
Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Optimistic Design Pattern in eUTxO
Models

Master’s thesis

2022
Bc. Michal Porubský

ii

Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Optimistic Design Pattern in eUTxO
Models

Master’s thesis

Study programme: Computer science
Field of study: Computer science
Training work place: Department of computer science
Supervisor: Ing. István Szentandrási, PhD.

Bratislava, 2022
Bc. Michal Porubský

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Michal Porubský
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Optimistic Design Pattern in eUTxO Models
Optimistický dizajnový vzor v eUTxO modeloch

Anotácia: Smart kontrakty ponúkajú spôsob ako dať garancie pri decentralizovanej
exekúcii programov na blockchainoch. Rozšírený model nepoužitých výstupov
transakcií (eUTxO model) rozširuje klasický model UTxO ktorý poznáme
napríklad z kryptomien Bitcoin alebo Cardano o smart kontrakty. Tento
model je veľmi nový a teda existuje len veľmi málo výskumu ohľadom
dizajnových vzorov takýchto aplikácii. Táto práca by chcela na tomto
stavať a zadefinovať optimistický dizajnový vzor, ktorý by mohol pomôcť
s problémom limitovaného kontextu smart kontraktov, ktoré sa snažia
nebyť obmedzené čo sa týka priepustnosti a zároveň potrebujú uchovávať
centralizovaný stav. Toto by sme chceli aj demonštrovať na jednoduchej
aplikácii.

Vedúci: Ing. István Szentandrási, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 09.11.2021

Dátum schválenia: 09.11.2021 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Michal Porubský
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Optimistic Design Pattern in eUTxO Models

Annotation: Smart contracts offer a way to enforce specific logic in decentralized
computations on blockchains. Extended unspent transaction output (eUTxO)
model introduces smart contract functionality to the UTxO model known from
Bitcoin or Cardano. Due to its novelty, there exists only little research on design
patterns of such contracts. We aim to fill in the gaps here and introduce an
optimistic design pattern which could be a possible solution to circumvent the
limited scope of smart contracts in the eUTxO model in the quest of fighting
the concurrency issue decentralized applications face when a centralized state
is needed and demonstrate it on a sample application.

Supervisor: Ing. István Szentandrási, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 09.11.2021

Approved: 09.11.2021 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Thank you notes: I would like to thank everyone that was there for me when I
needed it and helped me along the way.

iv

Abstrakt

Smart kontrakty ponúkajú spôsob ako dať garancie pri decentralizovanej exekúcii pro-
gramov na blockchainoch. Rozšírený model nepoužitých výstupov transakcií (eUTxO
model) rozširuje klasický model UTxO ktorý poznáme napríklad z kryptomien Bit-
coin alebo Cardano o smart kontrakty. Tento model je veľmi nový a teda existuje len
veľmi málo výskumu ohľadom dizajnových vzorov takýchto aplikácii. Táto práca na
tomto stavia. Zadefinovala optimistický dizajnový vzor, ktorý je jedným z riešení ako
pomôcť s problémom limitovaného kontextu smart kontraktov, ktoré sa snažia nebyť
obmedzené čo sa týka priepustnosti a zároveň potrebujú uchovávať centralizovaný stav.
Toto zároveň demonštrujeme na jednoduchej decentralizovanej aplikácii.

Kľúčové slová: Smart kontrakty, DeFi, Cardano, eUTxO, dizajnový vzor, problém
konkurencie

v

Abstract

Smart contracts offer a way to enforce specific logic in decentralized computations on
blockchains. Extended unspent transaction output (eUTxO) model introduces smart
contract functionality to the UTxO model known from Bitcoin or Cardano. Due to its
novelty, there exists only little research on design patterns of such contracts. In this
text we help to fill in the gaps and introduce an optimistic design pattern which is a
solution to circumvent the limited scope of smart contracts in the eUTxO model in the
quest of fighting the concurrency issue decentralized applications face when the state
centralization is needed. We also demonstrate this approach on a sample decentralized
application.

Keywords: Smart contracts, DeFi, Cardano, eUTxO, design pattern, concurrency
issue

vi

Contents

Introduction 1

1 eUTxO model 3
1.1 Blockchain . 3
1.2 Unspent transaction output model . 4
1.3 Extending the UTxO model . 5

1.3.1 Smart contracts . 6
1.3.2 Minting policies . 10

2 Concurrency issue 15
2.1 Centralized state . 15

2.1.1 Auction example . 15
2.1.2 Decentralized exchange example 16

2.2 The problem . 17
2.3 Possible solutions . 18

2.3.1 Naïve . 18
2.3.2 Constant factor improvement 18
2.3.3 Request batching . 18

2.4 Agent role . 20

3 Optimistic design pattern 23
3.1 Limiting the exploitable surface . 23
3.2 Punishing agent misbehavior . 24
3.3 Proofs of agent misbehavior . 25

3.3.1 On-chain proofs . 25
3.3.2 Off-chain voting proofs . 25

4 Demonstration: Auction 29
4.1 Protocol design . 29
4.2 Tokens . 31

4.2.1 Agent token . 31

vii

viii CONTENTS

4.2.2 Bid validity token . 32
4.2.3 Auction validity token . 32

4.3 Smart contracts . 32
4.3.1 Agent script . 32
4.3.2 Bid script . 35
4.3.3 Auction script . 37

4.4 Transactions . 40
4.4.1 User transactions . 40
4.4.2 Agent transactions . 42

4.5 Implementation testing . 43

Conclusion 47

List of Figures

1.1 UTxO transaction example . 5
1.2 Pending transaction info type . 9

4.1 Trace snippet . 44
4.2 Logs from the trace execution . 45

ix

x LIST OF FIGURES

Introduction

The aim of this thesis is to study the extended unspent transaction output (eUTxO)
model that builds on top of the classical unspent transaction model used for years in
some of the well known cryptocurrencies such as Bitcoin, Cardano, Ergo, etc. The
eUTxO model is a novel introduction to Cardano that brought smart contract support
to the model in September, 2021 [3].

The model offers better scoped deterministic environment well suitable for security
analysis [2] [23]. Compared to Ethereum, the blockchain most commonly used for smart
contract development, this is a big improvement. That is why we consider it worth
the effort to study, shed light on some of the most common obstacles decentralized
application developers in the eUTxO model face and contribute to the overall security
of the way decentralized applications are written in the end.

Being in the early phase of the model adoption, the obstacles are just beginning
to be identified and solutions offerred. This study takes one of such obstacles, namely
the concurrency issue we discuss in Chapter 2, it describes potential solutions to
it and takes an in-depth look at the agent solution that we as well as the community
consider superior [5] [19]. We then go on and define a design pattern aiming to achieve
full decentralization of the priviledged agent role that is inherently introduced by the
solution implementation.

There is an increasing number of projects impacted by the concurrency issue. They
tend to come over and over with their own, slightly modified, but in general pretty
similar solutions to it. Most of those can be considered to be agent solutions we take
a deeper look at in section 2.4. More often than not, however, those solutions result in
the otherwise decentralized applications getting centralized in the control of a handful
of people known as agents who are responsible for the smooth application operation.
Centralizing the service operation is not desired as that contradicts the whole reason
why decentralized applications emerged.

Despite the full decentralization being desired, it is a hard problem to fully achieve
it, resulting in protocols avoiding solving it for now. It is not an easy problem to solve,
but we hope that this text and the design pattern we define helps with this and projects

1

2 Introduction

will aim to the full decentralization.

In the first chapter 1, we create a baseline for the whole thesis. We start by
discussing blockchain in general. Quickly, we move on to describe the eUTxO model
we are mostly interested in and cover all of its relevant specifics in great detail. Most
importantly, we explain the role of smart contracts in the model.

The second chapter 2 takes a look at a particular common obstacle blockchain devel-
opers face in the model which is the already mentioned concurrency issue. We discuss
how and why the problem arises and discuss potential solutions to it. We conclude the
chapter by explaining the agent-request solution along with the priviledged agent role
that we will be taking a better look at later in the text.

The third chapter 3 is the chapter where we explain the design pattern we suggest
that leads to the optimistic decentralization of the agent role into anyone that meets
the initial requirements. We mention how we can limit the exploitable surface by a
malicious agent, but that in the end we simply trust agents to be honest and build a
mechanism that is able to punish dishonest agents. There can be two major approaches
how that mechanism could work and we discuss both of them.

The final chapter 4 is a demonstration of the design pattern on a demo problem.
The chapter is accompanied by an actual runnable implementation we wrote that is
located on the USB coming with this text. We discuss various details that all together
form the more complex approach to the agent punishing mechanism described in the
previous chapter 3.3.1.

Chapter 1

eUTxO model

In this chapter we give a quick introduction into blockchain, describe its purpose and
some of the technical specifics. We go on by explaining the unspent transaction out-
put (UTxO) model some blockchain protocols make use of. Finally, we put a special
emphasis on the extended version of the UTxO model (eUTxO) which represents the
baseline model for this thesis.

1.1 Blockchain

Blockchain can be viewed as a distributed ledger. It consists of blocks of transactions
strongly cryptographically linked to each other. Every block references the previ-
ous block’s cryptographic hash. This makes it impossible to alter any part of this
linked chain of blocks without modifying all the subsequent blocks as well [21] [6]. A
transaction is the tiniest component that modifies the ledger. A block is a batch of
transactions.

Blocks are validated and accepted into the chain by nodes. Nodes are connected
components of a peer-to-peer network running a consensus protocol to agree on the
current chain state. The consensus protocol is usually highly Byzantine fault tolerant
[21] [27].

A digital token is a possession that is tracked in the distributed ledger. A cryp-
tocurrency also referred to as a digital currency is a special kind of a token which
usually has real-life fiat value determined by the supply and demand on exchanges.
There is an increasing number of web shops that accept cryptocurrencies as another
form of payment for the goods. There are even countries that accept Bitcoin as legal
tender [8]. Bitcoin is the first cryptocurrency there was [1] and the biggest in terms of
market cap [16]. Therefore it is considered to be the safest and least volatile to accept
as a payment or to invest in. It is often referred to as the digital gold as investors tend

3

4 CHAPTER 1. EUTXO MODEL

to believe it can preserve value long-term. A token, however, does not necessarily need
to have an inherent value and may not even be tradable.

A special type of tokens are non fungible tokens (NFTs). Every such token is
uniquely identifiable. In other words, there can be exactly one in quantity. They are
commonly used to keep track of an owner of a particular real-life commodity, a paint-
ing, an audio track and others [29]. However, a proper legal basis is lacking at the time
of writing this thesis. We discuss tokens in Cardano in more depth in subsection 1.3.2.

A place which can hold tokens is often referred to as an address. An address is
derived from a cryptographic public key from a strong assymetric cryptography scheme.
It is said that tokens are at an address if they are noted to belong to an entity holding
the private key corresponding to the public key of the address in the distributed ledger.

Once tokens reside at an address, only the holder of the private key can send
them to another address by creating and cryptographically signing a transaction which
describes the token movement. The private key corresponding to the previous address is
used for the signature. After the transaction submission, nodes verify that the relevant
signature is present. They are able to do this as the public key is part of the address and
thus a publicly known information. This is part of the standard transaction validity
checks.

1.2 Unspent transaction output model

Unspent transaction output model, often referred to as the UTxO model, is a model
of how to store and how to determine the current unused balances of addresses. It
is used in Bitcoin, Cardano, Ergo and many other blockchain protocols with slight
alternations. In this text, we will focus on Cardano specifically, as that would be the
chain we will use to demonstrate the Optimistic design pattern in Chapter 4.

The building block of this model is a transaction which consists of inputs and
outputs. Every transaction output contains a bundle of tokens, resides at a single
address and is either spent or unspent. Whenever a transaction output is used in
another transaction as an input, that transaction is accepted into the blockchain by
nodes running the consensus protocol, that transaction output is considered spent and
can not be used as an input in any other transaction. This is enforced as another
standard validation performed by the nodes [2]. The current distribution is the set of
all unspent transaction outputs which the nodes keep track of. This fact gave the
model its name.

1.3. EXTENDING THE UTXO MODEL 5

Figure 1.1: An example transaction in UTxO model. Cashier would get 1 Bitcoin and
the change would stay at the Bob’s address.

As an analogy, it is possible to think of it in a similar manner as a buyer who pays
in a shop with his coins and banknotes. His wallet is an analogy to an address on
the blockchain. There are multiple banknotes and coins present in the wallet. Those
represent unspent transaction outputs. Tokens can refer to the value those coins and
banknotes represent. When the buyer pays in a shop, he makes a transaction. The
inputs of the transaction are coins he uses to pay. The outputs are of two types. The
first type represents coins (UTxOs) that are left in the cash register. Those will reside
at the beneficiary address upon transaction inclusion into the blockchain. The other
type of outputs are those representing the remainder coins that are returned by the
cashier to the buyer. After the transaction is finished, the buyer’s wallet contains
different coins. The current token distribution changed. A similar transaction can be
seen in Figure 1.1.

The important difference, however, is that every UTxO can be spent at most once.
This does not have an analogy in the real world as coins can keep changing their
holder while remaining the same. An identifier of a UTxO is a tuple of the identifier
of the transaction where it was created and its index among that transaction outputs.
Naturally, whenever a UTxO is spent in a transaction, only new UTxOs with new
identifiers referencing that transaction are created. This forms an immutable chain of
all state changes.

1.3 Extending the UTxO model

An extended version of the previously described unspent transaction output model is
a model introduced to Cardano by a hard fork in September 2021 [3]. It adds smart

6 CHAPTER 1. EUTXO MODEL

contract support into the UTxO model which was the standard before. In the following
text, we will cover validator scripts and minting policies. Reward and certification
scripts are out of scope of this thesis as they are designed to manage staking rewards
distribution only and our text does not aim to touch these topics.

Inspired by [17], we can summarize the updates on top of the UTxO model as
follows:

• Address concept generalized. So far, we explained an address to be a place
where tokens reside. We expanded on it and said that it is derived from a public
key of the entity owning those tokens. The derivation often involves computing
a strong cryptographic hash and including the hash in the address. Doing that,
we can see the address as a lock which defines how the tokens can be used. By
having the address reference a public key, UTxOs residing at the address can be
unlocked and used only when a valid signature corresponding with that public
key is included in a transaction that spends those UTxOs.

The extended model builds on this analogy and introduces another entity. The
entity is a smart contract often interchangeably referenced to as a validator script.
An address in eUTxO model can either reference a cryptographic public key hash
which would unlock UTxOs by a valid signature or it can reference to a hash
of a compiled smart contract validator script. In the latter case, the validator
script itself would need to be part of the transaction, it would be run by nodes of
the decentralized protocol and it would need to validate the transaction spending
UTxOs at that address. If the validator script would not validate the transaction,
it could not be accepted into the blockchain [2].

Based on whether an address refers to a public key hash or a validator script, we
say the address is a payment address or a script address.

• State of UTxOs. This enables unspent transaction outputs to carry arbitrary
additional data. This is powerful in combination with smart contracts as validator
scripts can maintain a state and decide on whether to validate a transaction or
not taking the state into account as well.

1.3.1 Smart contracts

The high level role of smart contracts is to enable parties in an agreement to a trustless
execution of the agreement without any intermediary while putting the trust into the
code of the smart contract instead. The smart contract is often open sourced and
audited with a very special emphasis on security to ensure it works exactly how it was

1.3. EXTENDING THE UTXO MODEL 7

agreed upon and does not contain bugs.

As mentioned in previous sections, smart contracts have the form of validator scripts
in Cardano. By creating a transaction and sending tokens to a script address, the trans-
action initiator locks the tokens at that script. Any following transaction manipulating
with those tokens must follow the logic of the validator script corresponding to the ad-
dress. Any other transaction is disallowed.

An interesting note is that anyone can manipulate with UTxOs at a script address
if the validator script does not restrict this. This enables the creation of decentralized
applications serving a potentially very big community of people that want to use and
benefit from the same application even utilizing shared resources. The applications can
manage anything from a decentralized exchange exchanging native tokens, operating a
fair auction up to providing loans.

A validator script, however, can not initiate any fund movement on its own. We
remind that the only way to move funds is to create a transaction. Smart contracts in
Cardano can not create and submit transactions. Smart contracts are only validator
scripts which decide whether to validate or dismiss transactions.

As of the time of writing this thesis, validator scripts in Cardano were meant to only
be written in Plutus. Plutus is a language built specifically to write smart contracts. It
is a language built on top of Haskell to make use of the purely functional programming
approach and a strict type system [12]. We can say that a validator script is a pure
Haskell function with the signature of:

validate :: Datum → Redeemer → ScriptContext → Bool

Let’s describe the respective elements to fully grasp what is and what is not possible
to decide with validators scripts.

Script context

Script context stands for the information about the pending transaction and the cur-
rently running script. A pending transaction is the transaction that is being validated
at the moment the validator script is run. This is the only transaction the currently
running script sees. In contrast to Ethereum and its smart contracts [11], this is a
significant difference, whereas the validator has a very limited scope to the cur-
rently pending transaction. It does not see any other transactions and UTxOs.
Even though this changes and complicates the whole design of decentralized applica-
tions that want to be implemented in Cardano, it brings more predictable scope of the

8 CHAPTER 1. EUTXO MODEL

contracts and that enables better security analysis, even enabling formal verification.

As can be seen in Figure 1.2, the validator script receives almost the whole pending
transaction and its data. The most notable elements are:

• Transaction inputs and outputs. Input UTxOs and output UTxOs. Every
UTxO has an address where it resides, a value which is a bundle of tokens it holds
and optionally a datum representing the state.

• Minted value. There can be tokens that are minted in the pending transaction.
Minting tokens means creating new such tokens. On the other hand, burning
tokens is their destruction. Burning of tokens can be expressed in the minted
value by putting negative numbers there.

Similar to validator scripts, there are minting policies in Plutus which define how
various tokens can be created (minted) and how they can be burned. Refer to
subsection 1.3.2 for more information.

• Signatories. A validator script can see all the parties who signed the transaction.
This is often used as a mechanism of saying that all the parties that signed the
transaction agree with what the transaction defines. Thanks to this, it is for
example easy to build a contract that validates whenever at least three out of
four parties agree with a transaction, etc.

• Transaction validity range. A transaction validity range is a time interval
when the transaction can be accepted into the blockchain. Nodes check this as a
part of the standard transaction acceptance checks [2]. The transaction validity
range can be used to lower bound or upper bound the current time. If a short
enough difference between the start and end of the validity range is enforced by
the validator scripts, even the current time approximation is possible.

Datum

Datum stands for the arbitrary data that can be part of script UTxOs in the extended
UTxO model. It can be any JSON-like data structure. It is used to store the state of
smart contracts on the chain.

The state is set by the person creating the UTxO and can not be changed. Any
person spending the UTxO needs to ensure that the validation script would validate
with the current state that is part of the UTxO. If the validation passes, however,
there can be a new UTxO created on the same script address with a different state. It
is often the case that the validator script wants to limit the possible next states and

1.3. EXTENDING THE UTXO MODEL 9

Figure 1.2: Pending transaction info type taken directly from the source code of Plutus
V1 library.

validate only if the state transition is allowed.

Note that there can be multiple UTxOs on the script address. However, they do
not have to have the same state. This is crucial to the model and it enables a variety
of interesting applications. Refer to the vesting example in 1.3.1 for an example on
how this can be used.

In practice, datum size is very limited. As seen in the Figure 1.2, the datum needs
to be included in any transaction that spends the UTxO with the datum. The size
of any transaction is limited to 16kB [7] as of the time of writing this thesis which
inherently limits the size of datum itself. This fact dissolves all ideas around storing
too much information in the script state unless distributed data structures are used.

If it were to happen that someone would create a UTxO with too big datum, nobody
would be able to spend it as such transaction would not be accepted by nodes due to
its size. This would lock any value sent into the UTxO until the Cardano team updates
the protocol parameters. It can happen but it certainly is not something acceptable to
depend on while designing decentralized applications.

Redeemer

Redeemer is arbitrary data sent to the validator script by the person initiating the
transaction spending an UTxO on a script address. While a datum can be viewed as
the state of the script, a redeemer is analogous to an action that the initiator intends
to perform.

Vesting example

Let us give a simple example of an application. Imagine that we wanted to give out
money as a gift to our children. However, we want them to be able to access no sooner

10 CHAPTER 1. EUTXO MODEL

than when they reach eighteen years of age as we don’t want them to spend that until
that.

We will create a vesting script for this and lock the funds there. More specifically,
if we had five children, we would create a transaction creating five transaction outputs
on the vesting script address each having its own state. The datum of a particular
vesting UTxO would define the person that is to be gifted and the time that he or
she becomes an adult. Note that since we create five vesting UTxOs to give away to
five different children, we can specify five different datums with the respective child’s
public key hash and the date.

There would be only one redeemer possible denoting the only action that can be
made. The only action is for the child to claim his gift given he or she already reached
eighteen years.

The vesting validator would consist of two checks. The first check would verify that
it is indeed the child who this particular vesting UTxO was created for claiming the
gift. This would be determined by checking that the transaction is signed by a private
key corresponding to the public key saved inside the datum. The public key in the
datum was put there in the faith that it belongs to the child. Hence we rely on its
private key to be in the sole possession of him/her as well.

The second check would pass if and only if the date of the person becoming an adult
has already passed. This can be checked by seeing the transaction validity range of the
claiming transaction and comparing it to the timestamp written in the datum. The
timestamp in the datum was put there by us, meaning we can trust this timestamp.
If the transaction validity range start is past the timestamp saved in the datum, that
means that either the transaction will be discarded by the nodes if the current time is
not past that time or it means that the child has become an adult. If those two checks
validate, the child is free to take his/her gift anywhere they want.

1.3.2 Minting policies

Minting policies are a special type of smart contracts with a bit of a different purpose.
Instead of governing how UTxOs at a script address can be spent, they govern the
minting and burning of tokens. They do not and can not restrict the transmission of
tokens that are already minted. Minted tokens are considered part of UTxOs and only
a validator script can control spending of its UTxOs. For additional clarity, we will not
refer to minting policies as validators in this text.

Minting policies are also written in Plutus and have a similar function type signature

1.3. EXTENDING THE UTXO MODEL 11

to validators:

policy :: ScriptContext → Redeemer → Bool

The only difference in the signature is that the datum is missing. All other types
stay the same. This means that minting policies are unable to have a state. This is
natural as minting policies do not control the spending of UTxOs and only UTxOs can
contain datums. Policies need to allow or forbid minting or burning of tokens based on
the pending transaction info and additional data (redeemer) sent by the transaction
initiator only.

In order to be able to consider the usage of minting policies in decentralized applica-
tion designs, let us explain more about tokens, their properties, differences, importance
and usage.

Tokens

Previously, we described a token as any possession whose owner is tracked in the
blockchain ledger. We mentioned that some tokens have monetary value, some do
not and that there is a special group of tokens (NFTs mentioned in 1.1) that exist in
uniqueness and why that could be important. In this section, we try to discuss the
importance of tokens in more technical detail based on [15].

In Cardano since the multi-asset support [24], a token is a tuple of:

• Policy id. Policy id is the hash of the compiled minting policy which governs
the minting and burning of this token. Similar to validator scripts where the
relevant hash is a part of the script address, the hash of the policy is part of the
token itself to very clearly identify it.

This is very important as it essentially means that in order to create a new token
in a transaction, nodes can check that the correct minting policy is included as a
part of the transaction, they can run the policy and check that the policy allows
minting that token.

• Token name. Token name is an arbitrary bytestring. It often serves as a human
redable identifier, but is not an identifier in itself. The most important part of a
token is its policy id. There can exist multiple very different tokens with the same
token name. This is a common scam in which a person that mints a valueless
token with a token name of something valuable tries to sell it for profit.

In addition to the human readable identifier role, a token name can also be used
to differentiate between different kind of tokens that are all governed by the same

12 CHAPTER 1. EUTXO MODEL

minting policy.

There is a special token circulating over Cardano blockchain. It is the native cryp-
tocurrency of Cardano called ADA. Its policy id is an empty bytestring [24]. As we
discussed, the policy id is the hash of the minting policy. Naturally, no minting policy
hashes to an empty bytestring. That means that ADA can not be minted nor burned
in any transaction. It is fixed in the total supply of 45 billions that was there right
from the beginning.

It is a currency, can be traded on various exchanges and is accepted as a form of
payment. As such, whenever we talk about ADA, we talk about a token with monetary
value. We do not obsess over the price itself and its non-stability over time as it is not
essential to this text.

All other tokens need to have a minting policy which is the only piece of code that
can limit how and when a particular token is minted.

For example, minting an NFT is possible to achieve by a special minting policy
that allows the minting of exactly 1 token if and only if a particular constant UTxO
is spent in the pending transaction. Any UTxO ever can be spent at most once. This
fact limits the overall possible supply to at most 1 such token.

In relation to decentralized application designs, let us mention a few use cases of
how tokens can be used when designing an application:

• Permission tokens. There can be sensitive operations in the protocol. As such,
it is not always desirable for everyone to be able to execute them. A way to limit
this can be restricting the set of users able to perform the operation. There are
two ways to easily authenticate users able to execute the action. The first one is
to whitelist a specific set of public key hashes whose signature is required to be
present in the transaction for the validator script to authorize the action. This
is the simplest option. The disadvantage is that this is not scalable to much
bigger number of whitelisted users. That is because the validator script needs to
know the whole list of whitelisted users to determine whether to allow or dismiss
the pending transaction. As we mentioned already, the size of both the datum
and the script is limited. Another complication is that it is not easy to change
the whitelisted list as changing that would mean implementing the logic into the
validator script itself. This is often undesirable, because complicating the scripts
open doors to more vulnerabilities.

The other option is to authenticate users based on an ownership of a token. This
is a more flexible and granular approach. It is possible to hardcode a token
identifier into a validator script and the script is able to check that the token is

1.3. EXTENDING THE UTXO MODEL 13

present in the transaction attempting to execute a priviledged role. The script
itself does not need to bother about who is able to own it. It is assumed that the
token would not be transferred to a non-whitelisted party. This assumption can
actually even be enforced by wrapping the token inside a script UTxO, as can be
seen later in chapter 4.

• Value tokens. Tokens can be minted and awarded to users participating in a
protocol in return for their action. Those tokens can enable them to later perform
an action only they are entitled to.

Let us show this on an example. Looking at WingRiders automated market maker
(AMM) decentralized exchange [19], users providing liquidity to the protocol
provide valuable tokens and get liquidity provider tokens from the protocol in
return. Liquidity provider tokens are tokens minted by the protocol. They enable
users to retrieve their valuable tokens (liquidity) back anytime. This is also an
interesting example of how newly minted tokens can have an inherent value.
That is, because they enable users to do an action that gets different tokens
that already have monetary value. Not all tokens need to have monetary value,
though.

• Validity tokens. Minting policies see the whole pending transaction context.
In combination with the fact that validator scripts are called only when a UTxO
is being spent from the script address and not called when they are created, it
suggests a possible way to combine the two to ensure a proper creation of a UTxO
on a script address.

Imagine that only script UTxOs with a specific validity token are considered
valid for the purposes of the protocol. The minting policy would allow minting
this token only into a specific script UTxO. It could additionally check that some
other conditions hold, for example checking a valid initial state construction. If
the script validates that the validity token can never leave the script UTxO, we
just constructed a simple protocol where we are able to ensure correct script
UTxO initialization.

This idea can be generalized. It is not possible to restrict users from creating
script UTxOs on any script address with any datum. It is possible, however, to
limit the definition of valid UTxOs to those holding a specific token and limit that
token lifecycle. As a result, the protocol can protect itself from the mentioned
potentially malicious behavior.

14 CHAPTER 1. EUTXO MODEL

Chapter 2

Concurrency issue

In this chapter we look at various reasons why decentralized applications often tend to
want or need a centralized state in the eUTxO model. We continue on by explaining a
problem such applications inherently face which is the concurrency issue and describe
potential solutions. Then we pick a solution employing a special Agent role, go into
more detail and explain why we think it is more superior compared to other solutions.
We conclude the chapter by listing problems that may originate by introducing this
role in various applications.

2.1 Centralized state

In the eUTxO context, state and datum are often used interchangeably. A centralized
state then refers to a single UTxO that holds the whole application state in its datum.

It is common for applications to need to have the whole context in order to deter-
ministically decide for the next application state or to agree on the final state. The
need can arise naturally based on the specifics of the problem itself as can be seen
in the example of an auction application in 2.1.1 or it can be a business requirement
and have business implications as can be seen in the decentralized exchange example
described in 2.1.2.

2.1.1 Auction example

An auction is a trustless application where sellers can offer their precious NFTs to
highest bidders. The benefits of recruiting smart contracts is that the code can ensure
that the seller sells to the highest bidder while making sure that the highest bidder
actually receives the NFT he pays for. We will return back and build on this example
in our final chapter 4.

15

16 CHAPTER 2. CONCURRENCY ISSUE

A straightforward way to fulfill the requirements would be for the buyer to lock the
NFT into an auction script and for any temporarily highest bidder to lock his offerred
money into the script as well. That way, the auction validator script could make sure
that if the bidder wins the auction, the offered money is transferred to the seller and
the NFT goes to the bidder. It is also possible to make sure that the money is returned
to the bidder in case he is outbid by somebody else.

Note, that the explained solution strictly depends on the fact that the state of the
particular auction is centralized. Since there is only one NFT that is being sold, it
is not possible to parallelize this into multiple UTxOs easily. We could not guarantee
to multiple bidders that they will receive the NFT if their bid is the highest on the
contract level unless they update the state of the currently highest bid and bidder in
the correct place which is arguably the UTxO holding the NFT they bid for.

It is possible to parallelize this by making use of another kind of a consensus mech-
anism or recruiting another party, though. We will discuss these later in this chapter.
The point of this example is to give an example of how making the state centralized
helps with the design and is preferable for many applications.

2.1.2 Decentralized exchange example

An AMM decentralized exchange [20] is a trustless service that provides the exchanging
of tokens without the unnecessary coordination with the other party that is providing
the wanted tokens. Simplified, the idea lies in that there are places called liquidity
pools with adequate quantity of both tokens. Liquidity providers provide both tokens
into the pool in exchange for part of the fees from every swap that happens. The
ratio of tokens inside the liquidity pool determines the exchange rate. A user that
wants to swap tokens for other tokens interacts with this liquidity pool, the exchange
rate is calculated for him and receives a fair amount of wanted tokens back. A fair
exchange rate is assumed over the long term, as the contrary would open profitable
money-earning opportunity for anyone to even the exchange rate out with the other
exchanges.

This above relatively simple idea achieved great success. The first and most pop-
ular decentralized exchange that implemented it on Ethereum chain called Uniswap
surpassed 100 billion trade volume in 2021 [18].

Let us repeat that the exchange rate is calculated automatically based on the ratio
of tokens inside of liquidity pools. A swap puts one kind of tokens inside the pool and
takes the other tokens back, inherently changing the exchange rate. This means that
the more tokens inside, the more stable the exchange rate is going to be over swaps

2.2. THE PROBLEM 17

happenning. If we see the state as the amount of tokens inside the pool along with the
tokens themselves, we can observe how centralizing the state (liquidity) into one place
is actually beneficial for the end customers, making it desirable for both the protocol
and the users.

2.2 The problem

We have now briefly explained what centralized state means and why it may be desir-
able on examples. The essential problem that inevitably comes with centralizing the
state while wanting the application to be available to a number of users is called the
concurrency issue.

The concurrency issue is the inability to satisfy multiple customers in parallel given
a centralized state is used. In its essence, this is caused by the fact that the state is
a datum in a UTxO and at most one accepted transaction can ever spend that UTxO
while producing a new one with the updated state. Multiple customers submitting
transactions that interact with the same protocol thus compete for the inclusion into
the block by nodes. That’s because their transactions are mutually exclusive [10] [5]
[19] [4].

The implications of the problem are twofold. Firstly, it limits the throughput of
the application into one user interaction per block creation. A new block in Cardano is
created by nodes around every twenty seconds as of the time of writing this thesis. This
is a very serious limitation and for many applications an unimaginable obstruction.

Secondly, even if we were to accept the throughput limitation, it leads to a ter-
rible user experience. A user signs an entire transaction that contains the identifiers
of specific UTxOs it tries to spend. In the case of multiple users competing for their
transactions’ acceptance, it is not possible to accept one transaction, hold the other
transaction and accept it in another block. That’s because the UTxO reference of the
new state would have changed, making the held transaction invalid as it attempts to
spend an already spent UTxO. The user whose transaction did not make it into the
block is required to sign a new transaction with updated references again and compete
in the next block.

Finally, let us mention that the concurrency issue is not present in this form in chains
not using the eUTxO model and thus is a relatively new problem in the ecosystem.
This is one of the reasons why it is not easy to port decentralized finance applications
from Ethereum’s account based model into the eUTxO model on Cardano even though

18 CHAPTER 2. CONCURRENCY ISSUE

those applications are open sourced.

2.3 Possible solutions

In this subsection, we discuss some of the possible solutions to the concurrency issue
and the preferred solution. As picking the optimal solution is not the purpose of this
thesis, we will only simply describe the options. We want to give credit to Sundaeswap
for covering these in bigger detail in their thorough blogpost [5].

2.3.1 Naïve

The naïve solution is no real solution to the problem. It accepts the problem and
its consequences, still employs a centralized state in a single UTxO and allows direct
interactions with it by users.

We mention this as a solution simply because it may be enough for an application
to not solve the issue at all. If the expected number of concurrent interactions is too
small, it may be sufficient for the application to provide a nice retry option to its users.

2.3.2 Constant factor improvement

The likelihood of the concurrency issue occuring can be improved by a constant factor
by splitting the state into a constant number of partial states. In the auction example,
this would mean keeping track of k highest bidders in k separate UTxOs for some
constant k and a following consensus transaction that would enforce the spending of
all k partial states, computing the winner and concluding the auction.

Bidders could interact with any of the k auction UTxOs to express their bid which
can reduce the number of bidders competing for the same UTxO supposing the bid-
ders choose the auction UTxO randomly. k needs to be a constant number so that
the contract can enforce that all k auction UTxOs are present in the final consensus
transaction. All auction UTxOs need to be present to make sure the highest bid wins
the auction.

2.3.3 Request batching

Request batching is a strategy with many different variations. The common idea,
however, is to split the whole process of interacting with the centralized state into 2
steps:

1. Request creation. This step consists of a non-blocking transaction done by
users whereas they express their binding intention to perform an action with the

2.3. POSSIBLE SOLUTIONS 19

centralized state by locking any tokens with data (datum) describing the intent
into a newly created request script UTxO.

2. Request execution. In this second step, possibly multiple requests are batched
and executed in a single transaction against the UTxO holding the protocol cen-
tralized state.

Thanks to the separation of the logic into steps, we are able to avoid users retry-
ing their transactions as there is nothing blocking users to concurrently create script
UTxOs. Furthermore, note that the user signature is required to create a request, but
it may be another person that executes the request. That is the reason why users
lock any required tokens necessary to execute the action into the request script UTxOs
directly. Another benefit is that the request can be executed against the centralized
state anytime.

It might seem that we arrived at a perfect solution to the problem. However, the
safety of such a protocol depends on the specifics:

Escrow tokens

This strategy demonstrated on the decentralized exchange example is referred to as
Escrow tokens by Sundaeswap in [5]. Similar to the constant factor improvement
strategy in the auction example, it employs a constant number of requests that are
identified by a special token limited in supply. All requests with the token need to be
present in the batch transaction when requests are carried out.

The constant number of requests at any given point in time helps to guarantee that
all created requests are carried out by whoever is responsible for the execution. The
validator script is able to check that a specific constant number of request inputs is
present in a transaction. If the number of requests was arbitrary, the smart contract
would not able to verify that no request is left out and ignored.

The disadvantage of Escrow tokens strategy is that the concurrency issue is once
again improved only by a constant factor because there can be multiple users competing
to receive the escrow token that is limited in supply.

Open batching

Open batching stands for adhering to the simple request batching model and letting
anyone batch requests and execute them. It allows for arbitrary number of requests
which means that it is not able to guarantee on the contract level that all requests
would be executed. However, the request creator could batch his request himself. He

20 CHAPTER 2. CONCURRENCY ISSUE

would be competing with other batchers for block inclusion, though.

There are two major problems with allowing anyone to batch transactions. Firstly,
since the number of requests is arbitrary and the fact that validators see the pending
transaction only, it is impossible to know how many requests there are on the contract
level. As a result, it is impossible to prevent someone from batching 1 request only.
We mentioned that this may not be desirable as it may mean that some requests
are left out forever. What we did not mention yet is that this kind of behavior may
actually conduct a denial of service attack on the protocol. This could be achieved by
an attacker batching his own requests with near-to-zero value and leaving out all the
other requests. Since only one batching transaction can be included in a block, the
attacker doing so could limit the application throughput fundamentally.

Secondly, it may be important that the order in which requests were created is
preserved in some applications, not manipulated and that the order in which they are
batched is the same. An example of such an application is the decentralized exchange.
We mentioned that performing a swap changes the exchange rate of assets. Controlling
and manipulating the order of swap requests in their execution can be exploited for
personal gain. An example of such behavior is front-running [25].

In front-running, an attacker can notice a swap big in quantity which is expected to
tangibly change the exchange rate. He can create and put his own swap request before
executing that request, profiting of the prior knowledge of the rate change. Similarly,
he can execute his own swap changing the rate and let the unknowing user exchange
tokens for an unfair rate.

Preserving the order is another problem that is not possible to enforce on the
validator level given the limited validator scope. That is, if we assume an arbitrary
number of requests.

2.4 Agent role

As we have seen, it is not a good idea to allow anybody to batch requests. Due to
the outlined higher responsibilities of the batching party, the ability to batch requests
is a priviledged role. In the following text, we call the batching party an agent and
refer to his role as Agent role. If we assumed that any agent was an honest player, we
could use the request batching solution to solve the concurrency issue and increase the
throughput of decentralized applications in need of a centralized state. There would
be close to no disadvantages to it except for it taking longer time to completion due to
the process consisting of two transactions which both need to be created and accepted
into the blockchain one after the other.

2.4. AGENT ROLE 21

As described in section 1.3.2, the authentication of agents can utilize permission
tokens. The script holding the state can validate that an agent token is present every
time batching occurs.

It is not an easy task to identify honest players and allow only them to become
agents, though. What’s more, concentrating the power into a small number of agents
has its risk, too. If all agents stopped batching, the protocol would halt as it is
dependent on them.

22 CHAPTER 2. CONCURRENCY ISSUE

Chapter 3

Optimistic design pattern

In this chapter we propose a design pattern which aims to address the problems arising
from the Agent solution to the concurrency issue described in the previous chapter.
We explain that the idea is to trust agents to be honest and disincentivize them from
misbehaving. Further on, we discuss two ways of watching out for proofs of a potential
misbehavior, list their pros, cons and potential usage in various applications.

3.1 Limiting the exploitable surface

It is important to note that agents can not do anything they like. By spending request
scripts and the script UTxO holding the protocol state, any validation defined either
in the state script UTxO or in request scripts can run on the batching transaction. It
is critical for those validators to check as many attributes and invariants as possible,
to narrow the possibly exploitable surface down to the bare minimum.

Unfortunately, as described in section 2.4, it is impossible to verify all properties we
would like. Those unverifiable include certain properties such as enforcing the order of
requests or checking if the presence of all created requests is provided in the transaction.
This limitation is there mainly due to the limited scope of validators to the currently
validated transaction only. This is evident in the latter example we provided. If the
validator can not check the whole blockchain, how can he find out how many requests
there are? He is able to see the requests included in the transaction only. If there is
any request ommitted, it is not possible to spot it.

In contrast, it is still very possible to ensure a fair execution of the requests that
are part of the batching transaction.

23

24 CHAPTER 3. OPTIMISTIC DESIGN PATTERN

3.2 Punishing agent misbehavior

Optimistic design pattern is a pattern we would like to suggest to be used in a de-
centralized application that would like to use the request batching model to solve the
concurrency issue. It acknowledges that some properties are not possible to ensure in
Cardano blockchain by validator scripts only and that being an agent is a priviledged
role. At the same time, however, it would like to decentralize agents as much as pos-
sible to avoid a single point of failure.

The design pattern enables anyone to become an agent by meeting the initial crite-
ria. The criteria would include putting down a sufficiently big collateral consisting of
tokens with monetary value and locking it inside a collateral script. The collateral
serves to discourage agents from misbehaving. It is a lot of value that is locked by
every agent. If agent is honest, nothing happens to the collateral and the agent can
reclaim it after he wraps up being an agent. On the other hand, the protocol allows
slashing of the collateral in case the agent is dishonest and misbehaves. The process of
putting down the collateral and releasing an agent token (making the user an agent)
for it can be automized, as can be seen in the next chapter 4 demonstrating the design
pattern.

Being an agent and fulfilling the agent role needs to be a profitable job to do. If
it was not, there would be no incentive for the public to want to do it which would
understandably limit the resulting protocol decentralization. As a result, there is often
a constant fee that can be taken from every request agents execute. It is possible to
make sure that dishonest agents can not collect these agent fees by collecting them
separately and holding them off until a sufficient time passes during which no slashing
took place. Losing the locked collateral is definitely more disincentivizing, but this can
effectively increase the value that the agent has in stake.

Finally, it is crucial to be able to take the agent token back. The agent token enables
the agent to perform agent duties. If we were unable to take the token back, the agent
would have nothing to lose after his collateral was already slashed and could continue
manipulating the protocol for his own gains. We achieve this by never distributing
agent tokens directly into agent wallets as that way we would have lost any control
over them, but by locking agent tokens into agent scripts instead. Agent scripts
ensure that the owner of the script can use the agent token in order to batch requests.
What’s more, it allows for slashing of the agent token if there is a proof of agent
misbehavior. It can not be possible for the agent to unlock and take the agent token
away.

3.3. PROOFS OF AGENT MISBEHAVIOR 25

Optionally, since the agent token is locked in a script already and the agent script
validation needs to pass whenever it wants to be used, it is possible to control many
other conditions as well. An example we already mentioned could be limiting the agent
to collect agent fees into a pre-defined script which can ensure that a sufficient time
passes without the agent getting slashed before releasing the accumulated fees into the
agent’s wallet. Another example would be limiting the frequency of the agent being
able to use his agent token.

3.3 Proofs of agent misbehavior

In order to slash agent’s collateral and take away his ability to batch requests, it is
critical to obtain a proof of agent misbehavior. This section discusses two main types of
how such proofs could look like and how the following agent slashing could be designed.

3.3.1 On-chain proofs

On-chain proofs refer to the ability to find and use proofs already directly located on
the blockchain. It is arguably the most elegant solution as everything is controlled and
verified purely by validator scripts. It is also the more complex approach to implement.
Sadly, it is not possible to be used for every type of a decentralized application as the
existence of such proofs in the form of UTxOs is not natural for all applications.

In the auction example described in 2.1.1, an on-chain proof of an agent misbehavior
could be an overlooked and left-out bid request that was not executed. If we were able
to verify that the bid request was created at a certain time during which the auction
was still ongoing, it was the highest bid, still is, and the auction was later closed by
concluding another smaller bid as the highest, we could take the agent that concluded
the auction and punish him for clearly overlooking and not executing the bid request
he was supposed to. We could then penalize him by slashing his collateral and taking
away his ability to be an agent.

As we will demonstrate on the auction example in the final chapter 4, it is actually
possible to fulfill all of the mentioned prerequisites and make this work.

3.3.2 Off-chain voting proofs

In contrast to on-chain proofs, off-chain voting proofs can be utilized for any appli-
cation and in every scenario that is at all detectable by anyone. It builds up from
the fact that the whole blockchain is publicly available and explorable, including all
transactions that happen and the order of transactions in which they were accepted

26 CHAPTER 3. OPTIMISTIC DESIGN PATTERN

into the chain. Even though validator scripts see only a limited scope, looking at the
blockchain history from an off-chain perspective, one can see everything and can look
out for whether a particular agent misbehaved or not.

The idea of off-chain voting proofs utilizes an inner governance structure of the
application itself to find and vote for agent misbehaviors. The governance structure
refers to any decentralized autonomous organization (DAO) structure there is.
Most truly decentralized applications employ one as a DAO is essentially a decentral-
ized form of the protocol ownership whereas thousands, even millions of people can
influence the future of the project. People that are part of the DAO benefit from the
fair and error-free run of the application. As a result, they are naturaly incentivized to
stop and punish any dishonest agent as soon as possible. There is often a governance
token that identifies the shareholders that is limited in supply [26].

Anyone who is part of the structure can claim that a particular agent misbehaved
and optionally include details about it. This could be done purely off-chain, announced
e.g. via social media or similar. That action starts a voting. Any project governance
token holder can validate the claim off-chain themselves since the whole blockchain
data is public and cast a vote on-chain to bindingly express what they found out about
the agent.

Casting votes on-chain can easily prevent double-voting since casting any vote could
require the person to lock his governance tokens into the vote script for as long as is
needed in order to get the voting results. Note that in this voting, anonymity of the
vote participants nor confidentiality of the votes casted are not essential properties.
The anonymity of the participants is provided partly by the fact that there are no
names in the blockchain ledger, only public key hashes. It is not a trivial job to assign
names to public keys. It requires some forensic analysis. Despite that, the field is
studied and it is often very possible to find out the identity of a person holding the
public key [22]. It happened even in the real life when there was enough incentive to
do it.

All the votes can be seen by anyone who is looking at all UTxOs present on the
voting script address from off the chain. He can weigh the votes by the number of
governance tokens locked in the votes and find out the results.

However, it is a problem to make the results available in a single UTxO on-chain in
order to be read by validator scripts. We need that in order to present a unified proof
of agent misbehavior that can be included in the transaction slashing the agent’s col-
lateral. The reason why it is a hard problem is that the number of project shareholders
that voted can be arbitrarily big. Naïve solutions could easily exceed the maximum

3.3. PROOFS OF AGENT MISBEHAVIOR 27

transaction size. Solving this would require a very complicated, long-taking and ex-
pensive on-chain consensus procedure to count all the votes.

Instead, to bring the voting results on-chain, we assume that a generic oracle
solution already exists and we utilize it. An oracle is a decentralized application
whose purpose is bringing real-world data into the blockchain. There are numerous
oracle solutions in Ethereum [13], the leading blockchain in the number of decentralized
applications and there are plans for launching an oracle on top of Cardano soon [9]
[14].

An oracle functionality is by definition exactly what we need to bring the voting
results into a single UTxO datum on the blockchain. Having achieved that, we can
later use the results as a proof of agent misbehavior and create a transaction punishing
him if the vote concluded that he actually misbehaved.

28 CHAPTER 3. OPTIMISTIC DESIGN PATTERN

Chapter 4

Demonstration: Auction

In this chapter, we describe a decentralized NFT auction application employing the
agent request design and demonstrate the Optimistic design pattern with the on-chain
proof approach on it. We explain various technical decisions in great detail along the
way. We implemented the contract code that we are about to discuss, along with an
off-chain demonstration of the described application. It is located on the USB drive
included with this thesis.

4.1 Protocol design

We will demonstrate the Optimistic design pattern on a similar auction to the one
mentioned in the previous text in 2.1.1 and 3.3.1. Sellers owning NFTs could put them
up for an auction. Users can bid and the user bidding the highest price will buy the
NFT. Multiple auctions being executed at once are easily possible to take place in
parralel as they do not influence each other other than by increasing the number of
transactions that are waiting to be accepted into the blocks which could increase the
time it takes for any action.

There is a single UTxO for every auction owning both the NFT put to sale and
money of the highest bidder if there is one already. It is responsible for both the locked
bid money and the NFT to be able to guarantee that the bidder could be granted the
NFT and at the same time, the seller could be payed upon the auction closing.

In order to avoid concurrency issue limitations when multiple people would attempt
to bid for the same auction in the same block (see Chapter 2), we use the agent
request model. Agents are the only ones that are able to take the currently highest bid
request UTxO, take the auction UTxO with the previously highest bidder and mark
the outbidding.

Anyone is able to become an agent allowing for a true decentralization. A collateral

29

30 CHAPTER 4. DEMONSTRATION: AUCTION

is required to be put down in order to become an agent. Agent token identifying
agents is minted when that happens and is locked inside an agent script along with the
collateral itself.

Anyone is free to watch out for a proof of agent misbehavior. We utilize on-chain
proofs in the form of a left-out highest bid which was clearly overlooked by a particular
agent. Given such proof exists, it can be included in a transaction that slashes the
agent of his collateral and burns his agent token, effectively taking away his ability
to harm the protocol further. This works unless he put down multiple collaterals in
exchange for multiple agent tokens. In that case, he is given another chance which
could result in slashing of another collateral if he misbehaves again.

To be able to fairly slash misbehaving agents and avoid slashing honest ones, we
enforce that:

• We keep track of the last agent interaction with auction UTxO. This is
part of the auction script datum and it is enforced by the auction validator. We
keep track of both the timestamp when the agent interaction occurred and the
agent that interacted with the auction.

• We know the time bids are created. This is tricky. In general, we are unable
to run any validation on the creation of UTxOs. However, we can utilize validity
tokens mentioned in 1.3.2 for this. The token for this use case is called the bid
validity token. Its minting policy is written in such a way that bids owning
this bid validity token are guaranteed to have been created around the timestamp
written in their datums. See 4.2.2 for more.

• Auction is properly created. As we mentioned, the agent that last interacted
with an auction is mentioned in the auction UTxO datum. This information is
used in order to slash that agent if applicable. If an auction UTxO could be
created with a malicious datum referencing an agent that did not interact with
the pool, he could be slashed even though he did nothing wrong.

To avoid this, we utilize an auction validity token. It can be minted only into
a freshly created auction UTxO, needs to be present in auction UTxO at all times
and makes sure that the auction datum is not malformed.

Furthermore, we want to avoid a misbehaving agent slashing himself such that he
is granted the slashed collateral. If we allowed this, the agent would not lose anything
on it and could play the protocol. To make this right, we require that most of the
slashed collateral goes to the protocol treasury. Protocol treasury address is fixed for
the auction. We still allow for the person slashing to take part of the collateral to

4.2. TOKENS 31

incentivize people looking out for malicious behavior.

With all the mentioned pre-requisities, we are now able to fairly slash a misbehaving
agent and take away his agent token. Let’s take a look at the specific elements of the
application in more detail.

4.2 Tokens

Same as in most applications, we also make use of different tokens in our auction
application. They are functional tokens essential to the correct functioning of the
application. As such, it is critical that they follow a strictly defined closed lifecycle.
That is important to be aligned with the reasoning given in this text.

To make sure that a functional token is not misplaced, we enforce that in order to
mint a functional token, there can be no such token in transaction inputs, no script
where it is to be minted is present in the transaction inputs and that only one such
token is minted in the transaction and it is minted into the correct script found by its
hash. This holds for all tokens described in this section.

4.2.1 Agent token

Agent tokens identify agents. It can be part of agent script UTxOs only (see 4.3.1) and
exactly one in quantity. It can be minted only in the transaction where a user becomes
an agent, into the agent script UTxO and can never leave the agent script unless it is
burned.

Whenever that agent script that holds agent token is spent in a transaction, it is
carefully checked that the agent token is not taken away and is present in the agent
script transaction output.

Agent token ends its lifecycle in either of two scenarios: Either the agent stops
being an agent, he unlocks his collateral and burns the agent token or a proof of his
misbehavior is found and he is slashed in which case the agent token is burned as well.

In a way, agent token also serves as an agent script validity token. The minting
process of agent tokens also checks that the collateral is put down and locked inside
the same agent script that is being created. Thanks to that, we can say that any agent
script UTxO holding an agent token has collateral locked inside of it.

32 CHAPTER 4. DEMONSTRATION: AUCTION

4.2.2 Bid validity token

As mentioned in 4.1, a bid validity token is minted only when a new bid script (see
4.3.2) UTxO is created and is a property of that particular bid until the bid is not used
or cancelled in which case it is burned.

Its purpose is to limit the transaction validity range of that transaction to big
enough to cover for blockchain latencies but at the same time short enough to pro-
vide a good estimate of the time when the bid was created. It then checks that this
deterministic estimate given the transaction validity range is put inside the bid script
datum. Given bid script does not allow for a modification of this timestamp, we can
say that any valid bid contains a time approximation of the time it was created. A
bid is considered valid if and only if it holds a bid validity token.

4.2.3 Auction validity token

Similar to bid validity tokens, as mentioned in 4.1, an auction validity token is minted
only when a new auction script (see section 4.3.3) UTxO is created and is a property
of that particular auction until the auction is not concluded in which case it is burned.

Its purpose is to mainly check a proper auction datum creation. That means that no
agent interaction is recorded in the datum. It acts as a defense mechanism preventing
an unfair slashing of honest agents.

In addition to that, we also check that the auction contains the auctioned NFT
asset. That makes it easier for bidders to trust that any auction with auction validity
token claiming to be auctioning a particular NFT actually holds it. Furthermore, it
prevents malicious agents from applying the bid with a malicious auction UTxO that
only says it auctions the asset the bidder wants, but it does not really own it.

4.3 Smart contracts

There are three scripts that form the auction application together. Every script holds
a state and allows multiple redeemers that describe the possible actions. Let us explain
how the different validators work together.

4.3.1 Agent script

Agent script is holding the collateral and the agent token identifying agents. Owning
such script enables the owner to participate in the protocol.

4.3. SMART CONTRACTS 33

Agent datum

Agent datum is the state of the agent script. It consists of:

• Owner. Owner is a public key hash of the agent, the owner of the agent script
instance. Only he is able to take that agent script UTxO and use it to apply a
bid with an auction. No one else can use this UTxO in the name of the owner.
If he wants, he can take his money, put down collateral and become an agent
himself.

• Last used at timestamp. This timestamp tracks the last usage of the particular
agent script UTxO. It is guaranteed to be empty when agent script is initialized
(checked by the agent token minting policy) and needs to be updated to the
current time approximation whenever an agent uses the script to apply a bid.

• Auction validator hash. In order to check that an auction is present in a trans-
action, we need to know the auction script validator hash to look for. We could
fix it as a constant inside of the agent script validator, but that would mean that
the agent script validator hash is dependent on the hash of the auction script.
In turn, if we wanted to check the presence or any other property of the agent
script inside of the auction validator, we could not reference the agent validator
hash as that would cause a circular dependency.

We avoid this issue by putting the agent script validator hash as a parameter
of the auction script which makes the auction validator hash dependent on the
agent script validator, but instead of putting the auction hash into the code of
the agent validator, we make it part of the agent script state. This helps us to
avoid the circular dependency while also making it up to the agents that create
the agent script UTxOs to provide the correct hash. We argue that we can rely
on the agents in this sense. That’s because they want to be able to apply bids to
auction UTxOs. To be able to do that, they need to reference the correct auction
hash, because the auction has the agent hash as a parameter and its validator
checks that the agent script datum references the correct hash.

To sum up, the agent needs to reference the auction validator hash. If he puts
the correct hash there, everything will work just fine for him. If he does not, he
is unable to interact with the auction script UTxOs so he loses the very ability
he put down collateral for.

• Auction validity token class. Having this token class follows exactly the
same logic as the previous property, the auction validator hash. It is necessary
for agents to not trust auctions that do not hold the validity token. If they failed

34 CHAPTER 4. DEMONSTRATION: AUCTION

to do that, they could be e.g. slashed due to the invalid auction’s datum being
malformed in a way that it says that agent overlooked a certain highest bid.

It is also checked in the auction validator that any agent script applying a bid
references the correct auction validity token class. Hence, it is not possible for the
agent to avoid the slashing possibility in case he provided wrong auction validity
token class.

Redeemers

There are following actions that can be performed on an agent script:

• Use agent token. This is a redeemer to be used when an agent wants to use
his agent token to apply a bid in an auction. It is checked that an owner of
the agent script signed the transaction to verify that the owner really wants
to do it. Moreover, it is checked that the value is not changed to prevent the
agent from taking away his collateral and / or the agent token and that the
last used at timestamp is correctly updated. To update it to a good enough
time approximation, it is checked that the transaction validity range is limited
enough. No other datum value can be changed. It is also checked that an auction
UTxO with the correct hash and with the correct validity token is present in the
transaction inputs.

To narrow down how the transaction looks, it is ensured that there is one agent
script and one auction script in transaction inputs and that one of each is also
present in the transaction outputs.

• Terminate agent role. This redeemer can be used only by the owner of the
agent script instance to stop being an agent and take back the locked collateral.
This destroys the UTxO and as such needs to burn the agent token contained
within. The collateral is free to be taken by the owner whose signature needs to
be present in the transaction. In order for the agent to be able to terminate the
agent role, he needs to wait for sufficiently long after his last interaction with an
auction. This time is enforced in order to avoid agents cashing out after they
harm the protocol, allowing for a sufficiently long time to slash them.

To prevent various edge cases, it is explicitly checked that no auction is present
in such a transaction and that only one agent script was spent.

• Slash agent. This action can be performed by anyone, the agent owner’s signa-
ture is not required. The actual validations are delegated to the auction validator.
In the agent validator, we just check that an auction with the validity token is
present both among the transaction inputs and the outputs and that the agent

4.3. SMART CONTRACTS 35

script is destroyed. Agent script destruction needs to be accompanied by agent
token being burned as we want to maintain the invariant that the agent token
always lives only inside an agent script.

Note that the enforcement of the number of script inputs and outputs in such
transaction serves to make sure a particular redeemer is used on the auction
script. In this case, checking an ongoing auction is present and an agent script
that is destroyed clearly identifies the only valid possibility and that is the Read
for slashing auction redeemer (see 4.3.3).

4.3.2 Bid script

The bid script UTxOs are used as places where bidders express which NFTs they wish
to buy and for how much. To express a binding wish, they are required to lock the
money inside the bid script. That money in itself is not binding as long as it is con-
tained within the bid UTxO. However, an agent can come, spend the bid and put the
money inside an auction UTxO. Once the money is in the auction UTxO, there is no
way for the bidder to cancel the bid and retrieve the money. He either wins the auc-
tion and gets the NFT or he is outbid and his money is returned. That is why we say
that the wish to bid is made binding by locking the money inside the bid script instance.

The bid script needs to protect the bidder. As long as the bid UTxO exists, the
bidder needs to always be able to take away his money. Once it is destroyed by an
agent, the money can only be put inside the auction. Finally, once the money is inside
the auction, he can either be outbid and returned the money or he can be compensated.
The bidder can never lose on this. He creates the bid UTxO to either win the auction
or not to lose anything except the transaction fees. That is the contract he is signing
for and the bid script needs to protect this.

Bid datum

Bid datum is the state of the bid script. It consists of:

• Owner. Owner is a public key hash of the bidder. Only he is able to cancel the
bid and unlock all of his locked funds.

• NFT asset. The asset class of the NFT which uniquely identifies the NFT the
bidder offers his money for.

• Bid created at. A timestamp that approximates the time of when this bid was
created. As described in 4.1, validity of this timestamp is guaranteed for all valid
bids identified by an ownership of a bid validity token.

36 CHAPTER 4. DEMONSTRATION: AUCTION

• Auction validator hash. The auction script validator hash. It can not be
in the code itself and needs to be in the datum to prevent circular dependency
between the auction and bid scripts.

It is in the bidder’s best interest to put the correct hash into the datum. By
putting a different hash there, he has nothing to gain and everything to lose. An
auction with the hash and owning the validity token is free to take the bidder’s
money in exchange for a promise that he is currently the highest bidder and he
would either win the auction or be returned the money. Putting the correct hash
there, he trusts the code of the auction that promises this. Putting the wrong
hash there, he is subject to any alternative logic that the other script stands for.
For example, if the script whose hash was put there would validate every time
with no validation logic at all, anyone would be able to construct a transaction
unlocking the bidder’s money that is locked inside the bid referencing the wrong
hash.

• Auction validity token class. This follows the same logic the auction validator
hash does. The bid script’s code refuses to interact with auctions not owning the
validity token.

Redeemers

There are following actions that can be performed on a bid script:

• Use bid. This redeemer actually serves two different actions. It can either be
used to outbid a previously highest bidder or it can be used to use the bid as a
proof of agent misbehavior. In any case, the bid script actually does not check
much. It delegates the validation to the auction validator which allows for exactly
these two distinct use cases.

It checks that there is exactly one auction input in the transaction and one
output. It also checks that the auction owns the auction validity token and that
the auction sells the NFT that the bidder wants.

As there are two separate use cases allowed to use this redeemer, it is not clear
whether the bid UTxO will be destroyed or not and thus not appropriate to
check anything about the bid validity token burning in this place. It is checked,
however, in the respective auction script validation paths.

• Cancel bid. The owner of the bid can cancel the bid anytime. It is checked that
the owner signed such a transaction and that the bid validity token is burned.

4.3. SMART CONTRACTS 37

4.3.3 Auction script

An auction script instance is initialized by a seller who wants to auction an NFT. The
NFT is locked there. We maintain that the NFT is a valuable item and therefore one
of the responsibilities of the auction script is to protect the NFT. It can be either sold
or taken back by the seller in case no bidder participated in the auction.

In addition to that, the auction is the cornerstone of all the remainder logic. Both
agent script and the bid script delegates some parts of their validations to the auction
script. Therefore, it needs to carefully check as much as possible to satisfy all parties.

Auction datum

The auction datum is the state of the auction script instance. It consists of:

• Seller. Seller is a public key hash of the person creating the auction UTxO. Only
he can cancel the auction in case no one bid yet. In case someone bid already, he
is the person that needs to be paid the bid amount upon the auction closing.

• Auctioned asset. This identifies the asset that is being auctioned. The auction
validity token makes sure that the asset is indeed inside of the auction UTxO.
Furthermore, bid script makes sure that a bid interacts only with an auction that
sells the asset that the bidder wants.

• Deadline. The deadline of the auction. There can be bids accepted only before
this deadline. After the deadline has passed, the auction does not accept any
more bids and can be either closed if there is a bidder or it can be cancelled in
case no one bid.

• Highest bid. Highest bid keeps track of the highest bidder and the offer there is
so far. It is checked that there is no highest bid upon the auction UTxO creation
in the auction validity token minting policy. Every following offer needs to be
strictly greater than this currently highest one.

• Last agent interaction. This property keeps track of the last agent interaction,
both the timestamp and the public key hash of the agent script owner. It is
ensured that no agent interaction is set upon the auction creation. This value is
used to identify the agent that overlooked the highest bid and thus is considered
to have misbehaved.

• Auction validity token class. Similar to other validator hashes and token
class references, this field is here in order to avoid circular dependencies. This
value is not to be trusted by agents nor the bidders. They need to set the correct
value inside their agent or bid datums themselves. It can not happen that the

38 CHAPTER 4. DEMONSTRATION: AUCTION

auction will reference wrong auction validity token class and still contain the
correct validity token. This is prevented by the auction validity token minting
policy. However, it still could happen that a malicious auction UTxO would
reference a wrong token class. That is one of the reasons why agents as well as
bidders reference the auction validity class themselves and do not rely on any
hash that is put here.

It is used to make sure the auction validity token is burned in case of an auction
closing or cancellation.

Redeemers

There are the following actions that can be performed on an auction script:

• Outbid. This action is applicable when a higher bid is included in the trans-
action. This bid amount is locked inside the auction UTxO and the previously
highest bidder is returned his money. This is applicable only if the auction dead-
line has not passed yet and can be initiated by an agent only. As discussed, that
is to avoid the concurrency issue that would otherwise occur when multiple users
would like to interact with the auction UTxO themselves in parallel.

It checks that the agent references the correct auction hashes, the offer is high
enough and that the auction datum and value are exactly correctly modified
which includes storing the data about that concrete agent and his interaction.
There needs to be exactly one bid script, one agent script and one auction script
as part of transaction inputs and one agent script and one auction script in the
transaction outputs. The bid is thus destroyed. It is checked that the bid validity
token is burned.

It is also made sure that only valid bids are able to outbid an auction. This is to
strictly enforce the way users should use the protocol. Avoiding the minting of
bid validity tokens could result in inability to slash agent’s collateral as we could
not trust bid’s creation timestamp unless it owns the bid validity token.

• Close auction. Closing of an auction means that there is a winner of the auction,
deadline has passed and this is the time that the NFT is sent to the highest bidder
and the offerred money goes to the seller.

As it is a one-off action per any auction, there are no problems with concurrency.
It does not matter who performs this action. It is strictly defined who receives
what. The transaction initiator simply pays for the transaction. As a result, it
is expected that the person would be one of the two participants as they are the

4.3. SMART CONTRACTS 39

ones interested in closing it off.

It is checked that the deadline is in the past, seller as well as the winner are
compensated, the auction UTxO is destroyed and thus the auction validity token
is burned. There needs to be exactly one auction UTxO in the transaction outputs
and none in the outputs.

Furthermore, there can be no bid scripts present whatsoever in neither the inputs
nor the outputs.

• Cancel auction. The seller is able to cancel his auction if his signature is
present, no bidder’s money is locked in the auction so far, the auction
UTxO is destroyed and the auction validity token is burned. To stress it out,
the most important constraint is that there is no bidder’s money locked in the
auction so far. This way, the auction can guarantee the bidder that if he really
is not outbid by someone else, he will win the NFT as the buyer can not cancel
the auction.

The seller is free to take his NFT wherever he wants when he cancels the auction.
Additionally, there can be no bid script included in the transaction inputs or
outputs.

• Read for slashing. The slashing transaction consists of a left-out bid which is
left untouched, the auction it was supposed to be applied with that is also left
untouched and acts as a part of the proof and, finally, the agent script that is
being destroyed.

Technically, the auction datum is modified a bit to reset the last agent interaction
field to no interaction. This is purely to allow only one slashing of a particular
agent for a single auction misbehavior at a time. He needs to misbehave again
to be subject to another slashing. Most of the collateral needs to be put inside
the treasury. The rest, however, can be taken by anyone that found about the
agent’s misbehavior. The agent token needs to be burned.

The slashing is possible whenever:

1. Both the auction and the bid contain validity tokens.

2. The bid would have won if it were applied.

3. The bid is not cancelled.

40 CHAPTER 4. DEMONSTRATION: AUCTION

4. Bid was created before there was the last agent interaction with the auction,
meaning the agent should have seen it and applied that bid instead. There is
an agent tolerance time interval constant in the implementation, as agents
can not be expected to react straight away. Accepting transactions into
blocks takes non-trivial time making zero-tolerance practically impossible.

5. The agent that is being slashed is the one that last interacted with the
auction.

4.4 Transactions

To summorize the behavior and offer a different point of view on the scripts’ interaction,
let us describe all the trasactions possible in the protocol. Even greater details and
constraints are offerred in the runnable off-chain part of the actual implementation
that is included on the USB coming together with this text.

4.4.1 User transactions

The following transactions are able to be built and submitted by any user.

Create auction

Anyone owning an NFT they wish to auction can take it, lock it inside a newly created
auction script UTxO and set the auction deadline in the datum freely. In order to create
a valid auction, it is needed to mint an auction validity token in that transaction and
put it into the auction UTxO.

Close auction

Anyone can find auctions with a clear winner that are past their deadlines and close
it off. They are required to pay the winner off the NFT that is locked in the auction
UTxO and pay the seller the bid money that is also locked in the auction UTxO. It is
also necessary to burn the auction validity token from the auction UTxO.

Cancel auction

Anyone who is an owner of an auction can cancel their own auctions and retrieve the
locked NFTs from them in case there is no bid applied yet with them. They need
to destroy the auction UTxOs which needs to be accompanied by the burning of the
auction validity tokens.

4.4. TRANSACTIONS 41

Create bid

Anyone who is interested in buying a particular NFT can offer money for it by creating
a new bid script UTxO while locking the money in there. In the datum of the newly
created bid UTxO, he can express exactly which NFT he bids for. In order to create a
valid bid, it is required to mint a bid validity token in this transaction and put it inside
the bid UTxO. To be able to do that, it is necessary to restrict the transaction validity
range to not be arbitrary big. That serves to be able to approximate the current time
close enough and to properly estimate when the bid was created.

Cancel bid

Anyone who has previously created a bid is free to cancel their bids as long as they
still exist. Applying a bid (see 4.4.2) destroys the bid and thus the pure existence of
the bid means that the bid was not applied. The cancellation destroys the bid by the
bid owner and thus it is necessary to burn the bid validity token contained within.

Slash an agent

Anyone is free to observe that a particular agent misbehaved by identifying an auction
and a bid belonging to that auction which would have outbid the highest bid marked
in the auction. The bid needs to have been created before there was the last agent
interaction on that auction allowing for some time tolerance to clearly identify that
the agent written down in the auction’s datum overlooked the highest bid and did not
apply it. This makes for undoubtedly malicious behavior and is punishable. Anyone
that observes and successfully creates the slashing transaction can take a significant
part of the agent collateral for himself.

The transaction itself looks like this, describing only the transaction structure that
is enforced:

• Transaction inputs.

– The overlooked highest bid. The bid could not have been cancelled. If it
were, we would have nothing to include here.

– The auction it belongs to.

– The agent script of the agent that is responsible for the auction’s last agent
interaction.

• Transaction outputs.

– The overlooked highest bid that is left untouched.

42 CHAPTER 4. DEMONSTRATION: AUCTION

– The auction where the last agent interaction is reset. Otherwise it is left
untouched.

– The most of the collateral goes to the protocol treasury.

– Small but still lucrative part of the collateral goes anywhere the user creating
this transaction pleases.

• Minting. The agent script is destroyed. Thus the agent token previously con-
tained within needs to be burned.

Become an agent

Anyone is free to become an agent. An agent is identified by an agent token and thus
a person aiming to become one needs to mint the token. The minting policy allows
minting agent tokens only into agent scripts given a collateral is put down and locked
into the script as well. As a result, the transaction consists of the creation of a new
agent script UTxO where the user collateral is locked and the newly minted agent token
is locked. The owner public key hash of the agent script is specified freely by the user.

4.4.2 Agent transactions

The following transactions are able to be built and submitted by an agent.

Apply a bid

Applying bids is an action only agents can perform. The reason is the concurrency
issue we would otherwise suffer from that is described in Chapter 2. The process of
applying a bid first of all requires the agent to scan the blockchain off-the-chain and
find the highest bid for that particular auction. After he has identified it, he spends
the bid, takes the auction UTxO and outputs a new auction UTxO where the newly
identified highest bidder would be noted down. Spending the bid involves burning the
bid validity token contained within.

In case there was previously a highest bidder noted in the auction UTxO, there was
the bid money locked in the auction. The agent is thus required to pay him off the
whole amount as he stopped being eligible for the auctioned NFT. The agent puts the
newly highest bid amount into the auction UTxO instead.

To identify as an agent, the auction validator requires an agent token present in
the transaction. As a result, the agent is required to include his agent script UTxO in
the transaction as well. He just presents it in the transaction and outputs it as well.

Finally, it is necessary to update the state of both the auction and the agent script
in order to keep track of the last interaction. The auction needs to remember who

4.5. IMPLEMENTATION TESTING 43

and when lastly interacted with it to allow for fair slashing if applicable. The agent
script needs to keep track of the timestamp of the last usage of the script to be able
to wait sufficiently long before it allows the agent to retrieve his collateral. To be able
to approximate the current time, it is necessary to enforce a small enough transaction
validity range.

Stop being an agent

An agent put down collateral in order to be able to become an agent. He is free to
stop being an agent and retrieve his collateral. The only requirement is that he needs
to wait sufficiently long after his last usage of the agent token in order to allow for
observers to find out whether he misbehaved during his agent interaction or not. After
the required time has passed, he can destroy his agent script UTxO, burn the agent
token and take the collateral wherever he wants.

4.5 Implementation testing

We have run and tested various scenarios combining the above transactions. It can be
tested out modifying the Trace.hs file, compiling and running it. More information
about how to run it can be seen in the README.md file. Logs from the execution
of the flows listed in the file are also located on the USB drive in file trace.logs.

We tried to simplify the testing interface so that it can be easily modified even
without extensive knowledge of the Haskell language. Example snippet can be seen in
Figure 4.1 and sample logs from such an execution in Figure 4.2.

44 CHAPTER 4. DEMONSTRATION: AUCTION

Figure 4.1: A snippet from Trace.hs file building transactions and testing out the user
balance updates.

4.5. IMPLEMENTATION TESTING 45

Figure 4.2: Final balances after the series of transactions have run. Token {, ””} stands
for ADA which is the native Cardano currency.

46 CHAPTER 4. DEMONSTRATION: AUCTION

Conclusion

We studied the extended unspent transaction output model of Cardano. Firstly, we
made an introduction into the blockchain in general. Then we focused on the eUTxO
model of Cardano and deep dived into technical specifics. After the reader compre-
hended that, we went on and showed that centralization of an application state in the
form of a single datum is very common across decentralized application designs. Such
centralization, however, often results in adverse concurrency issues.

We offered an overview of a variety of solutions currently considered for minimiz-
ing the concurrency issue impact. We picked the agent-request solution as it turns out
to be the solution with most advantages and least disadvantages and worked with that.

We introduced and defined a new design pattern that takes the agent-request solu-
tion to a next level that is not yet seen on the market. Assuming economically driven
rational attackers, it enables for a full decentralization of agents with a strong disin-
centivizing punishing factor in case the priviledged agents try to play the protocol and
someone finds out about it.

Moreover, we covered two different types of how such proofs of agent misbehavior
could look like and how the whole punishing machinery could work either natively on
the eUTxO model in the form of additional validator scripts or how it could employ an
already existing oracle solution combined with off-chain voting.

Finally, in order to not be too abstract, we demonstrated the native eUTxO proof
finding machinery on a simple demo NFT auctioning application which we coded from
scratch and that is included with this text. In the last chapter, we discussed the imple-
mentation along with our reasoning behind the decisions impacting the overall design
and security of the demonstrated application.

For the future research we suggest conducting further analysis of what kinds of
on-chain proofs are available in what application use cases and building a proper hi-
erarchy out of that. It could also be an interesting topic to split the collateral into
many different agent tiers. In our demo auction example that could have the form of
letting only the agents with the most at stake interact with the most valuable auctions.

47

48 Conclusion

Another idea is to form the tiers based on the reputation and history. The agents that
were honest for a long time and never did anything wrong would therefore be rewarded
for their honesty. There could even be a peer-review process whereas new agents would
require older agents’ supervision and take e.g. smaller fees until they prove their honest
incentive in time.

Bibliography

[1] Bitcoin: A peer-to-peer electronic cash system. www.bitcoin.org, 2008. https:

//bitcoin.org/bitcoin.pdf.

[2] The extended utxo model. Financial Cryptography and Data Security, 2020.
https://iohk.io/en/research/library/papers/the-extended-utxo-model.

[3] Alonzo hard fork upgrade successful, Sept 2021. https://twitter.com/

InputOutputHK/status/1437174002603204609.

[4] Concurrency and all that: Cardano smart contracts and the eu-
txo model, Sep 2021. https://iohk.io/en/blog/posts/2021/09/10/

concurrency-and-all-that-cardano-smart-contracts-and-the-eutxo-model/.

[5] Sundaeswap labs presents: The scooper model, Nov
2021. https://sundaeswap-finance.medium.com/

sundaeswap-labs-presents-the-scooper-model-678d6054318d.

[6] Blockchain, Mar 2022. https://en.wikipedia.org/wiki/Blockchain.

[7] Cardano: Protocol parameters, Apr 2022. https://developers.cardano.

org/docs/governance/cardano-improvement-proposals/cip-0009/

#updatable-protocol-parameters.

[8] Central african republic passes bill to make bitcoin legal ten-
der, Apr 2022. https://www.cnet.com/personal-finance/crypto/

central-african-republic-passes-bill-to-make-bitcoin-legal-tender/.

[9] Charli3: Cardano’s decentralized oracle, Mar 2022. https://charli3.io/.

[10] Concurrency and cardano: A problem, a challenge, or nothing
to worry about?, Jan 2022. https://builtoncardano.com/blog/

concurrency-and-cardano-a-problem-a-challenge-or-nothing-to-worry-about.

[11] Ethereum whitepaper, Apr 2022. https://ethereum.org/en/whitepaper/.

49

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://iohk.io/en/research/library/papers/the-extended-utxo-model
https://twitter.com/InputOutputHK/status/1437174002603204609
https://twitter.com/InputOutputHK/status/1437174002603204609
https://iohk.io/en/blog/posts/2021/09/10/concurrency-and-all-that-cardano-smart-contracts-and-the-eutxo-model/
https://iohk.io/en/blog/posts/2021/09/10/concurrency-and-all-that-cardano-smart-contracts-and-the-eutxo-model/
https://sundaeswap-finance.medium.com/sundaeswap-labs-presents-the-scooper-model-678d6054318d
https://sundaeswap-finance.medium.com/sundaeswap-labs-presents-the-scooper-model-678d6054318d
https://en.wikipedia.org/wiki/Blockchain
https://developers.cardano.org/docs/governance/cardano-improvement-proposals/cip-0009/#updatable-protocol-parameters
https://developers.cardano.org/docs/governance/cardano-improvement-proposals/cip-0009/#updatable-protocol-parameters
https://developers.cardano.org/docs/governance/cardano-improvement-proposals/cip-0009/#updatable-protocol-parameters
https://www.cnet.com/personal-finance/crypto/central-african-republic-passes-bill-to-make-bitcoin-legal-tender/
https://www.cnet.com/personal-finance/crypto/central-african-republic-passes-bill-to-make-bitcoin-legal-tender/
https://charli3.io/
https://builtoncardano.com/blog/concurrency-and-cardano-a-problem-a-challenge-or-nothing-to-worry-about
https://builtoncardano.com/blog/concurrency-and-cardano-a-problem-a-challenge-or-nothing-to-worry-about
https://ethereum.org/en/whitepaper/

50 BIBLIOGRAPHY

[12] Learn about plutus, Mar 2022. https://docs.cardano.org/plutus/

learn-about-plutus.

[13] Oracles, Jan 2022. https://ethereum.org/en/developers/docs/oracles/.

[14] Orcfax: Truly trustworthy cardano oracle, Mar 2022. https://www.orcfax.

link/.

[15] Plutus pioneer program - 5. week 05 - native tokens, Mar 2022. https://

plutus-pioneer-program.readthedocs.io/en/latest/pioneer/week5.html.

[16] Today’s cryptocurrency prices by market cap, Apr 2022. https://

coinmarketcap.com/.

[17] Understanding the extended utxo model, Mar 2022. https://docs.cardano.

org/plutus/eutxo-explainer.

[18] Uniswap: A brief history, Feb 2022. https://blog.cryptostars.is/

uniswap-a-brief-history-fe8937a6bbdc.

[19] Wingriders: a decentralized exchange on top of cardano eutxo mode. 2022. https:
//assets.wingriders.com/whitepaper.pdf.

[20] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-
son. Uniswap v3 core, 2021.

[21] Imran Bashir. Mastering Blockchain. 2017.

[22] Alex Biryukov and Sergei Tikhomirov. Deanonymization and linkability of cryp-
tocurrency transactions based on network analysis. In 2019 IEEE European Sym-
posium on Security and Privacy (EuroS P), pages 172–184, 2019.

[23] Lars Brünjes and Murdoch J. Gabbay. Utxo- vs account-based smart contract
blockchain programming paradigms. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation:
Applications, pages 73–88, Cham, 2020. Springer International Publishing.

[24] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melko-
nian, Jann Muller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, and
Joachim Zahnentferner. Utxoma: Utxo with multi-asset support. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Applications, pages 112–130, Cham, 2020. Springer
International Publishing.

https://docs.cardano.org/plutus/learn-about-plutus
https://docs.cardano.org/plutus/learn-about-plutus
https://ethereum.org/en/developers/docs/oracles/
https://www.orcfax.link/
https://www.orcfax.link/
https://plutus-pioneer-program.readthedocs.io/en/latest/pioneer/week5.html
https://plutus-pioneer-program.readthedocs.io/en/latest/pioneer/week5.html
https://coinmarketcap.com/
https://coinmarketcap.com/
https://docs.cardano.org/plutus/eutxo-explainer
https://docs.cardano.org/plutus/eutxo-explainer
https://blog.cryptostars.is/uniswap-a-brief-history-fe8937a6bbdc
https://blog.cryptostars.is/uniswap-a-brief-history-fe8937a6bbdc
https://assets.wingriders.com/whitepaper.pdf
https://assets.wingriders.com/whitepaper.pdf

BIBLIOGRAPHY 51

[25] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transpar-
ent dishonesty: Front-running attacks on blockchain. In Andrea Bracciali, Jeremy
Clark, Federico Pintore, Peter B. Rønne, and Massimiliano Sala, editors, Financial
Cryptography and Data Security, pages 170–189, Cham, 2020. Springer Interna-
tional Publishing.

[26] Christoph Jentzsch. Decentralized autonomous organization to automate gover-
nance. White paper, November, 2016.

[27] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
pages 357–388, Cham, 2017. Springer International Publishing.

[28] Maladex. Research-driven cardano dex white paper v1, Oct 2021. https://docs.
maladex.com/whitepaper.pdf.

[29] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. Non-fungible token (nft):
Overview, evaluation, opportunities and challenges, 2021.

https://docs.maladex.com/whitepaper.pdf
https://docs.maladex.com/whitepaper.pdf

	Introduction
	eUTxO model
	Blockchain
	Unspent transaction output model
	Extending the UTxO model
	Smart contracts
	Minting policies

	Concurrency issue
	Centralized state
	Auction example
	Decentralized exchange example

	The problem
	Possible solutions
	Naïve
	Constant factor improvement
	Request batching

	Agent role

	Optimistic design pattern
	Limiting the exploitable surface
	Punishing agent misbehavior
	Proofs of agent misbehavior
	On-chain proofs
	Off-chain voting proofs

	Demonstration: Auction
	Protocol design
	Tokens
	Agent token
	Bid validity token
	Auction validity token

	Smart contracts
	Agent script
	Bid script
	Auction script

	Transactions
	User transactions
	Agent transactions

	Implementation testing

	Conclusion

