COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NONDETERMINISM IN GENERATIVE SYSTEMS
MASTER THESIS

2021
BC. JAN ROSINA

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NONDETERMINISM IN GENERATIVE SYSTEMS
MASTER THESIS

Study Programme: Computer Science

Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: prof. RNDr. Branislav Rovan, Phd.

Bratislava, 2021

be. JAn Rosina

89441077

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Bc. Jan Rosina
Study programme: Computer Science (Single degree study, master II. deg., full
time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak
Title: Nondeterminism in generative systems

Annotation: Deterministic and nondeterministic generative systems are studied in the thesis
emphasizing the measures of nondeterminism in derivations of generative
systems. Furthermore, the generative power of deterministic generative systems
with endmarkers is investigated.

Aim: The goal of the thesis is to explore deterministic and nondeterministic
generative systems with the emphasis on defining and studying the measures
of nondeterminism in derivations of generative systems. An additional goal
is to explore properties of families of languages generated by deterministic
generative systems, in particular the relation of the family of languages
generated by deterministic generative systems with endmarker to the family of
recursively enumerable languages.

Supervisor: prof. RNDr. Branislav Rovan, PhD.

Department: FMFILKI - Department of Computer Science

Head of prof. RNDr. Martin Skoviera, PhD.

department:

Assigned: 01.09.2020

Approved: 08.02.2021 prof. RNDr. Rastislav Kralovi¢, PhD.

Guarantor of Study Programme

Student Supervisor

89441077

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Jan Rosina

Studijny program: informatika (Jednoodborové stidium, magistersky II. st.,
denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Nondeterminism in generative systems

Nedeterminizmus v generativnych systémoch

Anotacia: V préci su skaimané deterministické a nedeterministické generativne systémy
s dérazom na miery nedeterminizmu v odvodeniach v generativnych systémoch.
V praci je skimand aj generativna sila deterministickych generativnych
systémov s endmarkerom.

Ciel’: Cielom prace je skumat' deterministické a nedeterministické generativne
systtmy s dorazom na definovanie a skiimanie mier nedeterminizmu
v odvodeniach generativnych systémov. Dal$im cielom prace je preskiimat
vlastnosti tried generovanych deterministickymi g-systémami, najmé vztah
deterministickych g-systémov s endmarkrom a triedy rekurzivne vy¢isliteI'nych

jazykow.
Veduci: prof. RNDr. Branislav Rovan, PhD.
Katedra: FMFI.KI - Katedra informatiky

Veduci katedry: prof. RNDr. Martin Skoviera, PhD.

Sposob spristupnenia elektronickej verzie prace:
bez obmedzenia

Datum zadania: 01.09.2020

Datum schvalenia: 08.02.2021 prof. RNDr. Rastislav Kralovi¢, PhD.
garant Studijného programu

Student veduci prace

il

Abstrakt

Tato praca sleduje dva hlavné ciele pri skimani generativnych systémov. Prvym je
skumaft silu deterministickych generativnych systémov s endmarkerom, kde sme dokézali
rovnost s triedou rekurzivne vy¢islitelnych jazykov. Druhym je definovat a skimat vypoc-
tové miery nedeterminizmu v generativnych systémoch. V praci uvadzame dve takéto
miery. Prva meria pocet nedeterministickych rozhodnuti vzhTadom na dizku odvode-
nia. Pri tejto miere sme ukazali, Zze pre ubovolny rekurzivne vycislitelny jazyk exis-
tuje generativny systém s [ubovolne pomaly rasticim hornym ohrani¢enim zloZitosti.
Druhé definovana miera uvazuje pocet nedeterministickych rozhodnuti pri odvodzovani
slov danej dizky. Vo vseobecnom pripade, teda pre rekurzivne vyéislitelné jazyky, dosté-
vame linearny horny odhad vzhladom na dlzku slov. Pre unarne jazyky a jazyk ©*
dostavame logaritmickd horni hranicu a pre rekurzivne jazyky horné ohranicenie siivisi

s poc¢tom slov danej dizky patriacich do daného jazyka.

9~ v

Klacové slova: generativne systémy, determinizmus, nedeterminizmus, generativne

systémy s endmarkerom

v

Abstract

This thesis has two main goals in the research of generative systems. The first one is to
investigate the power of deterministic generative systems with endmarker for which we
prove equality to the family of recursively enumerable languages. The second one is to
define and study computational measures of nondeterminism in generative systems. We
introduce two such measures. First of them measures the number of nondeterministic
decisions in relation to the length of the derivation. For this measure we show that
for an arbitrary recursively enumerable language there exists an equivalent generative
system with arbitrarily slowly increasing upper bound function of complexity. The second
measure considers the dependency of the number of nondeterministic decisions on the
length of the derived words. In the general case, for recursively enumerable languages,
we obtain linear upper bound function with respect to the length of the words. For unary
languages and language ¥* we obtain logarthmic upper bound and upper bound function
of recursive languages is related to the number of words of a given length belonging to a

given language.

Keywords: generative systems, determinism, nondeterminism, generative systems with

endmarker

Contents

1 Introduction

2 Definitions and known results
2.1 1l-a-transducers and generative systems

2.2 Deterministic g-systems and deterministic g-systems with endmarker
3 Deterministic g-systems and prefixes
4 A generative power of deterministic g-systems with endmarker

5 Measuring nondeterminism in g-systems
5.1 Considering the number of generative steps

5.2 Considering the word length

6 Conclusion

Vil

List of Figures

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

Phase 1 of $dgs G generating L € Lrg which is responsible for the deriva-
tion of we$ =¢ PA™SHw SA™$, where m is the number of steps on
which TM A accepts word wy and w; is the successor of wg in rlo.
Phase 2 of $dgs G generating L € Lrg in which are derived subwords on
which will be TM A simulated later, so the derivation P,A™SHw; SA™$ =,
PsA™Hwy S...Sal*S$ is made. In the yellow part the last terminal subword
is copied, in the blue part this word is incremented in rlo, the green part
is responsible for comparison of the length of this word to m and the pink
part corresponds to the last step of this phase in which terminal subwords
are converted to their double track versions.
Phase 3 of $dgs G generating L € Lrr: G works on the sentential from
PsA™Hwy S...a7'S$. The first of wy, ..., a}" that is in L,,(A) is made termi-
nal or P;A™$ is derived if there is no such subword. One step of TM A is
simulated on all derived subwords in the yellow branch, after the simula-
tion of m steps of A G checks whether some of them ends in the accepting
configuration using blue part and in the green part the nonterminal M or
C resp. is shifted to the beginning of the sentential form.
Phase 4 of $dgs G generating L € Lrg: the number of nonterminals A -
simulated steps of TM A - is increased and the second counter is rebuilded

so PLA™S =5 B ATV SHSA™ S is derived.o

2

Part of M’ which is responsible for making 92" }m purely deterministic
generative steps for m simulated stepsof G.
G-system that can derive any w € ¥*, |w| = n using log(n) nondetermin-
istic decisions.
Phase 1: G uses nondeterminism to derive o =¢ P, A" PsASA™S for arbi-
Trary m. e e e e e e e e e e e e
Phase 2: G deterministically derives Py A" P3ASA™S =% PyAF SA"S for
k=13

X

13

14

15

16

43

48

20

5.5

5.6

2.7

Phase 3: G derives all words from X" for a given n and converts them
to the double track version so TM A can be simulated on them. More
precisely, this phase is responsible for the derivation of P3A*" SA"S =,
PCaiSasal 8. a8,
Phase 4: G uses nondeterminism to derive subword A™ at the beginning
of the sentential form for arbitrary m.
Phase 5: G simulates TM A on every word of length n and then the m!"

of the accepted words is made terminal, all others are deleted.

02

23

Chapter 1
Introduction

Grammars represent together with automata and closure operations three major ap-
proaches to the study of formal languages and families of languages. In order to satisfy
the need of having a general theory of grammars similar to abstract families of languages
and abstract families of automata, generative systems were introduced [3].

As one might expect, families of recursively enumerable languages and languages
generated by generative systems are equal. However, it turns out that by prohibiting
nondeterminism we obtain much weaker model and there exist even some regular lan-
guages which cannot be generated by a deterministic generative system [1]. In Chapter 3,
we prove one property of infinite languages generated by deterministic generative systems
related to the prefix words.

The main cause of this decrease in generative power was identified to be the inability
to identify the end of the sentential form. This led to the introduction of a modified
model of deterministic generative systems, which maintains a special symbol - endmarker
- at the end of the sentential form during the whole generative process. This modifica-
tion increases the generative power as it enables to generate any recursive language [2].
Relationship between the families of recursively enumerable languages and languages gen-
erated by deterministic generative systems with endmarker is the subject of the Chapter
4 of this thesis. We prove that those two families are equal.

The difference between the generative power of nondeterministic and deterministic
generative systems raises the question "how much" nondeterminism is actually needed.
Two descriptional measures of nondeterminism were defined and studied in the past as
an attempt to answer this question [2]. However, descriptional measures do not tell
us how much or how often is the nondeterminism used during the generative process.
We introduce and study two computational measures in Chapter 5 which measure the
number of nondeterministic steps in relation to the length of the derivation and to the

length of the derived word. In general, we obtain an arbitrarily slowly increasing upper

bound function and a linear upper bound function for the two measures respectively.
Moreover, using the second measure we obtain logarithmic upper bound for languages >*
and unary languages. We prove a better upper bound than in the general case for the

case of recursive languages which do not contain "too many" words of length n, n > 1.

Chapter 2
Definitions and known results

In this chapter we shall introduce some definitions, notation and known results that are

relevant to this thesis.

2.1 1-a-transducers and generative systems

Definition 2.1 A one-input finite state transducer with accepting states (1-a-transducer)
is a 6-tuple M = (K, %q,%9, H, qo, F'), where K is a finite set of states, ¥1, X are finite
alphabets (input and output), H is a finite subset of K x ¥y x X3 x K (elements of H are
called arcs), qo is the initial state and F C K is the set of accepting states.

Definition 2.2 A computation of 1-a-transducer M = (K,%q,%9, H, qo, F) is a word
hy...h,, € H* such that:

pri(h1) = qo (2.1)
pra(h,) € F (2.2)
pra(hi) = pri(hip1), 1 <i<n (2.3)

where pr; are homomorphisms on H* defined by pr;((x1, xa, k3, x4)) = x; for j € {1,...,4}.

The set of all computations of M is denoted by 11,,.

Definition 2.3 For any language L C X7 an I-a-transducer mapping is defined as
M (L) = prs(pry ' (L) N 1yy).

Definition 2.4 A generative system (g-system) is a 4-tuple G = (N, T, M, o) where
N, T are finite alphabets of nonterminal and terminal symbols (not necessarily disjoint),

M is the 1-a-transducer and o € N is the initial nonterminal.

Definition 2.5 A derivation step of g-system G = (N, T, M, o) is a relation =¢ defined
byu=gv <= ve M(u).

Definition 2.6 A language generated by g-system G = (N, T, M, o) is the language
L(G) = {w € T* | 0 =¢ w}, where = is the reflevive and transitive closure of the

relation =¢.

Definition 2.7 A computation of the 1-a-transducer M on the input word w is denoted

by ay(w). A computation of M on w after n generative steps is denoted recursively:

ay(w) = ay(w)

gy (w)

@Tﬁl (prs(an(w))

Note that sometimes we may write a(w) instead of aj/(w) when the corresponding

1-a-transducer is apparent from the context.

2.2 Deterministic g-systems and deterministic g-systems

with endmarker

Now we define a deterministic 1-a-transducer as a special type of the general 1-a-transducer
which contains at most one arc for each state and symbol from ;. Then the definition

of deterministic g-system (dgs) follows.

Definition 2.8 A I-a-transducer M = (K, %4, %, H, qo, F') is deterministic iff for each
p € K and a € ¥y holds: (p,a,wi,q1),(p,a,ws,q2) € H = w1 = wy and 1 = ga.

Definition 2.9 A g-system G = (N, T, M, o) is deterministic iff its 1-a-transducer M

18 deterministic.

Notation 2.10 The family of languages generated by generative systems (and deter-
ministic g-systems respectively) will be denoted by Lo (Lpa).

Note that dealing with deterministic generative systems prefixes of the sentential form
are important because g-systems "do not know" anything about symbols that have not
been read yet during the particular generative step. In addition, once some symbol is
written to the output, it cannot be deleted nor modified in that generative step. It
is sometimes useful to order the words in a way that the leftmost symbol is the least
important one. Such order is provided e.g. by reversal lexicographic order (rlo) defined

as follows:

Definition 2.11 Let X = {ay,...,ax} be a given alphabet and let < be an order on X
such that Vi,j 1 a; < a; <= 1 <].

Now we shall define a binary relation Ry over the words in X*:

Yu,v inX*, u = up.. Uy, 0 = U1...0s :
Ri(u,v)ifr<s
Ri(u,v) if r=s and u, < v

Ri(u,v) if r=s and u, = vs and Ry(uy...up_1,v1...05_1)

Clearly relation R; defined above is a total order on ¥* and we shall call it reversal

lexicographic order.

Notation 2.12 Let u,v be the words. The fact that u is a prefiz (proper prefix, not a
prefiz, not a proper prefir respectively) of v is denoted by u < v (u < v, u A v, u A v
resp.).

Most of the above definitions can be found in [3] and [1]. Deterministic g-systems
and their descriptive power were subjects of previous research [1|. It was shown that
despite the fact that L5 = Lgrg there are even regular languages not in Lpg. For
example no infinite language L such that € € L belongs to Lpg. The main cause of this
decrease in generative power of dgs was identified to be its inability to identify the end
of the sentential form. This lead to defining and studying a modified model of dgs [2] -
deterministic g-system with endmarker, which maintains the special symbol at the very
end of the sentential form during the whole generative process. The formal definition

follows:

Definition 2.13 A deterministic g-system with endmarker ($dgs) G is a deterministic
g-system with one special symbol $ & NUT which is the rightmost symbol of the sentential
form after each generative step of G. It cannot be deleted, nor used elsewhere. The
language generated by $dgs G is L(G) = {w € T* | 0% =} w$} and the family of
languages generated by all $dgs is denoted by Lspg.

It was proven that Lspe 2 Lgrec |2] and $dgs constructed in this proof contains
the part which simulates arbitrary turing machine A on any (derived) word. We pay
attention to this construction because we use it later. The simulation of TM A in G
is almost straightforward: sentential form represents the configurations of A during the
computation, but in order to simulate shifting the head to the left G has to look two
symbols ahead (before writting to the output) and uses states as a buffer for that purpose.

Moreover, G uses "double track" symbols - simulation of A is performed on the second

track and the first track is used to store the input word so it can be reconstructed after
reaching the accepting configuration on the second track.

The double track symbols mentioned are nonterminals denoted by #,a,b € I'4, where
I'4 is the tape alphabet of A. We also use notation for double track words composed
of double track symbols. Note that in such words the beginnings and the ends of the
words from the particular tracks may not match. In such cases the words are padded

by blank symbols. The only condition is that the resulting word neither starts nor ends

by double track blank E. For example instead of];b% we write %’C This leads to
ambiguity, because notation 2 b may as well represent sentential form (ch or even ag‘g%.

However, it is not really a problem because all of the following constructions work in a
way that the sentential forms they derive can be expressed by such double track notation

unambiguously (using the maximal words that do not start or end by % symbol).

Lemma 2.14 Let A= (K,%,T,0,q0, F') be an arbitrary Turing machine. There ezists
deterministic g-system with endmarker G = (N, T, M, o), where M = (Kp, NUT, N U
T, Hyy gm0, Far) such that Yw - quwB?B =>4 BquB$ <~ (qo,w) F¥ (qr,v) for any
m,qr € Fyv eI,

Proof. The proof follows from the proof of Theorem 3.1 in [2]. Note that (g, %, €, [%}) €
Hj; in the construction from the mentioned proof. Furthermore, sentential form containts
nonterminal % at the beginning and at the end after all of those m generative steps of
G. We can also assume that M moves on $ symbol always to qao and that gy € Fa,
because in the original construction there is such state for which those assumptions hold
and from the definition of $dgs no symbol follows after $§. We use these facts later in the

constructions which will simulate some Turing machine. O

Note that in the cited proof it is also assumed that the simulated Turing machine ends
the computation with head reading the very first symbol of the tape. For that reason,
in the following text we assume such Turing machines as well. Similarly, by accepting
configuration of TM A we mean the configuration (qru), where gp is some accepting state

of A so the head is positioned at the beginning of the tape.

Notation 2.15 In the following constructions which simulate some TM A we shall
often work with subwords of a form £ qu &, Wwhere qq is the initial state of A. For better

readability we use notation w = qu_§7 wn particular, € = E(]OE.

Chapter 3
Deterministic g-systems and prefixes

In the previous research [1] it was shown that there are languages Ly, Ly such that L, €
Los — R, Ly € Lop — Leg such that Ly, Ly & Lpg. However, both of these examples
were infinite languages containing e. The study [1| suggests that there may be even e-free
languages with such properties and as the candidates were mentioned L, = {ww®|w €
Yt} Ly = {ww|w € £7}, where ¥ = {a, b}, but no proof was shown.

Furthermore, the study suggests that if it is true that language X% & Lpg for binary
alphabet ¥ then we can easily see that £pq is not closed under A~ and "+".

In this chapter, we prove more general theorem about importance of prefixes in the
infinite languages generated by deterministic g-systems which implies that none of the
mentioned languages belongs to Lpg.

First, let us introduce two useful lemmas which are proved in [1]:

Lemma 3.1 Let L € Lpg be any language. Let G = (N, T, M, o) be deterministic
g-system such that L(G)=L. Let wy,wy € L and let k,l be the integers such that o =¥ w,
and o :>lG wa. If wy X we and | < k then L s finite.

In other words, dgs generating infinite language derives words in order from shorter

to longer (if they have prefix character).

Lemma 3.2 Let M be a deterministic 1-a-transducer and let wq, wo be two words sat-
wsfying wi =X wo. If M is able to make n generative steps on both inputs wy,wo then the

following statement is satisfied:
ayy(wr) = afy(ws).

The above lemma confirms the intuition that on identical prefixes deterministic 1-a-

transducer works identically. This brings us to the idea that there may be a problem to

7

derive two words which are not prefixes to each other from their common prefix in dgs.
For example, let us consider language {a™ | n > 0} U{a"b | n > 0}. How can any dgs
derive from the sentential form a’ both a**! and a’b for all ¢ > 0? This is the main idea
of the theorem from this chapter, in which we prove that it is truly impossible.

Now we prove the lemma about cyclic order of generation of words with the same

prefix in deterministic g-systems. This lemma is a key to prove the following theorem.

Lemma 3.3 Let G = (N,T,M,0) be a deterministic g-system and let wo,w; € L(G)
be words such that wo = wy and wy :>’é wy for some positive integer k. Let us denote
w; the word such that wy = w; for all i (if G is able to make corresponding number of

generative steps on wy). Then for all words w,, wy it holds that x < y implies w, =< w,.

Proof. We prove the lemma by complete induction on ¢. Case ¢ < 0 is trivial and case
1 < 1 follows from the assumption wy < w;. Let the statement be satisfied for ¢ < n,
we show that it is also satisfied for + < n + 1. It holds that wy <X ... < w,,_1 =X w,, and
Wp—1 =% w, =% w,y1. Then from Lemma 3.2 we have that of,(w,_1) < of,(w,) thus
Wy, =X Wp41 and from transitivity of < follows that for all j < n statement w; = wy4;
holds. m

Theorem 1. Let L be an infinite language and let w,wi,ws € L be the words such that
w < wy, w =< wy but wy A wsy, wy Awy. Then L & Lpg.

Proof. Let us assume by contradiction that there exists dgs G such that L(G) = L. From
infinity of L and from Lemma 3.1 we have that w is derived before w; and w, in G,
thus there exist integers k, [such that w =¥ w; and w =%, w,. Furthermore, G is able
to make arbitrary number of generative steps on w so let us denote v a word such that
w :>'él v. Lemma 3.3 implies that w; =< v and also wy < v but that would mean that

either w; < wq or wy < wy and we have a contradiction. O

Corollary 3.4 Let L1 = {ww®w € X}, Ly = {ww|w € £*}, Ly = ¥ where |X| > 2.
Then Ly ¢ Lpa, Ly € Lpa, Ls & Lpa-

Note that for sentential forms u, v derived in arbitrary $dgs holds that v <uwor u < v
if and only if u = v due to the $ symbol. This is another point of view at the reason why

have $dgs more generative power than dgs.

Chapter 4

A generative power of deterministic

g-systems with endmarker

In this chapter, we study the generative power of deterministic generative systems with
endmarkers. From the existing results on this topic we know that Lspe 2 Lrrc |2]- In
the proof of that fact a $dgs was used which simulated TM A on all words in a sequence.
Nonaccepted words were skipped and those accepted were generated by the $dgs. This
idea obviously does not work on the recursively enumerable languages, because TM A
may not halt on certain inputs, so the question whether Lrr 2 Lspg or Lrr = Lspa
remained open. As we show in this chapter, those two families of languages are equal.
In order to prove it we construct an equivalent $dgs G for any TM A over a terminal
alphabet 3 = {ay, ..., ax}. Now let us discuss how G works. One possible way of avoiding
the nonhalting simulations of A is to simulate increasing but always fixed number of
steps. From the definition of $dgs G can use only information contained in the terminal
sentential form w$ to continue the generative process properly and decide which word is
next to be processed. So the key of the construction is to find a suitable order of words
from the generated language in which they will be derived. It turns out that to order
the words by the number of computational steps in which they are accepted by TM A
(rlo in case of equality) is a successful idea. G can compute this number m from the
derived sentential form w$ by simulating the computation of TM A on w (we assume
that w € L(A) from the fact that w$ was derived). Then it simulates m steps of TM
A on "many" words simultaneously and knowing w it can determine the next word to
be made terminal. More precisely, we assume such TM A that "reads" the whole input
word (its head reads the right blank during the computation) and ends with the head
reading the very first symbol of the tape (in case that A accepts or rejects). Thus for
fixed number m it holds that no word longer than m is accepted by A on m steps. So

by "many" words we mean words w + 1, ..., a]" ordered in rlo, where w + 1 is the next

9

successor of w in rlo. The leftmost word that is accepted on exactly m steps of Al is
made terminal and the whole cycle repeats. If no word is accepted then G increments m
and simulates m + 1 steps of A on words e, ...,a}" " etc.

Before we go further into the details of the construction, we define the order in which

the words will be derived in G:

Definition 4.1 Let A = (K4,T4,04,q40, Fa) be a Turing machine, let w,v € L(A).

Let us denote
my = min(m|(qw) Fy (grw’), where qr € Fa,w’ € T%)

the minimal number of steps in which A accepts the word w. We define binary operator
<4 over L(A) as follows:

W =<4V = (My < My) V (Mmy, =m, Aw precedes v in rlo).

In other words, for a given TM A the relation <4 orders the words from L(A) by the
minimal number of steps in which they are accepted by A, or in rlo in case of equality.
We can easily see that <4 on L(A) is a total order, furthermore if L(A) # () then there
exists the minimal element (word) in the sense of <4.

We denote the set of words accepted by the Turing machine A in m steps by L,,(A).
Clearly, L(A) = | | Lm(A).

v

To facilitate uererstanding of the construction we introduce the purpose of individual
nonterminals that G uses:
Py, Py, P3, P, - indicate the current phase of G and are placed at the very beggining of the
sentential form. There are only two cases when the first symbol of the sentential form is
not one of these: the initial nonterminal ¢ and a terminal word.
A - this nonterminal is used to build and maintain the counters at the beginning and at
the end of the sentential form: the first represents the number of steps of TM A simulated
and the other determines the maximal meaningful length of the word on which TM A is
simulated. Both counters contain the same number of nonterminals A.
S - is used as a separator between the blocks.
C, M - flags that some subroutine has ended.
W - flag that some subroutine is in progress
H,I,L, R - these nonterminals are used as "heads" - their position in the sentential form
determines which symbol is going to be copied, how many times is some branch of M

used, they are used to compare the length of two subwords etc.

!'We assume that all words accepted on less than m steps of A were generated earlier.

10

The crucial problem is how to derive the next word in the order given by <4 from
the derived terminal sentential form wy$. G does this in 4 phases:

Phase 1: wg$ ~ P,A™SHw;SA™$ - in this phase G computes the number of steps

m on which TM A accepts wy.
G simulates the computation of TM A on the word wy. We assume that wy € L(A)
because G derived the sentential form wy$ so wy € L(G). In one generative step of
G is one nonterminal A added to both counters and one computational step of TM A
is simulated using double track symbols and $dgs from Lemma 2.14. When simulated
Turing machine reaches the accepting configuration nonterminal M is written to the
output and the initial word wy is restored and incremented (in the sense of rlo). In the
next steps, flag M is shifted to the left and when it reaches the very first nonterminal,
prefix Py M is replaced by P; so the phase 2 follows.

Phase 2: PyA"SHw;SA™$ ~» Py;A™Hw;S...Sal’S$ - in this phase all words greater

than wy (in the sense of rlo)? of the maximal length m are generated. Again, properties
of TM A which we have assumed imply that no longer word can be accepted by A on m
steps.
G works in a cycle: the last complete terminal subword in the sentential form is copied,
then incremented in the sense of rlo. If it is necessary to extend the copied word by one
symbol for that purpose, G compares the length of this word to the length of the counter
A™ at the end of the sentential form. If the copied word is not longer than m then it
becomes the last complete word which is to be copied. Otherwise this phase is going to
be terminated - the block of nonterminals A at the end of the sentential form is deleted as
well as the recently generated subword and the nonterminal M is generated and shifted
to the left in the following steps. In the last step of this phase, when the sentential form
starts with P, M, all the generated subwords are converted to their "double track version"
in order to use $dgs from Lemma 2.14 for simulation of A on them.

Phase 3: PsA™Hw;S...Sal*S$ ~~ w;$, where w; is the minimal word in the sense of
<4 from {wy, ..., a }N L, (A). In case that such w; does not exist Pya™$ is derived in this
phase instead. In this phase, m computational steps of TM A on subwords wy, ..., a}" are
simulated®. The first of the words in the sentential form that is accepted after m steps
for the first time is made terminal and G moves to the phase 1. If such subword does not
exist then P;A™$ is derived and phase 4 follows. The subwords which are accepted on
less than m steps are skipped during the simulation.

Phase 4: PyA™$ ~» P,A™TLSHSA™$ - the counter (block of nonterminals A) is

2We assume that all words that precede w in rlo and are accepted by TM A on m steps have been

generated already.
3We use $dgs from Lemma 2.14 on subwords wS for that purpose.

11

incremented by one and the sentential form is modified so phase 2 may follow. From the

description of the phase 2 we can see that the derived sentential form P,A™ ™1 SHSA™ 1§

then leads to simulation of m + 1 steps of TM A on words e, ...,a;""'. In order to derive

the sentential form containing two counters the number of nonterminals A is increased
from m to 2m + 2 and then the middle of this block is found* and nonterminals SH.S are

inserted in that place.
Theorem 2. Lrr = Lspa

Proof. We construct $dgs G for an arbitrary language L € Lrp. There exists a Turing
machine A = (K4,T'4,04,q40,Fa), such that in each accepting computation of A the
configuration when the head reads the right blank is reached and if A accepts, the head
is moved to the left so it reads the first symbol of the tape and L(A) = L. Let G4 =
(Ne,,Ta . Ma,,06,), where Mg, = (Kg,, Ne, UTa,, Na, UTe,, Ha, s 4ca0, Fe,) be
the $dgs from the Lemma 2.14 which simulates a computation of A on a given input. We
construct G = (N, T, M, o) as follows:

T =Ts,
N =Ng, U Npew, Npew = {A, C, H, I, M, L, R, S, W, P, Py, Py, P,}, Nez, N Nipowy = 0
M=K,NUT NUT,H,qo,F) where :
K=Kg, UK1UKyUK3UK,U{q}, where:
Ky ={qp 1, qp 11}
Ky ={qp,1, - qpy 18} U
U {[P,x,i] |xre NUT,ie{l,...,4}} U
U {qpa | a €T}
K3 ={qp;1, - qps 17}
Ky =A{qp,1, - qp 10}
and Kg, N K; =0, foriec{l,..,4}

F=K
B B
H = H,UH,UHs;UHyU{(qo,o0, PBHEQA,OES&QO)}
Hl :HGA - {(Q7$7U$7p)‘VQ7p € KG,MU S (N UT)*} U{
B a
(QO7a7P1§QA,057qpl,l)7va eT
B B
P, — _
(q07 $a quA,OB$aq0)

4This is obtained by shifting nonterminals L from the beginning and R from the end of the sentential
form towards themselves as we shall show later in the text.

12

2@
B
A A €
$.9 $,5%
A, SA

qp, 8 qp; 11

T,T

A A A a8 %7ai+1
qp 3 MA
| Ze AMSH ks
qp 4 B dp 5 ar, qpy .6 %, €
M, PQ A P $,(l1$$
o z, AAdv
A vAA
. J $,vAS A A
P2
1 $.$
qF,MSH
z, Av
Pl, € g, P1
start HGJO $, Plqu70%$ qpry,7

B a
a, Pr5qa0s

a?
qp; 1 $7

Figure 4.1: Phase 1 of $dgs G generating L € Lrg which is responsible for the derivation
of wo$ =§ PoA"SHw SA™S, where m is the number of steps on which TM A accepts

ool [swRRSHIS

$

word wy and w; is the successor of wy in rlo.

13

qpP,,13

$,% A A
$, I$

5,9
A, aA
B
S, 58S A A
oy
B a,ald A al ’
$,BS$ S7H%QA,0 a

q S, SW ai,C’aH_l
A A @ f22
H,y
P;

g, a1

Figure 4.2: Phase 2 of $dgs G generating L € Lrp in which are derived subwords
on which will be TM A simulated later, so the derivation P,A"SHw;SA™$ =7
PsA™Hw;S...Sal*S$ is made. In the yellow part the last terminal subword is copied,
in the blue part this word is incremented in rlo, the green part is responsible for compar-
ison of the length of this word to m and the pink part corresponds to the last step of this

phase in which terminal subwords are converted to their double track versions.

14

qu ,6 C_IP3 NG

ar, €

M, M

A A

Figure 4.3: Phase 3 of $dgs G generating L € Lrr: G works on the sentential from
PsA™Hwy S...a]"S$. The first of wy, ..., a}" that is in L,,(A) is made terminal or P,A™$
is derived if there is no such subword. One step of TM A is simulated on all derived
subwords in the yellow branch, after the simulation of m steps of A G checks whether
some of them ends in the accepting configuration using blue part and in the green part

the nonterminal M or C resp. is shifted to the beginning of the sentential form.

15

A, AA R,CSHS
qp,,8
$, RAAS

A P,WAAL

P4, €
start qo0

CIP4,1

Figure 4.4: Phase 4 of $dgs G generating L € Lrg: the number of nonterminals A -
simulated steps of TM A - is increased and the second counter is rebuilded so PyA™$ =7,
P,A™H LS HS A™HE is derived.

16

a
(qPLl? a, a; QPl,l),V(I eT

QP1,17) $7QP1,1)7

q07P17E qu,)
qp, 27M PQ;Qpl,)

qP1,27A PvaPl,)

B
qp1,27 Pl?QPl,)

ar 4, A, A qp),

qp, 4,M MA qu7)

B
qP1,47 6 th)

(

(

(

(

(

(gp 3,2, 2,qp, 3),YVr € NUT
(

(

(

(gp, 57(]F7AMSH qp,), where qp € Fy
(QPLG» —,a1,9p,6), YV € NUT

B
qP6r L €6qp6), Ve € NUT

(

(g, 6714 a1S 4, qp, 8),
(qp,6,9%,a159%,qp 6),
(gpi 8, A, A qp),
(gpis, 8,8, qp 8),

B
(qp 5,2, AAV, qa), V2 € NUT — Fy; where ({—

B‘| 7277)7QA,Z) 6 HGA

B
(QP1,7727AU7(]A,2),VZ S NUT — FA, where <|:§:| 7z7U7QA,z) c HGA

(qp.,7, 97, MSH, qp, 5), where qr € Fy
(qa, A,vAA, qp, 10),Yqa € Kg,,v € (NAUTA)" 1 Jp € Kg, 1 (qa,8,08,p) € Hg,,
(qa,9%,vA8,qp, 10),Vqa € Kg,,v € (NaUT4)" :3Ip € Kg, : (qa,$,08,p) € Hg,,
(qp 10, A5 A, gpy 10),
(QP1,10,$ $,qpr.10),
(

(

qpry 65 ; ,Qis1,qp 11), Ve € NUT

a
qP1,117 E (17(]P1,11),Va c T

B
(gpy 11, ;,E,qu,n),VI e NUT}Y,

(QPl,ll, $a S$7 QP1711)

17

(QP1,117 A) SA7 QP1,8>

(90, P2, €, 9P, 1),
(qpy1, A, P, [P, A, 1)),

(I
((P2,y,1], H,y,qp,2) Vy € (NUT) —{H,W, M},
(gpy2,a,aH,qp,q) Ya €T,
(qPy.ay 0,0, qpy) Ya € T,b e TU{S}
(qpy.ar A, aA, qpy13) Ya € T,
(qPy13, A A, qpyi3),
(qp,13,%, 3, qpy 13),
(qp,2, S, SW, qp,3),
(qP,3, ak, a1, qp, 3),
(qpy3, A a1l qp,a),
(qpy.3, @i, Caia, qp, 5),
(qp,.as A, A, qpy a),
(qP,.4,8, I8, qpya),
(gp, 5714 A, qp,5),
(qp, 5 a,a,qp,5) Va € T,

(¢r,5,8,8,qp,5),

(P29, 1], W, y,qp,6) Yy € (NUT) — {H, W},
(gry6: 1, W, qp,7),

(g7, 9,6 [P2, y,3]) Yy € TU{A},
(gp,8,a,a,qp,s) Ya €T,

(qp,8: A, SA, qpy18),

(gpy 18,2, T, qpy18) Vo € NUT,

([Po,y, 3], M, M, qp,18) Vy € T U {A},
([P2,y,3], 1, Cy,qp,18) Yy € T U { A},

(gpy6,a, W, [Pa,a,2]) Va € T,

((P2y,2], M, M,qp,0) Yy € (NUT) —{M,C, I},
((P2,9,2],C,Cy,qp,9) Yy € (NUT) — {M,C, I},
((P2y,2], 1, Iy, qp,06) Yy € (NUT) = {M,C, I},

18

Pyy 1], x,y, [Py, x,1]) Yo,y € (NUT) — {H,W, M},

[P2,y,2], 2,9, [P, 2,2]) Vo,y € T
[Py, y, 4], 2y, [Py, x,4]) Yo,y € T,
(P2, y, 4], M, M, qp,) Vy € T,
[P2,y,4], I, M,qp,11) Vy € T,
qpy1, A, €,qpy 1),

qr,11,%, 38, qpy11),

(P2, y,4], Ay, qp12) Yy €T,

qp, 12;14 A y 4Py, 12)

qp, 12,$ $7QP2 12)
ar6.C, H, qp, 8),
q 67M M qu)

4P, 9, T, T, qp,9) YV € NUT,

[P, y, 1], M, My, qp,9) Vy € (NUT) — {H, W, M},
qpy1, M, P3,qp,14),

qpry14, A, A, qpy14),

B
qp,, 14,5, HBQA,OaQPQJB)

(
(
(
(
(
(
(
(
(gpya2, 1, 1A, qp,12),
(
(
(
(
(
(
(
(
(

a
qp,.,15, a, aaQPQ 15) Va e T,

(QP2,15> S, BSBQA,(L QP2,15)7

(QP2,15,$,$,(1P2,15)7

(qp,.16, a, €, [Pa, a,4])Va € T},
Hs =Hg, —{(q,%,v$,p)|Vg,p € K¢ ,,v € (NUT)*} U{

(90, P3, €,qp; 1),
(qps,1, M, Py, qp, 2),
(qps2, A, A, qpy 2),
(qps2, 9,8, qp, 2),
(aps1, A, Ps,qp, 3),
(qprs3, A, A qpy 3),
(qpy 3, H, HA, qpy 4),
(

qP347A A QP3)

19

B
(qP3,47 E7 €, QP3,5)7

(QP3,57QF7 €, QPg,ﬁ) Vqr € Fy,

s
(qu,ﬁv 57 €, qu,ﬁ) v:1'17) € FAJ

(QP3,67 S? €, QP3,7)7

(qP3,77 $7 $7 qP3,7>7

B
(QP3,77 Ea €, QP3,5)7

B
(QP3,57z7U7QA) Vz € (NUT) - FA7 where ([E] 727U7QA) S HGAa

qa,S,vS,qp,7) Vqa € Kg,,v € (NaUTy)" :3p € K¢, = (qa,$,08,p) € Hg,,
qprs.1; W, Ps, qpy 8),
qps8, M, M, qp, o),

qps9: A A, qpy 0),

qps9: 9,8, qp,9),

qps8: A, W, qp17),
qprsa7, A, A, qpy 1),
qps17, M, M A, qp, 9),
qps17, C, O, qpy 10),
qps 8, C, C, qpy 10),
qprs,1, C, €, qp;, 10),

qps,10, @, @, qp;10) Va € T,
qp, 10,$ $, CJP3,10)

qprs.1, H, PsW, qp, 11),

qps.11, A A QP3,11)
B

QP3,11, - €>QP3,12)7
QP3,1272 €,4py15) V2 € (NUT) — Fa,

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

QP3,15,§ L €,4py15) Y,y € Ty,

(qP3,157 qda, €, qP3,15) VQA € KAv
(q 1575 €, dp;, 16)
B
(CJP3,16, = E,QP3,12),
(

qp;,12; 4F, C, QP3,13)

20

a
(qP37137 57 a, QP3,13) YVa € T‘7 Vx € FA7

B
4p;,13, ;7 €, qp3,13) vz S FA7

(
(qPs 13, S, €, 4Py 14),

(qpy 14, T, €,qpy1a) Vo € (NUT) — {3},
(qpPs14, 8,8, qpy 14),

(qps.16, 8, M$, qp; 16) }

H,

Il
—

qo, Py, €, qp,,1)
qro1, A, AW AAL, qp, »),

qpy1, 3, PRASHSS, qp, 1)
qps2, A, AA, qp, 2),
qp,2, %, RAAS, qp, o),
qrs 1, W, Pi,qp, 3),

a3, A, W, qp,4),
qrias A A, qpy a),

qP4,47L A CIP4,)
qp, 5714 AL » 4Py, 6)

qr, 1, A A, qpy 1),

qr,7, R, RA, qp, 7),
qr,7:9,8,qp,7),

qp, 5. R,CSHS, qp, s),
qpr8, A A qp, 8),
qr.8: 9,8, qr,8),
qr4, C,CA, qpy),
qr, 3, C, C,qp, 9),
apr,1,C, Pa, qpy),
qp, 9, T, T, qp, 9)Vx € N,

(
(
(
(
(
(
(
(
(
(
(qpPi6; A €,qp,7),
(
(
(
(
(
(
(
(
(
(

Note that Hy, Hy, H3, Hy correspond to the phases 1,2,3,4 described earlier and are de-
picted in the Figures 4.1,4.2,4.3,4.4.

21

The following proof is separated into two parts: first, we show that L(G) = L(A)
assuming that G works in particular phases as suggested and then we prove that these
asumptions are true by showing the concrete computations of 1-a-transducer M.

Let us assume that G works as follows:

wod =7 PLAMSHw SA™$ () (4.1)

P,A"SHw SA™$ =¢, P3A™Hw;S...Sal'S$ () (4.2)

either PsA" HwiS...Sa'S$ =¢ w;$ (phase 3) (4.3)
or PsAT"HwiS...Sal'S$ =¢ PyA™S () (4.4)
PyA™$ =% PyA"TISHSA™ S () (4.5)

where wy € L,,(A), w; is the successor of wy in rlo, notation w stands for %qA70%§ and
case 4.3 occurs iff w; is the minimal element (in sense of rlo) of {wy, ...,a7*} N L,,,(A) and
case 4.4 occurs iff {wy,...,a7*} N L,,(A) = 0. In other words, if in the phase 3 at least one
of the subwords in the sentential form is accepted by TM A in m steps, the first of them
is made terminal or phase 4 follows if there is no such word.

Let vg, vy, ... be all words from L(A) in order given by <4. Now we use induction to
prove that L(G) 2 L(A).

Base: 08 =, v$:
The initial generative step is 0 =g P3HeS$. Let us denote m the current number of
nonterminals A in the sentential form before the first S or % symbol and m,, is the
minimal number of steps on which TM A accepts word vy (as defined in 4.1). In this
case m = 0. From the assumptions 4.3 and 4.4 we have that while m < m,, phase 4
follows after the phase 3 and then m is incremented by one. Thus G on the sentential
form P3;HeS$ repeats phases 3,4 and 2 until m = m,,. After this cycle sentential form
P3A™o H ES...CLZL_UOS $ is derived. From the asumptions on TM A and from the fact that
it accepts vy after m,, steps we have that vy € {€, a4, ..., a;n”“} thus the sentential form
contains the subword vy. Furthermore, from minimality of vy in the sense of <4 we have
that Yw € L(A) such that w precedes vy in rlo we have that m,, > m,, holds. Thus from

the assumption 4.3 we have that for m = m,,:
P3AmHESWS$ @Zv U0$.

Inductive step: o =¢ v;$ implies 0 = v;419:

we find the derivation v;$ =¢ v;41$. From the assumptions 4.1 and 4.2 we have that
v;$ =5 PyA™i HwS...Sa, " S$,

where w is the first succesor of v; in rlo. Let d = m,,,, —m,,. From the previously

mentioned sentential form G cycles d times in the phases 3,4 and 2. The fact that phase

22

3 results d times in the phase 4 follows from the order given by < 4. If some terminal
word w’ would be derived after less than d such cycles we would have a contradiction
My < My, and v <4 w'. During this process the number of nonterminals A is
continually increased in phase 4 (assumption 4.5) so after d repetitions of this cycle the
sentential form
PsA™HuS...Sal'S$

is generated, where m = m,, +d, u = € if d > 0 and v = w otherwise. In both cases
Vit1 € {u,...,af’} from the definition of <4. Furthermore, v;4 is the first of these words

(in rlo) that TM A accepts on m steps. Thus from the assumption 4.3 we have
PgAmHﬂSS@S$:>E Uz‘+1$.

L(G)C L
w € L(G) implies W$ =, w$. This implication follows from the fact, that terminal
words are derived only in the phase 3 in which H¢, is used to simulate TM A on certain
words. Then from w$ =, w$ and Lemma 2.14 we have w € L(A) = L.

Now we shall verify the assumptions 4.1,...,4.5 so in the following part one generative

step on certain sentential forms is shown with the corresponding computation of M:
Phase 1:

1. we$ =¢ Piwo$
This is the initial step of phase 1 in which G prepares for simulation of TM A on
wp in order to compute 1, .

For wy = € computation of M is (g0, $, P12qa,028$, qo) and for wy = by...b, where
bi,...,b, € T we have computation
by b

B b
(o, blvPI_QA,O_laQP1,1)(QP1,1a by, —.qp,1)---(qp 1, b,
by by b,

B
B 7QP171)(qP1,17$7E$7QP1,1)-

2. Plqu’gz—g%$ =a PLAwAS
where qa0 € Fa and wWe$ =, w$. Note that word w consists of double track
symbols and one nonterminal of some state of A, its second track represents the
content of the tape of A and its first track contains the word wy. So w stores the
information about current configuration of A and word wy at the same time. In
this generative step the initial step of TM A on the word wjq is simulated assuming
that (gaowo) is not the accepting configuration of A. Furthermore, the counters of
simulated steps (numbers of nonterminals A at the beginning and at the end of the
sentential form) are incremented.

Computation of M:

B
<QOa Pla €, qP1,2)(qP172a §> P1> qP177)(qP1,77 qA, Avva)hl'“hl(qu $> UA$a qP1710)

23

for double track words u,v and states ga,pa € K¢, such that ([%}, qA4,0,U,DA),

(qa,$,u$,pY4), h1, ...,y € Hg, for some state p/y € Kg,.

) PlAm%w%Am$ =>a PlAm“%w’%Am“$

for m > 0, double track words w,w’ representing configurations of TM A, where
it holds that ZwZ$ =, Zw'S$ and z ¢ Fa where z is the first symbol of w (in
other words, configuration of A encoded in w is not accepting). In this generative
step, similarly to the previous one, one step of TM A from the given configuration
is simulated and counters are incremented.

Computation of M:

<QO7 P17 €, QPl,Q)(QPl,% A7 P17 qp1,4>(qp1,47 A7 A7 qp, ,4)m71
B
(qp1,47 E7 €, QP1,5)<QP1,57 z, AAU7 QA,Z>h1"'hl

(QA7 A uAA, QP1,10)(CIP1,10, A A, QPl,IO)m_l(QPl,IOa $,8, QPl,IO)
where ([%] 2,0,q4.)s (g4, 8, u,q), ha, ...,y € Hg, for some ¢ € K¢,

- PAT B qp BB B AT = PLA™MSHw SA™$

where wg € T*,v9 € (NUT)*B*,r,s € N and w; is the next successor of wy in rlo
and gr € F4. In this step the simulation of TM A is terminated, because it has
reached the accepting configuration (qrvg). Terminal word wy is restored from the
first track and incremented in rlo. Also nonterminal M is written to the output
which is used as a flag that the simulation of A has ended.

For m > 0 the first part of the computation of M is:

(QO7 P17 €, QP1,2)<QP1,27 A7 P17 QP1,4)(QP1,4, A7 A7 QP1,4)m71

B B .
(QP1,47 E’ €, QP1,5>(QP1,57 qr, AMSH, QP1,6)(QP1,67 ;, €, QP1,6)

for any x € N UT and in the other case when m = 0 we have:

B B
(90, P1, €, qp, 2)(qP; 2, 5 Py, qp, 7)(qp, 7, qr, MSH, qp, 6)(qP; 6, -6 qpr6)
The rest of the computation is similar in both cases and it depends on wy which is
incremented in the sense of rlo. First, let us assume that wy = ala;b;...b,, where
1 < k and by, ...,b, € T, then the computation continues with
Q. 1 a; bl
(qp,.6, ;7al7qpl,6) (gP16, ;,aiH,QPl,n)(qu,u, ;abbCJPLll)---

b, B

(gp, 11, >’ bn, qp,11)(qp, 11, Pl qr.1)"th).

24

If m = 0, the computation ends with (¢p, 11, %, 5%, ¢p, 11) or with

(QP1,11> A, SA, QPl,S)(QPl,Sa A A, qpl,s)mfl(QPl,s, $> $, QP1,8)

otherwise. If wy = a} does not contain other symbol than a; then the next successor

of wy in 1lo is @}, In such case the computaion of M continues with

Qe B

;, ay, QP1,6)n(QP1,67 ;7 €, C]Pl,G)SJrl

(QP176,

and ends with (gp, ¢, 9,159, gp,) if m = 0 or with

(QPl,Ga A a1 SA, QP1,8)<QP1,87 A A, qpl,s)mfl(QPl,s, $, $: QPl,S)
otherwise.

. PLATMASSHw, SA™$ =5 PLA™ M AT SHw SA™$
for any r > 0,s € N;w; € T™*. In this generative step the nonterminal M is shifted
one symbol to the left and the rest is copied in the state gp, 3. Computation of M

1S:

(90, P1,€,qp, 2)(ap 2, A, Pryqp) (qpa, A A qpya)™ !

(qP1,47 Mv MA7 C]Pl,:s)(QthSa xz,T, qP1,3)"'

. PMA™SHw SA™$ =¢ PobA"SHw; SA™S.
When nonterminal M finally appears right next to P; in the sentential form, both

are replaced by nonterminal P, and the next phase follows. Computation of M:
(q07 P17 €, QP1,2>(C]P1,2, M7 P27 qP1,3)(qP1,37 x,T, QPl,S)---

From the above analysis we have that for wy € L,,(A) and its successor in rlo w; it
holds:

w0$ =G le_0$ 1
B Wo B
mPA" —qp——A" 2
= hA" gar= gAY 3
=a PPA"MSHw,SA™$ 4
=" PMA™SHw,SA™$ 5
=a PBbA"SHw SA™S 6

thus the assumption 4.1 holds.
Phase 2:

25

7. BA"uHavSwA™$ =g PoA™uaHvSwaA™$
for any u € (TU{S})*, v,w € T* and a € T. In this generative step is one terminal
(determined by the position of H) copied to the place just before the ending counter
and H is shifted to the right. By series of such steps G copies whole words separated

by S nonterminals. Computation of M:

<QO7 P27 €, QPg,l)(qu,la A7 P27 {P27 A7 1])([P27I7 1] y Y, T, [P27 Y, 1])
([P27 z, 1] 5 Ha 2, qu,Z)(QPQ,Qv a, CLH, qu,a)(QPQ,av b7 ba qu,a)"'
(QP27a7 Aa CLA, QP2,13)(qP2,137 A7 A7 qu,13)m_1(QP2,137 $7 $a QP2,13)

where z,y,z € TU{S},a € T and b € TU{S}. We can see that G uses look ahead
- set of states [Py, x,1] - in order to be able to shift M flag from the end to the
beginning of the sentential form in future. After reading nonterminal H and the
following terminal a, the information about what symbol is to be copied is stored

in the state gp, 4.

8. PyA™uHSalavA™$ =¢ PoA"uSWal Ca; v A™$
where u € (T"U{A,S})* and v € T*. Nonterminal H is not followed by terminal
symbol like in the previous case, but by nonterminal S. It means that the whole
terminal subword ala;v was copied and its copy is now incremented in the sense of
rlo. In order to do that, in some cases it is necessary to add one more terminal to the
incremented word. In those cases then follows the check, whether the new subword
is not longer than m (if it is so, this phase shall be terminated in the following
steps). Thus we want G to stop the process of copying terminals until it clarifies
whether this phase shall end or continue and for that purpose is nonterminal W
written to the sentential form instead of H. In this particular case, after reading
...HSala; it is clear that no additional terminal is needed to increment the copied
subword so nonterminal C' is written to the output which indicates that process of

copying may continue. Computation of M:

(QO7 P27 €, qu,l)(QPg,la A7 P27 {P27 A7 1])([P27 Y, 1}) H7 Y, qp2,2)
(4py2, S, SW, 4Py 3)(qPy 3, ks 01, 4Py 3) 4Py 3, iy Ctlifa, qpy 5)
(qP2,57 a,a, qP2,5)"‘(qP2,57 Aa A7 qP2,5)m/(qP2757 $7 $7 QP2,5)

forany y e TU{A,S},aeT.

9. PgAmuHSaLAm$ = PgAmuSWalle]AmI‘&S. This generative step is similar to the
previous one except that in this case successor in rlo of the copied word al is the
word allH thus G has to check whether [4+ 1 < m or not. This is obtained by

26

10.

11.

12.

writing nonterminals I to the suggested positions (in this generative step) and their

simultaneous shifting to the left in the next steps. Computation of M:

(CIO, Py e, qu,l)(QPg,la A, P, [P27 A, 1])-~-([P2, Y, 1] ,H,y, CIPQ,z)(QPQQ, S, SW, CIPQ,z)
(QPQ,?,, ag, a, qP2,3)l(qu73’ A7 (11], qP2,4)(QP2747 Aa A7 qp274)m/_1(QP2,47 $7 I$7 QP274)

where y € T U {A, S}.

PoA"MuWoaCw =g PyA™uWoCaw

where uw € (TU{S}H)*, v € T*, w € (NUT)* and a € T. In this generative step
the nonterminal C' is shifted to the left. For that purpose look ahead is provided
by the set of states [Py, b,2],Vb € T used. Computation of M:

(q()v P27 €, QP2,1)((]P271, Av P27 [P27 A? 1])([P27y: 1] 7W7y7 QP2,6)(QP2,6, a, VVa [P27 a, 2])
([P2, b1, 2] , b2, b, [P27 ba, QDm([PQ, bs, 2] ,C, Cbs, QPQ,Q)(QPQ,Q, x,T, QP2,9)---

for any y € TU{A, S}, a,by,bs, b3 € Tand z € NUT.

Py A"MuW CvA™ $ =6 PyA™uHvSA™$

where u € (TU{S} and v € T*. As we mentioned, nonterminal C' indicates that G
shall continue in copying the last terminal subword in the sentential form. When
it appears right after W sentential form can be modified so that situation 7 occurs.

Computation of M:

(QOv P27 €, QP2,1>(QP2,17 A7 P27 [P27 A7 1])([P27 Y, 1]) VV7 Y, ng,ﬁ)(qu,Gv Cu H7 QPQ,B)
(QP2,87 a,a, QP2,8>'“(QP2,87 A7 SA> qP2,18)<QP2,187 x,T, QP2,18)-'-

forany y e TU{A,S},a €T andz € NUT.

P2 A WoalwA™TAS = PByA™MuWolawA™ T ASTLS
for arbitrary v € (T U {S})*, v,w € T*, a € T, and r > 0. Nonterminals I are
shifted to the left in order to compare the number of terminals after W and number

of nonterminals A at the end of the sentential form. Computation of M:

(90, P2y €,4p,1)(qP1, A, Po, [Poy A1) ([P2, 4, 1], Wy, gy 6)

(qPy6, b1, W, [Pa, 01,2])...([P2, b2, 2], I, Iba, qp, 16)(qpy 16, D3, €, [P2, b3, 4])
([P2,03,4], by, b3, [Py, ba, 4])...([P2, b5, 4], A, bs, qpy12) (qpy,12, A, A, QP2,12)T71
(qry2, I, TA, qpy12)(qryn2, A Ay qpy12)° (P, 12,8, 8, gpy 12)

where Y eT U {A, S} and bl, b2,b3,b4, b5 eT.

27

13.

14.

15.

16.

P A" uWoalwbl A™$ = Py A™uWolawM$

for any u € (T'U{S})*, v,w € T* and a,b € T. This is one possible outcome of
comparison of |[vawb| and |A™|. There is at least one terminal between W and first
I but no nonterminal A before the second I thus |vawb| > m. This means that G
shall move to the next phase so nonterminal M is written to the output and counter
A™ is deleted. In the next steps, M is shifted to the left deleting all symbols after
W (following case). Computation of M starts similarly to the previous case, the

difference occurs when M reads the second nonterminal I in the state [P, b, 4]:
([P, b,4], 1, M, qp,11)(qp 11, As €, qpyin)™ (@i, 8.8, g i)

Py A uWvgalv bMvs$ = Po A" uWvgalvibMvs$
for any u € (T"U {S})*, vo,v1,v2 € T* and a,b € T. Again, M works as in the

previous two cases to the point when it reads M in the state [Ps,b,4]:

"‘([PQ?b’ 4]7 M7 M7 QP2,9)((]P2,97$7377QP2,9>---

where x € NUT.

PoA"MuW TvzI A'S = Py A™uWoC 2z AN

forany l e NJu e (TU{S}H*, ve (TU{A})* and z € TU{A}. This is the second
possible outcome of checking the length of the last terminal subword. Fact, that
the first [follows right after W and the second I is still present in the sentential
form implies that the length of the compared terminal word is at most m, because
otherwise situation 13 would have occured after the first m steps of the comparative
process so there would be nonterminal M instead of the second I in the sentential
form. So the result of the comparison is clear after reading the second nonterminal

I which is then replaced by indicator C' (and shifted by one). Computation of M:

(g0, Pa, €,4p,1)(apy1, A, Po, [Pa, A1) ([Po, yo, 1], W, o, Py 6)
(aro,6, L, W, ap7)(apo7, Y1 €, [Poy @, 3]). ([Pa, 2, 3], Y3, 2, [P2, s, 3])
---([P2>Z73]a[>CzaQP2,18)(QP2,18aA>AaQP2,18)l

where yo € T U{S}, y1,y2,y3 € T U {A}.

Several cases of shifting nonterminal M to the left according to content of the

sentential form follows.

Py A™MuW IvzM$ =¢ PaAmMuWoM$

for any u € (TU{S}H)*, v e (TU{A}D*, we (NUT)* and z € TU{A}. The
computation of M is similar to the previous case except for the step on nonterminal
M: .. ([P, 23], M, M, qp,18)....

28

17.

18.

19.

20.

PoAmMuWoaM$ =g Py A™uWoM$
for any u € (TU{S})*, v € T*, a € T. Nonterminal M is shifted to the left deleting

terminals after . Computation of M:

(q07 P27 €, ng,l)(QPg,la A7 P27 [P27 A7 1])<[P27y7 1]7 VV) Y, qPQ,G)
(qP2,67 b7 VV’ [P2> b’ 2])"'([P27 a, 2]7 Ma M7 qP2,9)(qP2,9a $a $7 QPz,Q)

where y e TU{S}, beT.

P A™UW MS =g P,A™uM$
for any v € (T U{S})* and v € (N UT)*. Computation of M:

(QO7 P27 €, qP2,1)<QP2,17 A7 P27 [P27 A7 1])([P27 Y, 1]7 VV7 Y, qP2,6)
(qP2,67 M7 M7 qP2,9)(QP2,97 $7 $7 qu,9)
where y € T U {S}.

PyuyMv$ =g PouMyv$
forany v € (NUT)* and v € (TU{A,S})*, y € TU{A, S} such that either first
symbol of u is A or u =€,y = A. Computation of M:

(QU7 P27 €, qu,l)(QPz,bAa P27 [P27A7 1])([P27 Y, 1]7 M7 My7 QP279)((]P2,9, xz,T, qP2,9)"‘
where x € NUT.

Py M A™Swy Sws...Sal'S$ =¢ PsA" Hwy S...a' S$

for any wy, ...,a}’ € T™. This is the final step of this phase, nonterminal M follows
right after P, so they can be both replaced by P;. Furthermore, terminal subwords
are converted to the form that computation of TM A can be simulated on them

and nonterminal H is written at the end of the counter. Computation of M:

B
(Qm Py e, QP2,1)(C]P2,1, M, P, QP2,14>(QP2,147 A A, QP2,14)~~(QP2,147 S, HEQApa QP2,15)
a B B a
(QP2,157 a, 57 QP2,15)---<QP2,157 S, ES’ QP2,10)<QP2,107 a, EQA,057 QP2,15)-~-(QP2,107 $, $7 QP2,10)

where a € T. Note that there may occur situation when M works on sentential
form P,MA™Sa'$ (with the only terminal subword and without nonterminal S at
the end). In such case the last step of the computation is (gp,15,$, 259, gp,15) so

the result would have the same structure as in originaly analyzed case.

We have that for any w; = alav,l € N,i < kv € T* :
Py, AMSHw SA™S =¢, PobA™Sw HSw A™S 7

29

21.

=q Py A" Sw SWalCa; 1 vA™$ 8

=7, Py A" Sw, SW Caka; 1 vA™$ 10
=q P A™Sw,SHaka; 1 vSA™$ 11
=a ... =c

=g PA™Sw;...a;, SWa T TA™T$ 9
=q P A" Sw,..SWatTa; A" 1 TA$ 12
=7, PyA™Sw;...SWIajtt A=+ A48 12
=g PBA™Sw,...SWa Tt AT 2C ATT2S 15
=071 P A"Sw,.. .SWCa Tt A™$ 10
=g P,A"Sw,...SHa[T SA™$ 11
=G .. =G

=q P A™Swy...al' SWaIa" TA™$

=¢ PA"Swy...ap' SWIa"M$ 13
=g P, A" Swy...al! SWa" ' M$ 16
=07 P A™Swy...al'SWM$ 17
=¢ PA"Sw...a'SM$ 18
=5 P,MA™ Swy...a)'S$ 19
= Py A" HwS...al S$ 20

Note that for w; = a, or |wi| > m some of the above steps are skipped, but the

result remains the same. Thus assumption 4.2 holds.

Phase 3:
PgATHAsg,ZlUl%S%...%Zﬂ}[%S$ =a PgAT_lHAS+1?}/1...UZ$
for any » > 0 and z;v; € <£—;‘) Ka (?—;‘) ;v € (2 G—j) Ka (E—i) 5S)U{e} such

that v = ¢ <= 2z € F4 and v, = u;S otherwise, where EZM%$ =a, u;$ for
i = 1,...,1. In other words, z;v; stores some terminal word in its first track and
configuration of TM A in its second track. In this generative step one step of TM
A is simulated (using G4 from Lemma 2.14) from those configurations. If any of
those configurations is accepting, then the whole block separated by S is deleted
from the sentential form, because that means that corresponding word from the
first track is accepted by A on less than r+ s steps. Nonterminal H is used to count
the number of steps that remain to simulate - it is the number of nonterminals A

between P; and H. Computation of M:
(QO7 P37 €, qu,1>(qP3,17 A7 P37 ng,B)(ng,?n A7 A7 QP3,3)T71

30

22.

23.

B
B

then [cycles follow, each has one of two scenarios depending on z;. For z; € F4 we

(qu,S) H7 HA7 QP3,4)(QP3,47 A7 A7 QP3,4>S<QP3,47 y € qu,f))a

have:
T B
<QP3,5> Ziy € QPg,G)(QP3,67 57 €, QP3,6)---(QP3,67 S €, QP3,7>(QP3,77 §> €, QP3,5)
and for z; € F4 we have
B
(QP3757 Ziy Uy qA,l)hl"'h|v¢|+1(QA7\U¢|+17 S7 S) QP3,7)((]P3,77 Ea €, QP3,5)

where ([%} 230, qan)s hay s P € He, and qa o1 = pra(Pjw+1). The last
cycle of the computatation remains uncompleted because sentential form ends by

symbols S$ thus (¢p, 7,9, %, gp, 7) is the last step.

PgHAmgzlvl%S...zfvf...%zlvl§5$ =c PBsWA"Cw;$

for any zv; € (?—2>* K4 <£—;‘>*, feA{l,..,1} where wy € T* is the word from the
first track of vy and 2y € Fiu, 21, ..., 25-1 & F4. There is no nonterminal A between
P3; and H which means that m steps of TM A were simulated so far. Thus G checks
whether any of [simulations ended in accepting configuration. Input word of the
first such configuration is restored (from the first track) and the rest is deleted.
The fact that there was an accepting configuration and some word is to be made

terminal is indicated by the nonterminal C' in the sentential form. Computation of
M:

(QO7 P37 €, qu,l)(qug,lv H7 P3W7 qu,ll)(qu,lb A7 A? qu,ll)m

B
(CIPS,M, E’ €, QP3,12)(61P3,127 21, €, QP3,15)<QP3,157 Y, €, C]P3,15)~-~
B

(QP3,157 S? €, (]P3,16)(QP3,16a 6 QP3,12)---<QP3,12, Zfs Cv QP3,13)-~-
B
a B
(qP3,13, x_1’ a, QP3,13)---((JP3,13> x—27 €, qP3,13)"'<qP3,137 S, €, QP3,14)

(QP3,14, T3, €, QP3,14)---<QP3,147 $7 $7 CIP3,14)

where y € (?—;‘) U K4 and a,x1, 29,23 € T. In case that zq,...,2 & Fx M does not
reach the state gp, 13 during the computation so the last arc is (gp, 16, $, M$, qp, 16)
and the output sentential form is PsW A™M$, where the nonterminal M indicates

that no accepting configuration was reached so GG is moving to the phase 4.

PWA™Cw$ =¢ PBsWA™ 1Cw$
for any w € T*, m > 0. Computation of M:

<QO7 P37 €, qP3,1>(qP3,17 W7 P37 ng,B)(qu,Su A7 W QP3,17)(C]P3,177 AJ A7 QP3,17)m71

31

24.

25.

26.

27.

28.

(C]P3,17, C,C, QP3,10)(QP3,10, a,a, QP3,10)---(QP3,107 $; $7 QP3,10>
for any a € T.

PsWCw$ = P3Cw$
for any w € T*. Computation of M:

<QO7 P37 €, qu,l)(qu,,la W7 P37 QP3,8)(C]P3,8; C7 CJ QP3,10>(QP3,107 a, a, QP3,10)--~
for any a € T'U {$}.

P3Cw$ =¢ w$
for any w € T*. Computation of M:

(QO7 P37 €, QP3,1)<qP3,17 Ca €, ng,lo)(QP3,107 a, a, qu,l())---
for any a € T'U {$}.

PsWA™MA*$ =¢ BsWA™ 1M AT
for any r > 0. Computation of M:

(Qm P3¢, QP3,1)<QP3,17 W, Ps, qP3,8)(qP3,87 AW, QP3,17)(C]P3,17a A A, QP3,17)T_1
(qu,l7a M7 MA7 QP3,9)((]P;;,97 A7 A7 qu,9>s<qu,97 $7 $7 QP3,9)'

PsWMA™S =¢ PsMA™S.
Computation of M:

(90, P3€,qpys1)(qps 1, W, P3,qpy8)(apy 8. M, M, qp, 9)
(QP3,97 A A, qu,g)m(CIPg,g, $, $, qu,g)-

PsMA™$ =4 P,A™S.
Computation of M:

(q0a P3a €, qP;;,l)(qP:;,la M7 P47 qP:;,Q)(qu,Za A7 Aa QP372)m(QP3,27 $7 $a QP3,2)~

From the cases analyzed we have that:

where for all i € {1,...,7}: w] = € for all w; which are accepted by TM A on less

than m steps and w;$ =, w;$ otherwise. For all nonempty words w; let z; be

32

29.

30.

31.

their second symbol (the first is £). If there is a number f < r such that 2y € Fy,

zj & Fy for j < f then the derivation continues as follows

. =g BBWA™Cw;$ 22
=072 w8 23,24, 25

and the assumption 4.3 holds.

If there is no such f then the next generative steps are

=02 PA™S 26,27, 28

and the assumption 4.4 holds.
Phase 4:

PyA™$ =5 PLWAALA*™2RAAS

for any m > 0. This is the initial step of phase 4. In this generative step 2m + 2
nonterminals A are written to the output in order to build two m + 1 long counters.
In following steps, nonterminals L, R are simultaneously shifted towards themselves

until they "meet" in the middle of A>™*2. Computation of M follows:

(90, Pa, €,qp,1)(qpy1, A, PEWAAL, qp, 2)(qp,2, A, AA, qp, 2)™ ' (qp, 2,$, RAAS, qp, 2).

PWATLASRA™S =¢ PLWA™ M LA2RA™1S
for any s > 1,7 > 0. Note that s is even, because initially s = 2m — 2 from 29
and in sequence of these steps it is iteratively decreased by 2 so case s = 1 cannot

occur. Computation of M:

(q0; Pi, €,qpy1)(qrins W, Pay p, 3)(qp, 30 A W, qpya) (qpaas A A, gpya)™ ™

(QP4,47 Lv Aa qP4,5)(QP4757 Aa AL> QP4,6)(qP4,67 A7 €, QP477)(QP4,77 Av Aa qP4,7)8_2

(QP4,77 R, RA, QP4,7)<QP4,77 A A, QP4,7)T(QP4,77 $7 $7 QP4,7)-

PWA™H LRA™S = PW A" CSHSA™S

for any m. Fact, that nonterminal R follows immediately after L in the sentential
form indicates that they separate the block of As into two equal halves, so G may
start to move to another phase. Thus LR is replaced by CSHS - C indicates that
suffix A™HLSHSA™ S was successfully derived so this phase may end and it is

shifted to the beginning of the sentential form in the next steps. In contrast, SHS

33

remains at its position in the following steps as a separator and it represents empty

word € as w; (from 4.2) in the following phase 2. Computation of M:

(QO7 Py e, QP4,1)<QP4,17 W, Py, QP4,3)<QP4,3> AW, QP4,4)
(QP4,4, A A, CIP4,4)m<QP4,4> L, A, QP4,5)(QP4,57 R,CSHS, QP4,8)
(QP4,8; A, A7 qP478)m+1(qP4,87 $7 $7 QP4,8)~

32. PWACv=¢ PWA™1CAv
for any r > 0, v € N*. Computation of M:

(90, Py e, QP4,1)((]P4,1; W, Py, QP4,3)(QP4,37 AW, QP4,4)
(QP4,47 A A, QP4,4)T71(QP4,47 C,CA, QP4,9)(QP4,9; x,T, QP4,9)-~-

where € N.

33. PLWCv = P,Cv
for any v € N*. Computation of M:

(610, Pye, QP4,1)((IP4,1, W, Py, QP4,3)(QP4,37 C, QP4,9>(QP4,9a z,T, QP4,9)---
where x € N.

34. P4CU =a P
for any v € N*. Computation of M:

<q07 P4a €, qP4,1>(qP4717 07 P27 QP4,9>(qP4,97 x,T, QP4,9)--~

where x € N.

From the above analysis we have

Py A™$ = PLWAALA*™ 2RAAS 29
=22 PLWA™ T LRA™HS 30
=q PLWA™ M CSHSA™ S 31
=mt pWCA™ T SHSA™ S 32
= PLCA™T' SHSA™'§ 33
=g PBLA™TISHS AT 34

for any m > 0. In case that m = 0 phase 4 has only one generative step :

(QO7 P47 €, qP4,1)(qP4,17 $7 P2ASHS$7 qp4,1)-

34

Thus the assumption 4.5 holds.

We have verified all of the assumptions 4.1, 4.2, 4.3, 4.4 and 4.5. We have also
proven that they imply L(G) = L(A), so inclusion Lgpg 2 Lrg holds. In order to prove
Lre = Lspg we should show also the opposite inclusion Lrg O Lgpe but it is not hard to
see that for given $dgs G we can construct TM A which simulates G and checks whether

G derived the given word so we leave formal proof to the reader.]

35

Chapter 5

Measuring nondeterminism in

g-systems

From the previous research [2]| we know that one nondeterministic state and |%| 4 1 non-
deterministic arcs are sufficient to simulate any 1-a-transducer working over an alphabet
Y. The mentioned study suggests that some computational measure of nondeterminism
in g-systems would be useful, because the previous results do not tell us how often the
nondeterminism is used during the generative process. In this section we define and study
such measures.

We introduce definition of the mapping from the previous work [2| which tells us how

many decisions can be made from a given state on a given letter.

Definition 5.1 Let us consider arbitrary 1-a-transducer M = (K,%, %, H, qo, F') and a
g-system G = (N, T, M, o). We define mapping dec from pairs (state, symbol) to integers
as follows: for each state q € K and for each symbol a € ¥:
if there exists an arc h € H such that pri(h) = g A pra(h) = a then :
dec(q,a) = {h € H | pri(h) = q Apra(h) = a}| =1
else :

dec(q,a) = 0.

5.1 Considering the number of generative steps

In this section, we define and study a metric which measures how many decisions can a

given g-system make during a given number of generative steps.

37

Definition 5.2 Let G = (N, T, M, o) be a g-system, let M = (K, NUT, NUT, H, qo, F)
be a 1-a-transducer. Let o(w) = (qo, ao, Vo, q1)---(qk, Gk, Uk, @r1) be any computation of
M on w = ag...ar. We define mapping stepDec from computations of M to integers as

follows:
k
stepDec(a(w)) = Z dec(gi, a;)
i=0

We define mapping stepDec from sequences of computations of M (corresponding to
consecutive steps of derivation in a g-system) to integers for a sequence of computations

ar(wy), ..., o (wy,) such that w; = pra(aj_1(wj_1)) for j € {2,...,m} as follows:

stepDec(ay(wy), ..., G (wy,)) = Z stepDec(o;(w;))
i=1
Finally, we define mapping stepDec from pairs of g-system and number of generative

steps to integers as follows:
stepDec(G,m) = max (stepDec(ay(0), ..., m(wp,)) | a1(0)...cn(wy,) € (TTy)™)

In what follows we search for an upper bound of the above defined metric in the general
case - g-systems generating all recursively enumerable languages. First, we show that we
can simulate an arbitrary $dgs by an equivalent g-system G satisfying stepDec(G, m) < m
for all m and then we prove that this upper bound can be iteratively improved.

A simulation of $dgs is straightforward, nondeterminism is used just to decide whether
to delete the endmarker. The only problem that could occur during the simulation is that
our g-system could derive some "bad" words after deletion of the endmarker. To prevent

this we use the following normal form:

Definition 5.3 Let G = (N,T,M,0) be an arbitrary deterministic g-system with end-
marker, where M = (K, N UT,NUT,H,q,F) is a deterministic 1-a-transducer. We

say that G s in normal form if the following conditions hold:

|F| =1, and qo ¢ ' (5.1)
for the only accepting state g € F,Yh € H : if pry(h) = q then pra(h) = 8. (5.2)

Lemma 5.4 For arbitrary $dgs G = (N, T, M, o), there exists $dgs G’ in normal form
such that L(G) = L(G").

38

Proof. Let M = (K,NUT,NUT, H,q,F). We construct M' = (K',NUT,N U
T,H', q, F') as follows:

K'=KU{qr,qn}

Hspg=1{h | h € H : pro(h) = $}

Hspew = {(¢,8,v,7) | Vh = (¢,8,v,p) € Hsoa, where r =qriff p€F
and r = qn otherwise}

H' = (H U Hspew) — Hsola

F' = {qr}

% = qo

It is not hard to see that G' = (N, T, M’, o) is in normal form because its only accepting
state is qr # qo which satisfies the condition 5.2.

Proof of L(G) = L(G") is trivial because in construction of H’ we changed only pry
of those arcs from H which have to be the last arcs of the computation and for any
honew = (¢, 8,0,7) € Hgpew, hota = (¢,%,v,p) € Hgopqg: 7 € F/ < p € F. O

At this point we are ready to prove the upper bound mentioned.

Lemma 5.5 Let L € Lrp be an arbitrary language. There exists g-system G =
(N, T,M,0) such that L(G) = L and VYm : stepDec(G,m) < m — 1.

Proof. From the Theorem 2 we have that there exists $dgs G' = (N',T, M’ o), where
M = (K',N UT,N' UT,H' q, F') such that L(G') = L and from lemma 5.4 we can
assume that it is in normal form. We construct M = (K, N UT,N UT, H, qo, F) as

follows:

N=NU{$}; K=K qo=qyF=F
H=H U{h=(¢,%v,p) | (q,8%v$,p) € H}

First, we show that L(G) = L(G") by proving both inclusions:

L(G) O L(G):
Let w € L(G') so there exists an integer k such that o =%, w. From H D H’ we have that
M is able to simulate any computation of M’'. G generates w as follows: M simulates
M’ in each generative step except for the last arc A’ = (¢,$,v$,p) in the k' generative
step which is replaced by h = (¢, $, v, p).

L(G) C L(G"):

First, we mention three important observations about the work of G:

39

Observation 1: G works on a prefix v € (N UT) — {$})* in the same way as G’,
because we neither removed nor added any arc h such that pro(h) # $ in the above
construction.

Observation 2: for all computational steps ' = (p,$,v$,q) € H' there are exactly
two computational steps (with the same pr; and pro) in H and those are (p, $,v$, ¢) and
(p,$,v,q).

Observation 3: if G deletes $ from the sentential form then the next generative step
will end in non-accepting state and M will halt. This statement holds because we did
not break the condition 5.2 from the definition of the normal form in construction of G.

Now let w € L(G) so there exist k and a sequence of generative steps in G such that
o =% w. From the observation 3 it is clear that G must delete the $ symbol at the very
last arc of the k' generative step because otherwise it would halt. Until that point G and
G’ work identically (observation 1) and from the observation 2 we have that at this point
of generative process G’ reads the symbol $ so it derives w$. Thus w € L(G") because G’
is a $dgs.

In the second part of the proof we shall show that Vm : stepDec(G,m) < m —1. G
is constructed from $dgs and for no new arc holds that pr3(h) contains $ so at any point
of generative process of G the sentential form contains at most one $ symbol and it is
located at the end of the sentential form. All arcs that break determinism of G satisfy
the property pra(h) = $ so for the computation oy (w$) where w € (N UT) — {$})*
holds that stepDec(ap (w$)) = dec(q, $) = 1 where ¢ is the state in which G reads $ and
stepDec(apr(w)) = 0. Furthermore, stepDec(an (o)) = dec(qo,0) = 0 thus for any m
statement stepDec(G,m) < m — 1 holds. O

From the definition of the stepDec(G, m) mapping we can see that it is not restricted
to derivation of some particular word but it only depends on the length of the generative
process. We exploit this fact to add a large amount of deterministic generative steps into

the derivation in order to make the value of stepDec(G, m) small compared to m.

Lemma 5.6 Let G be an arbitrary g-system and let stepDec(G,m) = f(m). There
exists a g-system G' = (N',T", M', 0') such that L(G) = L(G") and for all m

stepDec(G',m) < f(log*(m)) + log*(m).

Proof. From the given g-system G = (N, T, M, o) and its 1-a-transducer M = (K, N U
T,NUT, H,qy,F) we construct G’ = (N, 7", M', o’) as follows:

N’ = N U Nyew, where Npew ={0',1,0, A, B,C} and N N Nye, = 0,

40

T =T
M = (K'N'UT' N'UT' H' ¢, F"),where :
K'= KU Kyew, where Koew = {0: Gin Gio @15 4r0; Greps G2} and K 0 Ky = 0
H' = HU H,ep, where Hyep = {
49, 0", 080, qp),
4,0, €, Gio),
o 1, €,Gin),
d0: A, €, qp),
¢, 1,0,401), |
4i1, 0,0, gio),
30,0,0,Gr0),
40, 1,0,Gr1),
Gio, 1,1, ¢r1),

These arcs increment the counter

qi0, 07 17 %"0)7

(
(
(q¢
(
(
(

(

(

(

(

()
(@1, 1,1, 4m1),
(
(
(
(
(
(
(
(
(
(
(

dri1, 07 17 qro

)

J
QZlaB C QTep)a
qi1, B, A00B, qo),

%OaB 1B QTep)

¢r1, B, 1B, gy¢p), ¢ counter does not overflow, the rest of the sentential form is copied

} counter overflow: terminate or simulate one step of G

qr0, B OB qrep)

QZOaA A Q2)

i1, A, A, g2),

QTOaA A Q2)’
A is present in the sentential form - counter is being extended

QT’laA A q2)a

q2, 07 007 q2)7

QZaB B QTep)

41

)

(20, C, C, rep),
(gi0, C, C, Grep),
(¢i1,C, C, qrep), ¢ sentential form contains C: deleting the counter
(C]rl, C,C, qTep)y
(90 Cs €, Grep),

(Greps , 2, Grep) Yz € N'UT'}
F' = F U {0, Grep}

The part of G’ corresponding to H,., is depicted in figure 5.1. Before we get to the
proof, let us analyze the work of G’
G’ maintains the binary counter at the beginning of the sentential form followed by the
nonterminal B. In each generative step G’ increments the counter by one (in reversal
lexicographic order). If the counter overflows then G’ has two options: it either simulates
one generative step of G and extends the counter or it decides to terminate and deletes
the counter. In the first case we have 1"Bv =g 0¥ 'A00Bv;v € (N UT)* and then
follows k — 1 steps in which A is shifted to he left and number of nonterminals 0 after A
is doubled. Thus we have that 01 A00Bv :>’é71 02" Bu so the length of the counter is
exponentiated.

Corectness: L(G') C L(G): let w € L(G’) be a word. There exists a derivation of
w in G’. As we can see from the construction of G’, the important generative steps are
those in which its counter overflows. Let k£ be the number of such generative steps during
the derivation of w. Thus in the first & — 1 of these steps G’ uses arc (g;1, B,00B, qo)
after reading and incrementing the counter and then from ¢ it uses the arcs from H in
the rest of such generative step. In the k' important step G’ uses arc (g1, B, C, grep) and
the rest of the sentential form is copied. In the following generative steps G’ does not
change, add or delete any symbol after the nonterminal C'. The counter does not contain
any terminal symbol and in the very first generative step G’ uses the arc (¢}, 0’,0B0, ¢()

thus G derives w after £ — 1 generative steps from the initial nonterminal o.

L(G") 2 L(G): let w € L(G) be a word so there exists derivation of w in G: 0 =¥ w
for some k. We find a derivation of w in G’. Again, the important generative steps of
G’ are those in which the counter overflows because otherwise the symbols, which follow
after nonterminal B in the sentential form are just copied in the state g,.,. Let us assume
a derivation of G’ in which the arc (¢;1, B,00B, qo) is used in the first & such steps. Thus
G’ simulates G on the suffix following after nonterminal B in the sentential form, because
from the state gy it uses only arcs from H. So after the k™ important step the sentential

form 0¥Bw is derived, because in the initial generative step 0Bo is derived from o’. If

42

A A

2

Figure 5.1: Part of M’ which is responsible for making 92" }m purely deterministic

generative steps for m simulated steps of G.

43

in the next important generative step G’ uses the arc (g1, B, C, ¢y¢p) then the subword
w is copied. G’ does not modify any symbol after C' because for all arcs h € H' such
that pry(h) = C it holds that pry = ¢, which is a "copy" state. The only thing that
remains to prove is that G’ deletes the counter properly. It is not hard to see that M’
shorten the counter by one digit per generative step - it writes the € in the initial step of
the computation, one digit per any following 0 or 1 and then copies C' moving to the gyep.
After deleting the whole counter, the sentential form Cw is derived and the following
generative step starts by the arc (g}, C, €, g¢p) and then w is copied.

Now let us count the number of deterministic and nondeterministic steps of G’ during
the generative process. The only nondeterminism occurs when the counter overflows so
we have to answer the question how often it happens. The part of H which increments
the counter is deterministic so it is not hard to see that G’ generates all binary numbers
of the length of the counter (in rlo) before it overflows. Thus on counter 0¥ G’ does 2%
deterministic steps until it owerflows. As we mentioned, after nondeterministic step G’
either terminates or the length of the counter is exponentiated - this can be done less
than log*(m) times in m generative steps. Thus we have that in m generative steps of G’

there are at most log*(m) + f(log*(m)) nondeterministic decisions used. O

Theorem 3. For arbitrary language L € Ly there ezists g-system G such that L(G) = L
and ¥Ym : stepDec(G,m) < 2log*(m).

Proof. This theorem follows from Lemmas 5.5 and 5.6.]

Note that we can use the concept from Lemma 5.6 iteratively to obtain arbitrary slow
growth of the function stepDec(G,m).

The only possible improvement from this result is a constant value of the stepDec()
function, so our next question is whether there are languages in L5 — Lpe which can be
generated using constant number of nondeterministic decisions. The answer is yes and
an example of such language is any L U {¢} where L is an infinite language from Lpg.
It is not hard to see that only one nondeterministic step is sufficient in the very first
generative step in which G decides whether it generates € or starts to generate L. There
are also non-e examples such as L = {a"|n > 1} U {a"b|n > 1}.

These examples bring us to a hypothesis that for L = L U Ly where L, Ly € Lpg we
can construct a g-system G such that L(G) = L and Jc € N : Vn : stepDec(G,n) < c.
Such statement can be easily proven for L, Ly over disjoint alphabets, however, it does
not seem to be true in general. The potential counterexample to this hypothesis can be
the union of languages L; = {a"b" | n > 0}, Ly = {a**b" | n > 0}. Intuitively, a g-system
generating the language L; U Ly has to modify the generated words a?b* and a?b in a

different way in order to derive the words from L; U Ly in the following generative steps,

44

but it cannot deterministically distinguish which of these two types of words is in the
current sentential form.

We have that stepDec(G,m) function splits the languages (corresponding g-systems
by which they are generated) into two classes: those for which it is constant and those
for which it is arbitrary slow increasing function. These results lead us to the idea of
introducing another measure of nondeterminism in generative systems which would bring

more granularity.

5.2 Considering the word length

The measure studied in this section is based on the minimal number of nondeterministic
decisions needed to derive the given word or any word (from the generated language) of
the given length. For this measure we obtain the linear dependence on the word length
in general case and logarithmic for languages ¥* and unary languages. Furthermore,
we show that for any recursive language L over an alphabet X this "nondeterministic"
complexity depends on the ratio of the number of words of a given length m to the number

of words of length m in X* — L.

Definition 5.7 Let G = (N,T,M,0) be an arbitrary g-system, let w be a word such
that w € L(G) and let n € N. We define function lengthDec from pairs of g-system and

word (pairs of g-system and integer resp.) to integers as follows:

lengthDec(G,w) = min(stepDec(ag(0), ..., (W) | pra(am(wn,)) = w,
ag(0), .y i (wyy,) realize a derivation of w in G)

lengthDec(G,n) = max(lengthDec(G,w)| |w| =n)

In other words, lengthDec(G,w) is the smallest number of nondeterministic decisions
needed to derive w in G and lengthDec(G, n) is the number of decisions needed to derive
any word in L(G) of length n.

First, we investigate the upper bound for lenght Dec(G, n) function in the general case
- arbitrary recursively enumerable language. We use the fact that we can simulate any
TM A on a given word by a deterministic g-system (Lemma 2.14). In the construction
from the following theorem the g-system first nondeterministically derives an arbitrary
word and then checks whether it belongs to L(A).

Theorem 4. Let A be a Turing machine such that L(A) C ¥*. There exists a g-system
G = (N,T,M,o0) such that L(G) = L(A) and lengthDec(G,n) < (n+ 1)|%].

45

Proof. We construct a g-system G which uses nondeterminism to derive w$ for any word
w over the alphabet ¥ and then works just like the $dgs from Lemma 2.14 except it
deletes the $ symbol from the sentential form in case that A accepts w. We show only
the part of set H (from its 1-a-transducer) which is responsible for derivation of w$ from

the initial nonterminal o because the rest is trivial:

B
H 2 {(q07 g, AE$7 Q1)7

B
qo, A, B q1), where q4 is the initial state of A

qU7A7A§7q1)uva € X
C C
qi, = — (]1>7vcE EU{B}

)
Cc C

q1, $7 $7 C]l)}

~—~ o~ o~

Note that nondeterminism is used only from the state ¢y on nonterminal A.

an B
an B

word w = a;...a, € X*. In the very first generative step G derives the sentential form

Corectness: we shall prove that G can generate sentential form %qA%... $ for any
A§$. Let us assume the derivation of G in which the following n + 1 generative steps are

initialized by arcs:

an, ai B
A, A— A A— A, — .
(q07) an7q1)7 7<q0a ; &laQ1)>(QO7) Bquql)

Then we have that after n + 2 generative steps G derives %QA%'“Z_Z%S
During this derivation GG used nondeterminism n + 1 times in the initial steps men-
tioned above and dec(qo, A) = |X| so we have that lengthDec(G,n) = (n+ 1)|X| and the

theorem follows. O

Although the construction from the previous theorem is straightforward, it seems that
we can hardly obtain better result unless some different approach is used. We need to
specify arbitrary word from ¥* on which G will simulate TM A. Thus for the given length
n we have |X|™ possible words so log(|X]") = |X|n decisions are needed.

Note that if we want to construct G which generates words (for example in rlo) from
the previously derived terminal word then it has to find the end of the sentential form
and mark it with a special symbol in order to simulate TM A on this word. That
requires log(n) nondeterministic decisions for all of |X|" words. Thus even assuming
L(G) € Lrgc this approach would result in a bigger value of lenght Dec(G,n) function
than the construction from Theorem 4.

From the Theorem 1 we know that ¥ & Lpg for [X| > 1. However, we can construct

dgs that generates all words from X" of any given length n. Thus in order to construct

46

a g-system generating the language »* we need nondeterminism only for a derivation
of arbitrarily long sentential form and the number of decisions sufficient to do so is

logarithmic (to the derived length) as we prove in the following lemma:

Lemma 5.8 For an arbitrary alphabet ¥ = {aq,...,as} there ezists g-system G =
(N, T, P,o) such that L(G) = X* and lengthDec(G,n) < log(n).

Proof. We construct G as follows:

T = {ao,...,as}
N ={A, o}
M = (K,%, %, H,q, F) where
K ={q0:q1, 92,3, g1}
F=K
H =
(90,0, A, q0),
(90,0 €,),
(g0, A, ag, q1),
(90, A, AA, q2),
(90, A, AAA, go),
(qo, @iy aiy1,q3) Vi € {0,...,s — 1},
(
(
(
(
(

0
qo; Us, G0, 44,

q1, A ao, q1),

g3, aj,a4,q3) Vj € {0, ..., s},

q4, @i, a1, q3) Vi € {0,...,s — 1},

44, 0s, Qgp, q4)}

First, we shall prove the corectness of the construction: Inclusion L(G) C ¥* is trivial
because T'= 3. The oposite inclusion, L(G) O 3*: Let w = by...b,, € ¥* be an arbitrary
word. We find the derivation of w in G. If w = € then G can derive w directly from
o by (qo,0,€,q0). So now let us assume |w| > 0. As we can see, G works in two
phases. First, it generates arbitrary number of nonterminals A and then it converts
them to terminals. In the second phase, it generates all words of the derived length
in reversal lexicographic order. We used similar approach of generating words in rlo
earlier so we do not prove the corectness of this concept again. Now we shall prove

that G can derive the sentential form which contains exactly k nonterminals A. Let

47

Figure 5.2: G-system that can derive any w € ¥*, |[w| = n using log(n) nondeterministic

decisions.

us denote ki, ..., k,, integers such that & = 2" + ... + 2% and k; > ... > k. Let
li = ki — kjyq for © = 1,..,m — 1. The only nondeterministic state of G is gy so we
can focus just on the first step of the computation in each generative step, because
Vh € H : pray(h) # 0 = pra(h) # qo. Let us consider a derivation of G in which these
first computational steps are hy, ..., hy, where hy = (q0,0, A, q0), hi, = (qo, A, AAA,)
and h; = (qo, A, AA,qp) for all : € {1,...m —1},5 € {1,....k1} —{li, ..., Lin—1}. Let us
count the number of nonterminals A in the sentential form after k; generative steps: for
the generative steps starting with h;, the number of A is doubled and for those starting

with h; it is doubled and one more is added. Thus we have

HA = (..((2F k2 p1)2kemks) QFmormhm 4 q)okm —
— 2k1—k2+k2—k3---+k’m—1—km+km + 2k2—k3+---+km 4+ ka — 2k1 + 2k2 4o+ 2km =k
and in the next generative step G begins with h = (qo, 4, ag, q1). As we can see G used

k1 nondeterministic decisions during the generation and the length of the derived word
is at least 2¥* thus the lemma holds. O]

Other languages for which nondeterminism is needed only to derive a sentential form

of arbitrary length are unary languages.

Lemma 5.9 Let L € Lrg be an arbitrary language over unary alphabet. There exists a
g-system G(N,T, M, o) such that L(G) = L and lengthDec(G,n) < log(n).

Proof. We construct G for a given Turing machine A such that L(A) C ({a})*. G

simulates the computation of A on a word a” from the sentential form £ 544 “—%$ similarly

48

to the construction from Theorem 4 so we show only the part of H (from M) which is
responsible for the derivation of the sentential form %q AZ_Z%$7 where ¢4 is the initial state

of A, for any n .

B
H = {(qo, 0, AE& go), the initial arc
(q(]? A7 AAA» q1)7

(qo, A, AA, 1), derive arbitrary number of nonterminals A

(Qm Av %QAa q2)a
(qla Aa AA7 Ch),

a
A K)
(QQa) a (Z2)

The construction is similar to the one in Lemma 5.8 as well as its proof. O

In the proof of Lemma 5.9 and Theorem 4 we used a g-system which simulated the
given TM A on a nondeterministically derived word. It is not hard to see that simulation
of an arbitrary TM A on more words at once is meaningless because A may not halt on
certain inputs. But situation is different assuming a language L(A) € Lrpc. We can
construct g-system G which simulates A on every word from " (where n is nondetermin-
istically derived) and then makes one of the accepted words terminal. In general, we do
not get better result than in Theorem 4 because G has to use nondeterminism to specify
one from at most |X|" accepted words. But this approach can be usefull if the number

of accepted words is considerably less as we show in the following theorem:

Theorem 5. Let L € Lrpc be an arbitrary language. There exists a g-system G such that
L(G) = L and lengthDec(G,n) < log(n) + log(|W.,|) where W,, = {w|w € L, |w| = n}.

Proof. We construct G for the given TM A which halts on every input such that L(A) C
¥*, where ¥ = {ay,...,ax}. The idea of the construction is that G simulates A on every
word of length n and then makes the m' accepted word terminal. Numbers n, m are
generated nondeterministically. We divide the work of G into 5 phases:

1. G uses nondeterminism to derive the sentential form P,A"SASA™S for arbitrary n

from the initial nonterminal o.

49

S. P,AS A A
qp, 4
S, S

Figure 5.3: Phase 1: G uses nondeterminism to derive o =¢ P,A"P;ASA"S for arbitrary

A A

n.

2. G is preparing to generate all words of length n - the number of such words is k™.
After this phase the sentential form is P;A*"SA"S.
3. In this phase G iteratively copies the subword A"S, converts this copy to a} and in-
crements all previously generated and converted copies in rlo. The subword A*" from the
previous sentential form serves as a counter of such cycles. In the end G converts symbols
to their double track version so after this phase the sentential form is P,Ca7$...a7$.
4. G nondeterministically generates subword A™ for arbitrary m at the beginning of the
sentential form. This subword will be used to select the m!* accepted word to be made
terminal in the following phase.
5. G simulates TM A on each subword simultaneously. In each generative step it checks
whether the first subword finished the simulation. If it is so, G either deletes it and
decrements the counter if A accepts or just deletes it if A rejects. If A accepts and the
counter is 0 then G makes the according subword (terminals from its first track) terminal
and deletes anything else.

More formally, let G = (N',T", M’,0’) be $dgs from Lemma 2.14, where its 1-a-
transducer M’ = (K',N'UT' N ' UT' H' q,, F'). We construct G = (N,T, M, o) as

follows:

N = N'U N,e, where Ny = {0, Py, ..., P5, A, S,C, W, L, R,$} and N'N Npew = 0
T=T ={ay,...,a}

20

Figure 5.4: Phase 2: G deterministically derives P,A"P3ASA"S =% P3A* SA"S for
k=5

M=(K,NUT,NUT,H,q,F) where :
K = K'U Ko, where Kpew = {q0} U{aqp, 1, qp.a} U{ap, 1, qp5}U
U{aps1s s qpy10} U{ari1s ap2} Udapa, - apo) and K'N Kpew = 0
F=K
H=H U{
phase 1 :
(90,0, P1SS, q0),
(qo, Pr, PrA, qp, 1),
(q0, P1, P1,qp, 2),
(90, P1, P2, qp, 3),
(qp1, A, AA qpy 1),
(qp 1,5, SA, qp, 2),
(qp, 2, A, AA, qp, 2),
(qp 2,5, 5, qp, 2),
(qr 3, A, A qp 3),
(ap, 3,9, P3AS, qp, 1),
(qp 4, A, A qp,),
(qpy.4; S, S, qpy 4),
phase 2 :

o1

T, T
e

S, RS

A, SWLAA @
C.c A, AA
A A

W, P;S

=
(——3) *

S, S
ay, a1 A, AL
A, AL R,RA
Ay iy 1
A A
() {im)

Figure 5.5: Phase 3: G derives all words from 3" for a given n and converts them to the
double track version so TM A can be simulated on them. More precisely, this phase is

responsible for the derivation of PyA¥" SA"S =¥ P,Cai$asa}™'$...a7$.

52

Figure 5.6: Phase 4: G uses nondeterminism to derive subword A™ at the beginning of

the sentential form for arbitrary m.

Qreject, AC

Figure 5.7: Phase 5: G simulates TM A on every word of length n and then the m! of

the accepted words is made terminal, all others are deleted.

23

qp,,1, A7 P27 qu,2)7
P2, A7 A7 QP2,2)7
QP2727 P37 P37 qP2,3)a

=

qpy 3, A, Ak7 QP2,3>»
qpr,3,5,5,qp, 4),
Paas A, A, QPQA),
qp, 4,5, S, qP2,4>a
P2,17P37P37QP2,5)7
qpry5,59: 5, qp, 5),

=

=

— — —~ o~ — _ —

a5, A A, qp, 5),
phase 3 :

o, Ps,€,qpy 1),
qpy1, A, P3,qp, 2),
qps1,S, €, qpy 7)
qpy7s A, Py, qp, 8),
qps 8, A, € qu,),

qps.8, 9, C ZiA: qp,5), where qa is the initial state of TM A

(

(

(

(

(

(

<QP3,77 W, PsS, qp;.9)
(qPs2: S, €, P, 3),

(q 2714 A ,qps,)

(gpy3, A, SWLAA, qp, 4),
(gpy.as Ay AA qpya),

(qpy,a, S, RS, qpy),
(qpy.6: %, T, qpys), Vo € (NUT)
(qpy,3, W, AS, qpy 0),

(qps.0, A, W, qpy 10),
(qps.10, A, A, Py 10),
(qps,10, Ly A, qpy 11),
(gps115 A, AL, gpy 12),
(P12, As €, 4Py 13),
(QP3,13,A A QP3,13)

24

qps13, R, RA, qp, 14),

qpy14, T, T, qpy14), VT € (NUT)
qps10, C; CA, qpy14),

qps1, R, C'S, qpy 14),

qps.9: L, W, qpy 15),

P15, A, AL, qpy 12),

qps9, C, €, 4Py 16),

qps16, A, A, Py 16),

QP3,17,A a17QP3,17)

qps 17;5 S, CJP3,18)

qp; 18, Ok 01, Py,18)

4Py 18, Gis Qit1,qpy19) Vi € {1, ...,k — 1},
qprs,19, 9,5, CJP3,18)

qp, 19, @, G, qpy 19) Ya € 3,

(
(
(
(
(
(
(
(
(aps.16, S, S, qps 7)),
(
(
(
(
(
(
(

a

qp; 5, Q,)qP3,5) VCL S 2]7
B

<QP3,57 S7 §$7 QP3,20)>
B «a

(qp; 20, @, EQAE’ qp,5) Ya € ¥ where qy4 is the initial state of TM A,

phase 4 :
(q0, Ps, Py, qp, 1),
(90, Pu, Ps, qp, 2),
(apy1. A, AA qpy 1),
(qp1,C, Coqp, 2),
(qpy2, T, %, qp,2), Yo € (NUT)
phase 5 :
qprs.1, A, Ps, qps 2),
qps 2, A A qps 2),

B
qp5,37 -5 6 qP5,4)7

(
(
(q 270 €,4p5,3)
(
(

qPs.,45 Qaccepts C ng,5)

95

<QP5,47 Qreject, AC, QP5,5)7

B
<QP5,47 Z, ACU) Q) Vz € (N U T) - {Qaccepta QTeject}7 U)h€7“€ (|:_

B} 7Z7U7 q) E Hl?

qps 5, Y, € qps5) Yy € (N UT) — {8},

qps,5, $, € CIo)

q 1706 CIP5,)
B

C]P5,67 6 QP577),

QP5,7> qaccept7 €, QP5,)

B
QP5,87 - E,QP578) Vo € (NUT)7

QPO,S, — . ai,qp,8) Vo € (NUT), Vi€ {1,....k}

qps 87$ € QP5,)

(
(
(
(
(gps 77Q1"ejectap50 qrs.5);
(
(
(
(
(ps9, 2, € qps9) Vo € (NUT),

B
(qp5,77 Z, P5CU7 Q>vz S (N U T) - {Qaccepty QT'eject} (md (|:E:| , 2,0, Q) € Hl}

The construction of each phase is shown in figures 5.3, 5.4, 5.5, 5.6, 5.7. Note that only
phases 1 and 4 contain nondeterminism. We prove that in each phase G works as we
suggested:

Phase 1: the proof that G can generate any number of nonterminals A is similar to
the one of Lemma 5.8. This phase ends after the generative step in which M uses the arc
(g0, P1, P2, qp, 3) in the first computational step. Now we show by induction that until
that point after each generative step the sentential form is P, A'SA'S for some i. After
the initial step the sentential form is P;.S so the base of the induction holds. Let the
sentential form be v = P A/SAJS. There are three possible computations of M on such

input:

90, P, P A, qp, 1) (qp1, A, AA qp 1) (gp1, So SA, gp 2)
qP172aA AA qp,) (QPLQ,S, S7 QPl,Q)a
90, P1, P, qp, 2)(qp 2, A, AA, gp 2) (gp 2, S, S, qp, 2)

ay (v) =(
(
(
(qp 2, A, AA, qp, 2) (QP1,2;S; S, qp, 2),
=(
(

a(v)

do, Pla P27 qp 3)(QP1,3a A, A, QP1,3)j(qP1,3> Sa P3AS7 qP174)
qp, 4aA A , 4Py,) (QP1,4757 S7 QP1,4)

az(v)

o6

We can easily see that pry(a;(v)) = PLAYTISAYTS pry(as(v)) = PLA*SA%S and
pra(as(v)) = PB,ATP3ASAIS.

Phase 2: We want to prove that P, A"P3ASA"S =7 PyA¥" SA™S for any positive
integer n. In this phase the number of nonterminals A between P3 and S is iteratively
multiplied by k. The number of such steps is determined by the length of the first block
of nonterminals A in the sentential form which is decreased by one in each step. More
precisely, on the sentential form P, A'P3A7SA™S, for all i, 7 > 0, m > 0, the computation

of M is as follows:

(QO7 P27 €, QPQ,I)(qPQ,la Aa P2a ng,Q)(QPQ,% A7 A7 QPQ,Z)i_l(QPQ,Qa P37 P37 qp2,3)
(QP2,3; A, Ak, QP2,3)j(QP2,37 S, S, QP2,4)<QP2,37 A A, QP2,4)m(QP2,47 S, S, QP2,4)

so we have that
P,ATP,ATSA™S = PgAifngAijAmS.

On the prefix P,P5 the computation of M starts with (qo, P2, €,qp,1)(qpy1, P, Ps, qp,.5)
and the remaining nonterminals A, S are copied in the state gp, 5 by the arcs (¢p, 5, A, A, qp,.5)

or (qp,5,5,5,qp,5) respectively. Thus we have that

PgAnpgASAnS :>Zv P2P3AanAnS
0 PAF SAS.

Phase 3: We want to show that the derivation in this phase is the following:
P3AanAnS :>Zv P4CW$CLQCL?71$...@$.

First, we analyze particular generative steps of G and then we put them together obtaining
the above derivation. In the following part we denote by w,.s; any word over N UT and
we use it in cases when M does not change the suffix of the input.

In what follows, the sequence of steps which is responsible for addition of the subword
at after the second nonterminal S in the sentential form is analyzed. It consists of the
following steps: block A™ is doubled (A™ ~~ LA?*"R), then using nonterminals L, R its
middle is found (LA®*"R ~» A"LRA™) and finally, the second block A" is converted to
terminals (A"LRA"™ ~» A"Sal).

The computation of M on the sentential form P;A'S A" Sw,. for all i,n > 0, looks as

follows:

(90, P3,€,0p,1)(apy1, A, Ps, qpy2)(qpy 2, Ay A, qp,2) ~ (apy 2, Sy €, apy 3)
(qpy 3, A, SWLAA, qp, 4)(qp, 4; A, AA qp, 1) H(qpya, Sy RS, qpy 6)(qpy 6, T, T, 4Py 6) - -

57

so the output is Ps A" 'SW LA RSw,es;. The nonterminal W in the sentential form
indicates that "subroutine" which adds the subword a} did not finish yet so it prevents
the doubling of nonterminals A while it is present.

Two cases in which nonterminals L and R are shifted towards themselves follow. Let
us assume input P3A'SW A'LA? 2 RA'Sw,eq for any i > 0, | < n. If | =0 M works as

follows:

(CIO7 Py e, QP3,1)<QP3,17 A, P, qP3,2><qP3,27 A A, CIPS,Q)Fl(QPg,Q, S, €, QP3,3)
(qpy3, W, AS, qp,0)(qp,0, LW, qp, 15)(ap, 15, A, AL, qpy 12) (aps 12, Ay €, 4Py 13)
(QP3,137 A A, QP3,13)”_2(QP3,13; R, RA, QP3,14)(QP3,147 z,T, C]P3,14)--.

thus PsA'SW LA™ RSWyesy = P3A'SW ALA" 2 RASW, .
In case that [> 0, the first ¢ + 3 computational steps of M are similar to the previous

case. Computation then continues by:

(qpry9, A, W, qp, 10) (P 10, A, A, C]P3,1o)l_1(CIP3,107 L, A qp,11)(qpy 11, A, AL, qp, 12)
(QP3,127 Ae, QP3,13)(QP3,137 A A, QP3,13>2n72l72<QP3,137 R, RA, QP3,14)<QP3,147 z,T, C]P3,14)---

thus the sentential form P;A'SW AT LA?" =22 R A1 S, .y is derived.
For | = n we have the sentential form P;A'SW A"LRA"™Sw,.s on which the com-
putation of M starts as in the previous case and then continues from the state gp, 11 as

follows:

~--(QP3,117 R,CS, QP3,14)((]P3,147 X, T, QP3,14)~'

so the output is PsA'SW A"CSA"Sw,.s. The fact that nonterminal R follows immedi-
ately after L in the sentential form indicates that they are located in the middle of the
block A?". M replaces them by nonterminals C'S, where S separates nonterminals A and
C is shifted to the left in the following steps in order to signalize that the middle of A%"
was found.

As suggested, on the sentential form P3;A'SW A'C A" !Sw,.s for any i,l > 0, C is
shifted to the left. After reading prefix P3A'SW A! 1-a-transducer M is in the state gp, 10
and word P3A'SW A1 has been written to the output so far (similarly to the previous

case). The rest of the computation looks as follows:

(QP3,107 C,CA, QP3,14)(QP3,14> z,T, QP3,14)---

so the sentential form Py A'SW A1C A 1 Sw, s is derived.
After certain number of such shifts C' appears next to the nonterminal W in the
sentential form. At this point, nonterminals W' are deleted, the last block A" is trans-

formed to a} and all terminal subwords are incremented in rlo. More formally, on the

o8

sentential form P; A'SWCA"SA"Sw,S...Sw;S for all i > 0 and wy, ..., w; € ¥ M works
as follows: on prefix P3A'STW M moves to the state qpy0 and writes P;A'S so far as we

have shown before. The computation then continues with arcs:

(aps.9, Cs €,apy16) (P 165 Ay Ay qps16)" (aPs 16, S5 S, apy 17)
<QP3,177 A, ay, QP3,17)"(QP3,177 S, 8, qpy18),
so A"SaS is appended to the output. We shall show that from the state gp, 15 on the

input aja;wS for any r, where j < k and w € ¥*, M writes aja;;,wS and ends up again

in the state gp, 1. In such case the computation of M is:

(QP3,18> ag, a, QP3,18)T(QP3,18a Qj, Aj41, CIP3,19)(QP3,197 a, a, QP3,19)|w|(QP3,197 S, S, C]P3,18)

where a is arbitrary terminal from Y. Thus the rest of the terminal words separated by S is
incremented in rlo so after this generative step the sentential form P3A*SA™Sw]S...Sw;S
is derived, where w/ is the next successor of w; in rlo for all s € {1,...,{}.

The last case we analyze is the input of a form P3SA™Sw;S...Swy S, where wq, ..., Win

are terminal words from >*, on which M works as follows:

(QO> P, e, QP3,1)<QP3,17 S, e, CIP3,7)<QP3,7> A, Py, QP3,8>(QP3,8a Ae, C]P;a,,g)m1

B a B B a
(QP3,8> S, CEQA> QP3,5>(QP3,57 a, a, QP3,5)---(QP3,57 S, §$, QP3,2O)(QP3,207 a, EQAE’ qu,s)---

where a stands for any terminal a € ¥ and g4 is the initial state of TM A. After such
generative step the sentential form P,Cw1$...w,x$ is derived.

From the above analysis we have that G works on P3A*" SA™S as follows:

while P is followed by A in the sentential form, M enters the cycle:
Py A SA™Sw,ey = PsA7'SW LA™ RSW, st
While L is not followed by R:

PRASSWA' LA 2 RA'Sw, e =g PsA'SW AT LA 2 RAF Sw, o
PyA'SWAMLRA"Swyest = PyA'SWA"CSA™Sw,eqt
While W is followed by A shift C' to the left:

PA'SWA'CAY Swyeyy = P3A'SWAT CA™ 1 Sw, o
PsA'SWCAMSA™Sw,S...Swiyn_i—1S =g PsA'SA™Sw,S...Swy, _iS

where w, is the s word in rlo from " for all s € {1,...,k"}. Note that this cycle is
repeated k" times so after the cycle ends the derived sentential form contains all words

from X" in rlo (separated by S). The last generative step of this phase is:
P;SA"SalS...SalS =¢ PyCai$..ay

29

Phase 4: In this phase an arbitrary number of nonterminals A is generated so the
sentential form PsA™Ca?$...ap$ for any m is derived. For that purpose nondeterminism
is used similarly to the construction from Lemma 5.8.

Phase 5: G simulates the work of G’ on each of the derived words (its double track
version) and subword A™ is used to specify which word from the "accepted" ones will be
generated in the terminal form.

Now let us analyze the work of M on the sentential form P;A'C %zw FirstSWyest fOr any
i>0,2z€ NUT, wpips € (NUT)—{$})*, where zwy;,s is double track word composed
of input word on the first track and current configuration of simulated TM A on the
second track. Word w,.,; contains the rest of such words delimited by $ symbol. On the

prefix PsA'CZ where i > 0 M works as follows:

(90, P5,€,qp51)(aps 1, A, Ps, ap,2)(apy 2, A, A, qps 2)' " (apy 2, Cr €, ap,) (apy 3, =5 €, qps 4)-

B
B
Then the computation continues according to z, because M checks whether the first

simulation reached accepting or rejecting configuration. For 2 = guecepr We have:

(QP5,4a GQaccept s Ca QP575)(QP5,57 Y, €, qP5,5)|wfimt‘ (qu,Sa $a €, C]6)

and then M simulates one step of G’ on the remaining subwords delimited by $ which
can be easily seen from the assumption that on endmarker symbol M’ moves to g;. Thus
%zwﬁrsﬁ is deleted from the sentential form and counter A’ is decremented by one.

In case that z = gejecr M continues with (gp, 4, ¢reject, AC, gp, 5) and the rest is the
same as in the previous case. Again, subword %zwﬁmﬁ is deleted but this time counter
is not decremented.

In the last case when z & {qaccept, Greject } M uses the arc (¢p, 4, 2, AC, q) such that the
B
B
wairst$-

arc ([} ,2,v,q) € H and simulates one generative step of G’ on each subword including
On similar sentential form but without nonterminals A the computation of M starts

as follows:

B

B

and then, again, computation differs according to z. On z € {qaccept, @reject} M continues

(QOaP5a€aQP5,1)(QP5,1a0767QP5,6)((]P5,67 ,679P5,7)

with (¢p, 7, 2, PsCv, q) such that ([%] ,2,v,q) € H' so one step of G’ is simulated on the
rest similarly to the previou case.

In case 2 = @yeject the following arc is (¢p, 7, @reject; P5C, qp, 5) and then wy;,.o is deleted
and one step of G’ is simulated on the rest of the sentential form in aforementioned way.

The last case is 2 = @uecepr 0N Which the computation continues by

a B
(CIP5,7, Qaccept €, QP578)(QP5787 E’ a, QP5,8)---(QP5,8a 57 €, QP5,8)---(QP5,87 $, €, CIP5,9)(QP5,9a T, €, QP5,9)---

60

where a represents any terminal and x any symbol from N UT. Thus terminal sentential
form of the word from the first track of wy;,« is derived.

From the above analysis we can see that in this phase G from the sentential form
P A™CaTS.. af$

derives the m + 1** subword from the first track which is accepted by TM A.

Now that we made the analysis of all phases we shall show the correctness of the
construction. To prove the inclusion L C L(G) we find the derivation of arbitrary w € L
in G. Let n = |w| and let m = #v | v € L, |v| = n,v precedes w in rlo. The derivation

of w in G looks as follows:

o= PLA"PsASA™S (phase 1)
=% P AM SA™S (phase 2)
=7 P,Ca}$...al$ (phase 3)
=7 PBA"Cat$...at$ (phase 4)
=6 w (phase 5)

Now we prove the opposite inclusion L O L(G): for any word w generated by G it holds
that G’ derives from %qA%%$ the sentential form starting with %qaccept thus w € L(A)
and G will halt on any sentential form starting with terminal. Both inclusions hold so
L= L(G).
Let us count the number of nondeterministic decisions made during the derivation of
w € L(G),|w| = n. In the phase 1 G can derive sentential form P, A" P;ASA"™S using
log(n) decisions (similarly to Lemma 5.8). In the phase 4 this number is log(m) (for m
generated nonterminals A) as well so the last question is what is the biggest meaningful
m? From the analysis of G we can see that in phase 5 the number of nonterminals A in the
sentential form is decreased when the simulation of the first subword in the sentential form
reaches the acceptance - prefix P5Ai0§qaccept. Thus the maximal meaningful number of
nonterminals A generated in phase 4 is the number of distinct words of the given length
that are accepted by the Turing machine A. Thus we have that lengthDec(G,n) =
log(n) + log(|W,]) where W,, = {w|w € L,|w| =n} and the theorem follows.
O

61

Chapter 6
Conclusion

A property of languages generated by dgs related to prefixes was proven in Chapter 3
which brings more light to the reason why are deterministic generative systems so weak
and why adding the endmarker helps to improve their generative power.

In Chapter 4 we presented a construction of a $dgs G for arbitrary Turing machine
A such that L(G) = L(A). The main idea of this construction was to generate the words
from L(A) in order given by the number of computational steps of A on which they are
accepted. This enabled us to simulate only limited number of steps of A and to avoid
the non halting simulations.

We introduced two computational measures of nondeterminism in generative systems
based on the lenght of the derivation and on the length of the derived word in Chapter
5. We showed that between two nondeterministic generative steps an arbitrary number
of deterministic steps can be inserted. It also turns out that nondeterminism is needed
mainly to derive arbitrary word from >* and verification whether this word is accepted
by a given Turing machine can be done deterministically.

Some questions from [1| about deterministic g-systems remain open despite our effort
to solve them. Namely, it remains unclear whether the family of languages £p¢ is closed
under NR and whether Lpg — Log = 0.

63

Bibliography

[1] Martin Kralik. Deterministic generative systems. Master’s thesis. Comenius Univer-

sity, Bratislava, Faculty of Mathematics, Physics and Informatics. 2002.

[2] Dusan Krcho. Non-determinism in Generative Systems. Master’s thesis. Comenius

University, Bratislava, Faculty of Mathematics, Physics and Informatics. 2002.

[3] Branislav Rovan. A framework for studying grammars. In International Symposium on
Mathematical Foundations of Computer Science, LNCS 118, pages 473-482. Springer,
1981.

65

	Introduction
	Definitions and known results
	1-a-transducers and generative systems
	Deterministic g-systems and deterministic g-systems with endmarker

	Deterministic g-systems and prefixes
	A generative power of deterministic g-systems with endmarker
	Measuring nondeterminism in g-systems
	Considering the number of generative steps
	Considering the word length

	Conclusion

