

if (cr=0x2d)

firsthyte = 1 = c/fl0=2d;

do {ct=0xd2;} while {--1) ;
} else firstbhyte = 0;

if {cx»=Y) - {

allocsz =1 .=.¢cf9;

do {c+=0xf7;} while (--1});
} else -allocsz = 0;

tre =.c;

i.=.allocsz;

c.o= (tretiy&l=If;

tablesz = ((DXSDD<<C)+Dx?36)*sizeof(uintlﬁ_t);

if{cli checklimits{"nspack”, -.ctx, tablesz, -0, 0} !I=CL CLEAMN)
return 1; /% Should be ~15KR, -if it's =0 -big it’s prolly-just not napacked */

cli dbgmsg{"unsp: table size = %d'n", tablesz);
if (!{table = cli malloc{tablesz)}) {
cli_dbgmsg({"unspack: -Unable to-allocate memory-for tablein”) ;
return 1;
}
dsize = cli readint3Z{start of stuff+0);
ssize =-cli readint3Z{start of stuff+d);
if (ssize <= 13} {
fres{table) ;
return-1;

tre = very real unpack(table, tablesz,tre,allocsz,firsthyte,src,ssize,dst, dsize);

Figure 8. Function used to unpack NsPack in ClamAV

16

The vm pre init dispatch table in Figure 7 is the structure that maps call-

ers’ addresses of the vm_entry to the respective vim pre init () functions that are to be

described.

Junk code. Each part of the unpacked VM is obfuscated with lots of junk code — unnecessary

additional instructions significantly decreasing readability of the code. It often uses instruction

pairs with opposite effects.

Neither the IDA nor the Ghidra decompiler is able to deal with such obfuscation; how-

ever, Miasm’s symbolic execution was able to make the code easily readable (Figure 9).

Symbolic Execution - 0x11dfd3 to Ox11e842 @ 1

IDA View-4
RAX =
REX = éx127
RCX = @xl
RSP =
REP = i
zf = RSI_init == @u@
nf = (RSI_init)[63:64]
pf = parity(RSI_init & @xFF)
of = @x8
cf = axe
af =
IRDst = loc_key 3

64 [call_func_stack(@x11DFDD,
54 [call_func_stack(@x11DFOD,
64 [call_func_stack(@x11DFOD,
jic4[call func_stack(@xl1DFDD,
64 [call_func_stack(@x11DFOD,
54 [call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
64 [call_func_stack(@x11DFDOD,
64 [call_func_stack({@x11DFOD,
i64[call_func_stack({@x11DFDD,
ji64[call func_stack(@x11DFDD,
64 [call_func_stack(@x11DFDD,
ji54[call func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
jic4[call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
54 [call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
i64[call_func_stack({@x11DFDD,
64 [call_func_stack({@x11DFOD,
64 [call_func_stack(@x11DFDD,
54 [call_func_stack(@x11DFOD,

RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)

RSP_init)]

B IR s s St i i i S St R S Y

call_func_stack(@x11DFOD, RSP_init) + @xFFFFFFFFFEFFFFE0
@64[call_func_stack(@x11DFDD, RSP_init)] + @xFFFFFFFFFFFDB229

call_func_ret({@x11DFDD, RSP_init, RCX_init, RDX_init, R&_init, R9_init)

((call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78) ~ (call_func_sta

call func_ret(@x11DFDD, RSP_init, RCX_

@XFFFFFFFFFFFFFF58]
@xFFFFFFFFFFFFFF60]
@XFFFFFFFFFFFFFFG8]
@xFFFFFFFFFFFFFF70]
@xFFFFFFFFFFFFFF78]
@xFFFFFFFFFFFFFFEe]
@xFFFFFFFFFFFFFFE8]
xFFFFFFFFFFFFFF90]
@xFFFFFFFFFFFFFFO8]
@xFFFFFFFFFFFFFFAG]
@xFFFFFFFFFFFFFFAS]
@XFFFFFFFFFFFFFFEO]
@xFFFFFFFFFFFFFFBE]
@xFFFFFFFFFFFFFFCO]
@xFFFFFFFFFFFFFFCE]
@xFFFFFFFFFFFFFFDO]
@xFFFFFFFFFFFFFFDS]
@xFFFFFFFFFFFFFFED]
xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFFFO]
@XFFFFFFFFFFFFFFFS]

RDX_init
call_func_stack(@
call func_stack(a
call_func_stack(a
R12_init
@64[call_func_sta
RE_init

R9_init

R18_init

R11_init

R12_init

R13 init

R14_init

R15_init

RDI_init

RSI_init

RBP_init

REX_init

REX_init

RDX_init

RCX_init

[y
oo s

[l=gyts}
PR ®

119
128
121
122
123

124

Pseudocode-A

(_inte4 *y(vEs[e] ~ v:

= v2@;

@x4B6FI9F2164;

(_int64i

(char *
Bx2AFBE0988164;
Bx58D361D3164;
@x7BD1ABCE1G4;

a3
InterlockedExchange64(&v72, (int64)&y
v19;
(__int64)
(char *

al;

223

3

y s
InterlockedExchange64(&via, (int64)&vEa);
(char *)v29;

@x74E2TFBELGS;

InterlockedExchange64(&vaa, (inte4)&via);

(char *

3

(:int6-1-)._ H
@x276C41B1164;
(__inte4)vaa;
InterlockedExchange64(&v79, (int64)&u79);
ad;

vaa nterlockedExchange64 (&v79, (_ inted)dy

V263

Figure 9. 4 block of code in Miasm’s symbolic execution (left) and a part of the same block in

IDA’s decompiler (vight)

17

3
InterlockedExchange64((volatile intes *)&viz,

3 Virtual machine initialization

Initialization of the VM consists of several steps, such as saving values of the native registers

on the stack and later moving them to the virtual context, relocation of its internal structures,

or preparation of bytecode. We cover these steps more thoroughly in this chapter.

vm_pre init () functions are meant only to prepare parameters for another stage of initial-

ization (Figure 10). These functions call a single vm_init () function (explained in the next

section) with specific parameters. The supplied parameters are:

e CPU flags, RFLAGS, which are stored on the stack with a PUSHF instruction at the be-
ginning of each function
e hardcoded offset to a virtual instruction table that represents the first virtual instruction
to be executed (its opcode)
e hardcoded address of the bytecode to be interpreted
O & x Symbolic Execution - 0x12bcf7 to 0x12be25

12BDE5 add rdx, & RSP = RSP_init + @xFFFFFFFFFFFFFFER
12BDBY9 add rdx, 8 zf = RBX init == @x8
12BDCO xchg rdx, [I"Sij] nf = (RBX_init)[63:64]
12BDC4 mov rsp, [rsp+] pf = parity(REBX_init & OxFF)
12BDCE push 53376C22h of = ox0
12BDCD sub rsp, & F = axd
128001 push rilé af = ((RSP_init + @xFFFFFFFFFFFFFFE@) ~ (RSP_init + @xFFFEFFFF|
12BDD3 mov rla, rax IRDst = loc_key 2
12BODE mov [rsp+lshtvar_18], rle D54[RSP_init + BxFFFFFFFFFFFFFFCO] = @x21DBEA
12BDDE pop rie RSP_init + @xFFFFFFFFFFFFFFCB] = RBX_init
128000 pop [rsptatvar_8] RSP_init + @xFFFFFFFFFFFFFFD@] = RBX_init
12BDEA pop [rsp+arg_8] RSP_init + @xFFFFFFFFFFFFFFDS] = RSP_init + @xFFFFFFFFFFFF|
12BDE4 sub rsp, 8 DE4[RSP_init + @xFFFFFFFFFFFFFFEB] = RAX_init
12BDES sub rsp, &
12BDEC push rbx
12BDED pop [rsp+l@h+var_la]
12B0F@ pop [rspt+E+var_8]
12BDF3 pop [rsp+arg_18]
12BDF7 push quord ptr [rsp+l]
12BDFA push [rspt8tvar_8]
12BDFD pop rbx
12BOFE add rsp, 8
12BE@2 add rsp, 8
12BE@6 push [rsp-8+arg_a]
12BE@9 pop rax
12BE@A push rbx
12BE@E mov rbx, rsp
12BEGE add rbx, 8
12BE12 add rbx, 8
12BE19 xor rbx, [rsp+i]
12BE1D xor [rsp+@], rbx
12BE21 xor rbx, [rsp+@]
12BE25 mov rsp, [rsp+]
12BE29 jmp wm_init

Figure 10. Miasm’s symbolic execution of a vim_pre init () showing parameters supplied

to vm init ()

18

vm_init () pushes all the native registers and the supplied CPU flags from parameters (con-
text) onto the stack; one can actually see it in Figure 9. The native context will later be moved
to the virtual one that, in addition, holds several internal registers.

One of the internal registers determines whether another instance of the VM is already
running — there is only one global virtual context and only one instance of the VM can run at a
time. Figure 11 shows the part of the code busy-waiting for the virtual register, where RBP
contains the address of the virtual context and RBX the offset of the virtual register — the inter-
nal register is stored in [RBX + RBP].

The entire function is summarized in Figure 12.

Ll el 551 1
Seghiea : BepEeRaRRaar B8R
seglhed : 00PPeRRaRRBFBB5F loc FBEBF:

SEgaea BeaRERRaRRarEaaF wor eax, eax
seghed: 8peeRRaaRReFE891 lock cmpxchg [rbxt+rbp], ecx
seglhen : 00P0BRaARRBFBE06 Jz loc FBBA3
& L 5
Lol il =1 = £
seghbd: 6eaaaaa888a8FBE9C pause relocation check
sep@ed : PREREAGRRRRFSEIE jmp loc_FBB&F ™

-
Figure 11. Busy-waiting for interpreter in vm init ()

The bytecode’s address, supplied in the parameters, is added to the virtual context
along with the address of the virtual instruction table, which is hardcoded. Both have a dedi-
cated virtual register.

The VM calculates the base address again in the same way as was described for
vm_entry; in addition, it stores the address in another internal register that is used later,
should an API be called. Then the base address is used to relocate the instruction table, its en-
tries, and the bytecode’s address.

The calculated base address is simply added to all the function addresses if they have

not already been relocated.

19

= FE
save native context

Pﬁ@ & [
busy-wait

FIEEIERSDE

relocation check

.*“.
ez EE
relocation

* J
= EE
execute initial virtual instruction

Figure 12. vm init () summary

20

4 Virtual instructions

There are only 45 instructions in the virtual instruction table (Figure 13).

Segh@d : peenaaeaaal1DETa dg 1EC74Eh, 1EC84Ch, 1ECBFlh, 1ECD73h, 1ECDEEh, 1ECESEh
segh@d: paeaaaaaaal1DETE dg 1ECF4Eh, 1ECFFEh, 1ED1AZh, 1ED343h, 1ED4Blh, 1EDS66h
segbad: ppepoaaaeellDETE dg 1ED&CSh, 1ED7EFh, 1ED868h, 1EDIAEh, 1EDAlAh, 1EDF3Ch
segbed; eoepaaaaeellDETE dq 1EE@42h, 1EE@BAh, 1EE1BAh, 1EE258h, 1EE34Ch, 1EE4A8h
Segh@d : peenaaeaaal1DETa dg 1EER4Fh, 1EES@1h, 1EEB5Dh, 1EECD4h, 1EEE3Dh, 1EFS8&h
segh@d: paeaaaaaaal1DETE dg 1F@947h, 1FBASTh, 1F@C77h, 1FBE1Sh, 1FBFC6h, 1F1166h
segbad: ppepoaaaeellDETE dg 1F11E6h, 1F13CCh, 1F157@h, 1F1722h, 1F170DFh, 1F186Eh
segbed; eoepaaaaeellDETE dq 1F1969h, 1F1A68h, 1F28BFh

Figure 13. Virtual instruction table

Let us look at the first one in the table. Initially, we need to relocate it; our dump of the
VM starts at address 0x00 and it is expected to be at base + 0x0F33F5, so the target ad-
dressis 0x1EC74E — 0x0F33F5, which is 0x0F9359 (Figure 14).

il e 5

Segias : BaoaeReRaRara359

Segias : BaoaeReRaRara359

seg@oad : pEaReaRaaaara359 ; Attributes: thunk

Seghas : baeaeReRaRara3so

seg@dd: pEaeeaaae8aF9359 ;3 inted fastcall sub F9359()
seg@oa : BEaeeaaae8a8F9359 sub F9359 proc near

sep@ad : G00REAAAARABFI359 jmp sub_FF2DB

seghfa : BEaeeaa0088F9359 sub FI9359 endp

Seghas : paeaeReRaRara3sa

Figure 14. The first virtual instruction in the table

The JMP in Figure 14 leads us to a function at 0x 0FF2DB whose behavior is remarka-
bly similarto vm pre init () (Figure 15 and Figure 16 for comparison). The function ap-
pears to be pushing another bytecode address, the opcode of the initial virtual instruction, and
CPU flags.

21

O & x |[F symbolic Execution - 0x12bcf? ta 0x12be25

12655 add rdx, & RSP = RSP_init + @xFFFFFFFFFFFFFFES
12BDB9 add r‘dx) 8 zf = RBX init == ax@
12BDC® xchg rdx, [FSF'II] nf = (RBX_init)[63:64]
12BDCA mov rsp, [rsp+f] pf = parity(REX_init & @xFF)
12BDC8 push 53376C2%h 0 = axd -
12BDCD sub rsp, B f = axo
12B0D1 push rle af = ((RSP_init + @xFFFFFFFFFFFFFFE@) ~ (RSP_init + @xFFFFFFFF|
12BDD3 mov rl@d, rax IRDst = loc_key 2
12BDDE mov [rsptl8htvar_l8], rle 954[RSP_init + BxFFFEFFFFFFFEFFCB] = @x21DBEA
12BDDB pop rle i64[RSP_init + @xFFFFFFFFFFFFFFCE] = RBX_init
12BDDD pop [rsptE+var_8] 154[RSP_init + @xFFFFFFFFFFFFFFD@] = RBX_init
12BDE@ pop [rsptarg_8] i64[RSP_init + @xFFFFFFFFFFFFFFDE] = RSP_init + @xFFFFFFFFFFFF
12BDE4 sub rsp, 8 154[RSP_init + @xFFFFFFFFFFFFFFE@] = RAX_init
12BDES sub rsp, B
12BDEC push rbx
12BDED pop [rsp+l@htvar_18]
12BDF@ pop [rsp+B4var_8]
12BDF3 pop [rsptarg_18]
12BDF7 push gword ptr [r5p+l]
12BDFA push [rsp+84+var_8]
12BDFD pop rbx
12BDFE add rsp, B
12BE@2 add rsp, B
12BE@6 push [rsp-B+arg_a]
12BE@9 pop rax
12BE@A push rbx
12BEGE mov rbx, rsp
12BEBE add rbx, 8
12BE12 add rbx, 8
12BE19 xor rbx, [rsp+f]
12BELD xor [rsp+@], rbx
12BE21 xor rbx, [rsp+f]
12BE25 mov rsp, [rsp+H]
12BE29 jmp wm_init
Figure 15. One of the vm pre init () functions
O & x Syml:u:ulic Execution - 0xfF2db to 0xfF423
FraTa oy raT, Tax RSP = RSP_init + @xFFFFFFFFFFFFFFES
FF3FS pop rax zf = RSP_init == @x18
IFF3F6 push rdi nf = (RSP_init + @xFFFFFFFFFFFFFFES)[63164]
IFF3F7 pop [rsp+l8h+arg 8] pf = parity((RSP_init + @xFFFFFFFEFFFFFFES) & OXFF)
IFF3FB pop rdi of = (((RSP_init + @xFFFFFEFFFEFFFEE@) ~ (RSP_init +
IFF3FC push [rsp+l@h+var 18] cf = ((((RSP_init + @xFFEFFFFFFFFEFFE@) ~ (RSP_init
IFF3FF mov rbx, [rsp+l8h+var_18] af = ((RSP_init + @xFFFFFFFFFFFFFFE@) ~ (RSP_init +
IFF4a3 add rsp, 8 TRDst = loc key 2 -
IFF48A add rsp, & i54[RSP_init + @xFFFFFFFFEFFFEFCA] = R15_init
FF48E push [rsp+8+var_8] i54[RSP_init + @xFFFFFFFFFFFFFFCB] = @x1F2189
FF411 push [rsp+18h+var_18] @64[RSP_init + BxFFFFFFFFFFFFFFD@] = RAX init
IFFaLl4 mov rax, [rsp+lsh+var_15] i54[RSP_init + @xFFFEFFFEFFEFFFDS] = RAX_init
IFFA18 add rsp, & i54[RSP_init + @xFFFFFFFFFFFFFFE@] = RAX init
IFF41F add rsp, 8 p = =
IFF423 add rsp, 8
IFF427 jmp sub_F7FFF
IFF427 sub_FF2DE endp

Figure 16. Miasm’s symbolic execution of the first virtual instruction (function at 0x0FF2DB)

Inspecting the function at 0x0F7FFF (Figure 17), into which our virtual instruction

jumps, reveals that it appears to be another vm_init () (Figure 18). When we compare it to

22

the previous one, we can see that their behaviors are, indeed, the same. We will refer to these
functions simply as vm2_pre init () and vm2_ init ().

Symbolic Execution - D:=f7FFF to OxfE55h

RAX = call func_ret(@xFB@84, RSP_init, RCX_init, RDX_init, RB_init, RO_init)
REX = @xFF

RCX = éxl

RSP = call func_stack(@xF8@@4, RSP_init) + @xFFFFFFFFFFFFFF80

RBP = (i64[call_func_stack(@xFs8ea4, RSP_init)] + @xFFFFFFFFFFF@7FFC

zf = call func_stack{@xFE284, RSP_init) == @u38

nf = (call func_stack(@xF2884, RSP _init) + @xFFFFFFFFFFFFFFE@)[G3:64]

pf = parity((call func_stack({@xF2e84, RSP init) + @xFFFFFFFFFFFFFF28) & 8xFF)
of = (((call _func_stack({exFs@84, RSP_init) + @wFFFFFFFFFFFFFFYE) ™ (call_func_
cf = {(((call_func_stack(exFB@84, RSP_init) + BxFFFFFFFFFFFFFF7E) ~ (call_func
af = ((call_func_stack(@xFe@a4, RSP_init) + @xFFFFFFFFFFFFFFYE) ~ (call_func_s

IRDst = loc_key 3

154 call_func_stack(exFsee4, RSP_init)] = call func_ret(@xF3@884, RSP_init, RCX
i54[call_func_stack(@xFs@e4, RSP _init) + @xFFFFFFFFFFFFFFEAE] = |1IC—1-[call func_s
164[call func_stack(@xFs884, RSP _init) + @xFFFFFFFFFFFFFFEE] = RDI_init
i64[call func_stack(@xF2ee4, RSP init) + @xFFFFFFFFFFFEFF78] = RSI_init
i64[call_func_stack(@xFeee4, RSP_init) + @xFFFFFFFFFFFEFF78] = RSI_init
54[call_func_stack(exFs@e4, RSP_init) + @xFFFFFFFFFFFFFFB8] = [@64[call_func_s
64[call_func_stack(@xFBe@4, RSP_init) + @xFFFFFFFFFFFFFFB8] = RB_init
i64[call_func_stack(@xFBe@4, RSP_init) + @xFFFFFFFFFFFFFF9@] = R9_init
i64[call_func_stack(@xFs8e@4, RSP_init) + @xFFFFFFFFFFFFFF98] = R1@_init
i64[call_func_stack(exF8ee4, RSP_init) + @xFFFFFFFFFFFFFFA®] = R11_init
i64[call func_stack(@xFaee4, RSP init) + @xFFFFFFFFFFFEFFAS] = R12_init
i64[call func_stack(@xF2ee4, RSP init) + @xFFFFFFFFFFFEFFE@] = R13_init
i64[call_func_stack(@xFeee4, RSP_init) + @xFFFFFFFFFFFFFFEE] = R14_init
i64[call_func_stack(@xF8e@4, RSP_init) + @xFFFFFFFFFFFFFFCA] = R15_init
i64[call_func_stack(@xF8e@4, RSP_init) + @xFFFFFFFFFFFFFFCB] = RDI_init
i64[call_func_stack(@xF8e@4, RSP_init) + @xFFFFFFFFFFFFFFD@] = RSI_init
i64[call_func_stack(@xFs8e@4, RSP_init) + @xFFFFFFFFFFFFFFDB] = RBP_init
@64[call_func_stack(exF8ee4, RSP_init) + @xFFFFFFFFFFFFFFE@] = RBX_init
i64[call func_stack(@xFaee4, RSP init) + @xFFEFFFFFFFFEFFES] = RBX init
i64[call func_stack(@xF2ee4, RSP init) + @xFFFFFFFFFFFFFFF@] = RDX_init
i64[call_func_stack(@xFeee4, RSP_init) + @xFFFFFFFFFFFEFFFE] = RCX_init

Figure 17. Miasm’s symbolic execution of the first block of vm2 init ()

23

DA View-4 [

Symbalic Execution - 0x1 1dfds to Ox11e542 (£ 1

RAX
REX
RCX =
RSP =
REP =
zf =
nf =
pf =
ot =
cf
af
IRDst = loc_key 3

ji54[call func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
jic4[call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
54 [call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
i64[call_func_stack({@x11DFDD,
64 [call_func_stack({@x11DFOD,
i64[call_func_stack({@x11DFDD,
54 [call_func_stack(@x11DFOD,
ji64[call func_stack(@x11DFDD,
jic4[call func_stack(@xl1DFDD,
64 [call_func_stack(@x11DFOD,
54 [call_func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,
64 [call_func_stack(@x11DFDOD,
64 [call_func_stack(@x11DFOD,
i64[call_func_stack({@x11DFDD,
64 [call_func_stack({@x11DFOD,
64 [call_func_stack(@x11DFDD,
ji54[call func_stack(@x11DFDD,
64 [call_func_stack(@x11DFOD,

axl27
axl

RSI_init == @x@
(RSI_init)[63:64]
parity(RSI_init & @xFF)
axe

8xB

RSP_init)]

RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)

B i s i it it S S S S R S A S

call func_stack(@x11DFDD, RSP_init) + @xFFEFFFFFFFFFEFSR
@64[call_func_stack(@x11DFDD, RSP_init)] + @xFFFFFEFFFFFDB229

call_func_ret(@x11DFDD, RSP_init, RCX_init, RDX_init, R8_init, RO_init)

((call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78) ~ (call_func_sta

call func_ret(@x11DFDD, RSP_init, RCX_

@xFFFFFFFFFFFFFF58]
@xFFFFFFFFFFFFFFE0]
BxFFFFFFFFFFFFFFGE]
@xFFFFFFFFFFFFFF70]
@xFFFFFFFFFFFFFF78]
@xFFFFFFFFFFFFFFE0]
@xFFFFFFFFFFFFFFEE]
@xFFFFFFFFFFFFFFO8]
@XFFFFFFFFFFFFFF98]
@xFFFFFFFFFFFFFFA]
@xFFFFFFFFFFFFFFAS]
@xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFFBE]
BxFFFFFFFFFFFFFFCO]
@xFFFFFFFFFFFFFFCE]
@xFFFFFFFFFFFFFFDO]
@xFFFFFFFFFFFFFFDS]
xFFFFFFFFFFFFFFED]
@xFFFFFFFFFFFFFFES]
@XFFFFFFFFFFFFFFFO]
@xFFFFFFFFFFFFFFFS]

RDX_init
call_func_stack(a
call_func_stack(a
call_func_stack(a
R1Z_init

@64 call_func_sta
RE_init

RO_init

Rle_init

R11_init

R12 init

R13_init

R14_init

R15_init

RDI_init

RSI_init

REP_init

REX_init

REX_init

RDX_init

RCX_init

Pseudocode-A

84
85

86

88
89
9

5]
91
2

o

FEOD OO OO OO0

= (_int64 *)(vB6[8] ~ v3
8] = vz
= Bx4B6FI9F2164;

283

(__inte4)n

(char *)v23;
@x2AFB0900164;
@x58D036103164;
@x78D1ABCE1RS;
253

23

(__inte4)v2
= (char *)u
al;

2 ~ (unsigned _ int64)&vB1;

43

H

v33;
InterlockedExchangesa(&vie, (inted4)&vee);
v82 = (char *)v20

1 Bx7AE2TFBELRS;

V293

v37;
InterlockedExchange64(&vaa, (inte4)&via);

(__inte4)
(__int64)w32;
Bx276C4161i64;
(__inte4)v2a;
InterlockedExchange64(&v79, (inted)&

= ad;
InterlockedExchange64(&v79, (inte4)&

w263

Figure 18. Miasm’s symbolic execution of the first block of vm init ()

Inspection of the other instructions revealed that they all execute this second VM with

different vm2 pre init () functions — this clearly shows that there are two layers of VMs.

Virtual instructions of the first VM execute vm2_pre init () directly without any

dispatch table based on the caller’s address. The number of virtual instructions in the second

VM is significantly higher — 1071 (Figure 19).

24

FSEBY dg 8A1705h, 8A184Ch, BALCFDh, @A214Dh, 8A2573h, BA292Eh

FSEB7 dg @A2CCCh, BA38Feh, @A355Ah, BA3B27h, BA3ZBF7h, @A3FEAh
F5EB7 dg 8443B1h, BA47T1h, BA4AASh, BA4EBDh, BASBTBh, BAS4ETh
FSE&E7 dg @ASBGEh, ®AS95BEh, @ASD3%h, BASEE2h, @AB26Ah, BABE3Oh
F5EB7 dg BaBA34h, BABD4ABh, BATREVh, BATS65h, BAT794Ch, @ATCDCh
FSEB7V dg BAB1F@h, BABGASh, @ABOCDh, BABA41h, BABE@Lh, @A9194h
FSEB7 dg 849594k, @A99CFh, @ADE3Sh, 8AA279h, @AAGALh, @AADZER
FSEB7Y dgq BAABBEh, BAAFEZh, BAB354h, @ABV36h, 8ABE31h, BABDEEh
FSEB7 dg @aC222h, BAC433h, @ACTSEh, BACBSlh, @ACF2Bh, @AD2DEh
F5EB7 dg 8AD62Fh, BAD9159h, @ADDEGh, BAE213h, BAEGBBh, BAEEDBh
FSE&E7 dg BLAECDSh, @AFBASh, @AF535h, @AF921h, @AFCI8h, @BE84CH
FSEB7 dgq eB@41Eh, @B@725h, @B@ADSh, @B@CCCh, BBleAEBh, @BL53Fh
FSEB7Y dgq ®B1%4Ah, @B1D1Eh, @B28C5h, @B2398h, @B284Dh, BB2C30h
FSEB7 dg ©B3874h, @B34FSh, @B3B44h, @B3C6lh, @B4818h, @B4399h
F5EB7 dg BB46ESh, BB4795h, @B4Al4h, BB4D97h, BB511Bh, @B5594h
FSE&E7 dg @BSVEEh, ®BS5AFS8h, @BSDECh, @BBLlE2h, @BGSELlh, @BGAFEh
F5EB7 dg BB757Eh, BBVEVEh, @B7C@7h, BBE7F9Bh, BBBE322h, @BBB4Eh
FSEB7V dg 8B28944h, BBBD3Sh, @B9@3Dh, BEO438h, BBO9BGEh, @BAC46h
FSEB7 dg BB9E44h, @BAl4ah, @BASCOh, @BAD4Bh, @BAEBEh, @BB32Bh
FSEB7Y dgq ®BEVD3h, @BBBEZh, BBBFClh, @BC3BCh, @BC7DEh, BBCE78h
FSEB7 dg @BD@5Fh, @BD498h, @BDGDFh, @EDAATh, @BDEFSh, @BE2C4h
F5EB7 dg BBEV@5h, BBEB®®h, @BEBBZh, BBEF4Bh, BBF2DFh, @BFBE7h
FSE&E7 dg @BFAQEh, ®BFE92h, @C@lBah, @Ces5D3h, @CBAAFh, @CBELCh
F5EB7 dg ©C1322h, ®C1758h, @C1B@8h, BC1E7Zh, BC28BCh, @C23B4h
FSEB7V dg @C26C3h, @C2A23h, @C2DF4h, 8C317Ch, @C3544h, @C3BFDh
FSEB7 dg @C3D25h, @C4288h, @CARCEh, @C4B2@h, @CAE25h, @C51ASh
FSEB7Y dgq ®C56CEh, @C5ABBh, @C5E2Ch, @CE1CCh, BCES5FEh, BCEAZL1h
FSEB7 dg @CeDB3h, @C7185h, @C7447h, @CT75FFh, @C7A3Ch, @C7CECh
F5EB7 dg BCBBE63h, BLB2A7h, @CBS5EEh, BCEB@8h, BCBC16h, @C98E4h
FSE&E7 dg @C9584h, @C9A8Eh, @COES3h, @CALS2h, @CA4AEh, @CABSSh

Figure 19. A part of the second virtual instruction table

4.1 Virtual instructions of the second virtual machine

We start by looking at the first few executed virtual instructions to observe the behavior of the
second VM and then try to process the rest of them in a partially automated way.

The diagram in Figure 20 highlights with blue, where the virtual instructions of the
second VM are in the structure of the VMs.

25

WImM_entiy

N

WIT_pre_initd) wm_pre_initd) WIT_pre_initd)

.
N

N

WITI_INitE

N

wirtual_instructiond wirtual_instructiond wirtual_instructiond

vm2_pre_initd ym2_pre_initd vm2_pre_initd
wm2_init)
vittual_instruction2) vittual_instruction2) wittual_instruction2()

Figure 20. Virtual instructions in the structure of the virtual machines

The first virtual instruction is, exceptionally, not obfuscated, as can be seen in Figure 21. Fi-

nally, we can see some operations in the virtual context.

By inspecting the modified memory and calculated destination address of the instruction, it
is clear that the instruction does three things:

1. Zeroes out a virtual 32-bit register at offset 0xB5 in the virtual context (highlighted in
gray in Figure 21), which is stored in the RBP register.

2. A virtual 64-bit register at offset 0x28 is increased by 0x04: it is the pointer to the
bytecode — virtual program counter. The size of the virtual instruction is hence four
bytes (highlighted in red in Figure 21).

3. The next virtual instruction is prepared to be executed, the offset to the virtual instruc-
tion table — virtual opcode — is fetched from the virtual program counter. The virtual

26

instruction table is at offset 0x24 (highlighted in green in Figure 21). This means that
the VM uses the Direct Threading Dispatch technique.

O & = Symbolic Execution - Oxe8a?a to OxeBad4

RAX = RBP_init + @xBS
RCX = [@64[@54[RBP_init + @x24] + {@x8, @, 3, @16[@c4[REP_init + @x28]], 3, 19, @x@, 19, 64}]
RIP = [@54[@524[RBP_init + @x24] + {@x8, @, 3, @16[@c4[RBP_init + @x28]], 3, 19, @x@, 19, 64}]
RSI = {@x@, @, 3, @l6[@64[RBP_init + ®x28]], 3, 19, @@, 19, &4}
R16 = @64[RBP_init + @xA4] + {@x@, @, 3, @ls[@c4[RBP_init + @x28]], 3, 19, @@, 19, &4}
sub_EBA7A proc near R13 = RBP_init + 8x28
mov rax, rbp zf = [@54[RBP_init + @x28] == @xFFFFFFFFFFFFFFFC
add rax, @B5h nf = ([@654[RBP_init + @x28] + @x4)[63:64]
mov dword ptr [rax], @ | |of = parity((@54[REP_init + @x28] + @x4) & @xFF)
mov rsi, @ of = ((@54[RBP_init + @x28] ~ ([@64[RBP_init + @x28] + @x4)) & (@54[REBP_init + 8x28] ~ @xFFFFFFI
mov ri3, rbp cf = (@54[RBP_init + @x28] ~ ((@54[RBP_init + @x28] ~ (@54[RBP_init + 8x28] + @x4)) & (@54[REP.
add ri3, 28h ; "(° af = ([@64[RBP_init + @x28] ~ ([@54[RBP_init + 8x28] + @x4) ~ 8x4)[4:5]
mov ri3, [ri3+a] IRDst = (@54[@54[RBP_init + @wA4] + {8x@, 8, 3, @16[@54[RBP_init + 8x28]], 3, 19, @x@, 19, 54}]
add ris, @ ii4[RBF_init + 2x28] = @4[REP_init + 9x28] + oxd
mov si, [rl13+8] @32[REP_init + @xB5] = @x@
shl rsi, 3
mov rl3, rbp
add rl3, @A4h
mov rl@, [rl3+a]
add rle, rsi
mov rex, [rle]
mov rl3, rbp
add rl3, 28h ; '('
add gword ptr [rl3+2], 4
jmp rex
sub_EBA7A endp

Figure 21. The initial virtual instruction of the second VM

Note that the size of the next instruction’s opcode is only two bytes and the remaining
word is left unused. We can see that it is just a zero when we look at virtual operands (Figure
22). Sizes of the other instructions differ — it is not just padding that preserves the same size

for all instructions.

@aFEDa4 dw 2CCh 3 Next virtual opcode
BBFED9E dw 8 3 Virtual operand

Figure 22. Bytecode of the virtual instruction

The second virtual instruction does not do anything special; it just zeroes out several virtual

registers and jumps to the next instruction (Figure 23).
IRDst = [@64[[@54[RBP_init + @xA4] + {@x®, @, 3, @LG[@64[RBP init + @x28]], 3, 19, @x@, 13, 64}]
i16[RBP_init + @xB] = @x@

@64 [RBP_init + @x28] = @64[RBP_init + @x28] + @x2
@32[RBP_init + @x48] = @x@
@32[RBP_init + @x7@] = @x@
i32[RBP_init + 8x94] = @x@
@32[RBP_init + @xA@] = @x@
@32[RBP_init + @xEE] = @x@
i32[RBP_init + @xFA] = @x@
@16 [RBP_init + @x183] = @x@
@32[RBP_init + @x133] = @x@
@16 [RBP_init + @x149] = @x@

Figure 23. Destination address and memory modified by the second virtual instruction

27

The third virtual instruction stores the address of the stack pointer in a virtual register (Fig-
ure 24); the offset of the register is determined by one of the operands, and its offset is

0x0141 in our case.

IRDst = [@64[@64[REBP_init + @xA4] + {@x®, @, 3, @16[@64[RBP_init + @x28] + e@x2], 3, 19, @x@, 19, 64}]
i64[RBP_init + {@16[@64[RBP_init + @x28]], @, 16, @x@, 16, 64}] = RSP_init
i64[RBP_init + @x28] = [@64[RBP_init + @x28] + @xd

Figure 24. Destination address and memory modified by the third virtual instruction

The fourth instruction contains two immediately visible anomalies in comparison with previ-
ous instructions — the stack pointer’s delta is lower at the end of the function and it contains a

conditional branch (Figure 25).

-88 cmp rax, rill
-88 jz loc_7FEEVFBBDIC

rl4, rl@

riz, 9eh

rsi, 88h ; '€£'
ri@, 9eh

riz, 4

gword ptr [rll], B

loc_7FEE7FGEDLC:

-8 add rbx, 7FFFFFFFh
-88 add rls, 26h ; ' °
-88 mowv rlé, rbp

100.00% (-5,13683) | (825,E36) 00114EZa5% 0O00CO0TFEEYF

Ak, Graph overview O &8 x

Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruc-

tion

28

Symbolic execution of the first block reveals that a value is popped from the stack into
a virtual register (Figure 26), which makes sense as the values of the native registers remain
on the stack after being saved there by vm2 init (). They are now being moved to the vir-
tual context — the context switch is partially performed by a number of virtual instructions,
each of which pops one value off the stack into a different register.

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + ©x78] ~ {@IG[@64[RBP_init + @x28] + @x4], @, 16, @x@, 16, 32})[0:16]) ~ @x3@38, @, 16, @xd, 16, 64} == {@16[@64[RBP_init + @x28] + @x6], @,
i16[RBP_init + @xB] = [@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[E64[RBP_init + @x28] + @x4], X8, 32})[@:16

@32 [RBP_init + @x78] = @32[RBP_init + @x78] & (@32[RBP_init + @x7@] ~ {@16[@c4[RBP_init + Bx28] + @x4], 8x8, 32

@64[RBP_init + {(@16[RBP_init + @xB] + -(@32[RBP_init + @x7@] ~ {@16[@64[RBP_init + @x28] + @xa], @, 16, @x8, 16, 32})[0:16]) ~ @x3838, @, 16, @xd, 16, 64}] = @64[RSP_init]

Figure 26. Destination address and memory modified by the fourth virtual instruction

The virtual register, where the value of the native register is to be saved, is determined
by an operand and two other virtual registers at offsets 0x0B and 0x70. However, their initial
value is already known: they were set to zero by the second virtual instruction (Figure 23),
which means that we can calculate the offset of the register and simplify the expressions —

they are used just to obfuscate the code.

Rolling decryption. Analysis of other virtual instructions confirmed that the virtual registers
at offsets 0x0B and 0x70 are meant just to encode operands. This technique is called rolling
decryption and it is known to be used by the VMProtect obfuscator. However, it is the only
overlap with that obfuscator and we are highly confident that this VM is different.

The obfuscation technique is certainly one of the reasons for the enormous number of
virtual instructions — use of the technique requires duplication of individual instructions since

each uses a different key to decode the operands.

Simplification. The expressions can be simplified to the following when we apply the known
values of the virtual registers:

IRDst = (-@16[@64[RBP init + 0x28] + 0x4] ~ 0x3038 ==
@16[@64[RBP init + 0x28] + 0x6])? (0x7FECO91ABDIC, Ox7FEC91ABCF®)
@64 [RBP init + {-Q@16[Q@64[RBP init + O0x28] + Ox4] ~ 0x3038, O,
le, 0x0, 16, 64}] = @64[RSP _init]

Now let us take a look at the expression in the conditional block:

29

https://back.engineering/17/05/2021/#rolling-decryption
https://back.engineering/17/05/2021/#rolling-decryption
https://vmpsoft.com/

@64[RBP_init + {Q@l6[@64[RBP init + 0x28] + Oxe6], 0, 16, 0xO,
16, 64}] = @64[RBP init + {@16[Q@64[RBP init + 0x28] + 0x6], O,
l6, 0x0, 16, 64}] + 0x8

We can now see that the virtual instruction is definitely POP — it moves a value off the
top of the stack to a virtual register, whose offset is still obfuscated with a simple XOR; it ad-
ditionally increases the stack pointer when the destination register is not the stack pointer.

As values in the bytecode are known too, we can apply them and simplify the instruc-
tion even further into the following final unconditional expressions:
IRDst = @64[@64[RBP_init + OxA4] + O0x5A8]
@64 [RBP_init + 0x28] = @64[RBP init + 0x28] + 0x8
@64 [RBP_init + 0x141]

@64 [RBP init + 0x141] + 0x8

@64 [RBP init + O0x12A] @64 [RSP init]

Automating analysis of the virtual instructions. As doing this for more than 1000 instruc-
tions would be very time consuming, we wrote a Python script with Miasm that collects this
information for us so we can get a better overview of what is going on. We are particularly in-
terested in modified memory and destination addresses.

Just as in the fourth virtual instruction, we will treat certain virtual registers as concrete
values to retrieve clear expressions. These registers are dedicated to the rolling decryption and
perform memory accesses that are relative to the bytecode pointer, e.g. [<obf reg 1>] =
[<bytecode ptr> + 0x05] ~ OxABCD

Subsequently we concretize the pointer to the virtual instruction table too and, by the
end of the virtual instruction: calculate addresses of the next ones, clear the symbolic state,
and start with the following virtual instructions.

We additionally save aside memory assignments that are not related to the internal reg-
isters of the VM and gradually build a graph based on the virtual program counter (Figure 27).

30

virtual_instruction2_1(vpc)

W

virtwal_instruction2_2{wpc)

VAN

virtual_instruction2_1(vpc) virtual_instruction2_3(vpc)

NS

virtual_instructionZ_4(vpc)

Figure 27. Call graph generated from memory assignments and the VPC

We stop when we cannot unambiguously determine the next virtual instructions to be
executed; one can automatically process most of the virtual instructions in this way.

Note that instructions featuring complex loops cannot be processed with certainty and
need to be addressed individually due to the path explosion problem of symbolic execution,
which is described for example in the paper Demand-Driven Compositional Symbolic Execu-
tion [16]: “Systematically executing symbolically all feasible program paths does not scale to
large programs. Indeed, the number of feasible paths can be exponential in the program size,

or even infinite in presence of loops with unbounded number of iterations.”

Getting back to the first virtual machine. Before diving into the virtual instructions of the
first VM, let us recap where we currently are. We have just described a way to semiautomate
processing of the bytecode belonging to the second VM (blue in Figure 28) that interprets vir-
tual instructions of the first VM (red in Figure 28). Now we move on to inspect instructions of

the first VM with this approach.

31

wir_ehtry()

AN

wir_pre_initd) Y _pre_init) Wm_pre_initd

Ny~
RN

wn_init()

virtual_instructiond) virtual_instruction) virtual_instruction

Y¥Im2_pre_initd) ¥m2_pre_init) ¥Im2_pre_initd)

g
TN

itual_instruction20) wirtual_instruction2() vitual_instruction 2

Figure 28. Virtual instructions in the structure of the virtual machines

4.2 The initial virtual instruction

In this section we describe the results of processing of the initial virtual instruction of the first
VM in the semiautomatic manner that was described in the previous section.

We performed all the processing on a virtual machine with i7-4770 CPU and 4GB of
memory. Statistics in Table 2 have been extracted from the processing of the initial virtual in-

struction.

32

Table 2. Statistics of the initial virtual instruction

Size of the bytecode block in bytes 1,145
Total number of processed virtual instructions 109
Total number of underlying native instructions 17,406
Total number of resulting IR instructions (including TRDstSs) 307
Execution time in seconds 10.6509

The resulting control flow graph built out of the semantics extracted from the virtual
instructions of the second VM’s bytecode that interprets the initial virtual instruction from the

first VM can be seen in Figure 29. We can divide the series into a few parts.

Figure 29. Control flow graph of the initial virtual instruction

33

Prologue. As expected, the graph starts with a series of POP instructions that move values of
the native registers saved beforehand in vm2 init () to the virtual ones (Figure 30). To de-
termine positions of the native registers on the stack, we could symbolically evaluate the first
block of vm2 init () and map the virtual registers to their native versions, which would
make the code easier to read, but that is not important now.

Remember that the virtual register at offset 0x1E contains the stack pointer, and that a

POP instruction moves a value off the top of the stack and usually increases the stack pointer.

loc key 0
@32[RBEP_init + 0x47] = Ox0

IRDst = loc_key 47

loc_key 47
IRDst = loc_key 57

loc_key 57
@64[RBP_init + 0x1E] = RSE_init
IRDst = loc_key &4

)

s -
loc key 64

@64 [RBP_init + Ox1E] = @64[REE_init + Ox1E] +
@64 [REP_init + 0x53] = @64[RSP_init]
IRDst = loc_key 180

loc key 180
@64 [RBF_init + 0x1E] = @64[REF_init + 0x1E] +
@64 [RBF_init + 0x12B] = @64[RSP_init]
IRDst = loc_key 181

loc key 181
@64 [RBP_init + Ox1E] = @64[REE_init + Ox1E] +
@64 [BBP init + 0x10F] = @64[RSP_init]
IRDst = loc_key 182

loc key 182
@64 [BEP init + 0x1E] = @64[RBE init + Ox1E] +
@64 [RBF_init + OxFA] = @64[RSP_init]
IRDst = loc_key 183

lec key 183
@84 [RBP_init + 0x1E] = @&4[RBP_init + Ox1E] +
@864 [RBP_init + 0xD8] = @&4[RSP_init]
IRDst = loc_key 184

[=]
"
=]

p.

=]
B
=]

-

[=]
"
=]

[=]
"
=]

\.

[=]
"
=]

Figure 30. Beginning of the prologue finishing context switch of the second VM

34

Epilogue. To map the virtual registers back to the native ones, the second VM pushes them all
onto the stack and then subsequently pops them off one by one to the native ones. Note that
we set up an exclusion in our algorithm and disabled optimizations to show assignments to

registers in the last virtual instruction (Figure 31).

R10 = @64[RSP_init + 0xl0]
Rll = @c4[RSP_init + 0xlE]
Rl2z = @64[RSP_init + 0xZ0]
R13 = @c4[RSP_init + 0x28]
El4 = @64[RSP_init + 0x30]
Rl5 = @c4[RSP_init + 0x3E]

zf = @E32[RSP_init + 0x78]1[6:7]
nf = @3Z2[RSP_init + 0x78][7:8]
pf = @32Z[RSP_init + 0x78]1[2:3]
of = @32[RSP_init + 0x78]1([11:12]
cf = @3Z[RSP_init + 0xT781[0:1]
af = @3Z2[RSP_init + 0x78][4:5]
df = @32[RSP_init + 0x78]1[10:11]
tf = @3Z2[RSP_init + 0x78]([8:9]

i £ = @32[RSP_init + 0x78][5:10]

iopl £ = @32[RSP_init + 0x78]([12:14]

nt = @32Z[RSP_init + 0x781[14:15]
rf = @3Z2[RSP_init + 0x78][16:17]
vin = @32[RSP_init + 0x78]1[17:18]
ac = @3Z[RSP _init + 0x78][18:19]
vif = @32[REP_init + 0x7B][19:20]
vip = @3Z[RSP init + 0x78][20:21]
i d= @3Z[RSP_init + 0x78][21:22]

exception flags = @3Z[RSP _init + O0xT8][8:9]7(0xZ,exception flags init)
IRDst = @E4[RBP_init + 0x74]
@32 [RBP_init + 0xFF] = 0x0

Figure 31. Virtual registers of the second machine being mapped back to the native ones at

the end of the virtual instruction

35

Analysis of the virtual context. In this section we analyze the behavior of the first VM based
on the results of the Error! Reference source not found. section.
Figure 32 shows:

e virtual registers being pushed onto the stack at the beginning of the prologue (red)
e partially the way the next virtual instruction is prepared to be executed (green)
e the virtual program counter being increased (blue)

In particular, the virtual program counter is represented by @64 [@64 [RBP init +
0x38] + 0x2C], where the registerat @64 [RBP_init + 0x38] holds the address of
the virtual context. We can see that size of the initial virtual instruction was 8 bytes, since the

virtual program counter is increased by 8 in the line highlighted with blue in Figure 32.

36

@64 [REBP_init + 0x137] = @64[RBP_init + 0x38] + 0x26

B32[@64 [RBP_init + 0x3B8] + 0x26] = @32[RBP_init + 0x30] | @32[@64[RBP_init + 0x3E

@64 [RBP_init + 0x50] (@864 [RBP_init + 0x30] & OxFFFF)?({0x2 0 2, parity(@64[RBP

@64[RBE_init + 0x30] = @64[RBP_init + 0x30] & OXFFEF

@64[RBE_init + 0x50] = (@64[RBP_init + 0x30] << 0x3)2({@64[RBP_init + 0x30][61:62
@E4[RBP_init + 0x30] = @64[RBD_init + 0x30] << Ox3

@64 [RBP_init + OxDE] = @64[RBP_init + 0x30] + @64 [RBP init + O0xDE]

@64[RBP_init + 0x50] = {(@64[RBP_init + 0x30] ~ G64[RBE_init + OxDE] ~ ((B64[RBE_
@64[RBP_init + 0x74] = @64[@E4[RBP init + OxDE]]

@64[RBP_init + 0xF2] = @64[RBP_init + 0x38]

@64[RBE_init + OxF2] = @64[RBP_init + 0x38] + 0x2C

G64[@64 [REP init + 0x38] + 0x3c] = @64[@&4[RBP _init + 0x38] + Ox2c] + Ox8
@E4[REP init + 0x50] = [(@E4[@64[RBP init + 0x38] + 0x2C] "~ ((@E4[EE4[RBP _init +

@64 [RSP_init + OxFFFFFFEFFFFFFFFE] = @64 [RBP_init + 0xE&]
@64 [REP_init + 0x141] = @64 [RBP_init + (Ox141] + OxXFFFFFFFFFFFFEFFFE

@64 [RSP_init + OxFFFFFFFFFFFFFFFE] = @64 [RBPF init + 0x50]
@64[REP_init + 0x141] = @64 [RBP_init + 0Oxl141] + OXFFFFFFFFEFFFEFFE

@64 [RSP_init + OXFFFFFFFFFFFFFFFE] = @64 [RBP init + 0xE&]
@64 [REP_init + 0x141] = @64 [RBP_init + 0Ox141] + OXFFFFFFFFFFFFEFFE

@64 [RSP_init + OxFFEFFFFEFFFEFFFFFE] = @64 [RBP init + 0x98]
@64 [REP_init + 0x141] = @64 [RBP_init + (Ox141] + OxXFFFFFFFFFFFFEFFFE

@64[RSP_init + OXFFFFFFFFFFEFFFFFE] = @64 [RBP init + 0x10D]
@64 [RBP init + 0x141] = @E4[REP init + Oxl41l] + OXFFFFEFFFFEFFFFEFFE

Figure 32. Last few virtual instructions executed before mapping the virtual registers back to

the native ones

As one can see in Figure 31 (IRDst = @64 [RBP_init + 0x741]), the virtual
register at offset 0x74 determines IRDst — the address of the next instruction. If we follow
the virtual register @64 [RBP_init + 0x74] inFigure 32, we can see that it appears to be
preparing to execute the next virtual instruction similarly to the second VM. Its code slice is

the following series of expressions:
@64 [RBP init + 0x30] = @64[@64[RBP init + 0x38] + 0x2C]

@64 [RBP init + 0x30] @64 [RBP init + 0x30] + 0x2

@64 [RBP init + 0x30] {@16[@64 [RBP init + 0x30]] 0 16, 0x0 16

64}

37

https://en.wikipedia.org/wiki/Program_slicing

@32[RBP_init + 0x30] = @32[RBP init + 0x30] + 0x8E839329

@64 [RBP_init + 0x30] = @64[RBP init + 0x30] & OxFFFF

@64 [RBP_init + 0x30] = @64[RBP init + 0x30] << 0x3

@64 [RBP init + OxDE] = [@64[@64[REBPINTE F 0x38] + 0XEE]
@64[RBP_init + OxDE] = @64 [RBP init + 0x30] + @64[RBP init +
O0xDE]

@64 [RBP init + 0x74] = @64[Q@64[RBP init + OxDE]]

The entire slice of @64 [RBP _init + 0x30] is meant just to acquire the offset of
the next virtual instruction (opcode): it gets the virtual instruction’s offset from the bytecode
whose pointer is stored inthe @64 [@64 [RBP_init + 0x38] + 0x2C] register, and the
offset is subsequently increased by 0x8E839329... which could have been omitted and
serves solely to obscure the virtual instruction.

The virtual register @64 [@64 [RBP _init + 0x38] + OXEE] contains the ad-
dress of the virtual instruction table. Now it is clear that the first VM is obfuscated using
known values from the bytecode too and that the code indeed executes a next virtual instruc-
tion as well — it definitely uses Direct Threading.

One can additionally see that @64 [RBP init + 0x50] stores the RFLAGS in Fig-
ure 32.

Behavior. The virtual instruction behaves similarly to the virtual instructions from the second
VM - offsets of the virtual registers to be used are fetched from the virtual instruction’s oper-
ands.

Subsequently a virtual register’s value is moved to a memory address stored in another
one: [<virt reg 1>] = <virt reg 2>. The target register is then either increased or
decreased by 8: <virt reg 1> = <virt reg 1> +- 8.Thisis most likelya PUSH

instruction prepared also for environments where the stack grows upwards.

4.3 Initially executed virtual instructions

38

We will have a look at a few other virtual instructions to confirm our findings and the correct-
ness of methods for analysis of the first VM. Specifically, the virtual instructions that are ini-

tially executed as we can compare the first VM’s initial behavior to the second VM’s.

The first executed virtual instruction. We can see in the highlighted line of Figure 33 that
the first executed instruction of the first VM behaves indeed just like the one in the second
VM — it just zeroes out an internal register and prepares another virtual instruction to be exe-

cuted.

39

B&4 [RBF _init + 0Oxl141] = RSP init + 0x98

B&4 [RBF_init + 0O=B88] @64 [RBEP_init + 0x38]

E&4 [RBF_init + 0O=B88] = @64 [RBP_init + 0x38] + 0x47

B&4 [RBF _init + 0x50] = {(@64[RBPF_init + 0x38] "~ ((B64[RBEP_init +

B3Z[@64[RBP_init + 0x38] + 0x47] = 0x0

B&4 [RBP_init + 0x98] = 0x0

E64 [RBF init + 0x30] = @64 [RBPF _init + 0Ox38]

BE4[RBP init + 0x50] = {(@64[RBE_init + Ox38] "~ ((@E4[REBE init -
B4 [RBP_init + 0x30] = @&4[RBF_init + 0x38] + OxZC

B64[RBP _init + 0x30] = @64[E64[RBP_init + 0x38] + 0OxicC)

BE4[RBP _init + 0x50] = {(@64[RBE_init + Ox30] "~ ((@64[RBE init -
B&4 [RBP_init + 0x30] = @&4[RBP_init + 0x30] + Ox2

Bl&6[REBF_init + 0x98] = @GlE[EG4[RBF_init + 0x30]]

B&4 [RBP_init + 0Ox98] E&4[RBP_init + Ox98] << 0x3

€64 [RBF_init + 0x50] (@64 [REBP_init + 0x98] << 0x3)? ({EE4[RBE I

B&4 [RBP_init + 0x74] = @&4[RBP_init + 0x38]

BE4 [RBFP_init + 0OxT74] G4 [RBP_init + 0x38] + OxEE

E&4 [RBP_init + 0=350] { (@64 [RBP_init + 0x38] "~ ((G64[RBE_init +

E64[BRBE_init + OxF2] = @E4[E64[RBE_init + O0x38] + OxEE]

B&4 [RBP_init + 0OxF2] @&4 [RBP_init + 0x98] + B&4[RBP_init + OxF

B&4 [RBP_init + 0=x30] { (@64 [RBP_init + 0x98] ™ @64 [REP_init +

@64 [RBP_init + Oxl2B] = @E4[B64[RBP_init + OxF2]]

B&4 [RBP_init + 0x30] E&4 [RBP_init + 0x38]

B&4 [RBF _init + 0x50] = {(@64[RBP_init + 0x3B8] ~ ((B&4[RBP init +

E&4[RBP_init + 0x30] = @64 [RBP_init + 0x38] + Ox=icC

B64 [RE4 [RBP init + 0x38] + 0x2C] = @64[@64[RBF init + 0x38] + 0=
- - -

Figure 33. Zeroing out an internal register

Statistics in Table 3 have been extracted from the processing of the first executed virtual in-
struction.

40

Table 3. Statistics of the first executed virtual instruction

Size of the bytecode block in bytes 548
Total number of processed virtual instructions 62
Total number of underlying native instructions 9,444
Total number of resulting IR instructions (including IRDsts) | 195
Execution time in seconds 6.4810

The second executed virtual instruction. The second virtual instruction just zeroes out sev-
eral internal registers, which are most likely about to be used for obfuscation, as in the second
VM.

Statistics in Table 4 have been extracted from the processing of the second executed
virtual instruction.

Table 4. Statistics of the second executed virtual instruction

Size of the bytecode block in bytes 755
Total number of processed virtual instructions 83
Total number of underlying native instructions 13,740
Total number of resulting IR instructions (including IRDsts) | 259
Execution time in seconds 7.7718

The third executed virtual instruction. The third virtual instruction behaves just like the
third one of the second VM too — it stores the stack pointer (highlighted in Figure 34). The ad-
dition of 0x98 is present due to applied optimizations which took into account the previously

executed POP instructions in the Prologue section.

41

@64 [RBF init + OxDE] = @64[@64[RBF init + 0x38] + 0x2C]

@64 [REP_init + 0x50] = {0xZ 0 2, parity(@64[REF_init + OxDE] &
@64 [REP_init + 0x&AC] = {[@16[@&4[RBP_init + O0xDE]] 0 18, 0=l 1¢
@64 [RBP init + OxAC] = @E4[RBP init + 0x38] + EE4[RBP init + Ouf
@64 [REP_init + 0x50] = {(B&4[RBP init + 0O=x38] ™~ @&4[RBF_init +

#6c4[@64 [RBF init + 0xAC]] = RSP _init + 0x98

BE4[RBP init + 0x10D] = @E4[RBE init + 0OxDE]

BE64[REP init + 0OxDE] BE4[RBP init + 0x10D]
@64 [REP_init + OxAcC] = 0x0
@64 [REP init + 0OxCl] = @64[REBP init + 0Ox38]

@64 [REP_init + 0xCl] = @E4[RBF_init + 0x38] + 0=x2C

@64 [REBP_init + 0x50] = {(B&4[RBP init + 0x38] ~ ((@E4[REF _init -
@64 [REP_init + 0xCl] = @E4[@E&4[RBP_init + 0x3B] + 0=ZC]

@64 [REP_init + 0xCl] = @E4[RBF_init + 0OxCl] + O=Z

@64 [REBP_init + 0x50] = { (&4 [RBP init + 0xCl] ~ ((@E4[REF _init -
@16 [REP _init + 0OxAC] = @lé[@E4[RBP init + 0=xC1l]]

@64 [REF_init + 0xAC] = @64[RBF init + OxAC] << (=3

@64 [REP_init + 0Ox530] = (@64 [RBP_init + OxAC] << 0x3)7({E&4[RED -
@64 [REP init + 0x74] = @64[RBF init + 0x38]

@64 [REP_init + 0x74] = @E64[RBF_init + 0x38] + OxEE

@64 [RBP_init + 0x50] = {(@&4[RBP init + 0x38] ~ ((@64[REF_init -

@E64[REP init + 0x10D] @64 [E64 [RBE init + 0x38] + 0OxEE]

@64 [REP_init + 0x10D] BG4 [RBP_init + 0x&AC] + @64 [RBP _init + U=

@64 [REP_init + 0x50] = { (%4 [RBP init + OxAC] ~ @64[RBP_init +

@64 [REP _init + 0x58] = @64[@64[RBP init + 0=x10D]]

@EQ[RBP_init + 0x103] @GQ[RBP_init + 0x38]
@64 [REP_init + 0x1053] = @64 [RBP_init + 0x38] + 0=iC

@64 [@64 [REBF init + 0x38] + 0xZC] = Be4[@64[RBP init + 0x38] + OxZIcC]

Figure 34. Storing the stack pointer in an internal register

42

+ Oxd

Statistics in Table 5 have been extracted from the processing of the third executed vir-

tual instruction.

Table 5. Statistics of the third executed virtual instruction

Size of the bytecode block in bytes 586
Total number of processed virtual instructions 66
Total number of underlying native instructions 10,263
Total number of resulting IR instructions (including 207
IRDsts)

Execution time in seconds 6.8428

The fourth executed virtual instruction. We naturally expect this instruction to be a POP as

in the second VM; however, it is hard to confirm statically as the already described obfusca-

tion techniques make it too hard to understand. One can see part of the virtual instruction in

Figure 35.

Statistics in Table 6 have been extracted from the processing of the fourth executed

virtual instruction.

Table 6. Statistics of the fourth executed virtual instruction

Size of the bytecode block in bytes 4,883
Total number of processed virtual instructions 425
Total number of underlying native instructions 71,192
Total number of resulting IR instructions (including 1,038
IRDsts)

Execution time in seconds 28.1638

Figure 35. Part of the fourth virtual instruction

43

When we look closely at certain parts of Figure 35, it appears to be able to behave as a

POP instruction. The part of the virtual instruction in Figure 36 clearly behaves just like the

fourth one of the second VM — it moves a value off the top of the stack, and if the target regis-

ter is different from the stack pointer, the stack pointer is increased.

-~

@2 [REBP_init] = Oxl

IRDst = (@€4[REF init + 0x30] == (RBP_init + 0x141))?(loc key 35t

/

@e4[@64[RBF_init + 0x30]] = @e4[RSPF_init]

@E4[RBP_init + 0x141] = @64[RBP_init + 0x141] + Ox8

IRD=t = loc_key 434

L J

B4 [Ee4 [RBP init + 0x30]] = B64[RSP_init]
IRDst = loc key 434

Figure 36. Part of the fourth virtual instruction performing a pop-like operation

Instruction merging. However, the instruction also seems to be capable of performing a

PUSH and other operations as well, based on the operands (Figure 37), which means that it

consists of several other instructions merged into one, which is a kind of obfuscation tech-

nigue. It most likely merged several instructions with different rolling keys into one.

-

h 4

BB [REF_imit] = 0wl

BE4[RIP_init + OxFFEFFEEFEECFEEFE] = BE4[RBP_init + 0x30]
BE4[REP_init + Ox141] = @EE4[REF_init + 0xl4l] + OxFEEFFEFFEFEEFEFEESE

IRD=t = loc_key 386

B8 [RBF_init] = 0x0
@16[RSF_init + OxFFFFFFFFEFFEFFFE] = G16[REF_iniz + Ox30]
BE4[REP_imit + 0xl41] = 264[EBP_init + 0xl4l] + OxFFFFEFFFEFFEFFEE

IRD=t = lec_key 356

Figure 37. Part of the fourth virtual instruction performing a PUSH operation

44

https://tigress.wtf/merge.html
https://tigress.wtf/merge.html

5 Automating analysis of the first virtual machine

Now that we know what the internal structure of the first VM is like, we can process the VM
as the second one since analyzing all the virtual instructions would be complicated due to the
additional obfuscation techniques — we can again effectively eliminate them with symbolic ex-
ecution.

We definitely need to concretize the virtual instruction table and internal registers dedi-
cated for obfuscation as in the previous one, which is not complicated. The question is: What
do we do with the second VM?

There is a pretty simple solution — instead of preserving the entire context of the sec-
ond VM and working with both at once, we can simply concretize the entire second VM as we
know what memory ranges belong to the VMs.

We will also ignore all memory assignments to the second VM’s context and not pre-
serve any information about its structure. This will enable us to focus only on the first one and
build the same graph as before.

We could also preserve the obfuscated IR of all the virtual instructions of the first VM
and use them instead — it would save a significant amount of time during the processing since
we would not repeatedly disassemble, translate and deobfuscate the second VM for each op-
code in the bytecode blocks of the first VM. However, we want to show that it is possible to

process both layers at once.

Processing the initial bytecode block. We processed the very first bytecode block as was de-
scribed in the previous section. The resulting code still appears to be too complex since we ex-
pected a series of POPs, the deobfuscated code and then a series of PUSHes and finally map-
ping back to the native registers. However, there are additional, multiple branches. One can

see part of the code in Figure 38.

45

e
[T p———
Al ome i, = Snang = e i |
s - pome i = Sl 1 cian A vm gl

I | |
I, ik o0 e, e B, madein wh ah e b 35, sip b 35 fur &_n_imin du B3, Gad 33 81 4 Sty rean segolhsme_map sl - 311 crer_bnin © Sman - reme_ieda = Sawliy 8 cmee_bein = dmly - iwluy * e babe ¢ fmew © er_bmin - Gl b Gmke sEibe 3 u G064y Cpme_tadn - leewr * e bein -

Lo I
* wlueluesd Aiacrar_imin = S - Macrar_taia - fmalc © i crar_inin = dmew * Sadsrdued
- |t i = i = b o s - St = bl o = o, © Surtaned sy ariher iy
s m_inin = wmi = e fmin = Sy * Sl
PR —— [T — i Sunmy v o = ey pliscear_inin = Zadeg = Sl
! " bts m_inin = s = Mcrar_tmin = Cemag » {man_imin = Gwem (bimam_tais = Dule = Sl i e s [[n
s mam_inin = mak = Macrar_bmin -
b i+ T~ 3 remrfain - S

- - d)'-.-
"y
| — u—J-'-—h!':-u-w.-H-—-\.-u.pﬁcr

1 | |
b ® Gmaden O Gk A, Gap_e_bain 13 L4, SE_LRG 06 A G300 O, we_imin o 4n, s wr ak, S_febe ol o, vlr_Setn o 5, mea_iast 33 00, A bmen 0L 03, G353 31 4 SaN31® s ulLad_Rr ke - (0]CIPRE K @ Saum) 4 e bein = JmiN)| b |mer_tais - Smciws ¢ Seden * oar_imis v mas - pmr

W crar_iain = Jmsi=; - bl e tmi = fmew; * blicee_iia - fmmg - fadueliesd
e e
T R

s mar_fain o S = Ut man_imin » Smmap » | par_iuin v Smcey s tain = e = Selyp

O i o g R
[

B]

Figure 38. The first processed bytecode block

Opague predicates. Looking at the code more closely, we notice two types of expressions
that can be further simplified. The first is the value of RBP init, which is the address of the

virtual context and it is known (Figure 39).

46

@3Z [REBF_init + Ox47] = 0x0
) @64 [RBE init + 0x1E] = RSP init .
IRDst = (RBFP_init == 0=xE%)?(lcc_key 164,loc _key 163)

Figure 39. Expressions that can be further simplified

Both paths that follow the initial block in Figure 39 contain the same code, hence this
IS not the same case as with the POP virtual instruction, where it was important to know what
the target register was because it determined the subsequent behavior of the virtual instruction.
These checks are, on the other hand, unimportant and we can just get rid of them — they can be
considered as a sort of opaque predicate [19].

Note that the branch of the POP virtual instruction was now optimized out automati-
cally since offsets of the registers were present in the bytecode and directly known.

Finally, these were the last obfuscation techniques, and we can look at the simplified

code.

Overview. We are finally greeted with a familiar, even pleasant, view in Figure 40 — as ex-
pected the code begins with a series of POPs (red) and ends with a series of PUSHes (green)
that represent parts of the context switches.

Another interesting detail is that the VM uses a special internal register to store the
destination address — the final jump is not visible, but the code jumpsto @64 [RBP init +
0x1337]. As was mentioned earlier, the VM also stores the base address of its code section;
this is stored in virtual register @64 [RBP_init + 0x80] in our case.

One can see that the code in Figure 40 also accesses certain data using the base ad-
dress, specifically at offset 0x0E3808 (blue). After looking up the address, we found that it

belongsto a ServiceStatus structure (Figure 41).

47

EE4[RBF init + Ox1Z] = RSP imic + Ox70
EE4[FBF_inzt + Ox15] = EE4[R3F_init]
EE4[FEF_inzt + Ox11F] = E&4[R3IP init]
EE4[RBF init + O0x1E] = R3P init + Ox7E

EE4[RBF init + Ox4F] = EE4[R3P _indit]
EE4[FBF_inzt + O0x1E] = R3P init + OuEO0

EE4[RBF inzt + O0xCC] = EE4[R3P_init]
EE4[RBF init + 0x1E] = R3P init + OuEE

EE4[RBF_init + Ox1E] = R3P_init + OxBE
BE4[RBP_init + Ox13F] = EE4[EE2[BBP_init + 0x13F]1]

B3Z[FBP_init + 0x53] = Oub
E32[RBP_init + 0x4F] = dxlC

EE4[FEP_init + 0x133] = Owa0s2
BE4[RBF_init + 0x132] = EE2[RBF_imit + 0xB0] + Ow3052
BE4[FBP_init + (x133] = BE4[REP_init + Ox80] + OxE2308

EE4[REF inzt + 0x74] = EE4[REP indit + 0x30] - IxE3E03
IfDst = loc_key 231

zl € 7, (BE4[RBF_init + OxdF] + OxEFTFEEETTFEEETIE) [€3:€4] 7 8, @3Z[FEF_dinit + 0xCCI[E:11] E 11, {(@€4[FBF_init + Ox4F] -~ [(@E4[FBF_init + Ox4F] + OxFEETCEEE

20, vip_dinit 20 21, i d dmit 21 22, OxD 22 32} & Oxd0,{0xZ 0 2, paricy(EIZ[EBF_ init + O0xCC] & Oxd0) 2 3, Ox8 2 4, ©f dnic 8 &, i £ init & 10, df dindic 10 11,

}

-
EE2[REF_imit + 0xl122] = 0x30RI
EE2[REF imit + 0xl22] = BE4[AEF_init + ODuxE0] + Ox30RZ
EE2[RBP imit + Oxl23] = @E4[ABP_init + ODxE0] + Ox2FBO
EE4[ABP imit + Oxl5] = EE4[REF init + OxE0] + OxZFB0
EE4[REE_init + OxllF] = BE4[REE_init + [ul3F]
EE2[REF imit + 0xl22] = O0x30XB
EE2[REF imit + 0xl22] = BE4[FEF_init + O0xE0] + Ox30RE
EE2[RBP inmit + Oxl22] = AE4[ABE init + CwE0] + Ox3CLEE

EE2[R3P init + OxFEFFEFEETFEEEET3] = @€4[BEF _init + (x4F]
EE2[REP_imit + OxlE] = EE2[AEEF_imit + OxlE] + CxFFFEEEFFFEEFTFEE

Figure 40. Code of the processed bytecode

.data:E0887FEBSFF3888 ; struct SERVICE STATUS SerwviceStatus
.data:@ﬂﬂ@ﬁ?FEBEFFE&ﬁﬁ* ServiceStatus SERVICE_STATUS <@>

.data: 000887 FEBSFF3308

Figure 41. Data accessed by the code — ServiceStatus

It additionally sets a register before recovering the native state to a data address at off-

set 0x2FBO (yellow). The address contains a non-obfuscated function shown in Figure 42.

48

-text:

Baeaa7FEESF12FEE

.text:e88087FEBSF12FE@

et eeeea7FEESF sub 7FEB5F12FB@ proc near

.text:ee8087FEBSF12FE@

text:eeeea7FEESF12FEE var_8= qword ptr -3

.text:peee87FEBSF12FE@

.text:000087FEBSF12FER @08 sub rsp, 28h

Ltext:eaaaa7FEBESF12FE4 @258 cmp ecx, 1

Ltext:900887FEBSF12FET @28 jnz loc_7FEBSF13@65
Y

I

Jtewtreeeea7FEBSFL2FED @28 mov
.text:000087FEBSF12FCA 828 inc

rcx, cs:ihServiceStatus ; hServiceStatus

cs:ServiceStatus.dwCheckPoint

:

2=

Ltexteeeea7FEBSFL2FCA
Ltext:@eeee7FEESF12FCA
Ltexteeeea7FEBSFL2FCA
Ltext:@eee87FEESF12FCF
Ltext :eeeea7FEBESF12FDG
Ltext 888887 FEESF12FDS
et :eeeea7FEBSF12FEZ
Jtext:@@ee87FEESF12FED

.text:800007FEBSF12FF3
+avt - ARAAATEFREF1 2FFQ

loc_VFEBSF12FCA:

az8
a2a8

mov
lea

[rsp+28h+var 8], rbx

@28
@28
@28

xor
Mo
mon

rdx, ServiceStatus ; lpServiceStatus

ebx, ebx

cs:Servicestatus.dwCurrentstate, 3

gword ptr cs:ServiceStatus.dwControlsAccepted, 1

828

@28
AR

mow
call

Fmn

cs:Servicestatus.dwWaitHint, ebx
cs:SetServiceStatus
r=*rdwnrd FFFREFF2700 7

Figure 42. Function whose pointer is used in the code

Let us now focus on the destination address (gray) — it is set to <base address> +
0x8C038. Looking up that address in the sample, we see it belongs to the Windows API

RegisterServiceCtrlHandlerW, which makes sense as the application is a service

(Figure 43).
.idata:@e8ee7FEBSFICA3E
.idata:eeeee7FEESFY
.idata:@e8807FEBSFICAL8

3 SERWICE_STATUS HANDLE _ stdcall RegisterSerwviceCtrlH
RegisterServiceCtrlHandlerW dq offset advapi32 Registe

do @, @, @, @, @, @, @, &

Figure 43. Destination address of the bytecode

The question is now, what is the return address of the API call. When we look at the
end of the code, we see that it sets the return address — the highlighted assignment in Figure 44
appears to be 0x88 bytes above the stack pointer, but we need to keep in mind that we started
below the stack pointer because we did not perform the initial context pushing from

vm_init () and in reality, it is the return address.

The return address is set to another vm_pre init ().

49

@64 [RSP init + O0x8B8] = @64 [RBP init + 0xB0] + 0x21EASC

E3Z[REBP_init + 0x127] = 0x0

RA¥.0 = @64 [RSP_init + 0x70]

REP.0 = RSP_init + 0xS88

exception flags = @32 [RSP_init + 0x78]1[8:9]17(0x2,exception flags init)

IRDst = @64 [@64[RBP_init + 0x1331]
A Iy

Figure 44. Setting return address of the API call

The last part of the code that needs to be analyzed is the body of the loop (Figure 45).
It is pretty simple — it zeroes out a memory range. If we look back at Figure 40 and look up
whatisin @64 [RBP_init + 0x74], we see that it is set to the address of the Ser-
viceStatus structure (blue) — this piece of code zeroes out the structure. Meanwhile,
@64 [RBP_init + 0x4F] (pink in Figure 40) initially contains the constant 0x1C — size
of the structure —and @64 [RBP _init + 0xCC], the CPU flags.
1
@64 [REP _init + 0xCC] = {@32Z[RBP_init + 0xCC][0:1] 0 1, Oxl 1 2, parit
@64 [REP init + 0x4F] = @64[RBP init + 0x4F] + OxXFFFFFFFFFFFFFEFFF

@64 [REP_init + 0x133] = @64[REP init + 0x4F]

@64 [RBP_init + 0x133] = @64[RBP_init + 0x4F] + @64 [RBP_init + 0x74]
@9 [@64[RBP init + 0x4F] + @64[RBP_init + 0x74]] = 0x0

IRDst = ((@3Z[RBF_init + OxCC] & Ox40)7?({0x2 0 2, parity(@3Z[RBP_init
.

Figure 45. Body of the code’s loop

Now we look at the discovered non-obfuscated sample and compare it against our find-
ings. We can confirm that we deobfuscated the first bytecode block successfully (Figure 46).

50

48 89 5C 24 18

57

48 B3 EC 28

48 8B 1A

B& 1C && a8 aa

43 80 3D AF @7 et eé
aF 1F 5@ 88 a8 a8 88

public ServiceMain
ServiceMain proc near

arg_@= gword ptr B
arg_8= gword ptr 18h

mav
push
sub
mov
mov
lea
nop

[rsp+l@h], rbx

rdi

rsp, 28h

rbx, [rdx]

eax, 28

rdi, ServiceStatus

dword ptr [raxt+eeeeeeaah]

vy

128 48 FF C8
128 Ce 84 38 Ba
28 75 F7

loc_1236683660:

dec rax
mow byte ptr [raxtrdi], @
jnz short loc_lB8603868

80 15 18 FF FF FF
86 CB

15 BF 8F &5 a8

29 @5 B@ a7 ec ee
85 Ca

78

lea
maow
call
mov
test
jz

rdx, HandlerProc ; lpHandlerProc
rcx, rbx 5 lpServiceName
cs:RegisterServiceCtrlHandlerw
cs:hServicestatus, rax

rax, rax

short loc_ 15@88838FD

v

Figure 46. The same part of code in the non-obfuscated binary

Statistics in Table 7 have been extracted from the processing of the first bytecode

block.

Table 7. Statistics of the first processed bytecode block

Size of the bytecode block in bytes 695
Total number of processed virtual instructions 62
Total number of underlying native instructions 3,536,427

Total number of resulting IR instructions (including IRDsts) | 192

Execution time in seconds

382.5678

51

6 Description of our final VM analyzer code

Our final analyzer code consists of several classes that interact together, as described in the
following sections. The full code listing is available in our GitHub repository
github.com/eset/wslink-vm-analyzer. The classes follow the high-level descrip-

tions from the previous Automating analysis sections.

Class Wslink. Wws11ink is a mediator that handles interaction of the remaining classes, its
constructor processes the supplied memory dump, and its method process () accepts the
value of the virtual program counter — pointer to the bytecode — with the opcode of the initial
instruction. The bytecode is subsequently processed using classes VirtualContext, Sym-
bolicCFGand MySymbolicExecutionEngine; the resulting control flow graph is
written into a DOT [17] file vma . dot.

Parts of the VM, such as address of the instruction table or offsets of the virtual regis-

ters for obfuscation, should be overwritten to provide specific values for individual VMs.

Class VirtualContext. This class represents the virtual context — it contains most notably the
initial values of the virtual registers for obfuscation, virtual program counter, and the address
of the instruction table.

It also provides several methods for working with the context described in the follow-

ing sections.

Method VirtualContext::get_next_instr(). The method get next instr () applies the
address of the instruction table to the destination address to simplify the corresponding expres-
sion and attempts to unambiguously determine the address of the next virtual instruction to be

executed.

Method VirtualContext::get_irb_symbs(). This method simply acquires the expressions that

should be preserved in the nodes of the resulting control flow graph.

52

Method VirtualContext::get_updated_internal_context(). The method get up-
dated internal context () updates values of the internal registers that need to be pre-
served between virtual instructions, such as the virtual program counter or the obfuscation reg-

isters.

Method VirtualContext::get_state hash(). This method calculates a hash for virtual instruc-
tions — the hash is used to specify the actual position in the bytecode to reconstruct the control
flow graph without duplicate nodes or paths and to avoid infinite loops in cycles. It is calcu-

lated just from the virtual program counter.

Class MySymbolicExecutionEngine. This class overrides the method mem read () of Mi-
asm’s class SymbolicExecutionEngine primarily to transform memory accesses rela-
tive to the virtual program counter and the virtual instruction table into concrete values. It is
additionally meant to make the second VM completely concrete when we are processing the

first one.

Class SymbolicCFG. This class is meant to construct the resulting control flow graph. It uses
class Node to process individual virtual instructions, to acquire the expressions that need to be
preserved, and to determine addresses of the next virtual instructions.

Each Node is tied to a hash generated by get state hash () (as described above)
and the address, StateID, of the block of code that is being processed. This means that vir-
tual instructions containing unbounded loops cannot currently be processed correctly because
when we connect a state to an already processed one, it will not take into account the changes

introduced in the body of the loop.

Class Node. This class simply represents a node in the resulting control flow graph — it most
notably contains the values of the obfuscation registers and virtual program counter that are
together called init symbols. These are the values required to determine the addresses of

the next virtual instructions.

53

It provides a method process addr () that can get the following Nodes classes
that have not yet been processed and return them along with the expressions that should be

preserved in a data-class ContextResult.

The new Nodes are created based on the supplied addresses using method
_get next (), which accepts several arguments. The arguments can instruct the function to
slightly modify the resulting Node — make a copy of the actual symbolic state when there is a

branch, or update init symbols for a new virtual instruction.

54

7 Future work

Once we discovered a non-obfuscated sample, we were not motivated to completely deobfus-

cate the rest of the code.

Our next steps would consist of:

1.

Getting rid of the prologue and epilogue and mapping the virtual registers directly to
the native ones.

Automatically processing the subsequent bytecode blocks and extending the graph
with resulting code listings to get an overview of the whole function.

Optionally addressing individual instructions with unbounded loops that cannot be
fully processed using symbolic execution (e.g., instructions like DEC RC4 mentioned
in Miasm’s blog [9]) and manually creating their IR to be added to the graph. We
could also experiment with some enhancements of symbolic execution that attempt to
mitigate the issue [18].

Optionally matching resulting IR expressions against known IR expressions of assem-

bly instructions to recover assembly code.

55

Conclusion

We have described internals of an advanced multilayered virtual machine of CodeVirtualizer
and successfully designed and implemented a semiautomatic solution capable of significantly
facilitating analysis of the program’s code. This virtual machine introduced several other ob-
fuscation techniques such as junk code, encoding of virtual operands, duplication of virtual
opcodes, opaque predicates, merging of virtual instructions and a nested virtual machine to
further obstruct reverse engineering of the code that it protects, yet we successfully overcame
them all.

To deal with the obfuscation we modified a known technique that extracts the semantics of the
virtual opcodes using symbolic execution with simplifying rules. Additionally, we made con-
crete the internal virtual registers for obfuscation along with memory accesses relative to the
virtual program counter to automatically apply known values and deobfuscate semantics of the
virtual instructions — this additionally broke down boundaries between individual virtual in-
structions. Boundaries are necessary to prevent path explosion of the symbolic execution; we
would lose track of the virtual program counter — our position in the interpreted code — without
them. We defined new boundaries by symbolizing the address of the virtual instruction table,
since it is required to get the next instruction, and concretized it only when we needed to move
to the following virtual instructions. We subsequently constructed a control flow graph of the
original code in an intermediate representation from one of the bytecode blocks based on the
virtual program counter, and extracted deobfuscated semantics of individual virtual instruc-
tions. We finally extended the approach to process both virtual machines at once by entirely
concretizing the nested one.

56

References

[1] Vladislav Hrcka, Under the hood of Wslink’s multilayered virtual machine, cited
on:10.4.2022, available online:https://www.welivesecurity.com/2022/03/28/under-hood-
wslink-multilayered-virtual-machine/

[2] David A. Patterson and John L. Hennessy, Computer Organization and Design — The
Hardware / Software Interface, 4th.Edition, Morgan Kaufmann, Elsevier, 2009

[3] Shi Y, Casey K, Ertl MA, Gregg D., Virtual machine showdown: Stack versus registers,
ACM Transactions on Architecture and Code Optimization (TACO), 2008

[4] Berndl M, Vitale B, Zaleski M, Brown AD, Context threading: A flexible and efficient dis-
patch technique for virtual machine interpreters, International Symposium on Code Generation
and Optimization, 2005

[5] Process Context, cited on:10.4.2022, available online:tldp.org/LDP/LG/is-
sue23/flower/context.html, The Linux Documentation Project

[6] Moura LD, Bjagrner N, Z3: An efficient SMT solver, International conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 337-340, 2008

[7] Sumit Gulwani, Program Synthesis, cited on:10.4.2022, available online:microsoft.com/en-
us/research/project/program-synthesis/, Microsoft, 2010

[8] Rolles R. Unpacking virtualization obfuscators, 3rd USENIX Workshop on Offensive
Technologies, 2009

[9] ZeusVM analysis, cited on:10.4.2022, available online:mi-
asm.re/blog/2016/09/03/zeusvm_analysis.html, 2016

[10] Salwan J, Bardin S, Potet ML, Symbolic deobfuscation: From virtualized code back to
the original, International Conference on Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 372-392, 2018

[11] Blazytko T, Contag M, Aschermann C, Holz T, Syntia: Synthesizing the semantics of ob-
fuscated code, 26th USENIX Security Symposium, pages 643-659, 2017

[12] Desclaux F, Miasm: Framework de reverse engineering, SSTIC, 2012

[13] Miasm, cited on:10.4.2022, available online:github.com/cea-sec/mi-
asm/tree/9a36¢6d7849335¢c83a9460fc558afb55ff0a2aal

57

[14] Vladislav Hrcka, Wslink: Unique and undocumented malicious loader that runs as a
server, cited on:10.4.2022, available online:welivesecurity.com/2021/10/27/wslink-unique-un-
documented-malicious-loader-runs-server/

[15] CodeVirtualizer, cited on:10.4.2022, available online:oreans.com/CodeVirtualizer.php
[16] Anand S, Godefroid P, Tillmann N, Demand-driven compositional symbolic execution,
International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 367-381, 2008

[17] DOT Language, cited on:10.4.2022, available online:graphviz.org/doc/info/lang.html
[18] Trtik M, Symbolic execution and program loops, Masaryk University Brno, 2013

[19] Ming J, Xu D, Wang L, Wu D. Loop: Logic-oriented opaque predicate detection in obfus-
cated binary code, Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 757-768, 2015.

