
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Efficient Convolutional Neural
Networks Recognizing Driveable Trails

Master’s Thesis

2020
Bc. Adrián Matejov

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Efficient Convolutional Neural
Networks Recognizing Driveable Trails

Master’s Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Applied Informatics
Supervisor: Mgr. Pavel Petrovič, PhD.
Consultant: Mgr. Marek Šuppa

Bratislava, 2020
Bc. Adrián Matejov

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Adrián Matejov
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Efficient Convolutional Neural Networks Recognizing Driveable Trails

Annotation: Robotour is an annual outdoor delivery contest for autonomous robots. Robots
navigate the trails located in a natural park to reach loading, unloading and
servicing areas. They are typically equipped with laser range sensors, GPS,
compass, map of the trail network in the park, and some other sensors.
Information obtained from these sensors and the map is seldom accurate
enough. The system typically depends on the vision system and its ability to
recognize driveable surfaces. The aim of this thesis is to investigate various
models of convolutional neural networks that have been successfully applied to
image segmentation task. Based on such analysis, the student will design, train,
and evaluate an original model that could efficiently perform in real-time on
the embedded GPU hardware installed in the robot (Jetson TX2). The student
is expected to bring into play active learning, if it proofs to be beneficial in this
context.

Literature: Evan Shelhamer, Jonathan Long, Trevor Darrell: Fully Convolutional Networks
for Semantic Segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.39, no.4, p.640-651, April 2017

Keywords: robotour, CNN, path recognition, autonomous driving

Supervisor: Mgr. Pavel Petrovič, PhD.
Consultant: Mgr. Marek Šuppa
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 07.12.2018

Approved: 03.03.2020 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Adrián Matejov
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Efficient Convolutional Neural Networks Recognizing Driveable Trails
Efektívne konvolučné neurónové siete rozpoznávajúce zjazdné chodníčky

Anotácia: Robotour je pravidelná súťaž autonómnych robotov v doručovanú nákladu
vo vonkajšom prostredí. Roboty sa pohybujú na chodníčkoch v prírodnom
parku s cieľom dosiahnut nakladaciu, vykladaciu a servisnú oblasť. Bežne
bývajú vybavené laserovým senzorom na meranie vzdialenosti, GPS,
kompasom, mapou siete chodníčkov v parku, a rôznymi inými senzormi.
Informácia získavaná z týchto senzorov a z mapy je málokedy dostatočne
presná. Systém preto väčšinou závisí na spracovaní obrazu z kamery a svojej
schopnosti rozpoznávať zjazdný povrch chodníčkov. Cieľom tejto práce je
preskúmať rôzne modely konvolučných neurónových sietí, ktoré boli na úlohu
segmentácie obrazu doteraz úspešne použité. Na základe tejto analýzy študent
navrhne, natrénuje a vyhodnotí svoj vlastný model, ktorý by mohol efektívne
pracovať v reálnom čase na GPU hardvéri, ktorý je v robotovi nainštalovaný
(Jetson TX2). Zadanie predpokladá že študent využije metódu active learning,
ak sa ukáže v tomto kontexte ako užitočná.

Literatúra: Evan Shelhamer, Jonathan Long, Trevor Darrell: Fully Convolutional Networks
for Semantic Segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.39, no.4, p.640-651, April 2017.

Kľúčové
slová: robotour, konvolučné neurónové siete, rozpoznávanie cesty, autonómna jazda

Vedúci: Mgr. Pavel Petrovič, PhD.
Konzultant: Mgr. Marek Šuppa
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 07.12.2018

Dátum schválenia: 03.03.2020 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgement: I would like to thank my supervisor Mgr. Pavel Petrovič,
PhD. for leading this thesis, capturing images and labeling both datasets, reviewing this
thesis and for the opportunity to participate at the RoboTour contests. A tremendous
thanks goes to my both friend and consultant Mgr. Marek Šuppa for helpful advises,
consultations, new ideas, thorough thesis review and last but not least, for providing
me with his own GPU machine in order to conduct the experiments. Special thanks
goes to my closest ones for their continuous support throughout my studies.

iv

Abstract

Our faculty’s students annually participate at the competition called RoboTour Out-
door Delivery Contest. The robot, which the faculty has at its disposal, had been
designed, built and improved in previous works. One of the rules of this competition
strictly forbids the robot from leaving driveable trail. Since the previous approaches
have not been accurate enough, we focus on solving the problem of recognizing driveable
trails using deep learning, whose application to various areas has achieved remarkable
success in recent years. In this work we firstly deal with this problem by utilizing exist-
ing convolutional neural network models for semantic segmentation and test them right
at the competition in the outdoor environment. These models reach very good results
and the robot is able to distinguish between driveable and non-driveable segments
more accurately, which contributes to a better navigation. In order to reach higher
prediction speed, we minimize the size of these models and reach more than double
speedup with prediction of the road. Subsequently, we compare our models with the
ones specifically designed for devices with lower computational power. Finally, we ex-
amine the possibilities of reducing the number of images needed for training, leading
to less effort dedicated to labeling. Our simulations show that by making use of image
clustering combined with entropy of prediction it is possible to halve the number of
training data at the cost of a very little decrease in accuracy.

Keywords: robotour, CNN, path recognition, autonomous driving

v

Abstrakt

Študenti našej fakulty sa každoročne zúčastňujú súťaže RoboTour Outdoor Deliv-
ery Contest. Robot, ktorého má fakulta k dispozícii, bol navrhnutý, skonštruovaný
a vylepšovaný v predošlých prácach. Jedno z pravidiel tejto súťaže prísne zakazuje
robotovi opustiť chodníček. Keďže predošlé prístupy neboli dostatočne presné, v
tejto práci riešime problém rozpoznávania zjazdných chodníčkov z obrázka pomo-
cou hlbokého učenia, ktorého aplikácia v rôznych oblastiach dosahuje pozoruhodné
výsledky. Najskôr využívame už existujúce modely konvolučných neurónových sietí na
sémantickú segmentáciu, ktoré testujeme priamo na súťaži vo vonkajšom prostredí. Ti-
eto modely dosahujú veľmi dobré výsledky a robot vie oveľa presnejšie rozlišovať medzi
zjazdnými a nezjazdnými segmentami, čo prispieva k lepšej navigácii. Aby sme dosi-
ahli vyššiu rýchlosť predpovedania, zmenšujeme veľkosti týchto modelov, čím dosahu-
jeme viac ako dvojnásobné zrýchlenie pri predpovedaní cesty. Následne naše modely
porovnávame s takými, ktoré boli navrhované priamo na zariadenia s nižším výpoč-
tovým výkonom. Nakoniec skúmame možnosti zníženia počtu obrázkov potrebných pri
trénovaní, čo vedie k zníženiu času stráveného označovaním obrázkov. Naše simulá-
cie ukazujú, že využitím zoskupovania podobných obrázkov v kombinácii s entropiou
predpovedí vieme zredukovať počet trénovacích dát na polovicu za cenu veľmi malého
zníženia v presnosti.

Kľúčové slová: robotour, konvolučné neurónové siete, rozpoznávanie cesty, autonómna
jazda

Contents

Introduction 1

1 Preliminaries 3
1.1 RoboTour competition . 3
1.2 Image segmentation . 4

1.2.1 Region-based segmentation . 4
1.2.2 Edge detection segmentation . 5
1.2.3 Clustering-based segmentation 5
1.2.4 Histogram-based segmentation 6

1.3 Neural networks . 6
1.3.1 Activation functions . 7
1.3.2 Learning concepts . 8
1.3.3 Parameter updates . 8

1.4 Convolutional neural networks . 10
1.4.1 Fully-connected layer . 11
1.4.2 Convolutional layer . 11
1.4.3 Pooling layer . 12
1.4.4 Upsampling layers . 13
1.4.5 Dilated convolutional layer . 14
1.4.6 Depthwise-separable convolutional layer 15
1.4.7 Batch normalization . 15

2 Related work 17
2.1 Convolutional neural networks . 17

2.1.1 First CNN . 17
2.1.2 AlexNet . 18
2.1.3 VGGNet . 18
2.1.4 GoogLeNet . 19
2.1.5 ResNet . 20

2.2 Semantic segmentation using CNNs . 20
2.2.1 Fully Convolutional Networks for Semantic Segmentation 20

vi

CONTENTS vii

2.2.2 U-Net . 21
2.2.3 SegNet . 22
2.2.4 R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN 22
2.2.5 MultiNet . 23

2.3 Mobile models . 23
2.3.1 MobileNets . 24
2.3.2 ShuffleNets . 25

2.4 Active learning . 27
2.5 Previous approaches with Smelý Zajko 28

3 Testing and comparing models for RoboTour 31
3.1 Datasets . 31
3.2 Data preprocessing and augmentation 33
3.3 Models and learning process . 33

3.3.1 Losses . 33
3.3.2 Metrics . 34

3.4 Results . 35
3.4.1 HSV model . 35
3.4.2 KittiSeg . 36
3.4.3 ConvNet models . 36
3.4.4 Testing models on unseen dataset 42

4 Faster models 43
4.1 Reducing the number of parameters . 43
4.2 Mobile models . 45

5 Active learning 48
5.1 Motivation . 48
5.2 Random sampling . 49
5.3 Entropy sampling . 50
5.4 Diversity sampling . 52
5.5 Ablation study . 54

Conclusion 55

Appendix A 64

List of Figures

1.1 The photo of our robot Smelý Zajko 4
1.2 Example of regional growth segmentation 5
1.3 Multi-layer perceptron . 6
1.4 Nonlinear functions . 7
1.5 Padding image with zeros . 12
1.6 Max pooling example . 13
1.7 Demonstration of how pooling indices are reused 14
1.8 Example of a dilated convolutional layer 15

2.1 Example of digits from MNIST dataset 17
2.2 AlexNet architecture . 18
2.3 Inception module . 19
2.4 Residual block . 20
2.5 Transformation of fully connected layers into convolutions 21
2.6 Comparison of MobileNet and MobileNetV2 bottlenecks 25
2.7 ShuffleNet and ShuffleNetV2 bottleneck units 26
2.8 Example of Local Map at the crossroad 29

3.1 Examples from the city park of Lednice 31
3.2 Examples from the city park of Deggendorf 32
3.3 HSV model trained on Lednice and Deggendorf datasets 35
3.4 Predictions of images containing mostly grass 38
3.5 Various rounding thresholds for ResNet, SegNet and Unet 39
3.6 AUC - ROC comparison of ResNet, SegNet and Unet 39
3.7 Comparison of predictions against ground truths 40

4.1 Comparison of inference times against various image resolutions 44
4.2 Comparison of mobile models using AUC-ROC curve 47

5.1 Active learning experiment with random sampling 48
5.2 Comparison of entropies and validation IoU 51
5.3 Comparison of sampling methods . 53

viii

List of Tables

3.1 Results of HSV model measured on both datasets 36
3.2 Results of KittiSeg model training . 36
3.3 Basic information about models . 37
3.4 Results of various models trained on Lednice and Deggendorf datasets . 41
3.5 Results of models tested on unseen dataset 42

4.1 Results of modified ResNet and SegNet training 44
4.2 Description of mobile models . 45
4.3 Results of mobile models training . 46

5.1 Random sampling results. 49
5.2 Entropy sampling results . 50
5.3 Diversity sampling results . 52
5.4 Results of MNetV3-S-2 and SNetV2-1 in active learning setting 54

ix

Introduction

Robots are becoming a part of our daily lives nowadays. This includes helping people in
their household chores, in the industry area, in the medical facilities or even in delivering
packages and thus making our lives easier. The world of robotics has ever since raised
enormous number of interesting problems to be solved. Many of them are subject to the
current research. There are also many competitions being organized in order to attract
more people into the field robotics. One of these competitions is RoboTour Outdoor
Delivery Contest. Participants are challenged to build fully autonomous robot with
the ability to drive in the outdoor environment through city park while delivering a
load. The robots have to deal with various issues such as obstacles, terrain and correct
navigation. These problems can be solved by using reliable hardware parts, proper
algorithms and math behind everything.

In this work we focus on recognizing driveable path in the images taken from the
camera mounted on the robot. This is quite important for the robot since it is not
allowed to leave the driveable trail and breaking this rule leads to disqualification. Pre-
vious approaches have not been accurate enough due to very high sensitivity to weather
conditions and the colors within the image, and because they do not take entire im-
age as a whole into account but rather predict small regions. In recent years, deep
learning has proven that many of these issues can be dealt with more precisely than
reported previously. Therefore, in order to improve the vision module, we incorporate
convolutional neural networks, which are suitable for computer vision applications. In
our case, it is a dense semantic segmentation task that needs to be solved. Put dif-
ferently, it means that, given the input image, we would like to predict which pixels
correspond to driveable segments of the environment. Training the network is con-
ducted in a supervised manner. There are Lednice and Deggendorf datasets available
and their images had been captured right before the contests in 2018 and 2019. We
show that the models outperform technique based on HSV image statistics used at
previous contests. Our approach was tested in Deggendorf, Germany where we found
out that the prediction time is not sufficient when it comes to running the robot at
higher speed. To reduce the prediction time, we minimize the size of the models while
keeping the accuracy almost untouched, and compare them with the so called mobile
models [1, 2] designed for devices with low computational power. Moreover, we employ

1

Introduction 2

active learning technique [3] to reduce the number of images needed to be labeled since
labeling entire dataset is a time consuming process and redundant samples which bring
little value during training are best ignored.

This work is structured into five chapters. In Chapter 1 we describe semantic
segmentation along with several basic techniques and convolutional neural networks.
Chapter 2 discusses related work in terms of architecture of successful networks and
describes previous work on the robot. In Chapter 3 we present both datasets and
compare results of the models. Subsequently, in Chapter 4, we present results of
minimized models and comparison to the mobile models. Finally, in Chapter 5 we
present results of our active learning experiments.

Chapter 1

Preliminaries

In this chapter we introduce the RoboTour competition, discuss several basic techniques
of image segmentation, describe the functionality and inner workings of convolutional
neural network (CNN) as well as its impact on image segmentation. The chapter also
includes description of layers relevant for CNNs applied to semantic segmentation.

1.1 RoboTour competition

RoboTour Outdoor Delivery Contest is an annual competition for outdoor robots being
held in different locations, which are mostly parks. The participants are challenged to
build an autonomous robot which completes the task without breaking rules. The
robot starts at the position A (also called the base, where it is possible to repair or
calibrate the robot) and is given GPS coordinates of position B. Then, the robot must
navigate itself through the park to the location B where organizers of the competition
load a five liter barrel of beer onto it. The robot is once again given coordinates, but
this time of position C where it is supposed to deliver the barrel. After unloading, the
final goal is to return back to the base.

The robot is forbidden both to leave the driveable path or to touch any obstacle
during the round. If such event occurs, the robot is immediately disqualified from the
round. Therefore, it is important for the robot to prevent breaking the rules. Avoiding
obstacles is done quite accurately using laser and ultrasonic sensors mounted on the
robot. Our robot (see Figure 1.1) is also equipped with camera for local navigation
so it tries not to leave the road. In this work we focus on the problem of differen-
tiating between two categories within given image (driveable or non-driveable path)
using computer vision technique called convolutional neural networks solving semantic
segmentation.

3

CHAPTER 1. PRELIMINARIES 4

Figure 1.1: The photo of our robot Smelý Zajko, heading to delivery point in Deggen-
dorf.

1.2 Image segmentation

Extracting useful information from images is an inevitable step for image analysis.
Image segmentation is a computer vision task of automatic image analysis. Its main
task is to partition an image into multiple classes and extract objects or regions of
interest from background. Each pixel within this image is assigned a class or a category
which it belongs to. Pixels with the same label share certain characteristics. [4]

The history of image segmentation can be traced back to 50 years ago. Since then,
many techniques have been developed and evaluated. We are going to describe some of
them. One of them is a machine learning technique that utilizes convolutional neural
networks (CNNs), which we will describe in the Section 1.4.

1.2.1 Region-based segmentation

Threshold segmentation

Threshold segmentation is one of the most commonly used and simplest techniques.
The input image is transformed into grayscale representation. Global and local thresh-
old methods can be used afterwards. The former uses just one global threshold value
and divides the image into just two regions - target and background. On the other
hand, local threshold method uses multiple threshold values to divide the image into
multiple target and background regions.

Simple calculations make this method very fast. If the contrast between background
and the target is high enough, the segmentation can be computed quite accurately.

CHAPTER 1. PRELIMINARIES 5

The disadvantage of this method is that it is difficult to obtain accurate results where
there is no significant difference in grayscale image, since it does not take the spatial
information into account. [5]

Regional growth segmentation

The basic idea of regional growth segmentation method is to merge neighboring pixels
(or regions) that share similar properties into one. The first step is to select so called
seed pixels. We then grow regions from them, merging pixels if their absolute difference
is less or equal to some threshold T . Visiting input pixels is done by breadth-first search.

The main disadvantages of the aforementioned method are that it is computation-
ally expensive local method with no global view and it is quite sensitive to noise .

In the Figure 1.2, there is an example of the algorithm starting with input (leftmost)
matrix. The middle matrix is computed using threshold T = 3 and the second one
using T = 6. We can clearly see that the choice of the threshold value is very important
step for this algorithm to work properly. [5]

1 0 4 7 5
1 0 5 7 7

0 1 5 5 5

2 0 5 6 5

2 2 5 6 4

1 1 5 5 5

1 1 5 5 5

1 1 5 5 5

1 1 5 5 5

1 1 5 5 5

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Figure 1.2: Example of regional growth segmentation.

1.2.2 Edge detection segmentation

Edges represent the most significant changes in the image. That includes changes in
brightness, colors, etc. This method involves detection of abrupt pixel discontinuities
and arranges them into edges (for example transition from one color to another). [5]

1.2.3 Clustering-based segmentation

Clustering is widely known as a method of iterating over samples in a feature space
and computing the nearest cluster they belong to. After convergence of pixels, we can
map them back to the original image to get the segmentation results.

The most frequently used clustering algorithm is K-means. It consists of four steps:

1. Initialize clusters - select random samples to be centroids of the cluster

CHAPTER 1. PRELIMINARIES 6

2. Assign each sample to cluster - calculate the distance from each cluster and assign
the sample to the nearest one

3. Recompute the centroid of each cluster by taking the mean of its samples

4. Repeat steps 2 and 3 until none of the samples changes the cluster

The K-means algorithm is fast and easy to implement and scalable to large datasets.
Unfortunately, the parameter K (the number of clusters) is difficult to estimate and
has to be chosen experimentally. As the authors of [5] mention, it is distance-based
partitioning method and therefore it is only applicable to convex datasets.

1.2.4 Histogram-based segmentation

Histogram-based segmentation is a very efficient method in terms of computation since
it only requires one pass through the image. During that pass it computes histogram
from the pixels. The histogram peaks are then used to locate objects within the image.
This method can be improved by recursively applying it to clusters in order to divide
them into smaller ones. One disadvantage of histogram-based segmentation is that it
might be difficult to identify significant peaks.

1.3 Neural networks

Figure 1.3: Multi-layer perceptron. (Image taken from [6])

The development of neural networks has been primarily inspired by the goal of
modeling biological neural systems, but has diverged and become the matter of en-
gineering. These networks have been adopted to a wide range of tasks while beating
previous state-of-the-art techniques. The basic unit of the brain is neuron and has
been mathematically defined. In the late 1950s, Frak Rosenblatt developed the so
called perceptron for classifying objects. It takes a vector ~x as the input, multiplies it
with weight vector ~w and sums the resulting product. If this product is above certain
threshold, neuron fires and outputs the number 1, otherwise 0. In the most common

CHAPTER 1. PRELIMINARIES 7

literature, there is a bias term introduced and responsible for shifting the decision
boundary. The equation can be written as

∑n
i=1 xiwi + b.

Multi-layer perceptron (MLP) is the basic and probably the most widely known
feedforward artificial neural network. We can think of MLP as just a mathematical
function that maps inputs to output categories. It is formed by layers, which contain
several perceptrons accompanied by some nonlinearity (also reffered to as activation
function), where each of this neurons reads input from all of the neurons in previous
layer. The standard MLP consists of input and output layers, and several layers in
between called hidden layers, see Figure 1.3. [7] Once we obtain the output from the
network, we compute the loss and the weights are then updated using backpropagation,
see detailed description in [7]. The loss is a function denoting how much the predicted
values differ from the ground truth. Furthermore, it needs to be differentiable so we
are able to compute direction in multidimensional space which leads to update of the
model’s weights that improve our results.

1.3.1 Activation functions

As we mentioned in Section 1.3, neurons are accompanied by an activation function.
This is always some nonlinear function, since the linear function would not bring any
advantage and we could collapse all the layers into one. Let’s have a look at some of
the most commonly used nonlinearities presented in Figure 1.4.

(a) Sigmoid (b) Hyperbolic tangent (c) ReLU

Figure 1.4: Nonlinear functions.

Sigmoid σ(x) = 1
1+e−x takes real value number and squashes it into a range between

0 and 1. Recently, sigmoid has fallen out of favor because it suffers from saturation. If
the neuron’s activation saturates at either tail of 0 or 1, the gradient at these regions
is almost zero, which essentially stops the learning process. This phenomenon is called
vanishing gradient in the literature [7].

Tanh tanh(x) = 2σ(2x) − 1 (hyperbolic tangent) activation is very similar to the
sigmoid. It also saturates, but on the other hand, its output is zero centered. Note,
that tanh is just a scaled sigmoid function.

CHAPTER 1. PRELIMINARIES 8

ReLU relu(x) = max(0, x) (rectified linear unit), is another nonlinear activation
function heavily used nowadays, mostly in computer vision applications. It greatly ac-
celerates the convergence of stochastic gradient descent as found in [8]. If we compare
it to sigmoid or tanh activations, ReLU is much easier to compute and can be imple-
mented by thresholding a matrix activations at zero. However, neurons with ReLU
activation might die during training because a large gradient could cause the weights
to update in such a way that these neurons will never activate and the gradient flow-
ing through them will forever be zero. With the proper setting of the learning rate,
however, this is less frequently an issue. One may encounter other variants of ReLU
trying to fix this problem, such as Leaky ReLU [9] or Parametric ReLU [10]. [6]

1.3.2 Learning concepts

There are three major learning concepts covering most of the contemporary machine
learning:

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

Supervised learning represents subset of machine learning techniques where the
model is provided with data along with ground truth labels. During training, the model
makes predictions, compares its results with the correct ones and adjusts parameters
to decrease the error.

Unsupervised learning stands for searching for patterns and similarities within
dataset, grouping similar ones together and detects anomalous samples. That means
there are no ground truth labels at all. Some popular examples of such models utilizing
unsupervised learning are K-means, Self-organizing map etc.

In reinforcement learning, there is an agent exploring some sort of environment
being rewarded for actions. Either positively or even negatively. The goal of the agent
is to observe the environment and learn underlying model to maximize the reward. [11]

In the convolutional neural network setting, applications usually make use of su-
pervised learning. In this work, our labels are ground truth masks - binary images of
the same resolution as input images, but each pixel being marked either as driveable
(value 1) or non-driveable (value 0).

1.3.3 Parameter updates

Once we are training a neural network, we are evaluating our loss function. Computing
the gradient of this function directs us towards updating the parameters in such a

CHAPTER 1. PRELIMINARIES 9

direction that decreases the error computed by the loss function. There are several
approaches we can use for performing the update of parameters. The most basic form
of update is Gradient Descent. After evaluating the loss function, we can compute the
negative gradient and update the parameters by the following formula

θ = θ − α∇θC(θ)

where θ denotes the parameters, α denotes learning rate (fixed constant), C(θ) is the
loss function and ∇θC(θ) is gradient of the loss function with respect to θ. Updating
the parameters once after evaluating the entire dataset becomes very inefficient in
machine learning setting, especially when the dataset is very large. The modification
of this algorithm performs the update after each training sample is evaluated and is
called Stochastic Gradient Descent (SGD). However, it is a common practice nowadays
to use minibatch SGD which essentially takes the average of gradients of small portion
of training examples and performs the parameter update accordingly.

In order to converge even faster, Momentum update is another approach for deep
networks. It helps accelerate SGD in relevant direction and dampens oscillations. The
loss can be interpreted as hilly terrain and we push a ball down a hill. The ball
accumulates its velocity and is able to pass through slight hills in its way in order not
to end up in local minimum. The momentum technique modifies gradient descent by
introducing a new variable v representing the velocity and a smoothing constant β,
which helps in controlling the value of v. We can use the following formula to compute
velocity in step t

vt = βvt−1 − α∇θC(θ)

and the parameters are updated by the velocity θ = θ + vt.
Nesterov momentum, based on Nesterov accelerated gradient [12], has gained popu-

larity for its stronger theoretical convergence guaranty for convex functions. Moreover,
it is in practice slightly better than standard momentum. Its core idea is to look ahead,
so our ball is smarter and knows to slow down before the hill slopes up again. Com-
puting θ + βvt−1 gives us an approximation of the next position of parameters. The
revised velocity update is

vt = βvt−1 − α∇θC(θ + βvt−1)

and the parameters update stays the same.
Previously discussed approaches manipulate the learning rate globally and equally

for all parameters. A lot of work has been put into methods that can adaptively
tune the learning rates, and even do so per parameter. One of the most used method
especially for convolutional neural networks is Adam (Adaptive Moment Estimation)
[13]. The update of the parameters is done by following formula:

mt = β1mt−1(1− β1)∇θC(θ)

CHAPTER 1. PRELIMINARIES 10

vt = β2vt−1 + (1− β2)∇θC(θ)
2

θ = θ − α mt√
vt + ε

where β1 and β2 denote decay rates. Authors suggest to set them to β1 = 0.9 and
β2 = 0.999. The ε prevents from dividing by zero and is set to ε = 10−8. The full
Adam update also includes a bias correction mechanism, which tries to fix that both
m and v are in the beginning biased at zero. With the bias correction mechanism the
update looks as follows

m̂t =
1

1− β1t

v̂t =
1

1− β2t

θ = θ − α m̂t√
vt + ε

There are also many other optimizers available. Sometimes, it is worth trying SGD
combined with Nesterov momentum as it might work slightly better in some cases. [6]

1.4 Convolutional neural networks

Convolutional neural networks (CNNs or ConvNets) are a class of deep neural networks.
They are quite similar to ordinary neural networks, because they are made up of
neurons that have learnable weights and biases. By ordinary we mean well known
multi-layer perceptron (MLP). CNNs are often applied to computer vision problems like
image classification, instance segmentation, semantic segmentation, object detection
etc.

The CNN is a sequence of layers. It takes an image as the input, transforms it
layer by layer and outputs the final prediction. The CNN is given so called training
data, which are used during the training process. Each sample image is fed into CNN
and the output is compared to the ground truth and based on the result both loss and
accuracy functions are computed.

There should be also validation data available which are often small portion of
training data and network should never see them. Their purpose is to see approximation
of model’s performance in real-world scenario and stop training process in order to
prevent overfitting.

We can clearly see from the results published that ConvNets are so powerful that
they have overcome classic computer vision techniques known before and are now state-
of-the-art in various areas.

Networks for semantic segmentation utilize an encoder network followed by a de-
coder network. Encoder is usually a pre-trained model. Architectures mostly differ in

CHAPTER 1. PRELIMINARIES 11

their choice of the decoder. The job of the encoder is to learn discriminative features at
different stages and encode them into high-dimensional feature vector, whilst decoder
takes this vector and produces semantic segmentation mask. [14]

Every ConvNet architecture consists of several types of layers. Let’s have a deeper
look on these building blocks in following subsections.

1.4.1 Fully-connected layer

Fully-connected or FC layer has been adopted from the ordinary multi-layer perceptron.
Each neuron is connected to all the neurons from previous layer and fires activations
to all the neurons in following layer. Such layers are mostly located at the tail of
ConvNet. Features extracted by convolutional layers are fed into fully-connected ones
which firstly transform input into a single vector and then decide the class presence.

These layers usually contain most of the network’s parameters and thus are a very
expensive part in terms of computation and model’s size. Most of the modern archi-
tectures doing semantic segmentation avoid using fully-connected layers, resulting in
more efficient models.

1.4.2 Convolutional layer

This type of layer is a core building block of a CNN. Each one consists of a set of train-
able filters with weights. These filters, also called kernels, are usually small spatially
(along width and height) but extend through the full depth of input volume. Each slice
of depth channel can be referred to as a depth slice. The number of filters corresponds
to the depth of output volume. For example, filters in the first layer might have size
5×5×3 (5 pixels wide, 5 pixels high and depth 3, because our input image has 3 color
channels - red, green and blue). During the forward pass, we convolve (or slide) filter
by filter through the image and compute dot product at each region. Denoting filter’s
weights Ww,h,d and particular image region Rw,h,d where w is width, h is height, d is
depth and b is a bias, we can compute their dot product by the following formula

yi,j = b+
w∑
i=1

h∑
j=1

d∑
k=1

wi,j,k · ri,j,k

Each filter produces a 2D activation map Yi,j. These maps are then stacked along
the depth dimension and passed as the input volume for activation. Intuitively, Con-
vNets learn filters that activate when they see specific feature such as an edge, color
and so on. Typically, in standard multi-layer perceptron neural networks, each neuron
receives input from all of the neurons from previous layer. In ConvNets, each neuron
receives input only from restricted region from input volume. This region is defined by
aforementioned filter size, also referred to as receptive field.

CHAPTER 1. PRELIMINARIES 12

Authors of ConvNet architectures sometimes make use of 1× 1 convolutions. This
might sound a bit confusing, but recall that filters extend through the full depth of
input volume. Therefore, we are able to control the depth of output volume by creating
a layer with several 1× 1 filters.

The basic convolutionalization downsamples the image spatially since dot product
is not defined for border pixels. This is undesirable behaviour in most cases. To keep
width and height dimensions of input and output volumes equal, we have to apply
padding operation beforehand. The idea is to add enough zeros around the image
borders.

0 0 0 0 0
0

image
0

0 0
0 0
0 0 0 0 0

Figure 1.5: Padding image with zeros. Padding with one 0 on each side is usually done
before applying 3× 3 filter. For 5× 5 we pad the image with two 0s and for 7× 7 with
three 0s.

On the other hand, we might sometimes need to downsample the image via ConvNet
layer. The output’s volume size can also be controlled by stride hyperparameter. Stride
is the number of steps we make to shift the filter to next region. In practice, if we want
to reduce the output size by convolutional layer, stride is mostly set to 2 (uncommonly
3). When the stride is set to 1, we move the sliding window one pixel at a time.

To summarize the convolutional layer: [6]

• accepts input of size W1 ×H1 ×D1

• sets hyperparameters K (number of filters), F (filter’s size), S (stride) and P
(amount of zero padding)

• produces output of size W2 ×H2 ×D2 where:

� W2 = (W1 − F + 2P)/S + 1

� H2 = (H1 − F + 2P)/S + 1

� D2 = K

1.4.3 Pooling layer

The common practice in ConvNets architectures is to use pooling layer in between
convolutional layers. The purpose of the pooling layers is to achieve spatial invariance

CHAPTER 1. PRELIMINARIES 13

by reducing the resolution of the feature maps which in the end leads to dramatic
reduction of computing power, memory consumption and also control of overfitting.

1 4 2 2
3 5 7 9

1 1 1 4
0 1 7 2

⇒
5 9

1 7

Figure 1.6: Max pooling example.

Each depth slice is processed individually and therefore depth of the volume re-
mains unchanged. Similarly to the convolutional layer, it contains the sliding window,
but this time we are not computing dot product. The window takes values from the
input volume’s region and computes a simple function like max (called max pooling,
see Figure 1.6) or average (called average pooling). In practice, it has been shown
that max pooling performs better than average pooling [15]. Most widely used pooling
layer is 2 × 2 with a stride of 2, which reduces both width and height by a factor of
2. We may sometimes encounter 3 × 3 pooling layers with a stride of 2 (also called
overlapping) being used in ConvNet architectures, but in general there is no significant
improvement over using non-overlapping ones. [6, 15]

1.4.4 Upsampling layers

The upsampling technique has been mostly used in semantic segmentation architec-
tures. When we input an image to the ConvNet, an encoder takes care of downsampling
the image to the very low resolution and classifying all the pixels. The decoder’s role
is to upsample this output to the original size while preserving as much information as
possible. There are more ways to upsample the image. In the following subsections we
describe two of them, namely Unpooling and Transposed convolution.

Unpooling layer

Unpooling is a simple upsampling layer with no trainable parameters. In practice,
the pooling operation is non-invertible, but we can approximate this inversion using
unpooling layer. For example, many architectures remember indices of maxima within
each region when doing max-pooling and reuse them to fill appropriate region. The
rest of the grid is usually filled with zeros, see Figure 1.7. The most common unpooling
layer with kernel size of 2× 2 upsamples input of size n× n to 2n× 2n. [16]

CHAPTER 1. PRELIMINARIES 14

Figure 1.7: Demonstration of how pooling indices are reused in the decoder part.
(Image taken from [17])

Transposed convolutional layer

Transposed convolution (also called fractionally-strided convolution) is a layer used
for upsampling the given input. Since we do not have to use predefined interpolation
method, we let the network train the layer’s parameters to upsample optimally.

The core element behind transposed convolution is kernel (or matrix) comprised of
trained parameters. It works similarly to ordinary convolutional layer, but in backward
direction. Even though it is called transposed convolution, it does not mean that we
take some existing convolution matrix and use the transposed version. The association
between input and output is handled in backward fashion (one-to-many instead of
many-to-one). Values in kernel window are multiplied by scalar from input and the
kernel is slid to next region. This process is repeated until there are no more scalars
to be used. Overlapping output values are then summed together.

1.4.5 Dilated convolutional layer

Dilated convolutions have been specifically designed for dense prediction where the
output has a similar size and structure to the input image. In such applications, one
wants both to get locally precise information and to integrate wider context. This is
often dealt with by using pooling and subsampling layers. Authors in [18] propose
a model based on dilated convolutions which supports exponential expansion of the
receptive field without the loss of resolution or coverage while the number of parameters
grows linearly with layers. The main idea is to set dilation rates to some value dh and
dv, which expands the kernel filter by adding dh−1 zeros between active points in rows
and dv − 1 zeros between active points in columns.
The resulting filter’s size is (k+(k− 1) · (dv− 1), k+(k− 1) · (dh− 1)) where k denotes
the size of standard filter (k, k). See example presented in Figure 1.8.

CHAPTER 1. PRELIMINARIES 15

a 0 b 0 c
0 0 0 0 0
d 0 e 0 f
0 0 0 0 0
g 0 h 0 i

Figure 1.8: Example of a dilated convolutional layer. The kernel of size 3 × 3 and
dilation rate of 2.

1.4.6 Depthwise-separable convolutional layer

Depthwise-separable convolutions are known as a key building block in efficient net-
work architectures. It is composed of two separate layers called depthwise convolution
and pointwise convolution. The former filters each channel from the input volume by
separate filter and stacks their outputs on top of each other, which means that the
number of input and output channels is equal. The latter takes these stacked outputs
and builds new features through computing linear combination with 1 × 1 filter. The
number of output channels depends on the number of pointwise filters.

This approach leads to drastic reduction of computation and model size. Let’s
calculate the difference. Ordinary convolutional layer takes input of size h×w× ci and
applies c0 kernels of size k× k× ci which produces output of size h×w× co assuming
the stride is set to 1. Its computation cost is w · h · ci · k · k · co. Depthwise-separable
convolution is the sum of depthwise and pointwise convolutions. Formally, taking the
same input mentioned above, the resulting output will be the same and computation
cost is h ·w · ci · (k2+ co). If we take for example filters of size 3× 3, the computational
cost is 8 to 9 times smaller compared to standard convolution. [1, 19]

1.4.7 Batch normalization

Proper initialization of the network might bring a lot of headaches. The activations
of layers are not controlled and a small change to the network parameters amplify as
the network goes deeper. The learning process is slowed down because one needs to
set lower learning rate in order to make the network converge. The work of S. Ioffe
and Ch. Szegedy [20] proposes a layer called Batch normalization. It is supposed to
normalize activations of previous layer which prevents values from exploding too high
or vanishing by being too low. Moreover, it reduces overfitting and thus makes the
model better at generalization. For a layer with d-dimensional input x = (x(1) . . . x(d))

(d is number of channels in our case) and mini batch B (small portion of training
images, since it is almost impossible to pass entire training set through the network at
once) we normalize each dimension x̂(k) = x(k)−E[x(k)]B√

Var[x(k)s]B
. Such a simple normalization of

CHAPTER 1. PRELIMINARIES 16

layer’s inputs may change what the layer can represent and would constrain it to the
linear regime of nonlinearity. To address this, authors introduce two more trainable
parameters γ (scaling) and beta (shifting). The result of batch normalization layer is
ŷ(k) = x̂(k) · γ(k) + β(k).

Chapter 2

Related work

In this chapter we go through the related work in the field of deep learning, image
classification and image segmentation while describing various model architectures as
well as recent active learning approaches.

2.1 Convolutional neural networks

2.1.1 First CNN

The first convolutional neural network was proposed by LeCun et. al. in late 1980s. [21].
Their approach has been successfully applied to recognition of handwritten digits.
Their dataset [22] consisted of roughly 9,298 images (later extended to 60,000 images),
which vary in sizes and styles. Image transformation is applied to fit them to 16× 16

pixel area, which prepares the images for feeding to the network. The output con-
sists of ten neurons, each one computing probability of the given input being digit
0-9. The further development of this project was delayed because of limited compu-
tational capabilities at that time. Later, Matan et al. [23] extended this project to
recognize strings of digits because previous work was limited to only one-dimensional
input strings. Their approach includes recognizing 5-digit ZIP codes taken from the
U.S Mail using Viterbi module. Since then, CNNs have been ignored by the computer
vision community until the mid 2000s because of lack of computational power.

Figure 2.1: Example of digits from MNIST dataset [22].

17

CHAPTER 2. RELATED WORK 18

2.1.2 AlexNet

The great boom of deep neural networks has started after proposing AlexNet [8].
Krizhevsky et al. competed in the ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC) in 2012. ImageNet [24] is a dataset of over 15 million labeled
high-resolution images with around 22,000 categories. ILSVRC uses just a subset of
them which is 1,000 categories.

AlexNet consists of 60 million parameters and 650,000 neurons. These neurons are
spread over five convolutional layers and 3 fully connected layers. The last layer is 1000-
way softmax, which produces the distribution over the 1,000 class labels. Convolutional
layer filters are of sizes 11 × 11, 5 × 5 and 3 × 3. Standard activation functions of
neuron’s input are tanh or sigmoid. However, in terms of training time with gradient
descent, ReLU (rectified linear unit) activation function is considered to be much faster.
ConvNets with ReLU train several times faster. To prevent model from overfitting, data
augmentation and dropout methods are applied.

The full architecture is shown in Figure 2.2.

Figure 2.2: AlexNet architecture. One GPU runs the top part while the other runs the
bottom part. They communicate only at certain layers. (source [8])

AlexNet outperforms previous feature-based methods lowering the error rate down
by 40% compared to hand-engineering approaches. On the test data, they achieve
top-1 and top-5 error rates of 37.5% and 17.0%. Their success is based on using ReLU
activation function, local response normalization, dropout and stochastic gradient de-
scent and in addition, usage of GPU during training and testing process. The network
became state-of-the-art in computer vision classification.

2.1.3 VGGNet

VGGNet is an architecture proposed by Simonyan et al. [25]. The idea is to use
deeper networks with much smaller filters. The work contains models which ranges
from 16 to 19 layers and each one utilizes the smallest possible filters, which is 3× 3 in

CHAPTER 2. RELATED WORK 19

order to reduce number of parameters. Some of the convolutional layers are followed
by 2 × 2 max pooling layers with stride 2. The stack of three 3 × 3 layers has the
same receptive field as one 7 × 7 layer and also fewer parameters assuming that both
input and output have C channels, because 3 · (32C2) < 72C2. In addition, they
incorporate three nonlinear functions instead of one, which make the decision function
more discriminative. A downside of the VGGNet is that it uses a lot of memory
due to expensive fully connected layers. Most of the parameters are in the first fully
connected layer, but it was found that these FC layers can be completely removed with
no significant performance downgrade [17]. Although the network’s top-5 accuracy
92.7% did not beat GoogLeNet (see subsection 2.1.4), it won the 1st prize in localization
task in ILSVRC’14.

2.1.4 GoogLeNet

GoogLeNet [17] won ILSVRC competition in 2014. It became the new state-of-the-art
CNN while achieving top-5 error rate of 6.67%, which is very close to human level
performance.

Figure 2.3: Inception module. (Image taken from [17])

Impressively, it consists of 22 layers, but the number of parameters is reduced to
just 4 million (compared to 7 layer AlexNet with 60 million parameters). The main
contribution this work has brought are Inception modules which are stacked on top of
each other resulting in dramatic parameter reduction. Each one contains independent
convolution and pooling layers and their results are subsequently concatenated into
one output volume. Also, the authors got rid of expensive fully connected layers.

The original naive inception module would be very computationally inefficient.
Each module would just increase the volume depth. Thus, the authors introduce an
updated version of the inception module (see Figure 2.3) with 1 × 1 convolution put

CHAPTER 2. RELATED WORK 20

right before both 3×3 and 5×5 convolutions and additionally after max pooling layer
to reduce dimension.

2.1.5 ResNet

Looking at the popular architectures people started asking a simple question: what
happens if we continue stacking deep layers on a plain CNN? Does it increase accuracy?
The answer is no, as He et al. describe and experimentally prove in [26]. Even though
deep models perform worse, it is not caused by overfitting. They set a hypothesis that
this problem is an optimization problem, and deeper models are harder to optimize than
more shallow networks. The reasoning behind this idea is that deeper networks should
perform at least as well as shallower ones (the solution is to copy a shallow network
and add identity layers on top). The network won the 1st prize in 2015 on ILSVRC
classification task with 3.75% top-5 error. The network itself brings a “revolution in
depth” since it is supposed to contain a huge number of layers (it was 152 on ImageNet
competition). The network features special skip connections and heavy use of batch
normalization. The key idea is that instead of fitting H(x) directly, they rather use
network layers to fit residuals F (x) = H(x)−x, which is easier for the network to learn,
see Figure 2.4. For deeper ResNet networks (50+ layers) they use so called bottleneck
layers (similarly to GoogleNet) in order to improve efficiency. These layers contain
additional 1× 1 filters to decrease the volume depth.

Figure 2.4: Residual block. (Image taken from [26])

2.2 Semantic segmentation using CNNs

2.2.1 Fully Convolutional Networks for Semantic Segmentation

Fully convolutional neural networks proposed by Long et al. [27] in 2014 popularized
the use of end-to-end ConvNets for semantic segmentation of natural images.

CHAPTER 2. RELATED WORK 21

They adapt contemporary classification networks like AlexNet, VGGnet, and GoogLeNet
and fine-tune them to segmentation task. The fully connected layers of these classifi-
cation networks are converted to fully convolutional layers (see Figure 2.5).

Figure 2.5: Transformation of fully connected layers into convolutions. (source [27])

After convolutionalization, these layers produce class presence heatmaps in low res-
olution. Some spatial information is lost because of pooling or strided convolutions, so
the mask must be upsampled at each stage using billinearly initialized deconvolutions.

They achieve state-of-the-art segmentation on PASCAL VOC dataset [28] with 20%
relative improvement to 62.2% mean IU in 2012.

2.2.2 U-Net

U-Net network [29] got popular in biomedical image analysis. Since the researchers in
this area were forced to train the network with very little data, image augmentation
played a key role in this problem. The dataset the network is trained on contains
only 30 annotated images and outperforms the best methods on the ISBI challenge
for segmentation of neuronal structures in electron microscopic stacks. As discussed in
[29], it takes less than a second to segment image on a recent GPU.

The architecture resembles the character "U", that is why it is called U-Net. On the
left side, there is encoder (or contracting path) which utilizes typical ConvNet archi-
tecture. It contains 3× 3 convolutions, followed by ReLU and max-pooling operations
for downsampling. Each layer in expanding path consists of upsampling of the feature
map, followed by 2× 2 convolution, a concatenation of the feature map from the con-
tracting path and 3× 3 convolution followed by ReLU. In terms of data augmentation
on microscopical images, they essentially just need shift and rotation invariance as well

CHAPTER 2. RELATED WORK 22

as robustness to deformations and gray value variation.
This network achieves 92% mean IU on PhC-U373, beating the second best algo-

rithm with 83%.

2.2.3 SegNet

SegNet [30] is another architecture of deep convolutional neural networks for pixel-
wise segmentation. The architecture of encoder consists of 13 convolutional layers
topologically identical to first 13 layers of VGGnet [25]. The contribution of this work
is mainly in the decoder, which uses pooling indices from the encoder to perform
upsampling, thus leaving high frequency details intact in the segmentation. On the
other side, neighboring information is missed when unpooling. Therefore, the decoder
does not have to learn upsampling and whole architecture makes it more memory
efficient.

2.2.4 R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

Mask R-CNN published by He et al. [31] in 2017 builds on previous object detection
works R-CNN [32], Fast R-CNN [33] and Faster R-CNN [34].

The original R-CNN is a four step process:

1. Input an image

2. Extract regions potentially containing objects (region proposals)

3. Compute features from each region proposal using pre-trained CNN

4. Classify each proposal using linear SVM

The problem of R-CNN is that it is enormously slow. Also, the model does not
learn to localize objects using deep CNN. The contribution of Fast R-CNN is region of
interest (ROI) pooling module, which essentially extracts fixed-size window from fea-
ture map. The network became end-to-end trainable but the performance is dependent
on selective search and therefore suffers at prediction time.

To make it even faster, Ren et al. proposed Faster R-CNN. It utilizes a so called
Region Proposal Network (RPN), which alleviates the need for selective search. Regions
of interests are generated and top N are kept according to their objectness score. In the
original paper N is set to 2,000. Faster R-CNN architecture is capable of running at
7-10 FPS, which is a huge step towards real-time object detection with deep networks.

Mask R-CNN has been published with two major contributions:

1. Replaced ROI pooling module with more accurate ROI align module

CHAPTER 2. RELATED WORK 23

2. Inserted an additional branch out of the ROI align module to produce mask of
the object

The network is therefore able to produce three outputs - bounding box of the object,
its mask and label.

2.2.5 MultiNet

In 2016, Teichmann et al. [35] published an interesting work on road segmentation. In
their approach they efficiently perform classification, detection and semantic segmen-
tation simultaneously.

Model architecture is traditional encoder-decoder. The difference is that there is
just one encoder producing rich features shared among all the tasks. These features are
then utilized by task specific decoders. Encoder’s weights are pre-trained on ImageNet
classification data. They perform experiments on VGG16 and ResNet architectures.
The first one is called VGG-pool5 as it discards all fully-connected layers from VGG
and pool5 is the last layer. The second implementation is called VGG-fc7 because
it only discards the final softmax layer. Layers fc6 and fc7 are replaced by 1 × 1

convolutions. This allows the network to process images of arbitrary size. For ResNet
they implement 50 and 101 layer version of the network and discard fully-connected
softmax.

Decoder architecture follows the FCN architecture [27]. Segmentation is applied to
input downsampled by encoder to size 39× 12 using 1× 1 convolution layer. Then, it
is upsampled using three transposed convolution layers.

MultiNet’s training strategy is fine-tuning. The encoder is trained to perform clas-
sification on ILSVRC2012 dataset. But in practice, this step is omitted and encoder
is initialized using pre-trained weights of the respective networks they are using. The
second step is dedicated to replacing fully connected layers with convolutional ones.

Authors evaluate the proposed model on KITTI dataset [36], which contains im-
ages from various street situations captured from a moving platform in the city. The
segmentation module reaches MaxF1 score of 94.88% with average precision of 93.71%
beating all other submissions. Moreover, the speed of prediction is 42.48ms on GPU
for all tasks, which is very efficient for real-time predictions.

According to their comparison of VGG and ResNet they observed that both ResNets
outperform VGGs, but noticed that there is a trade-off because VGGs are faster.

2.3 Mobile models

Most of the work on semantic segmentation has focused on increasing accuracy of
proposed models with little attention to computational efficiency. While these networks

CHAPTER 2. RELATED WORK 24

have brought state-of-the-art results, they often lack real-time prediction ability on
devices with limited computational power.

2.3.1 MobileNets

Probably one of the most popular networks designed specifically for small devices in
terms of speed and computational power are MobileNets [1]. These models come
with two hyper-parameters, namely α and ρ. The former, also called width multiplier,
is responsible for adjusting number of channels and thins the network uniformly at each
layer. For a given layer and multiplier α, the number of input channels becomes αM
and the number of output channels αN , whereM and N are original numbers. ρ, called
resolution multiplier, is applied to input image reducing size of input as well as internal
representation of subsequent layers. The architecture is composed of 3× 3 depthwise-
separable convolutions except the first layer which is full convolution. Authors test
several variations of hyper-parameters and compare results on ImageNet dataset and
get 70.6% top-1 accuracy. Interestingly, MobileNet with α = 1 is almost as accurate
as VGG16, while being 32 times smaller and 25 times less compute intensive.

Sandler et al. [19] continue in the work of searching for efficient mobile mod-
els. Their architecture expands on aforementioned MobileNet and they call it Mo-
bileNetV2. Each bottleneck stage consists of several bottleneck layers, where the
first one downsamples the representation with stride = 2 (with the exception in some
stages). The rest of the layers in stage utilize residual connection from input which is
summed with output of the pointwise convolution. Similarly to original MobileNet, it
makes use of depthwise-separable convolution which is preceded by 1 × 1 convolution
as shown in Figure 2.6. The model with α = 1 reaches 72.0% top-1 accuracy beating
original MobileNet and reducing the number of parameters, as well as the inference
time. With α = 1.4 they get 74.7% accuracy at the cost of doubling the inference time.

Authors also compare semantic segmetation abilities of MobileNet and MobileNetV2
as feature extractors on PASCAL VOC dataset. Encoders are followed by DeepLabV3
decoder [37] with various modifications. Benchmarks show that their performance is
almost equal but MobileNetV2 achieves it with fewer parameters.

The new generation of MobileNet is presented in the work of Howard et al. [38].
MobileNetV3 is based on MobilenetV2 and MnasNet [39] building blocks. Auto-
mated platform-aware search NAS is used to look for global network structures by
optimizing each network layer and applies NetAdapt algorithm afterwards to find out
the number of filters per layer. Authors observe that some of the earlier and final layers
are more expensive than others, so they redesign and further optimize them. Second
half of bottleneck layers use newly proposed h-swish nonlinearity, since original swish

CHAPTER 2. RELATED WORK 25

(a) MobileNet bottleneck (b) MobileNetV2 bottlenecks

Figure 2.6: Comparison of MobileNet and MobileNetV2 bottlenecks.

(swish(x) = x · σ(x)) includes computation of sigmoid which is much more expensive
in mobile environments. Therefore, sigmoid has been replaced by its piece-wise linear
hard analog and the h-swish function is defined as hswish(x) = xReLU6(x+3)

6
. The fi-

nal model comes in two versions, namely MobileNetV3-Large and MobileNetV3-Small,
which are targeted to high and low resource use cases respectively. The former reaches
75.7% top-1 accuracy and the latter 67.4%, while being much more efficient. The
authors employ the models in semantic segmentation task and propose Lite R-ASPP
segmentation head which is based on R-ASPP head that was proposed by Sandler et
al. [19]. Experiments are conducted on Cityscapes dataset [40] and results reported
in mean IoU metric. MobileNetV3-Large attains similar performance as MobileNetV2
while being faster and MobileNetV3-Small performs similarly to MobileNetV2-0.5.

2.3.2 ShuffleNets

Another family of light-weight convolutional network models is called ShuffleNet.
Zhang et al. [2] propose the first model of this family. The architecture makes use of
pointwise group convolutions and new idea called channel shuffling. The former has
been introduced in [8] for distributing the model over two GPUs. If we stacked two
group convolutions on top of each other, the output channels would gain information
only from small fraction of previous channels. To address this, authors incorporate
channel shuffling, which divides previous groups into subgroups and then feeds each
group in next layer with different subgroup. Network’s architecture starts with full
3× 3 convolution followed by max pooling and three stages with different numbers of
shufflenet units where the first one is used for spatial downsampling. Their experiments
show that channel shuffle increases accuracy and ShuffleNet with α = 1 (width multi-

CHAPTER 2. RELATED WORK 26

plier) and group = 8 reached 67.6% top-1 accuracy. With α = 2 they beat MobileNet
by 3.1% while keeping the inference time.

Building upon ShuffleNet, Gamal et al. [41] experiment in the field of semantic
segmentation. Their network, called ShuffleSeg, employs ShuffleNet as encoder. Ex-
periments are conducted on Cityscapes dataset and compare decoders U-Net, SkipNet,
Dilation Frontend 8s and Dilation 4s. Results indicate that SkipNet pretrained on
coarse annotations with more labeled images beats other decoders and provides a good
trade-off between accuracy and real-time prediction. It is reported to be capable of
running at 15.7 FPS on Jetson TX2. [41, 42]

Figure 2.7: ShuffleNet (a), (b) and ShuffleNetV2 (c), (d) bottleneck units. (b) and (d)
are units used for spatial downsampling with stride set to 2. (source [43])

In the work of Ma et al. [43], several practical guidelines for efficient ConvNet archi-
tecture design have been raised. These are targeted mostly to reduce MAC (memory
access cost or the number of memory access operations). Based on these guidelines,
authors propose new architecture called ShuffleNetV2. They replace group convolu-
tions with pointwise 1 × 1 convolutions and use channel split in downsampling unit.
Otherwise, the number of stages and units within them stays the same. Figure 2.7
shows the difference between ShuffleNet and ShuffleNetV2 units. Authors report their
model is faster than MobileNetV2, ShuffleNet and Xception. Moreover, with α = 1 it
reaches 69.4% top-1 accuracy.

ShuffleNetV2 has been studied further in order to employ it in semantic segmenta-
tion. Türkmen et al. [44] take ShuffleNetV2 as an encoder and modify the last stage to
omit downsampling and utilize dilated convolution within depthwise-separable convolu-

CHAPTER 2. RELATED WORK 27

tion. Decoding process is carried by DeepLabV3+ [45] which contains Dense Prediction
Cell [46] at the beginning and also makes use of dilated convolutions. Authors report
reaching 70.33% mean IoU on Cityscapes dataset and 15.41 FPS on a mobile phone
with an input image size of 224× 224.

2.4 Active learning

Labeling a dataset for supervised learning is quite expensive and time consuming pro-
cess. Active learning [3] is a technique where the model being trained participates in
the selection of its own training data. Selected samples are sent to the oracle (which
is a human expert in many cases) to annotate them and training continues on the en-
larged dataset. Training is stopped either when there are no more samples to annotate
or the model performs good enough and early stop condition is met. [47]

There are several ways the model queries for new data. Pool-based sampling is
often used in supervised learning. In theory, one sample is picked in each iteration and
model is retrained. However, during training ConvNet, querying one sample would be
quite inefficient and training would take too much time. Therefore, querying batches
is a common practice in the deep learning world. [48, 49, 50, 51, 52, 53, 54, 55]

Joshi et al. [48] propose active learning framework for training an SVM classi-
fier. They experiment with and compare random sampling, entropy based sampling
and margin sampling (called Best-versus-Second-Best in their work) on three datasets.
Margin sampling showed up to be the best choice as they were able to reach higher
accuracy with less data.

The work of Vezhnevets et al. [49] discusses active learning in the field of semantic
segmentation. The authors try to bridge the gap between weakly supervised and fully
supervised methods by using active learning. The problem is modeled with a pairwise
conditional random field (CRF) defined over superpixels. Their active learning starts
from the output of weakly supervised learninng, meaning the labeling is partially in-
correct. The model is able to ask oracle about ground truth of specific superpixel.
They introduce a novel Expected Change (EC) score. Instead of querying for most
uncertain images, they query for the ones that induce largest expected change in the
labeling of the whole training set in terms of upper-bound accuracy. The disadvantage
of this approach is that computing EC score is slow. On the other hand, their algo-
rithm beats standard entropy sampling and reaches 97% of total pixel accuracy of the
corresponding fully supervised model while querying less than 17% of the superpixel
labels.

Wang et al. [50] study active learning and propose so called Cost-Effective active
learning framework. Training the model starts with small amount of unlabeled data.

CHAPTER 2. RELATED WORK 28

The models queries images to be annotated according to one of least confidence, margin
sampling or entropy. Moreover, unlabeled images the model is very confident on are
given pseudo-labels and are added to training set with no human labor cost. At the end
of iteration, these pseudo-labeled images are returned to the pool of unlabeled ones.
Authors state that their algorithm performs better than random selection. However,
the analysis in [52] shows it actually performs worse than random sampling.

Several acquisition function are studied by Gal et al. [51] in their Bayesian ConvNet
setting recognizing hand-written digits from MNIST dataset. These function are max
entropy, BALD, variation ratios, mean STD and random baseline. Both mean STD
and random sampling under-perform compared to the other functions.

Another work is presented by Sener et al. [52]. Their sampling strategy is based on
k-center algorithm which strives for finding k points which minimize distance from all
points to their closest core point. The authors demonstrate that random sampling is
in many cases much more effective than uncertainty methods. This is because images
the model is most uncertain on are often similar and thus do not cover the sample
space appropriately. They evaluate models on several datasets achieving state-of-the-
art results.

Active learning for biomedical image segmentation has also been successfully used
by Yang et al. [53]. Image sampling is based on the uncertainty information as well
as similarity information. Last layer in the encoding part produces high level feature
embedding which is then used for computing cosine distance between images. Their
approach achieves state-of-the-art performance by using only 50% of the training data.

It seems that awareness of image diversity is one of the most important criterion.
Images may be embedded into vector space and clustered by K-means algorithm as
stated in [55].

2.5 Previous approaches with Smelý Zajko

The robot Smelý Zajko (Brave Rabbit in English), shown in Figure 1.1, began its
journey to discover and drive through city parks in 2011. The work of M. Nadhajský [56]
aims to propose a design of the outdoor robot for this kind of competition. This design
includes construction from aluminium and wooden parts as well as different hardware
parts like servo motors, sensors and wheels. The author also implements algorithms
for controlling the robot and verifies its functionality in the outdoor environment. The
proposed solution for dealing with recognition of driveable path makes use of multi-
layer perceptron (MLP).

M. Moravčík continued on robot’s improvements in his thesis [57]. The author
focuses on improving robot’s localization and planning based on Open Street Maps.

CHAPTER 2. RELATED WORK 29

Moreover, the author introduces vision module for predicting driveable path which
utilizes MLP and various preprocessing methods. Camera’s image is first being con-
verted into CIELAB color space and then cut into smaller patches of size 5 × 5. The
author also tests various MLP architectures as well as other handcrafted features such
as histograms, regions with high driveable probability etc.

The work of J. Dúc [58] describes integration of a new laser sensor and based
on the analysis of the previous state of the robot, he decides to change the system
architecture and rewrite the software into Robot Operating System (ROS) [59]. ROS
aims to be modular with the ability to divide subsystems into modules which are able to
communicate between each other and are portable when it comes to integrating them to
other system. It also supports recording and logging data from sensors and replaying
them afterwards. The author also designs new reactive algorithm for detecting and
avoiding obstacles and tests it in both indoor and outdoor environment.

Jariabka et al. [60] extended previous MLP approaches in aforementioned works.
They evaluate baseline MLP models on their dataset with images of size 224×224 pix-
els and propose the first ConvNet model used on Smelý Zajko. Its architecture is rather
simple having several convolutional layers with 10 filters followed by ReLU nonlinear-
ity and max-pooling 2 × 2 layers. Authors also experiment with deeper architecture
containing fully-connected layer and two convolutional blocks.

The solution used at RoboTour 2018 is based on HSV data extracted from training
images. Every image is converted into HSV color space and processed pixel by pixel.
Only H and S components are taken into account. The model creates 2D matrix with
values expressing how likely is the pixel with specific H and S driveable.

Figure 2.8: Example of Local Map at the crossroad. Robot is deciding which exit to
use. The yellow color denotes driveable trail and blue or red are obstacles calculated
by laser sensor.

CHAPTER 2. RELATED WORK 30

In 2019, M. Fikar [61] continued on improving robot’s algorithm for planning and
localization. The robot reads data from sensors, tries to combine them and creates so
called Local Map. Based on this data, the robot calculates the best direction towards
destination point and sends the information about next move to motor control unit,
which is in our case Arduino. The map also takes predicted driveable path into account.
An example of this map is presented in Figure 2.8.

All of the aforementioned models for predicting driveable path are looking at specific
regions discarding spatial information which makes them less precise. This causes the
models to make mistakes in classifying shadows, segments with color similar to the
road and images with varying lighting conditions. To deal with such a problem we will
focus on incorporating a ConvNet taking whole image as input and outputting dense
pixel-wise segmentation mask.

Chapter 3

Testing and comparing models for
RoboTour

The RoboTour 2019 competition took place in Deggendorf, Germany. It was our first
opportunity to train and test several segmentation models. In this chapter, we in-
troduce our datasets, the way we preprocess and augment data before feeding it to
ConvNet and present the HSV baseline model. We also compare several models we
tested before the competition and report results.

3.1 Datasets

The first dataset that has already been published in [60] contains 333 labeled pictures
in 4:3 ratio taken in the city park of Lednice. See Figure 3.1 for examples from this
dataset.

(a) (b)

Figure 3.1: Examples from the city park of Lednice.

31

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 32

Since the latest contest took place in Deggendorf, we wanted to create a new dataset
capturing the park which surrounds Deggendorf Institute of Technology. Images were
captured by Android Huawei phone in 4:3 ratio catching various weather conditions,
which prevented models overfit to specific conditions. One can find there are various
types of pavements, wet and dry roads, sun shining right to the camera lens, people
walking or riding a bicycle, bridges, benches, shadows and leaves on the roads, river,
grass, flowers, gravel and railway. Examples are shown in Figure 3.2.

Testing one day before the competition revealed that the dataset was quite imbal-
anced because all of the images contained driveable path. Models had always searched
for some sort of road, which resulted in very bad predictions of images containing
mostly grass or non-driveable segments. Therefore, we let the robot capture additional
pictures with grass covering huge part of images. See predictions before and after the
dataset has been extended in Figure 3.4. We picked 61 and manually labeled them.
The Deggendorf dataset now contains 344 images in total.

(a) (b)

(c) (d)

Figure 3.2: Examples from the city park of Deggendorf.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 33

3.2 Data preprocessing and augmentation

In order to feed data to network one has to preprocess the image in some way. Pictures
produced by phone were in quite high resolution which would make the inference time
very high. We decided to scale them down to widely used resolution of 640×480 pixels.
Labels in Lednice dataset contain 53.90% of driveable segment pixels and labels in
Deggendorf dataset contain 61.14% of driveable segment pixels.

Our images are in the RGB color space, which means that each one contains three
channels with values in range from 0 to 255. In order to make the model learn it is a
common practice to normalize these values so they are in range either from 0 to 1 or
from -1 to 1. The former can be reached by dividing all the channels by 255 and the
latter by subtracting mean and dividing by standard deviation per channel. Ground
truth labels (masks) are just 2D matrices with binary values where 1 denotes driveable
pixel and 0 non-driveable one. Since these masks contain values 0 or 255 once loaded
from disk, we just divide them by 255 to get zeros and ones.

Image augmentation is essential when it comes to extending the dataset because
of the need for better generalization and preventing the model from overfitting. From
every image we generate several augmented ones using imgaug library [62].

• Rotation - random rotation by 5 degrees

• Horizontal Flip - flip the image horizontally

• Motion Blur - the robot captures images while moving and they are often
blurred. Motion Blur blurs images by random kernel k = randint(3, 7) to resem-
ble real world scenario

• Add Brightness - add brightness by severity s = 2

• Fog - add fog to image

Rotation and Horizontal Flip transformations require the mask to be augmented
as well and thus we apply such transformation on mask. Both augmented and original
images are then being fed to ConvNet.

3.3 Models and learning process

3.3.1 Losses

The loss function (also called cost or error function) denotes a function computing how
bad is the model at predictions. The optimizer updates model’s weights to decrease
the loss. Since we are not able to compute these weights perfectly, training neural

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 34

networks is an optimization problem where the loss function navigates us through the
space of possible configurations.

There are many loss functions to choose from. The most common ones for semantic
segmentation used in literature are Binary crossentropy and Dice coefficient loss.

• Binary crossentropy

BCE(y, ŷ) = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi)

• Dice coefficient loss

DICE(y, ŷ) = 1− 2 · y · ŷ + ε

y + ŷ + ε
= 1−

2 ·
N∑
i=1

(yi · ŷi) + ε

N∑
i=1

yi +
N∑
i=1

ŷi + ε

The N denotes the number of pixels, yi denotes ground truth value for pixel at i-th
position and ŷi is the output of the network at i-th position, which is interpreted as
the probability of pixel being driveable.

3.3.2 Metrics

Metrics are used to measure the performance of the model. Choosing the right metric
is a crucial part in order to compare models appropriately. We might sometimes also
use loss function as a metric, but in general a metric function does not have to be
differentiable. In our work, we are working with two most widely used metrics for
segmentation task:

• Binary Accuracy

ACC(I) =
TP + TN

TP + TN + FP + FN

• Intersection over Union (IoU)

IoU(I) =
1

|I|

|I|∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

Since output of the network is in range between 0 and 1 for each pixel, we need
to round Ŷ values. Threshold is set to 0.5 meaning pixels with probability above 0.5

get classified driveable and conversely, pixels with probability below 0.5 are classified
non-driveable. The argument I is a set of images the metric is measured on.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 35

The nominator in binary accuracy metric represents the number of pixels that are
classified correctly, whilst denominator represents the total number of pixels present
across entire image set.

Intersection over Union is measured as a mean of IoUs over the set I. Simply
put, it is the area of intersection between predicted segmentation mask and ground
truth divided by their union. IoU is the most popular metric in semantic segmentation
community sometimes referred to as Jaccard index.

Binary accuracy can sometimes provide misleading results and that’s why IoU is
better in terms of correct overlaps. Now let’s try to understand why this metric is
better than binary accuracy. Imagine the model is asked to predict an image with a
small area of driveable segment. If the model classifies all the pixels as non-driveable
(returns mask filled with zeros) we get very high accuracy due to correct classification
of these zeros. However, the model’s IoU is zero in this case which is desired result.

3.4 Results

3.4.1 HSV model

(a) Trained on Lednice dataset (b) Trained on Deggendorf dataset

Figure 3.3: HSV model trained on Lednice and Deggendorf datasets. Y axis represents
H values, X axis represents S values and pixel intensity indicates how likely is the pixel
driveable.

We took HSV model used on RoboTour 2018 and set it as our baseline.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 36

dataset test accuracy test IoU
Lednice 0.9037 0.8504

Deggendorf 0.8006 0.7403

Table 3.1: Results of HSV model measured on both datasets.

Both datasets were split into train and test subsets. Training the model produced
matrices shown in Figure 3.3.

According to pixel intensities we may notice higher uncertainty in Deggendorf
dataset which proves our assumption that this dataset is much more difficult to learn
and predict. There is a large number of pixels with same or almost the same color
but classified differently (i.e. grey pavement and grey wall). Model’s performance is
captured in Table 3.1. Although the Lednice results might be acceptable, in case of
Deggendorf the accuracy is not sufficient.

3.4.2 KittiSeg

One of the decoders in MultiNet architecture [35] is dedicated to semantic segmentation
task. We wanted to test its performance on our Lednice dataset in 2018 right before
the competition in the Lednice park.

Encoders in this architecture were pretrained on ImageNet dataset [24] and we
only wanted to fine-tune the model to our Lednice dataset. Since this architecture is
designed to perform binary semantic segmentation of driveable roads, it took only few
epochs to fine-tune it to city park. Results are captured in Table 3.2. The reason for
not using it on robot is we were not able to load it to Jetson’s memory because of the
model’s huge size. NVIDIA Jetson TX2 GPU mounted on our robot contains 8 GB of
RAM, 256 NVIDIA CUDA cores and 6 CPU cores.

type train acc val acc
no augmentation 0.9571 0.9563
augmentation used 0.9580 0.9566

Table 3.2: Results of KittiSeg model training on Lednice dataset.

3.4.3 ConvNet models

We decided to test four different models before RoboTour competition. Among many
available we picked these:

• Unet

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 37

• SegNet

• ResNet with 16 identity blocks

• FCN VGG16 with 32x upsampling

The FCN model was not able to start learning, thus we discarded it from our
experiments. As long as we have had access to external server with graphics processing
unit (GPU) NVIDIA GeForce GTX 1080, training procedure was far more efficient
in terms of speed than on CPU. Our experiments involve training the models on both
datasets, testing both loss functions and reporting pixel accuracy as well as intersection
over union.

The environment we chose to work in is Python 3.6 which has support for many
useful tools necessary for computer vision and especially deep learning. Furthermore,
in order to work with neural network we decided to choose widely used TensorFlow [63]
framework. On top of TensorFlow backend we utilize Keras [64]. It is an open source
library capable of running on top of several backends. It focuses on being user-friendly
by providing interfaces for higher level abstractions and contains implementations for
commonly used building blocks in deep learning such as layers, optimizers, metrics,
activation functions as well as many utilities for manipulating data and evaluating
models.

model disk size # params prediction time on Jetson
ResNet 33 MB 2,753,729 0.24169 sec
SegNet 60 MB 7,818,117 0.36903 sec
Unet 356 MB 31,032,837 1.08655 sec

Table 3.3: Basic information about models. The size of the input image is 640× 480.
The prediction time is computed as the average of 20 predictions.

Table 3.4 captures results of aforementioned models. These results are split into
two subtables in order to differentiate between Lednice and Deggendorf dataset.

All the models were trained from scratch meaning all weights were randomly ini-
tialized. We test both binary crossentropy and dice coefficient loss as well as both
RGB and HSV color spaces. We split both datasets into train, validation and test
subsets. Deep learning models are usually trained with some kind of early stopping
condition which prevents the model from overfitting to training data and decreases
the time needed for learning. In our case, we set early stopping condition to monitor
validation loss and stop the training process when this loss does not decrease in 5% of
total epochs.

In Table 3.3 we report basic information about proposed models and compare their
average inference times on Jetson TX2 GPU.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 38

When it comes to optimizing test intersection over union, binary crossentropy out-
performed dice coefficient loss (but in general it does not have to be the case). Fur-
thermore, results indicate that models show better performance in RGB color space.
ResNet is almost always better than SegNet while having the lowest number of pa-
rameters and the best inference time. Unet’s disadvantage is its number of parameters
and undesirable inference time. Evaluation of models shows that Lednice dataset is
easier to predict than Deggendorf dataset, like we observed with HSV baseline model.
An interesting fact is that we are often able to train these models in less than one
hour which makes it usable especially in competition setup where we sometimes need
to retrain model to specific conditions.

(a) Before (b) After

Figure 3.4: Predictions of images containing mostly grass. Image (a) shows the pre-
diction before this kind of images have been added to the dataset while image (b) is
the prediction after the dataset has been extended. Both images are predicted by the
same ResNet. The only thing that has changed is dataset.

AUC-ROC comparison

Since the output from ConvNet is probability of each pixel being driveable, we need
to define threshold for rounding these probabilities to one and zero respectively. All
the results in Table 3.4 were acquired using standard threshold of 0.5, but we also
examined thresholds in range from 0.3 to 0.8. According to Figure 3.5, ResNet seems
to work a little bit better with thresholds close to 0.45 on Deggendorf dataset whilst
SegNet’s best threshold values are close to 0.3. Interestingly, SegNet works better with
threshold around 0.5 on Lednice dataset and Unet’s accuracy stays almost unchanged
on both datasets. Once we noticed our models make mistakes on images covered mostly
by non-driveable pixels we extended Deggendorf dataset right before the competition
which improved predictions in production by huge margin, see Figure 3.4.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 39

(a) Lednice dataset (b) Deggendorf dataset

Figure 3.5: Comparison of various rounding thresholds for ResNet, SegNet and Unet
(binary crossentropy loss with early stopping condition). The IoU is measured on test
set.

In order to select the best model which should be used in production, a selection
metric is chosen. One of the most commonly used selection metrics is AUC-ROC (Area
Under Curve - Receiver Operating Characteristics) curve. It is used to show perfor-
mance of models at various threshold settings. The plot consists of two parameters:

• True Positive Rate denoted as TPR = TP
TP+FN

• False Positive Rate denoted as FPT = FP
FP+TN

(a) Lednice dataset (b) Deggendorf dataset

Figure 3.6: AUC - ROC comparison of ResNet, SegNet and Unet (binary crossentropy
loss with early stopping condition).

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 40

In terms of the predicted probability, ROC tells us how good the model is at distin-
guishing pixel’s class. Since AUC stands for Area Under Curve, it measures the entire
two-dimensional area under the ROC curve and provides an aggregate measure across
all possible thresholds. The bigger the area, the better the model is in distinguish-
ing between driveable and non-driveable pixels. If the AUC is equal to 0.5, model’s
prediction are almost random with no ability to distinguish between classes.

We compared our models using AUC-ROC curve. Figure 3.5 captures these com-
parisons on both datasets. Their performance is very similar on Lednice dataset, but
SegNet works a bit better on Deggendorf dataset. Since ResNet shows the best results
overall (the best trade-off between test IoU and inference time), we decided to use it at
the competition in Germany. During official runs predictions were quite good in terms
of accuracy, but the model’s inference time is very high giving us only four frames per
second (FPS). This makes it very difficult for the robot to drive faster because it would
suffer from high latency between predictions. The visualization of test set predictions
by ResNet and SegNet is presented in Figure 3.7.

(a) Lednice (b) Deggendorf

Figure 3.7: Comparison of test set predictions by ResNet and SegNet against ground
truths.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 41

model clr loss time eps train acc train IoU test acc test IoU
ResNet rgb dcl 81m 77 0.9847 0.9673 0.9840 0.9700
SegNet rgb dcl 191m 167 0.9808 0.9578 0.9709 0.9484
Unet rgb dcl 523m 157 0.9925 0.9842 0.9846 0.9715

ResNet rgb bce 76m 70 0.9867 0.9698 0.9845 0.9711
SegNet rgb bce 114m 100 0.9845 0.9649 0.9809 0.9643
Unet rgb bce 434m 130 0.9948 0.9888 0.9841 0.9705

ResNet hsv dcl 45m 42 0.9758 0.9496 0.9815 0.9660
SegNet hsv dcl 144m 125 0.9769 0.9493 0.9756 0.9562
ResNet hsv bce 54m 50 0.9818 0.9594 0.9853 0.9725
SegNet hsv bce 52m 45 0.9768 0.9487 0.9751 0.9554
ResNet rgb dcl 155m 150 0.9848 0.9680 0.9828 0.9683
SegNet rgb dcl 171m 150 0.9796 0.9552 0.9767 0.9580
ResNet rgb bce 159m 150 0.9823 0.9604 0.9839 0.9694
SegNet rgb bce 172m 150 0.9854 0.9668 0.9790 0.9619

model clr loss time eps train acc train IoU test acc test IoU
ResNet rgb dcl 44m 40 0.9605 0.9259 0.9378 0.8878
SegNet rgb dcl 122m 104 0.9660 0.9302 0.9222 0.8551
Unet rgb dcl 499m 145 0.9834 0.9606 0.9506 0.9017

ResNet rgb bce 42m 38 0.9625 0.9269 0.9366 0.8838
SegNet rgb bce 57m 48 0.9671 0.9357 0.9403 0.8795
Unet rgb bce 451m 131 0.9908 0.9715 0.9521 0.9031

ResNet hsv dcl 61m 55 0.9546 0.9165 0.9376 0.8868
SegNet hsv dcl 192m 167 0.9656 0.9303 0.9329 0.8788
ResNet hsv bce 86m 75 0.9750 0.9410 0.9409 0.8861
SegNet hsv bce 97m 81 0.9738 0.9415 0.9308 0.8748
ResNet rgb dcl 160m 150 0.9784 0.9504 0.9445 0.8953
SegNet rgb dcl 176m 150 0.9687 0.9357 0.9189 0.8494
ResNet rgb bce 164m 150 0.9766 0.9459 0.9491 0.8958
SegNet rgb bce 177m 150 0.9784 0.9486 0.9386 0.8793

Table 3.4: Results - the first table describes results on Lednice dataset and the second
table on Deggendorf dataset. Models in last four rows in both tables were trained for
150 epochs, whilst the other ones used early stopping condition monitoring validation
loss. Dice coefficient loss is marked as dcl and binary crossentropy as bce. Clr denotes
color space of images, time is training time and eps is the number of epochs.

CHAPTER 3. TESTING AND COMPARING MODELS FOR ROBOTOUR 42

3.4.4 Testing models on unseen dataset

Imagine the robot is participating at the competition in environment we do not have
dataset from. Since obtaining a new dataset along with labeling all of its images is very
time consuming we cannot afford to prepare the model in such a short period of time.
Thus, we want to train our models on other dataset (obtained at previous contests)
and use it in a new environment. This approach is often reffered to as transfer learning.

Table 3.5 shows performance of models described in Section 3.4.3 on unseen datasets.
Surprisingly, if we compare these results with Table 3.4, we can clearly see that

there is not a big difference in terms of accuracy and models perform relatively well
on unseen datasets. The IoU is worse by 3% on average, but the IoU is high enough
for predicting driveable path and therefore we can conclude that models trained on
specific dataset may be used in a similar environment.

model clr loss acc iou
ResNet rgb dcl 0.9144 0.8475
SegNet rgb dcl 0.9157 0.8502
Unet rgb dcl 0.9360 0.8810

ResNet rgb bce 0.9036 0.8278
SegNet rgb bce 0.9146 0.8439
Unet rgb bce 0.9357 0.8812

ResNet hsv dcl 0.8939 0.8189
SegNet hsv dcl 0.8893 0.8171
ResNet hsv bce 0.8887 0.8110
SegNet hsv bce 0.8835 0.8003
ResNet rgb dcl 0.9230 0.8616
SegNet rgb dcl 0.9103 0.8383
ResNet rgb bce 0.9192 0.8509
SegNet rgb bce 0.9093 0.8351

(a) Lednice models on Deggendorf dataset

model clr loss acc iou
ResNet rgb dcl 0.9624 0.9289
SegNet rgb dcl 0.9563 0.9149
Unet rgb dcl 0.9654 0.9324

ResNet rgb bce 0.9626 0.9271
SegNet rgb bce 0.9597 0.9206
Unet rgb bce 0.9689 0.9382

ResNet hsv dcl 0.9637 0.9300
SegNet hsv dcl 0.9532 0.9108
ResNet hsv bce 0.9617 0.9242
SegNet hsv bce 0.9526 0.9074
ResNet rgb dcl 0.9644 0.9312
SegNet rgb dcl 0.9535 0.9103
ResNet rgb bce 0.9656 0.9323
SegNet rgb bce 0.9583 0.9199

(b) Deggendorf models on Lednice dataset

Table 3.5: Results of models tested on full unseen dataset

Chapter 4

Faster models

Models presented in chapter 3 are quite slow, giving us only ∼ 3-4 frames per second
on NVIDIA Jetson TX2. In this chapter we experiment with light-weight variations
of ResNet and SegNet. We also test various mobile models proposed in recent years
capable of running on devices with low computational power. From now on, we use
only Deggendorf dataset, binary crossentropy loss and images in RGB color space.

4.1 Reducing the number of parameters

As stated above, our models (namely ResNet and SegNet) are slow in terms of inference
time. The first idea that comes to our mind is to reduce the number of parameters in
order to get more FPS.

Our ResNet contains so called identity blocks which we put in pairs next to each
other. The model also takes parameter f which denotes the filter multiplier (default
16) being used in all layers. SegNet contains too many layers so we decided to reduce
them and experiment with the number of filters in each convolutional layer.

List of modified models:

• ResNet-1 - original model, f = 8

• ResNet-2 - original model, f = 4

• ResNet-3 - every other identity block skipped, f = 16

• ResNet-4 - every other identity block skipped, f = 8

• SegNet-1 - filters by layers: 64, 128, 256, 256, 256, 256, 128, 64, 32

• SegNet-2 - filters by layers: 32, 64, 128, 128, 256, 128, 128, 64, 32

• SegNet-3 - filters by layers: 32, 32, 64, 64, 128, 128, 64, 32, 32

43

CHAPTER 4. FASTER MODELS 44

• SegNet-4 - filters by layers: 32, 32, 64, 64, 64, 64, 64, 32, 32

model # params on Jetson train acc train IoU test acc test IoU
ResNet-1 698,017 0.13288 sec 0.9795 0.9509 0.9408 0.8836
ResNet-2 179,297 0.10143 sec 0.9678 0.9332 0.9360 0.8796
ResNet-3 1,895,649 0.16817 sec 0.9783 0.9488 0.9446 0.8919
ResNet-4 480,817 0.09807 sec 0.9662 0.9284 0.9399 0.8850

SegNet-1 2,534,401 0.31107 sec 0.9444 0.9024 0.9316 0.8784
SegNet-2 1,075,009 0.22216 sec 0.9497 0.9073 0.9365 0.8816
SegNet-3 391,105 0.14389 sec 0.9631 0.9276 0.9417 0.8889
SegNet-4 206,145 0.13818 sec 0.9625 0.9268 0.9380 0.8843

Table 4.1: Results of modified ResNet and SegNet training.

Figure 4.1: Comparison of inference times against various image resolutions on Jetson
TX2 GPU.

By reducing ResNet’s number of parameters we are able to increase the FPS to 10
while preserving the IoU. The same applies to SegNet where we reach 7 FPS with the
same IoU, see Table 4.1.

We have also tried incorporating dilation rate to encoder convolutional layers [18].
In case of SegNet, we set the dilation factors in ascending order (1, 2, 4, 8). ResNet

CHAPTER 4. FASTER MODELS 45

contains identity and bottleneck blocks, both of them having one 3 × 3 convolutional
layer. We tried setting dilation rate just in identity block. Other experiments with
ResNet involved setting dilation rate in both identity and bottleneck blocks. The
experiments show that dilation convolutions do not bring improvement in terms of
accuracy to our models.

Aforementioned models are able to process images of various resolutions. Figure
4.1 shows the comparison of inference times of these models against several resolutions
(with aspect ratio 4:3). Predictions of images with resolution 320 × 240 take similar
amount of time. However, with growing resolution we can see modified ResNet beats
other models and is a good choice when dealing with higher resolutions.

4.2 Mobile models

name encoder decoder α # params
SSeg-1 ShuffleNet (g = 1) SkipNet 8s 0.25 970,825
SSeg-2 ShuffleNet (g = 1) SkipNet 8s 0.5 1,920,793
SSeg-3 ShuffleNet (g = 2) SkipNet 8s 0.25 959,241
SSeg-4 ShuffleNet (g = 2) SkipNet 8s 0.5 1,889,841
SSeg-5 ShuffleNet (g = 4) SkipNet 8s 0.25 921,833

SNetV2-1 ShuffleNetV2 DeepLabV3+ 1.0 1,871,428
SNetV2-2 ShuffleNetV2 DeepLabV3+ 0.5 694,886
MNetV2-1 MobileNetV2 DeepLabV3+ 1.0 11,978,698
MNetV2-2 MobileNetV2 DeepLabV3+ 0.5 4,643,466
MNetV2-3 MobileNetV2 DeepLabV3+ 0.25 2,742,418
MNetV2-4 MobileNetV2* DeepLabV3+ 0.25 1,252,498
MNetV3-L-1 MobileNetV3-Large DeepLabV3+ 1.0 4,641,674
MNetV3-L-2 MobileNetV3-Large DeepLabV3+ 0.5 2,484,146
MNetV3-L-3 MobileNetV3-Large DeepLabV3+ 0.25 1,902,602
MNetV3-S-1 MobileNetV3-Small DeepLabV3+ 1.0 2,142,074
MNetV3-S-2 MobileNetV3-Small DeepLabV3+ 0.75 1,775,474

Table 4.2: Description of mobile models we experiment with. α denotes width multi-
plier. MNetV2-4 contains encoder MobileNetV2 where we removed final convolution
layer to reduce the number of parameters.

Mobile models are quite popular when it comes to real-time performance on devices
with low computation resources. Since our robot lacks real-time prediction ability, we
decided to search for a modern mobile model, that would allow the robot to deal
with this problem. Based on previous works in this field, we test ShuffleSeg [41],

CHAPTER 4. FASTER MODELS 46

ShuffleNetV2 [44], MobileNetV2 [19] and both large and small versions of MobileNetV3
[38]. Although authors of MobileNetV2 and MobileNetV3 use other decoders in their
original articles, we decided to use DeepLabV3+ [45] in our experiments. In fact, we
were not able to reproduce learning ability of Lite R-ASPP as a decoder proposed for
MobileNetV3 and DeepLabV3+ seems like a good fit for our purposes. In Table 4.2 we
present architecture and hyper-parameters of mobile models. All model variations are
trained using Adam optimizer and the training procedure took from 25 to 40 minutes
in all cases.

name train acc train iou test acc test iou on Jetson
SSeg-1 0.8776 0.8849 0.8862 0.8548 0.05559 sec
SSeg-2 0.8112 0.9141 0.8096 0.8565 0.07858 sec
SSeg-3 0.8442 0.8919 0.7391 0.8618 0.07048 sec
SSeg-4 0.7327 0.9166 0.7676 0.8581 0.08932 sec
SSeg-5 0.8013 0.9144 0.8060 0.8343 0.08605 sec

SNetV2-1 0.9811 0.9547 0.9506 0.8979 0.08615 sec
SNetV2-2 0.9731 0.9386 0.9375 0.8799 0.06318 sec
MNetV2-1 0.9757 0.9457 0.9433 0.8852 0.24385 sec
MNetV2-2 0.9760 0.9441 0.9424 0.8849 0.14537 sec
MNetV2-3 0.9746 0.9411 0.9341 0.8721 0.09902 sec
MNetV2-4 0.9757 0.9453 0.9396 0.8770 0.08698 sec
MNetV3-L-1 0.9711 0.9369 0.9486 0.8918 0.13953 sec
MNetV3-L-2 0.9744 0.9440 0.9549 0.9000 0.10666 sec
MNetV3-L-3 0.9734 0.9417 0.9485 0.8908 0.07009 sec
MNetV3-S-1 0.9733 0.9418 0.9506 0.8933 0.06125 sec
MNetV3-S-2 0.9739 0.9430 0.9536 0.8977 0.05534 sec

Table 4.3: Results of mobile models trained on Deggendorf dataset along with their
inference times measured on Jetson TX2.

Results of trained models are summarized in Table 4.3. ShuffleSeg’s all modifica-
tions are quite fast, but their test IoUs are much lower compared to other models.
SNetV2-1 gives us promising results with 11.5 FPS. All versions of MobileNetV2 do
not reach test IoU higher than 89% and are not that fast as expected. With decreasing
α the IoU decreases as well. MobileNetV3 seems to be most efficient one. Although its
large version’s test IoU is the best compared to all mobile models tested, the inference
time is too high. A good trade-off between IoU and inference time provides MNetV3-
L-3 with 14.2 FPS. But surprisingly, both small versions of MobileNetV3 beat other
models with their significantly better performance. We are able to get to 18 FPS with
unchanged IoU.

CHAPTER 4. FASTER MODELS 47

We picked one variation of each model which gives us the best trade-off between
IoU and speed and compared them with our small models using AUC-ROC curve. The
graph presented in Figure 4.2 shows that all MobileNets are the most powerful ones
while ShuffleNet being equal with our modified ResNet and SegNet.

Figure 4.2: Comparison of mobile models using AUC-ROC curve. The graph is zoomed
to the upper-left corner for better view.

Chapter 5

Active learning

In this chapter we experiment with the idea of decreasing the number of images needed
to be labeled for training. We present various methods for sampling batches of images
in order to make the training and labeling processes more efficient.

5.1 Motivation

Figure 5.1: Active learning experiment with random sampling. Started with 30 random
images and sampling 10 randomly in each round. Three epochs are executed within
each round. Models: ResNet-4 and MNetV3-S-2. Y-axis represents IoU.

Each RoboTour contest is held annually in different locations. That means the
environment always changes and datasets gathered and labeled at previous parks might

48

CHAPTER 5. ACTIVE LEARNING 49

not be sufficient. Creating new dataset does not only involve capturing images, but also
labeling them in order to produce ground truths for our model. Since labeling entire
dataset of images is often an expensive and time consuming process, we might ask if
it is possible to label just a smaller portion of them and reach comparable accuracy.

Active learning may help us in such a situation. The key idea is to label a very
small portion of images at the beginning and start training the model. At some point,
the model asks for next portion of images to be labeled and continues learning. We
may stop the training process once we think the validation loss has converged enough
or some other stopping criterion has been met.

Our first experiment is presented in Figure 5.1. We started training with 30 ran-
dom images and add 10 random images in each round. Validation accuracy and IoU
converged after ∼ 45 epochs with only half of the training images used. It seems that
this approach may help us in order to spend less time labeling.

We prepared an environment on the same machine with graphics processing unit
where we conducted our previous experiments. In order to understand if it might be
profitable to use active learning for training our models constrained to small amount
of data, we decided to perform active learning simulations. We utilize ResNet-4 and
Deggendorf dataset in our experiments, but in Section 5.5 we show ablation study in
which we compare this model to the other ones.

5.2 Random sampling

init pick reps stop imgs rnds eps val acc val iou test acc test iou
30 10 3 e-val 20 216 20 59 0.9521 0.9078 0.9316 0.8728
30 10 3 e-val 15 190 17 51 0.9536 0.9081 0.9308 0.8716
30 15 3 e-val 15 244 16 47 0.9509 0.9030 0.9278 0.8638
30 5 3 e-val 15 90 13 39 0.9395 0.8852 0.9238 0.8670
30 10 6 e-val 10 100 8 48 0.9472 0.9031 0.9155 0.8486
30 10 10 e-val 10 56 4 36 0.9414 0.8821 0.9103 0.8465
30 15 10 e-val 10 70 4 36 0.9306 0.8848 0.9079 0.8431
30 20 6 e-val 10 150 7 42 0.9493 0.9103 0.9247 0.8647
60 20 6 e-val 10 133 5 28 0.9400 0.8939 0.9187 0.8586

Table 5.1: Random sampling results. Average of three separate runs. init : number of
images picked initially. pick : number of images picked after each round. reps : number
of epoch in one round. stop: stopping condition. imgs : number of images involved in
training. rnds : number of rounds in total. eps : number of epochs in total.

As a baseline, we sample images randomly from training data. We pick a bigger

CHAPTER 5. ACTIVE LEARNING 50

bulk of images initially and train for several round epochs (reps). Next samples are
picked afterwards and also trained for the same number of epochs. Since our validation
subset is deemed to be completely labeled, we are able to monitor validation loss.
This information helps us to stop training sooner with early stopping condition. For
example, e-val 10 means we stop training if the validation loss did not change in last
10 epochs.

According to results in Table 5.1, the test intersection over union is lower by 2% on
average than training the model on full dataset.

5.3 Entropy sampling

init pick reps stop imgs rnds eps val acc val iou test acc test iou

30 10 3 e-val 20
230
231

21
22

64
65

0.9529
0.9553

0.9114
0.9089

0.9320
0.9331

0.8755
0.8782

30 10 3 e-val 15
203
156

18
14

55
41

0.9538
0.9490

0.9133
0.8993

0.9280
0.9273

0.8688
0.8691

30 15 3 e-val 15
262
252

17
16

51
48

0.9575
0.9529

0.9151
0.9047

0.9375
0.9338

0.8815
0.8759

30 5 3 e-val 15
111
135

17
22

52
66

0.9510
0.9512

0.9071
0.9107

0.9248
0.9307

0.8636
0.8744

30 10 6 e-val 10
86
70

7
5

40
30

0.9442
0.9285

0.8978
0.8830

0.9210
0.9079

0.8573
0.8456

30 10 10 e-val 10
66
63

5
4

46
43

0.9435
0.9363

0.8931
0.8858

0.9234
0.9143

0.8652
0.8532

30 15 10 e-val 10
55
65

3
3

26
33

0.9358
0.9375

0.8861
0.8847

0.9049
0.9119

0.8373
0.8508

30 20 6 e-val 10
123
116

6
5

34
32

0.9479
0.9441

0.8989
0.8951

0.9259
0.9220

0.8678
0.8625

60 20 6 e-val 10
140
133

5
5

30
28

0.9516
0.9397

0.9130
0.8852

0.9305
0.9211

0.8731
0.8586

Table 5.2: Entropy sampling results. Average of three separate runs. The first subrow
in each row describes results of averaging entropy over pixels and the second subrow
describes results of summing the entropy.

A straightforward way to improve random sampling might be to sample images
based on the level of model’s uncertainty predicting them. Before the images are
picked, we need to sort them according to some score. A good candidate seems to be

CHAPTER 5. ACTIVE LEARNING 51

entropy. The output of the model is a 2D matrix with the same shape like input image,
where each cell contains the number in range from 0 to 1. This number denotes the
probability of pixel being driveable. Therefore, entropy of i-th pixel might be computed
by the following formula:

Hi = −(pi log2(pi) + (1− pi) log2(1− pi))

where pi denotes the probability of pixel being driveable. An aggregate function
is applied afterwards to attach single score number to the image. In our case, we
use average and sum. Table 5.2 captures results of both average and sum entropy
sampling. There is no obvious winner between sum and average functions in entropy
sampling because both perform quite similarly. Reducing the number of epochs for
stopping condition to execute also reduces the number of rounds and images sampled
as expected. e-val 10 seems to be a good candidate for stopping since we do not end up
labeling entire dataset. Batches of 20 images seem to work better in combination with
e-val 10. If we compare these results, we can see that there is a very slight improvement
over random sampling. However, we are able to get nice test IoU with only 50% images
of entire dataset, which makes the labeling process more efficient.

In Figure 5.2 we demonstrate a simulation of how both entropy and validation IoU
evolve with each round. Clearly, we can see that at some point the model does not
learn pretty much no new information and the training procedure might be stopped.

Figure 5.2: Comparison of entropies and validation IoU in each round. Started with
30 labeled images and within each round we sample 10 images. Entropies (averaged
over pixels) are computed over all of the unlabeled images.

CHAPTER 5. ACTIVE LEARNING 52

5.4 Diversity sampling

The problem with entropy (or uncertainty) sampling is that images with highest score
might be in many cases similar and the change will not be as high as expected [52, 53,
55]. Therefore, before we actually sample images based on some score, we want to put
them into categories based on their similarity. A good candidate for this task might
be well known K-means algorithm described in Section 1.2.3.

Within the model, encoder’s role is to produce feature vector, which holds the
information that represent the input. Hence, it is a good candidate to represent the
image when running K-means. In case of the ResNet-4, the last encoder’s layer produces
128 feature maps with resolution of 15× 20. Each cell’s value is set to be the average
over all of the feature map’s cells and the resulting matrix is flattened into one long
vector with dimension of 300. The number of clusters, which is a hyperparameter in
K-means setting, is set to be the number of images we sample within each round.

After running K-means from package called Scikit-learn [65], we compute entropies
and sample one image with highest entropy per cluster. Table 5.3 shows the results of
diversity sampling. It beats both random and entropy sampling. Moreover, results are
more consistent so we do not end up with very low IoU.

init pick reps stop imgs rnds eps val acc val iou test acc test iou
30 10 3 e-val 20 210 19 58 0.9522 0.9127 0.9320 0.8758
30 10 3 e-val 15 210 13 40 0.9486 0.9041 0.9206 0.8550
30 15 3 e-val 15 202 13 38 0.9501 0.9068 0.9213 0.8608
30 5 3 e-val 15 97 14 43 0.9477 0.8995 0.9228 0.8617
30 10 6 e-val 10 83 6 38 0.9441 0.8984 0.9224 0.8629
30 10 10 e-val 10 60 4 40 0.9442 0.8973 0.9168 0.8525
30 15 10 e-val 10 75 4 40 0.9443 0.8934 0.9197 0.8601
30 20 6 e-val 10 143 7 40 0.9517 0.9078 0.9261 0.8644
60 20 6 e-val 10 153 6 34 0.9503 0.9046 0.9306 0.8770

Table 5.3: Diversity sampling results. Average of three separate runs. The pick denotes
the number of clusters as well as the number of images sampled in a round.

In order to compare these three aforementioned methods for sampling batches of
images, we ran our experiments without early stopping condition. Three separate runs
are conducted for each method within each experiment and the results are averaged.
The results are presented in Figure 5.3. Clearly, both average entropy and diversity
sampling perform comparably similar and better than the random sampling, and reach
higher accuracy sooner. The difference is not very significant, but might help with
efficient training in a setting with lower number of images in dataset. A small difference

CHAPTER 5. ACTIVE LEARNING 53

in IoU with fully labeled dataset is caused probably by not sufficient number of epochs
the models were trained in last rounds.

(a) 10 samples and 6 epochs per round. (b) 20 samples and 6 epochs per round.

(c) 15 samples and 10 epochs per round.

Figure 5.3: Comparison of sampling methods based on three separate experiments.

The initial batch of images is still being sampled randomly, so we would like to test
whether choosing images in this initial batch might be done more wisely. The input
image contains 640 · 480 · 3 = 921600 pixels. This would be a very high dimensional
vector as an input to K-means and thus dimension reduction is essential in this case.
Recently, UMAP [66] (Uniform Manifold Approximation and Projection) algorithm for
dimension reduction has been proposed. It is competitive with t-SNE [67] in terms of
visualization quality, while preserving more of the global structure with superior run
time performance.

Fortunately, there is UMAP python package [68] available for a free usage. All the
images available in the train subset are loaded into memory and normalized to values

CHAPTER 5. ACTIVE LEARNING 54

in the range from 0 to 1. Channels are subsequently flattened into one long vector and
dimension is reduced by UMAP algorithm. The output is then fed to the K-means.

After a couple of experiments with UMAP, we found out that in our case of such
a small dataset, there is no improvement at all, since such a small portion of initial
images does not affect the overall efficiency.

5.5 Ablation study

Experiments in sections above are conducted with ResNet-4 minimized model. In this
Section, we test MNetV3-S-2 and SNetV2-1 in active learning setting. We tested both
models within four experiments, see Table 5.4.

m
od

el

init pick reps stop imgs rnds eps val acc val iou test acc test iou

M
N
et
V
3-
S-
2 30 10 6 e-val 10 117 10 58 0.9391 0.8912 0.9245 0.8640

30 15 10 e-val 10 125 7 73 0.9439 0.8980 0.9319 0.8704
30 20 6 e-val 10 183 26 52 0.9449 0.9044 0.9231 0.8668
60 20 6 e-val 10 227 9 56 0.9535 0.9131 0.9394 0.8799

SN
et
V
2-
1 30 10 6 e-val 10 123 10 62 0.9475 0.9046 0.9298 0.8680

30 15 10 e-val 10 135 8 80 0.9521 0.9114 0.9351 0.8772
30 20 6 e-val 10 197 9 56 0.9476 0.8943 0.9381 0.8799
60 20 6 e-val 10 234 10 60 0.9506 0.9079 0.9398 0.8805

Table 5.4: Results of MNetV3-S-2 and SNetV2-1 in active learning setting. Average of
three separate runs. For clarification of the header see Table 5.1.

The results of both models are comparably similar to the ResNet-4. The only
significant change can be seen in the second row where the model uses much less data
and performs good enough. The mobile models make use of more images on average.
That might be caused by the number of parameters, which is almost four times higher
and the early stopping condition is met later because the models still manage to update
some of their weights, leading to slightly better accuracy.

Conclusion

In this work we focused on the problem of classifying pixels of the image into two
categories, namely driveable segments and non-driveable ones. This problem has been
raised by the need for a better vision module for the robot named Smelý Zajko. Stu-
dents annually participate at the competition called RoboTour Outdoor Delivery Con-
test with this robot. The robot had been designed, built and continuously improved
in previous works. However, the vision module did not take that much attention and
we could not rely on predictions and information about driveable path. The weather
and diversity of the environment are the main causes why previous approaches have
not been successful enough. Based on recent advances with deep convolutional neural
networks applied to computer vision, we decided to replace the robot’s vision module
with CNN models.

We made a survey of the best contemporary ConvNet architectures for semantic
segmentation and chose some of them to be tested on our robot. Training was con-
ducted in supervised manner, meaning we provided images along with their ground
truth labels to the models. There are two datasets of images and labels released along
with this thesis. The images in these datasets were taken prior to RoboTour contests
in Lednice and Deggendorf.

Models trained on these images performed relatively well, so we chose ResNet to be
used in Deggendorf since it showed the best trade-off between accuracy and prediction
speed. The robot had some issues with localization and planning algorithm in the
beginning, but in the end we were able to fix it and the robot worked fine. As the only
one it drove beyond load point in that particular round. We obtained 13 points in this
competition, which brought us second place overall. However, these models were not
fast enough in terms of prediction time and we tried to minimize them by reducing
the number of filters and removing some layers. This step allows us to run the robot
at higher speed. We compared these minimized models to the so called mobile models
that have been proposed recently. Interestingly, small version of MobileNetV3 reached
almost 20 frames per second while our small ResNet topped at 10 frames per second,
which is also nice and quite efficient at the image resolution of 640× 480.

Labeling entire dataset is often an expensive and time consuming process. We used
Active Learning to study whether we are able to train the models with less labeled

55

Conclusion 56

images while preserving reasonable accuracy. The models started to train on a small
subset of training images and queried another ones to be labeled after each round. This
process was repeated until the stopping condition was met. We used three sampling
strategies, namely random, entropy and diversity sampling. Their detailed description
is presented in Chapter 5. Diversity and entropy methods performed better than
random sampling and needed only half of the training dataset to reach an accuracy
comparable with that of the models trained on the full dataset. Thus, we can conclude
that it is worth considering to use active learning when training the model.

In the future, we could study if it is possible to get rid of the labeling process
completely and train the model in a fully unsupervised way. It is currently a deeply
studied topic and the first works [69, 70, 71] have been proposed recently at the NeurIPS
conference. We also bought ZED mini stereo camera capable of creating depth map,
tracking the position and giving us odometry information. It would be worth trying
to incorporate the depth map into prediction of driveable trail, which could further
improve the accuracy.

Bibliography

[1] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint
arXiv:1704.04861, 2017.

[2] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An Ex-
tremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 6848–
6856, 2018.

[3] Burr Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[4] Yu-Jin Zhang. Image segmentation in the last 40 years. In Encyclopedia of In-
formation Science and Technology, Second Edition, pages 1818–1823. IGI Global,
2009.

[5] Song Yuheng and Yan Hao. Image Segmentation Algorithms Overview. arXiv
preprint arXiv:1707.02051, 2017.

[6] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. CS231n: Convolutional Neural
Networks for Visual Recognition. http://cs231n.github.io/. Accessed 2018-
02-02.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[9] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. In Proceedings of the 30th International
Conference on Machine Learning, volume 30, page 3, 2013.

57

http://cs231n.github.io/

BIBLIOGRAPHY 58

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
Proceedings of the IEEE international conference on computer vision, pages 1026–
1034, 2015.

[11] Richard S Sutton, Andrew G Barto, et al. Introduction to Reinforcement Learning,
volume 135. MIT press Cambridge, 1998.

[12] Yurii Nesterov. A method of solving a convex programming problem with conver-
gence O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[13] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980, 2014.

[14] Meet Shah. Semantic Segmentation using Fully Convolutional
Networks over the years. https://meetshah1995.github.io/

semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/

semantic-segmentation-over-the-years.html. Accessed 2019-02-02.

[15] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-
erations in convolutional architectures for object recognition. In International
conference on artificial neural networks, pages 92–101. Springer, 2010.

[16] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[18] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated Con-
volutions. arXiv preprint arXiv:1511.07122, 2015.

[19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

[20] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv preprint
arXiv:1502.03167, 2015.

https://meetshah1995.github.io/semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/semantic-segmentation-over-the-years.html
https://meetshah1995.github.io/semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/semantic-segmentation-over-the-years.html
https://meetshah1995.github.io/semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/semantic-segmentation-over-the-years.html

BIBLIOGRAPHY 59

[21] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural computation, 1(4):541–551, 1989.

[22] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.
ATT Labs [Online]. Available: http: // yann. lecun. com/ exdb/ mnist , 2, 2010.

[23] Ofer Matan, Christopher JC Burges, Yann LeCun, and John S Denker. Multi-
Digit Recognition Using A Space Displacement Neural Network. In Advances in
neural information processing systems, pages 488–495, 1992.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. ImageNet:
A Large-Scale Hierarchical Image Database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. IEEE, 2009.

[25] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Net-
works for Semantic Segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431–3440, 2015.

[28] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and An-
drew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. International
journal of computer vision, 88(2):303–338, 2010.

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In International Conference on Medi-
cal image computing and computer-assisted intervention, pages 234–241. Springer,
2015.

[30] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation. IEEE transac-
tions on pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[31] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

http://yann.lecun.com/exdb/mnist

BIBLIOGRAPHY 60

[32] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
580–587, 2014.

[33] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. In Advances in
neural information processing systems, pages 91–99, 2015.

[35] Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and Raquel
Urtasun. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving.
arXiv preprint arXiv:1612.07695, 2016.

[36] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[37] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-
thinking Atrous Convolution for Semantic Image Segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[38] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
Searching for MobileNetV3. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1314–1324, 2019.

[39] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. MnasNet: Platform-Aware Neural Architecture Search
for Mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2820–2828, 2019.

[40] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3213–3223,
2016.

[41] Mostafa Gamal, Mennatullah Siam, and Moemen Abdel-Razek. ShuffleSeg: Real-
time Semantic Segmentation Network. arXiv preprint arXiv:1803.03816, 2018.

BIBLIOGRAPHY 61

[42] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani,
Martin Jagersand, and Hong Zhang. A Comparative Study of Real-Time Semantic
Segmentation for Autonomous Driving. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2018.

[43] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2:
Practical Guidelines for Efficient CNN Architecture Design. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 116–131, 2018.

[44] Sercan Türkmen and Janne Heikkilä. An efficient solution for semantic segmen-
tation: ShuffleNet V2 with atrous separable convolutions. In Scandinavian Con-
ference on Image Analysis, pages 41–53. Springer, 2019.

[45] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-Decoder with Atrous Separable Convolution for Semantic Im-
age Segmentation. In Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

[46] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret
Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. Searching for Efficient
Multi-Scale Architectures for Dense Image Prediction. In Advances in neural in-
formation processing systems, pages 8699–8710, 2018.

[47] Michael Sörsäter. Active Learning for Road Segmentation using Convolutional
Neural Networks. Master’s thesis, Linköping University in Linköping, Sweden,
2018.

[48] Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-Class Active
Learning for Image Classification. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2372–2379. IEEE, 2009.

[49] Alexander Vezhnevets, Joachim M Buhmann, and Vittorio Ferrari. Active Learn-
ing for Semantic Segmentation with Expected Change. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 3162–3169. IEEE, 2012.

[50] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-Effective
Active Learning for Deep Image Classification. IEEE Transactions on Circuits
and Systems for Video Technology, 27(12):2591–2600, 2016.

[51] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian Active Learn-
ing with Image Data. In Proceedings of the 34th International Conference on
Machine Learning, volume 70, pages 1183–1192. JMLR. org, 2017.

BIBLIOGRAPHY 62

[52] Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Net-
works: A Core-Set Approach. arXiv preprint arXiv:1708.00489, 2017.

[53] Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, and Danny Z Chen. Sugges-
tive Annotation: A Deep Active Learning Framework for Biomedical Image Seg-
mentation. In International conference on medical image computing and computer-
assisted intervention, pages 399–407. Springer, 2017.

[54] Radek Mackowiak, Philip Lenz, Omair Ghori, Ferran Diego, Oliver Lange, and
Carsten Rother. Cereals - cost-effective region-based active learning for semantic
segmentation. arXiv preprint arXiv:1810.09726, 2018.

[55] Fedor Zhdanov. Diverse mini-batch Active Learning. arXiv preprint
arXiv:1901.05954, 2019.

[56] Miroslav Nadhajský. Robotour. Master’s thesis, Faculty of Mathematics, Physics
and Informatics, Comenius University in Bratislava, Slovakia, 2011.

[57] Michal Moravčík. Autonomous mobile robot for Robotour contest. Master’s the-
sis, Faculty of Mathematics, Physics and Informatics, Comenius University in
Bratislava, Slovakia, 2013.

[58] Jozef Dúc. Robotour with Laser Range Sensor. Master’s thesis, Faculty of Math-
ematics, Physics and Informatics, Comenius University in Bratislava, Slovakia,
2017.

[59] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[60] Ondrej Jariabka, Marek Šuppa, and Ondrej Rudolf. Single Camera Path Detec-
tion for Outdoor Navigation. In Proceedings of CESCG 2017: The 21st Central
European Seminar on Computer Graphics. CESCG, 2017.

[61] Michal Fikar. Local map for a robot for the Robotour contest. Master’s thesis, Fac-
ulty of Mathematics, Physics and Informatics, Comenius University in Bratislava,
Slovakia, 2019.

[62] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving,
Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Jirka Borovec, Christian
Vallentin, Semen Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Fernández, Weng
Chi-Hung, Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. imgaug.
https://github.com/aleju/imgaug, 2019. Accessed 2019-01-22.

https://github.com/aleju/imgaug

BIBLIOGRAPHY 63

[63] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[64] François Chollet et al. Keras. https://keras.io, 2015.

[65] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. Scikit-learn: Machine Learning in Python. the Journal
of Machine Learning Research, 12:2825–2830, 2011.

[66] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Mani-
fold Approximation and Projection for Dimension Reduction. arXiv preprint
arXiv:1802.03426, February 2018.

[67] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[68] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. UMAP:
Uniform Manifold Approximation and Projection. The Journal of Open Source
Software, 3(29):861, 2018.

[69] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Unsupervised Object
Segmentation by Redrawing. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 12726–12737. Curran Associates, Inc., 2019.

[70] Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mummadi, Nhung Ngo, Thi
Hoai Phuong Nguyen, Zhongyu Lou, and Thomas Brox. DeepUSPS: Deep
Robust Unsupervised Saliency Prediction via Self-supervision. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 204–214. Curran
Associates, Inc., 2019.

[71] Adam Bielski and Paolo Favaro. Emergence of Object Segmentation in Perturbed
Generative Models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 7256–7266. Curran Associates, Inc., 2019.

https://keras.io

Appendix A

Attached CD contains the source code and datasets, which are also published on
GitHub at the following url: https://github.com/Adman/road-segmentation. The
folder data/datasets contains both datasets along with their ground truth labels.
The file README.md describes how to setup the environment and install dependencies
as well as how to run the training process or active learning simulations.

64

https://github.com/Adman/road-segmentation

	Introduction
	Preliminaries
	RoboTour competition
	Image segmentation
	Region-based segmentation
	Edge detection segmentation
	Clustering-based segmentation
	Histogram-based segmentation

	Neural networks
	Activation functions
	Learning concepts
	Parameter updates

	Convolutional neural networks
	Fully-connected layer
	Convolutional layer
	Pooling layer
	Upsampling layers
	Dilated convolutional layer
	Depthwise-separable convolutional layer
	Batch normalization

	Related work
	Convolutional neural networks
	First CNN
	AlexNet
	VGGNet
	GoogLeNet
	ResNet

	Semantic segmentation using CNNs
	Fully Convolutional Networks for Semantic Segmentation
	U-Net
	SegNet
	R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN
	MultiNet

	Mobile models
	MobileNets
	ShuffleNets

	Active learning
	Previous approaches with Smelý Zajko

	Testing and comparing models for RoboTour
	Datasets
	Data preprocessing and augmentation
	Models and learning process
	Losses
	Metrics

	Results
	HSV model
	KittiSeg
	ConvNet models
	Testing models on unseen dataset

	Faster models
	Reducing the number of parameters
	Mobile models

	Active learning
	Motivation
	Random sampling
	Entropy sampling
	Diversity sampling
	Ablation study

	Conclusion
	Appendix A

