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Abstract

This thesis deals with improving temperature forecasts created by meteorological model
Aladin, that is used by Slovak Hydrometeorological Institute. The goal is to further
improve results achieved in the diploma thesis written by Michal Hajdin in 2016 and
experiment with models which include their previous errors as new features. We present
analysis of data we worked with, new approaches that further improved the results,
and the results reached after experimenting with various learning algorithms and using
previous error terms. Finally, we present improvement obtained for all the meteoro-
logical stations, whose data were available for our thesis. Our final model decreased
absolute error of Aladin predictions from 18.95% up to 73.61%.

Keywords:

temperature forecasting, linear regression, rolling window
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Abstrakt

V práci sa zaoberáme zlepšovaním predpovedí teploty, ktoré boli vytvorené meteo-
rologickým modelom Aladin, používaným Slovenský hydrometeorologickým ústavom.
Cieľom práce je ďalej zlepšiť výsledky dosiahnuté Michalom Hajdinom vo svojej diplo-
movej práci z roku 2016. Taktiež je cieľom experimentovanie s modelmi, ktoré zahŕňajú
svoje predchádzajúce chyby vo svojich príznakoch. V práci prezentujeme analýzu dát
s ktorými sme pracovali, nové spôsoby pomáhajúce znížiť chybu predpovedí a výsledky
dosiahnuté po použití iných učiacich algoritmov a zahrnutí predchádzajúcich chýb
modelu. Na záver prezentujeme dosiahnuté zlepšenie pre všetky meteorologické stan-
ice, ktorých dáta sme mali k dispozícií. V porovnaní s modelom Aladin sme dosiahli
zmenšenie absolútnej chyby v rozmedzí 18.95% až 73.61%.

Kľúčové slová:

predpoveď teploty, lineárna regresia, posuvné okno
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Introduction

Temperature forecast is an important component in decision-making related to many
areas, such as energy management, agricultural production or human and animal health
[10]. It influences everyday life of mankind, helps to prepare for extreme conditions or
to plan future activity.
Today forecasts are created by meteorological models, that are based on modeling
physical processes. For temperature forecast in Slovakia, meteorological model Aladin
is used by Slovak hydrometeorological institute (SHMI). Aladin describes weather using
partial differential equations which are solved by numerical methods [8, 17].
The goal of this thesis is to improve temperature forecasts created by Aladin using data
supplied by SHMI. Our thesis is a continuation of diploma thesis written by Michaj
Hajdin in 2016 called Numerical weather prediction postprocessing. To improve Aladin
predictions, Hajdin used linear regression and a rolling window approach. In our thesis,
we continue in similar approach and introduce further improvement.
Additionally, we focus on periods of year when temperature is stable. When using
deterministic models and the method of rolling window, models tend to create similar
errors when temperature is stable for longer period. To deal with this problem, we
experiment with models that include their previous errors in its features and discuss
the obtained results.
We first present terminology and methods that were used in our experiments. Later we
describe methods used in previous theses, articles and papers related to temperature
postprocessing and forecasting. Further we present analysis of data we worked with,
various models and results gained with different learning algorithms, and models and
results for stable weather periods. Finally, we evaluate our best model for all the
stations, present the results and compare them to the Hajdin’s thesis.
All the source files that we used are attached to the thesis and can also be found
on github https://github.com/rizip1/diplomovaPraca. We used python programming
language with statistics and machine learning libraries as scikit-learn, keras, numpy,
pandas and others.
The dataset that we used for analysis and experiments is not attached to the thesis
because it is under a non-disclosure agreement.
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Chapter 1

Basic terms

In this chapter we briefly define learning algorithms, terms and approaches that we
use later in our thesis. Definitions of the learning algorithms are simplified to mainly
remind the reader of those methods and refer to further literature. We expect that the
reader has basic knowledge of statistics or machine learning.

Linear regression and rolling window approach

Linear regression is an approach in which dependent variable y is modeled as a linear
combination of independent variables [26] x1, ..., xn such that

y = θ0 + θ1x1 + θ2x2 + ...+ θnxn + ε

where ε is an error term and θ0, ..., θn are coefficients or weights that the model needs
to estimate. In machine learning literature, it is more convenient not to explicitly
include an error term in the models definitions, therefore we omit it from our future
models. We refer to dependent variables as to features, and every feature corresponds
to one data property. For m training examples all consisting from n features, we store
the independent variables in so called design matrix X [16], as showed in Equation
1.1.

X =


1 x11 ... ...x1n

1 x21... ... x2n

... ... ...

1 xm1 ... ... xmn

 θ =


θ0

θ1

...

θn

 y =


y1

y2

...

ym

 ε =


ε1

ε2

...

εm

 (1.1)

There is 1 added to each row of the design matrix, often called bias term [16], so
that a model takes into account, that data are shifted from the origin. The goal is to

2



CHAPTER 1. BASIC TERMS 3

estimate vector of coefficients θ, such that the sum of squared error terms, for equa-
tion y = Xθ + ε, is the lowest possible. This method is called ordinary least squares
(OLS) [26] and can be computed analytically using equation θ = (X tX)−1X ty [26],
often called as Normal equations [20]. For larger datasets gradient descent algorithm
might be more appropriate [20]. Estimated coefficients can be used to make predictions
for new, previously unseen, data. From statistical point of view, OLS requires further
assumptions so that the estimate is interpreted correctly [26]. In our thesis we ignore
those assumptions and use OLS more from machine learning point of view, thus focus
mostly on minimizing error.

In our thesis we use rolling window [23] approach. Suppose that for a given time series,
the rolling window length is a constant l. The idea is that when we are at time t and
want to predict value in next timestep t + 1, we estimate model coefficients using a
training set consisting from data records from times between t − l + 1 and t. In next
timestep the rolling window is shifted by one so that the test record from time t+ 1 is
included in the training set and the record from time t− l+1 is removed. We continue
while the whole timeseries is not processed.
Consider a time series consisting from values a1, a2, ..., a10, timestep t equal to 7 and
rolling window length l equal to 3. In that case a training set would consist from values
a7, a6, a5, and we would predict value of a8. In the next time step the training set
would consist from a8, a7, a6, and we would predict value of a9.

Regularized regression

Lasso and ridge regression are both examples of regularized regression. Goodfellow et
al. [16] define regularization as:

Regularization is any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training error.

Often regularization is used in cases when overfitting is observed. Overfitting occurs
when validation error is significantly higher than training error [16]. Opposite to over-
fitting, underfitting occurs in a case when a model is even not able to fit training
data [2]. In cases when data are i.i.d. we usually have a single training set and we can
compute training error at once. In case of the rolling window approach training error
can not be computed at once because values are being predicted in a sequence as the
rolling window is shifted. In such case it is possible to compute mean train error as an
average train error across all rolling window positions and compare it with mean error
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for predicted values.
Regularization in ridge and lasso regression is achieved by a penalty aimed for mag-
nitude of estimated model parameters. In ridge regression we minimize the objec-
tive

‖ Xθ − y ‖22 +α ‖ θ ‖22

so we use L2 norm of vector of coefficients as the penalty for high coefficients values.
In lasso regression the objective is

1

2n
‖ Xθ − y ‖22 +α ‖ θ ‖1

and L1 norm is used instead. In both the cases α stands for a regularization term
which controls an amount of penalty applied to θ. The higher value of α the more
regularization is added. The higher regularization the more we force a learning algo-
rithm to choose coefficients with lower magnitudes. The n in the lasso equation is the
number of samples in a training set.
When we use both ridge and lasso regularization terms in one model, thus regularize
using both L1 and L2 norms, we get so called elastic net model [2].

SVR

Support vector machines (SVM) is a supervised learning algorithm designed for classi-
fication, that maps original data into feature space using a nonlinear function known
as a kernel [28]. The algorithm constructs a hyperplane that divides two groups of cat-
egorical data. Robustness of SVM is that it does not construct arbitrary hyperplane
that separates the groups, but it chooses the hyperplane that holds the largest possible
margin between the groups of data [21]. For multiclass classification, e.g. one-versus-all
technique can be used [5].
A decision function for SVM is fully defined by data points that define the boundary,
also known as support vectors [4,21]. As a kernel any function that satisfies the Mercer
theorem can be used [4,21]. Usually a radial basis function (RBF) kernel or a polyno-
mial kernel is used [9]. If data were not transformed by any kernel, we say that linear
kernel was used.
SVM can also be used for regression problems. In that case we refer to Support vec-
tor regression (SVR). Instead of constructing a hyperplane, that maximises a margin
between different categories of data points, it constructs a hyperplane that lies the
closest to data as possible [10]. SVR creates so called regression tube [4, 10], which



CHAPTER 1. BASIC TERMS 5

radius is determined by a parameter of tolerance ε. Distances within the regression
tube are ignored. For SVR, support vectors are points, that define the regression tube
boundaries. The detailed explanation of how model parameters are estimated is out
of scope of our thesis. Additional information can be found in Smola and Schölkopf
article A Tutorial on Support Vector Regression [4].

MLP

Multilayer perceptron (MLP) is a type of a feedforward neural network. Same as linear
regression it learns a function to map dependent variables to independent variables,
but the function can be more complex usually using a lot of nonlinearity. In the most
frequent case, MLP can be represented as an oriented acyclic graph containing three or
more layers, while every layer consists of vertices called neurons [16]. Every neuron from
a previous layer is connected to all neurons in a next layer. Each neuron in a hidden
layer maps values from a previous layer using weighted linear summation and applying
a non-linear activation function g(·) : R → R [2]. As such function usually sigmoid,
tanh or relu is used [16]. First layer is called an input layer and contains one neuron
for every feature plus a neuron for the bias term. Last layer is referred to as an output
layer and its activation usually differs from activations in hidden layers. In case of
regression, an identity function in the output layer is used [2,16]. Other layers between
the input and output layer are called hidden, and there can be arbitrary number of
them. MLP can be trained with a backpropagation algorithm [16] which propagates
error back after a fixed number of processed inputs. The network knowledge is stored
in its weights which get updated during the training. Also other algorithms like Adam
or Newton’s method can be used to train MLP [2,16].

LSTM and GRU

In the algorithms we discussed so far every input is mapped to its corresponding out-
put, but without considering any time dependencies. Recurrent neural networks (RNN)
were directly designed for learning sequences, allowing information to flow through time
as a network is learning. RNNs can be viewed as networks with loops. The very simple
model of RNN is Elman network shown in Figure 1.1. Compared to MLP, a hidden
layer in Elman network is calculated from both input and context layer. The context
layer is just a copy of the hidden layer from a previous timestep. Past knowledge is
therefore stored in a weight matrix between the context and the hidden layer. For
training backpropagation through time or truncated version of it can be used [18].
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Figure 1.1: Example of Elman network [6].

However, Elman’s networks are difficult to train for longer sequences as they suffer
e.g. from a vanishing gradient problem [18]. Long short-term memory (LSTM) net-
works introduced by Hochreiter and Schmidhuber solve some of those problems [18].
The difference in LSTM compared to Elman network is how the hidden layer is com-
puted. LSTM introduce a concept of cells. The cell can be understood as a function
that outputs the hidden layer based on the previous hidden layer and a given input.
In every timestep t the cell keeps it internal state C which can be mutated by gates.
Gates allow the cell to learn which information to forget, add and output in each time
step. LSTM has three gates, forget gate, input gate and output gate [3]. Gates are
in fact sigmoid layers. An example of the LSTM cell is shown in Figure 1.2 [3] where
the cell state C flows through the upper arrow. The hidden layer is h, the input is
x, σ is the sigmoid activation function and + and ∗ are the point wise operators for
multiplication and addition. The detailed explanation of how the cell state is being
computed is out of scope of this thesis and can be found in the original article [18].
After the cell state is updated, the next hidden state is computed using the output
gate. A mapping from hidden to output layer is performed same as for Elman network.
In the LSTM terminology, the number of neurons in the hidden layer is often referred
to as the number of units. As MLP can consist of multiple hidden layers, also LSTM
layers can be stacked one after another. The input to the ith LSTM layer, where i
is greater than one, is the previous hidden representation from i − 1th layer and the
previous representation from the current LSTM layer.
In the 2014, a concept of Gated recurrent units (GRU) was introduced. GRU is similar
to LSTM, but the difference is in a gate structure which is simplified. The gate state
is removed and a forget and an input gate is combined into a single update gate [11].
The fact that two gates are merged into one makes GRU more computationally efficient
compared to LSTM.
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Figure 1.2: Example of LSTM cell [3].
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ARIMA

We consider it important to at least mention a standard time series modeling approach
called ARIMA, even though we do not use it in our thesis for the reasons presented
below. ARMA process is a shortcut for Autoregressive and Moving average processes.
Autoregressive model estimates a next time series value from its p previous values
(AR(p)). Moving average model estimates a next time series value from its q previous
errors (MA(q)). When AR(p) and MA(q) are used together they form ARMA(p, q)

model which can be written as

yt = c+ εt +

p∑
i=1

ϕiyt−i +

q∑
i=1

θiεt−i

where c is a constant, θ and ϕ are vectors of parameters that the model estimates, yt
is a value of time series y at time t and εt is an error term at time t.
ARIMA(p, d, q) is an extension of ARMA(p, q) model. The I in ARIMA stands for
integrated what means that the model is capable of creating a stationary time series
from a non stationary. The stationarity is achieved by differencing [25] when values of
y at time t (yt) are replaced by values yt − yt−1 for all t. The value d represents an
order of differencing, thus the number of times the differencing is applied.
For modeling seasonality in data seasonal ARIMA(p, d, q)(P,D,Q)s can be used where
P , D, Q are orders of seasonality for AR(p), differencing andMA(q) respectively. First
nonseasonal and then seasonal differencing is applied.
It can be difficult to decide appropriate orders of ARIMA models and the problem is
even bigger for multivariate ARIMA-like models [23,29]. In our case each station forms
different time series and probably requires different orders.
As we mentioned earlier, OLS or SVR are not directly capable of handling time series
data. However, using those techniques it can be easier to achieve higher accuracy when
compared to standard ARIMA models [27] [29], for example using the rolling window
approach.
Moreover, those models usually need much longer sequences to be trained on [27].
Also in [29] Nardi and Rinaldo described the theoretical properties of lasso technique,
establishing various types of consistency, when applied to autoregressive time series.
Due to those facts we rather experimented with recurrent neural networks instead of
the standard time series models.
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Feature scaling

When using linear regression, magnitude of features does not matter when coefficients
are estimated using Normal equations [20]. It matters when using gradient descent so it
can converge faster [20]. However, for small datasets using analytical solution does not
cost much time. When using regularization, SVR or neural networks the magnitude of
features matters [20]. When features have different scales regularization has different
effect based on features scales.
One scaling method we use is called standardization. Each feature is centered by
subtracting its mean from itself and divided by its standard deviation as shown in
Equation 1.2.

xscaled = (x− xmean)/xstd (1.2)

The second scaling method we use is called min-max normalization. Features are
transformed into interval [a,b] using their corresponding minimum and maximum values
as shown in Equation 1.3. For min-max normalization we scale by default to a range
[0,1].

xtmp = (x− xmin)/(xmax − xmin)

xscaled = xtmp ∗ (b− a) + a
(1.3)

When applying feature scaling minimum/maximum or mean/std values are picked
based on a training set and are also used to perform scaling for a test set.

Error metrics

In our thesis, we evaluated our models using two error metrics. Those aremean absolute
error (MAE) and mean squared error (MSE) defined in Equations 1.4 and 1.5. In those
equations, h(xi) is the value that a model predicts for the record xi and m is the total
number of records. Those metrics were chosen to easier compare with the results from
the Hajdin’s thesis. In all the results we refer to, both MAE and MSE are measured
in degree Celsius ℃.

MAE =
1

m

m∑
i=1

|h(xi)− yi| (1.4)
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MSE =
1

m

m∑
i=1

(h(xi)− yi)2 (1.5)

Grid search and cross validation

The problem with regularized regression or neural networks is that hyperparameters
(regularization parameter, number of neurons, ...) must be chosen before the learning
happens. One possible strategy is to try various values and pick the best. The problem
with this approach is that each station data forms different time series and picking
those values solely based on results for one station might not generalize well.
The second approach to choose hyperparameters is to use a grid search for time se-
ries. Grid search is a method that is used to pick hyperparameters while trying all
possible values from a fixed set. It usually evaluates those hyperparameters using
cross-validation [2,16]. The cross-validation for time series data differs from the meth-
ods that can be used for i.i.d. data. The strategy we used is that we cut a training
set into equal buckets. In the beginning, we use the first bucket as the training data
and evaluate a model using the remaining buckets. Then we use the first and second
bucket as the training data and again evaluate on the remaining buckets. In each step
we add one more bucket to the training set and in the last step we use n − 1 buckets
as the training set and evaluate a model on the last bucket. The number of buckets is
n. For most models we used n equal to 5 and used the scikit-learn implementation of
grid search using time series cross-validation [2].

Wilcoxon paired test

To test whether improvement in MAE or MSE gained with some model compared to
another is significant we later use Wilcoxon signed-rank test [19] with 95% confidence
level, also known as Wilcoxon paired test in R statistics software. The test compares if
means of two dependent samples differ and is appropriate in situations when samples
do not follow normal distribution [19]. Absolute and squared errors of the models we
use later, do not follow normal distribution what can be confirmed by Kolmogorov-
Smirnov test [19]. Therefore, we do not use Welch t-test which requires samples to be
normally distributed [19].
Paired version of the test was used because we assume that the absolute and squared
errors are not independent. It is because the errors of two compared models can be
viewed as before and after values with relation to a given time. Figure 1.3 shows
absolute errors dependence for two compared models.
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Figure 1.3: Absolute errors dependence between the 120-ref and 120-min models. The
models are defined in Chapter 4.

When testing improvement significance, we test two null hypotheses. First states that
absolute errors of tested models have equal means. In the second hypothesis we test
for equal means of squared errors of the tested models. If the p-value for the null
hypothesis is less than 5% we deny it and trust the alternative hypothesis.



Chapter 2

Related work

This chapter describes theses, articles and papers that are related to the problem
of improving temperature forecasts or forecasting next values based solely on past
observations.

Numerical weather prediction postprocessing

In the thesis written by Michaj Hajdin [17] the author showed that Aladin forecasts are
with high probability systematically biased using t-test. Systematic bias means that
Aladin creates similar errors for similar conditions, making additional postprocessing
reasonable.
Data were collected by SHMI and contained records about observations and forecasts
for 37 hydrometeorological stations. The observations contained temperature, humid-
ity, pressure, wind direction, wind speed and rainfall records for every hour of a day
from 1 January 2013 to 20 December 2015. SHMI creates forecasts at 0AM and 12AM
for 72 hours ahead. Those forecasts were also included in the data.
To avoid overlapping periods, the author focused on forecasting temperature for 12
hours ahead. Predictions were obtained using a linear regression model combined with
the rolling window approach. When predicting temperature at time t, a training set
was constructed using records at times t−12, t−24, ..., t−(12∗m) when m stands for the
length of the rolling window.
Results of models created from various combinations of features were presented in the
thesis. The author first started with a model that could be written as

yhi = θ0 + θ1Ti + θ2P
h
i h ∈ 1, ..., 12 (2.1)

12
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where i is the time when Aladin made a forecast, yhi is measured temperature at time
i+h, Ti is measured temperature at time i and P h

i is temperature forecasted by Aladin
for h hours ahead starting from time i.
The author used m = 60 as the length of the rolling window because he stated that
with the growing m the accuracy did not improve and was even worse. To pick a final
model the author used mean absolute and mean squared error metrics using single
station data which location was near Bratislava airport. The features that were picked
for the final model were measured temperature, temperature forecasted by Aladin,
wind direction and humidity. Equation 2.2 describes that model

yhi = θ0 + θ1Ti + θ2P
h
i + θ3Vi + θ4Di h ∈ 1, ..., 12 (2.2)

where Vi, Di are humidity and wind direction at time i. Other parameters are the
same as in Equation 2.1. In the later text we refer to this model as to the hajdin-best.
To make newer prediction more important than the older, each observation was as-
signed a weight. More precisely each data record was multiplied by a weight function
w(i) =

√
ai, where i was ith newest record in the rolling window and a ∈ (0, 1). Rea-

sonable values of a are between 0.95 and 0.99. The author claimed a = 0.97 to have
best results.
The author also considered so called autocorrection models that should learn from their
previous errors. The first autocorrection model learnt from its error, that it made 24
hours before the time for which the prediction was made. The second autocorrection
model learnt from temperature predicted by itself and measured temperature, both
for 24 hours before the time for which the prediction was made. Also other features
from the hajdin-best model were added. The autocorrection models improved neither
MAE nor MSE metrics however the author claimed that the first mentioned model
had better results compared to the second one. Finally, the author created combined
model by averaging the predictions for the hajdin-best model and the second autocor-
rection model. The final MAE and MSE values for the station near Bratislava airport
were 0.924 and 1.4898 respectively. It is not clear why the author did not use the first
autocorrection model for averaging, as it had better results in both MAE and MSE.
Later the combined model was evaluated for other stations. Across all the stations the
combined model gained improvement in MAE characteristic from 13% up to 57%.
The author also tried adding and transforming features, like adding the third root of
measured temperature, lag of measured temperature for 1 or 24 hours and decompo-
sition of wind direction into two features using cos and sin. According to the results,
none of those features decreased models errors.
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Temperature postprocessing of ensemble forecasts

Improving temperature forecasts using statistical postprocessing data was also de-
scribed in Feldmann’s diploma thesis Statistical Postprocessing of Ensemble Forecasts
for Temperature: The Importance of Spatial Modeling and similar approaches were
introduced in Feldmann’s et al. article called Spatial Postprocessing of Ensemble Fore-
casts for Temperature Using Nonhomogeneous Gaussian Regression.
Current state of the art meteorological forecasting models are based on ensemble strat-
egy [14]. Rather than creating one expert model, multiple different models are created.
After all the models make their forecasts, those values are merged to create a final
forecast. For example an average of ensemble values can be used to get the final value.
The meteorological ensemble models still suffer from bias [14], so additional postpro-
cessing is needed.
In the Feldmann’s thesis, the prediction system used for forecasting was COSMO-
DE-EPS which is a 20 member ensemble system, created by German Meteorological
Service [14]. Forecasts were created for 21 hours ahead for surface temperature in
Germany. Data in the Feldmann’s thesis consisted from the forecasts for each of the
ensembles. This differs from our thesis, as we had only data about final Aladin fore-
casts and had no additional information about individual ensembles, the final forecasts
were created from.
The author used the rolling window approach for constructing a training set which
length was 25 days for each rolling window position. The length of the rolling window
was not longer according to the size of the dataset which contained data from 10 De-
cember 2010 until 30 November 2011. Therefore, the predictions were made for interval
between 5 January 2011 until 30 November 2011. The author does not specify if the
training set consisted from all records for last 25 days or if only records for specific
hours were picked. The author used different statistical models as BMA (Bayesian
model averaging) or EMOS. BMA and other models that the author used are statisti-
cal approaches for combining competing statistical models [14].
The only used features were measured temperature and temperature forecasted by the
ensembles. No observations about wind or humidity were used. When simplified the
model could be written as

ys = f(y1s, y2s, ...y20s)

where the ys is temperature of interest at location s. The yns is nth ensemble prediction
for location s. Using EMOS the author improved MAE from 1.57 to 1.43 and MSE
from 2.27 to 1.83.
Spatial model, for modeling dependencies between locations, was also considered.
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When simplified the goal was to estimate vector Y given Fm where

Y = ys : s ∈ S

Fm = fms : s ∈ S

and S is a set of locations, ys is a temperature of interest at location s and fms stands
for forecast ofmth ensemble for location s. Spatial model was used to predict minimum
temperature along highway A3 in Germany using nearby stations. The improvement
for MAE was from 1.92 to 1.21 and for MSE from 2.33 to 1.55.
We can hardly compare the Hajdin and Feldmann results. Both the approaches learns
from different data and the ensemble information was available neither in the Hajdin’s
and nor in our thesis. The methods used in the Feldmann’s thesis are suitable for situ-
ations when the information about all ensembles is available. Taking into consideration
the fact that also Feldmann used the rolling window approach, we decided to use it
later in our experiments. We consider spatial modeling interesting however we did not
incorporate it into our experiments.

Learning only from observations

After the introduction of postprocessing applied to meteorological forecasts, we focus
on approaches where temperature is being predicted only from previous observations.
Even though this is not our case, as forecasted values are inarguably our very important
predictor as shown in Section 3.2, we were inspired by usage of different learning
algorithms and data features. The articles introduced later use more complex learning
algorithms compared to the previous statistical methods. We introduce approaches
that use support vector regression, multilayer perceptron and ARIMA models.

SVR and MLP approaches

Article published by Chevalier et al. called Support vector regression with reduced
training sets for air temperature prediction: a comparison with artificial neural net-
works [10] deals with short-time temperature forecast for 1 to 12 hours ahead. The
authors followed on the article published by Smith et al. using data between years 1997
and 2005. The data were collected from 75 stations in state of Georgia using AEMN
model that was established at the College of Agricultural and Environmental Sciences
of the University of Georgia [15]. Smith et al. created a general MLP model for whole
year period and a MLP model that only focused on the winter months. Temperature
was predicted for 1 to 12 hours ahead. Instead of using the rolling window, the usual



CHAPTER 2. RELATED WORK 16

traning-validation-test approach was used. The training set consisted from records be-
tween years 1997-2000 (approx. 1.25 million records), the validation set from records
between years 2000-2003 (approx. 1.25 records) and the test set consisted from records
between 2004-2005 (approx. 800 000 records). The validation set was used to tune the
models hyperparameters. Accuracy was evaluated on the test data which the models
did not seen before.
Input features for MLP were temperature, solar radiation, wind speed, rainfall and
humidity. Each of those features was lagged by 1 up to 24 hours. By lag by i hours we
mean the feature value at time t−i. Therefore, for the feature xt we also added features
xt−1, ..., xt−24. This caused an increase from 5 features to 125. Also differences between
subsequent features were added. For feature xt we also added xt−xt−1, ..., xt−24−xt−25.
The features count was therefore doubled resulting in 250 features. The authors also
used dummy variables which are features whose values can only be zeros or ones. Four
dummy variables representing time of a day and four dummy variables for seasons were
used. Only the dummy variable corresponding to a current season or a current time of
a day, for a given record, was set to one. Therefore, the total features count reached
258.
Neural networks are sensitive for appropriate feature scaling [24], therefore the authors
scaled all the features into a range 0.1 to 0.9.
The Chevalier’s goal was to create SVR model and compare its performance to the
mentioned MLP. SVR should be less prone to overfitting compared to MLP [10] and
it always finds a global minimum [10]. Global minimum property does not hold true
for MLP as it usually only converges to a local minimum [16]. Disadvantage of SVR
might be higher computational time. The dataset and the features that Chevalier’s
used were same as for the Smith’s MLP.
Due to the fact that training of SVR needed more time that MLP, Chevalier’s used
reduced training sets for parameters tuning. As the training time for SVR grows with
decrease in regression tube ε [10], the authors decided to choose larger value of ε for
hyperparameters tunnig. The hyperparameters that needed to be tuned were penalty
factor C and the kernel width γ as the RBF kernel was used. For parameter tuning
reduced training sets of 15,000 randomly sampled patterns were used. The samples
were selected with replacement. While tuning the hyperparameters, ε was set to 0.05.
Each trained model was evaluated on the validation set. After values for C and γ were
found, the value of ε was selected different for each prediction step (1-12 hours). It was
again selected using randomly sampled training sets, trying values from 0.003 to 0.01
with a step size of 0.001. The final SVR model and the MLP were trained on both
training and validation sets.
Average error for SVR for winter data was 0.514°C when predicting temperature for
1 hour ahead and 2.303°C for 12 hours ahead. Using all the data and SVR the corre-
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sponding values were 0.513°C, 1.922°C respectively. The results show that forecasting
winter values might be more difficult. In comparison with MLP, the SVR had better
results for winter months. The difference at MAE was 1,108% and the SVR was also
better at forecasting temperature for each hour.

In Y.Radhika and M.Shashi article called Atmospheric Temperature Prediction using
Support Vector Machines [28] the average temperature for next day was forecasted.
Data were supplied by University of Cambridge for period from 2003 to 2008. Train
and validation sets consisted from records between year 2003 and 2007 and test set from
the remaining. The only features used were average temperatures from previous days.
Competing algorithms that the authors used were MLP and SVR. The MLP consisted
from one hidden layer with 2i + 1 sigmoidal perceptrons where i was the number of
input layer units. Backpropagation algorithm was used for weight optimization. The
data for SVR were scaled using standardization. For MLP min-max scaling into [0,
1] interval was used. The authors stated that the polynomial kernel had worse results
compared to RBF kernel. The kernel parameters were found using grid search. Tried
features were average temperatures for 2 up to 10 days before. As the final features,
the average temperatures for last 5 days were used. MSE for MLP was 8.07 and 7.15
for SVR.

ARIMA approach

A seasonal ARIMA model was used for temperature forecasting in the paper published
by Nury et al. called Time Series Analysis and Forecasting of Temperatures in the
Sylhet Division of Bangladesh [7]. The seasonal ARIMA model was used due to the
seasonality in climatic data. Data consisted from records about minimum and maxi-
mum temperature measured for months starting from year 1977 to 2012. Subsequent
values were later forecasted. The seasonality value s was set to 12, corresponding to
one year seasonality. The value for seasonal differencing was set to one. To determine
ARIMA parameters the authors used Box-Jenkins method and AIC criterion [25]. As
the final model the ARIMA(1, 1, 1)(1, 1, 1)12 was chosen, but the authors did not sup-
ply specific error metrics and results in the paper.

We presented few approaches for temperature postprocessing or forecasting. It is dif-
ficult to present state-of-the-art technique for postprocessing of temperature due to
the fact, that known experiments are created from different datasets which are not
always public. In our thesis we therefore focused directly on data granted by SHMI
and compared our results with the Hajdin’s thesis.



Chapter 3

Data processing

In this chapter we describe data that we worked with, their processing and methods
that we used for missing and invalid values exploration. We also present estimated
correlations among features and features importances. In the later text when we refer
to the reference station, we mean the station that Hajdin used for model construction,
located near Bratislava airport with ID 11816.

Dataset description

Dataset that we used in our thesis contained same attributes as in the Hajdin’s thesis.
Available observation attributes were:

• temperature

• humidity

• pressure

• rainfall during last hour

• wind direction

• wind speed

We obtained data for stations in a single csv file which contained records for 37 stations.
The file contained station ID, gps coordinates and a location name. Observations were
obtained in 36 csv files (one for each station) and forecasts in 2167 csv files. Every
row in a forecasts file contained ID of the station it belonged to, its validity time
and forecasted values for various weather properties. The dates and times when the
forecasts were created were included in the files names. Validity time is the time for

18
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which forecast was created and by reference time we mean the time when forecast was
created.
We stored the data in a postgresql database in three tables called forecasts, observations
and weather_stations. To feed the database with the data we used python scripts. For
merging observations and forecasts data into single csv files, one for each station, we
used data_analysis script. Since, for two stations there were missing observations resp.
forecasts, we ended up with data for 35 stations. For storing the data in the database
we used scripts load_forecasts, load_stations and load_observations.
The difference to the Hajdin’s thesis [17] is that we had more data records for each
station, including all the data that were used in the Hajdin’s thesis. The summary of
total amount of data, that we had for each station, can be found in Table 3.1.

Missing and invalid values analysis

Before combining existing features into various models, we decided to first investigate
invalid and missing data values. By data with invalid values we mean measurements
that had values of −999. By missing data we mean whole records of observations
that were missing for a specific hour. Predictions that learn from data with invalid or
missing values can be skipped or replaced by an average of other values in case, that
missing or invalid intervals are short.
We created separate plot for each station where the x-axis corresponds to timestep and
y-axis contains values between 1 and 7, one for each feature. The timestep is repre-
sented as a distance in hours from an initial measurement. For measurements with
invalid value at timestep t we drew a circle with x-axis set to t and y-axis set to its
matching feature value (1 to 7). Each feature is represented by a different color and a
legend is shown in a top left corner. The examples of those plots can be seen in Figures
3.1a and 3.1b.
After investigating generated plots we realised that pressure was invalid for 8 stations
in more than half of the measurements. For rainfall same situation occurred for 5
stations. For other features there were not invalid values in more than half of the
measurements. Nevertheless, wind direction was almost uniformly invalid across 18
stations forcing models with this feature to skip a lot of predictions. Wind speed was
also invalid for many stations, but the intervals with no invalid data were longer com-
pared the to wind direction. There were almost no invalid values for stations with
IDs 11894 and 11938. However, for station with ID 11894 all the values for rainfall
were equal to zeros, and also many records were missing as shown later. We therefore
suppose that those rainfall values were invalid, but did not have values of −999. Also
for other stations, rainfall values were often equal to zeros, and we could not determine
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whether they were correct values or the errors in the measurements occurred.
Due to those results we considered rainfall and wind direction as the most problematic
predictors. In order to use them in our models, we would have to throw away a lot of
observations. More precisely, we would have to skip all the observations where any of
values in a model was invalid. This is getting even worse when we consider growing
length of the rolling window. For temperature and humidity there were occasionally
invalid values, so models based only on those features, and features derived from them,
would not have to skip many predictions. There were no invalid values for temperature
that was predicted by Aladin. Table 3.1 contains invalid values for all the stations.
When we searched for missing data we compared a distance d in hours of validity times
for two consecutive records. When d was greater than one, it denoted that d−1 records
were missing. For the reference station and records until 2015-01-01 there were two
missing records. Let t denote timestep for which missing record occurred. We replaced
this record as an average of records in timestep t − 24 and t + 24. If some feature in
any of these two records had value of −999, the resulting feature in new record was
set to −999. It could happen, that a record at time t− 24 or t+ 24 was also missing.
In that case we created new record with all values except reference and validity times
set to −999. We performed this replacement only if a gap of missing values was less
or equal to 24 hours. Longer gaps are more difficult to replace, so for gaps longer than
24 hours new records features were all set to −999 except for the time values.
After adding the missing values, we performed replacement of invalid values using the
same strategy. If a feature at time t had invalid value, it was replaced by an average
of that feature values at times t− 24 and t+ 24, in case that those values existed and
none of them was invalid. Otherwise, no replacement was performed.
Adding missing values was more important that replacing invalid values, because miss-
ing records can cause, that a model learns from data related to other hour than ex-
pected. Invalid values only cause skipping of the predictions what we consider less
significant problem.
The replacement strategy for the missing and invalid values could be more comprehen-
sive e.g. we might choose a different strategy for different kinds of features. Due to the
fact that in the later models we mostly use temperature, which is invalid in the lowest
amount of cases, we consider this approach sufficient.
The replacement was performed using data_analysis script. For the station with ID
11894 there were too many missing values, so we decided not to use this station for
later calculations. Only for station with ID 11963 there were no missing values, but a
lot of invalid values for pressure was present. The amount of missing records for each
station can be found in Table 3.1.



CHAPTER 3. DATA PROCESSING 21

(a) Invalid data for the reference station until 2015-01-01.

(b) Invalid data for the station with ID 11930 using all data.

Figure 3.1: Invalid data
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Table 3.1: Missing and invalid measurements. Station denotes station id, Count de-
notes total count of observations, Missing denotes total number of missing observations
and other columns denotes number of invalid rows for a specific feature.

Station Count Missing Hum. Pressure Rain Temp. Wind dir. Wind sp.
11801 25809 183 12 12 25809 12 99 99
11803 18803 1905 3710 18803 0 1345 2255 74
11805 16986 1033 15 16986 0 0 2985 106
11812 25643 349 3125 0 25643 0 8731 8731
11813 25968 24 0 85 5 0 0 0
11816 25973 19 0 0 0 0 291 291
11819 25738 254 0 0 0 0 1383 0
11826 22866 200 0 0 0 0 398 65
11855 25598 394 0 0 0 0 237 9
11856 25801 191 0 2453 0 0 0 0
11857 21337 18 0 21337 0 0 5573 92
11858 25911 81 0 1 0 0 24 24
11867 25425 567 1 110 0 1 449 6
11878 21335 43 6 21335 0 0 6008 384
11880 25763 229 76 0 0 0 1439 0
11894 13183 12809 0 0 0 0 1 1
11900 25780 212 0 0 0 0 210 0
11903 25389 604 0 0 0 0 1569 692
11916 24888 1104 966 749 24888 749 2310 2309
11917 13616 4884 2 13616 0 2 5283 326
11918 25881 111 17 0 0 0 0 0
11919 20506 2920 272 20506 20506 273 2273 924
11927 25764 228 3 0 0 0 1248 0
11930 25967 25 13 13 25967 36 8488 8488
11933 25263 729 93 12 0 3 23 5
11934 16227 5443 174 0 0 0 279 24
11938 25941 51 0 0 0 1 0 0
11952 25960 32 3 3 2 3 191 3
11958 25247 745 2030 4399 0 1970 189 196
11962 20316 871 1 20316 0 1 1710 155
11963 13566 0 0 13566 0 0 642 5
11968 25730 262 124 1 0 110 547 147
11976 25802 190 1 1 0 1 319 1
11978 25827 166 28 29 15 97 26 26
11993 25752 240 0 3 0 0 810 0
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Correlations and features importances

In the Hajdin’s thesis the best chosen model consisted of temperature, humidity and
wind direction. However, adding other features than temperature caused very little
improvement in MAE (only about 0.1 for the reference station). It might imply that
other than temperature features (measured temperature and temperature predicted by
Aladin) are poor predictors that have very little impact on improvement of the model.
That improvement also comes with a cost of more skipped predictions as other features
are invalid in much more cases compared to temperature as shown in Section 3.2.
To test the hypothesis that other than temperature features are little important we
trained extra trees ensemble model, with 500 trees, using all features we had. Extra
trees algorithm creates multiple decision trees and each tree is grown on a random
sample of data [2]. In the splitting time each tree chooses random candidate features
to split upon and also generates a random decision threshold for each feature [2]. Then
it picks the best suitable threshold as the splitting rule [2]. After all trees are trained
it uses simple averaging [2].
We used values that were available at the reference time for all the features to avoid
learning from future values. The ensemble model was trained using the first 13000
records for the reference station because there were no missing and invalid values for
this interval. Extra trees algorithm can be used for getting features importances after
it is trained. According to the scikit-learn documentation [2]

The importance of a feature is computed as the (normalized) total reduc-
tion of the criterion brought by that feature. It is also known as the Gini
importance.

Figure 3.2 shows the corresponding feature importances. We can see that the impor-
tance is highest for temperature predicted by Aladin and for temperature measured at
prediction time. Humidity seems significantly less significant, and other features were
assigned almost no importances. Vertical lines for each bar shows inter-trees variabil-
ity. Note that the training that was used varies from the one that we use later. In this
case, the model was trained for all hours at once.
We did not investigate features importances for other stations using extra trees algo-
rithm. The purpose was to get initial idea of the feature importances and due to the
extreme differences between temperature and non temperature features, we consider
this sufficient. Also because of only minor improvements when using other than tem-
perature features in the Hajdin’s thesis and a huge amount of invalid records for those
features, we do not use other than temperature features in the later experiments except
humidity. The reason we gave humidity a try, is that its feature importance was a little
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Figure 3.2: Features importances using first 13000 records for the reference station.

higher compared to other features. It was also incorporated in the hajdin-best model,
and the amount of missing data for it was not as high as for other features.

We also decided to investigate correlations between features using a correlation ma-
trix. The correlation matrix was creating from the first 13000 rows from the reference
station, but using observations values from validity time instead of reference time. As
expected, very strong correlation was estimated between measured temperature and
temperature predicted by Aladin. Negative correlation between temperatures and hu-
midity can be caused by a fact, that with increased humidity there often comes rainfall
and temperature decreases. Therefore, we would also expect high positive correlation
between rainfall and humidity. However, the graph shows very little of the correlation.
This may be caused by the invalid values for rainfall containing zeros instead of −999
as shown in Section 3.2. Because the correlation matrix was used mainly for intuitive
purposes, we did not test for significance of the correlations among the features.
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Figure 3.3: Correlation matrix using first 13000 records for the reference station.



Chapter 4

General model

In Chapter 3, we presented arguments about low importance of features like wind speed
or rainfall. In this chapter we create various models that consist only from temperature
features, features derived from them and humidity.

Rolling window

In the Hajdin’s thesis the rolling window of size 60 with 12 hour period was used.
Remind that the model that uses only measured and predicted temperature can be
defined as in Equation 4.1, and we refer to it as to reference model or simply to ref.
The model is the same as the one from Equation 2.1.

yhi = θ0 + θ1Ti + θ2P
h
i h ∈ 1, ..., 12 (4.1)

Hajdin claimed that when using the reference model, the longer rolling window did not
improve the results. However, when using the period of 12 hours, two groups of records
related to two different hours of a day are obtained in a training set. The model then
learns from Aladin predictions made for two distinct hours of a day which might not be
related. Using matrix notation and period of 24 hours, the reference model is defined
in Equation 4.2.


1 Ti phi

1 Ti−24 P h
i−24

1 Ti−48 P h
i−48

... ... ...

1 Ti−(m−1)∗24 P h
i−(m−1)∗24


θ0θ1
θ2

 =


Ti+h

Ti−24+h

Ti−48+h

...

Ti−(m−1)∗24+h

 (4.2)
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Figure 4.1: MAE comparison for 12 to 24 hour periods of the rolling window. The
window length on x-axis is relative to 12 hour period.

To investigate if the 24 hour period is more plausible than the 12 hour period, we
plotted MAE and MSE metrics for the growing length of the rolling window using
those periods. Figures 4.1 and 4.2 shows those plots. For both MAE and MSE it
can be seen that with the increasing rolling window length those metrics grows for
the 12 hour period and decrease for 24 hour period. Tables 4.1 and 4.2 shows more
comprehensive results. We evaluated all the models using the same dataset, consisting
of 14615 records for the reference station. To directly compare our results with the
Hajdin’s thesis, we used only the data that were also available for Hajdin.

Table 4.1: Results for the reference model with 12 hour period.

Window length 60 90 120 150 180 210 240
MAE 0.9535 0.9544 0.9644 0.9682 0.9761 0.9791 0.9816
MSE 1.5891 1.5825 1.6075 1.6121 1.6273 1.6404 1.6458

Due to the trend that can be seen from the plots, showing that 24 hour period outper-
formed the 12 hour one in both MAE and MSE, we later use 24 hour period in all of our
future models if not said otherwise. Using this approach we have distinct training sets

Table 4.2: Results for the reference model with 24 hour period.

Window length 30 45 60 75 90 105 120
MAE 0.9406 0.9329 0.9296 0.9301 0.9308 0.9303 0.9273
MSE 1.5593 1.5262 1.5189 1.5128 1.5136 1.5132 1.5032
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Figure 4.2: MSE comparison for 12 to 24 hour periods of the rolling window. The
window length on x-axis is relative to 12 hour period.

for every hour of a day. Also when we later refer to reference model without specifying
the rolling window length, we mean the length of 120 samples.

Adding new features

In order to further improve MAE and MSE metrics, we decided to create new features
and append them to the reference model. We created those features based on temper-
ature measurements while ignoring other features. All the models, described below,
were tested based on the reference station data and using only the records, that were
available in the Hajdin’s thesis. A period of 24 hours for the rolling window was used.
In the later text, when we prefix any model name with integer, it specifies the rolling
window length.
In the later text some models are compared using slightly different amount of samples.
It is because of the fashion the features are added to the models. When we use past
data, for some samples we just do not have the past information available and those
samples are therefore not included in a training set. However, when we compare two
models, we always compare them on exactly the same samples otherwise the compari-
son could be misleading.
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Minimum and maximum temperature

One of the features we experimented with were minimum and maximum from the
temperature values which were measured twelve hours before the time the forecast was
created, up to the time it was created (reference time). For example if we predicted
temperature for 5AM, we took temperature values between 12AM up to 12PM of the
previous day. 12AM is the time when the last Aladin forecast was made. We therefore
got thirteen temperature values and picked minimum respectively maximum from them.
More formally, using symbols from Section 4.1, when predicting temperature yhi we took
minimum and maximum from measured temperature values between Ti−12 up to Ti.
In the later text, we refer to those features simply as to minimum and maximum. We
tested adding of minimum and maximum using various rolling window lengths. The
results of adding minimum to the reference model are shown in Table 4.3. Later we
refer to this model as to min and the model is defined in Equation 4.3. Similarly, max
model can be defined.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(min(Ti−12, ..., Ti)) h ∈ 1, ..., 12 (4.3)

Table 4.3: Models for rolling window lengths were evaluated on the same 14615 records.

Model 60-ref 60-min 90-ref 90-min 120-ref 120-min
MAE 0.9296 0.9238 0.9308 0.9192 0.9273 0.9147
MSE 1.5189 1.5152 1.5136 1.4924 1.5032 1.4756

From the results we see that adding the minimum improved both MAE and MSE for
all the rolling window lengths. Using Wilcoxon paired test with 95% confidence level,
we tested if the difference between means of absolute errors and means of squared er-
rors for the reference model and the min model is significant. Based on the test, the
p-values for both the hypotheses, when rounded to six decimals, were equal to zeros.
Thus, we deny those hypotheses and consider that the means of absolute errors resp.
squared errors of the min and reference models are significantly different.
We expected that adding of the maximum would have similar impact on the improve-
ment as the minimum had. The max model improved MAE for all the examined rolling
window lengths however MSE worsen for lengths of 60 and 90 samples. The results are
captured in Table 4.4.

By including both the minimum and maximum features in one model we got the best
MAE and MSE results for the rolling window length of 120. We call this model min-
max. The model also had the best MAE from the previously tried models, but got
worse in MSE for the rolling window size of 60 compared to the min model. The
results are captured in Table 4.5.
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Table 4.4: Models for all rolling window lengths were evaluated using the same 14615
records.

Model 60-ref 60-max 90-ref 90-max 120-ref 120-max
MAE 0.9296 0.9290 0.9308 0.9243 0.9273 0.9187
MSE 1.5189 1.5406 1.5136 1.5137 1.5032 1.4950

Table 4.5: Models for all rolling window lengths were evaluated using the same 14615
records.

Model 60-min 60 min-max 90-min 90-min-max 120-min 120-min-max
MAE 0.9238 0.9224 0.9192 0.9114 0.9147 0.9045
MSE 1.5152 1.5349 1.4924 1.4891 1.4756 1.4629

To investigate that the improvement for the rolling window size of 120 did not occur by
chance, we decided to test errors differences for the 120-min and 120-min-max models.
Using Wilcoxon paired test, rounded p-values were 0.000007 for absolute error test
and 0.000039 for squared error test. Thus, we consider the 120-min-max and 120-min
models errors to be significantly different, and we only use the 120-min-max model for
the later computations. The difference between the 120-min and 120-max models was
also significant with p-values 0.040309 and 0.002992 for absolute and squared errors
respectively. Eventually the combination of both features improved the MAE from
0.9273 to 0.9045 and MSE from 1.5032 to 1.4629 compared to the reference model.

For further analysis of improvement we decided to construct graphs that visualize im-
provement for all seasons separately. In the later text we refer to them as to improve-
ment graphs. The improvement graph compares two models improvement in absolute
error. It is divided into four subgraphs, one for each season. On the x-axis there are
hours for which temperature was predicted and on the y-axis there is absolute improve-
ment. The absolute improvement is computed relative to Aladin predictions. There
is a gap between 12AM and 1PM to explicitly emphasize that new Aladin predictions
were made during that time.
Figure 4.3 shows comparison of the 120-min and 120-max models. It can be seen that
the 120-max has significantly greater improvement in autumn and winter between 2AM
to 6AM. For hours between 1PM to 12PM the 120-min seems better.
In Figure 4.4 we compare the 120-ref and 120-min-max models. The significant im-
provement from the 120-max model remained as also the improvement during 1PM and
12PM. Nevertheless, the 120-min-max model also got worse for some hours. The great-
est difference between improvement during autumn and winter compared to spring and
summer is between 6AM to 10AM where the improvement during autumn and winter
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Figure 4.3: Improvement comparison for the 120-min and 120-max models.

is more significant.
We investigated if the improvement results are similar across different stations, but
unfortunately the results seems to be very station specific. Thus, it is difficult to make
general conclusion about the improvement gained with those features. In practise,
we would suppose to examine the model improvement behaviour across the year. For
hours and periods when the model get worse, either compared to the reference model
or Aladin, the predictors can be turned off.

Aladin errors

Since addition of the minimum and maximum features decreased MAE and MSE met-
rics, we continued in adding other features derived from temperature values. We de-
cided to include Aladin error that was made 24 hours before the hour for which we
predict. The model is formally defined in Equation 4.5. In the later text we refer to
this model as to aladin24.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(P

h
i−24 − yhi−24) h ∈ 1, ..., 12 (4.4)

We evaluated the model using the same rolling windows lengths as for the min and max
models. All the models were evaluated on the same 14603 samples. The results are
captured in Table 4.6. The model worsen both MAE and MSE for the rolling window
size of 60, for size of 90 at least the MAE improved and for size of 120 both MAE
and MSE improved. However, even for the rolling window size of 120 samples, the im-
provement seemed very minor compared to the min or min-max models. Nevertheless,
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Figure 4.4: Improvement comparison for the 120-ref and 120-min-max models.

we decided to test if the improvement, even though small, is significant for the 120
samples rolling window size. Using Wilcoxon paired test, the p-values were 0.046574
for absolute error and 0.011380 for squared error. So with 95% confidence we can deny
the null hypothesis and trust that the real means for both absolute and squared errors
are different. Even though the 120-aladin24 is significantly better than the 120-ref the
improvement seems unsatisfying.

Table 4.6: Models for all rolling window lengths were evaluated using the same 14603
records.

Model 60-ref 60-aladin24 90-ref 90-aladin24 120-ref 120-aladin24
MAE 0.9286 0.9335 0.9298 0.9291 0.9262 0.9252
MAE 1.5146 1.5290 1.5089 1.5101 1.4982 1.4970

Despite the significance of improvement for the rolling window size of 120 samples, we
decided not to use aladin24 for the later computations, as the decrease in both MAE
and MSE was very small. We trusted that adding Aladin error to the model might
improve the results, thus we tried slightly different version of the model. Instead of
using error that Aladin made 24 hours before, we used Aladin error from reference
time (the time when Aladin made the prediction) as a new feature for the reference
model. Thus, we added Aladin error from 0AM or 12AM based on hour for which we
predicted. For hours between 1PM up to 12PM we added Aladin error from 12AM. For
the rest hours error from 0AM was used. The model can formally be written as

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(P

12
i−12 − y12i−12) h ∈ 1, ..., 12 (4.5)
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by P 12
i−12−y12i−12 we mean Aladin error from reference time. In the later text we refer to

this model as to aladinP. We evaluated the model using 14614 samples and captured
the results in Table 4.7.

Table 4.7: Models for all rolling window lengths were evaluated using the same 14614
records.

Model 60-ref 60-aladinP 90-ref 90-aladinP 120-ref 120-aladinP
MAE 0.9296 0.9228 0.9308 0.9206 0.9273 0.9151
MSE 1.5190 1.5103 1.5137 1.4970 1.5033 1.4789

From MAE and MSE metrics in can be seen that the aladinP model performed better
than the reference model for all the examined window lengths. Using Wilcoxon test for
the improvement significance, the p-values for both null hypotheses were, when rounded
to six decimals, equal to zeros. We therefore claim aladinP to have significantly smaller
absolute and squared errors that the reference model. The improvement gained with
the aladinP model was greater than the one gained with the aladin24 model. When we
examined the improvement graph for the aladinP model, the curves followed similar
shapes as those for the min or min-max models, but with smaller improvement for
morning hours in winter. The greatest improvement gained with the aladinP model
was between 2AM to 6AM during autumn months. For other periods and hours the
improvement was minor. When we examined the improvement graph for the aladin24
model the improvement almost disappeared. The only systematical improvement was
seen between 16PM and 24PM in autumn moths.
Finally, we tried to combine those models into one. We constructed model from Equa-
tion 4.6. We later refer to it as to aladinCombined.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(P

h
i−24 − yhi−24) + θ4(P

12
i−12 − y12i−12) h ∈ 1, ..., 12 (4.6)

When we compared the aladinP and aladinCombined models, MAE for the aladinCom-
bined increased from 0.9134 to 0.9144 and MSE increased from 1.4718 to 1.4738. The
models were compared using 14590 samples.
From the results we obtained when using Aladin errors we do not suppose that Aladin
error from 24 hours before can be useful in improving predictions accuracy. On the
other hand, Aladin error from reference time seemed to improve the results for various
rolling window lengths. It might be caused by a fact, that Aladin errors from aladinP
model are closer to the times for which we forecast.
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Fixed hours temperatures

Next feature we tried to include in the reference model was simply measured temper-
ature from chosen fixed time. The reference model already contains the temperature
from reference time. We decided to add temperature from 6AM when predicting tem-
perature for 1PM up to 12PM and from 6PM when predicting temperature for 1AM up
to 12AM. The choice of 6AM and 6PM was mostly random, but we wanted to choose
the hour that is not too close to 12AM or 12PM. Because of that we expected that we
could capture temperature growth or decrease which might improve the predictions.
The model is defined in Equation 4.7 and is later referred to as a 6am6pm.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3Ti−6 h ∈ 1, ..., 12 (4.7)

The results of using 6am6pm model are captured in Table 4.8.

Table 4.8: Models for all rolling window lengths were evaluated using the same 14615
records.

Model 60-ref 60-6pm6am 90-ref 90-6pm6am 120-ref 120-6pm6am
MAE 0.9296 0.9120 0.9308 0.9079 0.9273 0.9043
MSE 1.5189 1.4902 1.5136 1.4691 1.5032 1.4564

Addition of 6AM/6PM helped to improve both MAE and MSE for all examined rolling
window lengths. P-values for the improvement hypotheses were, when rounded to six
decimals, zeros. We therefore consider the improvement to be significant. When in-
vestigating the improvement graph we figured out that the improvement is visually
similar to the one gained with the min-max model. It would be better if the improve-
ment happened for distinct periods or hours, so we could expect that combining the
models would further improve MAE and MSE metrics. Based on MAE and MSE val-
ues, the improvement to the reference model was greater than with the aladinP model
and also greater than the improvement gained with the min-max model.

Lagged temperature

The approach we used in the min-max model is similar to what is in the time series
terminology referred to as lagging or lagged variables. The lag is in fact a delay. In
the 6am6pm model we lagged measured temperature from reference time by six hours.
More common approach is to include all delayed values up to the final lagged value.
Instead of using only Ti and Ti−6 temperatures for 6am6pm model, it would mean to



CHAPTER 4. GENERAL MODEL 35

also include Ti−1, Ti−2, Ti−3 and Ti−4 temperatures. The problem when adding all those
features to our models is that the rolling window size, which is by default 120, might
be too small for our models to work as desired.
We first tried to lag measured temperature by one hour from reference time getting
the model

yhi = θ0 + θ1Ti + θ2P
h
i + θ3Ti−1 h ∈ 1, ..., 12

When tested on 14626 samples MAE increased from 0.9270 to 0.9315 and MSE from
1.5024 to 1.5196 compared to the reference model. Therefore, we assume that the
feature did not help. We also experimented with models where measured temperature
and temperature predicted by Aladin were lagged by more hours from reference time
and with the combinations of those. However, none of those resulted in improvement
that we considered satisfying. When lagging temperature predicted by Aladin by one
hour from reference time, we in fact get a very similar model as the aladinP.
We also tried lagging from validity time. It is necessary to lag measured temperature
at least by twelve hours, otherwise the models would learn from information that was
not accessible at the time of making the prediction. We examined models

yhi = θ0 + θ1Ti + θ2P
h
i + θ3Ti−24 h ∈ 1, ..., 12

yhi = θ0 + θ1Ti + θ2P
h
i + θ3P

h
i−24 h ∈ 1, ..., 12

yhi = θ0 + θ1Ti + θ2P
h
i + θ3Ti−24 + θ4P

h
i−24 h ∈ 1, ..., 12

For now, we refer to those as to A, B, C starting from top to bottom. The results of
evaluating the models using 14579 samples are captured in Table 4.9.

Table 4.9: Lagged models

Model 120-ref 120-A 120-B 120-C
MAE 0.9260 0.9246 0.9264 0.9268
MSE 1.4982 1.4928 1.4936 1.4968

The models seemed to introduce no satisfying improvement. The A model made minor
improvement for both MAE and MSE. The B and C models only improved MSE, but
even less than the model A. When using Wilcoxon paired test we could not deny the
null hypothesis that the 120-ref and 120-A models have equal means of absolute errors.
The p-value for this test was 0.065393 which is greater than 0.05, so we could not deny
it with 95% confidence level.
We also tried model which lags temperature predicted by Aladin by one hour from
validity time. The model is defined in Equation 4.8, and we refer to it as to Aladin-
lag1.
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Figure 4.5: Improvement comparison for the 120-ref and 120-Aladin-lag1 models.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3P

h−1
i h ∈ 1, ..., 12 (4.8)

Compared to the reference model with 120 rolling window length using 14626 samples
the model improved MAE from 0.9270 to 0.9087 and MSE from 1.5024 to 1.4684. Using
Wilcoxon paired tests we could confirm that the improvement is significant with 95%
confidence level. The important property of this model is that from the improvement
graph (Figure 4.5) it seems, that it improves the forecasts during different hours for
summer months compared to the min-max or 6am-6pm models. New improvement for
summer is seen between 5AM and 7AM. This could indicate that combining Aladin-
lag1 model with the min-max model might further improve MAE and MSE.

Lastly we tried to lag the aladinP model by 24 hours. It means that we included both
Aladin error from reference time and Aladin error from 24 hours before that reference
time. For that model both MAE and MSE increased compared to the aladinP model.
We considered it important to experiment with lagged values as it is common approach
in many time series prediction approaches. Unfortunately this type of features seemed
to introduce improvement only for the Aladin-lag1 model. Other lagged features did
not seem to decrease models errors.

Moments

The last features we decided to try were moments. The moments were created from
temperature values measured twelve hours before reference time up to the reference
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time, thus using the same temperature values as for the minimum or maximum features.
The models were defined as

yhi = θ0 + θ1Ti + θ2P
h
i + θ3moment h ∈ 1, ..., 12

where moment in one of the mean, variance, skewness and kurtosis, created from
temperature values between Ti−12 and Ti. We refer to those models as to Mean, Var,
Skew and Kur respectively. The results of using those models are captured in Tables
4.10, 4.11 and 4.12.

Table 4.10: Moments models evaluated using 14615 samples with the rolling window
length of 60.

Model 60-ref 60-Mean 60-Var 60-Skew 60-Kur
MAE 0.9296 0.9093 0.9162 0.9348 0.9387
MSE 1.5189 1.4818 1.5012 1.5443 1.5641

Table 4.11: Moments models evaluated using 14615 samples with the rolling window
length of 90.

Model 90-ref 90-Mean 90-Var 90-Skew 90-Kur
MAE 0.9308 0.9042 0.9125 0.9356 0.9360
MSE 1.5136 1.4611 1.4822 1.5332 1.5354

Table 4.12: Moments models evaluated using 14615 samples with the rolling window
length of 120.

Model 120-ref 120-Mean 120-Var 120-Skew 120-Kur
MAE 0.9273 0.8999 0.9076 0.9313 0.9277
MSE 1.5032 1.4461 1.4696 1.5211 1.5089

We can see that kurtosis and skewness worsen MAE and MSE for all the rolling windows
lengths. On the other hand, mean and variance improved MAE and MSE for all the
tested models. Mean had the best improvement impact from the moments we tried.
As both mean and variance seem to decrease MAE and MSE we decided to use both
these features in the next model getting so called Mean-Var model.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3mean+ θ4var h ∈ 1, ..., 12

We compared the Mean-Var and Mean models using the rolling window size of 120 and
14615 samples. Compared to the Mean model MAE increased from 0.8999 to 0.9017
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Figure 4.6: Improvement comparison for the 120-Aladin-lag1 and 120-Mean models.

and MSE increased from 1.4461 to 1.4620. Using Wilcoxon paired test, we could not
deny that the models have equal means of absolute errors, because the p-value was
0.998514. We also tried to test if the means of squared errors are the same. The
p-value for this hypothesis was 0.884324 thus we could not deny it. Because the Mean-
Var model did not introduce any improvement, we decided not to use it for further
experiments.
The improvement comparison for the 120-Aladin-lag1 and 120-Mean is shown in Figure
4.6. As the improvement is different for those models it might be good to combine them.
For other models the improvement comparison with the Mean model had less different
results.
We also tried to figure out why addition of variance causes improvement. It could mean
that Aladin is prone to change accuracy based on variability in weather. We visualized
improvement graphs for various stations to see if we could catch some specific behaviour
about that improvement. The behaviour seemed highly station specific, and we could
not make general assumptions about the improvement gained with variance.

Combining features

After investigating the improvement that was gained by creating new features from
measured and predicted temperature, we combined the features that caused enhance-
ment into new models.
The most naive approach was to use all the features that improved the reference model.
We used model composed of the min-max, AladinP, 6am-6pm, Aladin-lag1 and Mean
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models. The model is defined in Equation 4.9.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(min(Ti−12, ..., Ti)) + θ4(max(Ti−12, ..., Ti))+

θ5(P
12
i−12 − y12i−12) + θ6Ti−6 + θ7P

h−1
i + θ8mean(Ti−12, ..., Ti) h ∈ 1, ..., 12

(4.9)

The model was evaluated using 14577 samples and introduced improvement compared
to the reference model. When compared using the same sample size MAE decreased
from 0.9261 to 0.9003 and MSE decreased from 1.4984 to 1.4707. However, when
compared to the 120-Mean model, MAE increased from 0.8991 to 0.9003 and MSE
increased from 1.4416 to 1.4707. We therefore do not consider it suitable to use this
model instead of using e.g. 120-Mean model. The model uses eight features and the
intercept term, so the rolling window size of 120 samples might be too small. Anyhow,
larger rolling window size would cause too many observations to be skipped. Also the
rolling window size would be getting close to the count of unseen samples, what might
cause problems with generalization.
Rather than using all those features, we created next models based on the improvement
graphs. The improvement graph for the Aladin-lag1 model seemed different compared
to the min-max or Mean models. Therefore, we decided to examine models defined
in Equations 4.10, 4.11 and 4.12. We later refer to those as to C1, C2 and C3. All
those models are composed of the Aladin-lag1 model. They are further composed
of the min-max, Mean and 6am-6pm models, based on the order in which they are
defined.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(min(Ti−12, ..., Ti))+

θ4(max(Ti−12, ..., Ti)) + θ5P
h−1
i h ∈ 1, ..., 12

(4.10)

yhi = θ0 + θ1Ti + θ2P
h
i + θ3P

h−1
i + θ4mean(Ti−12, ..., Ti) h ∈ 1, ..., 12 (4.11)

yhi = θ0 + θ1Ti + θ2P
h
i + θ3P

h−1
i + θ4Ti−6 h ∈ 1, ..., 12 (4.12)

The models were evaluated using 14614 samples. From the results in Table 4.13 we can
see that all those models improved both MAE and MSE compared to the models they
were composed of. Using Wilcoxon paired tests, we could with 95% confidence confirm
that the improvement is significant for both MAE and MSE. The lowest MAE and MSE
was gained with C2 model. Since this model is composed of the Mean and Aladin-lag1
models, and from the models we introduced the Mean model had the largest impact
on both MAE and MSE improvement, it is quite expected.
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Table 4.13: Evaluated using 14614 samples with the rolling window length of 120.

Model ref min-max Aladin-lag1 Mean 6am-6pm C1 C2 C3
MAE 0.9273 0.9045 0.9091 0.8999 0.9043 0.8952 0.8907 0.8935
MSE 1.5033 1.4629 1.4693 1.4462 1.4565 1.4460 1.4279 1.4336

Because combination of different models, constructed for same goal, often results in
better outcomes [16], we averaged the outcomes of the C1, C2 and C3 models. So when
we predict temperature at time i, the yCj

i is the value that the Cj model predicted at

time i and j ∈ {1, 2, 3}. The final value that we predict is simply yfinal =

j∑
i=1

yCj
i

j
. We

refer this model as to ensemble1 model. After we evaluated it using 16413 samples
MAE was equal to 0.8891 and MSE to 1.4242.
Finally, we constructed ensemble from the Aladin-lag1, AladinP, min-max, Mean and
6am-6pm models, but the results were worse compared to the results for the ensemble1
model.

Humidity

Until now we have been using only temperature related features in our models. How-
ever, in Chapter 3 we discussed feature importances and from Figure 3.2 we see, that
humidity should be more important compared to other non temperature related fea-
tures. Therefore, we decided to add measured humidity from reference time into the
reference model. The model is defined in Equation 4.13, and we refer to it as to
hum.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3humidityi h ∈ 1, ..., 12 (4.13)

From Table 4.14 we see that adding humidity improved the results compared to the
reference model for all tried rolling window lengths. The disadvantage of adding hu-
midity is that for other stations we must skip more predictions, due to more invalid
records obtained in the data, compared to models without humidity.

Table 4.14: Evaluated on 14627 samples.

Model 60-ref 60-hum 90-ref 90-hum 120-ref 120-hum
MAE 0.9292 0.9241 0.9303 0.9189 0.9270 0.9136
MSE 1.5179 1.5169 1.5125 1.4920 1.5023 1.4747
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Weights and rolling window lengths

To make newer records more important than the older and to further improve the
results we multiplied each record in the rolling window by a weight function. The
function was the same as in the Hajdin’s thesis and was previously defined in Chapter
2. As the ensemble1 model had the best results from the models we tried so far, we
decided to use this model. Table 4.15 shows the results for various values of a, the base
of our weight function. The best results were obtained for a equal to 0.97.

Table 4.15: Evaluated using 14613 samples with the rolling window length of 120 and
ensemble1 model.

Weighting base 1 0.99 0.98 0.97 0.96 0.95
MAE 0.8891 0.8852 0.8829 0.8818 0.8820 0.8832
MSE 1.4242 1.4150 1.4098 1.4084 1.4104 1.4154

The ensemble1 model is constructed from the models that all have same rolling window
lengths. As ensemble of different models improved the results, we also tried to change
the rolling window lengths for those models. Using a equal to 0.97 for the weight func-
tion and combining different rolling window lengths for the models from the ensemble1,
we could not further improve the results. The window size of 120 seemed to be most
appropriate for all the models in the ensemble1. We experimented with the rolling
window sizes of 30, 60, 90 and 120.
Because the addition of humidity improved the results, we decided to adjust the en-
semble1 model by adding measured humidity from reference time into every model in
the ensemble. We refer to this model as to ensemble2. The results are shown in Table
4.16.

Table 4.16: Evaluated using 14613 samples with the rolling window length of 120 and
ensemble2 model.

Weighting base 1 0.99 0.98 0.97 0.96 0.95
MAE 0.8882 0.8841 0.8818 0.8811 0.8817 0.8836
MSE 1.4266 1.4168 1.4118 1.4112 1.4145 1.4214

After evaluating the ensemble2 model, we got the best MAE for the weighting base
equal to 0.97, but slightly worse MSE compared to the ensemble1 model. The advan-
tage of the ensemble1 is that it can perform more predictions for other stations because
of fewer invalid values obtained in the data. But according to the lowest MAE error,
we chose the ensemble2 for later experiments.
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Regularized models and different learning algorithms

Until now we were using only linear regression models. In this section we investigate
usage of regularized regression, support vector regression and neural networks.

Regularized regression

The regularized regression models that we tried are ridge, lasso and elastic net regres-
sion. To check if the regularized regression improves the results we first applied it to
the hum model.

Table 4.17: Evaluated on 14627 samples with the rolling window length of 120, using
the hum model and no scaling.

Model OLS Ridge Lasso Elastic net
MAE 0.9136 0.9143 0.9211 0.9216
MSE 1.4747 1.4750 1.4912 1.4904

Table 4.18: Evaluated on 14627 samples with the rolling window length of 120, using
the hum model and standardization.

Model OLS Ridge Lasso Elastic net
MAE 0.9136 0.9154 0.9225 0.9242
MSE 1.4747 1.4776 1.4950 1.4965

Table 4.19: Evaluated on 14627 samples with the rolling window length of 120, using
the hum model and min-max normalization.

Model OLS Ridge Lasso Elastic net
MAE 0.9136 0.9261 0.9232 0.9399
MSE 1.4747 1.4958 1.4951 1.5325

Due to difference in scales between temperatures and humidity, we evaluated the models
in three cases. In the first case we did not use feature scaling, in the second we applied
standardization and finally, we used min-max normalization.
We used 5 as the number of splits in the scikit-learn implementation of time series cross
validation and used it with grid search to find the proper values of regularization terms
for each position of the rolling window. From the results in Tables 4.17, 4.18 and 4.19
we see that neither ridge, lasso or elastic net improved the results for the hum model.
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Table 4.20: Evaluated on 14614 samples with the rolling window length of 120, using
the C2 model and no scaling.

Model OLS Ridge Lasso Elastic net
MAE 0.8907 0.8930 0.9063 0.9104
MSE 1.4279 1.4300 1.4577 1.4684

Table 4.21: Evaluated on 14614 samples with the rolling window length of 120, using
the C2 model and standardization.

Model OLS Ridge Lasso Elastic net
MAE 0.8907 0.8974 0.9054 0.9180
MSE 1.4279 1.4393 1.4564 1.4882

Also no improvement was seen for the C2 model and models with more features. In
all the tried cases regularization did not help. The results for the C2 model are stored
in Tables 4.20, 4.21 and 4.22. Same as for the hum model, we got the smallest errors
when no scaling was used.
We could observe small improvement for some concrete values of regularization terms,
but due to possible generalization problems when applied to other stations, we decided
not to include them and rely on the grid search results. Finally, we tried to add
polynomial features. The results for those models were significantly worse with and
without regularization.
Therefore, we decided not to further experiment with regularized regression models.
Originally we expected, that ridge regression could improve the results because linear
regression can suffer from multicollinearity in data [22].

SVR

Support vector regression is markedly different learning algorithm compared to linear
regression. We decided to test SVR for the hum model as we did with regularized
regression. First we tried a linear kernel. In all cases we used standardization because
scaling is required for SVR and standardization is often being used [21]. By default, we
used 0.1 for ε that controls size of a regression tube because it is the default parameter
in the scikit-learn library [2]. To test if the smaller value of ε changes the results, we
also used value of 0.01. The smaller ε did not improve the results which can be found
in Table 4.23. For linear kernel it seemed that different values of C and ε had almost
no effect on the results and also caused very little changes to the training errors.
For the hum model SVR did not improve MSE and MAE was improved very little for
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Table 4.22: Evaluated on 14614 samples with the rolling window length of 120, using
the C2 model and min-max normalization.

Model OLS Ridge Lasso Elastic net
MAE 0.8907 0.9244 0.9057 0.9402
MSE 1.4279 1.4979 1.4568 1.5380

C equal to 50 and 100. The hum model estimated using linear regression had MAE
equal to 0.9136 and MSE equal to 1.4747. SVR training is more time consuming than
linear regression, so we do not prefer to use it.
Using RBF kernel more complex functions can be learnt [21]. The problem with the
RBF kernel was that it was easy to overfit or underfit the data, and we could not find
a model to generalize well. We consider RBF kernel too complex for the problem we
solved. With the hum model we underfitted the data for C equal to 1 and for C equal
to 10 the model seemed to overfit. For C set to 50 the model fit the data much better
than the linear kernel, but it did not generalize well to new samples.

Table 4.23: Evaluated on 14627 samples with the rolling window length of 120, using
the hum model and standardization. The 50eps is the model with ε equal to 0.01.

C 1 50 50eps 100
MAE 0.9164 0.9123 0.9143 0.9123

MAE train 0.8571 0.8518 0.8503 0.8518
MSE 1.5156 1.5064 1.5124 1.5066

MSE train 1.3636 1.3542 1.3576 1.3543

Table 4.24: Evaluated on 14627 samples with the rolling window length of 120, using
the hum model, standardization and RBF kernel.

C 1 2 5 10 50 100
MAE 2.2665 1.6161 1.4447 1.3118 1.2562 1.2920

MAE train 1.1616 0.8604 0.7848 0.7166 0.6284 0.5976
MSE 11.6196 6.0917 4.7783 3.7919 3.3989 3.6262

MSE train 3.2032 1.6351 1.3318 1.1233 0.9519 0.8982

We grid searched over possible values of C from the set {1, 3, 5, 10, 20, 50}. For linear
kernel the MAE was 0.9140 and MSE was 1.5089. For RBF kernel MAE was 1.2750
and MSE was 3.5505 making RBF kernel inappropriate to use. Trying different gamma
values, which controls the shape of RBF function, also did not help. The results were
best with default gamma value set to 1 / (number of features) [2].
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Feedforward and recurrent networks

The last family of learning algorithms we decided to try were neural networks. First we
experimented with feedforward architectures. We continued using the rolling window
approach and did not follow the approach where the network is trained on a large
dataset, contains a lot of lagged values and all predictions are made at once as described
in F.Chevalier’s article [10]. We used lbfgs solver from the scikit-learn library because it
is recommended for short datasets [2] and we consider our 120 samples rolling window
to be quite short. We could not improve the results with feedforwarward networks,
so we present only short report. The results for the reference model were slightly
worse than when using linear regression. For models with more features the results
worsen even more. We tried various values of regularization parameter, number of
neurons, more hidden layers, activation functions and both min-max normalization and
standardization. For example when grid search over hidden layer sizes of (10, 20, 30)
and regularization parameter values (2, 1, 0.5, 0.01) using time series cross validation
and relu activation function MAE was 0.9316 and MSE 1.5192. For comparison with
linear regression MAE was 0.9273 and MSE was 1.5032.

As the last algorithm we tried recurrent neural networks and compared them to simpler
linear regression models. First we used the approach in which we applied rolling window
and learned new weights for every position, same as for the previous models. The
problem was that learning of recurrent networks is much slower compared to linear
or regularized regression and the computation was very slow. Instead, we used the
approach, in which we shared network weights across the computations. When first
training the network for unseen target hour, we stored its weights and associated them
with that hour, resulting in 24 separate weights. During initial training we used 50
or 100 epochs, based on the network architecture. For later predictions we moved the
rolling window, but instead of training the network from scratch, we used the already
trained weights for that hour. As with the shift in the rolling window one training
example is appended and one removed, for each shift we executed two additional epochs
using the previous weights. That way we sped up the computations and also had last
seen record incorporated in the weights before making new prediction.
Even though we sped up the computations using shared weights, the evaluation still
took long time. Therefore, we evaluated the networks only on the first 2000 records
of the reference station. For same reason we did not use grid search to find proper
hyperparameters, but instead tried few chosen architectures. The aim of this thesis
was not primary to design proper recurrent network architecture, but rather investigate
if some of the tried architectures could outperform or at least gain similar results
compared to linear regression.
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We used GRU networks instead of LSTM, to further save time and because the results
for few tried architectures were similar for GRU and LSTM. First we used features
from the reference model, thus measured temperature at time of making the prediction
and predicted temperature for target hour. The GRU consisted from 30 units, tanh
activation and other parameters were left default according to the keras library settings
[1]. We used keras for all recurrent computations. As the optimizer we used RMSprop,
because keras recommends it for recurrent architectures [1]. We used MAE as the loss
and the batch size was 4 samples long. Data were scaled to a range -1, 1 to fit the
range of tanh activation. We also constrained weights not to exceed value 3 in L2 norm
as our default regularization technique.
To compare with linear regression we used the reference model, containing the same
features. With mentioned recurrent architecture and also with others, we could not
outperform linear regression. However, the models are significantly different, so we
expected that an average of those models could result in better values than linear
regression. Table 4.25 presents the results that compares the mentioned GRU network
to the linear regression reference model. The averaged model slightly improved both
MAE and MSE. In MAE, the GRU network was better for 1002 samples and linear
regression for 998, but when the errors were summed GRU was outperformed.

Table 4.25: Evaluated on 2000 samples with the rolling window length of 120 using
features from the reference model.

Model OLS GRU Averaged
MAE 0.8642 0.8733 0.8513
MAE 1.3578 1.3887 1.3361

When we used MSE as the loss function, GRU error increased to 0.8827 and 1.4132
for MAE and MSE respectively, so we retained MAE as the loss function for all next
computations.
Quoc V. Le et al. proposed the method for efficiently training simple recurrent networks
(RNN) [13]. They used rectifier linear unit (relu) [16] as the activation and used an
identity matrix to initialize recurrent weights [13]. Inspired by this approach we reused
our previous architecture, but used RNN instead of GRU with relu activations, used
the identity matrix for the recurrent weights initialization and scaled the data to a
range [0,1]. The results are stored in Table 4.26.

The simple RNN model performed worse in case of both MAE and MSE compared to
the GRU model. With the averaged model we got better results for MAE, but worse
for MSE.
Using features from the hum or C2 models we could not reproduce improvement gained
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Table 4.26: Evaluated on 2000 samples with the rolling window length of 120 using
features from the reference model.

Model OLS GRU Averaged
MAE 0.8642 0.8956 0.8606
MAE 1.3578 1.4771 1.3672

with the averaged model. We experimented with different amount of units, dropout
regularization [16] and also using no regularization. We also tried to stack two GRUs
layers, which lead to the worst results from the tried architectures. Interesting obser-
vations is that even when the network errors differed a lot from linear regression errors,
the average of those models was in all cases close to the linear regression results.
We tried to analyse if the network does not strongly overfit the data. We used the
same strategy as for SVR. We could not observe significant difference between train
and validation error. The results were however harder to interpret as the loss was
computed from scaled features.

We showed that GRU networks could reach similar results using the features from the
reference model compared to linear regression and also that the combination of those
models could improve the results. Due to computational requirements we did not con-
tinue with GRU approach, but we consider the averaging with linear regression to be
the approach that could further enhance model accuracy. For networks with multiple
features, we were not able to improve the results compared to linear regression.
Because using regularized regression, SVR and MLP did not bring improvement over
linear regression, except few small improvement with fixed hyperparameters (not the
ones we got using grid search), we decided to further use linear regression models.
Combining models which were estimated using combination of the tried learning algo-
rithms also did not decrease errors compared to the combination of linear models.
We want to mention that one more technique that we tried was differencing of features
similar as for ARIMA models. However, this significantly worsen measured results, so
we did not use it in any of the models.



Chapter 5

Stable weather model

In this chapter we describe results achieved by adding model errors from the past as the
new features. We also describe approach by which we detect stable weather, normality
of errors and their autocorrelation.

Deciding stable weather

Before applying model errors from the past as new features, we first needed to detect
when stable weather occurs. We suggest 3 functions that could detect stable weather.
In the later text we refer to them as to s1, s2 and s3. The functions are defined in
Equations 5.1, 5.2 and 5.3. The predictedi is temperature predicted by Aladin for time
i and tempi is temperature measured at time i.
In the s1 function we declare weather at time i to be stable, if the absolute distance
between temperature that was predicted for that hour by Aladin and temperature that
was predicted by Aladin for 24 hours before that hour, is not greater than one. The
same rule must hold for temperatures at times i− 5, ..., i− 1.
In the s2 function we considered measured temperature instead. We declare weather
at time i to be stable if none of measured temperatures at times i − 26, ..., i − 22

differs more than by one from their corresponding temperatures measured 24 hours
before.

s1(i) =

stable, abs(predictedj − predictedj−24) ≤ 1 ∀j ∈ i− 5, ..., i

not stable, otherwise
(5.1)

s2(i) =

stable, abs(tempj − tempj−24) ≤ 1 ∀j ∈ i− 26, ..., i− 22

not stable, otherwise
(5.2)
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Figure 5.1: Stable weather detection using the s1 function for the reference station for
1000 samples starting from position 16048. The blue line represents absolute distance
between temperature measured at given time and 24 hours before. The green line
represent times for which we decided stable weather.

n = 5

w = [0.15, 0.6, 1, 0.6, 0.15]

h = [−2,−1, 0, 1, 2]

ws =
∑

w

s3(i) =

stable,

n∑
j=1

abs(tempi−24+j−tempi−48+j)∗w[j]

ws
≤ 1

not stable, otherwise

(5.3)

Finally, in the s3 we use similar approach as in the s2, but we weight the distances
according to Gaussian weights, sum them up and norm by the sum of those weights.
If the result is less or equal to one we declare the weather to be stable.

The s1 function has the advantage compared to the s2 and s3 functions, that it does
not need to look too far to the past because it uses predicted and not measured tem-
peratures. The disadvantage is that the temperatures are only estimated. The s3
function should tolerate higher deviations from stable weather for more distant hours
from target time. The example of using the s1 function is shown in Figure 5.1.
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Figure 5.2: Autocorrelation graph for 10PM records using 120-hum model. The dots
outside the blue area shows true autocorrelation with 95% confidence level.

Residuals autocorrelation and normality

We investigated residuals of our models on new data to check if they do not follow
normal distribution and also tested for autocorrelation. When we refer to errors or
residuals of our models we mean the errors that our model made on new data when
sliding the rolling window. If we detected no autocorrelation and the residuals were
normal, we would not consider adding previous errors useful as the errors could be just
white noise. However, for all the models we tried, the p-values for the null hypothesis
stating that the model errors come from normal distribution were very close to zero.
Therefore, the null hypothesis was rejected. We used Kolmogorov-Smirnov test to test
for normality. The histogram of residuals for the 120-hum model is shown in Figure
5.3 and is compared to a curve following normal distribution with mean and standard
deviation calculated from the residuals.
The autocorrelation was also seen, but it differed across the models and hours. In
Figure 5.2 we can see autocorrelation graph for 120-hum model and temperatures being
predicted for 10PM. We can see significant autocorrelation for 1st and also for 2nd lag.
As the model errors does not follow normal distribution and autocorrelation was seen
in the data for many models, we decided to experiment with including previous model
errors in our further models as the new features.
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Figure 5.3: Histogram of model errors for 120-hum model against true normal distri-
bution curve with mean and standard deviation calculated from errors.

Autoregressive models

In our thesis we consider autoregressive models to be those, where previous model
errors are used as the new features. Most straightforward autoregressive approach
is probably to provide error that a model made 24 hours before the time for which
temperature is being predicted. To the error that our model made in the past we refer
as to autoregressive term. When combined with the reference model we get the model
from Equation 5.4

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(predicted

h
i−24 − yhi−24) h ∈ 1, ..., 12 (5.4)

where predictedhi−24 is the temperature that our model predicted 24 hours before the
validity time. We refer to this model as to auto1. In the case when the autoregressive
term is not available at least for one record in a rolling window, we do not include this
term in a training data. Therefore, before using the autoregressive term in the auto1
model the count of predictions that must be predicted without autoregressive term is
equal to

size(rollingWindow) + 1.

Autoregressive models are also sensitive to invalid data records. Invalid records are
being skipped and when valid data appears, we might miss some autoregressive terms
(due to the skipped records) and can not use those terms for some time. If the invalid
data appears too often the autoregressive models can hardly be used.
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We evaluated the auto1 model using the rolling window size of 120 on all the data for
the reference station. Until now, we have been using only subset of the data for this
station to compare with the Hajdin’s results. However, the amount of records which
are labeled as stable weather records is quite small so using more data helps.

Table 5.1: Compared on 2765 records using s1 as the stable weather function.

Model ref120 auto1_120
MAE 0.8657 0.8455
MSE 1.2771 1.2145

Table 5.2: Compared on 1972 records using s2 as the stable weather function.

Model ref120 auto1_120
MAE 0.8786 0.8646
MSE 1.3467 1.3049

Table 5.3: Compared on 5385 records using s3 as the stable weather function.

Model ref120 auto1_120
MAE 0.9307 0.9193
MSE 1.5135 1.4785

Tables 5.1, 5.2 and 5.3 contain the results of evaluating the auto1 model with differ-
ent stable weather detecting functions and compared to the reference model. When
evaluating the reference model using all data for the reference station MAE and MSE
was 0.9568 and 1.6361 respectively. Using any of the tried stable weather detecting
functions, both MAE and MSE were lower indicating that during the stable weather
Aladin makes more accurate predictions. Using the auto1 model compared to the ref-
erence model on the stable weather records helped in case of all stable data functions.
Based on the Wilcoxon paired test the improvement was also significant.
For the rest of the thesis we use the s1 function because we consider it most plausible,
the amount of records it decides to be stable seemed most realistic from our point of
view, and also both MAE and MSE were lowest for those records.

We also tried adding different autoregressive terms and compared those models with
the auto1 model. We created auto2 model which is like the auto1 model, but also
consist of autoregressive term for error that our model made 48 hours before. The
model is defined in Equation 5.5.
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yhi = θ0+θ1Ti+θ2P
h
i +θ3(predicted

h
i−24−yhi−24)+θ4(predicted

h
i−48−yhi−48) h ∈ 1, ..., 12

(5.5)

As applying mean to past temperatures and using it as a predictor improved the results
in Chapter 4, we decided to apply mean to errors that our model made 36 up to 24
hours before the time for which we predict. We appended this term to the auto1 model
resulting in auto3 model described in Equation 5.6. We expected that the mean could
describe changes in the errors that the model does during that time. We also tried
applying variance, but the results were worse compared to the mean, therefore we do
not include those models in the thesis.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(predicted

h
i−24 − yhi−24)+

θ4mean((predictedi−36 − Ti−36), ...(predictedi−24 − Ti−24)) h ∈ 1, ..., 12 (5.6)

In the auto4 model we use mean from error before 24 up to 12 hours before the time
for which we predict. The model is described in Equation 5.7.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(predicted

h
i−24 − yhi−24)+

θ4mean((predictedi−24 − Ti−24), ...(predictedi−12 − Ti−12)) h ∈ 1, ..., 12 (5.7)

Finally, the auto5 model use mean from error before 30 up to 18 hours before the time
for which we predict, so the that error from 24 hours is in the middle of this interval.
The model is described in Equation 5.7.

yhi = θ0 + θ1Ti + θ2P
h
i + θ3(predicted

h
i−24 − yhi−24)+

θ4mean((predictedi−30 − Ti−30), ...(predictedi−18 − Ti−18)) h ∈ 1, ..., 12 (5.8)

From the results in Table 5.4 we see that the only model that gained better results
with respect to the auto1 was the auto4 model. However, we can not confirm that this
improvement was significant based on the Wilcoxon paired test neither for MAE nor
MSE. Later we experiment with the auto1 and auto4 autoregressive models.
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Table 5.4: Compared on 2763 records using s1 as the stable weather function and the
rolling window size of 120 records.

Model ref auto1 auto2 auto3 auto4 auto5
MAE 0.8653 0.8451 0.8499 0.8525 0.8434 0.8499
MSE 1.2766 1.2139 1.2201 1.2286 1.1956 1.2178

We decided to compare the hum model to the auto4 model with humidity included
as the next feature to see if the autoregressive terms from the auto4 also improve
the results for models with more features. The hum model with autoregressive terms
from the auto4 model improved MAE from 0.8398 to 0.8255 and MSE from 1.2067 to
1.1548 when evaluated on stable records determined by the s1 function. Based on the
Wilcoxon paired test, the improvement was significant for both error metrics.
The final ensemble that was determined as our best model consisted from the C1, C2
and C3 with included humidity in all those models. In this section we refer to those
models as to C1-hum, C2-hum and C3-hum. We therefore compared those models with
autoregressive terms from the auto4 model to the original models. We used weight base
of 0.97 as it seemed to have the best results. The results can be found in Table 5.5.

Table 5.5: Compared on 2763 records using s1 as the stable weather function and
the rolling window size of 120 records. When using * it means that model included
autoregressive terms from the auto4 model.

Model C1-hum C1-hum * C2-hum C2-hum * C3-hum C3-hum *
MAE 0.7918 0.7951 0.7839 0.7878 0.7836 0.7864
MSE 1.0920 1.0922 1.0569 1.0606 1.0551 1.0587

Autoregressive terms from the auto4 model worsen the results for all three models as
opposed to the reference or hum models. We tried to include only autoregressive term
from the auto1 model. The results are stored in Table 5.6.

Table 5.6: Compared on 2763 records using s1 as the stable weather function and
the rolling window size of 120 records. When using ** it means that model included
autoregressive terms from the auto1 model.

Model C1-hum C1-hum ** C2-hum C2-hum ** C3-hum C3-hum **
MAE 0.7918 0.7913 0.7839 0.7824 0.7836 0.7814
MSE 1.0920 1.0866 1.0569 1.0525 1.0551 1.0481

By adding autoregressive term from the auto1 model, little improvement can be seen
for MAE and MSE for all the models. However, the improvement was not significant
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according to the Wilcoxon paired test in any case.

Finally, we decided to test whether it is better to use autoregressive terms for the
C1-hum, C2-hum and C3-hum models only during stable weather or include them
always.

Table 5.7: Compared on 20194 records using s1 as the stable weather function and the
rolling window size of 120 records. When using stable it means that model included
autoregressive term from the auto1 model only when the weather was determined as
stable. The always means that the autoregressive term was always used.

Model C1-hum C1-hum stable C1 always
MAE 0.9253 0.9253 0.9299
MSE 1.5780 1.5777 1.5914

Table 5.8: Same description as for Table 5.7.

Model C2 hum C2 hum stable C2 always
MAE 0.9178 0.9176 0.9232
MSE 1.5510 1.5506 1.5637

Table 5.9: Same description as for Table 5.7.

Model C3 C3 hum stable C3 always
MAE 0.9201 0.9200 0.9249
MSE 1.5585 1.5579 1.5704

When always using the autoregressive terms, the results were worse compared to the
case when using them only during stable weather. However, the improvement when
using the autoregressive terms only during stable weather is small.
Based on the reference station data, we do not consider autoregressive terms to cause
significant improvement to results. They could improve both MAE and MSE for simpler
models as the reference and hum, but for the C1-hum, C2-hum and C3-hum models
the improvement was minor. The auto4 autoregressive terms seemed appropriate when
applied to the reference and hum models, but for later tried models autoregressive term
from the auto1 worked better.
Also we tested if shorter rolling windows do not behave better during stable weather,
because if a model did similar errors for longer time, the new observation could influence
the model behaviour more when the window is shorter. Though the approach only
worsen the results, so we rejected it.



Chapter 6

Results for all stations

In this chapter we present final results that we got after evaluating the ensemble2
model using data for all stations we had, except the station with ID 11894 because
it contained too much invalid records. To remind, ensemble2 is the ensemble model
which averages results of the C1, C2 and C3 models with humidity included as the
feature in all of these separate models. We also used autoregressive version of this
model where each model in the ensemble also consists of the autoregressive term from
the auto1 model. The autoregressive term was included only if weather was declared
stable using the s1 function. In this chapter we refer to those models as to final and
final* (the model with autoregressive term).
We compared the final and final* models to Aladin predictions. All the models were
linear regression models with rolling window length of 120 and the base of the weight
function was 0.97. We also used the same weight base for all the models we compare
in this chapter.
We conclude that using the autoregressive term did help for the final model. When
using this term improvement for MAE occurred in 19 cases and in 10 cases the results
were worse. However, the improvement was very minor. In case of MSE improvement
occurred for 15 stations and results were worse for 13 stations. We therefore do not
recommend using the autoregressive term for this model as it only introduces more
complexity and very minor improvement. On the other hand, we recommend using it
for simpler models such as the reference or hum.
To sum up, we could improve the results for all the stations compared to Aladin pre-
dictions. The greatest improvement was gained for the stations located around 2000
meters above sea level. Those are called Lomnický štít and Chopok. For the final model
the improvement in MAE ranged from 18.95% to 73.61% and the median improvement
was 44.08%. The improvement for MSE ranged from 27.60% to 89.44% and the median
improvement was 58.34%.
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Figure 6.1: Boxplots showing ranges of MAE and MSE for Aladin and the final model.
The outliers were removed for better readability.

It is difficult to directly compare to the Hajdin’s results as the data that were used for
evaluation differ. Also we could not replicate the results for the final model that was
used in the Hajdin’s thesis. Nevertheless, the author claimed that the improvement
in MAE was from 13% to 57%, thus we consider our results to introduce significant
improvement.
To better visualize the improvement we attach histograms of MAE and MSE improve-
ment gained with the final model in Figures 6.2 and 6.3. The different ranges of MAE
and MSE for the final model and Aladin predictions are also visualized using boxplots
in Figure 6.1.
To explore the improvement that the final model introduced to our baseline model, we
compared it to the reference model. The improvement ranged between 2.15% up to
5.65% for MAE and between 1.67% up to 9.68% for MSE. The final model improved
those metrics for all the stations compared to the reference model. Median of the
improvement was 3.38% for MAE and 5.29% for MSE. Histograms in Figures 6.5 and
6.6 show distribution of the improvement. We also attach boxplots of MAE and MSE
values in Figure 6.4.
To investigate whether adding humidity influenced lower errors, we decided to compare
the reference and hum models. The hum model errors were lower for all the stations
and the improvement ranged between 0.91% up to 3.73% for MAE and between 0.34%
up to 4.92% for MSE. Median of the improvement was 1.91% for MAE and 2.56% for
MSE. The improvement for MAE is shown in Figure 6.7.
The final results for the reference, final and final* models are captured in Tables 6.1,
6.2 for MAE and MSE respectively.



CHAPTER 6. RESULTS FOR ALL STATIONS 58

Figure 6.2: MAE percentage improvement gained with the final model compared to
Aladin predictions.

Figure 6.3: MSE percentage improvement gained with the final model compared to
Aladin predictions.
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Figure 6.4: Boxplots showing ranges of MAE and MSE for the reference and final
models.

Figure 6.5: MAE percentage improvement gained with the final model compared to
the reference model.
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Figure 6.6: MSE percentage improvement gained with the final model compared to the
reference model.

Figure 6.7: MAE percentage improvement gained with the hum model compared to
the reference model.
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Table 6.1: MAE for all stations.

Station Records ref final final* Aladin
Kuchyňa 16050 1.1524 1.1225 1.1224 1.7636
Trenčín 8913 1.0358 1.0093 1.0094 1.5941
Senica 11225 0.9549 0.9304 0.9299 1.4937

Malý Javorník 5966 0.9782 0.9229 0.9229 1.5937
Bratislava-Koliba 23099 0.9068 0.8863 0.8865 1.0935
Bratislava-Letisko 23099 0.9438 0.9048 0.9047 1.2525
Jaslovské Bohunice 23099 0.9779 0.9415 0.9413 1.3080

Piešťany 17225 1.0719 1.0371 1.0372 1.5626
Veľké Janíkovce 19842 1.0090 0.9728 0.9728 1.4916

Mochovce 22760 0.9250 0.8944 0.8939 1.2120
Turzovka 18462 1.1341 1.0866 1.0867 2.1727
Hurbanovo 23099 0.9685 0.9248 0.9253 1.4007
Prievidza 18423 1.0795 1.0532 1.0529 2.5166

Liptovský Mikuláš 16899 1.3065 1.2424 1.2414 2.0274
Dudince 21112 1.0755 1.0268 1.0268 1.8313

Žiar nad Hronom 18822 1.0715 1.0283 1.0281 2.2467
Sliač 21972 1.0830 1.0359 1.0353 2.0135

Chopok 16846 0.9949 0.9700 0.9696 3.0407
Brezno 8060 1.2442 1.1823 1.1831 2.2238
Liesek 20135 1.0785 1.0448 1.0439 1.3369
Oravice 12390 1.3324 1.2865 1.2861 2.6875
Lučenec 20105 1.0077 0.9700 0.9695 1.5608

Lomnický štít 23099 1.1301 1.0776 1.0769 4.0834
Štrbské pleso 14817 1.1384 1.1031 1.1034 2.7813

Poprad 8064 1.2254 1.1990 1.1990 2.1499
Telgárt 23099 1.0431 1.0149 1.0153 2.4320
Gánovce 23099 1.1188 1.0824 1.0826 2.1235

Kojsovská hoľa 5872 1.1146 1.0842 1.0842 2.4577
Bardejov 8885 1.1388 1.0806 1.0799 2.0567

Jakubovany 10673 1.0161 0.9854 0.9845 1.9434
Košice-letisko 19469 0.9695 0.9399 0.9396 1.5184

Tisinec 20727 1.0618 1.0222 1.0223 1.9237
Trebišov-Milhostov 19966 1.0674 1.0271 1.0269 1.5589

Kamenica nad Cirochou 22716 1.1986 1.1592 1.1581 2.5500
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Table 6.2: MSE for all stations.

Station Records ref final final* Aladin
Kuchyňa 16050 2.4026 2.3212 2.3213 4.3580
Trenčín 8913 1.8732 1.8195 1.8206 3.8031
Senica 11225 1.6244 1.5932 1.5924 3.2649

Malý Javorník 5966 1.8674 1.7189 1.7189 3.9574
Bratislava-Koliba 23099 1.5039 1.4788 1.4799 2.0425
Bratislava-Letisko 23099 1.5930 1.5134 1.5131 2.4843
Jaslovské Bohunice 23099 1.6758 1.6000 1.6000 2.8711

Piešťany 17225 2.0497 1.9787 1.9815 3.6042
Veľké Janíkovce 19842 1.7921 1.6978 1.6978 3.3844

Mochovce 22760 1.5464 1.4827 1.4818 2.4307
Turzovka 18462 2.3403 2.2157 2.2188 6.6629
Hurbanovo 23099 1.6688 1.5728 1.5750 3.1241
Prievidza 18423 2.0275 1.9574 1.9586 8.4315

Liptovský Mikuláš 16899 3.0926 2.8320 2.8304 6.1616
Dudince 21112 2.0703 1.9205 1.9219 4.8315

Žiar nad Hronom 18822 2.0162 1.9088 1.9088 7.1754
Sliač 21972 2.1261 2.0108 2.0094 5.9388

Chopok 16846 2.0140 1.8615 1.8612 12.4447
Brezno 8060 2.8933 2.6131 2.6132 7.2302
Liesek 20135 2.0748 1.9812 1.9781 3.0161
Oravice 12390 3.2751 3.1144 3.1125 9.8747
Lučenec 20105 1.9495 1.8514 1.8500 3.8088

Lomnický štít 23099 2.4156 2.1879 2.1861 20.7126
Štrbské pleso 14817 2.3729 2.2204 2.2219 10.4482

Poprad 8064 2.7276 2.5729 2.5729 6.4523
Telgárt 23099 1.9977 1.8720 1.8737 7.8438
Gánovce 23099 2.2452 2.1235 2.1238 2.9957

Kojsovská hoľa 5872 3.2513 3.0903 3.0903 10.1062
Bardejov 8885 2.3491 2.1736 2.1723 5.8907

Jakubovany 10673 1.8450 1.7379 1.7369 5.3926
Košice-letisko 19469 1.6718 1.5984 1.5977 3.4764

Tisinec 20727 2.0456 1.9631 1.9659 5.3345
Trebišov-Milhostov 19966 2.0975 1.9690 1.9670 3.8804

Kamenica nad Cirochou 22716 2.5933 2.4935 2.4913 9.0021



Conclusion

In our thesis we focused on improving accuracy of temperature forecasts created by
model Aladin. We restricted for twelve hour predictions using the rolling window ap-
proach.
Compared to the Hajdin’s thesis we changed the rolling window period to 24 hours
and showed that using this period it is reasonable to use longer rolling window lengths.
We used only features related to temperature and humidity. Using new features cre-
ated from temperature values, we could further decrease models errors. Improvement
graphs were incorporated in the process of choosing the right ensemble model and for
analysis of improvement. We created three linear regression models using different fea-
tures and averaged their predictions. We preserved weighting of predictions, to make
newer predictions more significant, same as done in the Hajdin’s thesis.
Experimenting with different learning algorithms did not bring expected improvement.
Choosing the right hyperparameters was problem for more complex algorithms where
we suffered from underfitting or overfitting and could not reach better results than with
linear regression. We showed that when linear regression and GRU recurrent networks
were averaged, the results were slightly better compared to the linear model. However,
the learning of recurrent neural networks is much more time consuming.
We focused on conditions when temperature was stable and tried the models which
used their past errors during stable conditions. Stable weather was detected based on
the difference between predicted temperatures within two days. Past error from 24
hours before and mean of past errors improved results for simpler models. For models
with multiple features the improvement was minor or none. We therefore propose to
use past error terms only for simpler models.
MAE improvement across all stations varied between 19% to 74% that is higher than
improvement achieved in the Hajdin’s thesis which was between 13% to 57%. We con-
structed the final model using only data from one station to have better assumptions
about generalization of the improvement. In practise, we would expect that construct-
ing a separate model for each station might introduce further improvement.
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