
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Nondeterminism in generative systems

Master Thesis

2021

bc. Ján Rosina

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Nondeterminism in generative systems

Master Thesis

Study Programme: Computer Science

Field of Study: Computer Science

Department: Department of Computer Science

Supervisor: prof. RNDr. Branislav Rovan, Phd.

Bratislava, 2021

bc. Ján Rosina

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Ján Rosina
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Nondeterminism in generative systems

Annotation: Deterministic and nondeterministic generative systems are studied in the thesis
emphasizing the measures of nondeterminism in derivations of generative
systems. Furthermore, the generative power of deterministic generative systems
with endmarkers is investigated.

Aim: The goal of the thesis is to explore deterministic and nondeterministic
generative systems with the emphasis on defining and studying the measures
of nondeterminism in derivations of generative systems. An additional goal
is to explore properties of families of languages generated by deterministic
generative systems, in particular the relation of the family of languages
generated by deterministic generative systems with endmarker to the family of
recursively enumerable languages.

Supervisor: prof. RNDr. Branislav Rovan, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 01.09.2020

Approved: 08.02.2021 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Ján Rosina
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Nondeterminism in generative systems
Nedeterminizmus v generatívnych systémoch

Anotácia: V práci sú skúmané deterministické a nedeterministické generatívne systémy
s dôrazom na miery nedeterminizmu v odvodeniach v generatívnych systémoch.
V práci je skúmaná aj generatívna sila deterministických generatívnych
systémov s endmarkerom.

Cieľ: Cieľom práce je skúmať deterministické a nedeterministické generatívne
systémy s dôrazom na definovanie a skúmanie mier nedeterminizmu
v odvodeniach generatívnych systémov. Ďalším cieľom práce je preskúmať
vlastnosti tried generovaných deterministickými g-systémamí, najmä vzťah
deterministických g-systémov s endmarkrom a triedy rekurzívne vyčísliteľných
jazykov.

Vedúci: prof. RNDr. Branislav Rovan, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 01.09.2020

Dátum schválenia: 08.02.2021 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Abstrakt

Táto práca sleduje dva hlavné ciele pri skúmaní generatívnych systémov. Prvým je

skúma´ silu deterministických generatívnych systémov s endmarkerom, kde sme dokázali

rovnos´ s triedou rekurzívne vy£íslite©ných jazykov. Druhým je de�nova´ a skúma´ výpo£-

tové miery nedeterminizmu v generatívnych systémoch. V práci uvádzame dve takéto

miery. Prvá meria po£et nedeterministických rozhodnutí vzh©adom na d¨ºku odvode-

nia. Pri tejto miere sme ukázali, ºe pre ©ubovo©ný rekurzívne vy£íslite©ný jazyk exis-

tuje generatívny systém s ©ubovo©ne pomaly rastúcim horným ohrani£ením zloºitosti.

Druhá de�novaná miera uvaºuje po£et nedeterministických rozhodnutí pri odvodzovaní

slov danej d¨ºky. Vo v²eobecnom prípade, teda pre rekurzívne vy£íslite©né jazyky, dostá-

vame lineárny horný odhad vzh©adom na d¨ºku slov. Pre unárne jazyky a jazyk Σ∗

dostávame logaritmickú hornú hranicu a pre rekurzívne jazyky horné ohrani£enie súvisí

s po£tom slov danej d¨ºky patriacich do daného jazyka.

K©ú£ové slová: generatívne systémy, determinizmus, nedeterminizmus, generatívne

systémy s endmarkerom

iv

Abstract

This thesis has two main goals in the research of generative systems. The �rst one is to

investigate the power of deterministic generative systems with endmarker for which we

prove equality to the family of recursively enumerable languages. The second one is to

de�ne and study computational measures of nondeterminism in generative systems. We

introduce two such measures. First of them measures the number of nondeterministic

decisions in relation to the length of the derivation. For this measure we show that

for an arbitrary recursively enumerable language there exists an equivalent generative

system with arbitrarily slowly increasing upper bound function of complexity. The second

measure considers the dependency of the number of nondeterministic decisions on the

length of the derived words. In the general case, for recursively enumerable languages,

we obtain linear upper bound function with respect to the length of the words. For unary

languages and language Σ∗ we obtain logarthmic upper bound and upper bound function

of recursive languages is related to the number of words of a given length belonging to a

given language.

Keywords: generative systems, determinism, nondeterminism, generative systems with

endmarker

v

Contents

1 Introduction 1

2 De�nitions and known results 3

2.1 1-a-transducers and generative systems 3

2.2 Deterministic g-systems and deterministic g-systems with endmarker . . 4

3 Deterministic g-systems and pre�xes 7

4 A generative power of deterministic g-systems with endmarker 9

5 Measuring nondeterminism in g-systems 37

5.1 Considering the number of generative steps 37

5.2 Considering the word length . 45

6 Conclusion 63

vii

List of Figures

4.1 Phase 1 of $dgs G generating L ∈ LRE which is responsible for the deriva-

tion of w0$ ⇒∗G P2A
mSHw1SA

m$, where m is the number of steps on

which TM A accepts word w0 and w1 is the successor of w0 in rlo. 13

4.2 Phase 2 of $dgs G generating L ∈ LRE in which are derived subwords on

which will be TMA simulated later, so the derivation P2A
mSHw1SA

m$⇒∗G
P3A

mHw1S...Samk S$ is made. In the yellow part the last terminal subword

is copied, in the blue part this word is incremented in rlo, the green part

is responsible for comparison of the length of this word to m and the pink

part corresponds to the last step of this phase in which terminal subwords

are converted to their double track versions. 14

4.3 Phase 3 of $dgs G generating L ∈ LRE: G works on the sentential from

P3A
mHw1S...amk S$. The �rst of w1, ..., a

m
k that is in Lm(A) is made termi-

nal or P4A
m$ is derived if there is no such subword. One step of TM A is

simulated on all derived subwords in the yellow branch, after the simula-

tion of m steps of A G checks whether some of them ends in the accepting

con�guration using blue part and in the green part the nonterminal M or

C resp. is shifted to the beginning of the sentential form. 15

4.4 Phase 4 of $dgs G generating L ∈ LRE: the number of nonterminals A -

simulated steps of TM A - is increased and the second counter is rebuilded

so P4A
m$⇒∗G P2A

m+1SHSAm+1$ is derived. 16

5.1 Part of M' which is responsible for making 22.
..
2}

m purely deterministic

generative steps for m simulated steps of G. 43

5.2 G-system that can derive any w ∈ Σ∗, |w| = n using log(n) nondetermin-

istic decisions. 48

5.3 Phase 1: G uses nondeterminism to derive σ ⇒∗G P2A
nP3ASA

nS for arbi-

trary n. 50

5.4 Phase 2: G deterministically derives P2A
nP3ASA

nS ⇒∗G P3A
knSAnS for

k = |Σ|. 51

ix

5.5 Phase 3: G derives all words from Σn for a given n and converts them

to the double track version so TM A can be simulated on them. More

precisely, this phase is responsible for the derivation of P3A
knSAnS ⇒∗G

P4Can1 $a2a
n−1
1 $...ank$. 52

5.6 Phase 4: G uses nondeterminism to derive subword Am at the beginning

of the sentential form for arbitrary m. 53

5.7 Phase 5: G simulates TM A on every word of length n and then the mth

of the accepted words is made terminal, all others are deleted. 53

x

Chapter 1

Introduction

Grammars represent together with automata and closure operations three major ap-

proaches to the study of formal languages and families of languages. In order to satisfy

the need of having a general theory of grammars similar to abstract families of languages

and abstract families of automata, generative systems were introduced [3].

As one might expect, families of recursively enumerable languages and languages

generated by generative systems are equal. However, it turns out that by prohibiting

nondeterminism we obtain much weaker model and there exist even some regular lan-

guages which cannot be generated by a deterministic generative system [1]. In Chapter 3,

we prove one property of in�nite languages generated by deterministic generative systems

related to the pre�x words.

The main cause of this decrease in generative power was identi�ed to be the inability

to identify the end of the sentential form. This led to the introduction of a modi�ed

model of deterministic generative systems, which maintains a special symbol - endmarker

- at the end of the sentential form during the whole generative process. This modi�ca-

tion increases the generative power as it enables to generate any recursive language [2].

Relationship between the families of recursively enumerable languages and languages gen-

erated by deterministic generative systems with endmarker is the subject of the Chapter

4 of this thesis. We prove that those two families are equal.

The di�erence between the generative power of nondeterministic and deterministic

generative systems raises the question "how much" nondeterminism is actually needed.

Two descriptional measures of nondeterminism were de�ned and studied in the past as

an attempt to answer this question [2]. However, descriptional measures do not tell

us how much or how often is the nondeterminism used during the generative process.

We introduce and study two computational measures in Chapter 5 which measure the

number of nondeterministic steps in relation to the length of the derivation and to the

length of the derived word. In general, we obtain an arbitrarily slowly increasing upper

1

bound function and a linear upper bound function for the two measures respectively.

Moreover, using the second measure we obtain logarithmic upper bound for languages Σ∗

and unary languages. We prove a better upper bound than in the general case for the

case of recursive languages which do not contain "too many" words of length n, n ≥ 1.

2

Chapter 2

De�nitions and known results

In this chapter we shall introduce some de�nitions, notation and known results that are

relevant to this thesis.

2.1 1-a-transducers and generative systems

De�nition 2.1 A one-input �nite state transducer with accepting states (1-a-transducer)

is a 6-tuple M = (K,Σ1,Σ2, H, q0, F), where K is a �nite set of states, Σ1,Σ2 are �nite

alphabets (input and output), H is a �nite subset of K ×Σ1×Σ∗2×K (elements of H are

called arcs), q0 is the initial state and F ⊆ K is the set of accepting states.

De�nition 2.2 A computation of 1-a-transducer M = (K,Σ1,Σ2, H, q0, F) is a word

h1...hn ∈ H∗ such that:

pr1(h1) = q0 (2.1)

pr4(hn) ∈ F (2.2)

pr4(hi) = pr1(hi+1), 1 ≤ i < n (2.3)

where prj are homomorphisms on H∗ de�ned by prj((x1, x2, x3, x4)) = xj for j ∈ {1, ..., 4}.
The set of all computations of M is denoted by ΠM .

De�nition 2.3 For any language L ⊆ Σ∗1 an 1-a-transducer mapping is de�ned as

M(L) = pr3(pr−1
2 (L) ∩ ΠM).

De�nition 2.4 A generative system (g-system) is a 4-tuple G = (N, T,M, σ) where

N, T are �nite alphabets of nonterminal and terminal symbols (not necessarily disjoint),

M is the 1-a-transducer and σ ∈ N is the initial nonterminal.

3

De�nition 2.5 A derivation step of g-system G = (N, T,M, σ) is a relation⇒G de�ned

by u⇒G v ⇐⇒ v ∈M(u).

De�nition 2.6 A language generated by g-system G = (N, T,M, σ) is the language

L(G) = {w ∈ T ∗ | σ ⇒∗G w}, where ⇒∗G is the re�exive and transitive closure of the

relation ⇒G.

De�nition 2.7 A computation of the 1-a-transducer M on the input word w is denoted

by αM(w). A computation of M on w after n generative steps is denoted recursively:

α1
M(w) = αM(w)

αn
M(w) = αn−1

M (pr3(αM(w))

Note that sometimes we may write α(w) instead of αM(w) when the corresponding

1-a-transducer is apparent from the context.

2.2 Deterministic g-systems and deterministic g-systems

with endmarker

Now we de�ne a deterministic 1-a-transducer as a special type of the general 1-a-transducer

which contains at most one arc for each state and symbol from Σ1. Then the de�nition

of deterministic g-system (dgs) follows.

De�nition 2.8 A 1-a-transducer M = (K,Σ1,Σ2, H, q0, F) is deterministic i� for each

p ∈ K and a ∈ Σ1 holds: (p, a, w1, q1), (p, a, w2, q2) ∈ H =⇒ w1 = w2 and q1 = q2.

De�nition 2.9 A g-system G = (N, T,M, σ) is deterministic i� its 1-a-transducer M

is deterministic.

Notation 2.10 The family of languages generated by generative systems (and deter-

ministic g-systems respectively) will be denoted by LG (LDG).

Note that dealing with deterministic generative systems pre�xes of the sentential form

are important because g-systems "do not know" anything about symbols that have not

been read yet during the particular generative step. In addition, once some symbol is

written to the output, it cannot be deleted nor modi�ed in that generative step. It

is sometimes useful to order the words in a way that the leftmost symbol is the least

important one. Such order is provided e.g. by reversal lexicographic order (rlo) de�ned

as follows:

4

De�nition 2.11 Let Σ = {a1, ..., ak} be a given alphabet and let ≺ be an order on Σ

such that ∀i, j : ai ≺ aj ⇐⇒ i < j.

Now we shall de�ne a binary relation Rl over the words in Σ∗:

∀u, v inΣ∗, u = u1...ur, v = v1...vs :

Rl(u, v) if r < s

Rl(u, v) if r = s and ur ≺ vs

Rl(u, v) if r = s and ur = vs and Rl(u1...ur−1, v1...vs−1)

Clearly relation Rl de�ned above is a total order on Σ∗ and we shall call it reversal

lexicographic order.

Notation 2.12 Let u, v be the words. The fact that u is a pre�x (proper pre�x, not a

pre�x, not a proper pre�x respectively) of v is denoted by u � v (u ≺ v, u 6� v, u 6≺ v

resp.).

Most of the above de�nitions can be found in [3] and [1]. Deterministic g-systems

and their descriptive power were subjects of previous research [1]. It was shown that

despite the fact that LG = LRE there are even regular languages not in LDG. For

example no in�nite language L such that ε ∈ L belongs to LDG. The main cause of this

decrease in generative power of dgs was identi�ed to be its inability to identify the end

of the sentential form. This lead to de�ning and studying a modi�ed model of dgs [2] -

deterministic g-system with endmarker, which maintains the special symbol at the very

end of the sentential form during the whole generative process. The formal de�nition

follows:

De�nition 2.13 A deterministic g-system with endmarker ($dgs) G is a deterministic

g-system with one special symbol $ 6∈ N∪T which is the rightmost symbol of the sentential

form after each generative step of G. It cannot be deleted, nor used elsewhere. The

language generated by $dgs G is L(G) = {w ∈ T ∗ | σ$ ⇒∗G w$} and the family of

languages generated by all $dgs is denoted by L$DG.

It was proven that L$DG ⊇ LREC [2] and $dgs constructed in this proof contains

the part which simulates arbitrary turing machine A on any (derived) word. We pay

attention to this construction because we use it later. The simulation of TM A in G

is almost straightforward: sentential form represents the con�gurations of A during the

computation, but in order to simulate shifting the head to the left G has to look two

symbols ahead (before writting to the output) and uses states as a bu�er for that purpose.

Moreover, G uses "double track" symbols - simulation of A is performed on the second

5

track and the �rst track is used to store the input word so it can be reconstructed after

reaching the accepting con�guration on the second track.

The double track symbols mentioned are nonterminals denoted by a
b
, a, b ∈ ΓA, where

ΓA is the tape alphabet of A. We also use notation for double track words composed

of double track symbols. Note that in such words the beginnings and the ends of the

words from the particular tracks may not match. In such cases the words are padded

by blank symbols. The only condition is that the resulting word neither starts nor ends

by double track blank B
B
. For example instead of abc

BaB
we write abc

a
. This leads to

ambiguity, because notation abc
a

may as well represent sentential form abc
aBB

or even Babc
aBBB

.

However, it is not really a problem because all of the following constructions work in a

way that the sentential forms they derive can be expressed by such double track notation

unambiguously (using the maximal words that do not start or end by B
B
symbol).

Lemma 2.14 Let A = (K,Σ,Γ, δ, q0, F) be an arbitrary Turing machine. There exists

deterministic g-system with endmarker G = (N, T,M, σ), where M = (KM , N ∪ T,N ∪
T,HM , qM,0, FM) such that ∀w : B

B
q0

w
w

B
B

$ ⇒m
G

B
B
qF

w
v
B
B

$ ⇐⇒ (q0, w) `mA (qF , v) for any

m, qF ∈ F, v ∈ Γ∗.

Proof. The proof follows from the proof of Theorem 3.1 in [2]. Note that (qM,0,
B
B
, ε,
[
B
B

]
) ∈

HM in the construction from the mentioned proof. Furthermore, sentential form containts

nonterminal B
B

at the beginning and at the end after all of those m generative steps of

G. We can also assume that M moves on $ symbol always to qM,0 and that qM,0 ∈ FM ,

because in the original construction there is such state for which those assumptions hold

and from the de�nition of $dgs no symbol follows after $. We use these facts later in the

constructions which will simulate some Turing machine.

Note that in the cited proof it is also assumed that the simulated Turing machine ends

the computation with head reading the very �rst symbol of the tape. For that reason,

in the following text we assume such Turing machines as well. Similarly, by accepting

con�guration of TM A we mean the con�guration (qFu), where qF is some accepting state

of A so the head is positioned at the beginning of the tape.

Notation 2.15 In the following constructions which simulate some TM A we shall

often work with subwords of a form B
B
q0

w
w

B
B
, where q0 is the initial state of A. For better

readability we use notation w = B
B
q0

w
w

B
B
, in particular, ε = B

B
q0

B
B
.

6

Chapter 3

Deterministic g-systems and pre�xes

In the previous research [1] it was shown that there are languages L1, L2 such that L1 ∈
LCS − R, L2 ∈ LCF − LCS such that L1, L2 6∈ LDG. However, both of these examples

were in�nite languages containing ε. The study [1] suggests that there may be even ε-free

languages with such properties and as the candidates were mentioned L1 = {wwR|w ∈
Σ+}, L2 = {ww|w ∈ Σ+}, where Σ = {a, b}, but no proof was shown.

Furthermore, the study suggests that if it is true that language Σ+ 6∈ LDG for binary

alphabet Σ then we can easily see that LDG is not closed under h−1 and "+".

In this chapter, we prove more general theorem about importance of pre�xes in the

in�nite languages generated by deterministic g-systems which implies that none of the

mentioned languages belongs to LDG.

First, let us introduce two useful lemmas which are proved in [1]:

Lemma 3.1 Let L ∈ LDG be any language. Let G = (N, T,M, σ) be deterministic

g-system such that L(G)=L. Let w1, w2 ∈ L and let k, l be the integers such that σ ⇒k
G w1

and σ ⇒l
G w2. If w1 � w2 and l < k then L is �nite.

In other words, dgs generating in�nite language derives words in order from shorter

to longer (if they have pre�x character).

Lemma 3.2 Let M be a deterministic 1-a-transducer and let w1, w2 be two words sat-

isfying w1 � w2. If M is able to make n generative steps on both inputs w1, w2 then the

following statement is satis�ed:

αn
M(w1) � αn

M(w2).

The above lemma con�rms the intuition that on identical pre�xes deterministic 1-a-

transducer works identically. This brings us to the idea that there may be a problem to

7

derive two words which are not pre�xes to each other from their common pre�x in dgs.

For example, let us consider language {an | n > 0} ∪ {anb | n > 0}. How can any dgs

derive from the sentential form ai both ai+1 and aib for all i > 0? This is the main idea

of the theorem from this chapter, in which we prove that it is truly impossible.

Now we prove the lemma about cyclic order of generation of words with the same

pre�x in deterministic g-systems. This lemma is a key to prove the following theorem.

Lemma 3.3 Let G = (N, T,M, σ) be a deterministic g-system and let w0, w1 ∈ L(G)

be words such that w0 � w1 and w0 ⇒k
G w1 for some positive integer k. Let us denote

wi the word such that w0 ⇒ki
G wi for all i (if G is able to make corresponding number of

generative steps on w0). Then for all words wx, wy it holds that x < y implies wx � wy.

Proof. We prove the lemma by complete induction on i. Case i ≤ 0 is trivial and case

i ≤ 1 follows from the assumption w0 � w1. Let the statement be satis�ed for i ≤ n,

we show that it is also satis�ed for i ≤ n + 1. It holds that w0 � ... � wn−1 � wn and

wn−1 ⇒k
G wn ⇒k

G wn+1. Then from Lemma 3.2 we have that αk
M(wn−1) � αk

M(wn) thus

wn � wn+1 and from transitivity of � follows that for all j < n statement wj � wn+1

holds.

Theorem 1. Let L be an in�nite language and let w,w1, w2 ∈ L be the words such that

w ≺ w1, w ≺ w2 but w1 6� w2, w2 6� w1. Then L 6∈ LDG.

Proof. Let us assume by contradiction that there exists dgs G such that L(G) = L. From

in�nity of L and from Lemma 3.1 we have that w is derived before w1 and w2 in G,

thus there exist integers k, l such that w ⇒k
G w1 and w ⇒l

G w2. Furthermore, G is able

to make arbitrary number of generative steps on w so let us denote v a word such that

w ⇒kl
G v. Lemma 3.3 implies that w1 � v and also w2 � v but that would mean that

either w1 � w2 or w2 � w1 and we have a contradiction.

Corollary 3.4 Let L1 = {wwR|w ∈ Σ+}, L2 = {ww|w ∈ Σ+}, L3 = Σ+ where |Σ| ≥ 2.

Then L1 6∈ LDG, L2 6∈ LDG, L3 6∈ LDG.

Note that for sentential forms u, v derived in arbitrary $dgs holds that v � u or u � v

if and only if u = v due to the $ symbol. This is another point of view at the reason why

have $dgs more generative power than dgs.

8

Chapter 4

A generative power of deterministic

g-systems with endmarker

In this chapter, we study the generative power of deterministic generative systems with

endmarkers. From the existing results on this topic we know that L$DG ⊇ LREC [2]. In

the proof of that fact a $dgs was used which simulated TM A on all words in a sequence.

Nonaccepted words were skipped and those accepted were generated by the $dgs. This

idea obviously does not work on the recursively enumerable languages, because TM A

may not halt on certain inputs, so the question whether LRE) L$DG or LRE = L$DG

remained open. As we show in this chapter, those two families of languages are equal.

In order to prove it we construct an equivalent $dgs G for any TM A over a terminal

alphabet Σ = {a1, ..., ak}. Now let us discuss how G works. One possible way of avoiding

the nonhalting simulations of A is to simulate increasing but always �xed number of

steps. From the de�nition of $dgs G can use only information contained in the terminal

sentential form w$ to continue the generative process properly and decide which word is

next to be processed. So the key of the construction is to �nd a suitable order of words

from the generated language in which they will be derived. It turns out that to order

the words by the number of computational steps in which they are accepted by TM A

(rlo in case of equality) is a successful idea. G can compute this number m from the

derived sentential form w$ by simulating the computation of TM A on w (we assume

that w ∈ L(A) from the fact that w$ was derived). Then it simulates m steps of TM

A on "many" words simultaneously and knowing w it can determine the next word to

be made terminal. More precisely, we assume such TM A that "reads" the whole input

word (its head reads the right blank during the computation) and ends with the head

reading the very �rst symbol of the tape (in case that A accepts or rejects). Thus for

�xed number m it holds that no word longer than m is accepted by A on m steps. So

by "many" words we mean words w + 1, ..., amk ordered in rlo, where w + 1 is the next

9

successor of w in rlo. The leftmost word that is accepted on exactly m steps of A1 is

made terminal and the whole cycle repeats. If no word is accepted then G increments m

and simulates m+ 1 steps of A on words ε, ..., am+1
k etc.

Before we go further into the details of the construction, we de�ne the order in which

the words will be derived in G:

De�nition 4.1 Let A = (KA,ΓA, δA, qA,0, FA) be a Turing machine, let w, v ∈ L(A).

Let us denote

mw = min(m|(q0w) `mA (qFw
′), where qF ∈ FA, w

′ ∈ Γ∗A)

the minimal number of steps in which A accepts the word w. We de�ne binary operator

≺A over L(A) as follows:

w ≺A v ⇐⇒ (mw < mv) ∨ (mw = mv ∧ w precedes v in rlo).

In other words, for a given TM A the relation ≺A orders the words from L(A) by the

minimal number of steps in which they are accepted by A, or in rlo in case of equality.

We can easily see that ≺A on L(A) is a total order, furthermore if L(A) 6= ∅ then there

exists the minimal element (word) in the sense of ≺A.

We denote the set of words accepted by the Turing machine A in m steps by Lm(A).

Clearly, L(A) =
⋃
∀m

Lm(A).

To facilitate understanding of the construction we introduce the purpose of individual

nonterminals that G uses:

P1, P2, P3, P4 - indicate the current phase of G and are placed at the very beggining of the

sentential form. There are only two cases when the �rst symbol of the sentential form is

not one of these: the initial nonterminal σ and a terminal word.

A - this nonterminal is used to build and maintain the counters at the beginning and at

the end of the sentential form: the �rst represents the number of steps of TM A simulated

and the other determines the maximal meaningful length of the word on which TM A is

simulated. Both counters contain the same number of nonterminals A.

S - is used as a separator between the blocks.

C,M - �ags that some subroutine has ended.

W - �ag that some subroutine is in progress

H, I, L,R - these nonterminals are used as "heads" - their position in the sentential form

determines which symbol is going to be copied, how many times is some branch of M

used, they are used to compare the length of two subwords etc.

1We assume that all words accepted on less than m steps of A were generated earlier.

10

The crucial problem is how to derive the next word in the order given by ≺A from

the derived terminal sentential form w0$. G does this in 4 phases:

Phase 1: w0$ P2A
mSHw1SA

m$ - in this phase G computes the number of steps

m on which TM A accepts w0.

G simulates the computation of TM A on the word w0. We assume that w0 ∈ L(A)

because G derived the sentential form w0$ so w0 ∈ L(G). In one generative step of

G is one nonterminal A added to both counters and one computational step of TM A

is simulated using double track symbols and $dgs from Lemma 2.14. When simulated

Turing machine reaches the accepting con�guration nonterminal M is written to the

output and the initial word w0 is restored and incremented (in the sense of rlo). In the

next steps, �ag M is shifted to the left and when it reaches the very �rst nonterminal,

pre�x P1M is replaced by P2 so the phase 2 follows.

Phase 2: P2A
mSHw1SA

m$ P3A
mHw1S...Samk S$ - in this phase all words greater

than w0 (in the sense of rlo)2 of the maximal length m are generated. Again, properties

of TM A which we have assumed imply that no longer word can be accepted by A on m

steps.

G works in a cycle: the last complete terminal subword in the sentential form is copied,

then incremented in the sense of rlo. If it is necessary to extend the copied word by one

symbol for that purpose, G compares the length of this word to the length of the counter

Am at the end of the sentential form. If the copied word is not longer than m then it

becomes the last complete word which is to be copied. Otherwise this phase is going to

be terminated - the block of nonterminals A at the end of the sentential form is deleted as

well as the recently generated subword and the nonterminal M is generated and shifted

to the left in the following steps. In the last step of this phase, when the sentential form

starts with P2M , all the generated subwords are converted to their "double track version"

in order to use $dgs from Lemma 2.14 for simulation of A on them.

Phase 3: P3A
mHw1S...Samk S$ wi$, where wi is the minimal word in the sense of

≺A from {w1, ..., a
m
k }∩Lm(A). In case that such wi does not exist P4a

m$ is derived in this

phase instead. In this phase, m computational steps of TM A on subwords w1, ..., a
m
k are

simulated3. The �rst of the words in the sentential form that is accepted after m steps

for the �rst time is made terminal and G moves to the phase 1. If such subword does not

exist then P4A
m$ is derived and phase 4 follows. The subwords which are accepted on

less than m steps are skipped during the simulation.

Phase 4: P4A
m$ P2A

m+1SHSAm+1$ - the counter (block of nonterminals A) is

2We assume that all words that precede w0 in rlo and are accepted by TM A on m steps have been

generated already.
3We use $dgs from Lemma 2.14 on subwords wS for that purpose.

11

incremented by one and the sentential form is modi�ed so phase 2 may follow. From the

description of the phase 2 we can see that the derived sentential form P2A
m+1SHSAm+1$

then leads to simulation of m+ 1 steps of TM A on words ε, ..., am+1
k . In order to derive

the sentential form containing two counters the number of nonterminals A is increased

from m to 2m+ 2 and then the middle of this block is found4 and nonterminals SHS are

inserted in that place.

Theorem 2. LRE = L$DG

Proof. We construct $dgs G for an arbitrary language L ∈ LRE. There exists a Turing

machine A = (KA,ΓA, δA, qA,0, FA), such that in each accepting computation of A the

con�guration when the head reads the right blank is reached and if A accepts, the head

is moved to the left so it reads the �rst symbol of the tape and L(A) = L. Let GA =

(NGA
, TGA

,MGA
, σGA

), where MGA
= (KGA

, NGA
∪ TGA

, NGA
∪ TGA

, HGA
, qGA,0, FGA

) be

the $dgs from the Lemma 2.14 which simulates a computation of A on a given input. We

construct G = (N, T,M, σ) as follows:

T =TGA

N =NGA
∪Nnew, Nnew = {A,C,H, I,M,L,R, S,W, P1, P2, P3, P4}, NGA

∩Nnew = ∅

M =(K,N ∪ T,N ∪ T,H, q0, F) where :

K =KGA
∪K1 ∪K2 ∪K3 ∪K4 ∪ {q0}, where :

K1 = {qP1,1, ..., qP1,11}

K2 = {qP2,1, ..., qP2,18} ∪

∪ {[P2, x, i] | x ∈ N ∪ T, i ∈ {1, ..., 4}} ∪

∪ {qP2,a | a ∈ T}

K3 = {qP3,1, ..., qP3,17}

K4 = {qP4,1, ..., qP4,10}

and KGA
∩Ki = ∅, for i ∈ {1, ..., 4}

F = K

H = H1 ∪H2 ∪H3 ∪H4 ∪ {(q0, σ, P3H
B

B
qA,0

B

B
S$, q0)}

H1 =HGA
− {(q, $, v$, p)|∀q, p ∈ KGA

, v ∈ (N ∪ T)∗} ∪ {

(q0, a, P1
B

B
qA,0

a

a
, qP1,1),∀a ∈ T

(q0, $, P1
B

B
qA,0

B

B
$, q0)

4This is obtained by shifting nonterminals L from the beginning and R from the end of the sentential

form towards themselves as we shall show later in the text.

12

q0start

qP1,1

qP1,2

qP1,3

qP1,4 qP1,5 qP1,6

qP1,11qP1,8

A qP1,10

qP1,7

a, P1
B
B
qA,0

a
a

$, P1
B
B
qA,0

B
B
$

a, a
a

$, B
B
$

P1, ε

M, P2 A,P1

B
B
, P1

x, x

A,A

M,MA
B
B
, ε qF , AMSH

ak
x
, a1

B
x
, ε

$,a1S$

A, a1SA

A,A

$,$

z, AAv

z,Av

qF ,MSH

A, vAA

$, vA$ A,A

$,$

ai
x
, ai+1

a
x
, a

B
x
, ε

$,S$

A, SA

Figure 4.1: Phase 1 of $dgs G generating L ∈ LRE which is responsible for the derivation

of w0$ ⇒∗G P2A
mSHw1SA

m$, where m is the number of steps on which TM A accepts

word w0 and w1 is the successor of w0 in rlo.

13

q0start qP2,1
Look

ahead

qP2,2

qa

qP2,13

qP2,3

qP2,4

qP2,5

qP2,9 qP2,6

qP2,7

qP2,8

Look

ahead

qP2,14

qP2,15

qP2,16
Look

ahead

qP2,10

qP2,12

qP2,11

Look

ahead

qP2,18

P2, ε A, P2

H, y

a, aH

b, b

A, aA

A,A

$,$

S, SW

ak, a1

A, a1I

ai, Cai+1

A,A

$, I$

A,A

a, a

$,$

W, y
I,W

y, ε
x, xM,M

I,Cy

a,W
M,M

C,Cy

I, Iy

M,M

I,M

A, ε

$,$

A, a
A,A

I, IA

$,$

M,M
C,H

a, a

A, SA

x, x

M,My

M,P3

A,A

S,H B
B
qA,0

a, a
a

$,B
B
S$

a, ε

S, B
B
S

a, B
B
qA,0

a
a

$,$

Figure 4.2: Phase 2 of $dgs G generating L ∈ LRE in which are derived subwords

on which will be TM A simulated later, so the derivation P2A
mSHw1SA

m$ ⇒∗G
P3A

mHw1S...Samk S$ is made. In the yellow part the last terminal subword is copied,

in the blue part this word is incremented in rlo, the green part is responsible for compar-

ison of the length of this word to m and the pink part corresponds to the last step of this

phase in which terminal subwords are converted to their double track versions.

14

q0start qP3,1

qP3,2

qP3,3 qP3,4

qP3,5

qP3,6 qP3,7

A

qP3,8

qP3,9 qP3,10

qP3,17

qP3,11 qP3,12

qP3,13

qP3,14

qP3,15 qP3,16

P3, ε

M, P4

A,A

$,$

A,P3

A,A

H,HA
A,A

B
B
, ε

qF , ε

x
y
, ε

S, ε

$,$

B
B
, ε

z, v

S, S

W,P3

M,M

A,A

$,$ A,W

A,A

M,MA

C,C

C, ε

a, a

$,$

H,P3W

A,A

B
B
, ε

z, ε

x
y
, ε

qA, ε

S, ε

B
B
, ε

qF , C

a
x
, a

B
x
, ε

S, ε

x, ε

$,$

$,M$

C,C

Figure 4.3: Phase 3 of $dgs G generating L ∈ LRE: G works on the sentential from

P3A
mHw1S...amk S$. The �rst of w1, ..., a

m
k that is in Lm(A) is made terminal or P4A

m$

is derived if there is no such subword. One step of TM A is simulated on all derived

subwords in the yellow branch, after the simulation of m steps of A G checks whether

some of them ends in the accepting con�guration using blue part and in the green part

the nonterminal M or C resp. is shifted to the beginning of the sentential form.

15

q0start qP4,1

qP4,2

qP4,3 qP4,4

qP4,5

qP4,6qP4,7

qP4,8

qP4,9

P4, ε

$,P2ASHS$

A,P4WAAL

A,AA

$, RAA$

W,P4 A,W
A,A

L,A

A,AL

A, ε

A,A

R,RA

$,$

R,CSHS

A,A

$,$

C,CA
C,C

C, P2

x, x

Figure 4.4: Phase 4 of $dgs G generating L ∈ LRE: the number of nonterminals A -

simulated steps of TM A - is increased and the second counter is rebuilded so P4A
m$⇒∗G

P2A
m+1SHSAm+1$ is derived.

16

(qP1,1, a,
a

a
, qP1,1),∀a ∈ T

(qP1,1, $,
B

B
$, qP1,1),

(q0, P1, ε, qP1,2),

(qP1,2,M, P2, qP1,3),

(qP1,2, A, P1, qP1,4),

(qP1,2,
B

B
, P1, qP1,7),

(qP1,3, x, x, qP1,3),∀x ∈ N ∪ T

(qP1,4, A,A, qP1,4),

(qP1,4,M,MA, qP1,3),

(qP1,4,
B

B
, ε, qP1,5),

(qP1,5, qF , AMSH, qP1,6), where qF ∈ FA

(qP1,6,
ak
x
, a1, qP1,6),∀x ∈ N ∪ T

(qP1,6,
B

x
, ε, qP1,6),∀x ∈ N ∪ T

(qP1,6, A, a1SA, qP1,8),

(qP1,6, $, a1S$, qP1,6),

(qP1,8, A,A, qP1,8),

(qP1,8, $, $, qP1,8),

(qP1,5, z, AAv, qA,z),∀z ∈ N ∪ T − FA; where (

[
B

B

]
, z, v, qA,z) ∈ HGA

(qP1,7, z, Av, qA,z),∀z ∈ N ∪ T − FA; where (

[
B

B

]
, z, v, qA,z) ∈ HGA

(qP1,7, qF ,MSH, qP1,6), where qF ∈ FA

(qA, A, vAA, qP1,10),∀qA ∈ KGA
, v ∈ (NA ∪ TA)∗ : ∃p ∈ KGA

: (qA, $, v$, p) ∈ HGA
,

(qA, $, vA$, qP1,10),∀qA ∈ KGA
, v ∈ (NA ∪ TA)∗ : ∃p ∈ KGA

: (qA, $, v$, p) ∈ HGA
,

(qP1,10, A,A, qP1,10),

(qP1,10, $, $, qP1,10),

(qP1,6,
ai
x
, ai+1, qP1,11),∀x ∈ N ∪ T

(qP1,11,
a

x
, a, qP1,11),∀a ∈ T

(qP1,11,
B

x
, ε, qP1,11),∀x ∈ N ∪ T},

(qP1,11, $, S$, qP1,11)

17

(qP1,11, A, SA, qP1,8)

H2 = {

(q0, P2, ε, qP2,1),

(qP2,1, A, P2, [P2, A, 1]),

([P2, y, 1], x, y, [P2, x, 1]) ∀x, y ∈ (N ∪ T)− {H,W,M},

([P2, y, 1], H, y, qP2,2) ∀y ∈ (N ∪ T)− {H,W,M},

(qP2,2, a, aH, qP2,a) ∀a ∈ T,

(qP2,a, b, b, qP2,a) ∀a ∈ T, b ∈ T ∪ {S}

(qP2,a, A, aA, qP2,13) ∀a ∈ T,

(qP2,13, A,A, qP2,13),

(qP2,13, $, $, qP2,13),

(qP2,2, S, SW, qP2,3),

(qP2,3, ak, a1, qP2,3),

(qP2,3, A, a1I, qP2,4),

(qP2,3, ai, Cai+1, qP2,5),

(qP2,4, A,A, qP2,4),

(qP2,4, $, I$, qP2,4),

(qP2,5, A,A, qP2,5),

(qP2,5, a, a, qP2,5) ∀a ∈ T,

(qP2,5, $, $, qP2,5),

([P2, y, 1],W, y, qP2,6) ∀y ∈ (N ∪ T)− {H,W},

(qP2,6, I,W, qP2,7),

(qP2,7, y, ε, [P2, y, 3]) ∀y ∈ T ∪ {A},

(qP2,8, a, a, qP2,8) ∀a ∈ T,

(qP2,8, A, SA, qP2,18),

(qP2,18, x, x, qP2,18) ∀x ∈ N ∪ T,

([P2, y, 3],M,M, qP2,18) ∀y ∈ T ∪ {A},

([P2, y, 3], I, Cy, qP2,18) ∀y ∈ T ∪ {A},

(qP2,6, a,W, [P2, a, 2]) ∀a ∈ T,

([P2, y, 2],M,M, qP2,9) ∀y ∈ (N ∪ T)− {M,C, I},

([P2, y, 2], C, Cy, qP2,9) ∀y ∈ (N ∪ T)− {M,C, I},

([P2, y, 2], I, Iy, qP2,16) ∀y ∈ (N ∪ T)− {M,C, I},

18

([P2, y, 2], x, y, [P2, x, 2]) ∀x, y ∈ T

([P2, y, 4], x, y, [P2, x, 4]) ∀x, y ∈ T,

([P2, y, 4],M,M, qP2,9) ∀y ∈ T,

([P2, y, 4], I,M, qP2,11) ∀y ∈ T,

(qP2,11, A, ε, qP2,11),

(qP2,11, $, $, qP2,11),

([P2, y, 4], A, y, qP2,12) ∀y ∈ T,

(qP2,12, A,A, qP2,12),

(qP2,12, I, IA, qP2,12),

(qP2,12, $, $, qP2,12),

(qP2,6, C,H, qP2,8),

(qP2,6,M,M, qP2,9),

(qP2,9, x, x, qP2,9) ∀x ∈ N ∪ T,

([P2, y, 1],M,My, qP2,9) ∀y ∈ (N ∪ T)− {H,W,M},

(qP2,1,M, P3, qP2,14),

(qP2,14, A,A, qP2,14),

(qP2,14, S,H
B

B
qA,0, qP2,15)

(qP2,15, a,
a

a
, qP2,15) ∀a ∈ T,

(qP2,15, S,
B

B
S
B

B
qA,0, qP2,15),

(qP2,15, $, $, qP2,15),

(qP2,16, a, ε, [P2, a, 4])∀a ∈ T},

H3 =HGA
− {(q, $, v$, p)|∀q, p ∈ KGA

, v ∈ (N ∪ T)∗} ∪ {

(q0, P3, ε, qP3,1),

(qP3,1,M, P4, qP3,2),

(qP3,2, A,A, qP3,2),

(qP3,2, $, $, qP3,2),

(qP3,1, A, P3, qP3,3),

(qP3,3, A,A, qP3,3),

(qP3,3, H,HA, qP3,4),

(qP3,4, A,A, qP3,4),

19

(qP3,4,
B

B
, ε, qP3,5),

(qP3,5, qF , ε, qP3,6) ∀qF ∈ FA,

(qP3,6,
x

y
, ε, qP3,6) ∀x, y ∈ ΓA,

(qP3,6, S, ε, qP3,7),

(qP3,7, $, $, qP3,7),

(qP3,7,
B

B
, ε, qP3,5),

(qP3,5, z, v, qA) ∀z ∈ (N ∪ T)− FA, where (

[
B

B

]
, z, v, qA) ∈ HGA

,

(qA, S, vS, qP3,7) ∀qA ∈ KGA
, v ∈ (NA ∪ TA)∗ : ∃p ∈ KGA

: (qA, $, v$, p) ∈ HGA
,

(qP3,1,W, P3, qP3,8),

(qP3,8,M,M, qP3,9),

(qP3,9, A,A, qP3,9),

(qP3,9, $, $, qP3,9),

(qP3,8, A,W, qP3,17),

(qP3,17, A,A, qP3,17),

(qP3,17,M,MA, qP3,9),

(qP3,17, C, C, qP3,10),

(qP3,8, C, C, qP3,10),

(qP3,1, C, ε, qP3,10),

(qP3,10, a, a, qP3,10) ∀a ∈ T,

(qP3,10, $, $, qP3,10),

(qP3,1, H, P3W, qP3,11),

(qP3,11, A,A, qP3,11),

(qP3,11,
B

B
, ε, qP3,12),

(qP3,12, z, ε, qP3,15) ∀z ∈ (N ∪ T)− FA,

(qP3,15,
x

y
, ε, qP3,15) ∀x, y ∈ ΓA,

(qP3,15, qA, ε, qP3,15) ∀qA ∈ KA,

(qP3,15, S, ε, qP3,16),

(qP3,16,
B

B
, ε, qP3,12),

(qP3,12, qF , C, qP3,13),

20

(qP3,13,
a

x
, a, qP3,13) ∀a ∈ T,∀x ∈ ΓA,

(qP3,13,
B

x
, ε, qP3,13) ∀x ∈ ΓA,

(qP3,13, S, ε, qP3,14),

(qP3,14, x, ε, qP3,14) ∀x ∈ (N ∪ T)− {$},

(qP3,14, $, $, qP3,14),

(qP3,16, $,M$, qP3,16)}

H4 = {

(q0, P4, ε, qP4,1),

(qP4,1, A, P4WAAL, qP4,2),

(qP4,1, $, P2ASHS$, qP4,1)

(qP4,2, A,AA, qP4,2),

(qP4,2, $, RAA$, qP4,2),

(qP4,1,W, P4, qP4,3),

(qP4,3, A,W, qP4,4),

(qP4,4, A,A, qP4,4),

(qP4,4, L, A, qP4,5),

(qP4,5, A,AL, qP4,6),

(qP4,6, A, ε, qP4,7),

(qP4,7, A,A, qP4,7),

(qP4,7, R,RA, qP4,7),

(qP4,7, $, $, qP4,7),

(qP4,5, R, CSHS, qP4,8),

(qP4,8, A,A, qP4,8),

(qP4,8, $, $, qP4,8),

(qP4,4, C, CA, qP4,9),

(qP4,3, C, C, qP4,9),

(qP4,1, C, P2, qP4,9),

(qP4,9, x, x, qP4,9)∀x ∈ N,

Note that H1, H2, H3, H4 correspond to the phases 1,2,3,4 described earlier and are de-

picted in the Figures 4.1,4.2,4.3,4.4.

21

The following proof is separated into two parts: �rst, we show that L(G) = L(A)

assuming that G works in particular phases as suggested and then we prove that these

asumptions are true by showing the concrete computations of 1-a-transducer M.

Let us assume that G works as follows:

w0$⇒∗G P2A
mSHw1SA

m$ (phase 1) (4.1)

P2A
mSHw1SA

m$⇒∗G P3A
mHw1S...Samk S$ (phase 2) (4.2)

either P3A
mHw1S...Samk S$⇒∗G wi$ (phase 3) (4.3)

or P3A
mHw1S...Samk S$ ⇒∗G P4A

m$ (phase 3) (4.4)

P4A
m$⇒∗G P2A

m+1SHSAm+1$ (phase 4) (4.5)

where w0 ∈ Lm(A), w1 is the successor of w0 in rlo, notation w stands for B
B
qA,0

w
w

B
B
and

case 4.3 occurs i� wi is the minimal element (in sense of rlo) of {w1, ..., a
m
k } ∩Lm(A) and

case 4.4 occurs i� {w1, ..., a
m
k }∩Lm(A) = ∅. In other words, if in the phase 3 at least one

of the subwords in the sentential form is accepted by TM A in m steps, the �rst of them

is made terminal or phase 4 follows if there is no such word.

Let v0, v1, ... be all words from L(A) in order given by ≺A. Now we use induction to

prove that L(G) ⊇ L(A).

Base: σ$⇒∗G v0$:

The initial generative step is σ ⇒G P3HεS$. Let us denote m the current number of

nonterminals A in the sentential form before the �rst S or B
B

symbol and mv0 is the

minimal number of steps on which TM A accepts word v0 (as de�ned in 4.1). In this

case m = 0. From the assumptions 4.3 and 4.4 we have that while m < mv0 phase 4

follows after the phase 3 and then m is incremented by one. Thus G on the sentential

form P3HεS$ repeats phases 3,4 and 2 until m = mv0 . After this cycle sentential form

P3A
mv0HεS...a

mv0
k S$ is derived. From the asumptions on TM A and from the fact that

it accepts v0 after mv0 steps we have that v0 ∈ {ε, a1, ..., a
mv0
k } thus the sentential form

contains the subword v0. Furthermore, from minimality of v0 in the sense of ≺A we have

that ∀w ∈ L(A) such that w precedes v0 in rlo we have that mw > mv0 holds. Thus from

the assumption 4.3 we have that for m = mv0 :

P3A
mHεS...amk S$⇒∗G v0$.

Inductive step: σ ⇒∗G vi$ implies σ ⇒∗G vi+1$:

we �nd the derivation vi$⇒∗G vi+1$. From the assumptions 4.1 and 4.2 we have that

vi$⇒∗G P3A
mviHwS...Sa

mvi
k S$,

where w is the �rst succesor of vi in rlo. Let d = mvi+1
− mvi . From the previously

mentioned sentential form G cycles d times in the phases 3,4 and 2. The fact that phase

22

3 results d times in the phase 4 follows from the order given by ≺A. If some terminal

word w′ would be derived after less than d such cycles we would have a contradiction

mw′ < mvi+1
and vi+1 ≺A w′. During this process the number of nonterminals A is

continually increased in phase 4 (assumption 4.5) so after d repetitions of this cycle the

sentential form

P3A
mHuS...Samk S$

is generated, where m = mvi + d, u = ε if d > 0 and u = w otherwise. In both cases

vi+1 ∈ {u, ..., amk } from the de�nition of ≺A. Furthermore, vi+1 is the �rst of these words

(in rlo) that TM A accepts on m steps. Thus from the assumption 4.3 we have

P3A
mHuS...Samk S$⇒∗G vi+1$.

L(G) ⊆ L

w ∈ L(G) implies w$ ⇒GA
w$. This implication follows from the fact, that terminal

words are derived only in the phase 3 in which HGA
is used to simulate TM A on certain

words. Then from w$⇒GA
w$ and Lemma 2.14 we have w ∈ L(A) = L.

Now we shall verify the assumptions 4.1,...,4.5 so in the following part one generative

step on certain sentential forms is shown with the corresponding computation of M:

Phase 1:

1. w0$⇒G P1w0$

This is the initial step of phase 1 in which G prepares for simulation of TM A on

w0 in order to compute mw0 .

For w0 = ε computation of M is (q0, $, P1
B
B
qA,0

B
B

$, q0) and for w0 = b1...bn where

b1, ..., bn ∈ T we have computation

(q0, b1, P1
B

B
qA,0

b1

b1

, qP1,1)(qP1,1, b2,
b2

b2

, qP1,1)...(qP1,1, bn,
bn
bn
, qP1,1)(qP1,1, $,

B

B
$, qP1,1).

2. P1
B
B
qA,0

w0

w0

B
B

$⇒G P1AwA$

where qA,0 6∈ FA and w0$ ⇒GA
w$. Note that word w consists of double track

symbols and one nonterminal of some state of A, its second track represents the

content of the tape of A and its �rst track contains the word w0. So w stores the

information about current con�guration of A and word w0 at the same time. In

this generative step the initial step of TM A on the word w0 is simulated assuming

that (qA,0w0) is not the accepting con�guration of A. Furthermore, the counters of

simulated steps (numbers of nonterminals A at the beginning and at the end of the

sentential form) are incremented.

Computation of M:

(q0, P1, ε, qP1,2)(qP1,2,
B

B
, P1, qP1,7)(qP1,7, qA,0, Av, pA)h1...hl(qA, $, uA$, qP1,10)

23

for double track words u, v and states qA, pA ∈ KGA
such that (

[
B
B

]
, qA,0, v, pA),

(qA, $, u$, p′A), h1, ..., hl ∈ HGA
for some state p′A ∈ KGA

.

3. P1A
mB

B
wB

B
Am$⇒G P1A

m+1 B
B
w′B

B
Am+1$

for m > 0, double track words w,w′ representing con�gurations of TM A, where

it holds that B
B
wB

B
$ ⇒GA

B
B
w′B

B
$ and z 6∈ FA where z is the �rst symbol of w (in

other words, con�guration of A encoded in w is not accepting). In this generative

step, similarly to the previous one, one step of TM A from the given con�guration

is simulated and counters are incremented.

Computation of M:

(q0, P1, ε, qP1,2)(qP1,2, A, P1, qP1,4)(qP1,4, A,A, qP1,4)m−1

(qP1,4,
B

B
, ε, qP1,5)(qP1,5, z, AAv, qA,z)h1...hl

(qA, A, uAA, qP1,10)(qP1,10, A,A, qP1,10)m−1(qP1,10, $, $, qP1,10)

where (
[
B
B

]
, z, v, qA,z), (qA, $, u, q), h1, ..., hl ∈ HGA

for some q ∈ KGA
.

4. P1A
mB

B
qF

Brw0Bs

v0
B
B
Am$⇒G P1A

mMSHw1SA
m$

where w0 ∈ T ∗, v0 ∈ (N ∪ T)∗B∗, r, s ∈ N and w1 is the next successor of w0 in rlo

and qF ∈ FA. In this step the simulation of TM A is terminated, because it has

reached the accepting con�guration (qFv0). Terminal word w0 is restored from the

�rst track and incremented in rlo. Also nonterminal M is written to the output

which is used as a �ag that the simulation of A has ended.

For m > 0 the �rst part of the computation of M is:

(q0, P1, ε, qP1,2)(qP1,2, A, P1, qP1,4)(qP1,4, A,A, qP1,4)m−1

(qP1,4,
B

B
, ε, qP1,5)(qP1,5, qF , AMSH, qP1,6)(qP1,6,

B

x
, ε, qP1,6)r

for any x ∈ N ∪ T and in the other case when m = 0 we have:

(q0, P1, ε, qP1,2)(qP1,2,
B

B
, P1, qP1,7)(qP1,7, qF ,MSH, qP1,6)(qP1,6,

B

x
, ε, qP1,6)r.

The rest of the computation is similar in both cases and it depends on w0 which is

incremented in the sense of rlo. First, let us assume that w0 = alkaib1...bn, where

i < k and b1, ..., bn ∈ T , then the computation continues with

(qP1,6,
ak
x
, a1, qP1,6)l(qP1,6,

ai
x
, ai+1, qP1,11)(qP1,11,

b1

x
, b1, qP1,11)...

(qP1,11,
bn
x
, bn, qP1,11)(qP1,11,

B

x
, ε, qP1,11)s+1).

24

If m = 0, the computation ends with (qP1,11, $, S$, qP1,11) or with

(qP1,11, A, SA, qP1,8)(qP1,8, A,A, qP1,8)m−1(qP1,8, $, $, qP1,8)

otherwise. If w0 = ank does not contain other symbol than ak then the next successor

of w0 in rlo is an+1
1 . In such case the computaion of M continues with

(qP1,6,
ak
x
, a1, qP1,6)n(qP1,6,

B

x
, ε, qP1,6)s+1

and ends with (qP1,6, $, a1S$, qP1,6) if m = 0 or with

(qP1,6, A, a1SA, qP1,8)(qP1,8, A,A, qP1,8)m−1(qP1,8, $, $, qP1,8)

otherwise.

5. P1A
rMAsSHw1SA

r+s$⇒G P1A
r−1MAs+1SHw1SA

r+s$

for any r > 0, s ∈ N, w1 ∈ T ∗. In this generative step the nonterminal M is shifted

one symbol to the left and the rest is copied in the state qP1,3. Computation of M

is:

(q0, P1, ε, qP1,2)(qP1,2, A, P1, qP1,4)(qP1,4, A,A, qP1,4)r−1

(qP1,4,M,MA, qP1,3)(qP1,3, x, x, qP1,3)...

6. P1MAmSHw1SA
m$⇒G P2A

mSHw1SA
m$.

When nonterminal M �nally appears right next to P1 in the sentential form, both

are replaced by nonterminal P2 and the next phase follows. Computation of M:

(q0, P1, ε, qP1,2)(qP1,2,M, P2, qP1,3)(qP1,3, x, x, qP1,3)...

From the above analysis we have that for w0 ∈ Lm(A) and its successor in rlo w1 it

holds:

w0$⇒G P1w0$ 1

⇒m
G P1A

mB

B
qF
w0

v

B

B
Am$ 2, 3

⇒G P1A
mMSHw1SA

m$ 4

⇒m
G P1MAmSHw1SA

m$ 5

⇒G P2A
mSHw1SA

m$ 6

thus the assumption 4.1 holds.

Phase 2:

25

7. P2A
muHavSwAm$⇒G P2A

muaHvSwaAm$

for any u ∈ (T ∪{S})∗, v, w ∈ T ∗ and a ∈ T . In this generative step is one terminal

(determined by the position of H) copied to the place just before the ending counter

and H is shifted to the right. By series of such steps G copies whole words separated

by S nonterminals. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, x, 1] , y, x, [P2, y, 1])...

([P2, z, 1] , H, z, qP2,2)(qP2,2, a, aH, qP2,a)(qP2,a, b, b, qP2,a)...

(qP2,a, A, aA, qP2,13)(qP2,13, A,A, qP2,13)m−1(qP2,13, $, $, qP2,13)

where x, y, z ∈ T ∪{S}, a ∈ T and b ∈ T ∪{S}. We can see that G uses look ahead

- set of states [P2, x, 1] - in order to be able to shift M �ag from the end to the

beginning of the sentential form in future. After reading nonterminal H and the

following terminal a, the information about what symbol is to be copied is stored

in the state qP2,a.

8. P2A
muHSalkaivA

m$⇒G P2A
muSWal1Cai+1vA

m$

where u ∈ (T ∪ {A, S})∗ and v ∈ T ∗. Nonterminal H is not followed by terminal

symbol like in the previous case, but by nonterminal S. It means that the whole

terminal subword alkaiv was copied and its copy is now incremented in the sense of

rlo. In order to do that, in some cases it is necessary to add one more terminal to the

incremented word. In those cases then follows the check, whether the new subword

is not longer than m (if it is so, this phase shall be terminated in the following

steps). Thus we want G to stop the process of copying terminals until it clari�es

whether this phase shall end or continue and for that purpose is nonterminal W

written to the sentential form instead of H. In this particular case, after reading

...HSalkai it is clear that no additional terminal is needed to increment the copied

subword so nonterminal C is written to the output which indicates that process of

copying may continue. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1] , H, y, qP2,2)

(qP2,2, S, SW, qP2,3)(qP2,3, ak, a1, qP2,3)l(qP2,3, ai, Cai+1, qP2,5)

(qP2,5, a, a, qP2,5)...(qP2,5, A,A, qP2,5)m
′
(qP2,5, $, $, qP2,5)

for any y ∈ T ∪ {A, S}, a ∈ T .

9. P2A
muHSalkA

m$ ⇒ P2A
muSWal+1

1 IAmI$. This generative step is similar to the

previous one except that in this case successor in rlo of the copied word alk is the

word al+1
1 thus G has to check whether l + 1 ≤ m or not. This is obtained by

26

writing nonterminals I to the suggested positions (in this generative step) and their

simultaneous shifting to the left in the next steps. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1] , H, y, qP2,2)(qP2,2, S, SW, qP2,3)

(qP2,3, ak, a1, qP2,3)l(qP2,3, A, a1I, qP2,4)(qP2,4, A,A, qP2,4)m
′−1(qP2,4, $, I$, qP2,4)

where y ∈ T ∪ {A, S}.

10. P2A
muWvaCw ⇒G P2A

muWvCaw

where u ∈ (T ∪ {S})∗, v ∈ T ∗, w ∈ (N ∪ T)∗ and a ∈ T . In this generative step

the nonterminal C is shifted to the left. For that purpose look ahead is provided

by the set of states [P2, b, 2],∀b ∈ T used. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1] ,W, y, qP2,6)(qP2,6, a,W, [P2, a, 2])...

([P2, b1, 2] , b2, b1, [P2, b2, 2])...([P2, b3, 2] , C, Cb3, qP2,9)(qP2,9, x, x, qP2,9)...

for any y ∈ T ∪ {A, S}, a, b1, b2, b3 ∈ T and x ∈ N ∪ T .

11. P2A
muWCvAm′$⇒G P2A

muHvSAm′$

where u ∈ (T ∪{S} and v ∈ T ∗. As we mentioned, nonterminal C indicates that G

shall continue in copying the last terminal subword in the sentential form. When

it appears right after W sentential form can be modi�ed so that situation 7 occurs.

Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1] ,W, y, qP2,6)(qP2,6, C,H, qP2,8)

(qP2,8, a, a, qP2,8)...(qP2,8, A, SA, qP2,18)(qP2,18, x, x, qP2,18)...

for any y ∈ T ∪ {A, S}, a ∈ T and x ∈ N ∪ T .

12. P2A
muWvaIwArIAs$⇒G P2A

muWvIawAr−1IAs+1$

for arbitrary u ∈ (T ∪ {S})∗, v, w ∈ T ∗, a ∈ T , and r > 0. Nonterminals I are

shifted to the left in order to compare the number of terminals afterW and number

of nonterminals A at the end of the sentential form. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1],W, y, qP2,6)

(qP2,6, b1,W, [P2, b1, 2])...([P2, b2, 2], I, Ib2, qP2,16)(qP2,16, b3, ε, [P2, b3, 4])

([P2, b3, 4], b4, b3, [P2, b4, 4])...([P2, b5, 4], A, b5, qP2,12)(qP2,12, A,A, qP2,12)r−1

(qP2,12, I, IA, qP2,12)(qP2,12, A,A, qP2,12)s(qP2,12, $, $, qP2,12)

where y ∈ T ∪ {A, S} and b1, b2, b3, b4, b5 ∈ T .

27

13. P2A
muWvaIwbIAm$⇒G P2A

muWvIawM$

for any u ∈ (T ∪ {S})∗, v, w ∈ T ∗ and a, b ∈ T . This is one possible outcome of

comparison of |vawb| and |Am|. There is at least one terminal between W and �rst

I but no nonterminal A before the second I thus |vawb| > m. This means that G

shall move to the next phase so nonterminalM is written to the output and counter

Am is deleted. In the next steps, M is shifted to the left deleting all symbols after

W (following case). Computation of M starts similarly to the previous case, the

di�erence occurs when M reads the second nonterminal I in the state [P2, b, 4]:

...([P2, b, 4], I,M, qP2,11)(qP2,11, A, ε, qP2,11)m
′
(qP2,11, $, $, qP2,11).

14. P2A
muWv0aIv1bMv2$⇒G P2A

muWv0aIv1bMv2$

for any u ∈ (T ∪ {S})∗, v0, v1, v2 ∈ T ∗ and a, b ∈ T . Again, M works as in the

previous two cases to the point when it reads M in the state [P2, b, 4]:

...([P2, b, 4],M,M, qP2,9)(qP2,9, x, x, qP2,9)...

where x ∈ N ∪ T .

15. P2A
muWIvzIAl$⇒G P2A

muWvCzAl$

for any l ∈ N, u ∈ (T ∪ {S})∗, v ∈ (T ∪ {A})∗ and z ∈ T ∪ {A}. This is the second
possible outcome of checking the length of the last terminal subword. Fact, that

the �rst I follows right after W and the second I is still present in the sentential

form implies that the length of the compared terminal word is at most m, because

otherwise situation 13 would have occured after the �rst m steps of the comparative

process so there would be nonterminal M instead of the second I in the sentential

form. So the result of the comparison is clear after reading the second nonterminal

I which is then replaced by indicator C (and shifted by one). Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y0, 1],W, y0, qP2,6)

(qP2,6, I,W, qP2,7)(qP2,7, y1, ε, [P2, a, 3])...([P2, y2, 3], y3, y2, [P2, y3, 3])

...([P2, z, 3], I, Cz, qP2,18)(qP2,18, A,A, qP2,18)l

where y0 ∈ T ∪ {S}, y1, y2, y3 ∈ T ∪ {A}.

Several cases of shifting nonterminal M to the left according to content of the

sentential form follows.

16. P2A
muWIvzM$⇒G P2A

muWvM$

for any u ∈ (T ∪ {S})∗, v ∈ (T ∪ {A})∗, w ∈ (N ∪ T)∗ and z ∈ T ∪ {A}. The

computation of M is similar to the previous case except for the step on nonterminal

M : ...([P2, z, 3],M,M, qP2,18)....

28

17. P2A
muWvaM$⇒G P2A

muWvM$

for any u ∈ (T ∪{S})∗, v ∈ T ∗, a ∈ T . NonterminalM is shifted to the left deleting

terminals after W . Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1],W, y, qP2,6)

(qP2,6, b,W, [P2, b, 2])...([P2, a, 2],M,M, qP2,9)(qP2,9, $, $, qP2,9)

where y ∈ T ∪ {S}, b ∈ T .

18. P2A
muWM$⇒G P2A

muM$

for any u ∈ (T ∪ {S})∗ and v ∈ (N ∪ T)∗. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1],W, y, qP2,6)

(qP2,6,M,M, qP2,9)(qP2,9, $, $, qP2,9)

where y ∈ T ∪ {S}.

19. P2uyMv$⇒G P2uMyv$

for any v ∈ (N ∪ T)∗ and u ∈ (T ∪ {A, S})∗, y ∈ T ∪ {A, S} such that either �rst

symbol of u is A or u = ε, y = A. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, [P2, A, 1])...([P2, y, 1],M,My, qP2,9)(qP2,9, x, x, qP2,9)...

where x ∈ N ∪ T .

20. P2MAmSw1Sw2...Sa
m
k S$⇒G P3A

mHw1S...amk S$

for any w1, ..., a
m
k ∈ T ∗. This is the �nal step of this phase, nonterminal M follows

right after P2 so they can be both replaced by P3. Furthermore, terminal subwords

are converted to the form that computation of TM A can be simulated on them

and nonterminal H is written at the end of the counter. Computation of M:

(q0, P2, ε, qP2,1)(qP2,1,M, P3, qP2,14)(qP2,14, A,A, qP2,14)...(qP2,14, S,H
B

B
qA,0, qP2,15)

(qP2,15, a,
a

a
, qP2,15)...(qP2,15, S,

B

B
S, qP2,10)(qP2,10, a,

B

B
qA,0

a

a
, qP2,15)...(qP2,10, $, $, qP2,10)

where a ∈ T . Note that there may occur situation when M works on sentential

form P2MAmSamk $ (with the only terminal subword and without nonterminal S at

the end). In such case the last step of the computation is (qP2,15, $,
B
B
S$, qP2,15) so

the result would have the same structure as in originaly analyzed case.

We have that for any w1 = alkaiv, l ∈ N, i < k, v ∈ T ∗ :

P2A
mSHw1SA

m$⇒∗G P2A
mSw1HSw1A

m$ 7

29

⇒G P2A
mSw1SWalkCai+1vA

m$ 8

⇒∗G P2A
mSw1SWCalkai+1vA

m$ 10

⇒G P2A
mSw1SHa

l
kai+1vSA

m$ 11

⇒G ...⇒G

⇒G P2A
mSw1...a

r
kSWar+1

1 IAmI$ 9

⇒G P2A
mSw1...SWar1Ia1A

m−1IA$ 12

⇒r
G P2A

mSw1...SWIar+1
1 Am−(r+1)IAr+1$ 12

⇒G P2A
mSw1...SWar+1

1 Am−r−2CAr+2$ 15

⇒m−1
G P2A

mSw1...SWCar+1
1 Am$ 10

⇒G P2A
mSw1...SHa

r+1
1 SAm$ 11

⇒G ...⇒G

⇒G P2A
mSw1...a

m
k SWa1Ia

m
1 IA

m$

⇒G P2A
mSw1...a

m
k SWIam1 M$ 13

⇒G P2A
mSw1...a

m
k SWam−1

1 M$ 16

⇒m−1
G P2A

mSw1...a
m
k SWM$ 17

⇒G P2A
mSw1...a

m
k SM$ 18

⇒∗G P2MAmSw1...a
m
k S$ 19

⇒G P3A
mHw1S...amk S$ 20

Note that for w1 = alk or |w1| ≥ m some of the above steps are skipped, but the

result remains the same. Thus assumption 4.2 holds.

Phase 3:

21. P3A
rHAs B

B
z1v1

B
B
SB

B
...B

B
zlvl

B
B
S$⇒G P3A

r−1HAs+1v′1...v
′
l$

for any r > 0 and zivi ∈
(

ΓA

ΓA

)∗
KA

(
ΓA

ΓA

)∗
; v′i ∈ (B

B

(
ΓA

ΓA

)∗
KA

(
ΓA

ΓA

)∗
B
B
S)∪{ε} such

that v′i = ε ⇐⇒ zi ∈ FA and v′i = uiS otherwise, where B
B
zivi

B
B

$ ⇒GA
ui$ for

i = 1, ..., l. In other words, zivi stores some terminal word in its �rst track and

con�guration of TM A in its second track. In this generative step one step of TM

A is simulated (using GA from Lemma 2.14) from those con�gurations. If any of

those con�gurations is accepting, then the whole block separated by S is deleted

from the sentential form, because that means that corresponding word from the

�rst track is accepted by A on less than r+s steps. Nonterminal H is used to count

the number of steps that remain to simulate - it is the number of nonterminals A

between P3 and H. Computation of M:

(q0, P3, ε, qP3,1)(qP3,1, A, P3, qP3,3)(qP3,3, A,A, qP3,3)r−1

30

(qP3,3, H,HA, qP3,4)(qP3,4, A,A, qP3,4)s(qP3,4,
B

B
, ε, qP3,5),

then l cycles follow, each has one of two scenarios depending on zi. For zi ∈ FA we

have:

(qP3,5, zi, ε, qP3,6)(qP3,6,
x

y
, ε, qP3,6)...(qP3,6, S, ε, qP3,7)(qP3,7,

B

B
, ε, qP3,5)

and for zi 6∈ FA we have

(qP3,5, zi, v, qA,1)h1...h|vi|+1(qA,|vi|+1, S, S, qP3,7)(qP3,7,
B

B
, ε, qP3,5)

where (
[
B
B

]
, zi, v, qA,1), h1, ..., h|vi|+1 ∈ HGA

and qA,|vi|+1 = pr4(h|vi|+1). The last

cycle of the computatation remains uncompleted because sentential form ends by

symbols S$ thus (qP3,7, $, $, qP3,7) is the last step.

22. P3HA
mB

B
z1v1

B
B
S...zfvf ...

B
B
zlvl

B
B
S$⇒G P3WAmCwf$

for any zivi ∈
(

ΓA

ΓA

)∗
KA

(
ΓA

ΓA

)∗
, f ∈ {1, ..., l} where wf ∈ T ∗ is the word from the

�rst track of vf and zf ∈ FA, z1, ..., zf−1 6∈ FA. There is no nonterminal A between

P3 and H which means that m steps of TM A were simulated so far. Thus G checks

whether any of l simulations ended in accepting con�guration. Input word of the

�rst such con�guration is restored (from the �rst track) and the rest is deleted.

The fact that there was an accepting con�guration and some word is to be made

terminal is indicated by the nonterminal C in the sentential form. Computation of

M:

(q0, P3, ε, qP3,1)(qP3,1, H, P3W, qP3,11)(qP3,11, A,A, qP3,11)m

(qP3,11,
B

B
, ε, qP3,12)(qP3,12, z1, ε, qP3,15)(qP3,15, y, ε, qP3,15)...

(qP3,15, S, ε, qP3,16)(qP3,16,
B

B
, ε, qP3,12)...(qP3,12, zf , C, qP3,13)...

(qP3,13,
a

x1

, a, qP3,13)...(qP3,13,
B

x2

, ε, qP3,13)...(qP3,13, S, ε, qP3,14)

(qP3,14, x3, ε, qP3,14)...(qP3,14, $, $, qP3,14)

where y ∈ (ΓA

ΓA
) ∪KA and a, x1, x2, x3 ∈ T . In case that z1, ..., zl 6∈ FA M does not

reach the state qP3,13 during the computation so the last arc is (qP3,16, $,M$, qP3,16)

and the output sentential form is P3WAmM$, where the nonterminal M indicates

that no accepting con�guration was reached so G is moving to the phase 4.

23. P3WAmCw$⇒G P3WAm−1Cw$

for any w ∈ T ∗,m > 0. Computation of M:

(q0, P3, ε, qP3,1)(qP3,1,W, P3, qP3,8)(qP3,8, A,W, qP3,17)(qP3,17, A,A, qP3,17)m−1

31

(qP3,17, C, C, qP3,10)(qP3,10, a, a, qP3,10)...(qP3,10, $, $, qP3,10)

for any a ∈ T .

24. P3WCw$⇒ P3Cw$

for any w ∈ T ∗. Computation of M:

(q0, P3, ε, qP3,1)(qP3,1,W, P3, qP3,8)(qP3,8, C, C, qP3,10)(qP3,10, a, a, qP3,10)...

for any a ∈ T ∪ {$}.

25. P3Cw$⇒G w$

for any w ∈ T ∗. Computation of M:

(q0, P3, ε, qP3,1)(qP3,1, C, ε, qP3,10)(qP3,10, a, a, qP3,10)...

for any a ∈ T ∪ {$}.

26. P3WArMAs$⇒G P3WAr−1MAs+1$

for any r > 0. Computation of M:

(q0, P3, ε, qP3,1)(qP3,1,W, P3, qP3,8)(qP3,8, A,W, qP3,17)(qP3,17, A,A, qP3,17)r−1

(qP3,17,M,MA, qP3,9)(qP3,9, A,A, qP3,9)s(qP3,9, $, $, qP3,9).

27. P3WMAm$⇒G P3MAm$.

Computation of M:

(q0, P3ε, qP3,1)(qP3,1,W, P3, qP3,8)(qP3,8,M,M, qP3,9)

(qP3,9, A,A, qP3,9)m(qP3,9, $, $, qP3,9).

28. P3MAm$⇒G P4A
m$.

Computation of M:

(q0, P3, ε, qP3,1)(qP3,1,M, P4, qP3,2)(qP3,2, A,A, qP3,2)m(qP3,2, $, $, qP3,2).

From the cases analyzed we have that:

P3A
mHw1S...wrS$⇒m

G P3HA
mw′1S...w

′
rS$ 21

where for all i ∈ {1, ..., r}: w′i = ε for all wi which are accepted by TM A on less

than m steps and wi$ ⇒GA
w′i$ otherwise. For all nonempty words wi let zi be

32

their second symbol (the �rst is B
B
). If there is a number f ≤ r such that zf ∈ FA,

zj 6∈ FA for j < f then the derivation continues as follows

...⇒G P3WAmCwf$ 22

⇒m+2
G wf$ 23, 24, 25

and the assumption 4.3 holds.

If there is no such f then the next generative steps are

...⇒G P3WAmM$

⇒m+2
G P4A

m$ 26, 27, 28

and the assumption 4.4 holds.

Phase 4:

29. P4A
m$⇒G P4WAALA2m−2RAA$

for any m > 0. This is the initial step of phase 4. In this generative step 2m + 2

nonterminals A are written to the output in order to build two m+1 long counters.

In following steps, nonterminals L,R are simultaneously shifted towards themselves

until they "meet" in the middle of A2m+2. Computation of M follows:

(q0, P4, ε, qP4,1)(qP4,1, A, P4WAAL, qP4,2)(qP4,2, A,AA, qP4,2)m−1(qP4,2, $, RAA$, qP4,2).

30. P4WArLAsRAr$⇒G P4WAr+1LAs−2RAr+1$

for any s > 1, r > 0. Note that s is even, because initially s = 2m − 2 from 29

and in sequence of these steps it is iteratively decreased by 2 so case s = 1 cannot

occur. Computation of M:

(q0, P4, ε, qP4,1)(qP4,1,W, P4, qP4,3)(qP4,3, A,W, qP4,4)(qP4,4, A,A, qP4,4)r−1

(qP4,4, L, A, qP4,5)(qP4,5, A,AL, qP4,6)(qP4,6, A, ε, qP4,7)(qP4,7, A,A, qP4,7)s−2

(qP4,7, R,RA, qP4,7)(qP4,7, A,A, qP4,7)r(qP4,7, $, $, qP4,7).

31. P4WAm+1LRAm+1$⇒G P4WAm+1CSHSAm+1$

for any m. Fact, that nonterminal R follows immediately after L in the sentential

form indicates that they separate the block of As into two equal halves, so G may

start to move to another phase. Thus LR is replaced by CSHS - C indicates that

su�x Am+1SHSAm+1$ was successfully derived so this phase may end and it is

shifted to the beginning of the sentential form in the next steps. In contrast, SHS

33

remains at its position in the following steps as a separator and it represents empty

word ε as w1 (from 4.2) in the following phase 2. Computation of M:

(q0, P4, ε, qP4,1)(qP4,1,W, P4, qP4,3)(qP4,3, A,W, qP4,4)

(qP4,4, A,A, qP4,4)m(qP4,4, L, A, qP4,5)(qP4,5, R, CSHS, qP4,8)

(qP4,8, A,A, qP4,8)m+1(qP4,8, $, $, qP4,8).

32. P4WArCv ⇒G P4WAr−1CAv

for any r > 0, v ∈ N∗. Computation of M:

(q0, P4, ε, qP4,1)(qP4,1,W, P4, qP4,3)(qP4,3, A,W, qP4,4)

(qP4,4, A,A, qP4,4)r−1(qP4,4, C, CA, qP4,9)(qP4,9, x, x, qP4,9)...

where x ∈ N .

33. P4WCv ⇒ P4Cv

for any v ∈ N∗. Computation of M:

(q0, P4, ε, qP4,1)(qP4,1,W, P4, qP4,3)(qP4,3, C, qP4,9)(qP4,9, x, x, qP4,9)...

where x ∈ N .

34. P4Cv ⇒G P2v

for any v ∈ N∗. Computation of M:

(q0, P4, ε, qP4,1)(qP4,1, C, P2, qP4,9)(qP4,9, x, x, qP4,9)...

where x ∈ N .

From the above analysis we have

P4A
m$⇒G P4WAALA2m−2RAA$ 29

⇒2m−2
G P4WAm+1LRAm+1$ 30

⇒G P4WAm+1CSHSAm+1$ 31

⇒m+1
G P4WCAm+1SHSAm+1$ 32

⇒G P4CA
m+1SHSAm+1$ 33

⇒G P2A
m+1SHSAm+1$ 34

for any m > 0. In case that m = 0 phase 4 has only one generative step :

(q0, P4, ε, qP4,1)(qP4,1, $, P2ASHS$, qP4,1).

34

Thus the assumption 4.5 holds.

We have veri�ed all of the assumptions 4.1, 4.2, 4.3, 4.4 and 4.5. We have also

proven that they imply L(G) = L(A), so inclusion L$DG ⊇ LRE holds. In order to prove

LRE = L$DG we should show also the opposite inclusion LRE ⊇ L$DG but it is not hard to

see that for given $dgs G we can construct TM A which simulates G and checks whether

G derived the given word so we leave formal proof to the reader.

35

Chapter 5

Measuring nondeterminism in

g-systems

From the previous research [2] we know that one nondeterministic state and |Σ|+ 1 non-

deterministic arcs are su�cient to simulate any 1-a-transducer working over an alphabet

Σ. The mentioned study suggests that some computational measure of nondeterminism

in g-systems would be useful, because the previous results do not tell us how often the

nondeterminism is used during the generative process. In this section we de�ne and study

such measures.

We introduce de�nition of the mapping from the previous work [2] which tells us how

many decisions can be made from a given state on a given letter.

De�nition 5.1 Let us consider arbitrary 1-a-transducer M = (K,Σ,Σ, H, q0, F) and a

g-system G = (N, T,M, σ). We de�ne mapping dec from pairs (state, symbol) to integers

as follows: for each state q ∈ K and for each symbol a ∈ Σ:

if there exists an arc h ∈ H such that pr1(h) = q ∧ pr2(h) = a then :

dec(q, a) = |{h ∈ H | pr1(h) = q ∧ pr2(h) = a}| − 1

else :

dec(q, a) = 0.

5.1 Considering the number of generative steps

In this section, we de�ne and study a metric which measures how many decisions can a

given g-system make during a given number of generative steps.

37

De�nition 5.2 Let G = (N, T,M, σ) be a g-system, let M = (K,N ∪T,N ∪T,H, q0, F)

be a 1-a-transducer. Let α(w) = (q0, a0, v0, q1)...(qk, ak, vk, qk+1) be any computation of

M on w = a0...ak. We de�ne mapping stepDec from computations of M to integers as

follows:

stepDec(α(w)) =
k∑

i=0

dec(qi, ai)

We de�ne mapping stepDec from sequences of computations of M (corresponding to

consecutive steps of derivation in a g-system) to integers for a sequence of computations

α1(w1), ..., αm(wm) such that wj = pr3(αj−1(wj−1)) for j ∈ {2, ...,m} as follows:

stepDec(α1(w1), ..., αm(wm)) =
m∑
i=1

stepDec(αi(wi))

Finally, we de�ne mapping stepDec from pairs of g-system and number of generative

steps to integers as follows:

stepDec(G,m) = max (stepDec(α1(σ), ..., αm(wm)) | α1(σ)...αm(wm) ∈ (ΠM)m)

In what follows we search for an upper bound of the above de�ned metric in the general

case - g-systems generating all recursively enumerable languages. First, we show that we

can simulate an arbitrary $dgs by an equivalent g-system G satisfying stepDec(G,m) ≤ m

for all m and then we prove that this upper bound can be iteratively improved.

A simulation of $dgs is straightforward, nondeterminism is used just to decide whether

to delete the endmarker. The only problem that could occur during the simulation is that

our g-system could derive some "bad" words after deletion of the endmarker. To prevent

this we use the following normal form:

De�nition 5.3 Let G = (N, T,M, σ) be an arbitrary deterministic g-system with end-

marker, where M = (K,N ∪ T,N ∪ T,H, q0, F) is a deterministic 1-a-transducer. We

say that G is in normal form if the following conditions hold:

|F | = 1, and q0 6∈ F (5.1)

for the only accepting state q ∈ F, ∀h ∈ H : if pr4(h) = q then pr2(h) = $. (5.2)

Lemma 5.4 For arbitrary $dgs G = (N, T,M, σ), there exists $dgs G′ in normal form

such that L(G) = L(G′).

38

Proof. Let M = (K,N ∪ T,N ∪ T,H, q0, F). We construct M ′ = (K ′, N ∪ T,N ∪
T,H ′, q′0, F

′) as follows:

K ′ = K ∪ {qF , qN}

H$old = {h | h ∈ H : pr2(h) = $}

H$new = {(q, $, v, r) | ∀h = (q, $, v, p) ∈ H$old, where r = qF iff p ∈ F

and r = qN otherwise}

H ′ = (H ∪H$new)−H$old

F ′ = {qF}

q′0 = q0

It is not hard to see that G′ = (N, T,M ′, σ) is in normal form because its only accepting

state is qF 6= q0 which satis�es the condition 5.2.

Proof of L(G) = L(G′) is trivial because in construction of H ′ we changed only pr4

of those arcs from H which have to be the last arcs of the computation and for any

hnew = (q, $, v, r) ∈ H$new, hold = (q, $, v, p) ∈ H$old : r ∈ F ′ ⇐⇒ p ∈ F .

At this point we are ready to prove the upper bound mentioned.

Lemma 5.5 Let L ∈ LRE be an arbitrary language. There exists g-system G =

(N, T,M, σ) such that L(G) = L and ∀m : stepDec(G,m) ≤ m− 1.

Proof. From the Theorem 2 we have that there exists $dgs G′ = (N ′, T,M ′, σ), where

M ′ = (K ′, N ′ ∪ T,N ′ ∪ T,H ′, q′0, F ′) such that L(G′) = L and from lemma 5.4 we can

assume that it is in normal form. We construct M = (K,N ∪ T,N ∪ T,H, q0, F) as

follows:

N = N ′ ∪ {$}; K = K ′; q0 = q′0;F = F ′;

H = H ′ ∪ {h = (q, $, v, p) | (q, $, v$, p) ∈ H ′}

First, we show that L(G) = L(G′) by proving both inclusions:

L(G) ⊇ L(G′):

Let w ∈ L(G′) so there exists an integer k such that σ ⇒k
G′ w. From H ⊃ H ′ we have that

M is able to simulate any computation of M ′. G generates w as follows: M simulates

M ′ in each generative step except for the last arc h′ = (q, $, v$, p) in the kth generative

step which is replaced by h = (q, $, v, p).

L(G) ⊆ L(G′):

First, we mention three important observations about the work of G:

39

Observation 1: G works on a pre�x v ∈ ((N ∪ T) − {$})∗ in the same way as G′,

because we neither removed nor added any arc h such that pr2(h) 6= $ in the above

construction.

Observation 2: for all computational steps h′ = (p, $, v$, q) ∈ H ′ there are exactly

two computational steps (with the same pr1 and pr2) in H and those are (p, $, v$, q) and

(p, $, v, q).

Observation 3: if G deletes $ from the sentential form then the next generative step

will end in non-accepting state and M will halt. This statement holds because we did

not break the condition 5.2 from the de�nition of the normal form in construction of G.

Now let w ∈ L(G) so there exist k and a sequence of generative steps in G such that

σ ⇒k
G w. From the observation 3 it is clear that G must delete the $ symbol at the very

last arc of the kth generative step because otherwise it would halt. Until that point G and

G′ work identically (observation 1) and from the observation 2 we have that at this point

of generative process G′ reads the symbol $ so it derives w$. Thus w ∈ L(G′) because G′

is a $dgs.

In the second part of the proof we shall show that ∀m : stepDec(G,m) ≤ m − 1. G

is constructed from $dgs and for no new arc holds that pr3(h) contains $ so at any point

of generative process of G the sentential form contains at most one $ symbol and it is

located at the end of the sentential form. All arcs that break determinism of G satisfy

the property pr2(h) = $ so for the computation αM(w$) where w ∈ ((N ∪ T) − {$})∗

holds that stepDec(αM(w$)) = dec(q, $) = 1 where q is the state in which G reads $ and

stepDec(αM(w)) = 0. Furthermore, stepDec(αM(σ)) = dec(q0, σ) = 0 thus for any m

statement stepDec(G,m) ≤ m− 1 holds.

From the de�nition of the stepDec(G,m) mapping we can see that it is not restricted

to derivation of some particular word but it only depends on the length of the generative

process. We exploit this fact to add a large amount of deterministic generative steps into

the derivation in order to make the value of stepDec(G,m) small compared to m.

Lemma 5.6 Let G be an arbitrary g-system and let stepDec(G,m) = f(m). There

exists a g-system G′ = (N ′, T ′,M ′, σ′) such that L(G) = L(G′) and for all m

stepDec(G′,m) ≤ f(log∗(m)) + log∗(m).

Proof. From the given g-system G = (N, T,M, σ) and its 1-a-transducer M = (K,N ∪
T,N ∪ T,H, q0, F) we construct G′ = (N ′, T ′,M ′, σ′) as follows:

N ′ = N ∪Nnew, where Nnew = {σ′, 1, 0, A,B,C} and N ∩Nnew = ∅,

40

T ′ = T

M ′ = (K ′, N ′ ∪ T ′, N ′ ∪ T ′, H ′, q′0, F ′), where :

K ′ = K ∪Knew, where Knew = {q′0, qi1, qi0, qr1, qr0, qrep, q2} and K ∩Knew = ∅

H ′ = H ∪Hnew, where Hnew = {

(q′0, σ
′, 0Bσ, q′0),

(q′0, 0, ε, qi0),

(q′0, 1, ε, qi1),

(q′0, A, ε, q
′
0),

(qi1, 1, 0, qi1),

(qi1, 0, 0, qi0),

(qr0, 0, 0, qr0),

(qr0, 1, 0, qr1),

(qi0, 1, 1, qr1),

(qi0, 0, 1, qr0),

(qr1, 0, 1, qr0),

(qr1, 1, 1, qr1),



These arcs increment the counter

(qi1, B, C, qrep),

(qi1, B,A00B, q0),

}
counter over�ow: terminate or simulate one step of G

(qi0, B, 1B, qrep),

(qr1, B, 1B, qrep),

(qr0, B, 0B, qrep),

 counter does not over�ow, the rest of the sentential form is copied

(qi0, A,A, q2),

(qi1, A,A, q2),

(qr0, A,A, q2),

(qr1, A,A, q2),

(q2, 0, 00, q2),

(q2, B,B, qrep),


A is present in the sentential form - counter is being extended

41

(qr0, C, C, qrep),

(qi0, C, C, qrep),

(qi1, C, C, qrep),

(qr1, C, C, qrep),

(q′0, C, ε, qrep),


sentential form contains C: deleting the counter

(qrep, x, x, qrep) ∀x ∈ N ′ ∪ T ′}

F ′ = F ∪ {q′0, qrep}

The part of G′ corresponding to Hnew is depicted in �gure 5.1. Before we get to the

proof, let us analyze the work of G':

G' maintains the binary counter at the beginning of the sentential form followed by the

nonterminal B. In each generative step G' increments the counter by one (in reversal

lexicographic order). If the counter over�ows then G' has two options: it either simulates

one generative step of G and extends the counter or it decides to terminate and deletes

the counter. In the �rst case we have 1kBv ⇒G′ 0k−1A00Bv; v ∈ (N ∪ T)∗ and then

follows k − 1 steps in which A is shifted to he left and number of nonterminals 0 after A

is doubled. Thus we have that 0k−1A00Bv ⇒k−1
G′ 02kBv so the length of the counter is

exponentiated.

Corectness: L(G′) ⊆ L(G): let w ∈ L(G′) be a word. There exists a derivation of

w in G'. As we can see from the construction of G', the important generative steps are

those in which its counter over�ows. Let k be the number of such generative steps during

the derivation of w. Thus in the �rst k − 1 of these steps G' uses arc (qi1, B, 00B, q0)

after reading and incrementing the counter and then from q0 it uses the arcs from H in

the rest of such generative step. In the kth important step G' uses arc (qi1, B, C, qrep) and

the rest of the sentential form is copied. In the following generative steps G' does not

change, add or delete any symbol after the nonterminal C. The counter does not contain

any terminal symbol and in the very �rst generative step G' uses the arc (q′0, σ
′, 0Bσ, q′0)

thus G derives w after k − 1 generative steps from the initial nonterminal σ.

L(G′) ⊇ L(G): let w ∈ L(G) be a word so there exists derivation of w in G: σ ⇒k
G w

for some k. We �nd a derivation of w in G'. Again, the important generative steps of

G′ are those in which the counter over�ows because otherwise the symbols, which follow

after nonterminal B in the sentential form are just copied in the state qrep. Let us assume

a derivation of G' in which the arc (qi1, B, 00B, q0) is used in the �rst k such steps. Thus

G′ simulates G on the su�x following after nonterminal B in the sentential form, because

from the state q0 it uses only arcs from H. So after the kth important step the sentential

form 0kBw is derived, because in the initial generative step 0Bσ is derived from σ′. If

42

q′0start

qi1

qi0

qr0

qr1

qrep

q0

q2

...

σ′, 0Bσ

A, ε

1, ε

0, ε

C, ε

1, 0

B,A00B

B,C

C,C

0, 0

1, 1

0, 1
C,C

B, 1B

1, 1

0, 1

C,C

B, 1B
0, 0 1, 0

C,C

B, 0B

x, x

A,A

A,A

A,A

A,A

0, 00

B,B

Figure 5.1: Part of M' which is responsible for making 22.
..
2}

m purely deterministic

generative steps for m simulated steps of G.

43

in the next important generative step G' uses the arc (qi1, B, C, qrep) then the subword

w is copied. G' does not modify any symbol after C because for all arcs h ∈ H ′ such

that pr2(h) = C it holds that pr4 = qrep which is a "copy" state. The only thing that

remains to prove is that G′ deletes the counter properly. It is not hard to see that M'

shorten the counter by one digit per generative step - it writes the ε in the initial step of

the computation, one digit per any following 0 or 1 and then copies C moving to the qrep.

After deleting the whole counter, the sentential form Cw is derived and the following

generative step starts by the arc (q′0, C, ε, qrep) and then w is copied.

Now let us count the number of deterministic and nondeterministic steps of G' during

the generative process. The only nondeterminism occurs when the counter over�ows so

we have to answer the question how often it happens. The part of H' which increments

the counter is deterministic so it is not hard to see that G' generates all binary numbers

of the length of the counter (in rlo) before it over�ows. Thus on counter 0k G' does 2k

deterministic steps until it ower�ows. As we mentioned, after nondeterministic step G'

either terminates or the length of the counter is exponentiated - this can be done less

than log∗(m) times in m generative steps. Thus we have that in m generative steps of G'

there are at most log∗(m) + f(log∗(m)) nondeterministic decisions used.

Theorem 3. For arbitrary language L ∈ LRE there exists g-system G such that L(G) = L

and ∀m : stepDec(G,m) ≤ 2log∗(m).

Proof. This theorem follows from Lemmas 5.5 and 5.6.

Note that we can use the concept from Lemma 5.6 iteratively to obtain arbitrary slow

growth of the function stepDec(G,m).

The only possible improvement from this result is a constant value of the stepDec()

function, so our next question is whether there are languages in LG −LDG which can be

generated using constant number of nondeterministic decisions. The answer is yes and

an example of such language is any L ∪ {ε} where L is an in�nite language from LDG.

It is not hard to see that only one nondeterministic step is su�cient in the very �rst

generative step in which G decides whether it generates ε or starts to generate L. There

are also non-ε examples such as L = {an|n ≥ 1} ∪ {anb|n ≥ 1}.
These examples bring us to a hypothesis that for L = L1∪L2 where L1, L2 ∈ LDG we

can construct a g-system G such that L(G) = L and ∃c ∈ N : ∀n : stepDec(G, n) ≤ c.

Such statement can be easily proven for L1, L2 over disjoint alphabets, however, it does

not seem to be true in general. The potential counterexample to this hypothesis can be

the union of languages L1 = {anbn | n > 0}, L2 = {a2nbn | n > 0}. Intuitively, a g-system

generating the language L1 ∪ L2 has to modify the generated words a2ib2i and a2ibi in a

di�erent way in order to derive the words from L1 ∪L2 in the following generative steps,

44

but it cannot deterministically distinguish which of these two types of words is in the

current sentential form.

We have that stepDec(G,m) function splits the languages (corresponding g-systems

by which they are generated) into two classes: those for which it is constant and those

for which it is arbitrary slow increasing function. These results lead us to the idea of

introducing another measure of nondeterminism in generative systems which would bring

more granularity.

5.2 Considering the word length

The measure studied in this section is based on the minimal number of nondeterministic

decisions needed to derive the given word or any word (from the generated language) of

the given length. For this measure we obtain the linear dependence on the word length

in general case and logarithmic for languages Σ∗ and unary languages. Furthermore,

we show that for any recursive language L over an alphabet Σ this "nondeterministic"

complexity depends on the ratio of the number of words of a given lengthm to the number

of words of length m in Σ∗ − L.

De�nition 5.7 Let G = (N, T,M, σ) be an arbitrary g-system, let w be a word such

that w ∈ L(G) and let n ∈ N. We de�ne function lengthDec from pairs of g-system and

word (pairs of g-system and integer resp.) to integers as follows:

lengthDec(G,w) = min(stepDec(α0(σ), ..., αm(wm)) | pr3(αm(wm)) = w,

α0(σ), ..., αm(wm) realize a derivation of w in G)

lengthDec(G, n) = max(lengthDec(G,w)| |w| = n)

In other words, lengthDec(G,w) is the smallest number of nondeterministic decisions

needed to derive w in G and lengthDec(G, n) is the number of decisions needed to derive

any word in L(G) of length n.

First, we investigate the upper bound for lenghtDec(G, n) function in the general case

- arbitrary recursively enumerable language. We use the fact that we can simulate any

TM A on a given word by a deterministic g-system (Lemma 2.14). In the construction

from the following theorem the g-system �rst nondeterministically derives an arbitrary

word and then checks whether it belongs to L(A).

Theorem 4. Let A be a Turing machine such that L(A) ⊆ Σ∗. There exists a g-system

G = (N, T,M, σ) such that L(G) = L(A) and lengthDec(G, n) ≤ (n+ 1)|Σ|.

45

Proof. We construct a g-system G which uses nondeterminism to derive w$ for any word

w over the alphabet Σ and then works just like the $dgs from Lemma 2.14 except it

deletes the $ symbol from the sentential form in case that A accepts w. We show only

the part of set H (from its 1-a-transducer) which is responsible for derivation of w$ from

the initial nonterminal σ because the rest is trivial:

H ⊇ {(q0, σ, A
B

B
$, q1),

(q0, A,
B

B
qA, q1), where qA is the initial state of A

(q0, A,A
a

a
, q1),∀a ∈ Σ

(q1,
c

c
,
c

c
, q1),∀c ∈ Σ ∪ {B}

(q1, $, $, q1)}.

Note that nondeterminism is used only from the state q0 on nonterminal A.

Corectness: we shall prove that G can generate sentential form B
B
qA

a1
a1
...an

an
B
B

$ for any

word w = a1...an ∈ Σ∗. In the very �rst generative step G derives the sentential form

AB
B

$. Let us assume the derivation of G in which the following n+ 1 generative steps are

initialized by arcs:

(q0, A,A
an
an
, q1), ..., (q0, A,A

a1

a1

, q1), (q0, A,
B

B
qA, q1).

Then we have that after n+ 2 generative steps G derives B
B
qA

a1
a1
...an

an
B
B

$.

During this derivation G used nondeterminism n + 1 times in the initial steps men-

tioned above and dec(q0, A) = |Σ| so we have that lengthDec(G, n) = (n+ 1)|Σ| and the

theorem follows.

Although the construction from the previous theorem is straightforward, it seems that

we can hardly obtain better result unless some di�erent approach is used. We need to

specify arbitrary word from Σ∗ on which G will simulate TM A. Thus for the given length

n we have |Σ|n possible words so log(|Σ|n) = |Σ|n decisions are needed.

Note that if we want to construct G which generates words (for example in rlo) from

the previously derived terminal word then it has to �nd the end of the sentential form

and mark it with a special symbol in order to simulate TM A on this word. That

requires log(n) nondeterministic decisions for all of |Σ|n words. Thus even assuming

L(G) ∈ LREC this approach would result in a bigger value of lenghtDec(G, n) function

than the construction from Theorem 4.

From the Theorem 1 we know that Σ+ 6∈ LDG for |Σ| > 1. However, we can construct

dgs that generates all words from Σn of any given length n. Thus in order to construct

46

a g-system generating the language Σ∗ we need nondeterminism only for a derivation

of arbitrarily long sentential form and the number of decisions su�cient to do so is

logarithmic (to the derived length) as we prove in the following lemma:

Lemma 5.8 For an arbitrary alphabet Σ = {a0, ..., as} there exists g-system G =

(N, T, P, σ) such that L(G) = Σ∗ and lengthDec(G, n) ≤ log(n).

Proof. We construct G as follows:

T = {a0, ..., as}

N = {A, σ}

M = (K,Σ,Σ, H, q0, F) where

K = {q0, q1, q2, q3, q4}

F = K

H = {

(q0, σ, A, q0),

(q0, σ, ε, q0),

(q0, A, a0, q1),

(q0, A,AA, q2),

(q0, A,AAA, q2),

(q0, ai, ai+1, q3) ∀i ∈ {0, ..., s− 1},

(q0, as, a0, q4),

(q1, A, a0, q1),

(q3, aj, aj, q3) ∀j ∈ {0, ..., s},

(q4, ai, ai+1, q3) ∀i ∈ {0, ..., s− 1},

(q4, as, a0, q4)}

First, we shall prove the corectness of the construction: Inclusion L(G) ⊆ Σ∗ is trivial

because T = Σ. The oposite inclusion, L(G) ⊇ Σ∗: Let w = b1...bk ∈ Σ∗ be an arbitrary

word. We �nd the derivation of w in G. If w = ε then G can derive w directly from

σ by (q0, σ, ε, q0). So now let us assume |w| > 0. As we can see, G works in two

phases. First, it generates arbitrary number of nonterminals A and then it converts

them to terminals. In the second phase, it generates all words of the derived length

in reversal lexicographic order. We used similar approach of generating words in rlo

earlier so we do not prove the corectness of this concept again. Now we shall prove

that G can derive the sentential form which contains exactly k nonterminals A. Let

47

q0start

q1

q2

q3

q4

σ,A

σ, ε

A, a0

A,AA A,AAA

ai, ai+1

as, a0

A, a0

A,AA

aj, aj

ai, ai+1

as, a0

Figure 5.2: G-system that can derive any w ∈ Σ∗, |w| = n using log(n) nondeterministic

decisions.

us denote k1, ..., km integers such that k = 2k1 + ... + 2km and k1 > ... > km. Let

li = k1 − ki+1 for i = 1, ..,m − 1. The only nondeterministic state of G is q0 so we

can focus just on the �rst step of the computation in each generative step, because

∀h ∈ H : pr2(h) 6= σ =⇒ pr4(h) 6= q0. Let us consider a derivation of G in which these

�rst computational steps are h0, ..., hk1 where h0 = (q0, σ, A, q0), hli = (q0, A,AAA, q2)

and hj = (q0, A,AA, q2) for all i ∈ {1, ...,m − 1}, j ∈ {1, ..., k1} − {l1, ..., lm−1}. Let us

count the number of nonterminals A in the sentential form after k1 generative steps: for

the generative steps starting with hli the number of A is doubled and for those starting

with hj it is doubled and one more is added. Thus we have

#A = (...((2k1−k2 + 1)2k2−k3 + 1)...2km−1−km + 1)2km =

= 2k1−k2+k2−k3...+km−1−km+km + 2k2−k3+...+km + ...+ 2km = 2k1 + 2k2 + ...+ 2km = k

and in the next generative step G begins with h = (q0, A, a0, q1). As we can see G used

k1 nondeterministic decisions during the generation and the length of the derived word

is at least 2k1 thus the lemma holds.

Other languages for which nondeterminism is needed only to derive a sentential form

of arbitrary length are unary languages.

Lemma 5.9 Let L ∈ LRE be an arbitrary language over unary alphabet. There exists a

g-system G(N, T,M, σ) such that L(G) = L and lengthDec(G, n) ≤ log(n).

Proof. We construct G for a given Turing machine A such that L(A) ⊆ ({a})∗. G

simulates the computation of A on a word an from the sentential form B
B
qA

an

an
B
B

$ similarly

48

to the construction from Theorem 4 so we show only the part of H (from M) which is

responsible for the derivation of the sentential form B
B
qA

an

an
B
B

$, where qA is the initial state

of A, for any n .

H = {(q0, σ, A
B

B
$, q0), the initial arc

(q0, A,AAA, q1),

(q0, A,AA, q1),

(q0, A,
B
B
qA, q2),

 derive arbitrary number of nonterminals A

(q1, A,AA, q1),

(q2, A,
a

a
, q2),

(q1,
B

B
,
B

B
, q1),

(q1, $, $, q1),

(q2,
B

B
,
B

B
, q2),

(q2, $, $, q2)}

The construction is similar to the one in Lemma 5.8 as well as its proof.

In the proof of Lemma 5.9 and Theorem 4 we used a g-system which simulated the

given TM A on a nondeterministically derived word. It is not hard to see that simulation

of an arbitrary TM A on more words at once is meaningless because A may not halt on

certain inputs. But situation is di�erent assuming a language L(A) ∈ LREC . We can

construct g-system G which simulates A on every word from Σn (where n is nondetermin-

istically derived) and then makes one of the accepted words terminal. In general, we do

not get better result than in Theorem 4 because G has to use nondeterminism to specify

one from at most |Σ|n accepted words. But this approach can be usefull if the number

of accepted words is considerably less as we show in the following theorem:

Theorem 5. Let L ∈ LREC be an arbitrary language. There exists a g-system G such that

L(G) = L and lengthDec(G, n) ≤ log(n) + log(|Wn|) where Wn = {w|w ∈ L, |w| = n}.

Proof. We construct G for the given TM A which halts on every input such that L(A) ⊆
Σ∗, where Σ = {a1, ..., ak}. The idea of the construction is that G simulates A on every

word of length n and then makes the mth accepted word terminal. Numbers n,m are

generated nondeterministically. We divide the work of G into 5 phases:

1. G uses nondeterminism to derive the sentential form P2A
nSASAnS for arbitrary n

from the initial nonterminal σ.

49

q0start

qP1,1

qP1,2

qP1,3 qP1,4

σ, P1SS

P1, P1A

P1, P1

P1, P2

A,AA

S, SA

A,AA

S, S

A,A

S, P3AS A,A

S, S

Figure 5.3: Phase 1: G uses nondeterminism to derive σ ⇒∗G P2A
nP3ASA

nS for arbitrary

n.

2. G is preparing to generate all words of length n - the number of such words is kn.

After this phase the sentential form is P3A
knSAnS.

3. In this phase G iteratively copies the subword AnS, converts this copy to an1 and in-

crements all previously generated and converted copies in rlo. The subword Akn from the

previous sentential form serves as a counter of such cycles. In the end G converts symbols

to their double track version so after this phase the sentential form is P4Can1 $...ank$.

4. G nondeterministically generates subword Am for arbitrary m at the beginning of the

sentential form. This subword will be used to select the mth accepted word to be made

terminal in the following phase.

5. G simulates TM A on each subword simultaneously. In each generative step it checks

whether the �rst subword �nished the simulation. If it is so, G either deletes it and

decrements the counter if A accepts or just deletes it if A rejects. If A accepts and the

counter is 0 then G makes the according subword (terminals from its �rst track) terminal

and deletes anything else.

More formally, let G′ = (N ′, T ′,M ′, σ′) be $dgs from Lemma 2.14, where its 1-a-

transducer M ′ = (K ′, N ′ ∪ T ′, N ′ ∪ T ′, H ′, q′0, F ′). We construct G = (N, T,M, σ) as

follows:

N = N ′ ∪Nnew, where Nnew = {σ, P1, ..., P5, A, S, C,W,L,R, $} and N ′ ∩Nnew = ∅

T = T ′ = {a1, ..., ak}

50

q0start qP2,1

qP2,2 qP2,3

qP2,4

qP2,5

P2, ε

A, P2

A,A

P3, P3

A,Ak

S, S

A,A

S, S
P3, P3

A,A

S, S

Figure 5.4: Phase 2: G deterministically derives P2A
nP3ASA

nS ⇒∗G P3A
knSAnS for

k = |Σ|.

M = (K,N ∪ T,N ∪ T,H, q0, F) where :

K = K ′ ∪Knew, where Knew = {q0} ∪ {qP1,1, ..., qP1,4} ∪ {qP2,1, ..., qP2,5}∪

∪ {qP3,1, ..., qP3,19} ∪ {qP4,1, qP4,2} ∪ {qP5,1, ..., qP5,9} and K ′ ∩Knew = ∅

F = K

H = H ′ ∪ {

phase 1 :

(q0, σ, P1SS, q0),

(q0, P1, P1A, qP1,1),

(q0, P1, P1, qP1,2),

(q0, P1, P2, qP1,3),

(qP1,1, A,AA, qP1,1),

(qP1,1, S, SA, qP1,2),

(qP1,2, A,AA, qP1,2),

(qP1,2, S, S, qP1,2),

(qP1,3, A,A, qP1,3),

(qP1,3, S, P3AS, qP1,4),

(qP1,4, A,A, qP1,4),

(qP1,4, S, S, qP1,4),

phase 2 :

51

q0start

qP3,1

qP3,2

qP3,3 qP3,4

qP3,6

qP3,9

qP3,10

qP3,11

qP3,12 qP3,13

qP3,14

qP3,15

qP3,16

qP3,17

qP3,18

qP3,19

qP3,7qP3,8

qP3,5

qP3,20

P3, ε

A, P3S, ε

A, P4

A, ε

S, C B
B
qA

W,P3S

S, ε

A,A

A, SWLAA

A,AA

S,RS

x, x

W,AS

A,W

A,A

L,A

A,AL

A, ε
A,A

R,RA

x, x

C,CA

R,CS

L,W

A,AL

C, ε
A,A

S, S

A, a0

S, S

ak, a1

ai, ai+1 S, S

aj, aj

aj,
aj
aj

S, B
B
$

aj,
B
B
qA

aj
aj

Figure 5.5: Phase 3: G derives all words from Σn for a given n and converts them to the

double track version so TM A can be simulated on them. More precisely, this phase is

responsible for the derivation of P3A
knSAnS ⇒∗G P4Can1 $a2a

n−1
1 $...ank$.

52

q0start

P4,1

P4,w

P4, P4A

P4, P4

P4, P5

A,AA

C,C

x, x

Figure 5.6: Phase 4: G uses nondeterminism to derive subword Am at the beginning of

the sentential form for arbitrary m.

q0start qP5,1

qP5,2

qP5,3 qP5,4

qP5,5

qP5,6 qP5,7

qP5,8qP5,9

A

P5, ε

A, P5

A,A

C, ε
B
B
, ε

qaccept, C

qreject, AC

z,AC

y, ε

$, ε

C, ε

B
B
, ε

qreject, P5C

qaccept, ε

B
x
, ε

ai
x
, ai

$, ε
x, ε

z, P5C

Figure 5.7: Phase 5: G simulates TM A on every word of length n and then the mth of

the accepted words is made terminal, all others are deleted.

53

(qP2,1, A, P2, qP2,2),

(qP2,2, A,A, qP2,2),

(qP2,2, P3, P3, qP2,3),

(qP2,3, A,A
k, qP2,3),

(qP2,3, S, S, qP2,4),

(qP2,4, A,A, qP2,4),

(qP2,4, S, S, qP2,4),

(qP2,1, P3, P3, qP2,5),

(qP2,5, S, S, qP2,5),

(qP2,5, A,A, qP2,5),

phase 3 :

(q0, P3, ε, qP3,1),

(qP3,1, A, P3, qP3,2),

(qP3,1, S, ε, qP3,7),

(qP3,7, A, P4, qP3,8),

(qP3,8, A, ε, qP3,8),

(qP3,8, S, C
B

B
qA, qP3,5), where qA is the initial state of TM A

(qP3,7,W, P3S, qP3,9),

(qP3,2, S, ε, qP3,3),

(qP3,2, A,A, qP3,2),

(qP3,3, A, SWLAA, qP3,4),

(qP3,4, A,AA, qP3,4),

(qP3,4, S, RS, qP3,6),

(qP3,6, x, x, qP3,6),∀x ∈ (N ∪ T)

(qP3,3,W,AS, qP3,9),

(qP3,9, A,W, qP3,10),

(qP3,10, A,A, qP3,10),

(qP3,10, L, A, qP3,11),

(qP3,11, A,AL, qP3,12),

(qP3,12, A, ε, qP3,13),

(qP3,13, A,A, qP3,13),

54

(qP3,13, R,RA, qP3,14),

(qP3,14, x, x, qP3,14),∀x ∈ (N ∪ T)

(qP3,10, C, CA, qP3,14),

(qP3,11, R, CS, qP3,14),

(qP3,9, L,W, qP3,15),

(qP3,15, A,AL, qP3,12),

(qP3,9, C, ε, qP3,16),

(qP3,16, A,A, qP3,16),

(qP3,16, S, S, qP3,17),

(qP3,17, A, a1, qP3,17),

(qP3,17, S, S, qP3,18),

(qP3,18, ak, a1, qP3,18),

(qP3,18, ai, ai+1, qP3,19) ∀i ∈ {1, ..., k − 1},

(qP3,19, S, S, qP3,18),

(qP3,19, a, a, qP3,19) ∀a ∈ Σ,

(qP3,5, a,
a

a
, qP3,5) ∀a ∈ Σ,

(qP3,5, S,
B

B
$, qP3,20),

(qP3,20, a,
B

B
qA
a

a
, qP3,5) ∀a ∈ Σ where qA is the initial state of TM A,

phase 4 :

(q0, P4, P4, qP4,1),

(q0, P4, P5, qP4,2),

(qP4,1, A,AA, qP4,1),

(qP4,1, C, C, qP4,2),

(qP4,2, x, x, qP4,2),∀x ∈ (N ∪ T)

phase 5 :

(qP5,1, A, P5, qP5,2),

(qP5,2, A,A, qP5,2),

(qP5,2, C, ε, qP5,3),

(qP5,3,
B

B
, ε, qP5,4),

(qP5,4, qaccept, C, qP5,5),

55

(qP5,4, qreject, AC, qP5,5),

(qP5,4, z, ACv, q) ∀z ∈ (N ∪ T)− {qaccept, qreject}, where (

[
B

B

]
, z, v, q) ∈ H ′,

(qP5,5, y, ε, qP5,5) ∀y ∈ (N ∪ T)− {$},

(qP5,5, $, ε, q
′
0),

(qP5,1, C, ε, qP5,6),

(qP5,6,
B

B
, ε, qP5,7),

(qP5,7, qreject, P5C, qP5,5),

(qP5,7, qaccept, ε, qP5,8),

(qP5,8,
B

x
, ε, qP5,8) ∀x ∈ (N ∪ T),

(qP5,8,
ai
x
, ai, qP5,8) ∀x ∈ (N ∪ T),∀i ∈ {1, ..., k}

(qP5,8, $, ε, qP5,9),

(qP5,9, x, ε, qP5,9) ∀x ∈ (N ∪ T),

(qP5,7, z, P5Cv, q)∀z ∈ (N ∪ T)− {qaccept, qreject} and (

[
B

B

]
, z, v, q) ∈ H ′}

The construction of each phase is shown in �gures 5.3, 5.4, 5.5, 5.6, 5.7. Note that only

phases 1 and 4 contain nondeterminism. We prove that in each phase G works as we

suggested:

Phase 1: the proof that G can generate any number of nonterminals A is similar to

the one of Lemma 5.8. This phase ends after the generative step in which M uses the arc

(q0, P1, P2, qP1,3) in the �rst computational step. Now we show by induction that until

that point after each generative step the sentential form is P1A
iSAiS for some i. After

the initial step the sentential form is P1S so the base of the induction holds. Let the

sentential form be v = P1A
jSAjS. There are three possible computations of M on such

input:

α1(v) =(q0, P1, P1A, qP1,1)(qP1,1, A,AA, qP1,1)j(qP1,1, S, SA, qP1,2)

(qP1,2, A,AA, qP1,2)j(qP1,2, S, S, qP1,2),

α2(v) =(q0, P1, P1, qP1,2)(qP1,2, A,AA, qP1,2)j(qP1,2, S, S, qP1,2)

(qP1,2, A,AA, qP1,2)j(qP1,2, S, S, qP1,2),

α3(v) =(q0, P1, P2, qP1,3)(qP1,3, A,A, qP1,3)j(qP1,3, S, P3AS, qP1,4)

(qP1,4, A,A, qP1,4)j(qP1,4, S, S, qP1,4)

56

We can easily see that pr3(α1(v)) = P1A
2j+1SA2j+1S, pr3(α2(v)) = P1A

2jSA2jS and

pr3(α3(v)) = P2A
jP3ASA

jS.

Phase 2: We want to prove that P2A
nP3ASA

nS ⇒n+1
G P3A

knSAnS for any positive

integer n. In this phase the number of nonterminals A between P3 and S is iteratively

multiplied by k. The number of such steps is determined by the length of the �rst block

of nonterminals A in the sentential form which is decreased by one in each step. More

precisely, on the sentential form P2A
iP3A

jSAmS, for all i, j > 0, m ≥ 0, the computation

of M is as follows:

(q0, P2, ε, qP2,1)(qP2,1, A, P2, qP2,2)(qP2,2, A,A, qP2,2)i−1(qP2,2, P3, P3, qP2,3)

(qP2,3, A,A
k, qP2,3)j(qP2,3, S, S, qP2,4)(qP2,3, A,A, qP2,4)m(qP2,4, S, S, qP2,4)

so we have that

P2A
iP3A

jSAmS ⇒G P2A
i−1P3A

jkSAmS.

On the pre�x P2P3 the computation of M starts with (q0, P2, ε, qP2,1)(qP2,1, P3, P3, qP2,5)

and the remaining nonterminalsA, S are copied in the state qP2,5 by the arcs (qP2,5, A,A, qP2,5)

or (qP2,5, S, S, qP2,5) respectively. Thus we have that

P2A
nP3ASA

nS ⇒n
G P2P3A

knSAnS

⇒G P3A
knSAnS.

Phase 3: We want to show that the derivation in this phase is the following:

P3A
knSAnS ⇒∗G P4Can1 $a2a

n−1
1 $...ank$.

First, we analyze particular generative steps of G and then we put them together obtaining

the above derivation. In the following part we denote by wrest any word over N ∪ T and

we use it in cases when M does not change the su�x of the input.

In what follows, the sequence of steps which is responsible for addition of the subword

an1 after the second nonterminal S in the sentential form is analyzed. It consists of the

following steps: block An is doubled (An LA2nR), then using nonterminals L,R its

middle is found (LA2nR AnLRAn) and �nally, the second block An is converted to

terminals (AnLRAn AnSan1).

The computation of M on the sentential form P3A
iSAnSwrest for all i, n > 0, looks as

follows:

(q0, P3, ε, qP3,1)(qP3,1, A, P3, qP3,2)(qP3,2, A,A, qP3,2)i−1(qP3,2, S, ε, qP3,3)

(qP3,3, A, SWLAA, qP3,4)(qP3,4, A,AA, qP3,4)n−1(qP3,4, S, RS, qP3,6)(qP3,6, x, x, qP3,6)...

57

so the output is P3A
i−1SWLA2nRSwrest. The nonterminal W in the sentential form

indicates that "subroutine" which adds the subword an1 did not �nish yet so it prevents

the doubling of nonterminals A while it is present.

Two cases in which nonterminals L and R are shifted towards themselves follow. Let

us assume input P3A
iSWAlLA2n−2lRAlSwrest for any i > 0, l < n. If l = 0 M works as

follows:

(q0, P3, ε, qP3,1)(qP3,1, A, P3, qP3,2)(qP3,2, A,A, qP3,2)i−1(qP3,2, S, ε, qP3,3)

(qP3,3,W,AS, qP3,9)(qP3,9, L,W, qP3,15)(qP3,15, A,AL, qP3,12)(qP3,12, A, ε, qP3,13)

(qP3,13, A,A, qP3,13)n−2(qP3,13, R,RA, qP3,14)(qP3,14, x, x, qP3,14)...

thus P3A
iSWLA2nRSwrest ⇒G P3A

iSWALAn−2RASwrest.

In case that l > 0, the �rst i+ 3 computational steps of M are similar to the previous

case. Computation then continues by:

...(qP3,9, A,W, qP3,10)(qP3,10, A,A, qP3,10)l−1(qP3,10, L, A, qP3,11)(qP3,11, A,AL, qP3,12)

(qP3,12, A, ε, qP3,13)(qP3,13, A,A, qP3,13)2n−2l−2(qP3,13, R,RA, qP3,14)(qP3,14, x, x, qP3,14)...

thus the sentential form P3A
iSWAl+1LA2n−2l−2RAl+1Swrest is derived.

For l = n we have the sentential form P3A
iSWAnLRAnSwrest on which the com-

putation of M starts as in the previous case and then continues from the state qP3,11 as

follows:

...(qP3,11, R, CS, qP3,14)(qP3,14, x, x, qP3,14)...

so the output is P3A
iSWAnCSAnSwrest. The fact that nonterminal R follows immedi-

ately after L in the sentential form indicates that they are located in the middle of the

block A2n. M replaces them by nonterminals CS, where S separates nonterminals A and

C is shifted to the left in the following steps in order to signalize that the middle of A2n

was found.

As suggested, on the sentential form P3A
iSWAlCAn−lSwrest for any i, l > 0, C is

shifted to the left. After reading pre�x P3A
iSWAl 1-a-transducer M is in the state qP3,10

and word P3A
iSWAl−1 has been written to the output so far (similarly to the previous

case). The rest of the computation looks as follows:

(qP3,10, C, CA, qP3,14)(qP3,14, x, x, qP3,14)...

so the sentential form P3A
iSWAl−1CAn−l+1Swrest is derived.

After certain number of such shifts C appears next to the nonterminal W in the

sentential form. At this point, nonterminals WC are deleted, the last block An is trans-

formed to an1 and all terminal subwords are incremented in rlo. More formally, on the

58

sentential form P3A
iSWCAnSAnSw1S...SwlS for all i > 0 and w1, ..., wl ∈ Σ+ M works

as follows: on pre�x P3A
iSW M moves to the state qP3,9 and writes P3A

iS so far as we

have shown before. The computation then continues with arcs:

(qP3,9, C, ε, qP3,16)(qP3,16, A,A, qP3,16)n(qP3,16, S, S, qP3,17)

(qP3,17, A, a1, qP3,17)n(qP3,17, S, S, qP3,18),

so AnSan1S is appended to the output. We shall show that from the state qP3,18 on the

input arkajwS for any r, where j < k and w ∈ Σ∗, M writes ar1aj+1wS and ends up again

in the state qP3,18. In such case the computation of M is:

(qP3,18, ak, a1, qP3,18)r(qP3,18, aj, aj+1, qP3,19)(qP3,19, a, a, qP3,19)|w|(qP3,19, S, S, qP3,18)

where a is arbitrary terminal from Σ. Thus the rest of the terminal words separated by S is

incremented in rlo so after this generative step the sentential form P3A
iSAnSw′1S...Sw

′
lS

is derived, where w′s is the next successor of ws in rlo for all s ∈ {1, ..., l}.
The last case we analyze is the input of a form P3SA

nSw1S...SwknS, where w1, ..., wkn

are terminal words from Σ∗, on which M works as follows:

(q0, P3, ε, qP3,1)(qP3,1, S, ε, qP3,7)(qP3,7, A, P4, qP3,8)(qP3,8, A, ε, qP3,8)n−1

(qP3,8, S, C
B

B
qA, qP3,5)(qP3,5, a,

a

a
, qP3,5)...(qP3,5, S,

B

B
$, qP3,20)(qP3,20, a,

B

B
qA
a

a
, qP3,5)...

where a stands for any terminal a ∈ Σ and qA is the initial state of TM A. After such

generative step the sentential form P4Cw1$...wnk$ is derived.

From the above analysis we have that G works on P3A
knSAnS as follows:

while P3 is followed by A in the sentential form, M enters the cycle:

P3A
jSAnSwrest ⇒G P3A

j−1SWLA2nRSwrest

While L is not followed by R:

P3A
iSWAlLA2n−2lRAlSwrest ⇒G P3A

iSWAl+1LA2n−2l−2RAl+1Swrest

P3A
iSWAnLRAnSwrest ⇒G P3A

iSWAnCSAnSwrest

While W is followed by A shift C to the left:

P3A
iSWAlCAn−lSwrest ⇒G P3A

iSWAl−1CAn−l+1Swrest

P3A
iSWCAnSAnSw1S...Swkn−i−1S ⇒G P3A

iSAnSw1S...Swkn−iS

where ws is the sth word in rlo from Σn for all s ∈ {1, ..., kn}. Note that this cycle is

repeated kn times so after the cycle ends the derived sentential form contains all words

from Σn in rlo (separated by S). The last generative step of this phase is:

P3SA
nSan1S...Sa

n
kS ⇒G P4Can1 $...ank$

59

Phase 4: In this phase an arbitrary number of nonterminals A is generated so the

sentential form P5A
mCan1 $...ank$ for any m is derived. For that purpose nondeterminism

is used similarly to the construction from Lemma 5.8.

Phase 5: G simulates the work of G' on each of the derived words (its double track

version) and subword Am is used to specify which word from the "accepted" ones will be

generated in the terminal form.

Now let us analyze the work of M on the sentential form P5A
iC B

B
zwfirst$wrest for any

i > 0, z ∈ N ∪T , wfirst ∈ ((N ∪T)−{$})∗, where zwfirst is double track word composed

of input word on the �rst track and current con�guration of simulated TM A on the

second track. Word wrest contains the rest of such words delimited by $ symbol. On the

pre�x P5A
iC B

B
where i > 0 M works as follows:

(q0, P5, ε, qP5,1)(qP5,1, A, P5, qP5,2)(qP5,2, A,A, qP5,2)i−1(qP5,2, C, ε, qP5,3)(qP5,3,
B

B
, ε, qP5,4).

Then the computation continues according to z, because M checks whether the �rst

simulation reached accepting or rejecting con�guration. For z = qaccept we have:

(qP5,4, qaccept, C, qP5,5)(qP5,5, y, ε, qP5,5)|wfirst|(qP5,5, $, ε, q
′
0)

and then M simulates one step of G' on the remaining subwords delimited by $ which

can be easily seen from the assumption that on endmarker symbol M' moves to q′0. Thus
B
B
zwfirst$ is deleted from the sentential form and counter Ai is decremented by one.

In case that z = qreject M continues with (qP5,4, qreject, AC, qP5,5) and the rest is the

same as in the previous case. Again, subword B
B
zwfirst$ is deleted but this time counter

is not decremented.

In the last case when z 6∈ {qaccept, qreject}M uses the arc (qP5,4, z, ACv, q) such that the

arc (
[
B
B

]
, z, v, q) ∈ H ′ and simulates one generative step of G' on each subword including

zwfirst$.

On similar sentential form but without nonterminals A the computation of M starts

as follows:

(q0, P5, ε, qP5,1)(qP5,1, C, ε, qP5,6)(qP5,6,
B

B
, ε, qP5,7)

and then, again, computation di�ers according to z. On z 6∈ {qaccept, qreject} M continues

with (qP5,7, z, P5Cv, q) such that (
[
B
B

]
, z, v, q) ∈ H ′ so one step of G' is simulated on the

rest similarly to the previou case.

In case z = qreject the following arc is (qP5,7, qreject, P5C, qP5,5) and then wfirst is deleted

and one step of G' is simulated on the rest of the sentential form in aforementioned way.

The last case is z = qaccept on which the computation continues by

(qP5,7, qaccept, ε, qP5,8)(qP5,8,
a

x
, a, qP5,8)...(qP5,8,

B

x
, ε, qP5,8)...(qP5,8, $, ε, qP5,9)(qP5,9, x, ε, qP5,9)...

60

where a represents any terminal and x any symbol from N ∪T . Thus terminal sentential

form of the word from the �rst track of wfirst is derived.

From the above analysis we can see that in this phase G from the sentential form

P5A
mCan0 $...ank$

derives the m+ 1th subword from the �rst track which is accepted by TM A.

Now that we made the analysis of all phases we shall show the correctness of the

construction. To prove the inclusion L ⊆ L(G) we �nd the derivation of arbitrary w ∈ L
in G. Let n = |w| and let m = #v | v ∈ L, |v| = n, v precedes w in rlo. The derivation

of w in G looks as follows:

σ ⇒∗G P2A
nP3ASA

nS (phase 1)

⇒∗G P3A
knSAnS (phase 2)

⇒∗G P4Can1 $...ank$ (phase 3)

⇒∗G P5A
mCan1 $...ank$ (phase 4)

⇒∗G w (phase 5)

Now we prove the opposite inclusion L ⊇ L(G): for any word w generated by G it holds

that G' derives from B
B
qA

w
w

B
B

$ the sentential form starting with B
B
qaccept thus w ∈ L(A)

and G will halt on any sentential form starting with terminal. Both inclusions hold so

L = L(G).

Let us count the number of nondeterministic decisions made during the derivation of

w ∈ L(G), |w| = n. In the phase 1 G can derive sentential form P2A
nP3ASA

nS using

log(n) decisions (similarly to Lemma 5.8). In the phase 4 this number is log(m) (for m

generated nonterminals A) as well so the last question is what is the biggest meaningful

m? From the analysis of G we can see that in phase 5 the number of nonterminals A in the

sentential form is decreased when the simulation of the �rst subword in the sentential form

reaches the acceptance - pre�x P5A
iC B

B
qaccept. Thus the maximal meaningful number of

nonterminals A generated in phase 4 is the number of distinct words of the given length

that are accepted by the Turing machine A. Thus we have that lengthDec(G, n) =

log(n) + log(|Wn|) where Wn = {w|w ∈ L, |w| = n} and the theorem follows.

61

Chapter 6

Conclusion

A property of languages generated by dgs related to pre�xes was proven in Chapter 3

which brings more light to the reason why are deterministic generative systems so weak

and why adding the endmarker helps to improve their generative power.

In Chapter 4 we presented a construction of a $dgs G for arbitrary Turing machine

A such that L(G) = L(A). The main idea of this construction was to generate the words

from L(A) in order given by the number of computational steps of A on which they are

accepted. This enabled us to simulate only limited number of steps of A and to avoid

the non halting simulations.

We introduced two computational measures of nondeterminism in generative systems

based on the lenght of the derivation and on the length of the derived word in Chapter

5. We showed that between two nondeterministic generative steps an arbitrary number

of deterministic steps can be inserted. It also turns out that nondeterminism is needed

mainly to derive arbitrary word from Σ∗ and veri�cation whether this word is accepted

by a given Turing machine can be done deterministically.

Some questions from [1] about deterministic g-systems remain open despite our e�ort

to solve them. Namely, it remains unclear whether the family of languages LDG is closed

under ∩R and whether LDG − LCS = ∅.

63

Bibliography

[1] Martin Králik. Deterministic generative systems. Master's thesis. Comenius Univer-

sity, Bratislava, Faculty of Mathematics, Physics and Informatics. 2002.

[2] Du²an Krcho. Non-determinism in Generative Systems. Master's thesis. Comenius

University, Bratislava, Faculty of Mathematics, Physics and Informatics. 2002.

[3] Branislav Rovan. A framework for studying grammars. In International Symposium on

Mathematical Foundations of Computer Science, LNCS 118, pages 473�482. Springer,

1981.

65

	Introduction
	Definitions and known results
	1-a-transducers and generative systems
	Deterministic g-systems and deterministic g-systems with endmarker

	Deterministic g-systems and prefixes
	A generative power of deterministic g-systems with endmarker
	Measuring nondeterminism in g-systems
	Considering the number of generative steps
	Considering the word length

	Conclusion

