

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Analysis of Virtual Machine Based Obfuscators
Master Thesis

Bratislava, 2023

Bc. Vladislav Hrčka

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Analysis of Virtual Machine Based Obfuscators

Master Thesis

Study programme: Computer Science

Field of study: Computer Science

Department: Department of Computer Science

Supervisor: RNDr. Jaroslav Janáček, PhD

Consultant: Mgr. Peter Košinár

Bratislava, 2023

Bc. Vladislav Hrčka

Name and Surname: Bc. Vladislav Hrčka

Study programme: Computer Science (Single degree study, master II.

deg., full time form)

Field of Study: Computer Science

Type of Thesis: Diploma Thesis

Language of Thesis: English

Secondary language: Slovak

Title: Analysis of Virtual Machine Based Obfuscators

Annotation: The thesis describes a modern virtual machine based obfuscator and the

general behavior of such machines. Known principles and tools for attack-

ing this kind of protection are summarized. The thesis contains a proposal

and an implementation of a solution that significantly facilitates analysis

of code obfuscated with the modern virtual machine.

Aim: - describe virtual machine based obfuscators in general - summa-

rize methods to deal with such kind of obfuscators

- analyze a specific virtual machine

- design and implement methods to devirtualize code protected

with the specific machine

Supervisor: RNDr. Jaroslav Janáček, PhD.

Department: FMFI.KI - Department of Computer Science

Head of depart-

ment:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 14.12.2021

Approved: 28.04.2023 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Comenius University Bratislava

Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Meno a priezvisko študenta: Bc. Vladislav Hrčka

Študijný program: informatika (Jednoodborové štúdium, magisterský II.

st., denná forma)

Študijný odbor: informatika

Typ záverečnej práce: diplomová

Jazyk záverečnej práce: anglický

Sekundárny jazyk: slovenský

Názov: Analysis of Virtual Machine Based Obfuscators

Analýza obfuskátorov založených na virtuálnych strojoch

Anotácia: Diplomová práca opisuje konkrétny moderný obfuskátor založený na vir-

tuálnom stroji a vo všeobecnosti správanie takýchto virtuálnych strojov.

Taktiež poskytuje prehľad známych princípov a nástrojov na prekonanie

takejto formy ochrany programov. Diplomová práca obsahuje návrh a im-

plementáciu riešenia, ktoré značne zjednodušuje analýzu kódu obfusko-

vaného daným moderným virtualným strojom.

Cieľ: - popísať obfuskátory založené na virtuálnych strojoch vo všeobec-

nosti

- zosumarizovať metódy na prekonanie tejto formy ochrany pro-

gramov

- analyzovať konkrétny virtuálny stroj

- návrh a implementácia metód pre devirtualizovanie kódu chránen-

ého daným virtuálnym strojom

Vedúci: RNDr. Jaroslav Janáček, PhD.

Katedra: FMFI.KI - Katedra informatiky

Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 14.12.2021

Dátum schválenia: 28.04.2023 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Acknowledgements

Ďakujem hlavne kolegom z ESETu nielen za usmerňovanie a pomoc pri spisovaní práce, ale aj

množstvo získaných skúseností a roky priateľskej atmosféry počas mojej práce vo firme.

Osobitne chcem poďakovať svojmu konzultantovi Petrovi Košinárovi za hodnotné a príjemné

odborné diskusie, koordinátorovi môjho vtedajšieho tímu Antonovi Cherepanovi za pridelenie

tejto témy, a svojmu školiteľovi Jaroslavovi Janáčkovi za formálne zastrešenie a finálnu

kontrolu práce.

Abstrakt

Code Virtualizer je silný náastroj na obfuskáciu kódu Windows-ových aplikácií, ktorý slúži na

ochranu citlivých častí kódu proti reverznému inžinierstvu pomocou použitia virtualnych

strojov. Okrem virtuálnych strojov, tento systém navyše zavádza niekoľko ďalších

obfuskáčných techník, ako napríklad vkladanie irelevantného kodu, kódovanie virtuálnych

operandov, duplikácia virtuálnych opkódov, falošný tok riadenia, zlučovanie virtuálnych

inštrukcií a ďalší vnorený virtuálny stroj. Virtuálne stroje Code Virtualizer sa stále častejšie

používajú na škodlivé účely, ako napríklad na ochranu malvéru. V tejto práci analyzujeme

súčasti virtuálneho stroja Code Virtualizer použitého vo vybranej vzorke malvéru a

popisujeme náš poloautomatický prístup k prekonaniu jeho obfuskáčných techník v

primeranom čase. Demonštrujeme tento prístup na niekoľkých častiach bajtkódu obfuskovanej

vzorky malvéru a porovnávame výsledky s neobfuskovanou vzorkou na potvrdenie správnosti

metódy. Náš prístup je založený na známej deobfuskačnej metóde, ktorá extrahuje sémantiku

virtuálnych opkódov pomocou symbolického vykonávania s optimalizačnými pravidlami.

Ďalej spracovávame časti bajtkódu a niektoré konštrukcie virtuálneho stroja ako konkrétne

hodnoty namiesto symbolických, čo umožňuje spomínanej známej deobfuskačnej metóde

automaticky prekonať aj ostatné obfuskáčné techniky. V práci postupne analyzujeme súčasti

virtuálneho stroja, navrhujeme našu metódu deobfuskácie a popisujeme implementáciu tejto

metódy.

Abstract

Code Virtualizer is a powerful code obfuscation system for Windows applications that helps

developers to protect sensitive code areas against Reverse Engineering with very strong

obfuscation code, based on code virtualization. Apart from virtual machines, the obfuscation

system additionally introduces several other obfuscation techniques such as insertion of junk

code, encoding of virtual operands, duplication of virtual opcodes, opaque predicates, merging

of virtual instructions, and another nested virtual machine. Code Virtualizer's virtual machines,

with rest of the obfuscation techniques, have been increasingly being used for illicit purposes

such as protection of malware. In this thesis we analyze the internals of a Code Virtualizer's

virtual machine used in a malware sample and describe our semiautomatic approach to seeing

through the obfuscation techniques in reasonable time. We demonstrate the approach on a few

chunks of bytecode of the protected malware sample and compare the results against a non-

obfuscated sample to confirm the validity of the method. Our approach is based on a known

deobfuscation method that extracts the semantics of the virtual opcodes, using symbolic

execution with simplifying rules. We further treat the bytecode chunks and certain internal

constructs of the virtual machine as concrete values instead as symbolic ones, which enables

the known deobfuscation method to deal with the additional obfuscation techniques

automatically. In summary, we analyze the underlying parts of the virtual machine and

gradually shape our deobfuscation approach. We describe our implementation of the approach

at the end of the thesis.

Contents

Introduction ... 1

1 Starting points .. 3

1.1 Documented techniques for deobfuscation of virtual machines 10

1.2 The Miasm framework ... 12

1.3 Choice of virtual machine .. 13

2 CV’s virtual machine entry – vm_entry .. 15

3 Virtual machine initialization .. 18

4 Virtual instructions .. 21

4.1 Virtual instructions of the second virtual machine .. 25

4.2 The initial virtual instruction .. 32

4.3 Initially executed virtual instructions ... 38

5 Automating analysis of the first virtual machine .. 45

6 Description of our final VM analyzer code ... 52

7 Future work ... 55

Conclusion .. 56

References ... 57

List of Figures

Figure 1. Illustration of bytecode, where all opcodes and operands are virtual ..3
Figure 2. Illustration of the relationship between bytecode and the VM’s interpreter..............................5
Figure 3. Illustration of Switch Dispatch (assembly jump table), where R0 is a virtual register6

Figure 4. Illustration of Direct Threading ...7
Figure 5. Overview of the virtualization process ..9
Figure 6. Entry point to the virtual machine ...15
Figure 7. A part of vm_entry of the virtual machine decompiled with Ghidra16

Figure 8. Function used to unpack NsPack in ClamAV ...16
Figure 9. A block of code in Miasm’s symbolic execution (left) and a part of the same block in IDA’s

decompiler (right) ...17
Figure 10. Miasm’s symbolic execution of a vm_pre_init() showing parameters supplied to

vm_init() ...18

Figure 11. Busy-waiting for interpreter in vm_init() ..19

Figure 12. vm_init() summary ..20

Figure 13. Virtual instruction table ...21
Figure 14. The first virtual instruction in the table ...21
Figure 15. One of the vm_pre_init() functions ..22

Figure 16. Miasm’s symbolic execution of the first virtual instruction (function at 0x0FF2DB)22

Figure 17. Miasm’s symbolic execution of the first block of vm2_init() ..23

Figure 18. Miasm’s symbolic execution of the first block of vm_init() ...24

Figure 19. A part of the second virtual instruction table ...25
Figure 20. Virtual instructions in the structure of the virtual machines ..26
Figure 21. The initial virtual instruction of the second VM ..27
Figure 22. Bytecode of the virtual instruction...27
Figure 23. Destination address and memory modified by the second virtual instruction27
Figure 24. Destination address and memory modified by the third virtual instruction28
Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruction28
Figure 26. Destination address and memory modified by the fourth virtual instruction29
Figure 27. Call graph generated from memory assignments and the VPC ...31
Figure 28. Virtual instructions in the structure of the virtual machines ..32
Figure 29. Control flow graph of the initial virtual instruction ...33
Figure 30. Beginning of the prologue finishing context switch of the second VM34
Figure 31. Virtual registers of the second machine being mapped back to the native ones at the end of

the virtual instruction ..35
Figure 32. Last few virtual instructions executed before mapping the virtual registers back to the native

ones ...37
Figure 33. Zeroing out an internal register ..40
Figure 34. Storing the stack pointer in an internal register ...42
Figure 35. Part of the fourth virtual instruction ..43
Figure 36. Part of the fourth virtual instruction performing a pop-like operation44
Figure 37. Part of the fourth virtual instruction performing a PUSH operation44

Figure 38. The first processed bytecode block ..46
Figure 39. Expressions that can be further simplified ...47
Figure 40. Code of the processed bytecode...48

Figure 41. Data accessed by the code – ServiceStatus ..48

Figure 42. Function whose pointer is used in the code ...49
Figure 43. Destination address of the bytecode ..49
Figure 44. Setting return address of the API call ..50
Figure 45. Body of the code’s loop ...50
Figure 46. The same part of code in the non-obfuscated binary ...51

List of Tables

Table 1. Miasm’s IR semantics ...13
Table 2. Statistics of the initial virtual instruction ..33
Table 3. Statistics of the first executed virtual instruction ..41
Table 4. Statistics of the second executed virtual instruction ...41
Table 5. Statistics of the third executed virtual instruction ...43
Table 6. Statistics of the fourth executed virtual instruction ...43
Table 7. Statistics of the first processed bytecode block ...51

1

Introduction

Reverse engineering is in terms of software-engineering process of analyzing function-

ality and behavior of certain software in order to get insight into its overall capabilities or

achieve utter understanding of how its features are implemented and work. Initially, one often

needs to partially recover the original source code out of an already compiled binary to per-

form reverse engineering – the source code cannot be usually completely recovered since

some information is lost during the compilation process.

 Techniques intended to hinder reverse engineering – make the source code difficult to

read and understand – are called obfuscation techniques. Such techniques emerged as a way to

address the need to protect intellectual property against infringements, such as counterfeiting

and patent abuse in both software and hardware products. The protection aspect is a strong

motivation for investing in research and development of the obfuscation techniques. The tech-

niques are not meant to be bullet-proof, they are just supposed to discourage majority of the

adversaries by forcing them to invest a substantial amount of time and means into overcoming

the protection to recover the original source code.

Obfuscation techniques became later misused for illicit purposes such as protection of

malware. Obfuscation often breaks patterns in the code and behavior of malware and that turns

previous detection rules for non-obfuscated versions useless. Moreover, patterns in the obfus-

cated code can be different from sample to sample or contain significant overlaps with legiti-

mate applications obfuscated using the same obfuscator – one cannot just consider all obfus-

cated code to be malicious.

This naturally resulted in an evolution of sort of counter-countermeasures – deobfusca-

tion techniques that recover the original source code and revert the effects of the obfuscation

techniques. They are primarily intended to facilitate analysis and detection of protected mal-

ware. The thesis deals with a specific type of protection – virtual-machine based obfuscation.

The first chapter is a comprehensive introduction into the field and thesis with several

subchapters that describe general structure of virtual machine based obfuscators and compare

them against the standard virtual machines; summarize known and unique techniques to deal

with the obfuscation; introduce featured libraries and the virtual machine based obfuscator that

2

we are going to analyze in the further chapters. The remaining chapters progressively analyze

underlying parts of the chosen obfuscator and shape the design of our deobfuscation method.

This thesis has been written in cooperation with ESET, published at blog WeLiveSecu-

rity [1], and presented at few international cyber-security and reverse-engineering confer-

ences: REcon (Montreal), CodeBlue (Tokyo), and SecTor (Toronto).

3

1 Starting points

This chapter initially summarizes known information about virtual machine based obfuscators

and methods to recover the underlying original code. It afterwards introduces the analyzed vir-

tual machine and tools used to design our deobfuscation method.

General structure of virtual machines. Virtual machines (VMs) can be divided into two

main categories:

1. System virtual machines – support execution of complete operating systems (e.g., vari-

ous VMWare products, VirtualBox)

2. Process virtual machines – execute individual programs in an OS-independent environ-

ment (e.g., Java, the .NET Common Language Runtime)

Here, we are interested only in the second category – process virtual machines – and we

will briefly describe certain parts of their internal anatomy necessary to understand the rest of

this paper.

Process virtual machines run as normal applications on their host OSes, and in turn run

programs whose code is stored as OS-independent bytecode (Figure 1) that represents a series

of instructions – an application – of a virtual ISA (instruction set architecture) [2].

Figure 1. Illustration of bytecode, where all opcodes and operands are virtual

One can also think about bytecode as a sort of intermediate representation (IR); an

abstract representation of code consisting of a specific instruction set that resembles assembly

more than a high-level language. It is also known as intermediate language.

The use of IR is convenient in terms of code reusability – when one needs to add sup-

port for a new architecture or CPU instruction set, it is easier to convert it to the IR instead of

writing all the required algorithms again. Another benefit is that it can simplify the application

of some optimization algorithms.

4

One can generally translate both high- and low-level languages into an IR. Translation

of a higher-level language is known as “lowering”, and similarly translation of a lower-level

one, “lifting”.

The following example lifts an assembly block bb0 into a block with the pseudo-IR

code irb0. All assembly instructions are translated into a set of IR operations and individual

operations in sets do not affect each other, where ZF stands for zero flag and CF for carry flag:

bb0:

MOV R8, 0x05

SUB AX, DX

XCHG ECX, EDX

irb0:

R8 = 0x05

EAX[:0x10] = EAX[:0x10] – EDX[:0x10]

ZF = EAX[:0x10] – EDX[:0x10] == 0x00

CF = EAX[:0x10] < EDX[:0x10]

...

ECX = EDX

EDX = ECX

Modern process VMs usually provide a compiler that can lower code written in a high-

level language -- one that is easy to understand and comfortable to use – into the respective

bytecode.

A VM’s ISA generally defines the supported instructions, data types and registers,

among other things, that naturally must be implemented by a virtual ISA as well.

Instructions consist of the following parts:

• opcodes – operation codes that specify an instruction

• operands – parameters of the instructions

ISAs often use two well-known virtual registers:

• virtual program counter (VPC) – a pointer to the current position in the bytecode

• virtual stack pointer – a pointer to pre-allocated virtual stack space used internally by

the VM

5

The virtual stack pointer does not have to be present in all VMs; it is common only in a

certain type of VM – stack-based ones. [3]

We will refer to the instructions and their respective parts of a virtual ISA simply as vir-

tual instructions, virtual opcodes, and virtual operands. We sometimes omit the explicit

use of “virtual” when it is obvious that we are talking about the virtual representation.

An OS-dependent (Figure 2) executable file – interpreter – processes the supplied

bytecode and sequentially interprets the underlying virtual instructions thus executing the vir-

tualized program.

Figure 2. Illustration of the relationship between bytecode and the VM’s interpreter

Transfer of control from one virtual instruction to the next during interpretation needs to

be performed by every VM. This process is generally known as dispatching. There are several

documented dispatch techniques such as: [4]

• Switch Dispatch – the simplest dispatch mechanism where virtual instructions are de-

fined as case clauses and a virtual opcode is used as the test expression (Figure 3)

• Direct Call Threading – virtual instructions are defined as functions and virtual op-

codes contain addresses of these functions

6

• Direct Threading – virtual instructions are defined as functions again; however, in

comparison to Direct Call Threading, addresses of the functions are stored in a table

and virtual opcodes represent offsets to this table. Each function should indirectly call

the following one according to the specification (Figure 4)

The body of a virtual opcode in the interpreter’s code is usually called a virtual handler

because it defines the behavior of the opcode and handles it when the virtual program counter

points to a location in the bytecode that contains a virtual instruction with that opcode.

By context, regarding VMs, we mean a sort of virtual process context: each time a process

is removed from access to the processor during process switching, sufficient information on its

current operating state – its context – must be stored such that when it is again scheduled to

run on the processor, it can resume its operation from an identical position. [5]

Figure 3. Illustration of Switch Dispatch (jump table in assembly), where R0 is a virtual regis-

ter

7

Figure 4. Illustration of Direct Threading

Obfuscation techniques are a kind of software protection intended to make code hard to un-

derstand and hence conceal its objectives. Such techniques were initially developed to protect

the intellectual property of legitimate software, i.e., to hamper reverse engineering.

Virtual machines used as obfuscation engines are based on process virtual machines, as de-

scribed above. The primary difference is that they are not intended to run cross-platform appli-

cations and they usually take machine code compiled or assembled for a known ISA, disas-

semble it and translate that to their own virtual ISA. It is also usually the case that the VM en-

vironment and the virtualized application code are contained in one application, whereas tradi-

tional process VMs usually consist of a process that runs as a standalone application that loads

separate, virtualized applications

The strength of this obfuscation technique resides in the fact that the ISA of the VM is

unknown to any prospective reverse engineer – a thorough analysis of the VM, which can be

very time-consuming, is required to understand the meaning of the virtual instructions and

other structures of the VM. Further, if performance is not an issue, the VM’s ISA can be de-

signed to be arbitrarily complex, slowing its execution of virtualized applications, but making

8

reverse engineering even more complex. Understanding of the VM is necessary for decoding

the bytecode and making the virtualized code understandable.

Context has a bit of a different meaning in regard to obfuscating virtual machines: each time

we want to switch from the native to virtual ISA or vice-versa, sufficient information – context

– on the current operating state must be stored so that when the lSA has to be switched back,

execution can resume with only the relevant data and registers modified.

Additionally, obfuscating VMs usually virtualize only certain “interesting” functions –

native context is mapped to the virtual one and bytecode, representing the respective function,

is chosen beforehand. The built-in interpreter is invoked afterwards (Figure 5). Beginnings of

the original functions contain code that prepares and executes the interpreter – entry of the

VM (vm_entry); the rest of their code is omitted in Figure 5.

Interpreter, bytecode, and virtual ISA code with data of obfuscating VMs are often all

stored in a dedicated section of the executable binary, along with the rest of the partially virtu-

alized program.

Figure 5 shows the way a function, Function 1, in the original application targeting

a common ISA can be virtualized for an obfuscating VM’s ISA. It needs to be converted into

bytecode, for example using a generate_bytecode method. Its body is afterwards over-

written by a call into vm_entry and zeroes. The vm_entry function chooses the respective

bytecode, for example, based on the calling function’s address, then conducts a context switch,

and next interprets the bytecode. Finally, it returns to the code where the virtualized function,

Function 1, would return.

9

Figure 5. Overview of the virtualization process

In VMs hosted on x86 architectures, such context switches usually consist of a series

of PUSH and POP instructions. For example:

PUSH EAX

PUSH EBX

PUSH ECX

...

MOV ECX, context_addr

POP DWORD PTR [ECX]

POP DWORD PTR [ECX + 4]

POP DWORD PTR [ECX + 8]

...

When the bytecode is fully processed, virtual context is mapped back to native context

and execution continues in the non-virtualized code; however, another virtualized function

could be executed in the same manner, right away.

Note that several context switches can occur in one virtualized function, for example

when a native instruction from the original ISA could not be translated to virtual instructions

or an unknown function from the native API needs to be executed.

10

1.1 Documented techniques for deobfuscation of virtual

machines

Obfuscating VM techniques have become widely misused for illicit purposes such as obfusca-

tion of malware samples as they hinder both analysis and detection. Hence there is motivation

to overcome these obfuscation techniques so as to facilitate analysis of such malicious code

and to achieve overall improvement of detection methods.

But first, we want to clarify several terms that are used in this and following sections

and might not be known to all readers.

Symbolic execution is a code analysis technique, where specific variables are represented

with symbolic values instead of concrete data. Arbitrary operations with these symbolic values

produce symbolic expressions. It is usually applied on the code’s IR and the symbolic expres-

sions include flags.

One can visualize the symbolic expressions like mathematical formulas as can be seen

in the following example, where irb1 contains a block of pseudo-IR:

irb1:

R13 = R13 + 0x027D3930

RBX = RCX + 0x05

R13 = R13 + -RSI

R13 = R13 + RBX

irb1_symb:

RBX = RCX + 0x05

R13 = R13 + RCX + 0x05 + -RSI + 0x027D3930

ZF = R13 + RCX + 0x05 + -RSI + 0x027D3930 == 0x00

...

The state of symbolically executed code consists of:

• Values of all variables

• Program counter

• Accumulated constraints that the program’s inputs need to satisfy to reach the associ-

ated location from the entry point

11

Accumulated constraints can be understood as a theory in logic. In order to find concrete

values of the initial variables with symbolic values – inputs – we need to find a satisfying

model, which can be done with an SMT (satisfiability modulo theories) [6] solver.

Path coverage is another code analysis technique that determines all possible paths in a piece

of code. It is usually implemented using symbolic execution instructed to explore all reachable

paths – reachability of newly discovered paths is verified by an SMT solver and already

known paths are marked to prevent infinite loops.

Microsoft describes program synthesis as “the task of automatically discovering an

executable piece of code given user intent expressed using various forms of constraints such as

input-output examples, demonstrations, natural language, etc.”. [7]

Several techniques to deal with VM-based obfuscation have been proposed in the past.

Here we briefly walk through them and discuss their advantages and disadvantages.

Rolf Rolles described several standard steps to manually recover the original code, where

the drawback is time-complexity: [8]

1. Reverse engineer and understand structures of the VM

2. Detect entries into the VM

3. Develop a disassembler for the instruction set by identifying the purpose of individual

virtual opcodes or matching them against already known ones

4. Disassemble the bytecode and convert it into intermediate representation – the seman-

tics of some instructions might be hard to comprehend in basic blocks without further

translation (e.g., stack-based VMs would contain a lot of confusing PUSH and POP

machinations”)

5. Apply compiler optimizations to get rid of additional obfuscation techniques

6. Generate the deobfuscated code

He additionally suggested the use of pure symbolic execution on the virtual opcodes in the

fourth step to obtain a representation, where each opcode is a mathematical function that is a

map from its input space into itself. The pure symbolic execution technique was later inde-

pendently implemented in a Miasm blogpost [9].

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet proposed a fully automatic ap-

proach to overcome obfuscating VM protection on samples with a finite number of executable

paths. The approach consists of the following steps: [10]

1. Identification of the sample’s inputs

2. Isolation of pertinent instructions dependent on the identified inputs on an execution

trace

3. Performance of a path coverage analysis to reach new paths – traces

12

4. Reconstruction of the original program from the resulting traces – they are combined

and compiler optimizations partially recover the control flow graph

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Hol produced a semi-

automatic approach, based on program synthesis, that uses instruction traces as a black-box

oracle to produce random input and output pairs. The I/O pairs are subsequently used to learn

the code’s underlying semantics with the synthesizer. [11]

These pairs and semantics are generated for the virtual opcodes that must be identified be-

forehand – the VM needs to be partially reverse engineered to locate its components.

The approach does not seem to be applicable to some complex (particularly obfuscating)

VMs due to its time complexity, as it reportedly took almost three hours to process 36 virtual

opcodes of a VM – duplication of handlers, which is a simple and common obfuscation tech-

nique, would be a huge issue.

1.2 The Miasm framework

Miasm is a free and open-source reverse-engineering framework that aims to analyze, modify

and generate binary programs. It has a number of useful features that we use throughout our

analysis: [12]

• Opening, modifying and generating binary files – PE and ELF

• Assembling and disassembling of various architectures such as x86, ARM, MIPS…

• Representing assembly semantics using intermediate representation

• Simplification rules for automatic deobfuscation

• Symbolic execution engine

• ...

There are several frameworks for reverse-engineering that provide the features that we

needed; we decided to use Miasm in this project simply because it is actively maintained, and

we are already familiar and satisfied with it.

The features that we want to use are covered in the example section of its GitHub reposi-

tory description and its documentation. [13]

Semantics of Miasm’s IR are summarized in

Table 1, since they are going to be used repeatedly.

13

Table 1. Miasm’s IR semantics

Element Example

ExprId EAX

ExprAssign A=B

ExprInt 0x18

ExprLoc location_1

ExprCond A ? B : C

ExprMem @16[ESI]

ExprOp A + B

ExprSlice AH = EAX[8:16]

ExprCompose {EAX 0 32, 0x0 32

64}

The destination address of a symbolic execution performed over a block of code is

saved in the respective program counter such as RIP and additionally in a special variable

IRDst.

Note that during Miasm’s symbolic execution: initial values of registers, which are

treated as variables, are symbolic and their format is <register name>_init. Simplifi-

cation rules are applied automatically to the symbolic expressions. For example, the symbolic

expression RAX = RCX + 0x2 + 0x3 is automatically simplified into RAX =

RCX_init + 0x5.

1.3 Choice of virtual machine

We are going to analyze a VM that is used to protect a sample of a malicious loader called

Wslink [14]. The sample does not appear to contain any artifacts that would link it to any

known commercial code protection product right away.

However, further analysis revealed that it behaves and contains structures just like

VMs generated by CodeVirtualizer (CV) [15], which is a modern and commercial program for

code protection, and we assess with high confidence that it is indeed the used obfuscator.

We are going to analyze the applied VM in the rest of the thesis, propose methods to

deal with the VM and recover a part of the original code to prove the effectivity of the sug-

gested method.

14

To conduct the analysis, we decided to use disassembler and decompiler IDA Pro,

which is a standard tool in the industry along with reverse-engineering framework Miasm in-

troducing some useful IDA Pro plugins and means to better understand and deobfuscate the

code.

15

2 CV’s virtual machine entry – vm_entry

Let's get to the analysis of CV’s VM now. There are several function calls that enter the VM,

all of which are followed by some gibberish data that IDA attempts to disassemble – the data

most likely just overwrites the function’s original code before virtualization (Figure 6).

Figure 6. Entry point to the virtual machine

The vm_entry of the VM:

• calculates the actual base address by subtracting the expected relative virtual address

from the actual virtual address of a place in the code

• unpacks code and data related to the VM on the first run; it uses the calculated base ad-

dress to determine the location of the packed VM and destination of the unpacked data

• executes an initialization function – one of the vm_pre_init() functions to be de-

scribed is based on the caller’s relative address that is mapped to the respective
vm_pre_init()

Packer. CV’s VM is packed with NsPack to reduce the size of the huge executable file; addi-

tional obfuscation is probably just a side effect. Similarities between CV’s unpacking code and

ClamAV’s unspack()function are clearly visible (Figure 7 and Figure 8). Note that Ghidra

has optimized out calculation of the base address.

16

Figure 7. A part of vm_entry of the virtual machine decompiled with Ghidra

Figure 8. Function used to unpack NsPack in ClamAV

17

The vm_pre_init_dispatch_table in Figure 7 is the structure that maps call-

ers’ addresses of the vm_entry to the respective vm_pre_init() functions that are to be

described.

Junk code. Each part of the unpacked VM is obfuscated with lots of junk code – unnecessary

additional instructions significantly decreasing readability of the code. It often uses instruction

pairs with opposite effects.

Neither the IDA nor the Ghidra decompiler is able to deal with such obfuscation; how-

ever, Miasm’s symbolic execution was able to make the code easily readable (Figure 9).

Figure 9. A block of code in Miasm’s symbolic execution (left) and a part of the same block in

IDA’s decompiler (right)

18

3 Virtual machine initialization

Initialization of the VM consists of several steps, such as saving values of the native registers

on the stack and later moving them to the virtual context, relocation of its internal structures,

or preparation of bytecode. We cover these steps more thoroughly in this chapter.

vm_pre_init() functions are meant only to prepare parameters for another stage of initial-

ization (Figure 10). These functions call a single vm_init() function (explained in the next

section) with specific parameters. The supplied parameters are:

• CPU flags, RFLAGS, which are stored on the stack with a PUSHF instruction at the be-

ginning of each function

• hardcoded offset to a virtual instruction table that represents the first virtual instruction

to be executed (its opcode)

• hardcoded address of the bytecode to be interpreted

Figure 10. Miasm’s symbolic execution of a vm_pre_init() showing parameters supplied

to vm_init()

19

vm_init() pushes all the native registers and the supplied CPU flags from parameters (con-

text) onto the stack; one can actually see it in Figure 9. The native context will later be moved

to the virtual one that, in addition, holds several internal registers.

One of the internal registers determines whether another instance of the VM is already

running – there is only one global virtual context and only one instance of the VM can run at a

time. Figure 11 shows the part of the code busy-waiting for the virtual register, where RBP

contains the address of the virtual context and RBX the offset of the virtual register – the inter-

nal register is stored in [RBX + RBP].

The entire function is summarized in Figure 12.

Figure 11. Busy-waiting for interpreter in vm_init()

The bytecode’s address, supplied in the parameters, is added to the virtual context

along with the address of the virtual instruction table, which is hardcoded. Both have a dedi-

cated virtual register.

The VM calculates the base address again in the same way as was described for

vm_entry; in addition, it stores the address in another internal register that is used later,

should an API be called. Then the base address is used to relocate the instruction table, its en-

tries, and the bytecode’s address.

The calculated base address is simply added to all the function addresses if they have

not already been relocated.

20

Figure 12. vm_init() summary

21

4 Virtual instructions

There are only 45 instructions in the virtual instruction table (Figure 13).

Figure 13. Virtual instruction table

Let us look at the first one in the table. Initially, we need to relocate it; our dump of the

VM starts at address 0x00 and it is expected to be at base + 0x0F33F5, so the target ad-

dress is 0x1EC74E – 0x0F33F5, which is 0x0F9359 (Figure 14).

Figure 14. The first virtual instruction in the table

The JMP in Figure 14 leads us to a function at 0x0FF2DB whose behavior is remarka-

bly similar to vm_pre_init() (Figure 15 and Figure 16 for comparison). The function ap-

pears to be pushing another bytecode address, the opcode of the initial virtual instruction, and

CPU flags.

22

Figure 15. One of the vm_pre_init() functions

Figure 16. Miasm’s symbolic execution of the first virtual instruction (function at 0x0FF2DB)

Inspecting the function at 0x0F7FFF (Figure 17), into which our virtual instruction

jumps, reveals that it appears to be another vm_init() (Figure 18). When we compare it to

23

the previous one, we can see that their behaviors are, indeed, the same. We will refer to these

functions simply as vm2_pre_init() and vm2_init().

Figure 17. Miasm’s symbolic execution of the first block of vm2_init()

24

Figure 18. Miasm’s symbolic execution of the first block of vm_init()

Inspection of the other instructions revealed that they all execute this second VM with

different vm2_pre_init() functions – this clearly shows that there are two layers of VMs.

Virtual instructions of the first VM execute vm2_pre_init() directly without any

dispatch table based on the caller’s address. The number of virtual instructions in the second

VM is significantly higher – 1071 (Figure 19).

25

Figure 19. A part of the second virtual instruction table

4.1 Virtual instructions of the second virtual machine

We start by looking at the first few executed virtual instructions to observe the behavior of the

second VM and then try to process the rest of them in a partially automated way.

The diagram in Figure 20 highlights with blue, where the virtual instructions of the

second VM are in the structure of the VMs.

26

Figure 20. Virtual instructions in the structure of the virtual machines

The first virtual instruction is, exceptionally, not obfuscated, as can be seen in Figure 21. Fi-

nally, we can see some operations in the virtual context.

By inspecting the modified memory and calculated destination address of the instruction, it

is clear that the instruction does three things:

1. Zeroes out a virtual 32-bit register at offset 0xB5 in the virtual context (highlighted in

gray in Figure 21), which is stored in the RBP register.

2. A virtual 64-bit register at offset 0x28 is increased by 0x04: it is the pointer to the

bytecode – virtual program counter. The size of the virtual instruction is hence four

bytes (highlighted in red in Figure 21).

3. The next virtual instruction is prepared to be executed, the offset to the virtual instruc-

tion table – virtual opcode – is fetched from the virtual program counter. The virtual

27

instruction table is at offset 0xA4 (highlighted in green in Figure 21). This means that

the VM uses the Direct Threading Dispatch technique.

Figure 21. The initial virtual instruction of the second VM

Note that the size of the next instruction’s opcode is only two bytes and the remaining

word is left unused. We can see that it is just a zero when we look at virtual operands (Figure

22). Sizes of the other instructions differ – it is not just padding that preserves the same size

for all instructions.

Figure 22. Bytecode of the virtual instruction

The second virtual instruction does not do anything special; it just zeroes out several virtual

registers and jumps to the next instruction (Figure 23).

Figure 23. Destination address and memory modified by the second virtual instruction

28

The third virtual instruction stores the address of the stack pointer in a virtual register (Fig-

ure 24); the offset of the register is determined by one of the operands, and its offset is

0x0141 in our case.

Figure 24. Destination address and memory modified by the third virtual instruction

The fourth instruction contains two immediately visible anomalies in comparison with previ-

ous instructions – the stack pointer’s delta is lower at the end of the function and it contains a

conditional branch (Figure 25).

Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruc-

tion

29

Symbolic execution of the first block reveals that a value is popped from the stack into

a virtual register (Figure 26), which makes sense as the values of the native registers remain

on the stack after being saved there by vm2_init(). They are now being moved to the vir-

tual context – the context switch is partially performed by a number of virtual instructions,

each of which pops one value off the stack into a different register.

Figure 26. Destination address and memory modified by the fourth virtual instruction

The virtual register, where the value of the native register is to be saved, is determined

by an operand and two other virtual registers at offsets 0x0B and 0x70. However, their initial

value is already known: they were set to zero by the second virtual instruction (Figure 23),

which means that we can calculate the offset of the register and simplify the expressions –

they are used just to obfuscate the code.

Rolling decryption. Analysis of other virtual instructions confirmed that the virtual registers

at offsets 0x0B and 0x70 are meant just to encode operands. This technique is called rolling

decryption and it is known to be used by the VMProtect obfuscator. However, it is the only

overlap with that obfuscator and we are highly confident that this VM is different.

The obfuscation technique is certainly one of the reasons for the enormous number of

virtual instructions – use of the technique requires duplication of individual instructions since

each uses a different key to decode the operands.

Simplification. The expressions can be simplified to the following when we apply the known

values of the virtual registers:

IRDst = (-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038 ==

@16[@64[RBP_init + 0x28] + 0x6])?(0x7FEC91ABD1C,0x7FEC91ABCF6)

@64[RBP_init + {-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038, 0,

16, 0x0, 16, 64}] = @64[RSP_init]

Now let us take a look at the expression in the conditional block:

https://back.engineering/17/05/2021/#rolling-decryption
https://back.engineering/17/05/2021/#rolling-decryption
https://vmpsoft.com/

30

@64[RBP_init + {@16[@64[RBP_init + 0x28] + 0x6], 0, 16, 0x0,

16, 64}] = @64[RBP_init + {@16[@64[RBP_init + 0x28] + 0x6], 0,

16, 0x0, 16, 64}] + 0x8

We can now see that the virtual instruction is definitely POP – it moves a value off the

top of the stack to a virtual register, whose offset is still obfuscated with a simple XOR; it ad-

ditionally increases the stack pointer when the destination register is not the stack pointer.

As values in the bytecode are known too, we can apply them and simplify the instruc-

tion even further into the following final unconditional expressions:

IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8]

@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8

@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8

@64[RBP_init + 0x12A] = @64[RSP_init]

Automating analysis of the virtual instructions. As doing this for more than 1000 instruc-

tions would be very time consuming, we wrote a Python script with Miasm that collects this

information for us so we can get a better overview of what is going on. We are particularly in-

terested in modified memory and destination addresses.

Just as in the fourth virtual instruction, we will treat certain virtual registers as concrete

values to retrieve clear expressions. These registers are dedicated to the rolling decryption and

perform memory accesses that are relative to the bytecode pointer, e.g. [<obf_reg_1>] =

[<bytecode_ptr> + 0x05] ^ 0xABCD.

Subsequently we concretize the pointer to the virtual instruction table too and, by the

end of the virtual instruction: calculate addresses of the next ones, clear the symbolic state,

and start with the following virtual instructions.

We additionally save aside memory assignments that are not related to the internal reg-

isters of the VM and gradually build a graph based on the virtual program counter (Figure 27).

31

Figure 27. Call graph generated from memory assignments and the VPC

We stop when we cannot unambiguously determine the next virtual instructions to be

executed; one can automatically process most of the virtual instructions in this way.

Note that instructions featuring complex loops cannot be processed with certainty and

need to be addressed individually due to the path explosion problem of symbolic execution,

which is described for example in the paper Demand-Driven Compositional Symbolic Execu-

tion [16]: “Systematically executing symbolically all feasible program paths does not scale to

large programs. Indeed, the number of feasible paths can be exponential in the program size,

or even infinite in presence of loops with unbounded number of iterations.”

Getting back to the first virtual machine. Before diving into the virtual instructions of the

first VM, let us recap where we currently are. We have just described a way to semiautomate

processing of the bytecode belonging to the second VM (blue in Figure 28) that interprets vir-

tual instructions of the first VM (red in Figure 28). Now we move on to inspect instructions of

the first VM with this approach.

32

Figure 28. Virtual instructions in the structure of the virtual machines

4.2 The initial virtual instruction

In this section we describe the results of processing of the initial virtual instruction of the first

VM in the semiautomatic manner that was described in the previous section.

We performed all the processing on a virtual machine with i7-4770 CPU and 4GB of

memory. Statistics in Table 2 have been extracted from the processing of the initial virtual in-

struction.

33

Table 2. Statistics of the initial virtual instruction

Size of the bytecode block in bytes 1,145
Total number of processed virtual instructions 109
Total number of underlying native instructions 17,406
Total number of resulting IR instructions (including IRDsts) 307

Execution time in seconds 10.6509

The resulting control flow graph built out of the semantics extracted from the virtual

instructions of the second VM’s bytecode that interprets the initial virtual instruction from the

first VM can be seen in Figure 29. We can divide the series into a few parts.

Figure 29. Control flow graph of the initial virtual instruction

34

Prologue. As expected, the graph starts with a series of POP instructions that move values of

the native registers saved beforehand in vm2_init() to the virtual ones (Figure 30). To de-

termine positions of the native registers on the stack, we could symbolically evaluate the first

block of vm2_init() and map the virtual registers to their native versions, which would

make the code easier to read, but that is not important now.

Remember that the virtual register at offset 0x1E contains the stack pointer, and that a

POP instruction moves a value off the top of the stack and usually increases the stack pointer.

Figure 30. Beginning of the prologue finishing context switch of the second VM

35

Epilogue. To map the virtual registers back to the native ones, the second VM pushes them all

onto the stack and then subsequently pops them off one by one to the native ones. Note that

we set up an exclusion in our algorithm and disabled optimizations to show assignments to

registers in the last virtual instruction (Figure 31).

Figure 31. Virtual registers of the second machine being mapped back to the native ones at

the end of the virtual instruction

36

Analysis of the virtual context. In this section we analyze the behavior of the first VM based

on the results of the Error! Reference source not found. section.

Figure 32 shows:

• virtual registers being pushed onto the stack at the beginning of the prologue (red)

• partially the way the next virtual instruction is prepared to be executed (green)

• the virtual program counter being increased (blue)

In particular, the virtual program counter is represented by @64[@64[RBP_init +

0x38] + 0x2C], where the register at @64[RBP_init + 0x38] holds the address of

the virtual context. We can see that size of the initial virtual instruction was 8 bytes, since the

virtual program counter is increased by 8 in the line highlighted with blue in Figure 32.

37

Figure 32. Last few virtual instructions executed before mapping the virtual registers back to

the native ones

As one can see in Figure 31 (IRDst = @64[RBP_init + 0x74]), the virtual

register at offset 0x74 determines IRDst – the address of the next instruction. If we follow

the virtual register @64[RBP_init + 0x74] in Figure 32, we can see that it appears to be

preparing to execute the next virtual instruction similarly to the second VM. Its code slice is

the following series of expressions:

@64[RBP_init + 0x30] = @64[@64[RBP_init + 0x38] + 0x2C]

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] + 0x2

@64[RBP_init + 0x30] = {@16[@64[RBP_init + 0x30]] 0 16, 0x0 16

64}

https://en.wikipedia.org/wiki/Program_slicing

38

@32[RBP_init + 0x30] = @32[RBP_init + 0x30] + 0x8E839329

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] & 0xFFFF

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] << 0x3

@64[RBP_init + 0xDE] = @64[@64[RBP_init + 0x38] + 0xEE]

@64[RBP_init + 0xDE] = @64[RBP_init + 0x30] + @64[RBP_init +

0xDE]

@64[RBP_init + 0x74] = @64[@64[RBP_init + 0xDE]]

The entire slice of @64[RBP_init + 0x30] is meant just to acquire the offset of

the next virtual instruction (opcode): it gets the virtual instruction’s offset from the bytecode

whose pointer is stored in the @64[@64[RBP_init + 0x38] + 0x2C] register, and the

offset is subsequently increased by 0x8E839329… which could have been omitted and

serves solely to obscure the virtual instruction.

The virtual register @64[@64[RBP_init + 0x38] + 0xEE] contains the ad-

dress of the virtual instruction table. Now it is clear that the first VM is obfuscated using

known values from the bytecode too and that the code indeed executes a next virtual instruc-

tion as well – it definitely uses Direct Threading.

One can additionally see that @64[RBP_init + 0x50] stores the RFLAGS in Fig-

ure 32.

Behavior. The virtual instruction behaves similarly to the virtual instructions from the second

VM – offsets of the virtual registers to be used are fetched from the virtual instruction’s oper-

ands.

Subsequently a virtual register’s value is moved to a memory address stored in another

one: [<virt_reg_1>] = <virt_reg_2>. The target register is then either increased or

decreased by 8: <virt_reg_1> = <virt_reg_1> +- 8. This is most likely a PUSH

instruction prepared also for environments where the stack grows upwards.

4.3 Initially executed virtual instructions

39

We will have a look at a few other virtual instructions to confirm our findings and the correct-

ness of methods for analysis of the first VM. Specifically, the virtual instructions that are ini-

tially executed as we can compare the first VM’s initial behavior to the second VM’s.

The first executed virtual instruction. We can see in the highlighted line of Figure 33 that

the first executed instruction of the first VM behaves indeed just like the one in the second

VM – it just zeroes out an internal register and prepares another virtual instruction to be exe-

cuted.

40

Figure 33. Zeroing out an internal register

Statistics in Table 3 have been extracted from the processing of the first executed virtual in-

struction.

41

Table 3. Statistics of the first executed virtual instruction

Size of the bytecode block in bytes 548
Total number of processed virtual instructions 62
Total number of underlying native instructions 9,444
Total number of resulting IR instructions (including IRDsts) 195

Execution time in seconds 6.4810

The second executed virtual instruction. The second virtual instruction just zeroes out sev-

eral internal registers, which are most likely about to be used for obfuscation, as in the second

VM.

Statistics in Table 4 have been extracted from the processing of the second executed

virtual instruction.

Table 4. Statistics of the second executed virtual instruction

Size of the bytecode block in bytes 755
Total number of processed virtual instructions 83
Total number of underlying native instructions 13,740
Total number of resulting IR instructions (including IRDsts) 259

Execution time in seconds 7.7718

The third executed virtual instruction. The third virtual instruction behaves just like the

third one of the second VM too – it stores the stack pointer (highlighted in Figure 34). The ad-

dition of 0x98 is present due to applied optimizations which took into account the previously

executed POP instructions in the Prologue section.

42

Figure 34. Storing the stack pointer in an internal register

43

Statistics in Table 5 have been extracted from the processing of the third executed vir-

tual instruction.

Table 5. Statistics of the third executed virtual instruction

Size of the bytecode block in bytes 586
Total number of processed virtual instructions 66
Total number of underlying native instructions 10,263
Total number of resulting IR instructions (including

IRDsts)

207

Execution time in seconds 6.8428

The fourth executed virtual instruction. We naturally expect this instruction to be a POP as

in the second VM; however, it is hard to confirm statically as the already described obfusca-

tion techniques make it too hard to understand. One can see part of the virtual instruction in

Figure 35.

Statistics in Table 6 have been extracted from the processing of the fourth executed

virtual instruction.

Table 6. Statistics of the fourth executed virtual instruction

Size of the bytecode block in bytes 4,883
Total number of processed virtual instructions 425
Total number of underlying native instructions 71,192
Total number of resulting IR instructions (including

IRDsts)

1,038

Execution time in seconds 28.1638

Figure 35. Part of the fourth virtual instruction

44

When we look closely at certain parts of Figure 35, it appears to be able to behave as a

POP instruction. The part of the virtual instruction in Figure 36 clearly behaves just like the

fourth one of the second VM – it moves a value off the top of the stack, and if the target regis-

ter is different from the stack pointer, the stack pointer is increased.

Figure 36. Part of the fourth virtual instruction performing a pop-like operation

Instruction merging. However, the instruction also seems to be capable of performing a

PUSH and other operations as well, based on the operands (Figure 37), which means that it

consists of several other instructions merged into one, which is a kind of obfuscation tech-

nique. It most likely merged several instructions with different rolling keys into one.

Figure 37. Part of the fourth virtual instruction performing a PUSH operation

https://tigress.wtf/merge.html
https://tigress.wtf/merge.html

45

5 Automating analysis of the first virtual machine

Now that we know what the internal structure of the first VM is like, we can process the VM

as the second one since analyzing all the virtual instructions would be complicated due to the

additional obfuscation techniques – we can again effectively eliminate them with symbolic ex-

ecution.

We definitely need to concretize the virtual instruction table and internal registers dedi-

cated for obfuscation as in the previous one, which is not complicated. The question is: What

do we do with the second VM?

There is a pretty simple solution – instead of preserving the entire context of the sec-

ond VM and working with both at once, we can simply concretize the entire second VM as we

know what memory ranges belong to the VMs.

We will also ignore all memory assignments to the second VM’s context and not pre-

serve any information about its structure. This will enable us to focus only on the first one and

build the same graph as before.

We could also preserve the obfuscated IR of all the virtual instructions of the first VM

and use them instead – it would save a significant amount of time during the processing since

we would not repeatedly disassemble, translate and deobfuscate the second VM for each op-

code in the bytecode blocks of the first VM. However, we want to show that it is possible to

process both layers at once.

Processing the initial bytecode block. We processed the very first bytecode block as was de-

scribed in the previous section. The resulting code still appears to be too complex since we ex-

pected a series of POPs, the deobfuscated code and then a series of PUSHes and finally map-

ping back to the native registers. However, there are additional, multiple branches. One can

see part of the code in Figure 38.

46

Figure 38. The first processed bytecode block

Opaque predicates. Looking at the code more closely, we notice two types of expressions

that can be further simplified. The first is the value of RBP_init, which is the address of the

virtual context and it is known (Figure 39).

47

Figure 39. Expressions that can be further simplified

Both paths that follow the initial block in Figure 39 contain the same code, hence this

is not the same case as with the POP virtual instruction, where it was important to know what

the target register was because it determined the subsequent behavior of the virtual instruction.

These checks are, on the other hand, unimportant and we can just get rid of them – they can be

considered as a sort of opaque predicate [19].

Note that the branch of the POP virtual instruction was now optimized out automati-

cally since offsets of the registers were present in the bytecode and directly known.

Finally, these were the last obfuscation techniques, and we can look at the simplified

code.

Overview. We are finally greeted with a familiar, even pleasant, view in Figure 40 – as ex-

pected the code begins with a series of POPs (red) and ends with a series of PUSHes (green)

that represent parts of the context switches.

Another interesting detail is that the VM uses a special internal register to store the

destination address – the final jump is not visible, but the code jumps to @64[RBP_init +

0x133]. As was mentioned earlier, the VM also stores the base address of its code section;

this is stored in virtual register @64[RBP_init + 0x80] in our case.

One can see that the code in Figure 40 also accesses certain data using the base ad-

dress, specifically at offset 0x0E3808 (blue). After looking up the address, we found that it

belongs to a ServiceStatus structure (Figure 41).

48

Figure 40. Code of the processed bytecode

Figure 41. Data accessed by the code – ServiceStatus

It additionally sets a register before recovering the native state to a data address at off-

set 0x2FB0 (yellow). The address contains a non-obfuscated function shown in Figure 42.

49

Figure 42. Function whose pointer is used in the code

Let us now focus on the destination address (gray) – it is set to <base address> +

0x8C038. Looking up that address in the sample, we see it belongs to the Windows API

RegisterServiceCtrlHandlerW, which makes sense as the application is a service

(Figure 43).

Figure 43. Destination address of the bytecode

The question is now, what is the return address of the API call. When we look at the

end of the code, we see that it sets the return address – the highlighted assignment in Figure 44

appears to be 0x88 bytes above the stack pointer, but we need to keep in mind that we started

below the stack pointer because we did not perform the initial context pushing from

vm_init() and in reality, it is the return address.

The return address is set to another vm_pre_init().

50

Figure 44. Setting return address of the API call

The last part of the code that needs to be analyzed is the body of the loop (Figure 45).

It is pretty simple – it zeroes out a memory range. If we look back at Figure 40 and look up

what is in @64[RBP_init + 0x74], we see that it is set to the address of the Ser-

viceStatus structure (blue) – this piece of code zeroes out the structure. Meanwhile,

@64[RBP_init + 0x4F] (pink in Figure 40) initially contains the constant 0x1C – size

of the structure – and @64[RBP_init + 0xCC], the CPU flags.

Figure 45. Body of the code’s loop

Now we look at the discovered non-obfuscated sample and compare it against our find-

ings. We can confirm that we deobfuscated the first bytecode block successfully (Figure 46).

51

Figure 46. The same part of code in the non-obfuscated binary

Statistics in Table 7 have been extracted from the processing of the first bytecode

block.

Table 7. Statistics of the first processed bytecode block

Size of the bytecode block in bytes 695
Total number of processed virtual instructions 62
Total number of underlying native instructions 3,536,427
Total number of resulting IR instructions (including IRDsts) 192

Execution time in seconds 382.5678

52

6 Description of our final VM analyzer code

Our final analyzer code consists of several classes that interact together, as described in the

following sections. The full code listing is available in our GitHub repository

github.com/eset/wslink-vm-analyzer. The classes follow the high-level descrip-

tions from the previous Automating analysis sections.

Class Wslink. Wslink is a mediator that handles interaction of the remaining classes, its

constructor processes the supplied memory dump, and its method process() accepts the

value of the virtual program counter – pointer to the bytecode – with the opcode of the initial

instruction. The bytecode is subsequently processed using classes VirtualContext, Sym-

bolicCFG and MySymbolicExecutionEngine; the resulting control flow graph is

written into a DOT [17] file vma.dot.

Parts of the VM, such as address of the instruction table or offsets of the virtual regis-

ters for obfuscation, should be overwritten to provide specific values for individual VMs.

Class VirtualContext. This class represents the virtual context – it contains most notably the

initial values of the virtual registers for obfuscation, virtual program counter, and the address

of the instruction table.

It also provides several methods for working with the context described in the follow-

ing sections.

Method VirtualContext::get_next_instr(). The method get_next_instr() applies the

address of the instruction table to the destination address to simplify the corresponding expres-

sion and attempts to unambiguously determine the address of the next virtual instruction to be

executed.

Method VirtualContext::get_irb_symbs(). This method simply acquires the expressions that

should be preserved in the nodes of the resulting control flow graph.

53

Method VirtualContext::get_updated_internal_context(). The method get_up-

dated_internal_context() updates values of the internal registers that need to be pre-

served between virtual instructions, such as the virtual program counter or the obfuscation reg-

isters.

Method VirtualContext::get_state_hash(). This method calculates a hash for virtual instruc-

tions – the hash is used to specify the actual position in the bytecode to reconstruct the control

flow graph without duplicate nodes or paths and to avoid infinite loops in cycles. It is calcu-

lated just from the virtual program counter.

Class MySymbolicExecutionEngine. This class overrides the method mem_read() of Mi-

asm’s class SymbolicExecutionEngine primarily to transform memory accesses rela-

tive to the virtual program counter and the virtual instruction table into concrete values. It is

additionally meant to make the second VM completely concrete when we are processing the

first one.

Class SymbolicCFG. This class is meant to construct the resulting control flow graph. It uses

class Node to process individual virtual instructions, to acquire the expressions that need to be

preserved, and to determine addresses of the next virtual instructions.

Each Node is tied to a hash generated by get_state_hash() (as described above)

and the address, StateID, of the block of code that is being processed. This means that vir-

tual instructions containing unbounded loops cannot currently be processed correctly because

when we connect a state to an already processed one, it will not take into account the changes

introduced in the body of the loop.

Class Node. This class simply represents a node in the resulting control flow graph – it most

notably contains the values of the obfuscation registers and virtual program counter that are

together called init_symbols. These are the values required to determine the addresses of

the next virtual instructions.

54

It provides a method process_addr() that can get the following Nodes classes

that have not yet been processed and return them along with the expressions that should be

preserved in a data-class ContextResult.

The new Nodes are created based on the supplied addresses using method

_get_next(), which accepts several arguments. The arguments can instruct the function to

slightly modify the resulting Node – make a copy of the actual symbolic state when there is a

branch, or update init_symbols for a new virtual instruction.

55

7 Future work

Once we discovered a non-obfuscated sample, we were not motivated to completely deobfus-

cate the rest of the code.

Our next steps would consist of:

1. Getting rid of the prologue and epilogue and mapping the virtual registers directly to

the native ones.

2. Automatically processing the subsequent bytecode blocks and extending the graph

with resulting code listings to get an overview of the whole function.

3. Optionally addressing individual instructions with unbounded loops that cannot be

fully processed using symbolic execution (e.g., instructions like DEC_RC4 mentioned

in Miasm’s blog [9]) and manually creating their IR to be added to the graph. We

could also experiment with some enhancements of symbolic execution that attempt to

mitigate the issue [18].

4. Optionally matching resulting IR expressions against known IR expressions of assem-

bly instructions to recover assembly code.

56

Conclusion

We have described internals of an advanced multilayered virtual machine of CodeVirtualizer

and successfully designed and implemented a semiautomatic solution capable of significantly

facilitating analysis of the program’s code. This virtual machine introduced several other ob-

fuscation techniques such as junk code, encoding of virtual operands, duplication of virtual

opcodes, opaque predicates, merging of virtual instructions and a nested virtual machine to

further obstruct reverse engineering of the code that it protects, yet we successfully overcame

them all.

To deal with the obfuscation we modified a known technique that extracts the semantics of the

virtual opcodes using symbolic execution with simplifying rules. Additionally, we made con-

crete the internal virtual registers for obfuscation along with memory accesses relative to the

virtual program counter to automatically apply known values and deobfuscate semantics of the

virtual instructions – this additionally broke down boundaries between individual virtual in-

structions. Boundaries are necessary to prevent path explosion of the symbolic execution; we

would lose track of the virtual program counter – our position in the interpreted code – without

them. We defined new boundaries by symbolizing the address of the virtual instruction table,

since it is required to get the next instruction, and concretized it only when we needed to move

to the following virtual instructions. We subsequently constructed a control flow graph of the

original code in an intermediate representation from one of the bytecode blocks based on the

virtual program counter, and extracted deobfuscated semantics of individual virtual instruc-

tions. We finally extended the approach to process both virtual machines at once by entirely

concretizing the nested one.

57

References

[1] Vladislav Hrčka, Under the hood of Wslink’s multilayered virtual machine, cited

on:10.4.2022, available online:https://www.welivesecurity.com/2022/03/28/under-hood-

wslink-multilayered-virtual-machine/

[2] David A. Patterson and John L. Hennessy, Computer Organization and Design – The

Hardware / Software Interface, 4th.Edition, Morgan Kaufmann, Elsevier, 2009

[3] Shi Y, Casey K, Ertl MA, Gregg D., Virtual machine showdown: Stack versus registers,

ACM Transactions on Architecture and Code Optimization (TACO), 2008

[4] Berndl M, Vitale B, Zaleski M, Brown AD, Context threading: A flexible and efficient dis-

patch technique for virtual machine interpreters, International Symposium on Code Generation

and Optimization, 2005

[5] Process Context, cited on:10.4.2022, available online:tldp.org/LDP/LG/is-

sue23/flower/context.html, The Linux Documentation Project

[6] Moura LD, Bjørner N, Z3: An efficient SMT solver, International conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 337-340, 2008

[7] Sumit Gulwani, Program Synthesis, cited on:10.4.2022, available online:microsoft.com/en-

us/research/project/program-synthesis/, Microsoft, 2010

[8] Rolles R. Unpacking virtualization obfuscators, 3rd USENIX Workshop on Offensive

Technologies, 2009

[9] ZeusVM analysis, cited on:10.4.2022, available online:mi-

asm.re/blog/2016/09/03/zeusvm_analysis.html, 2016

[10] Salwan J, Bardin S, Potet ML, Symbolic deobfuscation: From virtualized code back to

the original, International Conference on Detection of Intrusions and Malware, and Vulnera-

bility Assessment, pages 372-392, 2018

[11] Blazytko T, Contag M, Aschermann C, Holz T, Syntia: Synthesizing the semantics of ob-

fuscated code, 26th USENIX Security Symposium, pages 643-659, 2017

[12] Desclaux F, Miasm: Framework de reverse engineering, SSTIC, 2012

[13] Miasm, cited on:10.4.2022, available online:github.com/cea-sec/mi-

asm/tree/9a36c6d7849335c83a9460fc558afb55ff0a2aa1

[14] Vladislav Hrčka, Wslink: Unique and undocumented malicious loader that runs as a

server, cited on:10.4.2022, available online:welivesecurity.com/2021/10/27/wslink-unique-un-

documented-malicious-loader-runs-server/

[15] CodeVirtualizer, cited on:10.4.2022, available online:oreans.com/CodeVirtualizer.php

[16] Anand S, Godefroid P, Tillmann N, Demand-driven compositional symbolic execution,

International Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems, pages 367-381, 2008

[17] DOT Language, cited on:10.4.2022, available online:graphviz.org/doc/info/lang.html

[18] Trtík M, Symbolic execution and program loops, Masaryk University Brno, 2013

[19] Ming J, Xu D, Wang L, Wu D. Loop: Logic-oriented opaque predicate detection in obfus-

cated binary code, Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 757-768, 2015.

