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Abstrakt

KOCÚREK, Adrián: Reducibilné kon�gurácie pre TSP na subkubických grafoch [Diplo-

mová práca]. Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky a in-

formatiky; Katedra informatiky. �kolite©: RNDr. Róbert Luko´ka, PhD. Bratislava

FMFI UK, 2021.

Cie©om tejto práce bolo preskúma´ existenciu redukcií v zatia© nepopísaných in²tan-

ciách subkubických grafov. Práca je £lenená na 5 kapitol. V prvej kapitole de�nujeme

základné konvencie a pojmy, ktoré sa v texte vyskytujú. Druhá kapitola sa zaoberá

momentálnym stavom problematiky zrýchlenia rie²enia gra�ckého TSP. Zárove¬ hlb²ie

popisuje kon²trukcie redukcií, ktoré sú neskôr v práci pouºité na testovanie. Tretia

kapitola stru£ne popisuje to, ako sme si prácu rozvrhli a kroky, ktoré sme pri jej rie²ení

absolvovali. V ²tvrtej kapitole sa sústredíme na popis ná²ho rie²enia a jeho implemen-

táciu. V piatej, poslednej, kapitole sa zaoberáme popisom experimentov ktoré sme po

vyhotovení a otestovaní ná²ho programu uskuto£nili. 45 strán.

K©ú£ové slová: TSP, grafy, redukcie, stromy
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Abstract

KOCÚREK, Adrián: Reducible Con�gurations for TSP on Subcubic Graphs [Mas-

ter Thesis].Comenius University in Bratislava. Faculty of Mathematics, Physics and

Informatics. Supervisor: RNDr. Róbert Luko´ka, PhD. Bratislava FMFI UK, 2021.

The goal of this thesis was to search for reductions on as of now untapped instances

of subcubic graphs. The thesis is divided into 5 chapters. The �rst chapter serves

as an introduction to the terminology used during in the text. The second chapter

discusses the current state of the art in the saearch for faster solutions to graphic TSP

problem. It also delves into the details of the construction of reductions, which are

later used for testing purposes. The third chapter brie�y discusses the overall plan for

achieving our goals and the steps we set out to complete. The fourth chapter provides

an extended look into the implementation of the needed program. The �fth, and �nal,

chapter discusses the various experiments which have been conducted after we �nished

the implementation and testing of our program. 45 pages.

Keywords: TSP, graphs, reductions, trees
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Introduction

The �eld of computer science has many famous hard to solve problems. One of the more

famous of these is the Travelling Salesman Problem, often abbreviated as simply TSP.

This problem is often used to teach many of the basic properties of hard problems, such

as their time general time complexities and relationship with approximations. Despite

being known for so long and studied so thoroughly, there is still a lot of research being

done on it. While the general problem is relatively well established, there are still

many interesting and slightly more constrained instances of the problem which are

being worked on day and night. One of these is the subcubic version of the problem.

Recently there have been numerous advancements in the �eld of approximating this

subset and one of these served as the inspiration for this work.

Dvo°ák, Krá©, and Mohar conjectured that each connected graph that contains

only vertices of degree two and three contains a closed spanning walk of size at most

1.25n3 + 1.75n2, where ni denotes the number of vertices of degree i[2]. They found

several reductions with respect of this conjecture. The direct aim of our thesis was to

�nd other reducible con�gurations with emphasis on reductions of circuits of length

7, so called seven-cycles. The search for reductions was this time realised with the

direct aid of computing power, as the problem grows in complexity as the cycle length

expands and it becomes simply too big to handle one case at a time by rote checking.

The very �rst chapter of our work introduces some of the basic terminology we are

dealing with, both on the theoretical side and the practical side. Not only does it talk

about the basics of graph notation, it also introduces the concept of a reduction as it

has been used by Dvo°ák, Krá©, and Mohar, serving as the backbone for all work done

here.

The second chapter then tries to provide a good overview of the state of the problem

at large. It establishes the current state of the art approximation bounds presented by

people working in the �eld. It also delves deeper into reductions, providing an extended

look into the state in which we found ourselves at the start as far as subcubic graph

reductions of degree six were concerned. These not only serve as a guideline for what

to expect of the problem at hand, but also serve as useful test subjects to prove the

validity of our own program.

The third chapter sets up the general outline of the plan we have came up with to

1



2 Introduction

divide the implementation and experiments into smaller tasks which could be tackled

one by one and build on top of each other to provide a framework that could both be

used and relied upon to provide believable results.

The fourth chapter then delves into the process of implementation. Detailing each

component of the resulting software both to explain how it has been built and also to

serve as a useful reference for anyone who would want to verify the results by themselves

or expand upon the developed algorithms and experiments further.

The �nal chapter then talks about the various experiments we have conducted. It

separately deals with various instances of the problem of graphs containing six to ten

vertice long cycles. Accompanying them are illustrations which help visualise the prob-

lems tackled. These results are largely proofs of non-existence, even if some reductions

are eventually found and documented.



Chapter 1

Terminology

1.1 Notation

Our work concerns simple graphs, that is ones with no parallel edges. For a given

G we denote its vertex set as V (G), its edge set as E(G). Furthermore, the number

of vertices of the graph is denoted by n(G) and the number of vertices of speci�cally

degree 2 by n2(G). We signal the removal of a vertex w by noting the resulting graph

as G−w. This graph contains neither the vertex w nor any of the edges incident with

it. Continuing the pattern, if we remove a subset of vertices W , then G−W marks the

resulting graph. If we choose to remove edges but retain all the vertices in the graph

as-is, we mark this as G\F where F is the set of edges to be excluded.

Subcubic graphs are such that have no vertex of degree higher than 3. We consider

graph G k-connected if it is connected and should we remove at most k − 1 vertices

from it, it will stay that way. If G is connected by not 2-connected, then any vertex c,

the removal of which leads to the resulting G− v graph not being connected, is called

a cut-vertex. By analogy we call an edge which, if removed turns the graph to lose its

connected property to be a cut-edge. Note that in subcubic graphs with more than 2

vertices, being 2-connected and being 2-edge-connected are equivalent terms.

We say that a multigraph G is Eulerian if all its vertices are of even degree. If the

graph is Eulerian and connected, it has what's called an Eulerian tour. A subgraph G′

of graph G is spanning if its vertex set matches that of the original graph.

1.2 Reductions

The idea of reductions rests upon the following conjecture:

Conjecture 1. Every 2-connected, subcubic, n-vertex graph with n2 vertices of degree

2 has a TSP walk of length at most: 5
4
n+ 1

4
n2 − 1.

3



4 CHAPTER 1. TERMINOLOGY

Adopting the nomenclature of previous works concerning this problem, we will

de�ne a reduction as follows: For any two subcubic graphs G and G′, let

δ(G,G′) = (n(G) + n2(G))− (n(G′) + n2(G
′))

We will call the 2-connected subcubic graphG′ a reducation of the 2-connected subcubic

graph G if n(G′) < n(G), δ(G,G′) ≥ 0, and there exists a linear-time algorith which

creates a spanning Eulerian subgraph F on G from a given Eulerian subgraph F ′ on

G′ while satisfying

exc(F ) ≤ exc(F ′) +
δ(G,G′)

4

The importance of this construct is that it gives us a formally de�ned relation with

which we can reduce 2-connected subcubic graphs such that their spanning Eulerian

subgraphs conatin fewer edges.

The majority of the work concerns itself with 'general' reductions. That is ones

which can be applied without the need for additional assumptions about the rest of

the graph. When we make an excursion into 'partial' reductions (that is non-general

reductions), we will make an explicit note of it.



Chapter 2

Recent Achievements and The Open

Questions

This thesis concerns itself with the practical and theoretical aspects of solving the

travelling salesman problem with increased e�ciency. Since the problem in question is

NP-complete, most approaches attempt to do this using some form of approximation.

These algorithms when applied to the graph version of the TSP problem, reduce the

number of edges which need to be considered when looking for the optimal solution.

Once they compute reach a solution, they retrace these steps to build an approximate

of the optimum for the original problem.

2.1 Comparison of Approximation Methods

2.1.1 Algorithmic Complexity

The general TSP problem has been shown to be NP-complete and the best approxi-

mation available is still the 3/2 factor achieved by Christo�des[1]. This problem has

also been shown to be inapproximable to the factor of 123/122[5]. The graphic TSP

is a special case of the general TSP problem which gives each path a unit weigh and

asks for the shortest Hamiltonian walk in a given graph. This special case has shown

progress thanks to the breaking of the 3/2 factor barrier when applied on cubic, 3-

connected graphs[3]. The best algorithm currently available has an approximation

factor of 7/5ths[7].

Another line of research concerning itself solely with the application on cubic graphs

has progressed even further, enabling us to achieve a 9/7-approximation[4] of a given

problem if the graph itself is 2-connected. If we do restrict the domain further and

focus on cubic bipartite graphs, we are able to achieve a factor of 5/4ths[8]. Even these

restrictions have their limits, however, and it has been shown that the near-perfect

approximations of graphic TSP (a factor of 535/534) and its cubic variant (a factor of

5



6 CHAPTER 2. RECENT ACHIEVEMENTS AND THE OPEN QUESTIONS

1153/1152) are NP-complete[6].

2.1.2 Computational complexity

Attempts have also been made to tackle the problem with heuristic approaches.These

tackle the issue of practical use for the various algorithm presented so far. As the

algorithms get closer to the optimal solution, they have been experimentally shown to

get longer computation times. Likewise, the complexity of a given graph greatly a�ects

the �nal computation, with complete graphs in�icting noticable slowdowns compared

to sparse ones. An example of this is an algorithm which is able to solve instance of

TSP in O((2− ε)n). With an upper bound on the maximum degree of any given vertex

in�uencing the epsilon.

Making use of this fact, the heuristic approaches try to reduce the number of edges

in a graph through the use of probabilistic methods. The Lin-Kernighan Heuristic

is capale of producing solutions within 5% of the optimum in close to O(n2.2) time.

Modern approaches use methods like frequencey quadrilaterals to strip down the graph,

potentially even to a degree bounded form and then apply the relevant algorithm for

the particular subproblem, like in the case of a O(1.2312n) time algorithm solving TSP

for all subcubic graphs[9].

2.2 Approximation of Graphic TSP

The algorithm we are focusing on and currently provides the best known results is

based on the use of linear time reductions. These routines are able to �nd a subgraph

with speci�c properties and reduce it in linear time. The algorithm repeatedly calls

upon these routines until the graph either becomes basic, or takes on several desired

properties, achieving a so-called the �clean� state. Under these conditions, a polynomial

algorithm is able to create a spanning Eulerian subgraph for the reduced graph which

is then used to create a spanning Eulerian subgraph for the original graph[2].

2.2.1 Clean/Reduced Graphs

The class of graphs we are dealing with are 2-connected, subcubic graphs. The prop-

erties needed for a 2-connected graph G to be considered �clean� are as follows ?:

∗ It must be proper.

∗ No cycles of length at most 7 contain a vertex with a degree of 2.

∗ All cycles of length 6 which are not θ-cycles are pairwise disjoint.



2.2. APPROXIMATION OF GRAPHIC TSP 7

∗ For every cycle K = v1...vm where m ≤ 7 in G, if both the edge v1vm and the

edge v2v3 are contained in a 2-edge cut, then they form a 2-edge cut together.

∗ Every cycle K = v1...v6 satis�es at least one of the following:

1. The cycle is a θ-cycle.

2. Each of the edges exiting the cycle is contained in a 2-edge cut, but none of

them form a 2-edge cut with any other.

3. Each of the edges exiting the cycle is contained in a 2-edge cut and there

exists a single pair of indices i and j which hold 1 ≤ i < j ≤ 6. These two

indices are exactly 3 apart and the exiting edges going out of their vertices

form a 2-edge cut.

4. Precisely one edge exiting the cycle is not contained in any 2-edge cut. Then

there exists a partition of the vertices G − V (K) into A and B such that

x1, x2, x6 ∈ A and x3, x4, x5 ∈ B. There exists only one edge connecting the

two partitions and they both induce connected subgraphs of G− V (K).

All of these requirements can be checked for in linear time and are results of anal-

ysis of the various forms cycles can take in 2-connected subcubic graphs. Each one

represents a reduction which creates a new, reduced graph G′, which is again checked

to make sure whether it is clean, basic or requires further reductions to be made. The

whole algorithm takes up O(n3) time.

2.2.2 Analysis of Cycles in Subcubic Graphs

In order to reduce a graph to a basic or clean state, we have to establish a set of

methods which deal with the various situations on a case by case basis. An important

observation is that when dealing with n-vertex, subcubic graphs, we can list all of their

cycles containing at most k vertices of degree three in linear time as there can only

exist at most 3× 2k−1n of them.

Graphs of Variable Size

Case (1). Linear time reduction for a non-basic, 2-connected, subcubic graph G that

contains a cycle K with at most two vertices of degree three.

Since G is 2-connected, K contains exactly two vertices of degree three, called

v1 and v2. Let x1 and x2 be their neighbors outside of K. The algorithm needs to

consider two special cases. The �rst one is when the cycle K forms a traingle. We get

the reduction G′ by simply removing the third vertex z. Once we obtain a spanning

Eulerian subgraph F ′ for G′, we will check for the v1v2 edge in it. If it exists, then
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the spanning Eulerian subgraph F for G will be given by removing the v1v2 edge and

adding a v1zv2 path in its stead. If it doesn't exist, then we will have to add the whole

cycle K to obtain a suitable F for G.

If instead K is not a triangle, we will create G′ by removing all vertices of K and

creating a new vertex z which will be connected to vertices x1 and x2. We will then

check whether the spanning Eulerian subgraph F ′ contains this new x1zx2 path. If it

does, we will obtain F by �rst removing the vertex z from F ′ and then adding back all

of the vertices of K, but only adding edges x1v1, x2v2 and the longer of the two paths

that existed between v1 and v2 in the original cycle.

Case (2). Linear time reduction for a non-basic, 2-connected, subcubic graph G that

contains a cycle K with three vertices of degree three.

The three vertices of degree three in K shall be called v1, v2 and v3. Once again due

to the 2-connected nature of K, each of the vertices has a neighbor outside of K called

xi. Furthermore, there must exist an internal path between each pair of the vertices of

degree three which does not contain the third one. These are enumerated as Pi with

the vi not partaking in the particular route.

We construct the desired reduction G′ by removing all the vertices of K and re-

placing them with a single new vertex z. This vertex will be joined to each of the

neighbouring vertices xi by new paths Qi. Each of these paths must be as long as were

the paths Pi inside the cycle itself with the exception of the shortest path which will

be one edge longer. To get a spanning Eulerian subgraph F from the F ′ constructed

for G′, we will have to check for the inclusion of the vertex z. If it is isolated, we will

create F by removing the newly added paths along with their vertices and substituting

in the original cycle K. If it isn't and the subgraph contains any pair of the new Qi

paths, say Qi, Qj; i < j, we will remove the added vertices and replace them with the

vertices of K, then adding edges for vixi, vjxj and the edges from paths Pi and Pj.

Case (3). Linear time reduction for a non-basic, 2-connected, subcubic graph G that

contains a cycle K with four vertices of degree three.

We start by �nding cycles in G which contains four vertices of degree three and

pick the shortest one, called K. Once again, we will name these vertices v1, ...v4 and

their nieghbors from outside K as x1, ...x4. Let Pi denotethe path between vi and vi+1

in K with the indices looping around and enumerate the vertex lengths of these Pi as

ki. All of these summed togeter give us k.

At this point, we choose between one of two reductions dubbed Gj, j ∈ 1, 2 which

create the new graph by removing Pj and Pj+20 from the original graph G. We then

check which of these reduced graphs is 2-connected and proceed with that one. The

check for 2-connectedness �ts into linear time.
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Assume G1 is the 2-connected one. If the removed paths both had ki = 0, we will

obtain G′ by removing the vertices of K and adding new paths x1z1x4 and x2z2x3, zi
representing new vertices. Generating the spanning Eulerian subgraph F from F ′ will

be done in one of these ways:

� If both zi are isolated in F ′, then we'll create it by removing these two vertices

and adding the whole cycle K back in.

� If only one of the zi is isolated, say z1 (the process is symmetric), we must consider

two possible spanning subgraphs F1 and F2. F1 is created by removing the added

vertices, adding the vertices of K back into F ′ and edges x1v1, x4v4 and the ones

from path P4. F2 is created in the same way, but instead of adding the edges

of P4, we add the edges of P1, P2 and P3 instead. The �nal F will be picked

based on the resulting excess of these two graphs with the smaller one being the

solution.

� If neither of the zi is an isolate in F ′, we generate F by removing them, adding

back in all the vertices of K, connecting all vi to their xi neighbors and �nally

adding the edges from P2 and P4.

We then move on to cases where k = 1 or k ≥ 2. The latter one allows us to create

G′ by removing K and connecting the neighbors of the cycle through x1x4 and x2x3.

Once we obtain F ′, the construction of the spanning Eulerian subgraph F for G will

follow di�erent paths based on the existence of these edges in F ′:

� If neither of these egdes is in F ′, then F is obtained simply by adding the cycle

K back in.

� If the edge x1x4 belongs to F ′, but x2x3 does not, we're going to create the two

spanning Eulerian subgraphs F1 and F2, then pick the one with the smaller excess

to be the F going forward.

Somewhat irroring the previous construction, F1 is obtained from F ′ by removing

the x1x4 edge, adding in the vertices of K and then the edges for x1v1, x4v4 and

the edges contained in path P4. F2 goes through the same process but adds the

edges from paths P1, P2, P3 instead.

� The case with x2x3 ∈ F ′ and x1x4 /∈ F ′ is handled symmetrically.

� If both edges are a part of F ′, we once again go through with the construction of

F1, F2 and picking one of these for their smaller �nal excess.

The basic steps for the creation of both of these graphs are identical. We remove

the new edges, add vertices from K and reconnect all of vi with their respective
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neighbors xi. F1 adds edges from paths P2 and P4. F2 adds edges from P1 and

P3.

The �nal option with k = 1 is symmetrical, so we pick k1 = 1; ki = 0, i ∈ 2, 3, 4 to

demonstrate the algorithm. G′ is obtained by removing the cycle K and adding new

paths x1x4 and x2zx3. Once that is done, we follow with another case breakdown based

on their presence in F ′.

� If neither of them is contained in F ′, we will construct a spanning EUlerian

subgraph F by removing the vertex z and adding the cycle K back in.

� If one of them belongs to F ′, we will remove all three newly added edges and add

the vertices of K back. Next we will add edges xivi for those xi which will end

up with an odd degree. Finally, we will add in edges contained in three of the

four paths Pi, selecting them to keep the Eulerian subgraph property of F .

� If both of them are contained in F ′, we will erase the newly added edges, return

the vertices of K and add all the neighbor xivi edges along with the edges of

paths P2 and P4.

Case (4). Linear time reduction for a non-basic, 2-connected, subcubic graph G of

length �ve or six that contains a cycle K with �ve vertices of degree three.

We denote the speci�c cycle of length �ve or six as K. If G contains cycles of both

lengths, we'll pick the shorter one as our K. Without loss of generality, we can assume

the existence of a path v1v2v3v4v5 where vi are the vertices of degree three. If K is of

length �ve, then the edge v1v5 closes the cycle. If it is of length six, another vertex of

degree two, z, and a path v1zv5 must exist. xi will be the verticies neighboring vi from

outside the cycle.

We will then create two potential reductions in the form of G1 ad G2. G1 is created

by substituing the cycle K by edge x5x1 and a new vertex w connecting vertices x2, x3
and x4. If G1 is 2-connected, it is a viable reduction of graph G.

If it is not, we can construct G2 by instead substituing edges x2x5 and a vertex w

that is connected to all of x1, x3 and x4. If K is of length six, we must also further

subdivide the edge x3w. This gives us a subgraph that is assuredly 2-connected and

thus can be used as a reduction for G.

Proper Graphs of Size 6

The method gives further detail on the reductions possible for proper subgraphs of

length six. These search for 2-edge cuts on paths between the vi and their neighbors

xi. If found, they can then perform the needed reductions.
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2.2.3 The Main Algorithm

Our overall goal is to construct a spanning Eulerian subgraph F of the original graph

G with the following property:

exc(F ) ≤ 2(n(G) + n2(G))

7
+ 1

This property stems from the interaction between spanning Eluerian sugraphs and the

minimum possible length of a TSP walk. E�ectively, we're trying to reach the smallest

possible of these which in turn yields the desired approximation.

We start o� by examining G. If it is basic (a cycle, K4, or a θ-graph), the creation

of a subgraph is trivially done in polynomial time. If it is not, we must apply the

polynomial reduction algorithm described earlier to create graph G′ which can be

either basic or clean. The basic case is handled in the same way as before. If it is

clean, we must use another polynomial time algorithm which produces a spanning

Eulerian subgraph F ′ which holds:

exc(F ′) ≤ 2(n(G) + n2(G))

7

This algorithm retains the cleanliness of the given subgraph and works with the prop-

erties of 6-cycles inherent to the clean form. It takes the subgraph and outputs a

collection of m ≤ n/2 + 2 spanning Eulerian subgraphs F1, ..., Fm and probabilities

p1, ...., pm ≥ 0, p1 + ...+ pm = 1 which signify the probabilty of the various Fi contain-

ing vertices from F . The algorithm then assigns charges to all vertices of degrees 2 and

3 in the subgraph. Chosing randomly using the provided p1, ..., pm distribution, the

algorithm then picks an Fi and updates the charges according to whether the vertex

is a part of Fi or not, taking into account the length of the cycle the vertex is a part

of. This has an expected decrease of charge being equal to exc(Fi) and arrives at a

non-zero selection of vertices to put in F . The �nal subgraph can then be used to �nd

a spanning Eulerian subgraph for the graph G in polynomial time.

2.3 Approximation Through Heuristics

Taking a di�erent look on the whole problem and even losing the requirement of re-

stricting the problem size to a speci�c subset of problems with special properties like

2-connectedness, we reach heuristic methods. These aim to trim the given graph of

many of its edges while preserving the important ones, those which are a part of the

optimal Hamiltonian cycle and thus the optimal solution. There are multiple ways to

achieve this while allowing the person using the algorithm to select a desired amount

of reductions made to the graph. Unlike deterministic approaches like in the case of
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approximation, the assurances given are only probabilistic and so their use pro�ts from

knowledge of the underlying class of problems we are trying apply them to.

One of the most promising new methods of achieving this makes use of repeated

observations of a set number of frequency quadrilaterals. Calculating the frequencies

of edges appearing in speci�c subproblems and extrapolating that to select around one

third of the total edges as unlikely to be in the �nal solution. This method can be

iterated, but only a set number of times before the probabilty of removing important

edges starts climbing. It manages to compute a sparse graph in O(Nn2) time where N

is the number of frequency quadrilaterals used in each iteration.

2.3.1 Frequency Quadrilaterals

Frequency quadrilaterals are a special kind of frequency graphs of the K4 kind. To

create one, we compute the six optimal 4-vertex paths between between each pair of

the vertices given a certain distribution of weighed edges.

To do this, given a quadrilateral ABCD in K4, we start by selecting a pair of

vertices, say A and B. We then evaluate both 4-vertex paths between these two

endpoints, ACDB and ADCB. The shorter of these paths will become a weighed

edge AB in the frequency quadrilateral describing ABCD. We do this for each pair of

vertices available until a new quadrilateral is formed. Within a frequency quadrilateral

ABCD, all of the edges are going to have a frequency of either 5, 3 or 1 with pairwise

non-adjacent edges sharing the same value. This leaves us with six distinct frequency

quadrilaterals to consider going forward.

This three-way split of edges is going to be used going forward as we randomly

compute N of these quadrilaterals for each considered edge. Given a TSP with n

vertices, there are
(
n
4

)
weighed quadrilaterals. Each of these contains six edges, so that

every edge is included in
(
n−2
2

)
quadrilaterals. Since the probability of each normal edge

ending up with either of the three weighs is equal, the expected frequency of edge e is

going to be 3N . However, the edges belonging to the optimal Hamiltonian cycle are

going to be di�erent. Their frequencies will tend to 5 or 3, with the probabilities being

X? P (f = 5) = P (f = 3) = 1
3
+ 1

3(n−2) , givig the expected frequency of 3N + 2N
n−2 . Thus

we arrive at the �nal observation which states that we can expect to preserve at most
2
3

(
n
2

)
edges in a single pass of the algorithm.

2.3.2 The Iterative Algorithm

The algorithm follows an iterative pattern. Given a graph G with vertices V and

weighed edges E, it computes the average frequency of each edge e ∈ E through

N randomly chosen frequency quadrilaterals containing it. Then it orders the edges

according to their average frequency and creates a new graph G′ with the same set
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of vertices V , but only 2
3
of the edges found in E getting into F ′. This process keeps

repeating until the number of edges in E drops below a set value, experimentally set

to nlog2n with log2n being the modifyable factor c.

Once the algorithm reaches a sparse graph with at most nlog2n edges, it ends and

starts an algorithm of user's choosing which gives either an optimal or approximate

solution on the new graph.

We can calculate the number of iterations given the formula:

kmax = blog 2
3
(

2c

n− 1
)c

However, as we approach this value, a number of issues will start cropping up. To

make sure the hieghtened frequency of edges contained in the optimal Hamiltonian cycle

manifests itself, we try to compute as many frequency quadrilaterals as the computation

time allows. But once the number of edges starts noticably decreasing, some of the

generated frequency quadrilaterals will not be able to �nd the needed paths between

the four chosen vertices. They can and will still be evaluated in this state, but their

frequency readings will start skewing the results towards less accurate selections. It is

because of this and similar problems related to higher frequencies starting to increase

in number as we iterate further that the algorithm includes a stop mechanism. Once

triggered, it will terminate the iteration even without having reached the nlog2n barrier.

In practice, however, the graph will already be relatively sparse and further iterations

would only lead to a high number of required edges getting cut.

2.4 Open Questions

The biggest open question at the moment is the �nal lower bound for these methods

of �nding approximate solutions both in the original problem and its slightly more

speci�c variants.

Apart from these is the drive to �nd more e�cient algorithms solving these problems

with the same approximation factor. Most of the work done so far has focused on

proving the possibility of solving these problems within certain error bounds, but with

little regard for the complexity of the algorithms in question or their practical usage.

Heuristic approaches tackle this problem with their own set of methods and there is

also research being done in �nding more succinct algorithms for solving the problems

that have been proven as solvable with given assurances.

The latter of these drives also expands on the research of the reducibility of more

complex subgraphs present within given problem sets. In particular, 6-cycles and 7-

cycles inside 2-connected subcubic graphs and their provable properties. These are

being expanded beyond the needs of immediate proofs for the algorithms' correctness
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in hopes of obtaining better results, or at the very least a look at the problem enabling

these improvements from a wider perspetive.



Chapter 3

The Outline

In this chapter we will introduce the general outline of our work process. The �rst thing

we will discuss is the principal theoretical basis for what we were trying to achieve and

how we rationalised these moves. Next we will talk about the steps we had planned out,

both practical and theoretical, to achieve the goals we have set for ourselves. Finally,

we will discuss the interaction of these with the original theory and the goals of this

work.

3.1 The Basis in Theory

The theory behind the way we look for reductions follows. We �rst make use of the

conjecture1.2 and modify the factors by an ε value to make working with them easier.

Any optimal TSP walk will use any edge up to 2 times. But as we are in a subcubic

graph, these TSP will inevitably form cycles (creating a 2-factor). Thus we can reduce

the TSP search to a search for these cycles.

As each factor can thus be described as having G− 2 + Fi + 2 ∗ Fk edges, where G

denotes the number of vertices in the whole graph, Fi denotes the number of vertices

outside of the 2-factor and Fk denotes the number of circles formed by the 2-factor

F . We can thus combine this with the conjecture to arrive at G − 2 + Fi + 2 ∗ Fk ≤
5
4
n + 1

4
n2 − 1. Multiplying this by 4 we will rearrange the inequality to arrive at the

�nal 1 <= G+ n2 − 4 ∗ Fi + 8 ∗ Fk. Any proper reduction will thus have to check that

as it changes the numbers of vertices and factors, it does not violate this property.

3.2 Main Guideline

Seeing that the problem space ahead would not be feasibly searched through by hand,

we set out to create a set of tools which would allow us to, at �rst check, and then

help in the searching of suitable reductions on any given graph. Our tool needed to

15
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be able to search through the entire problem space with as much e�ciency as possible

and provide con�rmations of a given pair of graphs being in a reductive relationship.

Or provide a conunterpoint with human-readable output that would allow us to �nd

the scenario which broke the constraints imposed on both as a general reduction.

3.2.1 Initial Development

The �rst step would form the baseline of all of our further work. We needed to pick

a suitable representation for the vertices and edges in the studied graphs. This would

take note of additional requirements placed on these, in particular the separation of

the so-called 'internal' and 'external' edges which would go on to serve a particular

purpose unrelated to e�cacy.

Building on this would be the �rst algorithm, a graph walking method that could

take a set situation (regarding the graph itself and one speci�c factor on it) and calcu-

late the approximate excess of a TSP walk along this factor as discussed in the section

on theoretical grounds.

Once we had achieved this, we were able to test the implementation on the �rst

real object, an exemplary reduction seen in the image below.

Figure 3.1: An exemplary reduction which removes 3 vertices

3.2.2 Intermediate Development

The next few steps would go on to expand on this functionality in an incremental

fashion.
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The �rst of these focused on �nding and generating suitable 2-factors for the original

graph should we provide a factored reduced grap and the external edges (identical) for

both of them. Of course, such a factor need not exist we would need to make use of

the previous method to check whether a given factor satis�es the constraints.

Then we would increase the scope even further and ask the general question of

whether a given pair of graphs could serve as an example of a reduction. This time

without providing any additional constraints. Here the plan would call for an unlimited

search, once again making use of the previously developed methods to check its own

outputs.

3.2.3 Final Developments

After this had been achieved, we would then start expanding the scope to stop asking

for user's input altogether. At this point we planned to make use of speci�cally designed

subgraphs to construct possible reductions and test them all en-masse. The choice of

the subgraphs would fall on trees with properties best suited for possible reductions,

particularly keeping the amount of stray edges down to a minimum.

Achieving that, we could then start our search for general reductions on graphs

which have not been studied in detail up until this point. Focusing our attention

primarily on instances of 7-cycles under various con�grations.

Additionally, if we were to �nd any class of reductions, we could later try to prove

their existence theoretically, or include additional restrictions into the program's algo-

rithm and check whether they were completely general. A reduction accepted by our

programme could still fail under additional assumptions, speci�cally when it creates a

new cut in the studied graph.
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Chapter 4

Implementation

We will now proceed to talk about the way we have created the software needed to

ful�ll the practical needs of our work. This chapter talks about the details regarding

choice of the used data structures, the structure of the main class and its primary

and secondary methods, the test suite developed to con�rm the correctness of results,

optimisations which were added to deal with the non-trivial computing workload and

�nally additional tools used to speed up the input process.

4.1 The Graph Class

The "Graph" class is the principal class in our program, its instances representing

the various graphs we use throughout the operation of any of our experiments. Its

main purpose is to hold all data structures pretaining to a single graph in a uni�ed

location as well as to provide facilities to pose individual questions to the graph. Its

implementation is contained within the included �le �graph.hpp�.

4.1.1 Fields and Data Structures

Edge Representation

The class's two main �elds, 'edges' and 'outEdges', hold separate vectors of integers

for the edges of the graph, one for the internal edges connecting the vertices of degree

2 and 3 within the subgraph's boundaries, and one for the so-called 'outgoing edges'

of degree 1 which represent the �xed border area providing connections to the rest of

the graph.

These arrays are arranged as neighbor lists in a single dimension to save on perfor-

mance during the many traversals our algorithms will require. The array for internal

edges is indexed by 3s with numbers ≥ 0 indicating either a neighboring vertex or −1 if
there are no more edges present. The excess memory footprint created by these −1s is

19
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acceptable for the scale of inputs we are running the algorithms with, having no more

than 12 vertices of degree 1 and generally as few vertices of degree 2 as manageable due

to their negative contribution to reduction's worst case factorings. The external array

is indexed by 1s as we assume there will only ever be one Eulerian cycle entering the

subgraph at any given border/outgoing vertex. The rest of the graph not pretaining

to the chosen subgraph is thus abstracted to a single edge connection. A practical

example follows below:

std : : vector<int> edges =

{3 ,−1 ,−1 , 4 ,−1 ,−1 , 5 ,−1 ,−1 , 0 ,4 ,6 , 1 ,3 ,5 , 2 ,4 ,6 , 3 ,5 ,−1};

std : : vector<int> outEdges =

{2 , −1, 0} ;

Figure 4.1: An exemplary graph created by these �eld parameters

When creating the internal edge neighbor list called 'edges', we will be following two

additional requirements for its structure. The �rst of these is that outgoing edges of

degree 1 must always be listed �rst, only then followed by the unsorted arrangement of

the edges with higher degree. As long as we maintain this arrangement, we can use the

number of these vertices, stored as the 'outVertCount' �eld created during instantiation

and maintained through any changes, to determine whether the index we are at belongs



4.1. THE GRAPH CLASS 21

to an outgoing vertex or an internal one. We can also use this fact to iterate up to said

number to iterate through all vertices of this type. The other structural requirement

is that the neighbor lists are ordered in ascending order, ignoring negative numbers

which always come last. This is done to make �nding outgoing connections faster, as

these edges get priority during regular tree traversal, but are not otherwise marked in

the array itself except by their index. Thus saving us the need to do a separate pass

for outgoing and internal vertices on each vertex.

The separate list for outgoing edges, named 'outEdges' is another vector, this time

representing a single connection through the portion of the graph outside of our scope.

Numbers in it are complementary indices of two-way relationships between two di�erent

outgoing vertices. A −1 signi�es the nonexistence of a path through the external graph

from the vertex at a particular index back into the subgraph.

Methods' Internal States

The trio of integer vectors called 'orderedEdges', 'edgeOrder' and 'orderPartSums', left

uninitiated during the creation of a Graph instance, represent internal state that needs

to be preserved between calls of the two permutation methods: 'permuteEdges()' and

'permuteEdgesExtra()'. This allows said methods to provide stream outputs necessary

for faster runtimes and ease of debugging. Their initiation, use cases and disposal will

be covered in the section about these methods. Their purpose is as follows:

∗ 'orderedEdges' represents the internal edges of each outgoing vertex as they were

before the �rst call of the methods.

∗ 'edgeOrder' represents a selector acting on the previous �eld, which decides the

new order of all the outgoing vertices based on permutations of itself.

∗ 'orderPartSums' holds the o�sets for the starts of each selector category, allowing

the algorithm to rearrange the chosen vertices along the lines chosen by 'edge-

Order'.

Following these is the �nal trio of Graph object �elds. Two stacks containing

vectors of boolean values called 'maskStack' and 'visitStack', and a stack of integers

called 'positionStack'. As with the three vectors before them, their purpose is to hold

additional state between calls of a method. The method in question is a generator

function named 'nextMask()' which will be detailed in the next section. The �elds

were chosen to be implemented by stacks due to the recursive nature of the algorithm.

Their purpose is as follows:

∗ 'maskStack' holds a stack of booleans vectors, each of which represents a mem-

orised mask of all the marked edges during a split situation in the 2-factor's

path.
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∗ 'visitStack' holds a stack of boolean vectors, also representing an instance in time

but memorising the vertices which had been used by that point.

∗ 'positionStack' holds integers inserted and taken out as pairs of positions, one for

the position at the time of insertion and one for the position from which it had

came from.

This concludes all the �elds present in a single instance of the Graph object.

4.1.2 Methods

The methods of the Graph class can be subdivided into two categories, 'main' and

'helper' methods. 'Main' methods are responsible for answering the main queries

regarding progressively broader subset of the reduction relation. 'Helper' methods,

meanwhile, provide additional functions and operations on the graph itself, giving us

the option to add more edges, print out the current ones, generate the next mask for

a certain 2-factor and set a new one. These are used internally by the 'main' methods

but are given as public to be usable and testable without modifying the class itself.

We will start by describing all the 'helper' methods in detail and then follow with the

'main' functions which also make use of them.

nextMask()

The �rst 'helper' method to introduce is 'nextMask()'. It's purpose is to progressively

generate all viable 2-factors of the inherent subgraph and return an empty vector once

there are none more available. To achieve this, the method interacts with two further

methods, 'nextMask_reset()' and 'nextMask_walker()'. It also makes use of the three

stacks outlined in the previous section to keep a certain internal state before returning

a viable factor or the �nal empty vector. The full call signature of the method is thus:

s td : : vector<bool> nextMask ( std : : vector<bool> const &extMask )

To call the method, we must �rst make a call to 'nextMask_reset()' which will

initialise the 'maskStack', 'visitStack' and 'positionStack' while giving them values

representing a clean slate at the 0 starting position, an unreachable previous position

of −2 and a pair of clean masks of appropriate size. This is invariant to instantiating a

separate object with its own internal state which would act as a generator for a given

graph. Creating an object like that was considered but decided against due to the

additional overhead which would serve no purpose for our specialised class created for

a very speci�c goal, rather than as the base of later expansion into a general purpose

graph library.

Once it has been initialised, we can make a call to the 'nextMask()' method. The

algorithm works in two distinct phases. The �rst phase goes through all of the outgoing
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vertices and tries to create a viable 2-factor. To do so, it attempts to �nd a cycle staring

in every outgoing vertex that has an external edge marked as traversable (speci�cally

used by a hypothetical TSP walk going through this subgraph). If this process fails, the

algorithm looks at the stack of memorised situations where a split decision happened.

These get inserted into the stack at every vertex with several viable ways forward. If

it can't �nd one, it will return an uninitiated 'emptyMask' vector that will signal the

end of the generator's usefulness to the callee. If it succeeds and �nds a 2-factor which

makes use of all the marked outgoing vertices, it will then step into the second phase

of the process.

First it needs to make a temporary reference to the current stacks since these can

still contain viable alternative paths that will have to be traversed in later calls of

the method. Adding a new bottom to the three stacks would require more extensive

changes at the level of the walking algorithm and we decided against it. This phase

also copies the 'retMask' and 'visitMark' vectors used in the �rst phase. At this point

it will run a modi�ed version of the factor searching algorithm signalled by the changed

'sidepath' �ag. This algorithm will be called on all the remaining edges to �nd any

possible 2-factors among those internal edges that had not been used in the �rst phase.

Unlike the �rst phase, it can greedily search through all the alternatives in one run and

pick the one that covered the most vertices. The 'retMask' and 'visitMark' speci�c to

this instance will be merged into the original ones and the algorithm will move forward.

There is also no fail condition here. Whether a factor is found or not, it will return

a viable result. Once all of this is done, 'retMask' is returned as a boolean vector

marking all edges contained in the generated 2-factor of the subgraph.

The algorithm used to search for 2-factors is contained within the private 'nextMask_walker()'

method. It is a graph walker which operates with a set of assumptions about the struc-

ture of the graph and a boolean �ag 'sidepath' that alters one of these assumptions

to allow it to handle starting both in an outgoing vertex and an internal one. The

assumptions are thus:

∗ Any outgoing connections, should they exist and have not been used yet, are

given preference over internal ones.

∗ The only viable sequence is such that contains one path into and from a given

vertex. If we cross this boundary, the branch is terminated.

∗ Vertices of degree 2 naturally only have 1 way forward.

∗ Vertices of degree 3 have one branching opportunity.

∗ If the �ag is set, we can travel to previously visited vertices as long as it happens

along an unused edge.
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The method terminates and returns true if it returned to an edge that has one of

its edges marked (therefore completing the cycle). It returns false if it ends up in

a situation where it shorts a cycle, creating a vertex with three marked edges, or if

it expends all of its movement options without achieving either of the previous �nish

states.

expandGraph()

The second of the 'helper' methods. Its purpose is straightforward. Given the necessary

data, expand the present graph with a new set of vertices. The call signature follows:

void expandGraph ( std : : vector<int> const &addEdges ,

s td : : vector<int> const &addMask )

As a specialised function developed for the needs of joining existing trees into forests,

it requires the representation of the added graph's edges and the number of its outgoing

vertices. It critically ignores the 'outEdges' �eld as this is fully overwritten by the

method for �nding reductions in a pair of graphs. Expanding the method to require

updates to this �eld would be possible, but there is currently no use case for such a

modi�cation (which would add unnecessary overhead to every call). Internally, this

method creates a composite neighbor list which reorders and appropriately renames

the vertex references. It does this to maintain the strict order we assume in all of our

neighbor lists. The new edges get added to the end of the respective neighbor chains

with those of degree 1 being placed at the end of the outgoing vertex section and those

of other orders being placed at the end of the list.

permuteEdges() and permuteEdgesExtra()

The third and �nal of the discussed 'helper' methods is 'permuteEdges()' along with its

twin 'permuteEdgesExtra()'. Both of these methods serve the same purpose, generating

all �interesting� permutations of the given graph representation. This is done because

the individual trees in the reduction can map on the original graph in various ways.

Comparing a certain graph and a forest that is potentially reducing it, we must cover

all of the possible matings of the two. As this raises the factor in the overall algorithm

complexity, we employ optimisation strategies to make sure only relevant permutations

are evaluated further. During operation, these methods make use of the 'orderedEdges',

'edgeOrder' and 'orderPartSums' �elds. The call signatures are listed below:

bool permuteEdges ( std : : vector<int> const &t r e e L i s t )

bool permuteEdgesExtra ( )

Both of these methods, as in the case of 'nextMask' function as generators which

could, if needed, be turned into its own class. We have decided to not do so because
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it was not necessary for our goals and would impart additional overhead in the overall

runtime. Of these two functions, 'permuteEdges()' is the default choice while 'permu-

teEdgesExtra()' is the method as it used to be before optimisations. We have kept

this functionality in a separate method due to our optimisation method possible not

covering every single viable permutation available. It is used in more constricted sce-

narios to cover these within a more limited problem set where its wasteful algorithm

does not make the computation unfeasible from a time standpoint. It has an addi-

tional restriction in that it can't be called on graphs which feature directly connected

outgoing vertices. On the other hand, it does not require additional information about

the permutations provided, allowing it to be called in di�erent portions of the code.

permuteEdgesExtra() The algorithm chosen for 'permuteEdgesExtra()' makes use

of the 'std::next_permutation()' function from the standard C++<algorithm> library.

On its �rst call, the method initialises the 'orderedEdges' �eld with the original edges

of all the outgoing vertices. It then lexicographically sorts them using 'std::sort()'

and rearranges the neighbor lists 'edges' accordingly before returning true. All subse-

quent calls of the method comprise of a call to 'std::next_permutation()' acting on the

'orderedEdges' �eld, rearranging the internal neighbor list according to the new per-

mutation of vertex names and returning the obtained boolean value as output. false

return value signi�es that all of the possible permutations have been achieved. This

approach, however, is wasteful due to internal symmetries of both the cycles and forests

we are comparing in our experiments.

permuteEdges() The algorithm chosen for 'permuteEdges()' seeks to address this

issue. Unlike 'permuteEdgesExtra()', which generates all possible permutations, this

algorithm seeks to generate all combinations of the underlying vertices. In many of

the trees we use, the internal arrangement of vertices is highly symmetrical, presenting

us with the opportunity to treat all internal rearrangements as identical and therefore

lose the ordering requirement. To achieve this, we again make use of the standard

'std::next_permutation()' function but instead of permuting the edges themselves, we

create a mask assigning vertices to each tree in the resulting graph. This is marked by

the way of numbers 0...n, n being the number of trees covering the graph. This mask

is initialised into the 'edgeOrder' �eld and will be fed to 'std::next_permutation()'.

Additionally, because of the way we create the forests, it is already sorted when we

initialise it. The vertices are arranged in ascending manner with regards to the trees

of the forest. The �eld 'orderedEdges' is initialised as before, though it is no longer

directly responsible for the arrangement of outgoing vertices in the graph. Finally we

initialise the 'orderPartSums'. This vector will serve as a reference to the position of

the �rst vertex for each selector category.
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All subsequent runs of the algorithm then create permutations of the selector vector,

combine the three �elds to �gure out the relative positions of each vertex taking a

position inside the the selector-de�ned tree. While this is running, we also check for

and cull all repetitions of the same neighbor list as before, which can arise in graphs

with multiple outside vertices connecting to the same internal vertex. A situation that

occurs commonly in the composed forests. Once we run out of ways to permute the

selector, it will return to the initial state and give us false which we pass on as the

return value.

'Main' Methods

Returning to the methods directly implementing required functionality, we will now

discuss a trio of methods used to answer various questions about the status of reducibil-

ity.

evalMetric()

The �rst of these is 'evalMetric()'. The sole responsibility of this function is to walk

through the entire graph according to the porvided 2-factor (divided between internal

and external edges), count the number of cycles and isolates within it and then make

a �nal tally of these numbers together with the counts of vertices of degree 2 and 3

to come to the �nal value of the estimated length of a TSP walk through this graph

according to a modi�ed version of equation/refequation. We quadruple the terms

of the equation to get uniformly integer numbers, avoiding any potential pitfalls of

�oating point number comparisons. Its call signature is thus:

i n t eva lMetr i c ( std : : vector<bool> const &intMask ,

std : : vector<bool> const &extMask )

The algorithm used needs to walk through all the marked edges and determine the

number of cycles they create. Since a 2-factor only allows for one incoming and one

outgoing edge at any point along its length, the walking process can be kept fairly

simple. It looks for edges going out of it, pruning all vertices which have already

been marked as visited. Depending on the type of vertex the edge points to, it checks

whether they are contained in the 2-factor. Should it run out of edges to traverse, it

assumes it's in an outgoing vertex and checks the neighbor list of external edges.

This process runs seprately for the outgoing vertices and internal ones with slight

modi�cations to the logic of the walker. Mainly due to the fact that while the external

mask directly marks an outgoing vector as traversable, the mask of internal edges

requires a di�erent evaluation of this condition. Likewise, the insertion into the rest of

the graph di�ers between the two.
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Once the algorithm checks the �nal vertex of the graph, it has the number of cycles

encountered along the way stored. It will then iterate through all the interal vertices of

the graph and check whether they have been visited (meaning they are present in some

2-factor cycle) or not. Along the way it also counts the number of vertices of degrees

2 and 3 using the presence of −1 at the end of their neighbor list as the guideline.

When all of this is said and done, it returns the �nal integer number according to the

X = 4 · isolates+ 8 · cycles− 2 · doublets− 1 · triplets formula.

�ndFactor()

The other one of the 'main' methods is '�ndFactor()'. Unlike all the other methods,

this one is static and takes the instances of the Graph class it is evaluating as argu-

ments. The purpose of this method is to determine whether the second graph given

is a reduction of the �rst one. In doing so it will make use of most of the methods

mentioned up to this point. It's call signature looks like this:

s td : : vector<bool> Graph : : f i ndFacto r (Graph &origGraph ,

Graph &reducedGraph )

The �rst thing the method does is that it makes a copy of the existing 'outEdges'

�eld from one of the graphs. As a reduction must share the same external connections

as the graph it is reducing, it is assumed these are identical for both objects entiering

this function. This is done because it will be changing these on both graphs during its

operation. Next it prepares a vector of vectors of integers called 'iterStates'. These will

serve as a pseudo-stack during algorithm's recusrive building and testing of elements.

Its size being that of the �eld 'outEdges' and the initial value being set to all −1,
e�ectively creating a graph with no external paths connecting any two parts of it.

It then enters a loop which will repeat size(outEdges)/2 times. This iteration will

thus �re o� once for each of external edges (connecting a pair of outgoing vertices

together) that could be found on either of these graphs. Within each of these itera-

tions, the method automatically iterates through all the vectors currently available in

'iterStates'. It then tries out all the possible connections available in a forward fashion

(meaning trying to connect each index number with all indexes higher than itself).

Once it �nds a suitable pair, it creates a new neighbor list exanding the one in the

current iteration of 'iterStates' vectors and points both of the graphs' 'outGraph' �elds

to it.

Once it has found and set the new neighbor lists, the method prepares a mask to

cover all the edges. This is required for the subsequent calls of the 'nextMask()' and

'evalMetric()' functions, while providing the option of constraining the masks in certain

experiments.
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reducTest() and minReducTest() are the two private functions called at this

point. The purpose of 'minReducTest()' is to use the mask its been given to iterate

through all the possible factors of the graph and �nd the one with the smallest estimated

TSP length. To do so it makes succeessive calls to 'nextFactor()' and comparing the

resulting metrics with the currently known minimum. This number is initialised with

the INT_MAX value. Here it is called by the potential reduction graph as we are

trying to �nd its worst-case scenarios for the given arrangement of external edges. If

the method terminates without �nding a single viable 2-factor, it returns a −3 which

signals the '�ndFactor()' algorithm to add this arrangement of external edges into the

next itertation, but skip the later test against the values of the graph being reduced.

We can safely ignore these as only viable 2-factors of the reduced graph are up to

consideration when determining the 'reduction' relationship.

If the method terminates with a positive integer, we follow it up with a call to

'reducTest()' on the original graph. This function takes both a mask and the boundary

number, gained from 'minReducTest()' to determine if any 2-factor of this instance of

the original graph is being reduced by said instance of the reduction one. It does so

by trying to �nd a 2-factor with a loweror equal estimate value to that of the 2-factor

of the reduction. The method repeats the same process as 'minReducTest()' but this

time, a failure to �nd and provide the needed 2-factor results in the termination of the

whole algorithm, as it provides a counter-example to the 'reduction' relationship.

EX_DEBUG() When it comes to gaining insight as to why a certain reduction

failed or succeeded, the method has an in-built macro called 'EX_DEBUG(x)'. De�nit-

ing the macro to evaluate to 'x' turns on the logging of each of these principal steps.

We can thus clearly see the arrangement of the external edges, the estimated minimal

value for that arrangement, or its non-existnce, and either a 2-factor which satis�ed the

relation or giving a message about the failure to �nd one. This functionality could also

be implemented as a boolean switch in the fuction itself but its origin as a debugging

tool made us leave it as it is.

PARTIAL_EXPERIMENT() The mathod also holds another macro, this time

specialised in the search of the so-called 'partial' reductions. It is of fairly limited use

and requires the help of the Python script 'PartialsSearch.py' to be used. What it does

is create its own set of outputs, this time massive solely aimed at further automatic

processing. When enabled, in conjunction with the change of early return statements

to continue and the setting of the 'stopAtReduction' �ag introduced later to false, the

program's outputs start listing reductions along with situations that are unhandlable

by them. We can thus gain an insight as to whether a certain problem even has a

reduction in every conceivable scenario and where to look for them.
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'�ndFactor()' thus repeats this process and successively creates and tests all the

possible pairs, pairs of pairs, trios of pairs, et cetera until it exhausts the search space

for these two graphs. If it fails along the way, it �rst retrieves the stored value of

'outEdges' �eld to the respective graphs and returns an empty vector of booleans. If

it succeeds, it will return the very last 2-factor capable of matching or beating the

boundary set for it while also restoring the graphs to their original states.

4.2 Correctness

Once we have established the general structure, algorithms and code behind the Graph

and all of its methods, we turned our attention to creating an appropriate test suite.

This was needed both as an aid during the debugging process as well as a necessary

prerequisite to con�rm the legitimacy of our �ndings. For this reason we've chosen

two functions which run ahead of any experiments, con�rming that no regressions

had appeared if we changed the code and that we've indeed set up all the necessary

components correctly. The two functions, called 'validityTests()' and 'minorTests()'

each go through a set of predetermined problems we know the correct answers to and

assert their responses accordingly.

4.2.1 validityTests()

The �rst of these functions tests the basic functionality of the Graph library. To do

so, it goes through a number of scenarios trying to make sure the major components

are behaving as expected, giving particular attention to the main reduction method,

'�ndFactor()'.

∗ That 'evalMetric()' method returns the same values we expect on a selection of

tested graphs.

∗ That the 'nextMask()' method �nds all of the possible 2-factors on one of these

and ends correctly.

∗ That the 'nextMask()' works on graphs with multiple external edges.

∗ That '�ndFactor()' con�rms a known reduction seen in 3.1.

∗ That '�ndFactor()' denies a known non-reduction from a modi�ed 3.1 where the

vertex number 7 gets replaced by an edge.

∗ That '�ndFactor()' con�rms a the identical graph to be a reduction of itself.

∗ That '�ndFactor()' con�rms two more reductions taken from the text of [2].
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The function returns a true boolean value if all of its checks execute correctly. If one

�nds a problem, it will return false which is intercepted by an assertion of true being

returned in the main function. We haven't created separate assertions for most of these

tests due to their small number, but a person trying to con�rm the correctness of our

�ndings might want to add additional checks here. If it then becomes impractical to

manually check which of the tests failed, the modi�cation to create separate assertions

is possible.

4.2.2 minorTests()

The second test function deals with particular reduction scenarios. As the main exper-

iment involves functions which iterate through and combine a large number of di�erent

reductions, testing any one in particular is left to a separate function created for this

purpose. All of its �ndings are then also incorporated into the overall validation proc-

cess since we have reasoned about the expected outputs ourselves. The list of currently

tested reductions on a six-cycle, seven-cycle and a ten-cycle graph is listed below:

∗ We con�rm that the graph connecting neighboring outgoing vertices together into

pairs is not a reduction of the full ten-cycle.

∗ We con�rm that six-cycle with an edge of degree 2 is reducible.

∗ We con�rm that a six-cycle with an added double edge is reducible with the

graph mentioned by [2].

∗ We try several di�erent versions of reductions on these three, to make sure only

the correct one goes through.

∗ We �nally make sure that reductions which came up during improper initiations

of the seven-cycle do not work with the program now �xed.

As before, this list is freely extensible by a potential user of this program. The

reason for its logical separation from the previous section was to provide a separate place

to store and test redcutions which came up during experimentation and we were not

sure whether they were true or simple bugs. Unlike in the case of 'validityTests()', there

is no structure beyond creating a specialised space for these targeted tests. The tests

can be commented out and it does not compromise the validity of provided outputs,

though they are usually left on, unless they would create unnecessary clutter in the

debugging logs.



4.3. FOREST REDUCTIONS 31

4.3 Forest Reductions

The �nal portion of the main source �les are the functions which handle the actual

experiments. They are called through another function separating the exectuion and

source �les into clearly divided portions called 'majorTests()'. In this function we

provide experimental problems provided as distinct sets of named vectors of integer

vectors. These integer vectors serve as stripped down templates for creating and testing

the desired graphs. An example of such a template is provided below:

std : : vector<std : : vector<int>> altSevenCycle_threeMixed = {

{17 ,−1 ,−1 , . . . 11 ,16 ,17 , 10 ,12 ,18 , 1 1 , 1 3 , 1 9 , . . . 4 ,5 ,12} ,

{17 ,−1 ,−1 , . . . 11 ,16 ,17 , 10 ,12 ,18 , 6 , 1 1 , 1 3 , . . . 4 ,5 ,13} ,

{17 ,−1 ,−1 , . . . 9 ,11 ,16 , 10 ,12 ,18 , 6 , 1 1 , 1 3 , . . . 4 ,5 ,13} ,

} ;

s td : : vector<std : : vector<int>> altSevenCycleOuts_threeMixed = {

{20 ,10} ,{20 ,10} ,{20 ,10} ,

} ;

The same format is generated by the Python tool mentioned later in the text and

is the format of choice for all the trees created as the building blocks for the reduction

graphs/forests in the main experiment. Each of these is �rst de�ned, announced by a

write into the logs or output announcing the start of a test using them. They are then

fed to a function meant to unwrap them, create a desired Graph instance and start a

search for reductions on each of these. This function, called 'groupTest()' also takes

an additional boolean �ag 'stopAtReduction'. The purpose of this �ag is to change

whether the searching algorithm stops at a �rst con�rmed reduction in each individual

graph, or continues after �nding one and eventually lists out all that have been found.

4.3.1 Trees and Forests

treeTest()

'groupTest()' itself calls 'treeTest()', a function which serves as another middle-man.

It's purpose is more involved, however, as it contains a large list of precomputed ways

that any speci�c number of outgoing vertices can be covered with trees containing from

two to seven outgoing vertices. We consider only up to seven outgoing vertices because

that is the maximum we have obtained when creating trees under certain restrictions

for this experiment. This list was automatically generated by a Python script not

included in the work itself, but generating all ways a constrained set of integers can

generate a given number is an elementary task. For the purposes of this experiment,

this precomputed �eld contains instructions for up to thirteen total outgoing vertices,

as any more is strictly out of scope for any of the experiments considered.
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The function itself �rst determines how many outgoing vertices the input graph has.

It then uses this as an index into its list of predetermined combinations and iterates

through all of these. While doing so, it will call another function, 'forestBuilder()', to

generate all the possible forests with the given pro�le. Given a pro�le such as '{2,2,5}',

the 'forestBuilder()' function would be tasked to create and test all possible forests

generated with two trees containing two outgoing vertices and one tree containing �ve

outgoing vertices.

forestBuilder()

The �nal function in the chain of operations is the 'forestBuilder()'. Unlike most of the

functions and methods used so far, it is implemented as a truly recursive function with

a boolean return value. It serves two main purposes. One is to add the correct trees to

build the desired forests. The other is to recognise when a certain forest has been built

to completition and running '�ndFactor()' on it and all of its reasonable permutations.

These permutations are generated by a while loop served by the 'permuteEdges()'

method called on the forest itself. The '�ndFactor()' static method is run in each

instance to �nd out whether the input graph currently being tested is reduced by the

newly built forest. Depending on the value of the 'stopAtReduction' �ag passed down

to it by the previous enclosing functions, it will either terminte the moment a reduction

has been found or continue to test all the forests available to it. The function is set

up so that a true value at any of its outputs stops further recursions from happening.

These reductions are, of course, communicated in a human-readable form as output.

When not at the bottom of the recursive chain, the algorithm has to follow the

pro�le given to it as the input variable 'treeList'. This serves as a tuple of indices

pointing to the collection of all the trees created for the experiment and contained in

the linked �le �trees.hpp�. As these indices are sorted, we later added an optimisation

to prevent creation of duplicate trees generated by permuting the order of the trees in

question. We only need to test combinations with repetition, that is the relative order

of the trees with the same number of outgoing vertices is unimpotant. This is due to

the permutation function e�ectively testing both relative positions at some point in

time. It itself still creates some wasted e�ort when any two trees are identical and this

could be optimised further if needed.

What the 'forestBuilder()' function does to achieve this is that it looks for any chains

of the same type of tree in the 'treeList()'. Once it has done that, it calls a helper

function called 'nonRedundantCombos()'. This function generates the combinations

with repetition on the number of elements matching the length of the chain and using all

the options avialble for that particular type of tree, obtained as a parameter from the �le

�trees.hpp�. Any such optimisation cuts down the number of recursions from the sheer
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exponentiatial permutations with repetitions to a smaller fraction of combinations with

repetition. This list of combination is then iterated on and the recursion controlling

index is moved along to account for the skip. The trees are always added to the forest

by calling the 'expandTree()' method and feeding it data from the �trees.hpp� �le at

the correct index.

At the end of all of this, the program outputs any reductions found listing both the

graph they reduce and their edge representation.

File �trees.hpp�

The basis for all of our experiments are reducctions created from various forests. In

order to build such forests, we needed a set of precomputed trees and that is where the

�trees.hpp� �le comes in. It's purpose is to hold all of the trees created for this purpose

in a separate namespace and provide a navigable interface so that other parts of the

program can draw upon them.

We will start o� by describing the trees. The boundary we have set for ourselves

were trees with a maximum of twelve distinct vertices. As the number of such trees

even under the assumption of subcubicity is still too large to be generated manually

and we wanted to avoid any potential redundancies caused by listing a number of

graphs that are bijective with each other, we further set a boundary for the length of

any single edge. These were to never contain more than a single vertex of degree two

in succession. The rationalle for this restriction came from the way vertices of degree

two interact with the TSP length approximation used throughout. As we are looking

at worst-case (that is minimal) scenarios in our reductions, adding any vertices of this

kind only lowers this number further. While there exists a possibility that they could

help by introudcing isolated vertices in speci�c scenarios, the practical results seen in

previous research suggested that going beyond adding one extra vertex had no use.

With these restrictions in place, we have manually created all the subcubic trees,

recreated them as graphs in visual graph editors and used our supplementary Python

script to add their templates into the �le itself. Using the format mentioned at the

beginning of this section. These graphs were then further divided into subsets by the

number of outgoing edges they contained and grouped together in three dimensional

vectors of integers called 'treeGraphs' and 'treeMasks' which would serve as the inter-

face for the rest of the program's functions. Whenever one referenced these vectors, the

shift by 2 resulting from the lack of reductions creating individual points and deleting

edges entirely. We made a quick test adding dummy values to get around this issue but

the optimisations of the compiler took these out and we decided to leave it as it was,

largely owning to the fact the program itself references these �elds only in a minimal

number of functions.
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4.4 Additional Tools

On top of the source �les surrounding the project in C++, we have developed a few

small utilities in Python meant to automate several of the tasks regarding the input

of graphs in our non-standard formats. The tool included in the appendix serves as

a converter of the more widely used list of unidrectional edges denoted by the two

end vertices int our nighbor list representation. We have made extensive use of it in

conjunction with online graph drawing tool 'Graph Editor' serviced by Csacademy.com,

though any visual graph editor which is capable of outputs in this format of edge

representation could be used instead.

The operation of the tool is simple. The user changes the number of edges to

however many are used in the graph they have drawn. They then run the algorithm

on this set of edges, listed in the aforementioned endpoint format, delimited with the

word �end�. The tool then outputs the neighbor list, the number of all vertices and the

number of outgoing vertices in the desired format, directly copy-pastable into the main

program. Do note, however, that the tool provided does not account for the reordering

of outgoing edges coming �rst. Any graphs fed into it must thus make sure to have the

vertices correctly labelled, reserving the starting labels for those of degree one.

The other tool developed in Python had a speci�c name, 'PartialsSearch'. As the

name implies, it was created as a tool for automated search for partial reductions. The

tool is set up with the particular outgoing edge situations we want to �nd suitable

partial reductions for. These come from regular outputs of the reduction searching

algorithm telling us why a certain reduction failed. Operating on a much larger �le

generated with the 'PARTIAL_EXPERIMENT()' macro enabled, this script will gen-

erate a list of reductions that were successfull in this particular scenario. Not turning

out with zero viable 2-factors, nor failing at reducing some 2-factors of the original

graph.
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Results

Having �nished the development and testing of the validity of the overall program,

we started conducting experiments on the cycles of degree six and above. We paid

particular attention to the seven-cycle with all edges of degree three, also denoted as

�7-7� in the source �les, but not to the exclusion of all others.

5.1 Methodology

All of the tests were conducted as �xed additions to the 'mainTests()' function in

the main �le of the source code. They were compiled with the GCC suite and �-O3�

optimisations due to the heavy workloads associated with any of the tests. �7-7� cycle

was tested both using the full edge permutation method and the optimised one. All

the other tests, unless particularly small, were carried out with the optimised version

only.

5.2 Expanded Search

The �rst set of experiments we have conducted concerned known general reductions

we had known of before. This was both to con�rm that our program can indeed �nd

these and also to con�rm or deny existence of any other ones matching the pro�le of

our forests.

5.2.1 Six-cycle

As we have established in the section about the chapter about the current state of

this problem, �nding a general reduction for a six cycle with no vertices of degree two

should be impossible without it creating an additional bridge in the graph.

Our program at this point found none. Drawing upon the same source, we also

know that if we model a single edge beyond the six-cycle we can create a reduction.

35
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Figure 5.1: The full 6-cycle graph

This model requires the added vertex outside of the six-cycle to be of degree three.

The reduction is shown in the picture (img.5.2).

Our program �nds an instance of this general reduction. When we set set it to

search for all possible reductions, however, no further reductions have been found.

Providing us with the �rst practical result of the work.

5.2.2 Seven-cycle

While there was not much that could be said about full seven circles up to this point, it

was known that a seven-cycle with at least a single vertex of degree two must contain

a reduction[2]. Our program has been able to provide three distinct reduction for this,

listed �rst in their text representation below and reconstructed graphically in the next

image (img5.3). We observed that the structure of these graphs was relatively simple

and seemingly lacked several more options which would still �t within the apparently

lenient target for a reduction.

1. {1 -1 -1, 0 -1 -1, 3 -1 -1, 2 -1 -1, 5 -1 -1, 4 -1 -1}

2. {7 -1 -1, 7 -1 -1, 8 -1 -1, 8 -1 -1, 6 -1 -1, 6 -1 -1, 4 5 -1, 0 1 8, 2 3 7}

3. {7 -1 -1, 7 -1 -1, 8 -1 -1, 6 -1 -1, 6 -1 -1, 6 -1 -1, 3 4 5, 0 1 8, 2 7 -1}
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Figure 5.2: A general reduction on the expanded 6-cycle

Acting upon this suspicion and making use of the fact that a graph with seven

outgoing vertices was well within computable range for our algorithm, we changed the

permutation algorithm to 'permuteEdgesExtra()' and looked for additional outputs on

graphs that are internally not completely symmtric. This search provided us with one

additional reduction (#2+ in the image): {6 -1 -1, 6 -1 -1, 7 -1 -1, 8 -1 -1, 9 -1 -1, 10

-1 -1, 0 1 7, 2 6 -1, 3 9 10, 4 8 -1, 5 8 -1 }.

Not only has this given us another way of reducing the graph, we have have thus

been forced to check for additional graphs wherever it was still feasible. Returning to

the six-cycle, we were given a pair of new reductions, one for the full 6-cycle we assume

is a reduction which creates an additional bridge, and one for the extended six-cycle.

these are listed below:

{7 -1 -1, 7 -1 -1, 8 -1 -1, 9 -1 -1, 11 -1 -1, 11 -1 -1, 9 -1 -1, 0 1 8, 2 7 -1, 3 6 10, 9 11 -1,

4 5 10} for the extended six-cycle.

{6 -1 -1, 6 -1 -1, 7 -1 -1, 8 -1 -1, 8 -1 -1, 9 -1 -1, 0 1 7, 2 6 -1, 3 4 9, 5 8 -1} for the

original one.

5.3 Full Reduction Search

Having expended our limited amount of previously known reductions relating to these

problems, we set out to experiment on graphs where no results have been published yet.

Starting from the seven-cycle and working our way up to eight-cycles and ten-cycles.

Though still keeping the main focus on seven-cycle research.
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Figure 5.3: The four reductions of a 7-cycle with an edge of deg(2)

5.3.1 Full Seven-cycle

The �rst obvious target of experiments was the full seven-cycle with no edges of degree

two. After running a full test suite with both the faster but limited and slower but

thorough version of the permutation function, we have not been able to �nd any re-

ductions at all. This has provided us with a negative result for most reductions which

are normally used and tested on these problems.

The next set of experiments focused on trying out an analogy with the six-cycle,

where to �nd a true general reduction, the authors of other research tried to �x a certain

situation at subgraph's immediate border. Our experiments involved �xing such one,

two and three outgoing edges to ones of degree three with in all all arrangements that

could give us a result (img5.4). We were able to run the once-extended versions of

these with the old permutation function, the ones with nine and ten outgoing vertices
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had to be handled by the more limited, but still generally accurate one that has given

us runtimes of around eight minutes per experiment. None of the tests have revealed

a single general reduction, continuing the trend set by the original seven-cycle runs.

Figure 5.4: An example of some of the extended seven-cycles

Instead of trying to run more brute-force tests by adding even more �xed vertices, we

turned our attention to a slightly di�erent construction. This time, we tested a seven-

cycle that has been joined with a six cycle on a single edge. E�ectively expadanding

the graph with one that is reducible and looking for what changes it makes. And it

did, as this con�ugration has given us a reduction which contracted both cycles down

(img5.5) to ten vertices:

{1 -1 -1, 0 -1 -1, 3 -1 -1, 2 -1 -1, 5 -1 -1, 4 -1 -1, 9 -1 -1, 9 -1 -1, 9 -1 -1, 6 7 8}

Returning for the tinal time to the problem of the seven-cycle and seeing that

under certain condictions, we were able to obtain reductions, we set up an experiment

which looked for partial reductions on the original problem. Using the outputs of our

program, we created a script that would parse them and �nd reductions which could

solve certain situations that acted as counterexamples to the otherwise most successfull

reduction produced: {1 -1 -1, 0 -1 -1, 3 -1 -1, 2 -1 -1, 7 -1 -1, 7 -1 -1, 7 -1 -1, 4 5 6}. The

script found a series of reductions which are included in the appendix. We have not

delved into �nding what rules governed these and further looking into the matter would

be a natural next step forward for anyone interested in reducing the full seven-cycle

graph algorithmically.
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Figure 5.5: The 6-7 cycle reduction

5.3.2 Eight-cycle

The second kind of graph we have tried experimenting on was the eight-cycle. We

focused on this graph because our program was capable of handling the necessary

workload in a timely manner and because we quickly recognised a reduction inherent

to it which simply connected all of the neighboring vertices together (img5.6). Just like

in the case of the seven-cycle, we ran a series of tests which �rst tried to look for general

reductions of the full eight-cycle, and later also included the eight-cycle extended to �x

one of its border edges into a vertex of degree three. However, none of the experiments

provided any positive results. Thus we gained another negative result for a large class

of graphs.

5.3.3 Ten-cycle

The third and �nal kind of graph we tried to extend the analogy to was the ten-

cycle. As before, it was within the reach of the program, though this time only in

its non-thorough form. This time, the trick with a reduction that connects neighbors

did not work thanks to a counter-example which connected the edges into a six-cycle,

jumping over a pair of edges that would then create an unsurmountable barrier for

the approximations of TSP walks on the original ten-cycle. Having �nished this set of

tests, we concluded our experiment.
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Figure 5.6: The neighbor reduction on an eight-cycle
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Summary

The goal of this work was to provide more research into reducible con�gurations of the

TSP problem in subcubic graphs. We were to expand upon the work of researchers

who had found reductions for subcubic graphs containing no cycles of length seven or

more. Primarily focusing on these and larger instances, we went looking for general

reductions of these subgraphs.

To achieve this goal, we �rst needed to develop and test an appropriate automatic

testing suite. This involved both the production of performance critical code as well as

scripts which would serve to help with the input of large and detailed graphs. Finally we

ahev created a reference set of trees of speci�c properties, which were used throughout

as our building blocks for the reductions.

Once we have done that, we conducted a series of experiments involving the desired

graphs. First we conducted a series of tests meant to verify our ouputs and attempt

to look for reductions which have been missed by the previous research. We tested

both the underlying graphs as well as various modi�cations of them which provided

slightly less general reudctions usable in speci�c scenarios on the subgraph's boundary.

Eventually we found a few reductions in these instances while mostly disproving the

existence of such for the general case, for the kind of graphs used as reduction candidates

in our program.
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Appendix A

This work comes with a DVD which contains the source �les of the developed program

and the two supplementary Python scripts.
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