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Abstrakt

Úsporné dátové štruktúry sú užitočné v prípadoch, keď pracujeme s veľkým množstvom
dát a klasické dátové štruktúry nás limitujú svojími pamäťovými nárokmi. Bitové pole s
operáciami access , rank a select je stavebným kameňom mnohých prakticky užitočných
úsporných dátových štruktúr. V našej práci sa venujeme implementácii bitového poľa
pomocou metódy RRR, ktorá delí postupnosť bitov na bloky, ktoré sú ďalej jednotlivo
komprimované. V tejto práci sme predstavili nový algoritmus na kompresiu a dekom-
presiu blokov ale aj novú hybridnú metódu, ktorá výmenou za nekódovanie niektorých
blokov šetrí priestor na reprezentácii ostatných. Obidve myšlienky sme naimplemen-
tovali a experimentálne otestovali v umelých ale aj reálnych podmienkach. Naša dekó-
dovacia stratégia sa ukázala veľmi kompetitívnou a v testoch jasne porazila predchádza-
júce implementácie v rýchlosti dekódovania dlhších blokov. Zrýchlenie sa prenieslo aj
na implementáciu dátovej štruktúry FM-index, ktorá s našou verziou bitového poľa
dosahovala pre dlhšie bloky zrýchlenie na úrovni cez 10%. Jednostranná verzia hybrid-
nej implementácie sa ukázala zaujímavou pre riedke bitové postupnosti avšak druhý,
obojstranný variant, nepriniesol zaujímavé praktické výsledky.

Kľúčové slová: bitové pole, úsporné dátové štruktúry
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Abstract

Succinct data structures are interesting in scenarios, when we work with huge amount of
data and ordinary data structures could limit us because of their memory requirements.
Bit vector with operations access , rank and select is a building block of many practically
useful succinct data structures. We are mainly concerned with implementation of bit
vector based on the RRR representation which divides bit sequence into individually
compressed blocks. In our work, we introduced a new algorithm for block encoding and
decoding and also a hybrid implementation which leaves some blocks uncompressed in
exchange for space savings on all other compressed blocks. We provided implementation
for both of these methods and then experimentally evaluated their performance on
artificial and real data. Our new decoding algorithm is very competitive in practice
as it beats the existing decoding implementations on longer blocks. We also have
been able to measure the speedup of data structure FM-index, which with our version
of bit vector achieved over 10% speedup for longer blocks. The one-sided variant of
hybrid implementation turned out to be interesting for sparse sequences. The two-sided
variant, however, did not bring interesting practical results.

Keywords: bit vector, succinct data structures
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Chapter 1

Introduction to succinct data
structures

1.1 Motivation

In many applications, people work with so large amounts of data that the choice of the
data structures is heavily influenced by their space usage. The field of succinct data
structures focuses on representing data using as little space as possible while trying to
minimize the time and performance penalty on methods that these structures support.
Many succinct data structures for varied problems have been devised such as succinct
dictionaries (Raman et al., 2007), graph representations (Farzan and Munro, 2013),
grid representations (Chazelle, 1988), text collections (Ferragina and Manzini, 2000)
and many more, nicely summarized by Navarro (2016). While many of the succinct
data structures come with solid theoretical bounds on the space they use, others look
into real-world space usage and performance.

Succinct data structures are very helpful in scenarios where we work with an im-
mense amount of data. In these scenarios, using the ordinary data structures may force
us to place the entire representation of data structure onto the slower type of memory
storage. This reduces the usability of data structure and often completely ruins run-
time due to the high amount of slow I/O operations. Even if a succinct version of the
data structure may help us to store the data in a faster type of memory (e.g. fast RAM
instead of the slower disk), we pay some price for using it. The price mostly comes in
the form of more complex implementation.

In succinct data structures, it is common to distinguish between the space efficiency
of representations more strictly. Suppose that I is the number of bits that are needed
to store the data. We call the data representation

• compact – if it uses O(I) bits of space.

• succinct – if it uses I + o(I) bits of space,

1
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• implicit – if it uses I +O(1) bits of space,

In this work, we are mainly concerned with bit vector, one of the simplest data
structures that represents a sequence S of zeroes and ones while supporting the meth-
ods:

• access(S, i) – returning the i-th symbol of S,

• rank c(S, j) – returning the number of occurrences of symbol c in S before j-th
index,

• select c(S, k) – returning the index of k-th occurrence of symbol c in S.

Values of these methods are defined only for integers i, j, k such that 0 ≤ i < |S|,
0 ≤ j ≤ |S| and 1 ≤ k ≤ #c(S) where #c(S) denotes the number of occurrences of
symbol c in S. If it is clear on what sequence we are doing the operation, we use the
variants access(i), rank c(j) and select c(k).

The reason behind our focus on bit vector and particularly its compressed version
is the fact that it is one of the main building blocks of many succinct data structures.

In the following sections, we introduce some interesting and useful applications of
bit vectors.

Throughout our work, we use a unit-cost RAM model with word size of Θ(log n)

bits. In this model, arithmetic and logic operations on and between memory words
take constant time.

1.2 Application 1: Sparse array

Let A be an array of N elements, each taking k bits of space. We would like to support
accessing the i-th element of A. For simplicity, we assume that the elements of the
array do not change after the initial construction. A straightforward representation of
this array takes N · k bits of space and in general, it is not possible to make it better.
However, imagine a scenario where a significant portion of the array is empty and just
a handful of elements are present. Take for example a sparse vector of numbers, where
most of the elements are 0. Then we could use a more space-efficient approach. Let us
assume that only n out of N elements are present and also that n� N .

One approach considering the sparseness of an array is to store only the non-default
elements as (position, value) pairs, which takes n ·(k+lgN) bits of space, where by lg x

we denote dlog2 xe. If we just store these pairs sorted by the position, accessing the
i-th element takes time O(log n). We may also use a hash table to obtain a constant
time solution but this comes with additional memory overhead.
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An alternative approach, using the bit vector, is to store non-default elements in
a packed array P of length n taking n · k bits of space. Alongside P , we store a bit
vector B of length N where

B[i] =

1, if A[i] is occupied

0, if A[i] is empty/default value.

Using this representation of A, if we want to access the i-th element, we first check
for the value of B[i]. If it is zero, we return the default value. Otherwise, we need
to find how many ones are preceding this particular one in B to identify the location
of the requested element in array P . This is where we find the rank 1 method useful.
Similarly, to obtain the position of i-th non-empty value in A, we can use the select1

method.
The total space used by this representation is N + n · k + R where R is the space

required to support an efficient rank 1 query over B. As we shall show in Section 2.1.1,
rank can be implemented succinctly in constant time, i.e., with sublinear space over-
head R = o(N). So if we are provided with bit vector implementation along with
access and rank methods, we are able to reduce the total space used from k · N to
N + n · k + o(N) bits. Note that in practice, for a really small number of non-default
values, the hashtable representation takes up less space. On the other hand, bit vector
provides us with a solution that is usable for scenarios when A is mediumly filled in,
e.g., n/N > 0.1.

1.3 Application 2: Storing elements of non-uniform

length

Let us consider another problem of representing an array of elements of variable length.
Elements with variable lengths can often arise in succinct data structures. Even though
we can store these elements one after another in memory, with the variable-length
elements, we do not have an easy and fast way to tell where is the i-th element located.

Let us assume that we want to represent n elements of variable length. The first
solution is to allocate the array of length n · kMAX bits where kMAX is the number of
bits used for the element with the longest bit representation. This approach enables
constant time access but wastes a lot of space.

A second possible solution is to allocate a bit array R where the elements are stored
one after another in their raw bit representation. To locate the i-th element, we add a
helper array P , such that P [i] is the position where the i-th element begins in R. The
helper array P takes roughly Θ(n log |R|) bits of space as each entry contains an index
into the array R.
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Raw binary representation R: 1 1 0 1 1 1 1 0 1 0
Beginnings of elements 1 0 0 0 1 0 1 0 0 1

Figure 1.1: Raw binary representation of elements 1101, 11, 101 and 0 stored one after
another. Note that the helper bit array is of the same size as R, with ones on the
positions where a new element begins.

The helper array P can be replaced by a bit vector of length |R|, storing ones at
positions where some element in R begins (see an example in Fig. 1.1). Identifying the
beginning of the i-th element now comes down to efficiently locating the i-th one in
the helper bit vector, which can be answered using the select1 method. In Chapter 2,
we shall see how this method can be implemented efficiently.

1.4 Application 3: FM-index

Let us now consider a practically interesting application within a more complex data
structure. As we shall see, succinct data structure used to solve this problem also uses
bit vector and other building blocks commonly used in succinct data structures.

Let us consider a text T . After some initial preprocessing, we would like to quickly
answer questions such as “how many times is some pattern P contained in T ” and also
“where in T are the occurrences of P located”. This problem is generally called a text
indexing problem and is particularly useful in bioinformatics, where we often have a
very long sequence of DNA and we are interested in searching for some subsequences
in it, e.g., the problem of read alignment (Langmead et al. (2009) and Li and Durbin
(2010)).

One of the solutions that can be used for shorter texts is based on a suffix array
of T . This is a data structure which stores information about the lexicographical
order of suffixes of T . More precisely, the i-th position of suffix array S, stores the
starting position of the suffix that is i-th in the lexicographical order. For simplicity,
in this section, we assume that every text T contains at the end a special symbol $
and this symbol is also lexicographically smaller than any other symbol contained in
T . Searching for pattern P in suffix array of T uses the fact that if P is contained in T ,
it is located at the beginning of some suffixes. Since these are lexicographically sorted,
the result forms a consecutive subsequence of S. The suffix array consumes O(n log n)

memory asymptotically and in practice uses about 5n bytes of space if the text symbol
can be encoded using 1 byte and offset of the suffix can be stored in the 32-bit integer.
In practice, it is possible to get to much lower number of bits, if we use succinct data
structures.

FM-index, proposed by Ferragina and Manzini (2000), is a succinct data structure
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that is in some aspects similar to suffix array. FM-index can find the pattern in the
preprocessed text in time complexity close to linear in |P |. Particular space usage
depends on the compressibility of the text but the resulting space used by FM-index is
in many cases smaller than the space used for the original text T . For instance, FM-
index over a DNA sequence can take just 30–40% of the space taken by the original
text T as was observed by Ferragina and Manzini (2001).

In the rest of this section, we will explain how we construct the FM-index, how
we search in it and how/why FM-index uses bit vector with method rank . This is
particularly interesting for us as later, in Chapter 4, we use FM-index to benchmark
our new implementation of bit vector.

Burrows-Wheeler transform Burrows-Wheeler transform(BWT; Burrows andWheeler
(1994)) is a key part of the FM-index. BWT of a text T gives us a sequence TBWT of
the same length. Furthermore, this operation is reversible in a sense that we are able
to reconstruct the original text T only using TBWT . This transformation is used as
a preprocessing step of compression algorithms such as bzip2 (Seward, 1996) and was
studied more by Manzini (2001), since TBWT is oftentimes easier to compress than the
original text. Let us first explain the construction and then provide an intuition why
it is easier to compress.

Consider a sequence T of symbols over an arbitrary alphabet Σ. Take all the cyclical
rotations T1, T2, . . . , Tn of T , sort them lexicographically and form a (conceptual) table
M (see an example in Fig. 1.2). Note that each column is a permutation of T . The
first column, F , consists of all the characters of T , sorted. The last column, L, is the
Burrows-Wheeler transform of T .

FM-index stores just columns F and L from matrix M . As the first column of M
consists of runs of sorted symbols, it can be represented in FM-index using the helper
array Count where Count [c] is the number of occurrences of symbols preceding c. Note
that the run of symbol c in F starts at the index Count [c].

BWT is usually more compressible than the original text because it frequently con-
tains runs of the same symbol. This can be better explained on an example. Consider
us having BWT of a text containing a lot of mentions of the word house. All the
rotations prefixed with ouse will form a consecutive subsequence of rows of M . Some
of these rows will end with symbol m for word mouse, some of them with p for spouse
but many of these lines contain h at the end as this is very common symbol preceding
ouse in the text.

Generally, it is common for (natural) texts that symbols can be predicted quite well
from the context following them. If we sort these contexts (beginnings of rows of M),
then the last row will often contain runs of the same symbol but also subsequences
where just a handful of symbols occur.
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F L

0 $ b a n a n a

1 a $ b a n a n

2 a n a $ b a n

3 a n a n a $ b

4 b a n a n a $

5 n a $ b a n a

6 n a n a $ b a

sorted suffixes
$

a$

ana$

anana$

banana$

na$

nana$

Figure 1.2: On the left, we may observe the matrix M filled with cyclic rotations of
sequence T = banana$. On the right, we may observe the sorted suffixes of T (content
of suffix array). The Burrows-Wheeler transform of T is string L = annb$aa – the last
column of M . Note that in practice, we do not need to construct the whole table as
more efficient algorithms exist. It is also notable that matrix M includes very similar
information compared to suffix array as rows of M basically start with individual
suffixes. FM-index stores only representation of columns F and L, the grey area is not
stored.

Searching in an FM-index Searching in an FM-index is based on two important
properties of matrix M :

1. Rotations starting with prefix w form a consecutive subsequence of rows in M .

2. The i-th occurence of symbol c in F corresponds to the i-th occurence of c in L.

The first property also enabled us to search for a pattern in a suffix array. The
second property is less trivial to observe. Let us take two rows in M , namely Ti and
Tj such that i < j. Let Ti be of the form cA and Tj of the form cB where c is a
symbol from the text and A and B are sequences of symbols. Since i < j, it follows
that A < B and this means that rotated rows Ac and Bc are in the same relative order
as the original rows. From this observation, it follows that the relative ordering of the
same symbol is preserved between F and L.

In the next part, we describe how we search for some arbitrary pattern P =

p0p1 . . . pn−1 in FM-index. Let us denote suffix of P starting at i-th element Pi....
The result of the search for P is a range of M ’s rows that have P as their prefix. The
search for these rows proceeds iteratively from the end of P to its beginning. At first,
we find the range of rows starting with Pn−1..., then gradually continue by finding rows
that start with Pn−2..., Pn−3... and so on up to P0 = P . In every step, these rows form a
consecutive subsequence of rows of M so we will maintain just the beginning and the
end of the interval. This follows from the observation 1.
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First, let us show the process on an example (see Fig. 1.3). Assume we are searching
for the word house and we already found the range of rows in M that start with ouse

(rows 200–204). Symbols in the last column of this range correspond to the symbols
preceding ouse in the text. We may observe different symbols in arbitrary order there
such as m for the word mouse or h for house.

To search for the range starting with house, we look into the range of all rows
beginning with the symbol h. Locating this range is easy as it starts at position
Count [h] and ends before Count [i]. Rows in this range are sorted according to the
second symbol so there will be for example some lines continuing with symbol a if the
text contained word hashtag or symbol e if the word head was present in the text.
Among them, lines starting with house are located, but we do not store anything except
for Count and L. However, we already found the location of suffixes starting with ouse.
All the symbols h in the last column correspond to left rotations of rows 100–105 by
one. Note that rotations of row 103 and 104 are rows 201 and 204. Rotations of
hashtag/head/hind start with ash/ead/ind, so they come before row 200. On the
other hand, rotation of row 105, starts with uge, which comes after ouse. To locate
the offset of house along the lines starting with h, we need to count the number of
occurences of h in L before the occurrences of ouse.

In general, to count the number of occurrences of pattern P , we first find the
subsequence of rows of M beginning with Pn−1.... As this is just one symbol, pn−1, the
initial subsequence is a run of symbol pn−1 in F given by

bn−1 = Count [pn−1]

en−1 = Count [pn−1 + 1].

The next step is to find the subsequence of rows of M , given by bn−2 and en−2,
which has Pn−2... as a prefix. As we already located rows beginning with Pn−1..., we
can use this information. In a range from bn−1 to en−1 some rows end with symbol
pn−2. These are rows which after being rotated, create subsequence we are looking
for. Subsequence we are looking for is also subsequence of a run of symbol pn−2 in F ,
starting from Count [pn−2] spanning rows up to Count [pn−2 + 1]. To find the beginning
and end of our subsequence inside of this run, we compute the number of occurrences
of symbol pn−2 in L up to bn−1, the start of previous subsequence of rows and also the
number of occurrences of symbol pn−2 in L up to en−1 giving us its end. This works
thanks to the property 2. Thus giving us the new subsequence

bn−2 = Count [pn−2] + rank pn−2(L, bn−1)

en−2 = Count [pn−2] + rank pn−2(L, en−1).
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Row n. F L
0
. . .

Count [h] 100 h a s h t . . .
101 h e a d
102 h i n d b e

b0 103 h o u s e
104 h o u s e

e0 105 h u g e
. . . . . .

b1 200 o u s e m
201 o u s e h
202 o u s e m
203 o u s e . . . s p
204 o u s e h

e1 205
. . .

Figure 1.3: We are counting occurences of house and we already found the range
of rows starting with ouse given by b1 and e1. To find the range of rows starting
with house, we first look at the position where rows starting with h begin in F –
Count [h]. However, not all of the rows starting with h continue with ouse. To find
this subinterval, we use the information from previous iteration. We count the number
of occurences of h in L before position b1 and use this as offset into run of symbol
h. In this particular case, b0 = Count [h] + rankh(L, b1) = 100 + 3 = 103 and e0 =

Count [h] + rankh(L, e1) = 100 + 5 = 105.
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We continue and repeat the previous step until we compute b0 and e0 or until bi = ei

for some i (in this case, the searched word is not present in the text). The possible
pseudocode for counting the number of occurrences of P in T is in listing 1.

Algorithm 1: Count number of occurrences of pattern P in an FM-index
Data: P ∈ Σn

b← Count [P [n− 1]];
e← Count [P [n− 1] + 1];
for i = n− 2 downto 0 do

if b = e then
break;

end
b← Count [P [i]] + rankP [i](L, b);
e← Count [P [i]] + rankP [i](L, e);

end
return e− b

As we can see, the FM-index requires the method rank on a general string. In
the next paragraph, we show that we can use bit vectors to provide a reasonable
implementation of the rank/select methods on a sequence over a general alphabet.

Wavelet tree Let us assume for a moment that we have a bit vector implementation
supporting methods access , rank and select . We have a sequence S of length n over
an arbitrary alphabet Σ. Our goal is to build vector over this sequence supporting the
methods access , rank and select .

A straightforward approach that uses bit vector is to have one bit vector Bc for
every symbol c from the alphabet Σ, storing ones at positions where c occurs in S

Bc[j] =

1, if S[j] = c

0, otherwise.

This is very fast because each rank and select operation can be answered using only
a single binary rank or select . However, we use roughly |Σ| times more space than the
single bit vector over this sequence would use. Or in other words, the space usage is
growing linearly with the alphabet size.

Wavelet tree data structure proposed by Grossi et al. (2003) uses a divide-and-
conquer approach to solve this problem. It takes the alphabet Σ of size σ and recursively
splits the alphabet into two subsets creating a hierarchical partitioning of an alphabet.
In the root node of the tree, the alphabet Σ is split into two subsets Σ0 and Σ1 of
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Figure 1.4: Wavelet tree representation of text S = aabadacdc. We can see how
the recursive partitioning of the alphabet works. In every node, we also show the
subsequence represented (grey text) in the subtree of the node. Note that we include
the grey parts in the visualisation to help in understanding but they are not stored by
the data structure.

roughly equal size. A bit vector B of size n is stored in this node such that

B[i] =

0, if S[i] ∈ Σ0

1, otherwise.

Then two strings S0 and S1 are created from S by taking just symbols from Σ0 and
Σ1, respectively. The left and right child of the root node are then built by recursively
applying the same idea on subsequences S0 and S1 until we end up with a trivial unary
alphabet at the leaves. An example of this partitioning is shown in Fig. 1.4. It follows
that the depth of the wavelet tree is O(log σ).

In a wavelet tree, both rank c and select c methods on the original sequence can be
implemented using rank/select methods applied on bit sequences that are stored in
nodes along the path from the root to the leaf containing symbol c. Thus, the number
of rank and select queries on individual bit vectors depends on the depth of a leaf
containing queried symbol c. Regarding the space usage of wavelet tree; as on every
level of the wavelet tree, we store roughly a bit vector of length n, it is possible for this
representation to use just n lg σ + o(n) bits of space.

Even if this version of wavelet tree can be used inside of the FM-index, it is possible
to make a solution that is faster and more space efficient in some scenarios. Time
complexity of both methods, rank c and select c, depends on the time complexity of the
bit vector implementation used in the nodes, but also on the depth of symbol c in the
tree. This depth is now for every single symbol O(log σ).
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To obtain a better solution, let us give another perspective on the wavelet tree and
assign a single bit to every edge – 0 for left and 1 for right (see Fig. 1.4). Now, we can
think of the wavelet tree as an assignment of a binary code to every alphabet symbol.
The code of a symbol c is obtained by concatenating bits along the path from the root
to the leaf for symbol c.

The idea proposed by Mäkinen and Navarro (2005) is to shape the wavelet tree in
such a way that a code of every symbol is equal to its Huffman code. The first advantage
is that the space used decreases from O(n log σ) to O(nH0(S)). The second advantage
is that if we query for each symbol according to its frequency, then on average, we
need to visit O(H0) nodes rather than O(log σ), where H0 is the empirical zero-order
entropy, defined as

H0(S) =
∑
c∈Σ

nc

n
log

n

nc

,

where nc denotes number of occurrences of symbol c in sequence S of length n. The
value of zero-order entropy is a lower bound for the number of bits that S can be
compressed to by compressor that considers only frequencies of symbols and H0(S) ≤
lg σ. In the worst case, we need lg σ bits to store every symbol. In some cases, however,
it is the case that frequencies of symbols are not even and thus H0(S)� lg σ.

The maximum depth of a Huffman shaped wavelet tree may be bigger compared
to the original, however, Grabowski et al. (2004) showed that we can enforce the
maximum depth to be O(log σ) with the average depth limited by H0 + 2. This is,
however, as they claimed, not very practical. The important fact is that with Huffman
shaped wavelet tree, it is possible to decrease the space usage in some scenarios but
also average number of nodes accessed and thus decrease the average query time of
rank and select .

It was shown by Grossi et al. (2003) that it is also possible for the wavelet tree
of original shape to achieve space usage of nH0(S) + o(n log σ) bits, if the bit vector
implementation that takes space close to the zero-order entropy is used inside of the
tree nodes.

In practice, it is beneficial to combine these two ideas and use the Huffman shaped
wavelet tree with compressed bit vector inside.

Space usage of FM-index We already showed how FM-index is constructed and
how the searching in FM-index works and can be supported should we have a data
structure that supports rank and select on sequences over the general alphabet. We
also showed how wavelet tree, one such data structure works.

Kärkkäinen and Puglisi (2011) showed that combining Huffman shaped wavelet tree
and compressed bit vector taking space close to zero-order entropy brings down the
total space used by FM-index to nHk(T ) + o(n) log σ for the text T of length n over
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alphabet of size σ where Hk is k-th order empirical entropy. This quantity is defined
as

Hk(S) =
1

n

∑
w∈Σk

|wS|H0(wS)

where wS is the string consisting of concatenation of symbols following w in S. This
measure gives us the lower bound for number of bits that S can be compressed to by
compressor that considers context of length k when encoding each symbol of S.

In this chapter, we presented some useful applications of the bit vector. We looked
more closely on FM-index, the data structure used for the problem of text indexing.
There, we encountered the problem of answering rank and select over the general
alphabet and described wavelet tree, one possible data structure that can be used to
solve it, assuming we have an implementation of bit vector supporting access , rank
and select methods. We also showed that compressed bit vector that takes space close
to zero-order entropy can be used to obtain succinct representation of a wavelet tree
but also very space efficient version of FM-index.

1.5 Outline of the Thesis

The goal of this thesis is to describe the current state of the bit vector implementations
supporting access , rank and select methods and come up with improvements that make
bit vectors more usable in practice. This can be either by speeding up the current
implementations, saving some additional space but also by combination of these two
as obtaining some new trade-offs of query time and space used by the implementation
can also open doors to new applications.

In the second chapter, we describe the state-of-the-art implementations of rank

and select methods over bit sequence. We discuss what are the theoretically optimal
solutions but also what are their practical drawbacks. We then proceed to describe one
of the widely used implementations of a compressed bit vector called RRR.

In the third chapter, we propose our own modifications to the implementation of
a compressed bit vector based on RRR and we discuss theoretical aspects of these
modifications.

In the fourth chapter, we show our proposed implementation of previously devised
methods and experimentally test and evaluate them. We measure the performance
of our solution on artificial as well as real-world data. Finally, we demonstrate the
capabilities of our new bit vector inside of the FM-index.



Chapter 2

Binary sequence representation

As we have shown in the previous section, bit vector can be used inside of the data
structures that solve various practical problems. This chapter is dedicated to outlining
the current state of the bit vector implementations supporting methods access , rank
and select . We start with a succinct representation of bit vector and present ideas to
support rank and select in sublinear extra space. Then we look at the compressed
representation of bit vector introduced by Raman et al. (2007).

2.1 Bit vector implementation

In this section, we introduce practical but also optimal constant time implementations
of rank and select methods with sublinear space overhead.

2.1.1 Rank

Regarding rank in bit vector, we are concerned with two different methods, namely
rank 0(i) and rank 1(i). In every binary sequence, it holds that

rank 0(i) = i− rank 1(i).

Thus, it is common to only provide the implementation for one of them and answer
the other one using the formula above. Thus, from now on, we consider only rank 1(i)

method and denote it rank to simplify notation. There are two straightforward solu-
tions we can begin with to support rank on a bit vector B.

The first solution does not use any precomputation at all. Every time we want to
compute rank(i), we go through all the bits preceding i-th and count all the ones. This
solution is not practical for long bit vectors but it does not require any additional space
and precomputation.

The second approach is to precompute rank of every bit, which enables us to answer
rank query in constant time, using a single table lookup. However, the space needed

13
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B 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1

precomputed ranks 0 4 11 13

Figure 2.1: Example of dividing bit sequence B into superblocks of length 8 and
precomputing rank 1 for the beginning of every superblock. Note that last superblock
may not contain full number of 8 bits.

to support this solution is O(n · log n) bits, where n is the length of the bit sequence.
Presented solutions can be combined to obtain an idea of a practically interesting

solution where the pre-computed rank values are stored only for some bits. At first,
we choose a constant k and split bit vector into non-overlapping subsequences of k
bits called superblocks. We then precompute rank only for the beginning of every
superblock. Example of this representation is presented in Fig. 2.1. This representation
enables answering rank in time O(k) as only the precomputed value is accessed and
then bits from the start of the superblock up to the queried position are accessed. This
solution uses O(dn/ke log n) bits of memory as there are dn/ke superblocks and every
rank stored is at most n, thus taking O(log n) bits. This version of the implementation
allows us to balance between speed and space usage using the parameter k. Increasing
parameter k saves space, on the other hand, smaller k requires less computation to be
done inside of the superblock.

In practice, the time of answering the query for smaller k may be dominated by
cache miss that often occurs when accessing rank precomputed for the superblock.
Subsequent linear scan through superblock is very cache-friendly and thus very fast.

Constant time rank with sublinear space overhead The previous solution works
well and is commonly used in practice. However, it is possible to answer rank query in
constant time with only sublinear space overhead. The constant time solution is based
on work of Jacobson (1988). As in the previous solution, we start by splitting the bit
sequence into superblocks. This time we set the length of a superblock to O(log2 n) and
again precompute ranks for the beginning of every superblock. Then, every superblock
is further subdivided into blocks of length d(log2 n)/2e. Similarly to superblocks, for
all of these smaller blocks, we precompute rank . However, to save space, we only
precompute these ranks from the beginning of the corresponding superblock.

Now, when queried for rank of some position i, we combine:

1. rank precomputed for the beginning of its superblock, plus

2. rank precomputed for the beginning of its block, plus

3. rank inside of its block
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The third step can be done also in constant time on unit-cost RAM model with
word size Θ(log n) that we use in most of our work. In weaker models, we can still
use a precomputed table. This table stores for every possible block and rank query its
result.

The additional space used by this solution can be broken down into three parts:

1. Precomputed rank for every superblock: The number of superblocks isO(n/ log2 n)

and we need O(log n) bits to store every single rank value so the total amount is

O
(

n

log2 n
· log n

)
= o(n). (2.1)

2. Precomputed rank for every block: The number of smaller blocks is O(n/ log n).
For every block, precomputed rank from the beginning of a superblock is stored.
This value is at most log2 n, thus we need O(log log2 n) = O(log log n) bits to
store it. The total amount of space is

O
(

n

log n
· log log n

)
= o(n). (2.2)

3. Precomputed table storing result for every possible rank query over every possible
block: There are only O(2(logn)/2) = O(

√
n) blocks of length O((log n)/2). The

number of possible rank queries over a block is equal to its length. For every
element stored in the table we need at most O(log log n) bits of space so the total
amount of space is

O(
√
n · log n · log log n) = o(n). (2.3)

The total space used for this solution of rank is therefore a sum of 2.1, 2.2 and 2.3,
which is sublinear in n.

Even if optimal in theory, this solution is not often used in practice as it involves
a quite complex implementation and produces 3 cache misses per query: One for
accessing the precomputed rank up to the start of the superblock, then another one
for the precomputed value of rank to the beginning of the block and in the end also
one for accessing the precomputed rank value of the block.

2.1.2 Select

In case of a select over bit vector, we are again interested in two methods select0 and
select1. Even if there is not a simple way how to convert the result of one to another
just like with rank, we shall be interested mainly in select1 version as the other one can
be implemented using the same ideas. The important property of the select method is
that it works much like an inverse to rank . This is given by the fact that

rank c(select c(i)) = i.
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Thanks to rank being a nondecreasing function, it is possible to binary search
for the result of select c(i) if we have an efficient implementation of rank . This can
be combined with the solution from the previous section. At first, we binary search
for the solution in the samples of rank stored in superblocks. After identifying the
correct superblock of length k bits, we linearly scan for the result. This solution does
not require any additional memory on top of the space used for rank . The answer is
computed in time O(log(n/k) + k). Even though this solution is not optimal, it works
very well in practice, as observed by González et al. (2005) on bit vectors of length up
to 220 ≈ 106.

Constant time select Clark (1998) proposed solution for select in constant time
and sublinear space overhead. The solution is, similarly to the constant time rank

solution, based on a division into blocks and superblocks.
We begin by precomputing select(i) for every i being multiple of t1 = log n·log log n.

These precomputed values take O(n/ log log n) bits of space. Results of these precom-
puted select queries split the bit sequence into superblocks of possibly variable length
such that each superblock contains exactly t1 ones (except possibly for the last su-
perblock).

There are now two categories of superblocks. The ones called long that are longer
than t21. In long superblocks, we can store the positions of all ones as they are sparse
and there are not many of these blocks. The total space used is

O((n/t21) · t1 · log n) = O(n/ log log n),

which is still o(n).
Dealing with short superblocks is harder. On short superblocks, we apply the idea

that we already used for the original bit sequence. Inside of every short superblock, we
precompute the select from the beginning of the superblock for every multiple of t2 =

(log log n)2. These precomputed values are small as they only represent positions from
the beginning of a short superblock. Each of these values takes O(log log n) of space so
the total amount of space used by these values is O(n/t2 · log log n) = O(n/ log log n).

This procedure breaks short superblocks into blocks. Again, each of these blocks,
possibly except for the last one contains t2 ones. For blocks longer than t22, we store
the positions of all ones as there are not many of these blocks. We may use the same
reasoning as in the previous part to conclude that this takes O(n/t22 · t2 · log log n) =

O(n/ log log n) bits.
To deal with the blocks smaller than t22, we can again precompute a table of all the

possible ways how the block may look and all the possible select queries over it with
their result. The number of possible blocks of length t22 is equal to O(2t22), the number
of possible queries over the block is at most its length t22 and to store the results we
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need roughly O(log t2) bits. The table size is thus

O(2t22 · t22 · log t2) = o(n).

When answering select1(i), we first find the location of the right superblock. If
this is a long superblock, we just look at the precomputed positions of ones in the
superblock. The matter is more complicated if we are dealing with a short superblock.
In this case, we find the location of the correct block. If this is a long block, we can
once again just look at the position of one we are interested in. If it is a short block,
we use the precomputed table.

2.2 Compressed representation

In the previous section, we showed how rank and select queries can be answered in
constant time with just sublinear space overhead. In this section, we show that it is
possible to compress the whole bit vector close to the zeroth order entropy while still
keeping the constant time rank and select .

Up to now, we have been working with a straightforward representation of bit vector
which consists of all the bits, stored one after another. This is the best we can do in
general, but there are scenarios where there is a room for improvement. One example
is if the zeroth order entropy H0 of a bit sequence is small. This occurs in sequences
that have a very skewed frequency of zeroes or ones. If sequence of length n has m
ones in it, we can store it as before using n bits. There is, however, only

(
n
m

)
such

sequences and it may be more beneficial for small/big m to store rather the sequence
number which one of these

(
n
m

)
sequences we are working with. It is possible to prove

for sequence S of length n with m ones that

lg

(
n

m

)
= nH0(S)−O(log n).

This means that using this representation may be beneficial in scenarios when nH0(S)�
n. This is an idea that RRR is based on.

RRR is a data structure based partly on the work of Pagh (2001) and proposed
by Raman et al. (2007). We split the bit sequence into blocks of length b and then
represent a block with c ones using only lg

(
b
c

)
bits as there are

(
b
c

)
combinations for

positions of ones. The whole block can then be uniquely represented as a pair (c, o)

where c is the number of ones in the block, called class and o is an offset of this block
in a sequence of all the

(
b
c

)
blocks in this particular class. Even if the ordering of the

blocks with the same class can be arbitrary, only lexicographical ordering is heavily
used in practice.

Now, for this structure to work, we need to find a way how to convert between the
bit representation of a block and its compressed form (c, o). The process of obtaining
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c and o from the raw representation of block is called encoding. The opposite process
is called decoding. We would like both processes to be fast, however, in most of the
applications where bit vector is used, we do the encoding only once at the initial
construction of the bit vector. Decoding, on the other hand, is done every time we are
accessing a particular bit in B. Thus, in practice, it is more important to optimise the
speed of decoding.

Block encoding/decoding For shorter block lengths, such as b ≤ 15, it is reason-
able to generate two helper tables E and D. Table E used for the encoding, maps the
block to its offset. The other table D is two dimensional and stores the bit representa-
tion of the block that is associated with pair (c, o) on position D[c][o]. Both these tables
E and D can be precomputed by generating all the possible blocks in lexicographical
order. After this precomputation, the encoding and decoding of a block takes constant
time.

For longer blocks, it is impractical or even impossible to store huge helper tables.
On the other hand, longer blocks yield better compression rates because of smaller per
block overhead. Navarro and Providel (2012) developed method we shall call on-the-fly
decoding, that does not require these big helper tables. This method relies on a bit
by bit encoding and decoding of the block, taking O(b) time. While decoding, we
can compute on every position, how many blocks precede a given prefix using simple
combinatorics. Based on that number, we decide whether next bit should be 0 or 1.
Pseudocode of this idea computing binary representation of block is in listing 2.

On-the-fly decoding does not use helper tables E and D but to achieve the best
possible time complexity, it requires the precomputation of Binomial coefficients it
uses. These, however, use together less than O(b3) of bits.

Arrangement of encoded blocks In the previous paragraph, we showed how a
single block can be decoded. The next question is how the encoded pairs representing
blocks are arranged in memory. This arrangement should consider space efficiency but
also allow easy access to individual blocks of B.

The main part of this representation comprises of two arrays C and O storing the
classes and offsets of the blocks, respectively. The array C is an array of elements that
are of fixed length. Every element takes lg(b + 1) bits of space as the number of ones
in the block can be anywhere between 0 and b. The array O, on the other hand, is an
array of elements of variable length where the i-th element is lg

(
b

C[i]

)
bits long where(

b
C[i]

)
is the number of blocks along the class C[i]. Note that accessing i-th element in

array C is easier than doing the same in array O.
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Algorithm 2: On-the-fly decoding
Data: c, o
block ← 0;
for i = 0 to b− 1 do

// p is the number of blocks with the same prefix and zero on

i-th position

p←
(
b−i−1

c

)
;

if o < p then
// add zero at the end of the block

block ← 2 · block;
end
else

// add one at the end of the block

block ← 2 · block + 1;
c← c− 1;
o← o− p;

end

end
return block

Accessing bits in RRR Accessing x-th bit of the original sequence B consists of
three steps. The first step is to obtain the compressed representation of a block where
x-th bit is located. The second step is to decode this block and the third is to access
the particular bit of interest in the decoded block. The x-th bit is contained in the i-th
block where i = bx/bc. Its compressed representation is (C[i], O[i]) where C[i] stands
for class and O[i] for the offset along the all possible blocks with class C[i].

Obtaining C[i] is trivial as it is at the fixed memory offset from the beginning of
array C. Getting the value of O[i] is harder as it is not at a known memory offset but
this memory offset can be expressed as

i−1∑
j=0

lg

(
b

C[j]

)

, where we basically sum up the lengths of all the elements preceding O[i]. This can
not be, however, computed in constant time without any precomputed information and
we need to basically one by one skip over elements that come before O[i]. To access
the i-th block without precomputed information, we need in the worst case to look at
all the elements of C and this takes O(n/b) time. For now, let us analyze space usage
of this solution.
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Space usage of RRR Our current representation needs to store the arrays C,O.
Let us now analyze the space used by these structures. Array of classes C is an array
of dn/be elements of fixed length lg(b+ 1). For offset array O we argue that its size is
bounded by

n/b∑
i=1

lg

(
b

ci

)
≤
dn/be∑
i=1

log2

(
b

ci

)
+ dn/be

= log2

dn/be∏
i=1

(
b

ci

)
+ dn/be

≤ log2

(
n

#1(B)

)
+ dn/be ≤ nH0(B) + dn/be

where #1(B) denotes the total number of ones in B. The second inequality was ob-
tained using the observation that

(
n
k

)(
m
`

)
≤
(
n+m
k+`

)
. This can be seen when we interpret

the left side as the number of ways we can choose k elements from n elements and `
elements from another m elements. Any such choice is included in the right side, which
represents choices of k + ` elements from n + m. To understand the last inequality,
consider all binary sequences of length n with m ones. There are

(
n
m

)
such sequences,

thus in the worst case, the space we need to represent a single one of these sequences
is equal to

lg

(
n

m

)
= n log2 n−m log2m− (n−m) log2(n−m)−O(log n)

= m log2 n+ (n−m) log2 n−m log2m− (n−m) log2(n−m)−O(log n)

= n

(
m

n
log2

n

m
+
n−m
n

log2

n

n−m

)
−O(log n)

= nH0(B)−O(log n).

The first equation is obtained by using Stirling’s approximation.
If we choose the decoding method with a helper table, D is storing 2b entries and

each entry takes b bits of storage. To summarize, the total space used is then

nH0(B) + dn/be+ dn/be · lg(b+ 1) + b2b.

Block access speed up To speed up the process of accessing blocks, we can store
pointers to every k-th element of O. This again creates some bigger superblocks as can
be observed in Fig. 2.2. This representation speeds up the process of locating offset
O[i]. Now, we first find the nearest pointer leading to superblock where i is located
and then we just skip through the superblock at most k times to locate O[i]. This
additional structure of bn/(bk)c integers uses O(log(n) · n

bk
) bits of space.

When setting the block length to log(n)/2, we obtain interesting practical results
as the total space used by our representation is equal to nH0(B) + o(n) bits. This
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Figure 2.2: RRR implementation. B shows the original bit sequence cut to blocks. C
stores the class which is in this case number of ones in the block. O uses variable number
of bits per entry, in general, i-th entry uses lg

(
b

C[i]

)
bits and stores the lexicographical

order of this block in the class C[i]. For k = 2, we can see a helper array P storing bit
offsets into every k-th element namely 0, 2, 4 . . .

means that we are storing only a sublinear amount of data on top of the zeroth order
empirical entropy.

When we are interested in obtaining the best practical results, block length becomes
one of the most important parameters of RRR implementation. As we shall show in
the Chapter 4, longer blocks yield lower per bit overhead. Also, not all block lengths
are used in practice. Very often, we are interested in block lengths of the form 2k − 1.
This is because the number of ones in block of length 2k − 1 can be number between 0
and 2k−1 making this in total 2k possibilities. Storing this number in the fixed bucket
of size k bits makes use of all the available space. This is why most commonly used
bucket sizes in practice are 4, 5, 6 and 7 for block lengths 15, 31, 63 and 127.

For block length of 15, the encoding and decoding table each occupies roughly 64kB
of space. This is because each table consists of 215 entries each taking 2 bytes of storage.
Unfortunately, for block length of 31, these two tables would consume roughly 231 · 4
bytes of storage. That amounts to roughly 8.5GB of space and makes this approach
unusable in practice. This problem forces us to use the on-the-fly decoding for block
lengths bigger than 15. The disadvantage of this approach is that it takes O(b) steps
to decode the block. Furthermore, on-the-fly decoding contains branches and it is hard
to parallelize its steps in some meaningful way. Overall, this makes the block length
a parameter that we can adjust to balance between better space efficiency and faster
runtime performance.
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Chapter 3

Our contributions

In this chapter, we propose various ideas that we hope lead to a better practical im-
plementation of RRR. We first propose a new general block encoding and decoding
routine. Then, we show how we can exploit the assumptions about the represented bit
sequence to come up with implementation that is better tailored for the concrete bit
sequence in terms of the query time and space usage.

3.1 Block encoding

As we discussed in Section 2.2, there are to the best of our knowledge two widely used
methods to encode and decode the blocks in RRR. Disadvantage of the table decoding
method is its inability to reasonably support longer blocks in practice because of the
huge size of helper tables. On the other hand, the on-the-fly decoding method may be
used to support longer blocks with the downside being longer encoding and decoding
times. In this section, we propose a new method for block encoding and decoding. The
main objective of the new method is to enable use of longer blocks while not hurting
the runtime so significantly.

The main idea of our proposed solution is to use a divide-and-conquer approach to
break the problem of finding the order of the block B in class c into finding orders of
several smaller sub-blocks of B. The potential advantage of this solution is that it may
enable us to use the table method to solve the smaller subproblems. To facilitate our
solution, we altered the respective order of the blocks along the class and we do not
use the lexicographical ordering anymore. Note that we continue to use the number
of ones to identify the class of a block. In our solution, every block B will be thought
of as a concatenation of two smaller sub-blocks, B1 and B2. Primarily, the blocks are
ordered according to the value of their class pair (c1, c2) where c1 and c2 are the classes
of the smaller sub-blocks B1 and B2, respectively. Only then, the tie is broken by order
of B1 and B2 in their respective classes. An example of the new ordering for blocks of

23
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Offset Block (c1, c2)

0 000 011

(0, 2)1 000 101

2 000 110

3 001 001

(1, 1)

4 001 010

5 001 100

6 010 001

7 010 010

Offset Block (c1, c2)

8 010 100

(1, 1)
9 100 001

10 100 010

11 100 100

12 011 000

(2, 0)13 101 000

14 110 000

Figure 3.1: An example of the new ordering for block length b = 6 and class c = 2.
Every block is divided into two sub-blocks of length 3. Note the differences to the
lexicographical ordering. Block 011 000 at offset 12 is preceded by lexicographically
greater blocks 100 001, 100 010 and 100 100 since it has higher number of ones in
the first sub-block.

length 6 is shown in Fig. 3.1.
Formalizing this, we shall write B ≺X B′ if blocks B and B′ are of the same length,

class and at the same time B precedes B′ in ordering X. In this situation, we often
refer to block B as being smaller than B′. We write B ≺Lex B

′ if B precedes B′ in
lexicographical ordering. Using this notation, our new proposed ordering P can be
formalized as:

B ≺P B
′ ⇐⇒ [#1(B1) < #1(B′1)]

∨ [(#1(B1) = #1(B′1)) ∧B1 ≺X B′1]

∨ [B1 = B′1 ∧B2 ≺Y B′2]

where B = B1 · B2, B′ = B′1 · B′2 and X, Y are arbitrary orderings. Note that as X
and Y , we can use lexicographic ordering or we can use the same idea recursively.

In the rest of this section, we are going to explain how encoding and decoding works
with our proposed ordering.

Encoding Before providing the general encoding routine, let us demonstrate the
process on a simple example and then generalize the ideas behind the process. Imagine
encoding block 100010 of length 6 using sub-block length 3. We can see this block in
Fig. 3.1 at offset 10.

The class of this block is 2 as there are two ones in the whole block. Obtaining the
offset is more complicated; we calculate it by counting the number of blocks preceding
100 010 in class c = 2. We divide these blocks into 3 categories:

• Blocks with a smaller number of ones in the first sub-block. (There are 3 such
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blocks – those beginning with 000.)

• Blocks with the same number of ones in the first sub-block, but smaller first
sub-block. (There are 6 blocks with this property – those beginning with 010 or
001.)

• Blocks with the same first sub-block, but smaller second sub-block. (There is 1
such block, namely 100 001.)

Summing up, we get that there are 10 blocks preceding 100 010. Together with its
class, we encode this block as a pair of numbers (2, 10).

Let us generalize the process of encoding block B of length b with sub-blocks of
length b1 and b2. We also need two orderings X and Y that can be used to order sub-
blocks B1 and B2, respectively. The first step is to count the number of ones to obtain
classes of individual sub-blocks c1 = #1(B1) and c2 = #1(B2); thus c = #1(B) = c1+c2.
To compute the offset of B we first obtain pairs (c1, o1) and (c2, o2) by recursively
encoding the sub-blocks B1 and B2. Then, we obtain the offset of B by counting the
number of blocks B′ preceding B. These can be divided into 3 categories:

1. B′ such that #1(B′1) < #1(B1),

2. B′ such that #1(B′1) = #1(B1), B′1 ≺X B1, and

3. B′ such that B′1 = B1, B
′
2 ≺Y B2.

One can observe that these categories closely resemble the definition of our ordering P
above.

The number of blocks in the first category is equal to

c1−1∑
i=0

(
b1

i

)(
b2

c− i

)
.

For fixed i,
(
b1
i

)
counts the number of sub-blocks with i ones and

(
b2
c−i

)
counts the

number of sub-blocks with the remaining c− i ones.
The number of blocks in the second category is equal to

o1 ×
(
b2

c2

)
.

These are all the blocks with first sub-block smaller than B1 and any second sub-block
with c2 ones.

The number of blocks in the third category is equal to o2. This is the number of
blocks that have B1 as the first sub-block and the second sub-block is smaller than B2.

The resulting offset of block B is given by the sum of these 3 quantities.
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Decoding We now propose a general decoding scheme for block B of length b com-
bined from the sub-blocks of lengths b1 and b2. Decoding is a process of obtaining
bit representation of block B from its encoded representation (c, o). When our new
encoding scheme is used, the main part of the decoding process is to obtain encoded
representations (c1, o1) and (c2, o2) of sub-blocks B1 and B2. These can then be fed
into the decoding subroutines to obtain sub-blocks B1 and B2. Concatenating these
two representations gives us the decoded block B.

Our first step when decoding is to find c1 and c2 using o. Assume that our block
has an unknown class pair (c1, c2), such that c1 + c2 = c. All the blocks with class c
are primarily sorted by class pair so blocks with the same class pair form a consecutive
range. Range of class pair (c1, c2) contains

(
b1
c1

)
×
(
b2
c2

)
blocks. To find the class pair of

block with offset o we precompute the beginnings of each range Z0, . . . , Zc
1 where Zi

is the beginning offset of block having class pair (i, c − i) and then binary search to
find the correct range. For example in Fig. 3.1 we basically need to decide, whether
the offset belongs to the range 0–2 with class pair (0, 2), or the range 3-11 with class
pair (1, 1), or the range 12–14 with class pair (2, 0).

Assume that our block has the class pair equal to (c1, c2). The second step is to
find o1 and o2. Let

o′ = o− Zc1

be the offset from the beginning of the range of blocks with class pair (c1, c2).
There are

(
b1
c1

)
and

(
b2
c2

)
ways how the first and second sub-block may look, respec-

tively. As all the combinations of the first and the second sub-block are possible, we
want to identify the o′-th block among the range of

(
b1
c1

)
·
(
b2
c2

)
blocks. The blocks are

sorted primarily by the first sub-block and then by the second sub-block. This means
that the ordered sequence of blocks within the class pair (c1, c2) will be just a cycli-
cally repeating sequence of all the possible

(
b2
c2

)
second sub-blocks, every time with a

different, yet increasing first sub-block. Furthermore, this cycle of
(
b2
c2

)
sub-blocks will

repeat
(
b1
c1

)
times (once for each possible first sub-block). Using o′ we can easily find

the order of the first and the second sub-block. We just need to know how many cycles
of length

(
b2
c2

)
fit into o′ and what is the offset of the second sub-block at which the last

cycle is positioned when reaching offset o′. This is straightforward to compute as:

o1 =

⌊
o′
/(

b2

c2

)⌋
o2 = o′ mod

(
b2

c2

)
Now we have obtained (c1, o1) and (c2, o2) so we can reuse the decoding subroutines
for the block lengths b1 and b2.

In this section, we proposed new block ordering and showed that it can be encoded
and decoded efficiently. Our method for block length b1 and b2 yields to a block

1more precisely Zmax(c−b2,0), . . . , Zmax(c−b1,0)
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length b1 + b2. This gives us an opportunity to obtain block length b using different
combinations of b1 and b2 and even combine different orderings.

3.2 Hybrid encoding

In this section, we would like to focus more on the space-saving aspect of RRR and use
some assumptions about the input bit sequence to change how blocks are represented
and by doing it, save some additional space. Storing block of length b, in a raw
bit representation always takes exactly b bits of space. The number of bits used by
compressed form, however, depends heavily on the blocks class. If the block has class c,
then the compressed representation uses lg(b+ 1) bits to store its class and lg

(
b
c

)
bits

to store the offset along the class. In Fig. 3.2, we show how the space saved per block
depends on the block’s class. At the same time, we see that RRR saves most of the
memory on very sparse and very dense blocks. We would like to exploit situations
when the frequency of these blocks is very high.

Sequences with fixed densities First scenario, that is easy to study and analyze,
is devising the best possible RRR implementation for sequence that contains fixed
percentage of ones that are randomly distributed. In order for this scenario to be
interesting, taking into considerations the practical capabilities of RRR, we shall be
most interested in cases when percentage of ones is between 5–20% as was also studied
by Navarro and Providel (2012). Let us consider a randomly generated bit sequence B
of length n containing p% of ones. Let us analyze what is the probability distribution
of the block classes in a sequence containing this fixed percentage of ones distributed
randomly.

For a block length b, the random variable X denoting number of ones in a single
block follows a binomial distribution

X ∼ Bin(b, p).

As we may observe in Fig. 3.3, the probability that block contains a lot of ones decreases
exponentially in a sequence containing only 5% of ones. Even in very long sequences,
these blocks occur very rarely. This led us to the idea of an encoding method we call
hybrid encoding.

The hybrid encoding uses a property that in some sequences blocks with high num-
ber of ones are very rare. Encoding these blocks is not that beneficial as their com-
pressed representation may take even more bits than the original raw representation.
Storing the whole block may waste space if the number of ones is big but there are
not many possibilities how the block may look. Although we waste some space by this
approach from time to time (for every block that is densely packed with ones), we can
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Figure 3.2: Individual graphs present for different block lengths (31, 63, 127), the space
saved by using the compressed block representation. We can observe how the blocks
class influences number of saved bits. Black numbers on the x-axis denote start and
end of the interval where compressed version is even worse in space used (negative
number of bits saved).

Figure 3.3: On these 3 graphs, we can see the cumulative distribution of blocks classes
for the block lengths 31, 63, 127. The frequency of ones is fixed to 5%. Note the
marked classes on the x-axis. Numbers 6, 12 and 25 mark the place up to which 99%
of probability distribution lies for the block lengths 31, 63 and 127 respectively.
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save a small amount of space by decreasing the number of bits used to store the classes.
The main idea of hybrid encoding is that every block with a class bigger than some
threshold has its class set to this threshold and this means that the block is stored
using full b bits instead of lg

(
b
c

)
bits. Let ck be a cutoff value. Blocks with class bigger

than ck will not be encoded but just copied with the class set to ck no matter what is
the number of ones in them.

stored class =

#1(B), if #1(B) < ck

ck, otherwise

Possible value for blocks class is a number from 0 up to b. When the cuttoff ck is used,
the class of block is a number from 0 up to ck. To possibly save some space on the bit
representation of the blocks class, we need to choose ck such that

lg(ck + 1) < lg(b+ 1).

Let us now compare these two representations and the theoretical space savings that
can be obtained.

Let n be a length of the sequence, b the block length and Ci the number of blocks
with class i. To simplify the calculations in this section, we assume that n is divisible
by b.

The first representation takes

(n/b) lg(b+ 1) +
b∑

i=0

Ci lg

(
b

i

)
bits of space with the first and second term being the number of bits that is used by
the classes and offsets respectively. The hybrid representation with cutoff ck takes

(n/b) lg(ck + 1) +

ck−1∑
i=0

Ci lg

(
b

i

)
+

b∑
i=ck

Cib

bits of space. We would like to find out what is the expected space that we save using
the hybrid encoding. We start by simplifying the expected value of the difference of
these representations:

E[∆space] = E

[
(n/b)(lg(b+ 1)− lg(ck + 1)) +

i≤b∑
i=ck

Ci ·
(

lg

(
b

i

)
− b
)]

= (n/b)(lg(b+ 1)− lg(ck + 1)) +

i≤b∑
i=ck

E

[
Ci ·

(
lg

(
b

i

)
− b
)]

= (n/b)(lg(b+ 1)− lg(ck + 1)) +

i≤b∑
i=ck

E [Ci] ·
(

lg

(
b

i

)
− b
)

E[Ci] = (n/b) ·
(
b

i

)
· pi · (1− p)b−i (3.1)
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p b ck used space

5

31 7 0.83
31 15 0.91
63 15 0.91
63 31 0.95
127 7 1.86
127 15 0.93
127 63 0.98

p b ck used space

10

31 7 0.90
31 15 0.94
63 15 0.94
63 31 0.97
127 7 2.03
127 15 1.22
127 63 0.99

Figure 3.4: We may observe the space used by the hybrid implementation to space
used by our standard RRR implementation for various percentage of ones in the text
– p as well as for different block lengths – b and cutoff value – ck.

Here we mainly used the linearity of the expected value. To compute the expected
value of Ci we used the fact, that number of blocks of a certain class follows binomial
distribution. We know that in the bit sequence, there is p% of ones. There are n/b
blocks and each has probability

(
b
i

)
pi(1 − p)b−i to be of class i. This probability is

independent from the previous blocks and as we are interested in total number of
blocks with this class, it follows that Ci follows binomial distribution. As

Ci ∼ Bin

(
n/b,

(
b

i

)
pi(1− p)b−i

)
it follows that the expected value is given by formula (3.1).

We present the expected space used by hybrid implementation for some chosen
values of p, b and ck in Fig. 3.4. We may observe, that for some choices of cutoff, we
may expect to save roughly 10–17% of space compared to the original method. On
top of this, hybrid encoding approach has a potential to be of the same or even better
performance as it is easier to decode the blocks saved in the raw form. However, we
should note that hybrid encoding is based on our expectations that the number of these
blocks is low, so the possible speedup may not be very significant.

Two-sided cut-off The previous version of hybrid encoding may work well for blocks
with low density of ones. However, we would also like to use this idea as a viable
solution for sequences that contain similar frequencies of zeroes and ones but still
exhibit behaviour that some block classes are underrepresented. This may, for example,
occur when sequence has a property, that it is globally balanced, but is very unbalanced
in some local parts. Then it may be the case, that blocks with low count of zeroes or
ones are more frequent than blocks with balanced counts of zeroes and ones.

Let us say that we want to only store r classes instead of all b+1 of them. To make
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Class 0 1 2 3 4 5 6 7
Hybrid mapping 0 1 2 2 2 2 2 7

Figure 3.5: Encoding of blocks class. Mapping class values in closed range
[cut_from, cut_to] to single value for cut_from = 2, cut_to = 6

Class 0 1 2 3 4 5 6 7
Hybrid mapping 0 1 3 3 3 3 3 2

Figure 3.6: Example of hybrid encoding for balanced sequences. [cut_from, cut_to]

to single value for cut_from = 2, cut_to = 6. All possible values can be stored using
2 bits as there are 4 possible values. Hybridly encoded pairs have as class value the
biggest possible value we can store using 2 bits.

some space saving possible, it must hold that

lg r < lg(b+ 1).

We create a range of classes given by a closed interval [cut_from, cut_to]. If the block’s
class is outside of this range, it is encoded in a standard way. On the other hand, all
the values inside of this interval are mapped to one particular class number and the
corresponding block is stored in a raw form instead of its offset. The special block class
value could be without loss of generality the lowest value cut_from. An example of
this idea can be observed in Fig. 3.6. In this example, the number of different possible
class values r, is equal to 4. However, using this representation, we would not save any
space as the maximum value of class is still 7 and we need 3 bits to store it. This would
consume the same number of bits to store as original representation. It is easy to see,
however, that these values can be mapped into the range [0, 3], thus only consuming
two bits per class value.

Space used by this representation is equal to

(n/b) lg(ck + 1) +

cut_from−1∑
i=0

Ci lg

(
b

i

)
+

cut_to∑
i=cut_from

Cib+
b∑

i=cut_to+1

Ci lg

(
b

i

)
.

To summarize, we proposed two different ideas to enhance current implementations
of RRR. The first idea is related to the way blocks are encoded and decoded. We
devised a new ordering that can be nicely combined with divide-and-conquer approach
and reuse table decoding subroutine for smaller sub-problems to which we divide the
original problem.

The second idea, targeted mainly on sequences with special properties, was to just
store blocks that are rare in their original bit representation. By using their original
representation, we lose some space on these blocks but save space on every single class



32 CHAPTER 3. OUR CONTRIBUTIONS

value, as we do not need to distinguish between blocks that have certain classes. We
devised two versions of hybrid encoding, one more suitable for bit vectors that are
very sparse and contain small percentage of ones (5–10%). We shall call this one-sided
version of hybrid encoding as it encodes in a standard way just blocks with smaller
number of ones. The second version, is mainly targeted on bit sequences that have
balanced number of zeroes and ones but contain many blocks with either small or high
number of ones. We refer to this one as two-sided version of hybrid encoding.



Chapter 4

Implementation and results

In this chapter, we propose the implementation of ideas we have developed in the
previous chapter and show experimental results obtained when measuring their perfor-
mance. This chapter is split into two sections according to the main topics discussed
in the previous chapter, namely our new general encoding and decoding routine and
hybrid encoding. In both of these sections, we first describe the important parts of
our implementation and then describe how we benchmarked our implementation and
present the results we measured.

The source code of our implementation written in C++ along with all benchmarks can
be found in the electronic attachment to this work but also on Github (see Appendix A
for further information on how to reproduce our results). All the results presented in
this chapter were obtained on a machine with 8-core AMD Ryzen 7 2700X with 16 MB
of cache, running at 3.7 GHz with 16 GB of RAM. The running operating system
was Ubuntu 20.04.3 LTS. We used both GCC and Clang compilers with versions 9.4.0
and 10.0.0, respectively. All available optimizations were turned on most of the time.
There are no special hardware requirements, but to obtain the best possible results,
our implementation requires a processor with support for SSE2 instruction set.

SDSL library We decided to make our solution a part of the SDSL library (Gog et al.,
2014). This is one of the most mature and versatile libraries implementing succinct
data structures. It is written in C++ and with almost 2 000 commits from more than
30 contributors, SDSL is a heavily tested library, offering various implementations of
succinct structures such as bit vector, integer vector, wavelet tree, FM-index, suffix
array and many more. It allows easy use of different building blocks to implement
more complex data structures, e.g., using different bit vector implementations inside of
a wavelet tree. On top of this, we also took advantage of thorough tests and benchmarks
that were implemented alongside the main functionality.

33
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4.1 New decoding method

4.1.1 Implementation

RRR in SDSL The RRR implementation of bit vector in SDSL is provided by tem-
plated class rrr_vector that enables use of block length from 3 up to 256. To support
longer blocks, SDSL implements 128-bit and 256-bit integers. The implementation gen-
erally uses the on-the-fly decoding. The table decoding method is provided for block
length 15 by template specialization of rrr_vector.

To support access , rrr_vector supports single bit access operator [] as well as
get_int method. To facilitate access , rrr_vector uses the implementation presented
in Fig. 2.2 that consists of the array C of fixed sized elements, storing classes, array
O of elements of variable length that stores offsets of blocks and third array P , that
stores pointers to the array O, more precisely to the beginning of every superblock.

SDSL uses rank implementation, where the result of rank is precomputed for the
beginning of every superblock. To answer the query, we first access the precomputed
value for the superblock. Then we do a linear search for the final result inside of the
superblock. The first part of answering select is to binary search between precomputed
values of rank , then to do the select inside of the superblock. This demonstrates, how
the size of superblock can be used to balance the ratio of space used and the speed
of the access , rank and select methods. Even if the size of a superblock is one of the
parameters of rrr_vector, we did not make any changes to the default number of
blocks per superblock that is set in SDSL to 32.

We decided to use the specialization for block length 15 as an underlying solution
for the encoding and decoding of sub-blocks. We provided specialized implementations
for block lengths 31, 63 and 127 that are most used in practical scenarios. We based our
implementation on the general implementation of rrr_vector and tried to keep the
number of changes as small as possible to easily observe the effects of our new decoding
method. Thanks to the modularity of SDSL, we have been able to implement our
changes and at the same time alter only two methods that the SDSL uses for encoding
and decoding namely bin_to_nr(bin) and nr_to_bin(k, nr). As we mentioned, the
encoding is less performance-critical in most of the applications as it is done only once
when constructing the bit vector. This is why we focus more on the decoding part of
the implementation.

Division of decoding problem into sub-problems The decoding routine can be
divided into three steps. The first is to divide problem into subproblems, second is to
use subroutines to decode subproblems and third is to combine the results obtained to
the final results. When implementing our decoding routine, we put most of our focus
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Zk class pair value offsets mapped
Z0 (0, 2) 0 0–2
Z1 (1, 1) 3 3–11
Z2 (2, 0) 12 12–14

Figure 4.1: The table shows all the class pairs with their corresponding value Z for
b = 6, c = 2.

on the process of dividing a problem into sub-problems of smaller size. This is the
part, where we obtain pairs (c1, o1) and (c2, o2) from the encoded pair (c, o).

There are various reasons why we focus on this part of the algorithm. The first
reason is that for smaller blocks solving the sub-problems is done using the helper
table which is quite fast and can hardly be made any faster as it consists of only
one table lookup. The second reason is that the dividing of the problem is blocking
us from solving the sub-problems and even though sub-problems may be potentially
solved somehow in parallel, e.g., by instruction-level parallelism, this part is harder to
parallelize.

Let us now break down the process of dividing the original problem into sub-
problems into the following 3 steps:

1. Finding the class pair (c1, c2).

2. Counting the number of possibilities for first and second sub-block pos1, pos2.

3. Computing offsets of sub-blocks o1 and o2.

The most trivial part is the third step as it only consists of a number of arithmetic
operations. Then, second step, that is a computation of pos1 and pos2. We know
that pos1 and pos2 is equal to

(
b
c1

)
and

(
b
c2

)
, respectively. These two numbers can be

computed beforehand as there are only roughly b2 combinations of possible pairs of
c and c1. Roughly speaking, we can do the last two steps at the price of two cache
misses.

The approach we use is to first precompute for every possible class c, numbers
Z0, . . . , Zc

1 where Zi is the offset of first block with class pair (i, c − i). We map the
offset of the block to the number Zi and thus identify (ci, cj). As Z-numbers form an
increasing sequence, we can binary search for “group” that contains our offset. Example
of these values can be observed in Fig. 4.1.

Despite having good time complexity, binary search may not be the fastest solution
in practice as the number of buckets where our offset may land is bounded by b+1 and
thus quite small. As we found out and later demonstrate, linear search outperforms

1more precisely Zmax(c−b2,0), . . . , Zmax(c−b1,0)
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binary search most of the time. Another idea that we tested was to speed up the
linear search using SIMD instructions. These can be used to do 4 comparisons at a
time using a special 128-bit register. In practice, we found that sequential search using
SIMD instructions leads to the best results for smaller block lengths. Examples for block
length 30 of possible implementations that we tested, follow in listings 4.1, 4.2, 4.3.
The naming convention adheres to SDSL naming of k for class, nr for the offset. To
simplify naming, if block B was encoded using division to sub-blocks B1 and B2 such
that B = B1 · B2 then we call B1 the left sub-block and consequently its class left_k
while we call B2 the right sub-block.

Listing 4.1: Linear search for classes of sub-blocks (b=30)

1 uint32_t get_left_class(uint8_t k, uint32_t nr) {

2 int left_k_from = std::max(k - 15, 0);

3 int left_k_to = std::min(k, 15);

4 int left_k = left_k_from;

5 for (; left_k < left_k_to; ++left_k) {

6 uint32_t curr_index = Z[k][left_k+1];

7 if (curr_index >= nr) {

8 if (curr_index == nr)

9 ++left_k;

10 break;

11 }

12 }

13 return left_k;

14 }

Listing 4.2: SIMD enhanced linear search for classes of sub-blocks (b=30)

1 uint32_t get_left_class(uint8_t k, uint32_t nr) {

2 int left_k_from = std::max(k - 15, 0);

3 int left_k_to = std::min(k, 15);

4 __m128i keys = _mm_set1_epi32(nr);

5 __m128i vec1 =

6 _mm_loadu_si128(reinterpret_cast<__m128i*>(&Z[k][0]));

7 __m128i vec2 =

8 _mm_loadu_si128(reinterpret_cast<__m128i*>(&Z[k][4]));

9 __m128i vec3 =

10 _mm_loadu_si128(reinterpret_cast<__m128i*>(&Z[k][8]));

11 __m128i vec4 =

12 _mm_loadu_si128(reinterpret_cast<__m128i*>(&Z[k][12]));

13

14 __m128i cmp1 = _mm_cmpgt_epi32(vec1, keys);
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15 __m128i cmp2 = _mm_cmpgt_epi32(vec2, keys);

16 __m128i cmp3 = _mm_cmpgt_epi32(vec3, keys);

17 __m128i cmp4 = _mm_cmpgt_epi32(vec4, keys);

18

19 __m128i tmp1 = _mm_packs_epi32(cmp1, cmp2);

20 __m128i tmp2 = _mm_packs_epi32(cmp3, cmp4);

21 uint32_t mask1 = _mm_movemask_epi8(tmp1);

22 uint32_t mask2 = _mm_movemask_epi8(tmp2);

23

24 uint32_t mask = (mask2 << 16) | mask1;

25

26 int left_k = left_k_to;

27

28 if (mask != 0)

29 {

30 left_k = (1 + __builtin_ctz(mask)) / 2;

31

32 if (Z[k][left_k] > nr)

33 --left_k;

34 }

35 return left_k;

36 }

Listing 4.3: Binary search for classes of sub-blocks (b=30)

1 uint32_t get_left_class(uint8_t k, uint32_t nr) {

2 int left_k_from = std::max(k - 15, 0);

3 int left_k_to = std::min(k, 15);

4 // std::upper_bound(a, b, val) returns pointer to first elem. greater than

val in <a;b)

5 auto it = std::upper_bound(Z[k].begin() + left_k_from,

6 Z[k].begin() + left_k_to, nr);

7 // returns index of it in array Z[k]

8 int left_k = std::distance(Z[k].begin(), it);

9 if (Z[k][left_k] > nr)

10 --left_k;

11 return left_k;

12 }

Choosing the right sub-problem size In the previous chapter, we showed that
our method can take encoding and decoding subroutines for block lengths b1 and b2 and
combine them together to obtain routines for encoding and decoding of block length
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b1 + b2. It is up to us, how we obtain the decoding for block lengths bigger than 15. A
minor inconvenience is, that the most interesting block lengths are of the form 2i − 1.
Combining two block lengths of this form, however, leads only to a block length of the
form 2i+1−2 so to obtain a usable block length again, we need to “extend” this solution
by one bit.

We based our solutions on table lookup for block length 15 and combined two 15-bit
blocks to obtain 30-bit block decoding. To obtain the next interesting block length 31,
we then extended this 30-bit solution by one bit. To obtain block length 63, there
are, however, multiple possible combinations that look reasonable. We may take 62-bit
solution that is built from two 31-bit blocks and then again extend it. On the other
hand, it may be more beneficial, to do 63-bit block length by splitting it into 3 and 60
bit block. Thus, before choosing what solution we want to fully include into SDSL, we
explored and tried several promising combinations and microbenchmarked them.

4.1.2 Experimental results

In this subsection, we show how we measured the performance and practical usability
of our solution and also show the results of our experiments.

To measure the performance of our implementation, we mainly relied on two sorts
of benchmarks. The first type used a Google Benchmark library. This is one of the
standard libraries used for microbenchmarking of code. A code snippet that is being
evaluated is run many times until stable results are obtained. This makes the results
reliable even if the measured time is very small and also limits interference of other
running processes on the results. The limitation of microbenchmarks is that they are
more artificial in nature and do not give the best possible sense of how the solution
may behave on real data.

The second type of benchmarks we used are the ones included in SDSL. These are
testing bit vector on real data and also as a part of the more advanced data structure.
They use data from the Pizza&Chili datasets (Ferragina and Navarro, 2005). These
include many types of data such as DNA sequences, C and Java source codes from Linux

and GCC projects as well as English texts from the Gutenberg project. More information
about this data such as statistics about the compressibility can be found in the work of
Ferragina et al. (2009), Section 4.2. We only provide information necessary to explain
the measured phenomena later when exploring the results of our benchmarks.

Microbenchmarks of block decoding These benchmarks were used in the early
stage of the development to measure a potential gain from our new method of encoding
and decoding. We mainly focused on measuring different block lengths in combination
with different methods used for dividing a block into subproblems and with different
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approaches to obtain particular block length. The tested block lengths were 15, 30, 31,
62, 63 and 127. Lengths 15, 31, 63 and 127 are most useful in practice, however, they
can be obtained using different combinations of block length 30 and 62, e.g., 31 can be
combined as 1 bit and 30-bit solution, 63 can be divided to 1 and 62 as well as to 3 and
two sub-problems of length 30. Even if these tests were not made on practically useful
data, they were mainly used as an indication which implementations are interesting
and should be the best candidates for further evaluation.

We tested 3 different techniques to divide a problem into sub-problems. These
were a linear scan, binary search and linear scan enhanced by SIMD instructions. In
order to implement the solution for 127-bit block length, we used the 128 bit type
__uint128_t provided by both GCC and Clang compilers. This type is implemented on
platform x86_64 as a combination of two 64-bit integers. We compared these results
with the table decoding specialization in SDSL and with on-the-fly decoding. We ran
the deconding algorithm on randomly generated data. We generated 1 000 pairs of
class and offset by first randomly picking class of the block and then the offset along
this class. To make the comparison fair, for the on-the-fly decoding, we measured the
time to decode the middle bit as this decoding method can stop once it obtained the
queried bit. The results we measured are shown in Tab. 4.2.

As we can see, our implementation is faster than on-the-fly decoding provided by
SDSL on every block length that was tested. Linear search outperforms binary search on
every block length tested but the binary search is slowly catching up with increasing
block length. For 30-bit blocks, the SIMD version dominates both linear and binary
searhc approaches. This version is, however, harder to use for longer blocks as it
requires support of special instructions. Version obtaining 63-bit block using one 3-bit
and two 30-bit blocks seems to be performing slightly better than the other variant that
extends block length 62 by one bit. Important observation is that our 63-bit version
was measured to be even faster than on-the-fly decoding of a 31-bit block.

Bit vector on real data After benchmarking and finding the potential for speeding
up the bit vector using our new method, we decided to implement and benchmark our
implementation on data that are closer to the real-life usage of bit vectors.

We used a benchmarking part of SDSL targeted on rrr_vector class. This test
measures on different types of data how query time for access , rank and select depends
on the block length used. The first type of sequence is a randomly generated bit
sequence with density of ones equal to 50%. The origin of second type of data is
closely described in Gog and Petri (2014). It consists of numerous bit vectors, stored
in files such as WT-DNA-16MB or WT-WEB-1GB. The structured name describes how the
bit vector was created. For instance, WT-DNA-1GB has been created by:

• Taking 1GB prefix of a file containing DNA sequence.
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Block length Method ns per query

15
SDSL_Table 2
SDSL_ON_THE_FLY 18

30

OUR_LINEAR_15_15 9
OUR_SIMD_15_15 8
OUR_BINARY_15_15 15
SDSL_ON_THE_FLY 38

31
OUR_LINEAR_1_30 11
SDSL_ON_THE_FLY 37

62
OUR_LINEAR_31_31 36
OUR_BINARY_31_31 42
SDSL_ON_THE_FLY 50

63
OUR_LINEAR_1_62 33
OUR_LINEAR_3_30_30 32
SDSL_ON_THE_FLY 48

127
OUR_LINEAR_1_63_63 88
OUR_BINARY_1_63_63 91

Figure 4.2: Results of microbenchmarking various types of decoding implementations.
The numbers in method name denote to what block lengths the problem was broken.
The name also reflects what method was used to break the problem into subproblems.
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• Creating BWT of this text.

• Building Huffman shaped wavelet tree over it.

• Concatenating all the bit vectors in the wavelet tree.

Other versions of test data have been created similarly. Queries into the underlying
bit vector were generated randomly.

As a baseline, we choose the 15-bit specialized implementation already implemented
in SDSL that uses the table decoding method. We present the measured results of our
and the original implementation in Fig. 4.3.

There are several interesting things to observe in these results: Our new imple-
mentation beats the older implementation on almost all block lengths and all types of
data. Note that the difference is more visible on random and DNA data. On web data,
however, the difference is less noticeable. We attribute this behaviour to the fact, that
was observed by creators of this dataset – the number of uniform blocks (full of either
zeroes or ones) is much bigger in WT-WEB than in WT-DNA. For block length 63, they
observed that WT-WEB-1GB contains 84% of uniform blocks compared to 28% in WT-DNA.
As the uniform blocks are decoded trivially in both implementations, this makes less
opportunities for our implementation to save time.

Another visible pattern is that with increasing block length, the query time generally
goes up as decoding takes more and more time. On the other hand, on select in WT-WEB

data, we can see that at the beginning the query time decreases with increasing block
length. Similar behaviour on this data was observed by Gog and Petri (2014) and
attributed to the faster binary search in precomputed rank values offsetting the growing
decoding time.

Overall, we saved almost 50% of time on access , rank and select over randomly
generated data, and close to 50% of time on WT-DNA data when compared to the baseline
implementation. Our results are positive also on WT-WEB, particularly for block length
127. This block length is particularly faster in our implementation and we argue this
could be also due to the inefficiencies in SDSLs implementation of 128-bit integer but
also due to the fact, that after dividing the problem into subproblems, we continue to
work with 64-bit integers which are much faster on current machines.

Bit vector in FM-index Even if the previous benchmark was done on realistic
data, we wanted to test our implementation in a practically useful application. We
benchmarked our bit vector as a part of Huffman shaped wavelet tree used inside of the
FM-index. Implementation of FM-index in SDSL, as most of the other implementations,
provides mainly 3 methods:

• count(P ) – returns the number of occurrences of P in text T ,
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Figure 4.3: SDSL benchmark measuring the query time of access , rank and select and
its dependence on the block length across various data types. Our implementations
are marked by cross, the SDSL implementations by dot.
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• locate(P ) – returns all positions of pattern P in text T ,

• extract(i, j) – returns the subsequence of T starting on i-th and ending on j-th
index.

The reason that the extract method is useful and non-trivial is that FM-index does not
store the original sequence T – at least not in an easily readable form.

We again used benchmarks provided by SDSL library and tested how the perfor-
mance of methods count , locate and extract changes when our bit vector is used. These
benchmarks are run on the data from the Pizza&Chili dataset and use mainly method-
ology proposed by Ferragina et al. (2009). The data we show here are the English texts
from Gutenberg project, source codes and then DNA and protein sequences. In these
benchmarks, we used as a baseline the FM-index version based on block length 15. To
provide more context, we also included a version based on the uncompressed bit vector.

To measure performance of count , the index over the text is built. Then, random
patterns of various lengths are extracted from the text and subsequently used for
benchmarking. Code that generates these patterns in SDSL is a slight modification of
a version provided by Pizza&Chili project. We measure the trade-off between space
used for the index and the speed normalized by the total number of symbols contained
in all searched patterns. We present the results in Fig. 4.4.

Note that the speed gain we have measured in the previous benchmarks also trans-
lated into a speedup of FM-index operation count . On the English dataset, block
lengths 127 and 63 have been able to obtain the speed of the block lengths 63 and 31
provided by SDSL. The biggest speed up can be observed for 127-bit block – on English
data the time saved is close to 20%, on DNA it is roughly 30% speedup.

On graphs where we can observe the tradeoff between space and time it is important
not only to focus on fastest and most succinct implementations but also on those that
are Pareto optimal. This means that certain implementation may not be the fastest
or space optimal but to obtain faster implementation leads to increase in space usage
and vice versa.

For benchmarking of extract , SDSL uses a methodology proposed by Ferragina et al.
(2009) in Section 5.4. The queries used for benchmarking consist of numerous sub-
strings of length 512 starting at random positions in text. The additional dimension of
FM-index that is tested in this benchmark is sampling rate of suffix array and inverse
suffix array. This is a parameter that can be used to trade-off between the speed of
FM-index and its memory usage. Options for this sampling ratio are by default the
powers of 2 from 4 up to 256. We only show the results for a sampling rate 16 in
Fig. 4.5, however, note that the trends that can be observed in these results are also
visible for every sampling rate.

We may observe similar speedup as for count method. The visible difference is
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Figure 4.4: Counting occurrences of patterns in various different texts. Displaying the
query time per pattern symbol on y-axis and the size of the index over the text on
x-axis. Uncompressed bit vector (sdsl-bv) is included for reference.

slightly bigger speedup on Sources for block length 31. On the DNA data, the speedup
is hitting again 30%.

Benchmarking of operation locate again uses a methodology proposed by Ferragina
et al. (2009) in Section 5.3. This consists of locating random patterns of length 5 in the
text such that in total 2–3 millions of occurrences are found in the text. We present
the results obtained in Fig. 4.6.

The results are very strong for DNA, Protein and Sources datasets but even on
English, where our method performed the worst we can observe 10–20% speed up on
every block length.

Correctness On top of making sure that our solution is as fast as possible we also
wanted to make sure it is correct. Mainly, we used two types of tests for this purpose.
The first are the tests of access , rank and select functionality in SDSL that run more on
smaller bit sequences but cover special cases such as bit vector full of zeroes/ones and
certain special patterns that are not encountered often in practice. The second type
of tests used was the benchmark running on wavelet tree built over the WT-DNA and
WT-WEB data. Alongside the individual timings, this benchmark produces a checksum of
all the results of the access , rank and select queries. These checksums can be compared
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Figure 4.5: Extracting parts of the represented text. Displaying the query time per
extracted symbol on y-axis and the size of index over the text on x-axis. Uncompressed
bit vector (sdsl-bv) is included for reference.

Figure 4.6: Locating occurrences of patterns in the represented text. Displaying the
query time per occurrence for various block lengths and the size of index over the text.
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between our and original implementation to make sure that our implementation is
giving the correct results.

4.2 Hybrid encoding

Let us now present our implementation of the hybrid encoding. In the previous chapter,
we proposed two variants of hybrid encoding – one-sided and two-sided version. Both
of these were based on the idea not to encode blocks that are rare. This in turn reduced
the number of classes and we have been able to save space on bits used for blocks classes.
On the other hand, these two versions differed in decision, which blocks are not encoded
but just saved in ther original representation. The first solution treated differently just
blocks with higher number of ones. The second, was focused on balanced sequences
and treated differently blocks that have roughly the same number of zeroes and ones.

4.2.1 Implementation

Implementation of the hybrid encoding required changes to more than only encod-
ing and decoding routines. The first necessary change is addition of hybrid cutoff
parameter ck to the rrr_vector class. The second is reimplementation of function
space_for_bt(c) that is used in SDSL to get the number of bits that are needed to
store offset of block with class c. The third change, most impactful on a runtime of
rrr_vector, relates to the way how we work with superblocks.

When computing rank of a bit in particular block, we can still binary search for the
superblock where the i-th one is located. Then, to linearly search for a result inside
of the superblock, we previously needed only information from the array of classes C.
This is because C stores the number of ones in the blocks and we can linearly search for
the answer using its successive entries. We skip over the blocks inside of the superblock
until we find the block where the result is located. This block needs to be decoded
and only then we find answer to rank inside of a single block. To locate the beginning
of this smaller block, we take the memory offset of the superblock in O and add the
memory offset of this block from the beginning of superblock. This can be counted
along with the linear search for rank result. The simplified implementation of the rank
in SDSL is in Listing 4.4.

With hybrid implementation, however, we are not able to linearly scan through
the superblock only using information contained in C. This is because now, for some
classes, C does not store the number of ones in the block. Thus when we are linearly
searching for the result of rank query along the superblock, we need to also from time
to time access O to count number of ones for some block. This creates additional
memory accesses that may slow down the hybrid implementation. The new version of
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implementation, adapted to the hybrid encoding is in Listing 4.5.

In both versions of hybrid implementation, we introduced cutoff parameter ck to
the class rrr_vector. Its meaning is that exactly ck classes are represented as before
and the rest of them is represented using a single value. In the first version, these are
classes bigger or equal than ck. In the second version, these are classes from range
cut_from up to and including cut_to. For certain ck, we need then lg(ck + 1) bits of
space to represent a single class.

Listing 4.4: Rank query, SDSL implementation

1 int rank(int i) {

2 int block_idx = i/BLOCK_SIZE;

3 int superblock_index = block_idx/BLOCKS_PER_SUPERBLOCK;

4 int offset = P[superblock_idx]; // precomputed offset into O

5 int rank = R[superblock_idx]; // precomputed rank for superblock

6 for (int j = superblock_idx*BLOCKS_PER_SUPERBLOCK; j < block_idx; ++j) {

7 uint16_t c = C[j];

8 rank += c;

9 offset += rrr_helper::space_for_class(c);

10 }

11 uint16_t off = i % BLOCK_SIZE;

12 if (!off) {

13 return rank;

14 }

15 uint16_t c = C[block_idx];

16

17 uint16_t block_length = rrr_helper::space_for_class(c);

18 uint32_t o = rrr_helper::get_blocks_offset(O, offset, block_length);

19 uint16_t popcnt = __popcount(rrr_helper::nr_to_bin(c, o) << (32-off));

20 return rank + popcnt;

21 }

Listing 4.5: Rank query, hybrid implementation (one-sided)

1 int rank(int i) {

2 int block_idx = i/BLOCK_LENGTH;

3 int superblock_index = block_idx/BLOCKS_PER_SUPERBLOCK;

4 int offset = P[superblock_idx];

5 int rank = R[superblock_idx]; // precomputed rank for superblock

6 for (int j = superblock_idx*BLOCKS_PER_SUPERBLOCK; j < block_idx; ++j) {

7 uint16_t c = C[j];

8 if (c >= c_k) {

9 uint32_t o = rrr_helper::get_blocks_offset(O, offset, BLOCK_LENGTH);



48 CHAPTER 4. IMPLEMENTATION AND RESULTS

10 rank += __popcount(btnr);

11 }

12 else {

13 rank += c;

14 }

15 offset += rrr_helper::space_for_class(r);

16 }

17 uint16_t off = i % BLOCK_LENGTH;

18 if (!off) {

19 return rank;

20 }

21 uint16_t c = C[block_idx];

22

23 uint16_t block_length = rrr_helper::space_for_class(c);

24 uint32_t o = rrr_helper::get_blocks_offset(O, offset, block_length);

25 uint16_t popcnt = __popcount(rrr_helper::nr_to_bin(c, o) << (32-off));

26 return rank + popcnt;

27 }

Two sided version The biggest notable difference from the previous version of hy-
brid encoding are the two helper functions that are used for mapping or as we call it
compressing and decompressing the blocks class before any of its use. We present these
methods in listing 4.6, and 4.7. To choose for particular ck, which ck classes we are
going to represent in a standard way, we set

cut_from = b(ck + 1)/2c cut_to = b− cut_from + 1.

Listing 4.6: Compressing blocks class

1 int compress_class(int k) {

2 if (!is_hybrid_impl) return k;

3 if (k < cut_from) {

4 return k;

5 }

6 else if (k <= cut_to) {

7 return cutoff;

8 }

9 else {

10 return k-(cut_to-cut_from+1);

11 }

12 }
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Listing 4.7: Decompressing blocks class

1 int decompress_class(int k) {

2 if (!is_hybrid_impl) return k;

3 if (k < cut_from) {

4 return k;

5 }

6 else if (k == cutoff) {

7 return cut_to;

8 }

9 else {

10 return k+(cut_to-cut_from+1);

11 }

12 }

4.2.2 Experimental results

The goal of the first benchmark was to observe, how the one-sided version of hybrid
encoding behaves on randomly generated sequences with fixed percentage of ones.
The reason behind this test is that bit vector implementations based on RRR do not
perform very well on this type of sequences and are often dominated by sparse bit
vector implementations.

We generated a random sequence of bits containing 5% of ones and compared hy-
brid implementation with our original RRR implementation and also sparse bit vector
provided by SDSL. We present the results in Fig. 4.7. We may observe that our im-
plementation was already competitive with sparse array for access and rank . Hybrid
encoding only amplified these differences. However, on select where our implementa-
tion was dominated by sparse array, these differences were not completely overcome by
hybrid implementation. We can conclude that hybrid version of 63 and 127-bit block
created new usable alternatives, most importantly for select method and 127-bit block
where our hybrid encoding moved the representation very close to optimal 0.29 bits
per one bit in original sequence.

We tested the two-sided version of hybrid encoding on the previously used datasets
WT-DNA and WT-WEB. The graph comparing results for classic bit vectors and hybrid
bit vectors can be observed in Fig. 4.8. The results of our hybrid implementation are
not very promising on these data, except for the access . The reason why the results
are better for access is that hybrid implementation creates additional memory accesses
when answering rank and select as we described in the previous subsection.

To test if our hybrid implementation could be used in the practice, we benchmarked
FM-index implementation of method count , with hybrid bit vector used inside of the
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Figure 4.7: Timing of access , rank and select methods over the randomly generated
sequence with 5% of ones in it. Comparison of standard implementation and our hybrid
encoding marked with cross. For reference, we included sparse vector implementation.
We may observe how implementations get closer to the entropy lower bound (0.29) with
increasing block length. Name hybrid-x(y) denotes implementation of block length
x with cutoff y.

Huffman shaped wavelet tree. The results are shown in Fig 4.9. We may observe
that hybrid implementation did not create any viable alternative and our original
implementation has a faster or more succinct alternative for every cutoff on the graph.
This could be expected as rank and select are way more used inside of the wavelet tree.
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Figure 4.8: This graph is showing the results of benchmark of access , rank and select

queries over bit vectors from wavelet tree over DNA sequence data WT-DNA and XML
bibliographic data WT-WEB. On x-axis is the space usage of the particular representation
and on y-axis the average query time for the respective operation. Original implemen-
tation is denoted by dots. These are our implementations except for the 15-bit version
based on the table lookup provided by SDSL. Every cross symbols hybrid implementa-
tion with particular cutoff. The same block length is denoted by a single color. Name
hybrid-x(y) denotes implementation of block length x with cutoff y.
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Figure 4.9: Results of benchmark of count operation on FM-index.



Conclusion

The goal of this thesis was to study existing implementations of compressed bit vector,
explore their shortcomings and develop new implementation of bit vector that mitigates
some of the existing problems. We picked up RRR – one particular representation of
bit vector and identified places where this representation and algorithms working with
it can be improved.

The biggest shortcoming was that there were only two widely used techniques to
encode and decode blocks and both have significant disadvantages. The table lookup
method provides very fast encoding and decoding but uses too much space for longer
blocks. On the other hand, on-the-fly decoding supports longer blocks but trades-
off quite a lot of performance for this. We addressed this problem by proposing and
implementing new decoding method based on the divide-and-conquer approach that
can be used to divide the process of decoding of the block to more sub-problems that
can be solved recursively or using one of the existing decoding methods.

We implemented this idea and tested it as a part of SDSL library that is regarded
as one of the most popular libraries implementing succinct data structures. The new
method was very successful in artificial but also practical testing. The most important
result presented in this work is the relative speedup of FM-index when SDSL bit vector
is replaced by our implementation. We measured about 20–30% speedup of count ,
extract and locate methods thanks to our changes. This was observed on various data
such as DNA sequences, source codes or protein sequences.

The second idea was of hybrid encoding. The idea is not to encode some of the
possibly rare blocks. By doing this we waste some space on blocks that are not com-
pressed but gain on every other block by decreasing number of bits used for class of
the block.

We developed two versions of hybrid encoding. The one-sided version is better
suited for sparse sequences with roughly 5% of ones where RRR is often dominated
by sparse bit vector implementations. This version indeed worked quite well and when
compared to our ordinary version of bit vector it was able to deliver the same speed
with roughly 5% lower space usage. The second, two-sided version of hybrid encoding
was found not to be practically competitive in its current version due to additional
memory accesses that are needed to answer rank and select queries.

53
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With our new decoding scheme, future work could lead to discovering what tradeoffs
between space usage and speed can be achieved with longer blocks, e.g., 255-bit block.
Working with longer blocks is way slower because computers natively support 64-bit
integers. Our new method, however, enables us to quickly decompose problem into
smaller subproblems that could fit into a 64-bit integer.

Future work on hybrid encoding could lead to more experiments on other types of
data and finding the ways how to limit the memory accesses that are created because
of hybrid encoding. Another practically interesting idea would be to develop a method
that automatically adapts the cutoff to the underlying data to get the best possible
results.
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Appendix A: Electronic Attachment

All the relevant source code is available in the electronic attachment to this work. The
code is divided into two parts. Benchmarking part is contained in the master-thesis
folder and the fork of SDSL library can be found in sdsl-lite folder. Both of these
can be also accessed at https://github.com/Aj0SK/master-thesis and https://

github.com/Aj0SK/sdsl-lite.
The first repository contains 5 experiments in directory master-thesis/code:

• experiment1 – microbenchmarking of various RRR implementations

• experiment2 – SDSL and our benchmark of the new decoding method

• experiment3 – our benchmark for hybrid implementation

• experiment4 – SDSL benchmark of our new decoding method using FM-index

• experiment5 – SDSL benchmark of two-sided hybrid encoding using FM-index

In all these folders, there are scripts to run the benchmarks. We used these also to
obtain all the presented results in this work.

The second repository is a fork of the SDSL library. The individual features are
implemented on separate branches:

• master – unmodified version of the master branch

• benchmark_original – master branch containing minor changes to limit the
number of benchmarked blocks and make the tests pseudorandom but repro-
ducible

• rrr_vector_31_spec – branch with minimum changes, implementing 31 bit spe-
cialization

• rrr_vector_63_127_spec – branch with 63 and 127 bit specializations (branched
from rrr_vector_31_spec)

• rrr_vector_hybrid – hybrid implementation for block lengths 31, 63, 127

57

https://github.com/Aj0SK/master-thesis
https://github.com/Aj0SK/sdsl-lite
https://github.com/Aj0SK/sdsl-lite


58 Conclusion

• rrr_vector_hybrid_twoside – special hybrid implementation for sequences with
balanced zeroes and ones

• rrr_benchmark_our – branch with 31, 63 and 127 bit specializations and bench-
marks

• rrr_benchmark_our_hybrid – branch with hybrid 31, 63 and 127 bit specializa-
tions and benchmarks
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