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Abstrakt

Moderné nanopórové sekvenátory ponúkajú užívateľovi možnosť rozhodnúť sa, či sa
reťazec DNA odmietne alebo bude sekvenovaný. Rozhodnutia sú založené na surovom
nanopórovom signále v reálnom čase. Táto funkčnosť nanopórových sekvenátorov sa
nazýva selektívne sekvenovanie. Sekvenovacie pokrytie možno navýšiť adaptívnym
vzorkovaním požadovaných reťazcov DNA a odmietaním ostatných. V súčasnosti pre-
bieha výskum viacerých metód na adaptívne vzorkovanie.

Našou prácou uľahčujeme vývoj a testovanie nástrojov na adaptívne vzorkovanie.
Predstavujeme sekvenovací emulátor schopný emulovať selektívne sekvenovanie. Opisu-
jeme jeho vývoj a demonštrujeme jeho využitie v kombinácii so známym nástrojom na
adaptívne vzorkovanie. Taktiež skúmame možnosti využitia strojového učenia pre účely
adaptívneho vzorkovania. Navrhujeme klasifikátor založený na konvolučnej neurónovej
sieti, ktorý robí rýchle rozhodnutia o sekvenovanej DNA. Klasifikátor porovnávame s
iným nástrojom na adaptívne vzorkovanie a prezentujeme naše zistenia.

Kľúčové slová: sekvenovanie, adaptívne, emulátor, vzorkovanie
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Abstract

Modern nanopore sequencers provide users with the option to decide if a DNA sequence
is rejected or sequenced. Decisions are made based on the raw nanopore signal in real
time. This feature of nanopore sequencers is called selective sequencing. One can
increase the sequencing coverage by adaptively sampling the desired DNA sequences
and rejecting the undesired ones. The potential coverage gain achieved by adaptive
sampling increases with the decision speed. Various methods to perform adaptive
sampling are currently being researched.

We facilitate the development and testing of adaptive sampling tools by introducing
a sequencing emulator capable of emulating the selective sequencing. We describe in
detail the development of the emulator and demonstrate its use in combination with a
well-known adaptive sampling tool. We also study the potential use of machine learning
for adaptive sampling. We propose a convolutional neural network classifier that makes
fast decisions about sequenced DNA. We compare the classifier with another adaptive
sampling tool and present our findings.

Keywords: sequencing, adaptive, emulator, sampling
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Introduction

Recent sequencing devices come with an exciting new feature. The user is allowed to
intervene during the sequencing run based on the sequencing data distributed in real
time. One can decide if the sequencing of a read continues or if the read is rejected and
another one is sequenced instead. A sequencing strategy can be chosen based on the
objectives of the sequencing run. The new capability of sequencing devices has poten-
tial applications in many areas utilizing sequencing technology. However, the research
into techniques to realize the feature’s full potential is still ongoing. One must be able
to make rapid decisions about individual sequenced reads in order to gain an advan-
tage during the sequencing run. Typically, the similarity between reads and desired
reference genomes is evaluated to make a decision. The need for fast decisions about a
read’s biological origin based on its small portion constitutes a difficult problem in the
field of bioinformatics. Current approaches often run into scalability issues. Decision-
making algorithms are computationally intensive. The difficulty of the problem grows
with the size of reference genome. For a long time, deciding about the nature of reads
based on their similarity to human genome sized sequences seemed like an unatain-
able goal. The recent use of GPU hardware helped accelerate the decision-making
algorithms. However, reported results keep falling short of the scientific community’s
original expectations.

In our work, we study the area of controlling sequencing runs. After reviewing the
current research, we find that advancements in the area might be hampered by the
required expertise in both the fields of biology and informatics. One must setup a se-
quencing run using a physical sequencing device in order to observe the impact of a new
algorithm on a sequencing run. We address the issue by developing a realistic sequenc-
ing emulator. The emulator facilitates the development of decision-making algorithms
and reduces calibration costs when deploying the algorithm in diverse conditions.

We demonstrate the use of the emulator throughout this thesis when it facilitates the
development of our own decision-making algorithm. We study a potential of machine
learning to develop an algorithm specialized for use with a single reference genome. In
mission-critical epidemiological applications, which utilize sequencing technologies on
a mass scale, the flexibility of the algorithm can be sacrificed for a performance gain.
We propose an approach to accelerate the sequencing of SARS-CoV-2 clinical samples.
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2 Introduction

In Chapter 1, we review the current research in the field and further elaborate
on notable results. In Chapter 2, we describe the design and development of the se-
quencing emulator. We reserve a space to describe in detail the notable issues that we
encountered during the development. Finally, we demonstrate the use of the emulator
by fine-tuning the configuration of a third-party decision-making tool well known by
the community using the emulated sequencing runs. In Chapter 3, we propose a ma-
chine learning model to make decisions about read’s biological origin. We describe its
development and test it in realistic conditions using the emulator. Finally, we discuss
the results.



Chapter 1

Research Overview

The DNA sequencing is the process of determining the order of nucleotides in a DNA
sequence. The device performing sequencing is called sequencer. In this thesis, we study
the sequencers manufactured by Oxford Nanopore Technologies, which use nanopore se-
quencing technology. The nanopore sequencer contains a disposable component called
flowcell, on which nanopore channels are located. A nanopore channel is a protein
structure whose shape resembles a tunnel or channel. The number of channels depends
on the sequencer variant; it ranges between 128 and thousands of channels. To every
DNA sequence in a sequenced sample, the adapter is attached as a part of sequencing
library preparation. An adapter enables a DNA sequence to attach to the nanopore
channel and insert into it. The part of the adapter is a motor protein, which maintains
a stable speed of DNA sequence when passing through the channel. A carrier electric
current is passing through the nanopore channel. It controls the function of the mo-
tor protein. Individual nucleotides of the DNA sequence passing through the channel
obstruct the stream of electrons, producing a modulated output signal. Each context
of several nucleotides creates a unique signal signature. The output signal produced
by a DNA sequence passing through the nanopore channel is called a read and is dis-
tributed to the sequencer control software in real time. The order of nucleotides in
DNA sequences is determined by the analysis of reads yielded during the sequencing
run.

Nanopore sequencing greatly facilitated the spread of a sequencing technology
among its possible applications. Some of the nanopore sequencing benefits are compact
form factor of nanopore sequencers and high potential length of produced reads. Exper-
iments confirm that DNA sequences hundreds of kilobases (kb) long can be sequenced
in single pieces[12]. That is a vast improvement over the previous generation of se-
quencing technology capable of producing reads of up to hundreds of bases long. Even
though the sequencing accuracy of the previous generation sequencers is still superior
to nanopore sequencing, the increased potential read length allows a better extraction

3



4 CHAPTER 1. RESEARCH OVERVIEW

of information about the structure of a genome, e.g., the discovery of its new structural
variants. Long repeating regions in a genome are notoriously difficult to assemble when
only short reads unable to cover them are available. Nanopore sequencing technology
helps to tackle this problem by being able to cover many of those regions in a single
read, thus identifying the structure of the regions and the number of its repetitions.
Other beneficial characteristics of nanopore sequencers are their low energy demand,
ability to sequence RNA sequences, avoiding the need for their transcription to cDNA
and output information being available in real time. Said benefits play a part in the
spread of the sequencing technology into fields such as cancer research, food safety
check or customized medicine.

The sequencing technology also plays a key role in modern epidemiology[15]. The
analysis of viral and bacterial genomes provides means for scientists to determine the
nature of their interaction with host organisms, the way they spread among hosts, or
their resistance towards various external conditions. The proper medical treatment
can be chosen for a patient based on the antibiotic resistance analysis driven by the
sequencing of clinical samples contaning the bacteria. A continuous monitoring of the
viral genome after an epidemic outbreak allows one to keep track of the genome’s
evolution based on time and specific climate conditions. Gathered information can
be used to better understand the function of the virus and to implement restrictive
measures designed to effectively limit the spread of the virus. The gathered information
also plays a key role in a potential vaccine design. Viral genome sequencing has already
proven itself to be an effective method for the analysis of Ebola, Zika and SARS-CoV-2
viruses[15].

The field of epidemiology presents additional challenges for modern sequencing tech-
nology. Viral genome expression in a clinical sample is typically too low, which makes
it difficult to gather sufficient read coverage of the genome for its consequent assembly
by directly sequencing the sample. In theory, it is possible to sequence the sample long
enough to ensure that proper viral genome coverage is reached. However, the process
is time-consuming. Such long sequencing runs would easily wear out the disposable
parts of the nanopore sequencer, making the whole process expensive on a mass scale.
In some scenarios, the sequencing duration necessary to achieve sufficient read cov-
erage would even surpass the operational lifetime of those sequencer components. In
addition, an enormous number of reads that are not of interest would be produced
during the run. These data need to be stored and analyzed in order to determine their
significance in the context of the viral genome analysis. It has been documented that
samples from patients with an acute Ebola infection contained a sufficient number of
viral copies to obtain the desired genome coverage in a reasonable time by directly
sequencing the clinical sample[15]. However, in general, a bioinformatic protocol may
have to be designed for application to a clinical sample of the virus as a part of the
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sequencing run preparation process. The protocol aims to artificially amplify the viral
genome expression in a sample. It performs targeted enrichment of the viral genome. It
increases the absolute number of copies of the viral genome in the sample and removes
host background DNA, thus further increasing the relative representation of the viral
genome in the sample. A bioinformatic protocol for targeted enrichment is commonly
used for routine sequencing of Zika and SARS-CoV-2 viruses[15].

1.1 Selective Sequencing

Oxford Nanopore Technologies is an established manufacturer of nanopore sequencers.
In addition to the benefits described in the beginning of this chapter, Oxford Nanopore’s
sequencers introduce a feature that enables a user to actively alter the sequencing run
at any moment based on a real-time distributed raw output signal from the sequencer.
The feature is called the selective sequencing. A bi-directional communication can be
established between a user software and the nanopore sequencer. The user software
is provided with the raw sequencing signal gathered during the fixed time period for
each nanopore channel. The sequencer receives commands specific to a single nanopore
channel ordered by the user software based on the provided data. Using commands,
the user software can interrupt the sequencing of a DNA sequence that is currently
in a nanopore channel. The sequencer reverses the polarity of electric current passing
through the channel, thus reversing the function of a motor protein that is otherwise
inserting the DNA sequence deeper into the channel. In the reverse setting, the motor
protein ejects the DNA sequence out of the channel. The process is called unblocking of
the nanopore channel. After the process is finished, the nanopore channel is no longer
blocked by a DNA sequence in it, and another DNA sequence can start sequencing.
The user software performs adaptive sampling using commands to control the selective
sequencing run and is often referred to as the adaptive sampling tool [17]. The feature is
exposed to adaptive sampling tool through a programming interface called Read Until
API [28]. The interface executes the communication with the sequencer. It exposes the
current sequencing data and communicates commands to the sequencer.

Rejective commands ordered by the adaptive sampling tool are supposed to ensure
that only DNA sequences relevant for future data analysis are sequenced. Several
possible applications can be found for the feature. The biological background that is not
subject to future analysis can be suppressed in sequencing data. Achieving background
suppression can decrease the amount of data processed during the genome assembly,
saving time and computational resources. When performing a sequencing of various
clinical samples distinguished by unique markers called barcodes, i.e., performing the
multiplex sequencing, selective sequencing based on barcodes can be used to maintain
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a balanced coverage among all of the sequenced samples. Once a sufficient coverage
of an individual clinical sample is reached, further reads belonging to that sample can
be rejected in favor of less covered ones. Selective sequencing can be used to enrich
the desired reads in sequencing data. The sequencing speed of the current MinION
sequencer nanopore channel is 450 bases per second. It is therefore not uncommon that
a single DNA sequence occupies a nanopore channel for more than 20 seconds. Early
detection of undesired read and consequent unblocking of the nanopore channel can
save a significant amount of time that could be spent sequencing a desired read instead.
Using selective sequencing, it is possible to achieve a higher expression of desired reads
in sequencing data, relative to undesired ones, than expected based on the expression of
a desired genome in the sequenced sample. The increased expression is called relative
enrichment. If the desired genome is enriched to such an extent that an absolute
number of desired bases is higher than a number of desired bases potentially achievable
during a non-selective sequencing run, the effect is called absolute enrichment.

To achieve relative enrichment of a desired genome, a performant and precise adap-
tive sampling tool is needed. High performance is necessary to keep up with the
sequencing speed of nanopore channels while filtering out undesired reads. The pre-
cision ensures that desired reads are not unblocked incorrectly. Achieving absolute
enrichment is even more challenging task. It requires the adaptive sampling tool to
increase the throughput of nanopore channels for desired reads in comparison with
a non-selective sequencing run. The task is made more challenging by the fact that
selective sequencing, in general, decreases the throughput of nanopore channels. The
reasons are multiple. Part of a DNA sequence needs to be sequenced for an informed
selective decision to take place. It is not uncommon that more than 450 bases (1 second
of sequencing time) are necessary for the decision to be made[23]. Also, the decision-
making process consumes a non-trivial amount of time, while the DNA sequence is
being sequenced and further inserted into a nanopore channel. After an unblocking
decision is made, the DNA sequence needs to be ejected from a nanopore channel.
Throughout the duration of the unblocking process, only a short read is produced,
and the yield of a nanopore channel is decreased. Another reason for a lower through-
put of nanopore channels during the selective sequencing run is their increased failure
rate[23]. Frequent polarity changes of the electric current undergone by nanopore chan-
nels increase the chance of them losing their structural integrity. Such changes render
nanopore channels unable to attach a DNA sequence or let a DNA sequence pass
through. Therefore, after several hours of selective sequencing, a decreased throughput
of nanopore channels is observed. The failure rate increases with the frequency of re-
ceived unblocking decisions[23]. If the sequenced sample consists of short enough DNA
sequences, almost no advantage can be gained using selective sequencing. By the time
the read is ejected from the nanopore channel, it would have already been sequenced
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in a non-selective sequencing run anyway. Therefore, the potential gain from selective
sequencing increases with the length of DNA sequences in the sample.

The scientific community is currently inventing and developing methods to facil-
itate selective sequencing execution. While high relative enrichment is successfully
being achieved since earlier published experiments[25], the levels of absolute enrich-
ment remain rather modest, not surpassing 5-fold enrichment[23]. At such low levels,
selective sequencing can at best supplement the commonly used bioinformatic proto-
cols for targeted enrichment, which are used to amplify the number of copies of the
desired genome in the sample much more significantly. Such assistance of selective
sequencing accompanied by prior targeted enrichment can help shorten the time nec-
essary to obtain the desired coverage of the target genome if absolute enrichment is
consistently achieved during the sequencing run. The time necessary to accumulate a
specified read coverage of a genome is called time to answer [23] and its decrease is con-
sidered a valuable improvement even in settings where absolute enrichment achieved
by selective sequencing alone is not sufficient and targeted enrichment methods need
to be deployed.

There are two major approaches to adaptive sampling execution. In the first ap-
proach, the unblocking decisions are made based on the raw sequencing signal, often
referred to as a squiggle. Therefore, we say that the decisions are made in a squiggle
space. In the second approach, the unblocking decisions are made based on a sequence
of nucleotides represented in text form. These sequences are extracted from the raw
signal by a transformative process called base calling. We say that the decisions are
made in a sequence space. In the following sections, we describe both approaches and
their notable results.

1.2 Squiggle Space Selection

To our knowledge, the first experiments with selective sequencing were published by
Loose et al.[21]. Back then, the sequencing speed of nanopore sequencers used to be
70 bases per second. Overall requirements for adaptive sampling tools were therefore
less demanding. A comparison to a reference sequence was used to determine if a
read is desired or should be unblocked. A reference squiggle was syntehsized from the
reference sequence using a Hidden Markov Model. The model is designed, trained and
made publicly available by Oxford Nanopore Technologies. The adaptive sampling tool
aligned chunks of the raw signal directly to the reference squiggle using the Dynamic
Time Warping (DTW) algorithm[31]. The reached alignment score was used as a
criterion based on which the unblocking decision was made. A server with 22 CPU
cores was used for computations. The adaptive sampling tool was able to sample
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a 5kb region of a reference genome and normalize a genome coverage when divided
into 2kb regions. DTW is a dynamic programming-based algorithm. Its worst case
time complexity is O(nm) such that n is the length of a reference squiggle, and m

is the length of an obtained and aligned squiggle. As demonstrated by Loose et al.,
the straight-forward use of the DTW algorithm in an adaptive sampling tool requires
substantial computational power, even when aligning to a relatively short reference
squiggle corresponding to a few kilobases. Scaling adaptive sampling up to human
chromosome-like reference sequence lengths is highly unrealistic. Limited results of the
work could not be replicated once the nanopore channel sequencing speed has been
increased to the current 450 bases per second.

Masutani et al.[14] improved on the existing approach. They introduced a statisti-
cal model of selective sequencing. The model is based on prior knowledge of probability
distributions D0, D1, such that D0 models the alignment score distribution of undesired
squiggles, and D1 models the alignment score distribution of desired ones. Using the
statistical model and distributions D0, D1, a score threshold Θ is determined. Thresh-
old Θ is used as an unblocking criterion for a scores of the alignments of live squiggles
to reference squiggle during the selective sequencing run. The authors showed that the
dependency of distributions D0, D1 on the sequenced sample properties, such as GC
content or a fraction of DNA sequences being desired, is negligible as long as the sam-
ple background consisting of undesired DNA sequences can be considered statistically
random.

To speed up the DTW algorithm, three heuristical optimizations were introduced.
Firstly, the live squiggle is compacted by a process that authors call re-chunking. In an
average squiggle, more than 8 discrete signal values correspond to a single nucleotide.
Squiggle re-chunking eliminates some of the redundant information contained in it.
The squiggle is divided into non-overlapping regions. Every chunking region is sequen-
tially processed. A current average signal value is computed and updated as algorithm
iterates over the discrete signal values. If the distance between the current average
value and a processed value is lower than a threshold τ , the processed value is consid-
ered redundant, it is removed and the average value is updated. The reference squiggle
undergoes the equivalent transformation, resulting in shorter squiggles being aligned.
Secondly, seeding is used in the alignment process. Only a sub-squiggle s-times shorter
than the original one is aligned to the reference squiggle. Consequently, k candidates
with the best alignment score are selected in O(n) time complexity using Floyd-Rivest
algorithm. Knowing the alignment starting positions of all k candidates, their align-
ments are extended to the full length, and the one with the best score is selected. The
time complexity of the alignment using the seeding method is O(nm/s), due to the
fact that k is negligibly small compared to the length of the reference squiggle. Lastly,
an alignment prunning is added, based on the monotonicity of scores in the DTW
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Total kb Total reads Target kb Target reads
Repl.1 175 467 97 704 1698 161
Control 1 319 785 73 779 1660 120
Repl.2 129 430 65 949 1277 121
Control 1 283 144 68 119 1401 102

Table 1.1: Results of selective sequencing using S.cerevisiae and lambda phage[14]

dynamic programming table 1.1:

j ≤ j′ =⇒ min(D[i][j]) ≤ min(D[i][j′]) (1.1)

Once the alignment score surpasses the classifier threshold Θ, the alignment com-
putation can be interrupted prematurely without a loss of information. Using the
parameters τ = 0, 36, s = 3, k = 14, an accuracy of 80% was achieved in comparison
with the original DTW algorithm. At the same time, approximately 6-fold alignment
acceleration was reached. Consequent experiments were conducted on a MacBook Pro
with an Intel®Core i5 2GHz CPU and an 8GB of RAM which is a significant im-
provement over a server appliance due to its portability, allowing the conduction of
field experiments. During the experiment, even nanopore channels were performing
the selective sequencing, while the odd ones served as a control. The amplified region
of the reference sequence was 200kb long, representing 0.12% of the sequenced sample.
For illustration, we include the results of the experiment in Table 1.1.

A significant decrease in throughput is observed for nanopore channels participating
in selective sequencing, demonstrating the difficulties in increasing the throughput for
desired reads in order to achieve absolute enrichment. This is mainly due to the high
number of signals necessary for the alignment to make an unblocking decision about a
live squiggle. While practically no absolute enrichment was reached, a 34-fold relative
enrichment of desired reads was achieved. However, the experiments demonstrated
that selective sequencing can be performed using the increased sequencing speed of 450

bases per second and a reference sequence hundreds of kilobases long. It still applies
on the submission day of this thesis that adaptive sampling methods evaluating the
raw sequencing signal in squiggle space do not scale well when increasing the reference
sequence length to human chromosome-like sizes[17].

1.3 Sequence Space Selection

In recent years, the base calling process has been significantly sped up, mainly due to
a new base caller designs based on a recurrent neural networks (RNN). Due to their
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nature, RNN models can be efficiently simulated using GPU hardware, thus increasing
the base caller throughput and creating new potential base caller applications, such as
low latency live base calling. More recently, base callers have been further optimized
and achieve sufficient performance even when simulated on CPUs[32]. Not only is the
base calling step currently rapid enough for its application in adaptive sampling, the
base called sequence of nucleotides proves to be a more compact representation of a
DNA sequence. Well-established tools using advanced heuristics, such as minimap2,
can be used to align a sequence to the reference sequence.

To our knowledge, the first attempt to perform adaptive sampling in the sequence
space was a Read Until with Basecall and Reference-Informed Criteria (RUBRIC) pub-
lished by Edwards et al.[25]. The adaptive sampling hardware infrastructure consisted
of a notebook controlling the MinION sequencer and communicating the live sequenc-
ing data to a desktop computer in the form of queries over the network. The desktop
PC was a Dell Optilex 9020 with an Intel®Core i7 3.6GHz CPU and 16GB of RAM.
The unblocking decision is based on the alignment score of the live sequence to refer-
ence sequence alignment. Experiments did not show promising results. Base calling
process turned out to be computationally intensive enough for the rather powerful
desktop PC to only partially keep up with the base calling requests from the notebook.
The absolute enrichment reached throughout the experiments was < 2%. However, the
undesired background of the sequenced sample was successfully suppressed when 330-
fold relative enrichment of desired read coverage was achieved. The length of enriched
region rose to 4.6 Mb. Edwards et al. demonstrated the unavoidable complexity of
the adaptive sampling implementation. The nanopore channel live data were obtained
from the Read Until API even in moments when no DNA sequences were actually se-
quenced. The raw signal produced by the nanopore channel while no DNA sequence is
being sequenced or a DNA sequence is stuck and not moving in the nanopore channel
is called the stall signal. Edwards et al. report that 89% of the raw sequencing signal
obtained from the sequencer was the stall signal, which held no valuable information
about a DNA sequence, yet kept loading the adaptive sampling pipeline with data.
The authors had to design a statistical method for stall signal recognition and filtering.
However, even with the filtering in place, authors report a decrease in the throughput
of the adaptive sampling pipeline due to the excessive amount of stall signal being
received.

Loose et al. improved on the existing approach by utilizing a GPU hardware to
perform the base calling transformation in their adaptive sampling tool Readfish. For
the first time, the authors scaled the adaptive sampling to human chromosome-like
reference sequence length[23]. A ONT GridION MK-1 platform with integrated GPU
is used for adaptive sampling execution. At the same time, the improved Read Until
API that recognizes and filters out the stall signal is used, thus significantly decreasing
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the load put on the pipeline. Loose et al. demostrated significantly lower unblocking
decision latency due to the use of GPU for base calling. Authors achieved absolute
enrichment of single human chromosome when sequencing long DNA sequences of a
human sample. However, 1.2 seconds of sequencing corresponding to approximately
540 bases was necessary to successfully align read chunks to the reference sequence,
slowing down execution of unblocking decisions. Another metagenomic sequencing
experiment tested the ability to enrich the Saccharomyces cerevisiae representing 2%

of the sequenced sample. Authors report 1.6-fold absolute enrichment, thus shortening
the time necessary to achieve a desired genome coverage by 40%.

Recently, Ulrich et al.[17] pointed out the fact that minimap2 is not well-suited
for the alignment of short reads. The tool was primarily designed for efficient long-
read alignment and reaches lower sensitivity and specificity when used for adaptive
sampling. The authors developed adaptive sampling tool ReadBouncer [18]. They
proposed the use of interleaved bloom filter data structure as a reference sequence index.
Instead of actual alignment of the live sequence to the reference sequence, a similarity
to the reference sequence is estimated using a k-mer hashing method. The authors
report consistently higher classification accuracy compared to minimap2 using 360
bases long sequences. Also, a lower average decision response time is achieved. These
improvements should theoretically lead to higher achievable enrichments. However, the
tools were only tested using a sequencing emulation that provides limited information
about the effects of the improvements.

The results suggest that even though the invention of new adaptive sampling meth-
ods capable of making more rapid unblocking decisions would be beneficial, their im-
pact on the selective sequencing may be limited due to the long chunks of sequenced
raw data needed for classification. Currently, long sequencing of a DNA sequence is
required before making the unblocking decision. This causes a significant decrease in
the nanopore channel throughput, making it difficult to achieve substantial absolute
enrichment. The longest phase of adaptive sampling decision-making being waiting for
a sufficient amount of the raw data to be produced, reducing the amount of data nec-
essary for the classification could have a large impact on potential adaptive sampling
performance. Currently, there is no consensus in the scientific community about the
preferred approach optimizing adaptive sampling performance. Both adaptive sam-
pling in the squiggle space and the sequence space are being studied and considered
viable options. Our work follows up on the current research and mentioned ideas in
order to design an improved adaptive sampling tool.
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Chapter 2

Virtual Sequencing

The development of a filtering pipeline performing real-time adaptive sampling often
requires numerous experiments in a realistic setup. While some of the pipeline compo-
nents can be developed and fine-tuned as standalone tools, it is their interconnection
into a single filtering mechanism and actual deployment that often require additional
calibration. One must take into account factors such as hardware limitations of their
particular setup and properties of the sequenced sample. Both factors are highly vari-
able and may require different pipeline configuration in order to make it work efficiently.
Currently, it is rather difficult and costly to test and observe the impact that the specific
pipeline configuration has on adaptive sampling performance during a real sequencing
run. As we explain in detail in this chapter, actual sequencing of the sample using the
physical device is often necessary in order to evaluate a filtering pipeline under realistic
conditions and set it up properly. This increases the cost and difficulty of the adaptive
sampling technology deployment by the community and also makes the research in
the field less accessible as both knowledge in the fields of information technology and
biology is necessary.

In this chapter, we the describe design and implementation of the tool for emulation
of sequencing runs, which we call the virtual sequencer. It emulates the real MinION
nanopore sequencer together with its selective sequencing capabilities using stored data
from previous sequencing runs. It provides the means to test and configure a filtering
pipeline based on its performance relative to the specific hardware available and DNA
sample properties, if those are known beforehand. In addition, we demonstrate such
pipeline configuration process. We connect the Readfish[23] tool for adaptive sampling
to the virtual sequencer and attempt to enrich the Saccharomyces cerevisiae in the
ZymoBIOMICS sample[8] using emulated sequencing data. We discuss some of the
configuration details that proved to be crucial for adaptive sampling performance and
present the results.

13
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2.1 Available Sequencing Emulators

To our knowledge, currently the only available emulator of nanopore sequencing runs
is the playback feature of Oxford Nanopore’s MinKNOW software. Ulrich et al.[17]
experimented with the feature while trying to compare Readfish to their own tool for
adaptive sampling. The MinKNOW playback feature uses specialized bulk fast5 files
to replay the stored sequencing run exactly as it happened in the past. Additional
information stored in the bulk fast5 allows for emulation detail that would not have
been possible to achieve using standard fast5 files containing the raw sequencing sig-
nals. However, its support for the emulation of selective sequencing capabilities of the
physical device is very limited. Once the filtering pipeline, such as Readfish, decides to
eject the DNA sequence out of the nanopore channel, MinKNOW emulation breaks the
currently sequenced read into two reads, generates a new unique read identifier for the
read and otherwise continues to emulate the sequencing of the original read without
any change.

As demonstrated by Ulrich et al., resulting statistics obtained from such emulated
sequencing runs are misleading and limited. First, the number of on-target and off-
target bases obtained during the emulated run is fixed regardless of adaptive sampling
use and its performance. This is because the ejection of a DNA sequence causes no
change in the nature of the currently sequenced sequence and does not affect the
sequencing run itself. Thus, the only property of the emulated runs that can be changed
by adaptive sampling is the number of on-target and off-target reads. Typically, the
increased number of off-target reads is expected. A well-performing adaptive sampling
tool will reject many off-target reads quickly, which in the context of MinKNOW
emulation means breaking off-target reads into multiple reads. Similarly, the number
of on-target reads is expected to increase as little as possible, indicating high sensitivity
of an adaptive sampling tool. Thus, the use of well-performing adaptive sampling tool
leads to quite counterintuitive behavior of the emulator.

While the described metric can provide some insight into the comparison of adaptive
sampling tools, it is not sufficient for fine-tuning the tool configuration for optimal per-
formance. The available result data provide no information about relative enrichment
nor absolute enrichment of the on-target bases. Therefore, it is not possible to observe
the actual impact of the improved tool or pipeline component on the achievement of
adaptive sampling’s main objective without using the physical sequencing device.

MinKNOW playback feature also provides information about the length distribu-
tion of rejected reads. The information is crucial for verification that an adaptive
sampling tool is able to keep up with the amount of sequencing data presented to it
at every moment. It might be helphul while configuring the adaptive sampling tool to
better utilize the GPU resources, if those are being used. However, the emulation of
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the computational load itself that is put on a filtering pipeline is not necessarily real-
istic and can be exaggerated. Long off-target reads seem to be the biggest source of
inaccuracies. In MinKNOW emulation, ejecting such a read is not accompanied by the
actual read ejection and a wait for another DNA sequence to load into the nanopore
channel. In practice, such a pause helps to relieve the pressure on the computing
resources used by the filering pipeline. Instead, the sequencing of a new read starts
instantly in the emulation, and the read is again an off-target read with certainty. This
unchanging nature of the new read compared to the previously ejected read may be
realistic enough, if an on-target fraction in a sequenced sample is very small. How-
ever, the bigger is the fraction of the on-target genome, the more the distribution of
the sequenced reads skewed by the emulation, therefore putting additional unrealistic
pressure on the filtering pipeline. That may cause the length distribution of rejected
reads to be too pessimistic as the adaptive sampling was operating under an unrealistic
load.

By creating the virtual sequencer, we try to address these inaccuracies and provide
a more realistic way to emulate the sequencing runs with adaptive sampling. While
the MinKNOW playback feature can be useful for troubleshooting and can provide
some insight into the performance of an adaptive sampling tool, the virtual sequencer
is intended as a complete replacement for a sequencing device, facilitating research
and development of adaptive sampling tools without the need for any prior detailed
knowledge of biology and sequencing technologies.

2.2 Virtual Sequencer Design

In order to discuss the design of our tool, we need to first describe the design and
components participating in the actual selective sequencing process. The architecture
is visualized in Figure 2.1. The sequencer device is controlled by MinKNOW control
software. MinKNOW comes with a graphical interface that allows the user to con-
trol any of the operational aspects of the sequencing run. Settings and commands
are communicated to the sequencer by the MinKNOW software. MinKNOW is also
responsible for processing the sequencer output, a stream of discrete values produced
by each nanopore channel in real time, called the raw signal. Apart from storing the
raw signals along with their other attributes constituting reads in fast5 output files,
MinKNOW is also responsible for presenting the currently sequenced data for selective
sequencing purposes. For every nanopore channel, a signal sequenced in user-defined
time period is made available through the gRPC framework[28]. The obtained portion
of the raw signal is also called data chunk. The Read Until API communicates with the
MinKNOW software using this framework. It obtains the data chunks from the past
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Figure 2.1: Components participating in selective sequencing

time period and sends the decisions of the filtering pipeline to MinKNOW. The read
can either be rejected using the unblock decision, or it can continue to be sequenced
using the stop receiving decision, in which case no more data chunks will be received
for that particular read in future time periods. Decisions are further communicated
to the sequencer by the MinKNOW software. Implementation of the Read Until API
is provided by Oxford Nanopore Technologies. However, in principle, it is a task for
the filtering pipeline developers to develop an API that suits their needs. The Read
Until API can cache sequencing data from multiple time periods or process them in
any way imaginable for adaptive sampling purposes. Multiple implementations exist
today [28][20].

The virtual sequencer tool simplifies that design. Its architecture is visualized in
Figure 2.2. The virtual sequencer core collapses some of the physical sequencer and
MinKNOW features into a single virtual component. The virtual sequencer core uses
the raw signal from a previous finished sequencing run to mimic MinKNOW’s feature
of presenting the sequencing signals for selective sequencing purposes. The virtual
sequencer core also produces its own sequencing summary output which is discussed in
detail in Section 2.3.2. The Read Until API keeps an instance of the virtual sequencer
core and controls it directly. Similarly to the previous architecture, it obtains the
sequencing data from past time period and directly controls the propagation of the
filtering pipeline decisions. The virtual sequencer core stops presenting the raw data
for a read, if the stop receiving decision is received. When the unblock decision is
received, the virtual sequencer core emulates the DNA sequence ejection from the
nanopore channel, followed by the emulation of loading a next sequenced DNA into a
nanopore channel. The sequencing of the read that would otherwise have started on
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Figure 2.2: Architecture of the virtual sequencer

that nanopore channel after the sequencing of the recently ejected read has finished,
is started earlier in the emulation. Filtering pipeline can therefore effectively modify
the sequencing run that is being replayed. Reads from the future provide the source
of the data in the emulation, thus preserving many properties of the real sequencing
run. As an example, we can state the distribution of the DNA sequences loaded into
a nanopore channel after the sequence ejection based on the filtering pipeline decision.
Also, the time necessary to load another DNA sequence into the nanopore channel is
preserved; it is drawn directly from the data being replayed. If hours-long emulations
with intensive adaptive sampling are desirable, tens of hours-long sequencing runs are
necessary for playback to provide enough future data. If no adaptive sampling-related
decision is made by the filtering pipeline during the entire emulated run, the differences
between the actual sequencing run and its emulation will be negligible. The filtering
pipeline component remains unchanged in the design.

We consider the necessity to record a bulk fast5 file during the sequencing run
in order to replay it an unnecessary limitation. Therefore, the virtual sequencer is
designed to replay fast5 files, which are a standard data product of a sequencing run.
This decision greatly increases its usability but also brings some inherent limitations
to the design. We discuss those in the following section. Sequencers from Oxford
Nanopore Technologies are also capable of sequencing RNA sequences. Since the output
fast5 format of such sequencing runs remains unchanged, the virtual sequencer can also
emulate those runs with simple parameter changes.

The virtual sequencer uses a precomputed index for an emulation of the sequencing
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run. The purpose of the index is to hold the information about the order of individual
reads for each nanopore channel, in which they are supposed to be emulated. Reads are
sorted based on the starting time, of their sequencing during the original sequencing
run. Index data for each nanopore channel is loaded in batches continuously during
the entire emulation. Original fast5 files still need to be accessible for an emulation
to take place. This is because the index does not keep any more information about
the reads except their order and a pointer to fast5 files where further information can
be found and loaded. The approach also makes the index format more flexible. If we
decided to use additional read metadata from fast5 files in the future, the change would
not require changes in the index format. This allows the user to avoid the potential
recomputation of several indices each time we introduce a new feature.

Besides the objectives that we describe in detail in the following sections, our overall
implementation objective is to make the virtual sequencer feel familiar to an end user -
that is, a filtering pipeline developer. That endeavor starts with the design components
resembling the actual adaptive sampling setup, as shown in Figure 2.2, and goes as deep
as mimicking relevant interfaces wherever possible and providing as much of the real
life functionality as possible. Thus a filtering pipeline tuned to work with the virtual
sequencer requires only minimal changes for use in a real adaptive sampling setup. The
modular architecture of the virtual sequencer allows us to potentially mimic multiple
well-known Read Until APIs if necessary in the future.

2.3 Implementation Details

We chose Oxford Nanopore’s Read Until API[28] as a feature reference and provided
the functionality presented on its public interface in the Virtual Sequencer. We study
adaptive sampling-related literature and Oxford Nanopore’s materials in order to gain
further insight into the inner workings of selective sequencing capabilities in a physi-
cal sequencer[23][28]. We implemented the tool using Python programming language.
The choice simplifies the interface bindings to the Readfish tool and provides us with
access to Oxford Nanopore’s ont_fast5_api tool[27] for enumeration of fast5 files in-
stead of implementing and maintaining our own. Our python interfaces can still be
bound to adaptive sampling tools implemented in other programming languages, such
as ReadBouncer[18] implemented in C++. In the following subsections, we describe
various aspects of the virtual sequencer implementation.

2.3.1 Read Indexer

The read indexer computes an emulation index holding information about the sequenc-
ing order of reads during the emulation and a pointer to fast5 files, where more read
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Peak memory usage computation time
Regular sort 1.83 GB 18m 42s
Online sort 0.30 GB 19m 37s

Table 2.1: Comparison of regular sort and online sort

metadata can be found for each read. The Read Indexer enumerates all of the reads in
all of the fast5 files that form the real sequencing run output. The index stores as little
information as possible in order to avoid unnecessary data redundancy. In particular,
we store the read identifier, channel identifier and starting time. The fast5 file format
allows random access to read metadata using read identifier. The index entry consists
of read identifier and a file pointer, which is simply an order of the fast5 file in the
sequencing run folder when sorted numerically according to unique part of the fast5
file name. Both the read indexer and virtual sequencer sort the fast5 file names the
same way to obtain an identical mapping of file orders to file descriptors. Index entries
are sorted based on the starting time and output to the read queue file identified by
channel identifier. To reduce the index size, a binary format is used.

With index entries being compact, it is possible to simply extract index entries from
the entire sequencing run and subsequently sort them for every queue corresponding
to an individual nanopore channel. However, this approach requires storing all of the
index entries at once, thus increasing peak memory usage to an extend that might not
be acceptable for some applications. In addition, reads in fast5 files are not completely
out of order either. Even though we do not understand the exact read ordering in
fast5 files produced by MinKNOW, our experience suggests that the ordering of reads
is close enough to our desired order that a naive online sorting algorithm is beneficial
to employ instead of a regular sort. The online sorting algorithm allows the reads to
be continuously stored in output index files throughout the indexing process. Thus
reducing peak memory usage when indexing large sequencing data. The algorithm
assumes that the reads are loaded in the proper order and tries to append the read at
the end of the queue. If that is not possible, it moves one element towards the beginning
of the queue and tries again. That repeats until the read is successfully inserted in the
sorted queue. We call the number of steps taken towards the beginning of the queue
during the sorting insert a sorting distance. We always keep a minimum number of
sorted reads in the cache and check if the sorting distance did not exceed that number,
which would mean that we might not have been able to insert the read in a proper
position in the queue due to the lack of past queued data. We use a simple array as a
sorted container because this check would not have been possible if we simply used a
heap data structure.
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We compare on real data using regular sorting and online sorting approaches. The
sequencing data were 312 GB in size. We built an index of size 216 MB in less than 20

minutes. Table 2.1 shows that our online sorting algorithm reduces the peak memory
usage 6-fold while paying a little time penalty. The overall average sorting distance
is 2.41. The low sorting distance also makes the insert to the sorted array in a con-
stant time superior to using the heap data structure or inserting with binary search in
O(log(n)) time with the number of cached reads.

2.3.2 Virtual Sequencer Core

The core of the virtual sequencer is a multi-threaded application. Loosely coupled com-
ponents of the core are executed asynchronously in order to minimize internal latencies.
While Python’s Global Interpreter Lock [11] prevents multiple threads of a single pro-
cess from executing CPU tasks concurrently, this does not constitute a problem for the
core, designed specifically to avoid any intensive computation. On the other hand, the
core’s asynchronous design benefits massively from a concurrent execution of CPU and
I/O tasks that take place continuously during the entire emulation. The asynchronous
design is depicted in Figure 2.3.

The read loader thread loads future reads and their metadata from the index and
fast5 files into the cache. It maintains the minimal number of future reads in cache
for each nanopore channel to prevent running out of future reads even under heavy
load of unblock decisions. The read scheduler thread loads future reads from the cache
and schedules them for sequencing. Any unblock decision is communicated to the read
scheduler, which reschedules the future read for an earlier sequencing. Read scheduler
keeps a saved time record for each nanopore channel. Every time a read is rejected by
a filtering pipeline, the saved time record is updated for the relevant nanopore channel,
and a future read is rescheduled accordingly. Once the time to sequence a particular
read has come, the live-read provider is notified with all the necessary read metadata.
The live-read provider is responsible for presenting the new sequenced data chunks for
each user-defined time period. It keeps track of currently active nanopore channels,
for which selective sequencing capabilities are emulated. When the stop receiving com-
mand is received or if read sequencing is finished, it updates the active channel list
without the need for the read scheduler’s intervention. Only newly scheduled reads
are obtained from the read scheduler. Raw data chunks themselves are stored in a
proper data structure and obtained by the Read Until API’s processor thread. Filter-
ing pipeline decisions are pre-processed in the user thread that executes the filtering
pipeline algorithm. Multiple validation checks are made in order to prevent incorrect
behavior and take unnecessary load off the simulation thread. Invalid decisions are the
ones that came too late, near the end of the sequencing of the read or even after the
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Figure 2.3: Asynchronous design of the virtual sequencer core

read sequencing has ended. Also the repeating repeating decisions; all tend to occur
naturally.

The read scheduler maintains one future read per nanopore channel stored in the
heap data structure. Once unblock decisions are introduced in the design, choosing
the right data structure for read scheduling is important. Frequent rescheduling of
the reads would make the maintenance of a sorted array inefficient. Insertion of the
freshly rescheduled reads would take O(n) time. Having a sorted array of reads is not
even absolutely necessary. Only the information about the read with minimal starting
time that needs to be scheduled is needed. Therefore, we use the heap data structure
to store the reads. When a future read needs to be rescheduled due to an unblock
decision, we insert a fresh version of the read in the heap in O(log(n)) time. We avoid
the need for the removal of the expired read version by storing the fresh upcoming
read for every nanopore channel in a separate data structure. That way, when the
next read is pulled from the heap, it can be compared to a fresh read scheduled for the
corresponding nanopore channel in order to recognize expired future reads abandoned
in the heap data structure.

The virtual sequencer core produces its own sequencing output. It makes no sense
for the core to output the authentic sequencing data as they are already present and
act as the data source of the emulation. Therefore, only the record of the modifications
to the sequencing run caused by unblock decisions is output to enable evaluation of
the emulated run later. More specifically, an output entry consists of read identifier, a
sequenced length and a single-digit decision value. We describe the evaluation of the
emulated run in Section 2.4.
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The virtual sequencer currently supports DNA sequencing at a speed of 450 bases
per second. In the fast5 file, we find the sampling rate of 4000 signal samples per second
used by the physical sequencer. Similarly, we support RNA sequencing at a speed of 70

bases per second. We found the sampling rate to be slightly lower 3012 signal samples
per second. These are the attributes of the most commonly used nanopore channels for
DNA and RNA sequencing. Other sequencing speeds and sampling rates are currently
not supported.

We encountered timing issues during the development of the virtual sequencer core.
Multiple reads scheduled for almost the same time combined with a large number of
unblock decisions, typically delivered in batches, can put the read scheduler under
load, causing non-negligible internal latencies. Unpredictable latency in unblocking
and rescheduling of the reads leads to inaccurate reporting of the sequenced length of
unblocked reads, because length reporting takes place on a user thread. Solving this
issue by assigning the read scheduler with the reporting feature would further overload
a critical section of the code. Besides those issues, the physical sequencer seems to be
able to unblock reads almost instantly, allowing a user to specify latencies of 0.1s[30].
Therefore, we decided to prioritize low unblock latency over the timely start of new read
sequencing. By reducing the time spent in synchronized critical sections of code and by
ublocking reads in multiple sections of code, we managed to keep the unblock latency
under 0.01s, which is equivalent to a 4.5 sequenced nucleotides, considering the current
DNA sequencing speed. Delayed starts of read sequencing caused by ocasional bursts of
unblock decisions are projected into saved time records to keep the emulation consistent.
The typical inconsistent behavior can be described as follows. The scheduled read
starts to be sequenced with a delay due to the internal latency. Its starting time is
updated, so the live-read provider presents the correct data chunks to the Read Until
API. The read may happen to be unblocked early by the filtering pipeline, saving a
lot of sequencing time. However, the saved time is too optimistic because the delay is
not included in it. Therefore, it is higher than realistically achievable. A saved time
record is updated with a new saved time value. A series of such inaccuracies can lead
to a situation when saved time record for a particular nanopore channel is so high
that future reads are being scheduled in the past instead of the future. Normalizing
such inconsistencies creates an error-prone emulation environment where many other
logical errors can be hidden, harming the realism of the emulation. The approach
of prioritizing the unblock latency and compensating for delays makes the emulation
effectively slow down on less performant CPUs to meet their capabilities. However,
the emulation remains consistent, reported lenghts of unblocked reads are accurate and
comparisons of the experiments conducted on the same device are relevant.
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2.3.3 Known Limitations

The virtual sequencer emulates sequencing runs based on fast5 files. That greatly
increases its usability by avoiding the need for recording specialized bulk fast5 files to
be able to replay them in the future. However, this decision has its drawbacks and
introduces some known limitations that need to be understood. Fast5 files do not
necessarily contain the continuous raw signal divided between the read records. DNA
sequences may take a variable amount of time to properly attach to a nanopore channel
and start to be sequenced. The time may be seconds long. During that time, mostly the
carrier signal is recorded by the physical sequencer, also called stall signal. MinKNOW
software tries to omit the stall signal in fast5 files. Using proprietary algorithms, it
tries to detect the stall signal recorded between the sequencing of two DNA sequences.
Sometimes, two reads follow each other so closely on a single nanopore channel that
no signal is omitted and concatenation of the signals stored in fast5 file produces a
continuous signal. This is not very common and often the signal obtained from fast5
files is discontinuous.

The Oxford Nanopore’s Read Until API introduces the option to configure Min-
KNOW software to filter the presented raw signal by various classes[29]. Those are
extraordinarily poorly documented. Unintuitive class names seem to have no further
explanation available for the integrators of the Read Until API. Our conclusion is later
confirmed by Payne et al.[12]. Payne et al. observe the raw signal in bulk fast5 files
using the visualizer software that they developed and deduce the meaning of individual
classes based on the annotations in the file. Although they admitted that not all classes
seemed to have clear meaning, they successfully identified and described most of them.

The virtual sequencer is not able to support the filtering functionality because no
signal annotations are present in the fast5 file format. Only a default setting can be
used, which is defined by the logic of the stall signal-omitting algorithms of MinKNOW
software. The Read Until API default filter setting allows MinKNOW to present
the sequencing signal produced by DNA sequences in the nanopore channel and their
adapters. Other signals recorded during various transitioning states of the nanopore
channels are often considered a burden for a filtering pipeline with limited resources.
Fortunately, we are able to support the default and most commonly used Read Until
API setting of the filters. All signals corresponding to other classes mentioned in bulk
fast5 files is effectively filtered out by the virtual sequencer as it is simply not present
in fast5 files.

Nanopore channels commonly fail during sequencing run. The DNA sequence may
get stuck in the nanopore channel, or the structural integrity of the protein forming
the channel may be broken. Both cause the nanopore channel to stop working cor-
rectly. Payne et al.[23] observe an increased rate of lost nanopore channels on flowcells
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performing the selective sequencing. The more intensive the channel unblocking, the
greater the rate at which the channels were lost. We do not emulate this behavior in
the virtual sequencer. We expect that may cause the emulation to allow for a little op-
timistic enrichment to be achieved. However, the effect is compensated to some extent.
Nanopore channels are being lost even during the non-selective sequencing run. Reads
drawn further and further from the future in order to emulate the selective sequencing
capabilities also brings the point of nanopore channel failure closer from the future to
the present, therefore also increasing the rate at which channels are being lost. It even
applies to the emulation that the more intensive the channel unblocking, the greater
the failure rate becomes, just like observed during real sequencing runs. However, we
did not examine in detail the impact of this design simplification on the emulated run.

As of the submission day of this thesis, we have not managed to find out about
the speed at which DNA sequences are ejected from the nanopore channel once the
unblock decision is communicated to the physical sequencer. We also have no knowl-
edge regarding the difference between the ejection speed of DNA and RNA sequence.
Therefore, for the demonstration, we chose the ejection speed of 10-times the DNA
sequencing speed, approximately 4500 bases per second. This is a guess on our side,
and it might undermine the ability of the virtual sequencer to plausibly predict the
results of adaptive sampling experiments using a real sequencing device. However, the
sequence ejection speed is not the most impactful factor throughout an adaptive sam-
pling experiment, and its impact decreases with the data chunk length necessary for
the filtering pipeline to make an unblocking decision.

2.3.4 Integration

The filtering pipeline interacts with the virtual sequencer core through the Read Until
API implementation. We implement a Read Until Simulator, which directly controls
an instance of the virtual sequencer core. The read until simulator design is intended
to resemble the architecture of Oxford Nanopore’s Read Until API. Its public interface
mimics the Read Until API wherever possible to ensure a minimum effort is needed
the filtering pipeline to be used with the Read Until API. The initialization aspect
of the interface has to be modified as read until simulator no longer connects to the
MinKNOW software using the gRPC framework. We were not able to obtain a full
design of the read chunk data structure obtained from the MinKNOW software and
consequently presented on the Read Until API public interface. Therefore, we mimic
at least those data members of the structure that are used in the Read Until API
source code. Other aspects of the Read Until API interface remain unchanged. The
read until simulator actually inherits most of its implementation from the Read Until
API to minimize maintenance costs once Read Until API updates are released.
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The Readfish adaptive sampling tool is known to use a slightly modified version of
the Read Until API called Read Until API v2. The modifications adjust the API to
use a Python 3 programming language. Authors also add a new cache implementation
that concatenates the read chunks obtained from the MinKNOW software that belong
to a single read. Thus allowing Readfish to base its decisions on multiple data chunks
if one chunk is not sufficient. The public interface of the Read Until API v2 undergoes
only a few minor changes.

We connect the virtual sequencer to the Readfish tool. The Readfish has been
shown on multiple occasions to work reliably in combination with the MinKNOW and
a physical sequencer[23][17]. Our communication in the Nanopore Community also
suggests that it is well adopted by the community. Therefore, the Readfish functioning
without any issues when combined with the virtual sequencer is an important sign of
the credibility of our emulations. In addition, several of Readfish’s scripts designed for
different types of adaptive sampling analyses, along with its extensive possible config-
uration using TOML files with comprehensive output prove to be a useful testing tool
for the virtual sequencer. We modify the unblock_all and ru_gen scripts from the
Readfish project and connect them to the virtual sequencer. The unblock_all script
unblocks all obtained reads after a fixed specified period of time. The ru_gen script
performs an analysis on the obtained data chunks. It uses Python bindings for Oxford
Nanopore’s Guppy base caller to base call the data chunks. Then the Python binding
for minimap2 is used to align the base called sequences to the reference sequence. The
unblocking decision is made based on the alignment and a TOML configuration file.
A decision may be defined for various alignment results. The reference sequence may
even be divided into multiple regions if amplifying or depleting specific regions of the
reference sequence is desired. We also include Readfish’s validate script without any
changes to allow a convenient way to validate a TOML configuration file. The modi-
fications necessary for the integration are subtle. Mainly, we change the initialization
part of the Read Until API, which is replaced by the read until simulator, and add
several new terminal parameters to facilitate the initialization.

The Readfish integration helped us identify some of the virtual sequencer’s weak-
nesses. Emulated runs helped us spot the timing issues described in the previous
section. We also experienced problems with using a Python binding for the Guppy
base caller. It turns out that the Guppy’ output produced for short data chunks only
dozens of values long is problematic. Short signals are notoriously difficult to base call
and the quality of the base called sequence is poor. Guppy can not base call such short
data chunks properly. The data structure produced by base calling short data chunks
is not just less populated with data. It is a whole different data structure where many
fields are omitted. The program that tries to access them runs into a runtime error
when executed. This unoptimal software design helped us find that such short data
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chunks are not being obtained from MinKNOW software in reality. We find empirically
that data chunks at least 100 samples long do not cause such problems. Aiming to keep
the Readfish unchanged during the process of connecting to the virtual sequencer, we
set a threshold for the minimum data chunk length presented by the virtual sequencer
core.

2.4 Results

We perform a series of experiments using the Readfish connected to the virtual se-
quencer. We emulate the sequencing of the ZymoBIOMICS standard sample based
on a fast5 data[8]. ZymoBIOMICS Microbial Community Standards[24] define the
composition and other attributes of metagenomic DNA samples to facilitate the re-
producibility of metagenomic sequencing experiments. The sequencing run that we
emulate is approximately 48 hours long. Therefore, it has a substantial number of
future data to draw from. Much like Payne et al.[23] did in their own experiment, we
attempt to enrich the Saccharomyces cerevisiae, which is represented in the sample at
approximately 2%. We demonstrate the use of the virtual sequencer for fine-tuning the
Readfish tool configuration in order to maximize its adaptive sampling performance.

We use the virtual sequencer output to evaluate the results. The output entries
consist of read identifier, a sequenced length of the read, and a desicion value. This
information effectively documents the changes made to the sequencing run by the adap-
tive sampling tool. In order to evaluate the sequencing run, we base call the original
fast5 files using the Guppy base caller. The virtual sequencer provides information
about the the highest ranking fast5 file that was actually used during the emulation.
This helps reduce the amount of data that needs to be base called. Then we align the
base called sequences to a reference sequence using minimap2. The minimap2 align-
ments serve as the ground truth for our evaluation. During the evaluation, we use read
identifier to determine if the read is aligned to the reference sequence. This way, we
calculate the number of on-target and off-target bases, the number of on-target and
off-taget reads and the mean on-target and off-target read length.

We perform a series of 10 minute-long sequencing experiments to properly calibrate
the adaptive sampling setup. We use a desktop PC with AMD®Ryzen 7 5700G 3.8GHz
CPU and 32 GB of RAM accompanied by NVIDIA®GeForce RTX 3060 Ti GPU. We
computed an emulation index and observe the virtual sequencer scaling the sequencing
emulation to 312 GB of data. At first, we emulate the sequencing run using a primitive
testing application for a filtering pipeline. The application waits for 10 minutes and
then finishes the emulation. Without a single interaction, the virtual sequencer replays
the sequencing run much like it originally happened, creating a baseline for future
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comparisons.
Then we attempt to enrich the Saccharomyces cerevisiae. We downloaded the

FASTA file with the consensus genome of Saccharomyces cerevisiae[6]. We precom-
puted a minimizer index using minimap2 and configured it as a reference index for
Readfish tool. We configured all 16 chromosomes in the FASTA file as target refer-
ence regions. Firstly, we chose Readfish reference configuration publicly available on
Github[19]. We configure Readfish to send stop_receiving command if the data chunk
aligns to the reference and proceed otherwise. We set the maximum number of data
chunks received per read to 12. If the raw signal consisting of 12 concatenated data
chunks can not be aligned to the reference sequence, the read will be unblocked by de-
fault. We set the data chunk length to 0.4 seconds of sequencing like Payne et al. This
equals approximately 180 sequenced bases. On Guppy server, we choose fast model
variant to minimize the decision latency. We emulate the sequencing for 10 minutes.

Table 2.2 shows that the average length of on-target reads slightly increased, in-
dicating small number of incorrectly unblocked reads. On average, almost 2200 bases
were sequenced before unblocking an off-target read, which limited the potential enrich-
ment. We still observe a 1.5-fold absolute enrichment of the target genome coverage.

In order to lower the number of sequenced off-target bases, we decrease the max-
imum number of data chunks allowed to be aligned before the read is unblocked by
default. We allow at most 3 data chunks. Table 2.2 shows an increase in number of
sequenced on-target bases and a significant decrease in the average length of off-target
reads. However, we also notice a decrease in the average length of on-target reads.
This is because 3 data chunks were not always sufficient for read to properly align to
the reference sequence.

During the emulation, we notice that the GPU utilization is extraordinarily low -
almost never surpassing the 8% threshold. Therefore, we use the HAC (high accuracy)
base calling model in the Guppy server. We expect that the higher base calling accuracy
will allow shorter data chunks to align to the reference sequence. Table 2.2 shows that
the average length of on-target reads increased, almost compensating for the decreased
maximum data chunks setting. The average length of off-target reads is practically
unchanged, indicating that the GPU’s performance is not a bottleneck for adaptive
sampling performance.

We attempt to further improve the absolute enrichment of Saccharomyces cere-
visiae. The sequenced sample is a standardized ZymoBiomics metagenomic sample.
Therefore, we have knowledge about all of the genomes contained in it. We decided
to exploit this knowledge to configure the Readfish with a better-informed adaptive
sampling strategy. We obtain the consensus genomes of Pseudomonas aeruginosa[5],
Escherichia coli [3], Salmonella enterica[7], Enterococcus faecalis [2], Staphylococcus au-
reus [10], Listeria monocytogenes [4] and Bacillus subtilis [1], which are all present in the
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Original
Run

Adaptive
Max 12 Chunks

Adaptive
Max 3 Chunks

Adaptive
Max 3 Chunks HAC

On-target
Read Count

547 810 2047 2036

Off-target
Read Count

27063 38815 90577 90040

On-target
Avg. Length

3236.38b 3281.97b 3172.02b 3242.54b

Off-target
Avg. Length

3541.05b 2181.77b 677.18b 681.89b

On-target
Bases

1.77M 2.66M 6.49M 6.60M

Off-target
Bases

95.83M 84.69M 61.34M 61.40M

Absolute
Enrichment

1.00x 1.50x 3.67x 3.72x

Table 2.2: Impact of adaptive sampling configuration on sequencing run (1)

sequenced sample. In previous experiments, reads had to be aligned to the reference
sequence in order to be sequenced; otherwise, they were rejected once the maximum
allowed number of data chunks has been received. In the following experiments, the
logic is inverted. The depleted genomes are included in a reference index. A read needs
to be aligned to any of the reference sequence target regions in order to be rejected,
rather than being rejected by default. The Saccharomyces cerevisiae is still present
in the reference index. For a read to be sequenced, it has to be aligned to the Sac-
charomyces cerevisiae regions in the reference index. However, the maximum number
of allowed data chunks can be increased because the rejection of off-target reads is no
longer bound to it. While many off-target reads will be rejected as soon as they are
aligned to some of the target regions, the Readfish can obtain a sufficient amount of
data for the rest of the reads to make a well-informed decision. The read is still rejected
by default once the maximum allowed number of data chunks has been received. We
run a series of 10 minute-long emulations and experiment with the values of maximum
allowed data chunks.

Tables 2.3 and 2.4 show an increase in the average length of on-target reads as it
approaches the average on-target read length of the entire replayed sequencing run.
Figure 2.4 shows that some reads can not be aligned to the reference sequence even
when 12 data chunks are used. The balance between obtaining enough data chunks to
make an informed unblocking decision and wasting sequencing resources on reads that
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Figure 2.4: Off-target read length distribution when processing at most 12 data chunks

will not align to the reference sequence needs to be found. Figure 2.5 shows the peak
in the histogram created by reads that could not be aligned to the reference sequence,
shifting to the side as we lower the maximum number of data chunks to 5. Table 2.4
shows an increasing absolute enrichment of the target genome and a decreasing number
of sequenced off-target bases as we lower the maximum number data chunks. The loss of
Saccharomyces cerevisiae reads produced by incorrectly unblocking short data chunks
that could not align to the reference sequence is compensated by unblocking off-target
reads as soon as they are recognized. The trend reaches its peak when at most 5 data
chunks are allowed.

While 10 minute-long experiments are useful for calibration, they may produce too
optimistic results. We notice that most nanopore channels are operational during the
initial 10 minutes of the sequencing run. Due to the destructive effect that sequencing
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Figure 2.5: Off-target read length distribution when processing at most 5 data chunks

has on some fraction of the channels, the absolute enrichment can become more modest
once the sample is sequenced for a long time. We use the inverted adaptive sampling
logic from the previous experiment and set the maximum number of data chunks to 5.
We emulate the sequencing run for 3 hours; however, we run out of future sequencing
data to draw from in slightly less than two hours. We try again, but this time we
emulate the sequencing run for 1 hour. Figures 2.6 and 2.7 compare the off-target read
length distribution of the original sequencing run and the selective sequencing run.

We compare our experiment to the similar experiment conducted by Payne et al.[23].
We expect absolute enrichments achieved in experiments to differ. The authors used
different hardware for their computations. They also conducted their experiment with a
slightly different setup. While we attempt to enrich the Saccharomyces cerevisiae right
from the start of the experiment, Payne et al. only start rejecting reads aligned to a
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Inverted
Max 12 Chunks

Inverted
Max 10 Chunks

Inverted
Max 8 Chunks

On-target Read Count 1736 1827 1922
Off-target Read Count 77274 80521 84540
On-target Avg. Length 3343.34b 3333.71b 3339.79b
Off-target Avg. Length 870.16b 813.47b 753.20b
On-target Bases 5.80M 6.09M 6.42M
Off-target Bases 67.24M 65.5M 63.68M
Absolute Enrichment 3.28x 3.44x 3.62x

Table 2.3: Impact of adaptive sampling configuration on sequencing run (2)

Inverted
Max 6 Chunks

Inverted
Max 5 Chunks

Inverted
Max 4 Chunks

On-target Read Count 2005 2113 2196
Off-target Read Count 88336 92848 96673
On-target Avg. Length 3322.86b 3322.57b 3302.11b
Off-target Avg. Length 701.74b 647.97b 603.90b
On-target Bases 6.66M 7.02M 7.25M
Off-target Bases 61.99M 60.16M 58.38M
Absolute Enrichment 3.76x 3.97x 4.09x

Table 2.4: Impact of adaptive sampling configuration on sequencing run (3)

Original Run
Adaptive

Sampling Run

On-target Read Count 4310 14358
Off-target Read Count 189113 635277
On-target Avg. Length 3562.47b 3459.40b
Off-target Avg. Length 3725.40b 663.10b
On-target Bases 15.35M 49.67M
Off-target Bases 704.52M 421.26M
Absolute Enrichment 1.00x 3.24x

Table 2.5: Emulated adaptive sampling performance

particular reference genome once the desired read coverage of the genome is reached.
This delays the sequencing phase, in which Saccharomyces cerevisiae is being enriched
alone for approximately 2 hours, thus decreasing the average enrichment. The Readfish
configuration used by the authors in the experiment has not been published. Therefore,
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Figure 2.6: Off-target read length distribution in the original sequencing run

it is unknown. Payne et al. sequenced the sample for 16 hours and reported 1.6-fold
absolute enrichment of Saccharomyces cerevisiae. The enrichment is estimated based
on the known sample composition and the amount of sequencing data yielded in non-
selective sequencing experiments conducted using similar sequencing samples.

Table 2.5 shows a 3.2-fold enrichment in the experiment. We attribute a partial
responsibility for the different results to the likely differing Readfish configurations in
the experiments and different setups of the experiments. However, considering these
factors, the comparison suggests that the results yielded by the emulation are not fully
realistic. This is likely caused by the known limitations described in Section 2.3.3. If
more realistic prediction of results is desired, the nanopore channel ejection speed needs
to be determined and a model of an increased nanopore channel failure rate needs to
be added to the emulation. However, the experiments confirm that the emulations
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Figure 2.7: Off-target read length distribution in the selective sequencing run

conducted using the virtual sequencer are consistent and allow the different adaptive
sampling tool configurations to be evaluated.
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Chapter 3

Adaptive Sampling

Considerable effort is currently being invested in the research and development of tools
for adaptive sampling execution that provide general sampling capabilities. An arbi-
trary reference genome can be configured to be enriched or depleted during the selective
sequencing run. Methods that determine the similarity of data chunks to the arbitrar-
ily chosen reference genome with high sensitivity and specificity are being researched.
They operate with the sequences of nucleotides[23][17] or with the raw signal[26]. Such
general sampling capabilities provide clear advantages of simple configuration and de-
ployment in diverse field experiments. However, generality has its cost in these methods
as not all of the sequencing data features can be used when determining the similarity
to the reference genome. In some applications, the need for single genome sequencing
is strong enough that a genome-specific adaptive sampling method may be beneficial.
One of such applications is the recent effort to study the SARS-CoV-2 virus. The
number of SARS-CoV-2 genome copies in the sequencing sample is often amplified
using biological methods, such as polymerase chain reaction[15], to achieve satisfac-
tory sequencing coverage. An adaptive sampling method specialized for enriching the
SARS-CoV-2 and exploiting all of the features in the sequencing data could repre-
sent the way to achieve a better adaptive sampling performance in a narrowly scoped,
mission-critical operations of epidemiology.

We wonder if a higher adaptive sampling performance can be achieved at the cost
of the sampling method’s generality. We describe our approach to the fast determi-
nation of the similarity between chunks of raw sequencing data and the SARS-CoV-2
genome. We implement the adaptive sampling tool called selectify, which integrates
the suggested decision-making algorithm. Then we attempt to enrich the SARS-CoV-2
sequencing data while emulating the sequencing run using the virtual sequencer.

35
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3.1 General Approach

To increase the efficiency of an adaptive sampling method, the decision-making re-
sponse time needs to be decreased while high decision sensitivity and specificity are
preserved. The time necessary for a read rejection to be executed consists of three
elements. The dominant element is typically the time needed for sequencing the data
chunk, based on which the unblocking decision is made. The second element is the
time necessary for an unblocking decision to be made. The final element is the time
necessary for ejecting the unblocked read from the nanopore channel. As we observed
in the experiments in the previous chapter, fast decision-making process may have lim-
ited impact if long data chunks are necessary for the algorithm to decide about their
nature. Current state-of-the-art adaptive sampling methods often use base calling in
order to transform the raw signal into a sequence of nucleotides. Even though modern
base callers based on a reccurent neural networks are considerably faster compared to
the previous generation, especially when run on specialized hardware such as a GPU,
their use is an added step in a decision-making process. While base calling time may
not be an issue most of the time, the emerging issue is a pessimistic prospect of de-
creasing the data chunk length necessary for a proper base calling. Base calling of
short data chunks leads to poor base calling quality because the signal normalization
step fails during the base calling process. As a result, more chunks of data need to be
obtained from MinKNOW software to retry the base calling. This makes it difficult to
reduce the time necessary to obtain the satisfactory data chunk length for further pro-
cessing, which is a dominant fraction of the time that a decision-making process takes.
In the current literature[17], the adaptive sampling tool’s sensitivity and specificity are
evaluated using a 360 base-long testing data samples, which take at least 0.8 seconds
to obtain.

Our goal is to significantly reduce the decision-making response time by decreasing
the necessary data chunk length. Because of the limitations mentioned, this is not re-
alistically achievable when deciding based on a base called sequencing data. Therefore,
we skip the base calling step and make unblocking decisions based on the raw signal.
Current methods for providing general adaptive sampling capabilities without the use
of base calling are computationaly intensive and do not scale well when a large refer-
ence genome is desired[17]. This is caused by the variable nature of the raw nanopore
signal, with multiple discrete variable values representing a single nucleotide. However,
in our setting, the general sampling capabilities are not necessary. Only a similarity to
a fixed reference signal has to be determined. We use a convolutional neural network
model (CNN) to learn to distinguish a SARS-CoV-2 -related raw signal. We design
and train the classifier aiming at its compact design, allowing for short response times
while emphasizing on the minimum data chunk length needed to make an unblocking
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decision. The trained classifier is an integral part of the selectify adaptive sampling
tool.

3.2 Polymerase Chain Reaction

Viral genome expression in a SARS-CoV-2 clinical sample is low, on average only 10-48
genome copies per microlitre[15]. This constitutes an issue for sequencing methods that
often require a bioinformatic protocol for targeted enrichment to amplify the number
of viral genome copies in the sample. However, the low viral genome coverage yielded
during the sequencing of the original clinical sample also hampers any potential train-
ing of a classification model due to the lack of training data. Therefore, we resort to
extracting the training data from clinical samples where the viral genome was amplified
using a targeted enrichment protocol. Polymerase chain reaction (PCR)-based bioin-
formatic protocols are commonly used. Such modified clinical samples have specific
properties that need to be understood.

PCR is a laboratory technique. It relies on using short synthetic DNA sequences
called primers and a DNA polymerase enzyme. The clinical sample temperature is first
increased in order to divide double-stranded DNA sequences in the sample into single
strands. Every primer sequence is a complementary sequence to some short region of a
divided single strand. After the decrease of clinical sample’s temperature, primers ligate
on the single strands, marking the beginnings of amplified regions. Primers ligation
to a single strand is much more likely compared to a ligation of two strands because
compact primer sequences can move in the sample with significantly less resistance.
Primers ligated on DNA strands create a two-stranded initiation for the polymerase
enzyme. In the following chain reaction, the polymerase enzyme elongates the primer
sequences, thus efectively synthesizing a complementary strand copy. Consequently, the
temperature is risen again. Elongated strands called amplicons are divided from their
complementary strands. The described process repeats itself in multiple iterations.
After the sample temperature decreases, primers ligate on single strands of DNA again.
This time, newly synthesized amplicons participate in the chemical reaction. Therefore,
the number of synthesized amplicons grows exponentially with the number of iterations.

To efficiently utilize the sequencing resources, multiple clinical samples are se-
quenced in a single sequencing run. Individual clinical samples, while still separate, are
marked with a unique marker called barcode. As a step in sequencing sample prepara-
tion, a barcode sequence is added at both ends of every DNA sequence in the sample.
Uniquely barcoded clinical samples are then merged and sequenced as a single clini-
cal sample. Such a process is called multiplex sequencing and uses barcodes to assign
individual reads to a specific patient.
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The design of the targeted enrichment protocol has various consequences for our
use of the sequencing data as classifier training data. Firstly, the read beginnings
in the stored sequencing data are not randomly distributed around the entire viral
genome. Almost all of the reads start at specified primer binding positions. Therefore,
extracting a fixed portion of reads for training data set will not result in training data
randomly covering the whole genome. Secondly, barcode sequences may pose an issue
for a practical use of a trained classifier as multiple barcoding kits are available on the
market. In addition, barcodes may not be used at all when performing the sequencing
of a single clinical sample.

3.3 Read Classification

3.3.1 Training Datasets

Ongoing efforts focused on monitoring SARS-CoV-2 spread and evolution provide us
with a vital source of training data. We used sequencing data produced in Institute
of Virology, Slovak Academy of Sciences. Sequenced sample was prepared using the
protocol published by Brejová et al.[13]. Analysis performed after the sequencing run
yields statistics of barcode occurrences and viral genome coverage achieved for each
barcode. It also yields the list of read identifiers that were successfully aligned to
SARS-CoV-2 genome with respect to each barcode. We use the alignmet scores of
full reads as the ground truth for the labeling of the training data. We call reads that
could be aligned to SARS-CoV-2 genome positive training examples. On the contrary,
reads that could not be aligned to SARS-CoV-2 genome are called negative training
examples. Using the statistics, we extract the training dataset from the sequencing
data. Firstly, we parse the statistics files and load all read identifiers corresponding to
reads that aligned well to SARS-CoV-2. Next, we enumerate all of the reads stored in
all of the fast5 files produced during the sequencing run. We use loaded read identifiers
to determine the positive or negative nature of the reads. Knowing the target number
of examples in the training dataset, we keep the number of positive and negative
training examples approximately balanced. For each training example, the first 5 000
raw signal values (equivalent to 562 bases) are extracted from a fast5 file. We do
not trim the beginnings of the raw signal produced by adapter sequences and barcode
sequences passing through the nanopore channel. This information could be lacking
while classifying the live raw signals. We normalize the raw signal using a modified
z-score 3.1 and add binary label at the end.
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X̄ = median(X)

MAD = median(||Xi − X̄||)

modified_z_score =
0.6745× (Xi − X̄)

MAD
(3.1)

Reads that are shorter than 675 bases are not included in the dataset. Consequently,
a random permutation of the training data is generated, and the data is stored in a
binary file.

At first, we extract only one training example per read, we choose the first 5 000 raw
signal values. Even though the training dataset does not cover the whole SARS-CoV-2
genome, its purpose is to enable us to observe the properties of various model designs
trained on the dataset. We extract approximately 160 000 positive training examples
and a similar number of negative training examples. We designate a tenth of the data
to be the testing data; the rest is used for the training of the CNN model.

3.3.2 Classifier Architecture

We use a CNN for the classification of the raw sequencing signal. Reassured by the
work of Mostavi et al.[22], we believe that, similarly to a picture, some patterns of
a local character can be observed in the sequenced signals. Exploiting this locality
using a convolutional neural network helps us reduce the number of parameters in
our model. Mostavi et al. already demonstrated that considering larger patterns or
patterns spanning multiple discontinuous parts of a genome does not help the model
classify a read more accurately. The authors tried to build a two-dimensional picture
out of a base called DNA sequence stored in a one-dimensional line. This way, filters of
convolutional layer could consider multiple regions of a signal in dot product during the
forward pass. No significant statistical correlation was found and the approach did not
overcome the one where a one-dimensional kernel is used for one-dimensional data. We
follow the approach of using one-dimensional kernels for convolutional layers. However,
instead of base called sequences of nucleotides, we are working with the raw sequencing
signal. Unlike Mostavi et al., we find that it is beneficial to move the kernel by a smaller
stride during the forward pass. The authors were not confident that there were any
significant correlations in neighboring gene expressions, since they achieved the best
results using the stride of the size of the kernel. In the raw signal, multiple variable
values represent a single nucleotide, and even the number of values corresponding to
a single nucleotide is variable. Therefore, neighboring regions of the raw signal might
be correlated as they might represent various changes in nanopore channel state. As
mentioned by the authors, increasing the depth of the CNN does not help to yield better
accuracy, which we experimentally confirmed. Adding multiple layers to the model led
to increasingly bad results in both time complexity and classification accuracy.
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In the following text, we demonstrate the iterative process of designing a CNN
model for the classification task. Using multiple experiments, we try to understand
the properties of the raw sequencing signal. We use Keras framework to build and
run CNN models. Model architectures are illustrated using the Keras building blocks
in the Python programming language. For each design iteration, we report accuracy,
specificity, sensitivity, precision and F1-score. Because of the intended model applica-
tion, we also report the classification time. We classify testing examples one-by-one
to avoid batching optimizations of the Keras framework that affect the performance
results.

The initial CNN classifier design M1 is shown in Figure 3.1. We use a sequence
of convolutional layers to explore the local features of an input signal with each layer
perceiving the input from a more global perspective than the previous one. The used
kernel size and stride are to some extent arbitrarily chosen, however, the choice is based
on the experience of Mostavi et al. We use a pooling layer to compact the convolutional
layer activation tensors and train a dense layer on the compacted inputs. We use one-
hot encoding for the output layer to provide the adaptive sampling tool with access to
information about the confidence of the input classification.

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=75, strides=10, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(Conv1D(filters=128, kernel_size=75, strides=10,

activation=’relu’, padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Flatten())

cnn.add(Dense(128, activation=’tanh’))

cnn.add(Dense(2, activation=’softmax’))

Listing 3.1: M1 design

We find out that less than 5 000 raw signal values are necessary for correct clas-
sification. Minimizing the necessary length, we find that 3 000 values, equivalent to
approximately 337 bases, are sufficient for a model to identify a read’s biological origin
with an accuracy of >91%. We also find that due to the classification of smaller inputs
containing fewer features for a model to learn,M1 can be further simplified. We modify
M1 in multiple iterations. We remove the dense layer. We move the last convolutional
layer below the pooling layer, allowing it to explore more global features of the input
signal. Finally, we decrease the number of filters for the last convolutional layer to
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avoid overfitting and decrease classification time. We illustrate model M2 in Figure
below.

Listing 3.2: M2 design

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=75, strides=10, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

Table 3.1 shows that M2 achieves similar testing accuracy to M1, while Table 3.2
shows decrease in classification time due to the more compact design. Even though
both experimental models proved the ability to classify the raw signal with an accuracy
of > 91%, they have various shortcomings that need to be addressed. Both models
exhibit symptoms of overfitting during the training. The validation accuracy of >
96% surpasses the testing accuracy by a large margin. The lack of any learning rate
scheduling mechanism makes the learning progress unstable towards the end of the
training. Finally, some of the model hyperparameters, such as kernel size and strides,
are chosen arbitrarily without proper research.

We set most of the neural network hyperparameters, such as layer layout, empir-
ically using published knowledge[22] and our own experiments. However, the kernel
size and strides hyperparameters depend heavily on the raw signal properties, that we
do not understand. Therefore, we search for a better combination using a limited grid
search. Using a GPU to accelerate the training, we encounter issues with the repro-
ducibility of the training. With testing accuracy deviation being potentially higher
than an improvement achieved by the fine-tuning of the hyperparameters, we could
come to false conclusions. We solve the issue by seeding all of the random generators
with a fixed seed. We randomly initialize all neural network layers using the fixed seed.
We also limit the internal parallelism capabilities of the GPU, thus achieving higher
reproducibility of GPU computations at the cost of training speed. We find a more
optimal hyperparameter combination. ModelM3, illustrated in Figure 3.3, consistently
achieves testing accuracy of >93%.
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Listing 3.3: M3 design

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=60, strides=7, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

We further modify M3 in multiple iterations to solve the remaining issues. We find
that a higher number of trainable parameters helps model to achieve higher testing
accuracy, if the overfitting effect can be limited. We double the number of filters for
all convolutional layers to increase their feature extraction capacity. We add dropout
layers to limit the potential overfitting. The dropout layer rate is set to mimic the
relatively high error rate of nanopore reads. We also schedule the learning rate by
decreasing it exponentially as the training progresses. We illustrate the changes in
Figure 3.4. Table 3.1 shows an improvement in the testing accuracy, which is >93.8%.
At the same time, the overfitting symptoms persist during training. At this point, the
most likely cause for the model to overfit is the compact training dataset. Later, we
report the testing results using larger datasets.

The yield of PCR amplification in the clinical sample varies greatly. Unsuccessful
PCR amplification has various potential causes. To name at least one, viral genomes
evolve over time. If a viral region designated for primer sequences to ligate to mutates
during the evolution of the virus, primer sequence ligation on the strand sequence may
be weak, or primers may be completely unable to ligate to the strand sequence. Such
changes of the amplified viral genome typically require a redesign of the primer scheme.
Poor primer ligation may lower the quality of amplicons or prevent some regions of the
target sequence from being amplified completely. The described training dataset is
deliberately extracted from the sequencing data produced from a clinical sample where
PCR amplification yield was high. For most of patient samples, approximately 90% of
the reads could be aligned to a SARS-CoV-2 genome, indicating both high amplicon
yield and reasonable amplicon quality. For the next experiment, we extracted the
training data from a sequencing run with a lower PCR yield. The data were also
produced by the Institute of Virology, Slovak Academy of Sciences. We chose the reads
from patient samples, where approximately 30% of the reads could be aligned to the
SARS-CoV-2 genome. We expect aligned amplicons to have lower quality and want to
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observe how it affects the testing accuracy. We extract approximately 150 000 positive
training examples and a similar number of negative training examples.

Listing 3.4: M4 design

cnn = Sequential()

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Dropout(rate=0.1, seed=SEED))

cnn.add(Conv1D(filters=128, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Dropout(rate=0.1, seed=SEED))

cnn.add(Conv1D(filters=128, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

learning_rate_schedule =

keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=0.0005,

decay_steps=10_000, decay_rate=0.96, staircase=True)

Table 3.1 shows significantly decreased testing accuracy and M4 being unable to fit
the training data. The training accuracy was only 92% compared to previous >98%.
The data labeling method using full read alignment to SARS-CoV-2 genome might
provide us with an incorrect ground truth when using a training dataset extracted from
a low-quality sequencing data. It is possible that the training dataset contains large
numbers of SARS-CoV-2 reads with poor quality. If those reads can not be aligned to
the target sequence, our labeling method considers them negative training examples.
Thus forcing the CNN model to distinguish between low-quality SARS-CoV-2 reads
and well-aligned ones. To prove our hypothesis, we train M4 on another training
dataset. We use positive training examples extracted from low-quality sequencing
data. We expect a greater quality-related variation compared to the original training
dataset. We combine the positive examples with the negative training examples from
the original dataset, expecting them to contain a low number of SARS-CoV-2 reads
that could not be aligned to the target sequence. Table 3.1 shows the testing accuracy
of >95%, which is comparable to the previous experiments with M4.

In the experiments conducted so far, we have only used the first 3 000 raw signal
values for training examples. Even though the results seem promising, they may be just
a consequence of the limited training dataset. The training examples do not cover the
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Model Name Sensitivity Specificity Precision Accuracy F1-score
M1 93.49% 89.85% 89.45% 91.60% 91.43%
M2 93.67% 90.82% 90.39% 92.18% 91.99%
M3 94.35% 92.49% 92.05% 93.38% 93.18%
M4 94.03% 93.77% 93.29% 93.90% 93.65%
M4* 86.15% 87.43% 85.44% 86.84% 85.79%
M4** 95.57% 95.23% 94.54% 95.39% 95.05%
M5 95.71% 96.61% 94.86% 96.26% 95.28%
M6 95.98% 97.85% 96.67% 97.09% 96.32%
M7 96.14% 96.38% 94.54% 96.30% 95.33%
M8 95.31% 96.07% 94.06% 95.78% 94.68%

Table 3.1: Classification measurements of the proposed classifiers
* - measurements on low-quality sequencing data
** - measurements on high-quality sequencing data using combined training dataset

Model Name Average time Maximum time Minimum time
M1 2.69ms 26.49ms 2.56ms
M2 2.55ms 18.21ms 2.35ms
M3 2.50ms 10.03ms 2.37ms
M4 2.87ms 17.87ms 2.67ms
M5 2.87ms 76.91ms 2.62ms
M6 2.85ms 102.03ms 2.62ms
M7 2.79ms 71.92ms 2.64ms
M8 2.76ms 65.90ms 2.52ms

Table 3.2: Classification times of the proposed classifiers
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entire SARS-CoV-2 genome. The coverage is limited due to the fixed set of amplicon
starting positions coming from the primer scheme of a PCR amplification protocol. To
train a CNN model that can be applied to an adaptive sampling task, we conducted
a series of experiments increasing the demands for the generalization of the raw signal
features.

First, we extract a new training dataset from the sequencing data. Instead of one
window of 5 000 raw signal values, multiple windows of the raw signal are extracted
from fast5 files. Each signal window forms an individual training example, and we
extract as many of them as can be fit into the read. This greatly increases the training
data coverage of the target sequence and the size of the training dataset. We extract
approximately 600 000 positive training examples and a similar number of negative
training examples. We designate a tenth of the dataset as testing data and use the
rest for training. We train model M5 and examine its ability to learn the features
from a richer dataset. Again, the first 3 000 raw signal values of each training example
are used during the training. Table 3.1 shows that M5 achieved a testing accuracy of
>95%. An increased size of the training dataset helps M5 avoid overfitting during the
training.

In a real adaptive sampling scenario, an arbitrary portion of the raw signal can form
a classification input. We demonstrated that the increased training dataset coverage of
both target and non-tartget genomes does not harm the model’s ability to classify the
raw signal. However, M5 was still trained and tested using fixed regions of the target
genome. To mimic classification inputs during a real adaptive sampling scenario, we
further modify the training process. Again, we use an input window of 3 000 raw signal
values from each training example, but this time its position within the 5 000 value-
long training example is chosen randomly each time. This way, raw signal motives
can be located in multiple regions of the inputs during training. We use a uniform
probability distribution to position the input window within the training example. We
expect the model to learn more general input features in order to classify the signal.
We train modelM6 using the described technique. During the evaluation of the model,
we implement the same random positioning of the testing inputs. Table 3.1 shows even
higher testing accuracy of >97%.

Since the achieved results are optimistic, we aim to shorten the input length nec-
essary for the raw signal classification. We train a model M7 using the inputs of 2500

raw signal values, which is equivalent to approximately 281 bases. We also train a
model M8 using the inputs of 2000 raw signal values, approximately 225 bases. Table
3.1 shows an acceptable decrease in testing accuracy and a decrease in classification
time as we lower the input length.
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3.3.3 Selectify

We implemented a simple adaptive sampling tool. Its integral part is the trained
classification model described in the previous section. Data chunks obtained using the
Read Until API are filtered before the classification step. Even if the Read Until API
is configured with a chunk length sufficient to form a classifier input, shorter chunks
produced by DNA sequences that just started sequencing can be received from the
API. Only data chunks of sufficient length are normalized and classified. The proceed
decision is made for the rest of the chunks. A minimum classification confidence can
be set for selectify to make ublock or stop receiving decisions. If a data chunk is not
classified with satisfactory confidence, proceed decision is made by default. At most
two data chunks per read are classified. If a confident enough classification can not be
achieved, stop receiving decision is made by default as a conservative sampling strategy.

3.4 Results

We connect selectify to the virtual sequencer and test the classifier in emulated con-
ditions. We emulate the sequencing run used for the training of the classifier. We
compare statistics from a 10 minute-long non-selective sequencing run and selective
sequencing runs using Readfish and selectify adaptive sampling tools. We configure
Readfish with a consensus genome of SARS-CoV-2[9] as a reference sequence. The
stop receiving decision is sent if the data chunk aligns to the reference sequence. We
set the maximum number of processed data chunks to 3 and use the HAC base calling
model for Guppy server. We test selectify in two configurations. Firstly, a 90% data
chunk classification confidence is required for selectify to make the decision. In the
second experiment, 75% classification confidence is sufficient.

During emulated runs, we find that selectify is unable to correctly classify regions of
the genome that are not covered by the training dataset. We overestimated the level of
raw signal generalization that the model is capable of. Instead, non-overlapping train-
ing example windows caused the model to poorly classify data chunks positioned over
the boundary of two training examples. Therefore, we generated a new dataset, but this
time we overlapped training examples and made sure that the ends of the reads were
also covered. We also ensure that all individual barcoded samples are represented in the
dataset. We extracted approximately 5 training examples per read. Training dataset
consists of examples extracted from 1 500 reads per each of the 96 barcoded samples
in the merged sequenced sample. Overall, the training dataset contains approximately
720 000 positive training examples and a similar number of negative training examples.
We train M8 using the new dataset for 2 hours and achieve testing accuracy of 95.67%.
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Original Run Readfish Selectify - 90% Selectify - 75%
On-target Read Count 15592 16193 16597 16720
Off-target Read Count 3704 4061 3887 3920
On-target Avg. Length 1936.54b 1917.21b 1791.99b 1758.27b
Off-target Avg. Length 1290.07b 898.60b 1210.10b 1192.99b
On-target Bases 30.19M 31.05M 29.74M 29.40M
Off-target Bases 4.78M 3.65M 4.70M 4.68M
Absolute Enrichment 1.00x 1.03x 0.99x 0.97x

Table 3.3: Comparison of the Readfish and selectify in the emulated run

Table 3.3 shows, that Readfish was able to achieve negligible absolute enrichment.
The potential gain of unblocking off-target reads was limited by the low average length
of off-target reads in the sequenced sample. Selectify decreases the average length of
on-target reads more significantly than Readfish and is unable to deplete the biological
background of the sample. This is because the diverse nature of host background DNA
was not fully covered by the training dataset. Even when requiring 90% classification
confidence for unblock decisions, on-target reads are being unblocked during the emu-
lation. This is likely caused by the potential differences in 96 different clinical samples
merged into a single sample that are not covered by the training dataset.

Table 3.4 shows a decrease in selectify’s sensitivity compared to Readfish and its
tragic specificity of >8%. The results demonstrate that our proposed adaptive sampling
method has potential use only when sequencing samples whose composition is precisely
known and can be covered by a training dataset. Figure 3.1 shows a distribution of read
alignment starting positions of on-target reads unblocked by selectify. The distribution
is normalized by the total number of reads whose alignment to the reference sequence
starts at the particular position during the emulated run. We observe that multiple
critical areas of the target genome are consistently being depleted due to incorrect
classifications. The genome variation occurring in these areas is not properly expressed
in the training dataset. Figure 3.2 shows the reversed distribution of alignment starting
positions of on-target reads sequenced by selectify. A large portion of the target genome
was consistently classified correctly. Selectify’s specificity slightly increases with the
decreasing classification confidence threshold, but this comes at the cost of its decreased
sensitivity. We measured the average time needed for data chunk classification in
both Readfish and selectify. Table 3.5 shows that selectify accelerates data chunk
classification by 1.6-fold compared to Readfish.

Selectify’s faster decisions combined with potentially shorter data chunks needed
for the classification could lead to an increase in adaptive sampling performance when
applied to a sequencing sample with known composition. The classification speed is
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Figure 3.1: Distribution of unblocked on-target read alignment positions

increased at the cost of the model being unable to extract more general features from
the training dataset. Therefore, the classifier’s accuracy is sensitive to sequencing data
deviating from the training data. However, clinical samples contain rapidly evolving
viral DNA and a diverse host background DNA. Selectify’s current design leads to the
depletion of newly introduced variants of viral DNA, while these variants are often of
the greatest interest. The strict laboratory conditions that are required for selectify’s
high adaptive sampling performance are therefore incompatible with its application in
the field of epidemiology.
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Figure 3.2: Distribution of sequenced on-target read alignment positions

Readfish Selectify - 90% Selectify - 75%
Accuracy 86.58% 75.27% 73.93%
Sensitivity 98.78% 91.00% 88.87%
Specificity 37.90% 8.13% 10.23%
Precission 86.38% 80.88% 80.85%

Table 3.4: Classification measurements of the Readfish and selectify

Readfish Selectify - 90%
Time per data chunk 4.45ms 2.68ms
Acceleration 1.00x 1.66x

Table 3.5: Average classification times per data chunk in the emulated run



50 CHAPTER 3. ADAPTIVE SAMPLING



Discussion

In our work, we aim to develop a tool that will make the research of adaptive sampling
methods more accessible and cost-efficient. We introduce the virtual sequencer, a piece
of software able to emulate selective sequencing using a previously finished sequencing
run. Unlike MinKNOW’s playback feature, the virtual sequencer is designed with
the intention of replacing the role of the physical sequencer during the development
of an adaptive sampling tool. We demonstrate its capabilities on multiple occasions.
First, we fine-tune the Readfish configuration in the emulated environment in order to
maximize its adaptive sampling performance. Next, we utilize the virtual sequencer
in the development of our own adaptive sampling tool. Finally, we use the emulated
sequencing runs to compare the two adaptive sampling tools in identical conditions
and report extensive statistics. The virtual sequencer already provides an emulated
environment for unbiased comparisons of various adaptive sampling methods. However,
its ability to predict the coverage achieved during a real sequencing run is limited due
to its several design simplifications. As a result, the reported coverage of emulated
runs tends to be higher than is achievable in real conditions.

In order to bring the emulation closer to reality, various parameters of the physical
sequencer need to be accessed and incorporated in the virtual sequencer. The future
development might include direct comparisons with the physical sequencer, which could
help identify residual differences. Also, the analysis of real selective sequencing runs
recorded in bulk fast5 files would provide us with the raw signal annotated by Min-
KNOW software. Examination of the annotations could help us identify the speed, at
which DNA sequences are ejected from the nanopore channel. As far as we know, the
ejection speed of nanopore channels remains the most significant unknown parameter
in our emulations.

We study potential applications of machine learning in adaptive sampling. In our
proposed adaptive sampling method, adaptive sampling generality is sacrificed in fa-
vor of increased performance. We design a convolutional neural network classifier
trained specifically to adaptively sample SARS-CoV-2 viral DNA sequences while se-
quencing clinical sample. We integrate the classifier into the adaptive sampling tool
selectify. Selectify proves itself in terms of decision speed. It requires significantly
shorter data chunks to make decisions, and the average time to classify a data chunk
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is lower compared to Readfish. However, we were unable to adaptively sample target
DNA sequences from a clinical sample. The design of the classifier makes it unable
to generalize features of the training dataset in such a way that viral DNA variants
not expressed in the dataset can be correctly classified. Therefore, the diverse and
rapidly evolving nature of viral clinical samples makes it unsuitable for use in the field
of epidemiology.

However, less ambitious experiments should be conducted with selectify to further
study its properties. Unlike viral clinical samples, ZymoBIOMICS Microbial Com-
munity Standard samples have a known composition. Therefore, the genomes in the
sample can be well covered by the training dataset. In such a relaxed setting, selec-
tify might be able to leverage its design to adaptively sample underrepresented DNA
sequences from the sample with notable performance.
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