
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Identifying Clusters in Graph
Representations of Genomes

Master’s Thesis

2023
Bc. Eva Herencsárová

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Identifying Clusters in Graph
Representations of Genomes

Master’s Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: doc. Mgr. Bronislava Brejová, PhD.

Bratislava, 2023
Bc. Eva Herencsárová

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Eva Herencsárová
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Identifying Clusters in Graph Representations of Genomes
Identifikácia zhlukov v grafovej reprezentácii genómov

Anotácia: V mnohých bioinformatických aplikáciách identifikujeme v genóme významné
miesta a následne chceme nájsť zhluky s vysokou hustotou takýchto
významných miest. Miesta môžu zodpovedať napríklad mutáciám alebo
oblastiam s určitou biologickou funkciou. Cieľom tejto práce je preštudovať
existujúce metódy na hľadanie hustých zhlukov v lineárnych sekvenciách
a rozšíriť ich na grafy, ktoré sa používajú na reprezentáciu skupín príbuzných
genómov. Vrcholy týchto grafov zodpovedajú častiam sekvencií a hrany
susednostiam týchto častí.

Vedúci: doc. Mgr. Bronislava Brejová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 13.12.2021

Dátum schválenia: 03.01.2022 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Eva Herencsárová
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Identifying Clusters in Graph Representations of Genomes

Annotation: In many bioinformatics applications, we identify significant locations in an
individual genome, and we are interested in finding clusters with high density of
such significant locations. The locations may represent for example mutations
or positions with a particular biological role. The goal of this thesis is to
study existing methods for finding such dense clusters in linear sequences and
to extend them to graphs, which are used to represent collections of related
genomes. Vertices in these graphs correspond to parts of the sequences and
edges adjacencies between them.

Supervisor: doc. Mgr. Bronislava Brejová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 13.12.2021

Approved: 03.01.2022 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

iv

Acknowledgments: I would like to express my sincere appreciation to my
supervisor, doc. Mgr. Broňa Brejová, PhD., for her invaluable guidance and feed-
back, as well as to my family for their unwavering support during my master’s
thesis journey. Without their support, this accomplishment would not have been
possible.

v

Abstrakt

V mnohých bioinformatických aplikáciách identifikujeme biologicky významné
miesta v individuálnom genóme. Tieto miesta môžu predstavovať napríklad
mutácie, gény alebo pozície s určitou biologickou funkciou. V našej práci sa za-
oberáme hľadaním zhlukov s vysokou hustotou takýchto biologicky významných
miest v grafickom pangenóme. Grafický pangenóm je súbor príbuzných genómov
reprezentovaný grafom. Vrcholy v týchto grafoch zodpovedajú častiam sekvencií
a hrany zodpovedajú susednostiam medzi nimi. V tejto práci preštudujeme exis-
tujúce metódy na nájdenie takýchto hustých zhlukov v lineárnych sekvenciách a
rozšírime ich na grafy. Implementovali sme jeden z našich algoritmov a použili sme
ho na vyhľadávanie oblastí bohatých na GC v elasticko-degenerovanom reťazci,
ktorý je špecifickou reprezentáciou pangenómu.

Kľúčové slová: pangenóm, elasticko-degenerovaný reťazec, problém maximál-
ného súčtu segmentov, rozklad grafu na cestu, šírka rozkladu na cestu

vi

Abstract

In many bioinformatics applications, we identify biologically significant locations
in an individual genome. These locations may represent for example mutations,
genes or positions with a particular biological role. In our work, we are interested
in finding clusters with high density of such biologically meaningful locations
in a graphical pan-genome, which is a collection of related genomes represented
by a graph. Vertices in these graphs correspond to parts of the sequences and
edges to adjacencies between them. In this work we study existing methods for
finding such dense clusters in linear sequences, and extend them to graphs. We
implemented one of our algorithms and used it to search for GC-rich regions in
an elastic-degenerate string, which is a specific representation of a pan-genome.

Keywords: pan-genome, elastic-degenerate string, maximum-sum segments prob-
lem, path-decomposition, path-width

Contents

Introduction 1

1 Background 3
1.1 Basic concepts in bioinformatics 3
1.2 Graph theory definitions . 3
1.3 Computational pan-genomics . 4

2 Identifying clusters in pan-genome graphs 7
2.1 Motivation and related work . 7
2.2 Problem definition . 8
2.3 Solving the problem on path graphs 9
2.4 Solving the problem on simple bubble graphs 10

2.4.1 Preliminaries . 10
2.4.2 O(|V|)-time algorithm on simple bubble graphs 12

2.5 Solving the problem on n-layered bubble graphs 18
2.5.1 Preliminaries . 19
2.5.2 Elastic-degenerate strings 20
2.5.3 O(|V |)-time algorithm on n-layered bubble graphs 21
2.5.4 Possible extension . 28

2.6 Solving the problem on a DAG 29
2.6.1 Preliminaries . 30
2.6.2 O(|V | · 2width · width)-time algorithm 35
2.6.3 Creating an incremental path-decomposition 38

3 Experiments 41
3.1 Gathering data . 41
3.2 Results . 43

Conclusion 45

vii

CONTENTS viii

Appendix A 47

Appendix B 50

Introduction

The DNA molecules encode genetic information of organisms. Thanks to sequenc-
ing techniques, it is possible to obtain, reconstruct and store this information in
a digital form. Overall, genomic analysis is a versatile tool and has numerous ap-
plications in various fields like genetics, evolutionary biology, medicine and so on.
The genetic information stored in the DNA can help us understand the genetic
basis of various diseases, analyse the evolutionary relationships and genetic diver-
sity, or it can be even used for customizing treatments specific to an individual’s
unique needs [37].

A reference genome is a DNA sequence that is considered representative of
the population or species of interest. It is often used as a basis for various ge-
nomic analyses. Although there is a significant overlap in the DNA sequence
among individuals of a given species, the presence of genetic differences and vari-
ations contribute to the uniqueness of each individual’s DNA. Given the increas-
ing amount of available genomic data, there has been a proposal to expand the
reference genome by incorporating additional genetic sequences. Rather than re-
lying on a single reference genome, the term pan-genome was introduced [1]. The
pan-genome is a joint representation of multiple genomic sequences used as a ref-
erence. Such expansion enhances the diversity of the reference genome, allowing
for more comprehensive genomic analyses.

A possible representation of the pan-genome is a graph. In our work, we aim
to introduce algorithms that identify clusters of biologically meaningful areas in
this graphical pan-genome. These biologically significant regions may represent
for example mutations, genes, or positions with a particular biological role.

In the first chapter, we explain the basic concepts from bioinformatics and
graph theory that are used in the thesis. In chapter 2, we define the math-
ematical problem of Maximum-Score Disjoint Paths which corresponds to the
problem of identifying clusters of biologically meaningful locations in graphical
pan-genomes. We propose algorithms for solving the problem on various classes
of graphs. We describe a linear-time algorithm on bubble-like graphs which cor-

1

Introduction 2

respond to elastic-degenerate strings [21]. For general directed acyclic graphs,
we describe an algorithm that processes a graph based on a special decomposi-
tion, and whose complexity is exponential in a parameter of the decomposition,
but linear in the overall size of the graph. In the third chapter, we create pan-
genomes from genomic sequences of E. coli, and search for GC-rich regions using
our linear-time algorithm for the bubble-like graphs.

Chapter 1

Background

In this chapter, we introduce basic terms and concepts in the field of bioinformat-
ics and graph theory related to our work. We summarize the main idea behind an
organized collection of the genomic information, the pan-genome, and describe
the most popular, graphical representation.

1.1 Basic concepts in bioinformatics

Deoxyribonucleic acid (DNA) is a molecule that contains genetic instructions in
humans and almost all other organisms. These instructions include information
necessary for development, reproduction and functioning.

Nucleotides (or DNA bases) are the basic building blocks of the DNA. These
are the following: adenine (A), thymine (T), guanine (G) and cytosine (C). From
a less biological perspective, we can imagine the DNA as a linear sequence of
characters of a base alphabet A, T, G and C.

The genome is the entire genetic information, i.e. the complete set of DNA of
an organism.

Genome sequencing is the process of getting the DNA sequence of an organ-
ism’s genome.

A reference genome of an organism is a digital DNA sequence assembled as
a representative example of that organism’s genome. This is often used as a
standard when comparing and analysing genomic sequences.

1.2 Graph theory definitions

In this section, we define basic terms from graph theory [11] that are used in this
work.

3

CHAPTER 1. BACKGROUND 4

In this thesis, we will be working mostly with directed graphs. A directed
graph G = (V,E) is a structure that consists of a set of vertices V and a set
of arcs E. An arc (u, v) is an ordered pair of vertices, where u, v ∈ V , u and
v are called the endpoints of the arc. A directed graph with a weight function
w : V → R is called a vertex-weighted directed graph, or weighted directed graph
for short. Note that in this thesis we consider only vertex-weighted directed
graphs.

Definition 1.2.1 (Induced subgraph). Let S ⊆ V be a subset of vertices of G,
then the induced subgraph G[S] is a graph G′ = (S,E ′) where E ′ consists of all
the arcs from E that have both endpoints in S.

Definition 1.2.2 (Path). A path is a sequence of distinct vertices (v1, ..., vn)

where arc (vi, vi+1) ∈ E.

Definition 1.2.3 (Cycle). A cycle is a path (v1, ..., vn) where (vn, v1) ∈ E.

Definition 1.2.4 (DAG). A directed acyclic graph (DAG), is a directed graph
without cycles.

Definition 1.2.5 (Topological order). A topological ordering of a DAG is a linear
ordering of its vertices such that for every arc (u, v), vertex u comes before v in
the ordering.

A DAG G = (V,E) can be topologically ordered.

Definition 1.2.6 (Path graph). A path graph is a graph which consists of a
single path.

Definition 1.2.7 (Predecessor). Vertex p is a predecessor of vertex v if there is
an arc (p, v).

1.3 Computational pan-genomics

At the end of the 20th century, the first complete genome sequence was published
which was for the bacterium Haemophilus influenzae [16]. Later on, new, cheaper
sequencing technologies were introduced [28]. This meant significant growth of
available genome sequences. Redefining the term reference genome to comprise
more information of several genome sequences could probably improve the results
of some experiments and analyses reducing reference bias. To take advantage of

CHAPTER 1. BACKGROUND 5

more available genome sequences instead of one reference genome, the term pan-
genome was introduced [1]. The pan-genome refers to the representation of all
genomic content in certain species or related individuals, i.e. it is a collection of
genomic sequences used jointly for reference.

The analysis of the SARS-CoV-2 genome sequences during the COVID-19
pandemic is a great example to show the significance of the use of a pan-genome
[29]. For comparative purposes, the genome of the virus is often re-sequenced
and compared to a reference. However, if there is a subsequence of a newly
sequenced virus genome that significantly differs from the reference genome, it
is often ignored. Thanks to the added diversity in a pan-genome, this reference
bias is reduced.

Graphical pan-genomics

There are several approaches how the pan-genomes can be represented. As the
pan-genome tries to replace the traditional, linear reference genome with a col-
lection of genomic sequences, a natural representation might be a graph. In this
graph, the vertices correspond to parts of the genome sequences, edges denote
the adjacencies among them.

We list two specific representations and show how they look like on an example
of three genomic sequences seen in Figure 1.1.

Figure 1.1: Three unaligned genomic sequences [1]

De Bruijn Graph

The de Bruijn Graph is a special type of graph with a given parameter k that
represents similarities in sequences of symbols. The graph nodes represent a
contiguous subsequence of k matching symbols (i.e. k-mers). The edges of this
graph represent an overlap of k - 1 matching symbols between a pair of nodes
[29].
Obviously, picking the best parameter k is an important task. For larger k we

CHAPTER 1. BACKGROUND 6

are able to capture similarities better, however, for divergent parts it can result
in huge "bubbles".
This representation has many advantages as it is simple, fast and robust, and it
is not necessary to create an alignment. However, this representation does not
explicitly represent structural information for distances greater than k.
Below in Figure 1.2 we can see an illustration of a de Bruijn graph.

Figure 1.2: De Bruijn graph representation for parameter k = 4 created from
genomic sequence Haplotype 1 from Figure 1.1 [1]

Sequence graph

Many modern formulations of the graphical models use a sequence graph. In this
representation, nodes correspond to segments of the genome and edges connect
adjacent segments. The sequence graph represents matched subsequences from
multiple strings as nodes [1, 29]. Individual genome sequences can be represented
as paths in this graph where node identifiers may serve as a "coordinate system".
In Figure 1.3 we can see an acyclic sequence graph pan-genome.

Figure 1.3: Acyclic sequence graph that represents 3 genomic sequences from
Figure 1.1. Each genomic sequence corresponds to a path in the graph. [1]

In our work, we will use directed acyclic sequence graphs.

Chapter 2

Identifying clusters in pan-genome
graphs

In this chapter, we first describe the motivation of finding clusters of biologi-
cally significant areas in pan-genomes, and define the mathematical problem of
Maximum-Score Disjoint Paths which corresponds to the biological problem. We
then propose algorithms for solving the problem on various classes of graphs. First
we look at graphs consisting of a single path (i.e. a linear sequence) for which
an O(|V |)-time algorithm already exists [9]. Then we look at bubble graphs and
n-layered bubble graphs, which we define later, and propose an O(|V |)-time algo-
rithm for solving the problem on them. Finally, we look at directed acyclic graphs
and propose an algorithm which runs in O(|V | · 2width · width)-time where width

is the size of the largest subset of vertices in our graph decomposition (defined
later).

2.1 Motivation and related work

There are various types of biologically significant areas in the genome. One exam-
ple are conserved regions which are slowly changing regions throughout evolution.
These might correspond to gene regulatory regions or protein coding regions [36].
Another example are GC-rich regions, i.e. regions where the relative frequency of
bases guanine (G) and cytosine (C) is high. Locating GC-rich regions can be used
to identify non-coding RNA genes, since the GC-content is significantly higher
in non-coding RNA genes compared to the GC-content of the whole genome in
some organisms [9]. Another genomic feature that can be investigated are e.g.
CpG islands [38], i.e. stretches of DNA from 500 to 1500 basepair length with
CG:GC ratio of more than 0.6. Identifying CpG islands can helpful, as they are

7

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 8

often associated with gene regulatory elements [10, 26]. Regions with high den-
sity of mutations can be considered biologically meaningful. Dense mutations,
i.e. areas with dense base substitutions, may for example suggest horizontal se-
quence transfer [8], which is transmission of portions of genomic DNA between
organisms.

All of these examples involve identifying individual bases with some biological
property and then looking for groups of such bases located close together. Some
algorithms use statistical methods [23, 8, 20, 15, 7, 35], others use variations of
the maximum sum subsequence problem [9, 3, 18] or maximum density segment
problem [6]. All these algorithms are working on linear genomic sequences. There
are some algorithms for finding maximum weight paths on weighted trees [27, 22].

In our work, we would like to find these biologically significant regions in
pan-genomes which are represented as graphs. Our approach was based on the
maximum sum subsequence problem algorithm used in [9] which we extended for
various classes of graphs.

2.2 Problem definition

In the previous chapter, we explained the idea behind having a collection of ge-
nomic sequences that are used jointly for reference, a pan-genome. Pan-genomes
can be represented as graphs, where the vertices of the graph represent bases or
shorter sequences of the genome, and an arc between two vertices denotes adja-
cency, i.e. how the genome sequence continues. The biological problem of finding
biologically meaningful segments of the pan-genome can be translated into the
following problem on graphs:

Definition 2.2.1 (Maximum-Score Disjoint Paths Problem). The problem is
given by a tuple (G,w, x), where G = (V,E) is a directed graph with a weight
function w : V → R, and x ∈ R+ is a penalty value. The problem is finding
disjoint paths with the maximal sum of scores. The score of a single path P =

(v1, v2, ..., vn) where v1, ..., vn ∈ V is defined as
∑n

i=1w(vi)− x.

See an example solution of the problem in Figure 2.1.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 9

Figure 2.1: An example weighted directed graph where the selected paths max-
imise the score for the Maximum-Score Disjoint Paths Problem. The score of this
selection is (1+1+2−1+1+2−penalty)+(1+2+1−penalty)+(4−penalty) = 5.

Complexity of Maximum-Score Disjoint Paths Problem

The problem of Maximum-Score Disjoint Paths for an arbitrary weighted directed
graph is NP-hard. The NP-hardness can be easily proved by using the well-known
NP-hard problem, Hamiltonian Path Problem. The Hamiltonian Path Problem is
a problem of determining whether a Hamiltonian path exists in a given graph. A
Hamiltonian path is a path that contains each vertex of the graph exactly once.
The reduction of the Hamiltonian Path Problem to ours is simple. Take graph
G = (V,E), weight function w(v) = 1 for v ∈ V , and penalty x = 1. The graph
contains a Hamiltonian path, if the Maximum-Score Disjoint Paths Problem has
a solution with score |V | − 1.

2.3 Solving the problem on path graphs

In this section, we describe an existing algorithm for solving the Maximum-Score
Disjoint Paths Problem on path graphs.

This problem can be solved with a dynamic programming algorithm that runs
in O(n) time [9]. Note that the algorithm in the original article [9] was designed
for a sequence of weights which corresponds to a path graph. Let the path graph
G consist of a single path P = (v1, ..., vn). The algorithm iterates through the
sequence of vertices in path P while populating matrix W (i, s) for all 1 ≤ i ≤ n

and s ∈ {0, 1}. Value W (i, 0) is defined as the maximum score of selected paths
on the subgraph induced by vertices v1, ..., vi, where vi is not part of a selected
path. Value W (i, 1) is the maximum score of selected paths on the subgraph

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 10

induced by vertices v1, ..., vi where vi is part of a selected path. To populate
matrix W, the algorithm uses the following recursive rules:

W (1, 0) = 0

W (1, 1) = w(v1)− x

For 2 ≤ i ≤ n:
If the vertex vi is not selected, the best score is the same as the best score for
subgraph induced by vertices v1, ..., vi−1.

W (i, 0) = max

W (i− 1, 0)

W (i− 1, 1)

If vertex vi is selected, it may start a new selected path or extend a selected path.

W (i, 1) = w(vi) + max

W (i− 1, 0)− x

W (i− 1, 1)

Notice that the penalty x is applied right away when a new path is selected.

2.4 Solving the problem on simple bubble graphs

In this section, we describe our new algorithm for solving the Maximum-Score
Disjoint Paths Problem on a bubble-like structure, simple bubble graphs, which
can be interpreted as pan-genomes consisting of two genomes. This approach is
an extension of the algorithm for path graphs from the previous section.

2.4.1 Preliminaries

Definition 2.4.1 (Bubble). A bubble [5] is a directed acyclic graph with a start
vertex s, an end vertex t and two non-empty vertex-disjoint directed paths, re-
ferred to as layers, connecting vertex s and t.

Definition 2.4.2 (Simple bubble graph). A simple bubble graph can be con-
structed by taking a sequence of vertices u1, ..., uk and connecting each pair of ui

and ui+1 by a directed path or by a bubble with the start vertex ui and the end
vertex ui+1.

See Figure 2.2 with an example of a simple bubble graph. Simple bubble
graphs can be interpreted as a pan-genome consisting of two genomes. The ver-
tices represent single bases or a sequence of bases. Identical parts of the two

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 11

sequences can be represented with a common vertex or a path of vertices in the
pan-genome. Layers in bubbles represent areas where the bases in the genomes
vary.

Figure 2.2: Example of a simple bubble graph from Definition 2.4.2 with 3 bubbles

Notation 1. Let G = (V,E) be a simple bubble graph. Graph G’s vertices are
split into mutually disjoint subsets N, J, U and D, i.e. V = N ∪ J ∪ U ∪D, the
following way:

• Subset D and U : as mentioned in the definition of a bubble, a bubble
consists of a start and end vertex and two disjoint paths. Set D contains
vertices from one of the paths, and set U contains vertices from the other
path.
In addition, we define set Dfirst ⊆ D which contains every vertex of D that
does not have a predecessor in D. Set Dlater = D −Dfirst.
Similarly, Ufirst ⊆ U contains every vertex of U that does not have a pre-
decessor in U . Set Ulater = U − Ufirst.

• Subset J : contains all the end vertices of the bubbles.

• Subset N : all remaining vertices.

The algorithm on simple bubble graphs processes the vertices in a special
order defined below:

Definition 2.4.3 (Custom topological sort on simple bubble graphs). A custom
topological sort on simple bubble graphs is a topological ordering with the following
additional property: within each bubble, vertices in D are before vertices in U .

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 12

2.4.2 O(|V|)-time algorithm on simple bubble graphs

The algorithm can be summarised as follows: The algorithm is a natural extension
of the dynamic programming algorithm for path graphs from Section 2.3. The
vertices are being processed in the order of the custom topological sort for simple
bubble graphs from Definition 2.4.3. The score matrix W contains the best scores
for subgraphs of G. For vertices N ∪D∪J , the score matrix W contains the best
score for the subgraph induced by vertices in the custom topological order up to
the current vertex. For vertices in U , the scores are limited only to the vertices
in U of the current bubble. This is needed so it is possible to calculate the score
for vertices in J , i.e. the bubble’s end vertex. See Figure 2.3 for an example of
the induced subgraphs. The algorithm also needs to consider that a selected path
can continue into either of the layers of a bubble. This is stored as an additional
dimension in the score matrix W .

Figure 2.3: This example highlights vertices n,m ∈ N , d ∈ D, u ∈ U and j ∈ J ,
and the related induced subgraphs for which the score matrix W stores the best
scores.

Detailed description of the algorithm

Notation 2. Additional notation used in the algorithm:

• Vertex a: the current vertex that is being processed by the algorithm.

• Vertex p: predecessor vertex of the current vertex a. Note that each ver-
tex has only one predecessor p, except for vertices in J which have two
predecessors:

– predecessor vertex pD: the predecessor vertex from D,

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 13

– predecessor vertex pU : the predecessor vertex from U .

• Custom topological ordering O = v1, ..., vn on graph G from Definition 2.4.3.

• Score matrix W (vi, s, l), where vi ∈ V , selection value s ∈ {0, 1}, and path
continuation value l ∈ {D,U}.
Value W (vi, s, l) denotes:

– for vi ∈ N ∪ J ∪D:
the best score for the subgraph induced by vertices in the custom
topological order up to vertex vi, i.e. induced by the vertices {v1, ..., vi};

– for vi ∈ U :
the best score for the subgraph induced by vertices {v1, ..., vi} ∩ U ′

where U ′ are the vertices from U in the current bubble;

where:

– s = 1 means vi is selected in a path;

– s = 0 means vi is not selected in any of the paths;

and where:

– l = U means that vi ∈ D∪U and the start vertex and the Ufirst vertex
of the current bubble is selected on the same path (see Figure 2.4 and
Figure 2.5);

– l = D means that the condition for l = U is not true, i.e. either:

∗ vi /∈ D ∪ U ;

∗ vi ∈ D ∪ U , but not both the start vertex and the Ufirst vertex of
the current bubble is selected (see Figure 2.6 and Figure 2.7);

∗ vi ∈ D ∪U , both the start vertex and the Ufirst vertex of the cur-
rent bubble is selected, but they are part of two different selected
paths (see Figure 2.8).

Note that for vi /∈ D ∪ U the W (vi, s, U) is not defined and can be consid-
ered as being −∞.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 14

Figure 2.4: Example of selected paths (marked with black)

Figure 2.5: Example of selected paths (marked with black)

Figure 2.6: Example of selected paths (marked with black)

Figure 2.7: Example of selected paths (marked with black)

Figure 2.8: Example of selected paths (marked with black)

The algorithm processes the vertices in the order of the custom topological
sort O, and calculates the values in the score matrix W based on the rules below:

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 15

• For v1, i.e. the first vertex of the custom topological ordering O:

W (v1, 0, D) = 0

W (v1, 1, D) = w(v1)− x

Since v1 ∈ N , value W (v1, 0, U) and W (v1, 1, U) are not defined and can be
considered as being −∞.

• For a = vi ∈ N ∪Dlater where i > 1:
For these vertices, W stores the best score for the subgraph induced by
vertices v1, ..., vi, therefore, the rules are very similar to the ones described
in Section 2.3 for the path graph.
Notice that the predecessor vertex p of a is vi−1.
If vertex a is not selected, the best score is the same as for the graph induced
by v1, ..., vi−1:

W (a, 0, l) = max

W (p, 0, l)

W (p, 1, l)

where l ∈ {D,U}.

If vertex a is selected, we may start a new selected path or extend an existing
selected path. Selecting the vertex increases the score by w(a) and starting
a new path incurs a penalty x:

W (a, 1, l) = w(a) + max

W (p, 0, l)− x

W (p, 1, l)

where l ∈ {D,U}.

• For a = vi ∈ Dfirst:
Also for these vertices, W stores the best score for the subgraph induced by
vertices v1, ..., vi. In this case, however, different rules are needed depending
on the value l. The predecessor p of vertex a is vi−1 and it is also the start
vertex of the current bubble.
If l = D, it means that p may or may not be selected, and if p and a are
selected they can be part of the same selected path. This means that the
same rules apply as above:

W (a, 0, D) = max

W (p, 0, D)

W (p, 1, D)

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 16

W (a, 1, D) = w(a) + max

W (p, 0, D)− x

W (p, 1, D)

If l = U , it means that p is selected, and even if a is selected, vertex a

and p are part of two distinct selected paths, i.e. if a is selected the score is
penalised.

W (a, 0, U) = W (p, 1, D)

W (a, 1, U) = w(a) +W (p, 1, D)− x

• For a = vi ∈ U :
For these vertices, W stores the best score for the subgraph induced by
vertices {v1, ..., vi} ∩ U ′ where U ′ are the vertices from U in the current
bubble. This means that the scores are calculated similarly as if the vertices
U ′ formed a completely separate path graph. The only difference is that
for a ∈ Ufirst the penalty is not applied if l = U . This is because l = U

means that there is a selected path containing both the current bubble’s
start vertex and the Ufirst vertex of the current bubble.

For a ∈ Ulater:

W (a, 0, l) = max

W (p, 0, l)

W (p, 1, l)

W (a, 1, l) = w(a) + max

W (p, 0, l)− x

W (p, 1, l)

where l ∈ {D,U}.

For a ∈ Ufirst:

W (a, 0, D) = 0

W (a, 1, D) = w(a)− x

W (a, 0, U) = −∞

W (a, 1, U) = w(a)

Note that W (a, 0, U) is −∞, because this case must not happen, as l = U

means that a ∈ Ufirst is selected, but s = 0 means that a is not selected.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 17

• For a = vi ∈ J :
For these vertices, W stores the best score for the subgraph induced by
vertices v1, ..., vi, but in this case vertex a has two predecessors pD ∈ D and
pU ∈ U .
The values stored in score matrix W for pD and pU were calculated for two
disjoint subgraphs (see Figure 2.9).

Figure 2.9: The disjoint subgraphs for which the values W (pU ,_,_) and
W (pD,_,_) were calculated.

Summing up these scores and adding w(a) if a was selected gives the best
score for the subgraph induced by vertices v1, ..., vi. When summing up the
scores, all the possibilities whether the previous vertices were selected or
not need to be considered. The W values for the two predecessors have to
be considered with the same l value, since it does not make sense to use
the l = D value for one of the predecessors and l = U value for the other
predecessor.
Penalty is only applied when a is selected and none of the predecessors are
selected. If at least one of the predecessors is selected, the path can be
extended with a without a penalty.

W (a, 0, D) = max
l∈{D,U}

(
max
s∈{0,1}

(W (pD, s, l)) + max
s∈{0,1}

(W (pU , s, l))

)

W (a, 1, D) = w(a) + max
l∈{D,U}

max



W (pD, 0, l) +W (pU , 0, l)− x

W (pD, 0, l) +W (pU , 1, l)

W (pD, 1, l) +W (pU , 0, l)

W (pD, 1, l) +W (pU , 1, l)



CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 18

Since a ∈ J , value W (a, 0, U) and W (a, 1, U) are not defined and can be
considered as being −∞.

Notice that the penalty x is applied right away when a new path is selected.

Let v be the last vertex of the graph. Since v ∈ N ∪ J , the best score of the
whole graph is max{W (v, 0, D),W (v, 1, D)}.

Path reconstruction

To return the selected paths, besides matrix W, the algorithm populates matrix
C which has the exact same dimensions as W. On position C(v, s, l) the choice
of how the rule for W (v, s, l) was derived is encoded. This serves as a traceback
pointer. That is, after the algorithm finishes with the score calculation, it starts
reconstructing the paths by iterating through the graph in the reversed custom
topological ordering. By following the pointers in matrix C, it can trace back
which vertices were selected and whether a new path was started.

Complexity

Calculating the scores stored in W and values stored in C can be done in constant
time for a single vertex. Each vertex is visited twice by the algorithm (once during
the score calculation and once during the path reconstruction). Therefore, the
overall time complexity of the algorithm is O(|V |). Regarding space complexity,
the algorithm stores a constant number of values for each vertex and a few runtime
variables. The whole graph can be stored in O(|V |) space. Therefore, the space
complexity of this algorithm is O(|V |).

2.5 Solving the problem on n-layered bubble graphs

The simple bubble graph can be interpreted as a pan-genome consisting of two
genomes. A natural step to extend this graph is to add more layers inside the
bubbles, and with this make it possible to represent pan-genomes with multiple
genomes.

In this section, we describe an algorithm for solving the Maximum-Score Dis-
joint Paths Problem on n-layered bubble graphs.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 19

2.5.1 Preliminaries

Definition 2.5.1 (b-layered bubble). A b-layered bubble is a directed acyclic graph
with a start vertex s, an end vertex t and b non-empty vertex-disjoint directed
paths, referred to as layers, connecting vertex s and t.

Definition 2.5.2 (n-layered bubble graph). An n-layered bubble graph can be
constructed by taking a sequence of vertices u1, ..., uk and connecting each pair
of ui and ui+1 by a directed path or by a b-layered bubble (2 ≤ b ≤ n) with the
start vertex ui and the end vertex ui+1.

See Figure 2.10 with an example of a 5-layered bubble graph with a 5-layered
and 3-layered bubble. The 5-layered bubble graph can be interpreted as a pan-
genome consisting of 5 genomes.

Figure 2.10: Example of a 5-layered bubble graph from Definition 2.5.2 with a
5-layered bubble and a 3-layered bubble

Notation 3. For n-layered bubble graphs, a similar notation to Notation 1 is
used.

Let G = (V,E) be an n-layered bubble graph. Graph G’s vertices are split
into mutually disjoint subsets N, J, L1, ..., Ln, i.e. V = N ∪ J ∪ L1 ∪ ... ∪ Ln, the
following way:

• Subset Li ∈ {L1, L2, ..., Ln}: as mentioned in the Definition 2.5.1, an n-
layered bubble consists of a start and an end vertex and n disjoint paths
q1, ..., qn. Subset Li contains all the vertices of disjoint path qi.
Furthermore, each Li is split into two disjoint subsets Li,first and Li,later.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 20

Subset Li,first contains all vertices of Li that do not have a predecessor in
Li, while Li,later = Li − Li,first.

• Subset J : contains all the end vertices of all the b-layered bubbles, 1 ≤ b ≤
n.

• Subset N : all remaining vertices.

Definition 2.5.3 (Custom topological sort on n-layered bubble graphs). A cus-
tom topological sort on n-layered bubble graphs is a topological ordering with the
following additional property: if vertices u and v belong to the same bubble and
u ∈ Li and v ∈ Lj and i < j, then vertex u is before vertex v in the topological
order.

2.5.2 Elastic-degenerate strings

One possible way to represent graphical pan-genomes is using elastic-degenerate
strings [21] which correspond to our n-layered bubble graphs. An elastic-degenerate
string is a string where at one or more positions an elastic-degenerate symbol can
occur. The elastic degenerate symbol is defined as a set of substrings, poten-
tially of different lengths. See an example of an elastic-degenerate string and
the corresponding n-layered bubble graph in Figure 2.11. Notice that in the
n-layered bubble graph an additional vertex was added between the two neigh-
bouring elastic-degenerate symbols and after the last elastic-degenerate symbol
(marked with yellow color). These additional vertices act as the start or the end
vertices of the bubbles. Their weight is set to 0, and therefore, they do not have
an impact on the score calculation.

If the elastic-degenerate symbol contains an ε symbol, a vertex is added for
it with 0 weight. This is needed so that selecting this vertex has no effect on the
score.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 21

Figure 2.11: Example of an elastic-degenerate string and the corresponding 3-
layered bubble graph. The bases correspond to vertices, adjacencies to edges.

2.5.3 O(|V |)-time algorithm on n-layered bubble graphs

The algorithm on n-layered bubble graphs follows the O(|V|)-time algorithm for
simple bubble graphs from Subsection 2.4.2. The only difference is in handling
vertices in Li,first and vertices in J . A natural step to extend the algorithm for the
n-layered bubble graph would be to use l ∈ {L1, ..., Ln} instead of L ∈ {D,U}
when calculating the score W (v, s, l). However, it is enough to have just two
possible values for l.
The algorithm considers for each vertex a whether it is included in a path. In
contrast to the algorithm for simple bubble graphs, the s = 0 has a slightly
different meaning, it means that the vertex may or may not be selected. In other
words, for selection value s = 0 the score in W holds the maximum value of both
the option that the vertex is selected or is not selected. This change is needed so
that the we can calculate the score for vertices in J more efficiently.

Detailed description of the algorithm

Notation 4. In addition to Notation 3, the following notation is used in the
algorithm:

• Vertex a: current vertex that is being processed by the algorithm.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 22

• Vertex p: predecessor vertex of the current vertex a. Note that each vertex
has only one predecessor p, except vertices in J which have predecessors
p1, ..., pb if vertex a is the end vertex of a b-layered bubble.

• Custom topological ordering O = v1, ..., v|V | on graph G from Definition
2.5.3.

• Score matrix W (vi, s, l), where vi ∈ V , selection value s ∈ {0, 1}, and path
continuation value l ∈ {I, E}.
Value W (vi, s, l) denotes:

– for vi ∈ N ∪ J ∪ L1:
the best score for the subgraph induced by vertices in the custom
topological order up to vertex vi, i.e. induced by the vertices v1, ..., vi

– for vi ∈ Li, 2 ≤ i ≤ b in a bubble B with b layers:
the best score for the subgraph induced by vertices {v1, ..., vi} ∩ L′

i

where L′
i are the vertices from Li in bubble B;

where:

– s = 1 means vi is selected in a path;

– s = 0 means vi may or may not be selected in a path;

and where the value l means:
if vi ∈ L1:

– l = I: there is no selected path which contains the bubble’s start
vertex and the subsequent vertex from Lk,first where k > 1. Note that
the selected path may continue on L1,first.

– l = E: the bubble’s start vertex is selected in a path which continues
with a vertex from Lk,first where k > 1.

if vi ∈ Lk, k > 1:

– l = I: the path from the bubble’s start vertex continues on layer Lk,
i.e. both the bubble’s start vertex and the Lk,first vertex of the current
bubble are selected;

– l = E: there is no path containing both the current bubble’s start
vertex and the Lk,first vertex of the current bubble.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 23

Note that for vi ∈ N∪J the W (vi, s, E) is not defined and can be considered
as being −∞.

Similarly as the algorithm for simple bubble graphs, the algorithm processes
the vertices in the order of the custom topological sort O, and calculates the
values in the score matrix W based on the rules below:

• For v1, i.e. the first vertex of the custom topological ordering:

W (v1, 1, I) = w(v1)− x

W (v1, 0, I) = max

0

W (v1, 1, I)

Since v1 ∈ N , value W (v1, 0, E) and W (v1, 1, E) are not defined and can be
considered as being −∞.

• For a = vi ∈ N ∪ L1,later where i > 1:
For these vertices, W stores the best score for the subgraph induced by
vertices v1, ..., vi.
The rules are very similar as in simple bubble graphs. The difference arises
from the fact that s = 0 has a different meaning for n-layered bubble
graphs: it means that matrix W contains the best score of both cases that
a is selected or not selected.

W (a, 1, l) = w(a) + max

W (p, 0, l)− x

W (p, 1, l)

where l ∈ {I, E}.

If a is not selected, then the best score is the same as for the predecessor
which is stored in W (p, 0, l). If a is selected, then the best score is W (a, 1, l):

W (a, 0, l) = max

W (p, 0, l)

W (a, 1, l)

where l ∈ I, E.

• For a = vi ∈ L1,first:
Also for these vertices, W stores the best score for the subgraph induced by

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 24

vertices v1, ..., vi. The rules are again similar as for simple bubble graphs
and the only difference is again because of the different meaning of s = 0.

W (a, 1, I) = w(a) + max

W (p, 0, I)− x

W (p, 1, I)

W (a, 0, I) = max

W (p, 0, I)

W (a, 1, I)

W (a, 1, E) = w(a) +W (p, 1, I)− x

W (a, 0, E) = max

W (p, 1, I)

W (a, 1, E)

• For a = vi ∈ Lk where k > 1:
This is again similar as for the simple bubble graphs. For these vertices, W
stores the best score for the subgraph induced by vertices {v1, ..., vi} ∩ L′

k

where L′
k are the vertices from Lk in the current bubble. This means that

the scores are calculated similarly as if the vertices L′
k formed a completely

separate path graph. The only difference is that for a ∈ Lk,first the penalty
is not applied if l = I. This is because l = I means that there is a selected
path containing both the current bubble’s start vertex and the Lk,first vertex
of the current bubble.

For a ∈ Lk,later where k > 1:

W (a, 1, l) = w(a) + max

W (p, 0, l)− x

W (p, 1, l)

W (a, 0, l) = max

W (p, 0, l)

W (a, 1, l)

where l ∈ {I, E}.

For a ∈ Lk,first where k > 1:

W (a, 1, I) = w(a)

W (a, 0, I) = W (a, 1, I)

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 25

W (a, 1, E) = w(a)− x

W (a, 0, E) = max

0

W (a, 1, E)

• For a = vi ∈ J , which is the end vertex of the currently processed bubble
with b ≤ n layers:
For these vertices, W stores the best score for the subgraph induced by ver-
tices v1, ..., vi, but in this case vertex a has b predecessors: pk ∈ Lk, where
1 ≤ k ≤ b.
The values stored in score matrix W for p1, ..., pb were calculated for b dis-
joint subgraphs. To get the score for a, the algorithm has to sum up these
scores for p1, ..., pb. The exact rules are a bit more complex compared to
the rules in the algorithm for the simple bubble graph.
The way the path continuation value l was defined, when deriving the score
for a ∈ J , it makes only sense to sum up the scores of predecessors where
l = I for exactly one predecessor and l = E for all the others. This is
because the selected path from the bubble’s start vertex may continue with
at most one vertex v ∈ Lk,first, 1 ≤ k ≤ b. Recall that score for p1 when
l = I also includes the possibility that the selected path does not continue
to any of the layers from the bubble’s start vertex.

First, let’s take a look at rule W (a, 1, I), i.e. when a is surely selected.
If none of a’s predecessors were selected, a starts a new selected path. To
allow a to continue an existing path, at least one of its predecessors has to be
surely selected. The algorithm also has to consider all the possible l values
of predecessors as described above. To calculate the score for W (a, 1, I)

efficiently, 3 groups of sums are created. The maximum of these sums is
used to derive the maximal score for W (a, 1, I):

1. No predecessor vertex is surely selected, therefore, a starts a new path
which incurs a penalty.

group1 = max



W (p1, 0, I) +W (p2, 0, E) + ...+W (pb, 0, E)− x

W (p1, 0, E) +W (p2, 0, I) + ...+W (pb, 0, E)− x

...

W (p1, 0, E) +W (p2, 0, E) + ...+W (pb, 0, I)− x

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 26

The maximum in group1 goes over b sums, each having path con-
tinuation value I at a different position. The value group1 can be
calculated in O(b) time. First, the sum W (p1, 0, E) + W (p2, 0, E) +

...+W (pb, 0, E)−x is calculated. Then the algorithm changes exactly
one addend at a time from W (pk, 0, E) to W (pk, 0, I) for all 1 ≤ k ≤ b,
and chooses the maximum sum.

2. Predecessor pk is surely selected (i.e. a does not have to start a new
selected path which means no penalty), and l = I for predecessor pk:

group2 = max



W (p1, 1, I) +W (p2, 0, E) + ...+W (pb, 0, E)

W (p1, 0, E) +W (p2, 1, I) + ...+W (pb, 0, E)

...

W (p1, 0, E) +W (p2, 0, E) + ...+W (pb, 1, I)

Similarly as group1, value group2 can be calculated in O(b) time by first
calculating the sum W (p1, 0, E) +W (p2, 0, E) + ...+W (pb, 0, E), and
then always changing exactly one addend at a time from W (pk, 0, E)

to W (pk, 1, I) for all 1 ≤ k ≤ b, and choosing the maximum sum at
the end.

3. Predecessor pk is surely selected (i.e. a does not have to start a new
selected path which means no penalty), and l = I for predecessor pj

where k ̸= j.
In total O(b2) sums of length b need to be calculated and compared.
This could be done in O(b2) time similarly as above.

However, with a better approach, the maximum sum can be calcu-
lated in O(b) time. The algorithm first calculates the sum group3 =

W (p1, 0, E) + W (p2, 0, E) + ...+ W (pb, 0, E). Then it finds addends
W (py, 0, E) and W (pz, 0, E) which when replaced with W (py, 0, I) and
W (pz, 1, E) maximises the sum.

To do this, the algorithm first finds pc and pd (c ̸= d) for which the
difference W (py, 0, I) − W (py, 0, E) is the largest and second largest,
respectively (1 ≤ y ≤ b). This is done in O(b) time.
Next, it finds the predecessors pe and pf (e ̸= f) for which the dif-
ference W (pz, 1, E) − W (pz, 0, E) is the largest and second largest,
respectively, again in O(b) time (1 ≤ z ≤ b).

There are 4 candidates for the replacement. If pc ̸= pe, then the

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 27

addend W (pc, 0, E) is replaced with W (pc, 0, I), and W (pe, 0, E) with
W (pe, 1, E) in the group3 sum. If pc = pe, then one of the addends is
replaced by W (pd, 0, I) or W (pf , 1, E) instead, whichever results in a
larger sum.
All together, this is done in O(b) time.

That is, W (a, 1, I) is derived in the following way:

W (a, 1, I) = w(a) + max


group1

group2

group3

Now let’s look at W (a, 0, I). The best score if a is surely not selected is
calculated similarly as group1, the only difference is that the penalty is not
applied:

group_4 = max



W (p1, 0, I) +W (p2, 0, E) + ...+W (pb, 0, E)

W (p1, 0, E) +W (p2, 0, I) + ...+W (pb, 0, E)

...

W (p1, 0, E) +W (p2, 0, E) + ...+W (pb, 0, I)

The score of W (a, 0, I) is the maximum of the score when a is surely not
selected and of the score when a is surely selected:

W (a, 0, I) = max

group_4

W (a, 1, I)

Since a ∈ J , value W (a, 0, E) and W (a, 1, E) are not defined and can be
considered as being −∞.

Let v be the last vertex of the graph. Since v ∈ N ∪ J), the maximal score of
the graph is W (v, 0, I).

Path reconstruction

The path reconstruction is done as described for the algorithm on simple bubble
graphs, see 2.4.2.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 28

Complexity

Regarding time complexity, apart from vertices in J , calculating the scores stored
in W for a vertex is done in O(1). Calculating the scores for vertices in J is done
in O(

∑
b∈B

size(b)) ≤ O(|V |) where B is the set of all bubbles in G and size(b) is

the number of layers in a bubble b ∈ B. To reconstruct the path, the algorithm
iterates through the graph once again based on values stored in C in time O(|V |).
Therefore, the algorithm’s runtime is O(|V |). Similarly, the space complexity is
also O(|V |), as the algorithm stores the graph, matrices W and C, and a few
runtime variables.

2.5.4 Possible extension

One possible way to extend our algorithm on n-layered bubble graphs to a bigger
class of graphs would be to have recursive br-layered bubbles inside the b-layered
bubbles, b, br ∈ {2, ..., n}. The acyclic two-terminal series-parallel graphs [13]
corresponds to this class, see the definition below:

Definition 2.5.4 (Directed two-terminal series-parallel graphs). [13] A directed
two-terminal series-parallel graph G, with terminals (terminal vertices) s and t
can be created by a sequence of operations (i)− (iii):

(i) Create a new graph consisting of only one arc (s, t).

(ii) Parallel composition: let both X with terminals sX , tX and Y with ter-
minals sY , tY be two-terminal series-parallel graphs. Form a new graph
G = P (X, Y) by identifying s = sX = sY and t = tX = tY .

(iii) Series composition: let both X with terminals sX , tX and Y with ter-
minals sY , tY be two-terminal series-parallel graphs. Form a new graph
G = S(X, Y) by identifying s = sX , t = tY and tX = sY .

See in Figure 2.12 how operations (ii) and (iii) can form a new two-terminal
series-parallel graph.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 29

Figure 2.12: Parallel composition or series composition of two two-terminal
series-parallel graphs form a new two-terminal series-parallel graph.

We discovered this class of graphs shortly before the thesis submission deadline
based on a proposal from prof. RNDr. Rastislav Královič, PhD. We leave it as
an open problem, however, most likely our algorithm on n-layered bubble graphs
can be extended to work on this class of graphs in O(|V |) time.

2.6 Solving the problem on a DAG

In the previous sections, we described algorithms for the Maximum-Score Disjoint
Paths Problem on simple bubble graphs and n-layered bubble graphs (see Defi-
nition 2.4.2 and Definition 2.5.2). In Figure 2.13, we can see a 2-layered bubble.
By definition, between vertices denoted by B and J there are only two disjoint
paths, i.e. layers.

Figure 2.13: A 2-layered bubble from the previous section, see Definition 2.5.1

A natural way to extend the graph in Figure 2.13 is to add arcs in between

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 30

vertices on different layers as seen in Figure 2.14. This newly constructed graph
does not match our definition of b-layered bubble graphs, so the previously defined
algorithms cannot be used.

Having this in our mind as a motivation, in this section, we describe an algo-
rithm that solves the Maximum-Score Disjoint Paths Problem on DAGs.

Figure 2.14: An extended simple bubble graph from Figure 2.13 by adding arcs
FD and EH

2.6.1 Preliminaries

The dynamic programming algorithm can be summarised as follows: The dynamic
programming algorithm gets a connected weighted DAG G as an input and also a
special decomposition of G. This decomposition splits the vertices into a sequence
of non-disjoint subsets called bags. The bags are processed one by one based on
the order in the sequence. For each vertex in each bag, the algorithm considers
whether the vertices are part of a selected path, and if so, whether the selected
path ends in that vertex. For each of these possibilities, the algorithm calculates
the score for the bag. This is done based on the scores calculated for the previous
bag.
As one can probably assume, the time complexity of this problem heavily depends
on the size of the bags. Let us define below the decomposition that is used by
this algorithm.

Our decomposition can be viewed as a variant of the path decomposition de-
fined usually for undirected graphs. The path-decomposition of graph G can be
interpreted as a thickened path graph. The term path-width is a value describing
that how much this path is thickened to get G. Formally:

Definition 2.6.1 (Path-decomposition). [33] Let G = (V,E) be an undirected
graph. The path-decomposition of G is a sequence of subsets X1, ..., Xn of V , with
two properties:

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 31

(i) For each edge of G, there exists an i ∈ {1, ..., n} such that both endpoints
of the edge belong to bag Xi.

(ii) For every three indices 1 ≤ i ≤ j ≤ k ≤ n, Xi ∩Xk ⊆ Xj.

Definition 2.6.2 (Path-width). [33] Let G = (V,E) be an undirected graph.
The path-width of G is the minimum value of k ≥ 0 such that G has a path-
decomposition P = X1, ..., Xn where k = max

i∈{1,...,n}
|Xi| − 1.

Note that it is NP-hard to find the path-width of an arbitrary graph [19].

In our case, G is a DAG. An existing definition of a directed path-decomposition
is the following:

Definition 2.6.3 (Directed path-decomposition). [2, 14] Let G = (V,E) be a
directed graph. A directed path-decomposition is a pair (P,X) consisting of a
path P , say with V (P) = {t1, t2, ..., tn}, together with a collection of subsets of
vertices X = {Vi ⊆ V (G) : i ∈ [n]} such that:

(i) V (G) =
⋃

t∈V (P) Vt;

(ii) if i < j < k, then Vi ∩ Vk ⊆ Vj;

(iii) for every edge e = (x, y) ∈ E(P) there exists i ≤ j such x ∈ Vi and y ∈ Vj.

The algorithm for n-layered bubbles processed the graph based on a special
topological order. This ensured that each vertex’s predecessor was already pro-
cessed before the vertex itself. This property should be ensured when processing
the path-decomposition, i.e. all predecessors of a vertex should be processed in a
previous or the current bag. However, Definition 2.6.3 does not ensure this. In
Figure 2.15, we can see an example directed path-decomposition based on Defi-
nition 2.6.3. In this example, we can see that vertex B, vertex D’s predecessor,
appears in a bag for the first time only after vertex D’s first appearance.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 32

Figure 2.15: A possible directed path-decomposition of a graph based on Definition
2.6.3. Notice that not all predecessors of D appear before D’s first appearance in
a bag in the path-decomposition.

To ensure the property that when processing vertex v all predecessors of v were
already processed or are processed together with v, we define our own modified
directed path-decomposition by extending Definition 2.6.1:

Definition 2.6.4 (Modified directed path-decomposition). Let G = (V,E) be a
directed graph. The modified directed path-decomposition of G is a sequence of
subsets X1, ..., Xn of V (we refer to them as bags of vertices), with three properties:

(i) For each arc of G, there exists an i ∈ {1, ..., n} such that both endpoints of
the arc belong to bag Xi.

(ii) For every three indices 1 ≤ i ≤ j ≤ k ≤ n, Xi ∩Xk ⊆ Xj.

(iii) If vertex v ∈ Xj then for each of v’s predecessors p exists a bag Xi containing
p where i ≤ j.

The definition of directed path-width conceptually remains the same, that is:

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 33

Definition 2.6.5 (Width of the path-decomposition). Let G = (V,E) be a di-
rected graph and P = X1, ..., Xn its path-decomposition. The width of the path-
decomposition P is k = max

i∈{1,...,n}
|Xi| − 1.

Definition 2.6.6 (Modified directed path-width of a graph). Let G = (V,E) be
a directed graph. The modified directed path-width of G is the minimal possible
width of a modified directed path-decomposition on G. A path-decomposition
with this width is called minimal path-decomposition.

Note that in this work, whenever we refer to a path-decomposition, or a path-
width of a graph, we are referring to Definition 2.6.4 and Definition 2.6.6.

Below in Figure 2.16, we can see a path-decomposition of width 2 based on
Definition 2.6.4 of the graph from Figure 2.14. Based on Corollary 2.6.1 shown
below, the path-width of the graph is at least 2. Therefore, this is a minimal
path-decomposition of the graph.

Figure 2.16: Minimal path-decomposition based on Definition 2.6.4 of the graph
from Figure 2.14 with path-width 2

The following lemma shows an interesting property of our modified directed
path-decomposition. This can be useful for example for showing a lower bound
for the path-width of a graph.

Lemma 2.6.1. Let G = (V,E) be a directed graph and P = X1, ..., Xn its path-
decomposition from Definition 2.6.4. Assume Xi is the bag where vertex v appears
for the first time in P , i.e. v ∈ Xi and v /∈ Xj where j < i. Then bag Xi contains
all v’s predecessors.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 34

Proof. From (iii) in Definition 2.6.4 we know that all predecessors of v have to
be in bag Xi or bag Xh where h < i:

• If the predecessor vertex p ∈ Xi, then the statement holds for p.

• If p ∈ Xh, where h < i: Since Xi is the bag where v appears for the first
time in P , based on (i) in Definition 2.6.4 there exists a bag Xk, where
k ≥ i, containing vertices p and v. Based on (ii) in Definition 2.6.4 Xi

contains p ∈ Xh ∩Xk.

Corollary 2.6.1 (from Lemma 2.6.1). The path-width of a directed graph G is at
least the maximum indegree of G, where the indegree of a vertex v is the number
of v’s predecessors.

The following path-decomposition is used by our algorithm, because it allows
to process a single new vertex in each bag which simplifies the algorithm.

Definition 2.6.7 (Incremental path-decomposition). Let G = (V,E) be a DAG
and P = X1, ..., Xn its path-decomposition from Definition 2.6.4. We consider
X0 = ∅. We call P an incremental path-decomposition if |Xi \ Xi−1| = 1 for
1 ≤ i ≤ n.
The vertex in Xi \Xi−1 is called the incremental vertex.

The incremental path-decomposition always can be constructed from an ex-
isting path-decomposition. This is proven in the lemma below:

Lemma 2.6.2. Let G = (V,E) be a DAG and P a path-decomposition from
Definition 2.6.4. There exists an incremental path-decomposition for G with a
width that is not higher than the width of P .

Proof. Let us have a path-decomposition P = X1, ..., Xn from Definition 2.6.4.
We show that it is always possible to expand P so that it becomes an incremental
path-decomposition.

Let’s assume that |Xi \ Xi−1| = k. If k = 0, it means that Xi ⊆ Xi−1 and
Xi can be left out of the path-decomposition without breaking properties (i), (ii)
and (iii) from Definition 2.16. If k > 1, we can create a path-decomposition
P ′ = X1, ...Xi−1, N,Xi, ...Xn where |N \ Xi−1| = 1 and |Xi \ N | = k − 1. By
repeating these steps, we get to an incremental path-decomposition.

Bag N can be always constructed, as there always exists a vertex v ∈ Xi\Xi−1

such that N = Xi−1 ∩ Xi ∪ {v} and P ′ is still a valid path-decomposition.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 35

Properties (i) and (ii) of Definition 2.6.4 stay valid for P ′ regardless of which
vertex from Xi \Xi−1 is chosen as v. Regarding property (iii): Since G is a DAG,
the graph induced by vertices Xi \Xi−1 is a DAG, therefore, there is a vertex in
Xi \Xi−1 that has no predecessors in Xi \Xi−1. Choosing this as vertex v fulfills
property (iii).
Also notice that |N | ≤ |Xi|, i.e. the width of the path-decomposition was not
increased.

Corollary 2.6.2 (from Lemma 2.6.2). The incremental path-decomposition of a
DAG G = (V,E) consists of |V | bags.

2.6.2 O(|V | · 2width · width)-time algorithm

In this subsection, we describe an algorithm for solving the Maximum-Score Dis-
joint Paths Problem on a DAG G. The input to the algorithm is an incremental
path-decomposition P of G. The algorithm runs in O(|V | · 2width · width) time
where width is the width of P .

Detailed description of the algorithm

Notation 5. Let G = (V,E) be a weighted DAG with a weight function w : V →
R. Let P = X1, ..., Xn be graph G’s incremental path-decomposition with width
width. Let penalty be a penalty value for selecting a path from G. Let subGi be
the subgraph induced by vertices in X1 ∪ ... ∪Xi.

The algorithm walks through the sequence of bags Xi (1 ≤ i ≤ n) in an incre-
mental order and processes them, one at a time. For each bag Xi the algorithm
calculates the valid assignments of values {end, not_end} to vertices of Xi. The
meaning of these values assigned to a vertex v is the following:

• value end : v is on a selected path and is the last vertex of the selected path,
where selected paths are considered only in subgraph subGi;

• value not_end : otherwise. Note that vertex v can be part of a selected
path or can be not selected at all.

A valid assignment means that it is possible to select paths such that the end and
not_end values assigned to the vertices follow the definition of values {end, not_end}
from above. The valid assignments for bag Xi are calculated based on the valid
assignments for bag Xi−1. The valid assignments are stored in set Ti. The al-
gorithm calculates the best possible score for an assignment based on the scores

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 36

calculated for Xi−1. The best scores for each assignment are stored in the scores

map. These scores represent the best scores achievable for subgraph subGi.
The valid assignments and scores for bag Xi are calculated from Xi−1 the

following way:
Let v be the incremental vertex of Xi. For each valid assignment in Ti−1, the
algorithm considers the following options:

1. option: Vertex v is not selected, i.e. assigns value not_end to it. The score
remains the same as for the old assignment.

2. option: Vertex v is selected, i.e. assigns value end to it, and vertex v starts
a new path. The score is increased by w(v) and decreased by penalty.

3. option: Vertex v is selected, i.e. assigns value end to it, and vertex v con-
tinues an existing selected path. Based on Lemma 2.6.1 we know that
all predecessors of v are in bag Xi, and since it is an incremental path-
decomposition, all these predecessors are also present in Xi−1, i.e. in the
assignments from Ti−1. The algorithm checks which predecessors have value
end assigned to them, i.e. they end a selected path, and extends the path
with vertex v by assigning value not_end to the predecessor and value end

to v. The score is increased by w(v).

The final score of the new assignment is going to be the maximum of all these
options.
The maximum score for G is the maximum score calculated for the final bag.

See the algorithm pseudo-code in Algorithm 1.

Algorithm 1
function GetScores(path_decomp P , graph G, int penalty, weights w)

T0 = {empty_assignment}
score[0][empty_assignment] = 0

for bag in 1 ... length(P) do
// v is the incremental vertex in bag Xi

v = P.Xbag − P.Xbag−1

for assignment in Tbag−1 do
// Option 1: v is not selected
assignment_1 = assignment ∩ P.Xbag + [v : not_end]

Tbag += assignment_1

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 37

score[bag][assignment_1] = max(

score[bag − 1][assignment],

ValueOrZero(score[bag][assignment_1]))

// Option 2: v is selected and starts a new path
assignment_2 = assignment ∩ P.Xbag + [v : end]

Tbag += assignment_2

score[bag][assignment_2] = max(

score[bag − 1][assignment] + w(v) − penalty,

ValueOrZero(score[bag][assignment_2]))

// Option 3: v is selected and continues an existing path
for p in predecessors(G, v) do

if assignment.p ̸= end then continue
assignment_3 =

assignment ∩ P.Xbag + [v : end]− p+ [p : not_end]

Tbag += assignment_3

score[bag][assignment_3] = max(

score[bag − 1][assignment] + w(v),

ValueOrZero(score[bag][assignment_3]))
end for

end for
end for
return max(score[length(P)])

end function

function ValueOrZero(value value)
if value is defined then return value

return 0
end function

Path reconstruction

To reconstruct the paths, the algorithm also needs to save how the maximum
scores were derived. Whenever the algorithm saves a maximal score for an as-
signment, it stores the assignment from the previous bag that was used to derive
the current assignment and the option used to get the current assignment. For

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 38

option 3 it also saves which vertex is the predecessor on the path of the incremen-
tal vertex. This can be used to trace back from the highest scored assignment of
the last bag until the assignments of the first bag and the vertex selections that
were made.

Complexity

Function GetScores in Algorithm 1 contains 3 nested loops. The first iter-
ates over each bag. Based on Corollary 2.6.2, we know that the incremental
path-decomposition has |V | bags. The second for loop iterates over possible
assignments in a bag, there are 2width different assignments. The 3rd for loop
iterates through the predecessors of the vertex, there are at most width prede-
cessors. The assignment ∩ P.Xbag can be calculated in the second for loop, and
can be done in O(width) time. Thus the complexity of the entire algorithm is
O(|V | · 2width · width).

2.6.3 Creating an incremental path-decomposition

As you might have noticed, our algorithm gets the incremental path-decomposition
as an input. In this section, we describe how to create an incremental path-
decomposition for a DAG G, although, not necessarily the one with the smallest
width.
Description of the algorithm:

1. Let v1, ..., vn be the topological sort of DAG G. Put these vertices into
subsequent bags, i.e. Xi = {vi}. These bags already fulfill property (iii)

from Definition 2.6.4.

2. From Lemma 2.6.1 we know that the bag where a vertex v appears for the
first time also contains all v’s predecessors. In our case, in each bag Xi a
new vertex vi appears, therefore, add all predecessors of vi into bag Xi. This
does not break property (iii) from Definition 2.6.4 and it fulfills property
(i).

3. To fulfill property (ii) in Definition 2.6.4, find the first and last occurrence
of each vertex v in the bags, and add vertex v into the bags in-between.
This does not break property (i) and (iii) from Definition 2.6.4 and it fulfills
property (ii).

This path-decomposition is an incremental path-decomposition. Bag Xi is the
first bag where vertex vi appears. Therefore, |Xi \ Xi−1| ≥ 1. The difference

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 39

cannot be 2 or more, as then the other additional vertex has to be vj where
j < i which means it appeared already in bag Xj, and due to condition (ii) from
Definition 2.6.4 it means vj ∈ Xi−1.

In Figure 2.17 and 2.18, we can see two different incremental path-decompositions
of the same DAG based on our algorithm. Next to each vertex is its order in a
topological ordering which differs in the two figures. Below the graph, we can see
the incremental path decomposition, i.e. bags X1, ..., X8. Each bag is divided into
3 parts with a horizontal line, so it is easy to see which vertices were added in
which step of the algorithm (the top part corresponds to the first step, the middle
part to the second step, and the bottom part to the third step of the algorithm).
Notice that the width of the path-decomposition depends on the topological order
of the vertices from the first step. The width of the path-decomposition in Figure
2.17 is 2 which is minimal based on Corollary 2.6.1. The width of the second
path-decomposition in Figure 2.18 is 4.

Figure 2.17: Incremental path-decomposition of a DAG based on our algorithm.

CHAPTER 2. IDENTIFYING CLUSTERS IN PAN-GENOME GRAPHS 40

Figure 2.18: Same DAG as in Figure 2.17, but the incremental path-decomposition
is different.

Complexity

Regarding the complexity of the algorithm for the incremental path-decomposition:
step 1 can be done in O(|V |+ |E|) time, step 2 can be done in O(|V |) time, and
step 3 can be done in O(|V | · width) where width is the width of this path-
decomposition. The time complexity of this algorithm is O(|V | · width+ |E|).

Chapter 3

Experiments

The GC-content of DNA sequences, i.e. the percentage of guanine (G) and cy-
tosine (C) bases, is a frequently used statistic when analysing genomes. It has
been well studied across organisms, revealing connections between GC-content
and various genomic characteristics [30]. We decided to do an experiment where
we search for GC-rich regions in pan-genomes of bacteria Escherichia coli (or E.
coli) represented as elastic-degenerate strings [21]. As mentioned before, elastic-
degenerate strings correspond to n-layered bubble graphs, see more in Figure 2.11
and the corresponding explanation. Therefore, we ran the experiments using the
the n-layered bubble graph algorithm described in Section 2.5.

3.1 Gathering data

We used the complete genome of E. coli K12-MG1655 as the reference genome [4],
and some reads (i.e. genomic sequences, small sections of DNA) from a study [32]
stored in the European Nucleotide Archive (ENA) database under the project
PRJNA563564 [12]. Out of these genomic sequences we created Variant Call
Format (VCF) files containing up to 8 E. coli genomes. The VCF files store
genomic sequence variations. To align the sequences and to create the VCF files
we used BWA [24], SAMtools [25] and Freebayes [17] tools. To construct the
elastic-degenerate strings from the VCF files, we used the EDSO [31] tool. As a
result we got an elastic-degenerate string pan-genome. Our tool transforms this
to an n-layered bubble graph where vertices are single bases (see Figure 2.11)
before executing the n-layered bubble graph algorithm.

Note that the VCF files, besides variations, also contain fields with statistics
(e.g. describing quality or sequencing depth) which can be useful to distinguish
true from false variants and filter them out [34]. However, in our experiment

41

CHAPTER 3. EXPERIMENTS 42

we were more interested in how the number of bubbles influences the scores and
selected paths. Therefore, we did not perform any filtering.

In Table 3.1 we can see which genomic sequences are included in the n-layered
bubble graph besides the reference genome, and the number of vertices in the n-
layered bubble graph.

Graph Included genomic sequences of E. coli [12] Number of vertices
ID 0 only the reference genome [4] 4 641 654
ID 1 ID 0 and SRR10058833 4 686 570
ID 2 ID 1 and SRR10058834 4 743 566
ID 3 ID 2 and SRR10058835 4 768 722
ID 4 ID 3 and SRR10058836 4 769 070
ID 5 ID 4 and SRR10058837 4 769 264
ID 6 ID 5 and SRR10058838 4 883 827
ID 7 ID 6 and SRR10058839 4 883 922
ID 8 ID 7 and SRR10058840 4 884 102

Table 3.1: Genomic sequences included in the n-layered bubble graph besides the
reference genome

In Figure 3.1 we can see how many 2, 3, 4 and 5-layered bubbles there are
in each of the n-layered bubble graphs from Table 3.1. We can observe that
the number of bubbles increased rapidly when the first two genomic sequences
were added, i.e. SRR10058833 and SRR10058834. Afterwards the growth slowed
down. However, notice the significant jump in the number of bubbles in graph
ID 6. Genomic sequence SRR10058838 seems to significantly differ from the
previous genomic sequences, therefore, introducing new genomic variations which
resulted in new bubbles. This added diversity can be also seen in Table 3.1 in
the significant growth of vertices for graph ID 6 compared to graph ID 5.
Note: we can see that e.g. graph ID 1 has some 3-layered bubbles which does not
make sense, since it was constructed out of 2 genomic sequences. One possible
explanation could be that when creating the VCF file, the tool Freebayes might
find more variants for a position from the reads.

CHAPTER 3. EXPERIMENTS 43

Figure 3.1: Number of 2,3,4 and 5-layered bubbles in each n-layered bubble graph
from table 3.1. On x-axis we can see the identification of the n-layered bubble
graph, while on y-axis the number of b-layered bubbles is displayed.

3.2 Results

We ran the algorithm for n-layered bubble graphs. To find paths with high GC-
content we used the following scoring:

• weight of bases G and C is 1,

• weight of bases A and T is -2,

• penalty ∈ {5, 6, 7, 8, 9, 10}.

The GC-content of E. coli’s genome is 50.8% on average. These weights mean
that the GC-content of a selected path is at least 66%. The penalty ensures that
the length of the path is at least penalty.

CHAPTER 3. EXPERIMENTS 44

It is possible to define more sophisticated scoring schemes based on probabilis-
tic models [9]: In their study, they were searching for segments that maximise the
log-likelihood ratio. The likelihood of the G, C and A, T bases was calculated
for the whole genome and for known biologically significant regions. The score of
each base was the difference of logarithms of the two likelihoods.

In Figure 3.2, we can see the coverage, i.e. the percentage of the graph that is
covered by the selected paths. We can see that if the penalty is increased, then
the coverage is reduced. This is an expected behaviour, as some selected paths
might get a negative score for a larger penalty.

Figure 3.2: Selected paths coverage percentage for pan-genomes from Table 3.1

In Appendix A, we listed more detailed results. Notice that by adding genomic
sequences to the pan-genome, the coverage and the score is increasing. This is
because by adding new genomic sequences, we introduce new variants with richer
GC content, therefore, some parts of the selected paths might continue with
vertices on a newly added layer in a bubble, or new selected paths may appear.

Conclusion

In this work, we looked at the problem of finding biologically meaningful regions in
a graphical pan-genome. We translated this problem into a mathematical problem
of finding Maximum-Score Disjoint Paths. We proposed an O(|V |)-time algorithm
on n-layered bubble graphs which correspond to elastic-degenerate strings, and
an O(|V | ·2width ·width)-time algorithm on directed acyclic graphs where width is
the width of the incremental path-decomposition of the graph. We implemented
the algorithm on n-layered bubble graphs and did some simple experiments for
locating GC-rich regions in pan-genomes of bacteria E. coli.

Future work

There are multiple ways our work can be improved or extended.
Regarding the O(|V |)-time dynamic programming algorithm on n-layered

bubble graphs, one could make the algorithm more efficient. As the goal is to
maximise the score of the selected paths, areas with many vertices with negative
weights will not be be selected into paths. Therefore, the algorithm could identify
these regions and skip them without calculating the scores for these vertices.

Close to the deadline of the thesis submission, we learned about the class
of directed two-terminal series-parallel graphs (see Subsection 2.5.4). This is a
broader class of graphs to which our algorithm on n-layered bubbles could be
extended to.

The O(|V | · 2width · width)-time algorithm on directed acyclic graphs gets an
incremental path-decomposition of the graph as an input. We described an algo-
rithm that creates an incremental path-decomposition, however, we also showed
that this path-decomposition does not have to be optimal for some cases, i.e.
the width of the path-decomposition might not be minimal. By using an algo-
rithm that creates a minimal or close to minimal path-decomposition for directed
graphs, our algorithm would be more efficient. (Note that we showed that we can
create an incremental-path decomposition from a path-decomposition.)

Regarding experiments, we only performed a simple experiment to find GC-

45

Conclusion 46

rich regions and compared properties related to the score and selected paths.
These experiments could be extended by analysing whether the selected regions
of the pan-genome represent some functional elements of the organism. Further-
more, more sophisticated scoring could be used based on probabilistic methods.
Another experiment we had in our mind was aligning longer reads by finding
maximum scoring paths. This could be done by mapping k-mers of a long read
onto the pan-genome. Areas of the pan-genome that have k-mers matched to
them would have positive score. Therefore, finding maximum scoring paths could
correspond to aligning the long read to the pan-genome.

Appendix A

Results of the n-layered bubble graph algorithm on E. coli pan-genome graph
with genomic sequences from Table 3.1 with scoring:

• w(G) = w(C) = 1

• w(A) = w(T) = −2

• penalty ∈ {5, 6, 7, 8, 9, 10}.

The columns encode the graph’s name, the score calculated by the algorithm, the
number of selected paths, the ratio of the graph that is covered by the selected
paths and the average length of a selected path.

penalty = 5
Graph ID score #paths path cover avg path len

0 156871 92235 22.58% 11.36
1 163033 93450 22.95% 11.51
2 170302 94800 23.32% 11.67
3 172576 95234 23.41% 11.72
4 172598 95240 23.41% 11.72
5 172615 95244 23.41% 11.72
6 183691 97457 23.84% 11.94
7 183709 97460 23.84% 11.94
8 183722 97458 23.84% 11.95

47

Conclusion 48

penalty = 6
Graph ID score #paths path cover avg path len

0 99844 55109 16.87% 14.21
1 104738 56222 17.27% 14.39
2 110574 57503 17.71% 14.61
3 112448 57853 17.81% 14.68
4 112464 57858 17.81% 14.68
5 112476 57864 17.81% 14.68
6 121365 59828 18.37% 14.99
7 121384 59828 18.37% 14.99
8 121396 59828 18.37% 15.00

penalty = 7
Graph ID score #paths path cover avg path len

0 64391 34777 12.79% 17.07
1 68247 35701 13.21% 17.35
2 72827 36816 13.69% 17.64
3 74333 37152 13.81% 17.73
4 74344 37157 13.81% 17.73
5 74352 37162 13.81% 17.73
6 81328 38936 14.45% 18.12
7 81344 38938 14.45% 18.12
8 81350 38943 14.45% 18.12

penalty = 8
Graph ID score #paths path cover avg path len

0 41925 22083 9.58% 20.14
1 44969 22834 9.99% 20.51
2 48568 23723 10.46% 20.92
3 49766 24010 10.60% 21.05
4 49774 24012 10.60% 21.05
5 49781 24011 10.60% 21.05
6 55235 25447 11.22% 21.53
7 55250 25448 11.22% 21.53
8 55255 25447 11.22% 21.53

Conclusion 49

penalty = 9
Graph ID score #paths path cover avg path len

0 27806 13980 7.01% 23.28
1 30216 14596 7.41% 23.78
2 33042 15328 7.85% 24.28
3 34004 15562 7.97% 24.44
4 34010 15563 7.97% 24.44
5 34016 15563 7.97% 24.44
6 38290 16716 8.56% 25.02
7 38301 16720 8.57% 25.02
8 38309 16717 8.57% 25.03

penalty = 10
Graph ID score #paths path cover avg path len

0 18468 9266 5.27% 26.39
1 20327 9783 5.65% 27.05
2 22525 10386 6.06% 27.69
3 23285 10578 6.18% 27.85
4 23290 10578 6.18% 27.85
5 23296 10576 6.18% 27.86
6 26613 11497 6.72% 28.54
7 26621 11500 6.72% 28.54
8 26631 11499 6.72% 28.55

Appendix B

The source code of the algorithm on n-layered bubble graphs and the input data
is available at https://github.com/evicy/thesis.

An alternative way for viewing the source code is to view it from the attached
disc.

50

https://github.com/evicy/thesis

Bibliography

[1] Computational pan-genomics: status, promises and challenges. Briefings in
bioinformatics, 19(1):118–135, 2018.

[2] János Barát. Directed path-width and monotonicity in digraph searching.
Graphs and Combinatorics, 22(2):161–172, 2006.

[3] Fredrik Bengtsson and Jingsen Chen. Computing maximum-scoring segments
optimally. Luleå tekniska universitet, 2007.

[4] Bethesda (MD): National Library of Medicine (US), National Center for
Biotechnology Information. Assembly ASM584v2, Escherichia coli str. K-
12 substr. MG1655 (E. coli). https://www.ncbi.nlm.nih.gov/assembly/

GCF_000005845.2/, 2013. Accessed: 2023-04-10.

[5] Etienne Birmelé, Pierluigi Crescenzi, Rui Ferreira, Roberto Grossi, Vin-
cent Lacroix, Andrea Marino, Nadia Pisanti, Gustavo Sacomoto, and Marie-
France Sagot. Efficient bubble enumeration in directed graphs. In String Pro-
cessing and Information Retrieval: 19th International Symposium, SPIRE
2012, Cartagena de Indias, Colombia, October 21-25, 2012. Proceedings 19,
pages 118–129. Springer, 2012.

[6] Kai-Min Chung and Hsueh-I Lu. An optimal algorithm for the maximum-
density segment problem. SIAM Journal on Computing, 34(2):373–387, 2005.

[7] Alessandro Coppe, Gian Antonio Danieli, and Stefania Bortoluzzi. REEF:
searching REgionally Enriched Features in genomes. BMC bioinformatics,
7(1):1–7, 2006.

[8] Nicholas J Croucher, Andrew J Page, Thomas R Connor, Aidan J Delaney,
Jacqueline A Keane, Stephen D Bentley, Julian Parkhill, and Simon R Harris.
Rapid phylogenetic analysis of large samples of recombinant bacterial whole
genome sequences using Gubbins. Nucleic acids research, 43(3):e15–e15,
2015.

51

https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.2/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.2/

BIBLIOGRAPHY 52

[9] M. Csuros. Maximum-scoring segment sets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 1(4):139–150, 2004.

[10] Aimée M Deaton and Adrian Bird. CpG islands and the regulation of tran-
scription. Genes & development, 25(10):1010–1022, 2011.

[11] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,
August 2005.

[12] ENA. Project: PRJNA563564. https://www.ebi.ac.uk/ena/browser/

view/PRJNA563564?show=reads. Accessed: 2023-04-10.

[13] David Eppstein. Parallel recognition of series-parallel graphs. Information
and Computation, 98(1):41–55, 1992.

[14] Joshua Erde. Directed path-decompositions. SIAM Journal on Discrete
Mathematics, 34(1):415–430, 2020.

[15] Francesco Ferrari, Aldo Solari, Cristina Battaglia, and Silvio Bicciato. Preda:
an R-package to identify regional variations in genomic data. Bioinformatics,
27(17):2446–2447, 2011.

[16] Robert D Fleischmann, Mark D Adams, Owen White, Rebecca A Clay-
ton, Ewen F Kirkness, Anthony R Kerlavage, Carol J Bult, Jean-Francois
Tomb, Brian A Dougherty, Joseph M Merrick, et al. Whole-genome ran-
dom sequencing and assembly of Haemophilus influenzae Rd. science,
269(5223):496–512, 1995.

[17] Erik Garrison and Gabor Marth. Haplotype-based variant detection from
short-read sequencing. arXiv preprint arXiv:1207.3907, 2012.

[18] Paweł Gawrychowski and Patrick K Nicholson. Encodings of range
maximum-sum segment queries and applications. In Combinatorial Pattern
Matching: 26th Annual Symposium, CPM 2015, Ischia Island, Italy, June
29–July 1, 2015, Proceedings 26, pages 196–206. Springer, 2015.

[19] Jens Gustedt. On the Pathwidth of Chordal Graphs. Discret. Appl. Math.,
45(3):233–248, 1993.

[20] Zihuai He, Bin Xu, Joseph Buxbaum, and Iuliana Ionita-Laza. A genome-
wide scan statistic framework for whole-genome sequence data analysis. Na-
ture communications, 10(1):3018, 2019.

https://www.ebi.ac.uk/ena/browser/view/PRJNA563564?show=reads
https://www.ebi.ac.uk/ena/browser/view/PRJNA563564?show=reads

BIBLIOGRAPHY 53

[21] Costas S Iliopoulos, Ritu Kundu, and Solon P Pissis. Efficient pattern match-
ing in elastic-degenerate strings. Information and Computation, 279:104616,
2021.

[22] Sung Kwon Kim, Jung-Sik Cho, and Soo-Cheol Kim. Path Maximum Query
and Path Maximum Sum Query in a Tree. IEICE TRANSACTIONS on
Information and Systems, 92(2):166–171, 2009.

[23] Martin Kulldorff. Spatial scan statistics: models, calculations, and applica-
tions. In Scan statistics and applications, pages 303–322. Springer, 1999.

[24] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.

[25] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, and Richard Durbin. The sequence align-
ment/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[26] Wentian Li, Pedro Bernaola-Galván, Fatameh Haghighi, and Ivo Grosse.
Applications of recursive segmentation to the analysis of DNA sequences.
Computers & chemistry, 26(5):491–510, 2002.

[27] Hsiao-Fei Liu and Kun-Mao Chao. Algorithms for finding the weight-
constrained k longest paths in a tree and the length-constrained k maximum-
sum segments of a sequence. Theoretical computer science, 407(1-3):349–358,
2008.

[28] Kchouk Mehdi, Jean-Francois Gibrat, and Mourad Elloumi. Generations
of sequencing technologies: from first to next generation. Electromagnetic
Biology and Medicine, 9(3):8–p, 2017.

[29] Joseph Outten and Andrew Warren. Methods and Developments in Graphi-
cal Pangenomics. Journal of the Indian Institute of Science, 101(3):485–498,
2021.

[30] Allison Piovesan, Maria Chiara Pelleri, Francesca Antonaros, Pierluigi Strip-
poli, Maria Caracausi, and Lorenza Vitale. On the length, weight and GC
content of the human genome. BMC research notes, 12(1):1–7, 2019.

[31] Solon P. Pissis and Ahmad Retha. Dictionary Matching in Elastic-
Degenerate Texts with Applications in Searching VCF Files On-line. In

BIBLIOGRAPHY 54

Gianlorenzo D’Angelo, editor, 17th International Symposium on Experimen-
tal Algorithms (SEA 2018), volume 103 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 16:1–16:14, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Source code is available
at https://github.com/webmasterar/edso.

[32] Cameron J Reid, Khald Blau, Sven Jechalke, Kornelia Smalla, and Steven P
Djordjevic. Whole genome sequencing of Escherichia coli from store-bought
produce. Frontiers in microbiology, 10:3050, 2020.

[33] Neil Robertson and Paul D Seymour. Graph minors. I. Excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

[34] Samtools. Filtering and handling VCFs — speciationgenomics.github.io.
https://speciationgenomics.github.io/filtering_vcfs/. [Accessed
01-May-2023].

[35] Elena D Stavrovskaya, Tejasvi Niranjan, Elana J Fertig, Sarah J Wheelan,
Alexander V Favorov, and Andrey A Mironov. StereoGene: rapid estimation
of genome-wide correlation of continuous or interval feature data. Bioinfor-
matics, 33(20):3158–3165, 07 2017.

[36] Nikola Stojanovic, Liliana Florea, Cathy Riemer, Deborah Gumucio, Jerry
Slightom, Morris Goodman, Webb Miller, and Ross Hardison. Comparison
of five methods for finding conserved sequences in multiple alignments of
gene regulatory regions. Nucleic Acids Research, 27(19):3899–3910, 10 1999.

[37] Yunhao Wang, Yue Zhao, Audrey Bollas, Yuru Wang, and Kin Fai Au.
Nanopore sequencing technology, bioinformatics and applications. Nature
biotechnology, 39(11):1348–1365, 2021.

[38] C-Ting Wu and Jay C Dunlap. Homology Effects: Volume 46 - Advances in
Genetics. Elsevier Science Publishing Co Inc, 2002.

https://github.com/webmasterar/edso
https://speciationgenomics.github.io/filtering_vcfs/

	Introduction
	Background
	Basic concepts in bioinformatics
	Graph theory definitions
	Computational pan-genomics

	Identifying clusters in pan-genome graphs
	Motivation and related work
	Problem definition
	Solving the problem on path graphs
	Solving the problem on simple bubble graphs
	Preliminaries
	O(|V|)-time algorithm on simple bubble graphs

	Solving the problem on n-layered bubble graphs
	Preliminaries
	Elastic-degenerate strings
	O(|V|)-time algorithm on n-layered bubble graphs
	Possible extension

	Solving the problem on a DAG
	Preliminaries
	O(|V| 2width width)-time algorithm
	Creating an incremental path-decomposition

	Experiments
	Gathering data
	Results

	Conclusion
	Appendix A
	Appendix B

