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Abstract

In this thesis, we work on increasing the resolution of depth maps obtained from a 3D
camera based on structured light. The aim of the work is to create an output depth
map with a higher resolution from a depth map with a lower resolution at the input.
In addition to the input depth map, we also have a high-resolution intensity texture of
the scene. The depth map super-resolution task is familiar, and several solutions are
available based on deep learning models. Deep learning models use intensity textures
as auxiliary information. Two models consisting of convolutional neural networks with
which we work are FDSR and DKN. We deal with the pre-processing of data from the
3D camera we have chosen so that we can properly train and use the mentioned models.
We adjust both models to meet our hardware limitations and make the training process
stable. After the data pre-processing and applying the modified trained models, we
evaluate the resulting depth maps using qualitative and quantitative metrics focused
on the quality of the resulting 3D image. We also evaluate the time efficiency of our
solution and its usability.

Keywords: Super Sampling, Deep Learning, 3D Scans, DLSS
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Abstrakt

V tejto práci sa zaoberáme zvyšovaním rozlíšenia hĺbkových máp získaných z 3D kamery
fungujúcej na princípe štruktúrovaného svetla. Cieľom práce je z hĺbkovej mapy s
nižším rozlíšením na vstupe vytvoriť výstupnú hĺbkovú mapu s vyšším rozlíšením.
Okrem vstupnej hĺbkovej mapy máme k dispozícii aj intenzitnú textúru scény vo
vyššom rozlíšení. Problém zvyšovania rozlíšenia hĺbkových máp je známy a existuje
viac prístupov založených na modeloch hlbokého učenia. Modely hlbokého učenia
používajú intenzintné textúry ako pomocnú informáciu. Dva modely pozostávajúce z
konvolučných neurónových sietí, s ktorými v práci robíme sú FDSR a DKN. Zaoberáme
sa aj predspracovaním dát z nami zvolenej 3D kamery, aby sme mohli spomenuté
modely správne natrénovať a použiť. Obidva spomenuté modely upravujeme tak, aby
spĺňali naše hardvérové obmedzenia a aby bol proces trénovania stabilný. Po úprave
dát a aplikovaní modifikovaných natrénovaných modelov vyhodnocujeme výsledné
hĺbkové mapy pomocou kvalitatívnych a kvantitatívnych metrík zameraných na kvalitu
výsledného 3D obrazu. Vyhodnocujeme aj časovú efektivitu nášho riešenia a jeho
použiteľnosť.

Kľúčové slová: Podvzorkovanie, Hlboké učenie, 3D skeny, DLSS
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Introduction

In addition to the standard 2D image-capturing cameras, there exist devices that provide
3D information about the captured scene. In this thesis, we will work with 3D data.
Working with 3D data has many applications, such as validating produced components,
analyzing archaeological findings, or robotic tasks like mapping and orientation in space.
Devices that generate depth maps of scenes compute so-called depth maps, which are
2D matrices whose elements determine the distance of scene points to the camera sensor.
Alongside the depth maps, 3D capture devices also provide textures, which are photos
of the scenes. From the depth maps, knowing the camera calibration parameters, we
can compute a point cloud, which is a set of points in a 3D space coordinate system.

The depth map processing is computationally demanding. We often want to
eliminate the noise or smooth the object’s surface. For real-time processing of depth
maps, we often need GPU resources. The higher the resolution of the depth map,
the longer it takes to process it. Many filters applied to the depth maps have time
complexity dependent on the number of image pixels. In this thesis, we try to solve
this problem by down-sampling the depth map from the device to lower resolution,
processing it on the low resolution, and up-sample it back to high resolution. We assume
this procedure can take less time than processing the high-resolution sample. Another
motivation to make the depth map’s resolution higher is simply to synthetically increase
the resolution of the low-quality sample. This task is known as the depth map super-
resolution task. There are more studies published on this task. Typical approaches
use novel deep learning models that learn to up-sample depth maps preserving sharp
scene details. In this thesis, we will examine two solutions of this task that propose
differently built deep learning models: DKN [11] and FDSR [7]. We will modify these
models to work with high-resolution, accurate data from the Photoneo MotionCam
device [18]. The mentioned models were trained on a dataset created using a Microsoft
Kinect device [13], which provides lower-resolution and less accurate data than ours.
We will also propose procedures for the data pre-processing to obtain stable training.
Several metrics will evaluate the results achieved by modified models.

In the first chapter, we will state our motivation and the formal definition of the task.
The second chapter presents different 3D image capture devices and available datasets
for our task. This chapter also introduces our device and the dataset we generated

1
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for our project. The third chapter comprises the deep learning area overview and the
related work on which we build our solution. The fourth chapter contains details of our
implementation as data pre-processing methods or the training parameters. The last
chapter summarizes the achieved results and the metrics used for evaluation.



Chapter 1

Motivation

These days 3D scanning is more and more popular thanks to the fast development of
various technologies for capturing the 3D image of scenes. 3D scanners have many
applications, such as orientation in space in the field of robotics, product validation for
industrial use, analysis of archaeological findings, and others. In our thesis, we work
with 3D data captured by the structured-light camera. 3D cameras provide several
types of data. The essential data that give us information about the scanned scene are
the depth map and texture. A depth map is a 2D matrix whose elements are values
that express the distance of a point in a scanned scene from the camera sensor. The
texture is a photo of a scanned scene. In our thesis, we will work mainly with the image
types generated by the chosen scanner device. This first chapter will introduce the
problem we will solve on the 3D data. We will also discuss the motivation for our task
and its possible application.

As mentioned above, 3D scanners provide depth maps with corresponding scene
textures. These raw data need to be somehow processed. Several filters and procedures
can be applied to depth maps to improve quality. There often is some filtering pipeline
that pre-processes depth maps for further usage. The time complexity of filters applied
on depth maps depends on their resolution. The higher the resolution raw depth map
is, the longer it takes to process it by the pipeline. Applying a pipeline on depth maps
with lower resolution would speed up the process. However, simple down-sampling of
the depth map from the scanner would nullify its advantage of precision. We could
down-sample the depth map, apply a filtering pipeline, and then up-sample the filtered
depth map back to high resolution while preserving its quality. This idea of up-sampling
processed depth maps comes from the video game industry, where game producers want
to offer players with less GPU computing power to enjoy high resolution and frame
rate experience [25]. Different companies have developed several technologies based on
deep learning techniques. Most known is DLSS (Deep Learning Super Sampling) by
NVIDIA corporation [15]. This deep learning image up-sampling method can deliver a

3



4 CHAPTER 1. MOTIVATION

4k resolution experience on commonly available gaming equipment. We were inspired
by these successfully developed and used models and wanted to define this task under
our conditions and chosen data character. To conclude, our task will be to take the
input depth map, down-sample it, apply the filters and processing we need, and then
up-sample the depth map back to high resolution preserving its sharp edges and surface
details. We can use high-resolution intensity texture as additional information about
the scene for final up-sampling.

There are several use cases where would depth map super sampling bring improve-
ment. Speeding up real-time 3D image processing would make the whole production
process of some products more effective. We could also optimize the process of 3D
object fusion by a higher frame rate of the scanning device. Another example could be
using a cheaper scanning device that produces lower-resolution depth maps instead of
an expensive one that provides higher resolution. One could use a cheap device and
artificially up-sample its depth map to high resolution.

1.1 Formal problem definition

Let us define the problem we are solving formally. The input data will be pair DHR, IHR

that stands for high-resolution depth map and intensity texture of the scanned scene.
Let W,H be the width and height of the input images in pixels. Then the resolution
of input images is H ×W pixels. The first sub-task we must define is the depth map
down-sampling procedure. In this thesis, we will consider down-sampling as a procedure
that gets depth map DHR with resolution H ×W pixels as input and gives depth map
DLR with resolution H/s ×W/s where constant s ∈ N will be called a down-sample
factor. The down-sample factor s determines the size of the s× s pixels square in DHR

that will be compressed to one pixel in DLR. The low-resolution depth map DLR will
be input for this thesis’s main task: depth map up-sampling. Additional data that
can help us transform a low-resolution depth map into a high-resolution one is the
high-resolution intensity texture from the scanner. Output of up-sampling procedure
should be depth map O that has resolution H ×W (like the input DHR).

We decided to solve the above problem using deep learning techniques. That means
we will design a machine-learning-based model that, while the training process, learns
how to compute unknown missing pixel values while up-sampling from a low-resolution
depth map to a high-resolution depth map. One reason for choosing this approach is
an intuitive assumption that the calculations on low-resolution depth maps followed by
the up-sampling process using the deep learning model will be faster than performing
calculations on high-resolution depth maps. The other reason is that it is a commonly
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HR intensity
texture

LR depth
map

CNN Model HR depth map

HR depth map
Down-sampling

Figure 1.1: High level model diagram of depth map super sampling task solution
approach.

used approach for image processing tasks like this one [24] [27]. We will use CNN
(Convolutional Neural Network) architecture to solve the task. To visualize the CNN
task solution, we present its high-level diagram in Fig. 1.1.
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Chapter 2

3D scanning overview

For working with 3D data, we need to know terms and definitions. In this chapter, we
will state essential definitions from the field of 3D scanning, examine different known
technological approaches to 3D image capture and look at their properties. We will
also introduce the 3D scanning device we have chosen to work with and analyze the
data that it generates.

2.1 3D capture devices

If we want to define some task on depth maps processing, we should define the properties
of the data. These properties are closely connected to the purpose of the task. For
example, in some tasks, we can prefer the frame rate of the device producing depth
maps over its precision on the scanned object edges. The properties of depth maps are
primarily affected by the technological approach used for their calculation. There are
several types of depth maps when comparing their creation method. This chapter is
based on the Photoneo company survey of 3D capture methods [19]. In the 3D image
capture, we distinguish between two main technological approaches: active and passive
systems. Passive systems do not use an additional light source to capture the 3D image.
The most familiar passive technology is the stereo vision system. In a stereo vision
system, we use multiple camera sensors to compute the depth map of the scanned
scene. This method has one significant disadvantage, which is dependence on texture.
When we, for example, scan one white wall system can not determine how far it is.
Active systems, except for camera sensors, use an additional light source to lighten
the scene. They can lighten some known projections and compute depth values from
their deformation. Active systems’ depth map computation process does not depend on
scene texture. In this section, we will examine the most familiar types of devices that
are active systems. We will analyze the properties of depth maps produced by these
devices and discuss tasks for which they are suitable.

7



8 CHAPTER 2. 3D SCANNING OVERVIEW

Time-of-Flight camera

ToF cameras consist of one sensor and an additional light source, in most cases infrared
LED, that enlightens the scene in pulses. The distance of each pixel is computed from
the measured time during which a light signal emitted from the light source hits the
scanned object and returns to the sensor. An advantage of this technology is the high
frame rate. However, the 3D image is noisy, and depth sensors used in ToF devices
generally have a small resolution. Another advantage of ToF devices is their calibration
process which is quite simple compared to other 3D scanning devices. ToF cameras are
suitable for middle-distance scanning tasks without high resolution and require a high
frame rate. A good example can be the navigation of a robot in 3D space. The robot
needs real-time information about objects in its way, but the precise obstacle surface
structure is optional.

Active stereo systems

Active stereo systems use multiple ToF cameras, often combined with regular cameras,
for scene texture capture. These devices, like ToF cameras, have a high frame rate
and take advantage of combining information from more than one depth sensor, which
increases output precision. Active stereo systems are not dependent on texture. The
properties of the output depth map are similar to single ToF cameras but can provide
a more precise image with an additional texture of the scene. The most familiar and
widely used example of an active stereo system is Microsoft Kinect [13]. This device was
designed for 3D motion capture, and its primary purpose is to track human gestures for
video games and control the system. These tasks are middle-distance tasks that do not
require enormous precision. Kinect devices are also trendy in robotics for orientation in
space.

Structured light scanners

3D scanners based on structured light technology are devices that enlighten scenes with
several known pattern projections and, from their deformation, compute depth maps.
The projection light source is often laser which provides high precision. Structured light
scanners produce high-resolution depth maps depending on the used camera sensor.
Depth maps produced by this type of device contain less amount of noise. They also
provide sharper edges of scanned objects and more accurate object surfaces than ToF
cameras or active stereo systems. One big disadvantage of structured light technology
is that it only works for static scenes because of multiple projection samples that need
to be processed by the camera sensor. Tasks that these scanners are good for require
high precision and capture static scenes. An example of the task can be a scan of
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archaeological findings or product validation in the industrial field.

Parallel structured light scanners

Parallel structure light is one of the latest technologies available on the market. It
was developed and patented by Slovak company Photoneo [18]. Its main contribution
to 3D scanning is taking advantage of high precision and high frame rate structure
light. The depth map capture method is based on laser projections enlightened to the
scene and patterns constructed on a custom-design CMOS camera sensor. Photoneo
MotionCam-3D [18] is suitable for many tasks. It can be used for dynamic scenes,
where we need the high quality scans. The main advantage of this technology is less
noise, high precision, and sharp object edges, preserving a high frame rate.

2.2 Data structures

For 3D object representation, we need to define suitable data structures. This section
will define the ones we use in our implementation. 3D scanners provide several data
types, and the most important for us is the depth map. The depth map is a 2D matrix
whose elements are values that express the distance of a point in a scanned scene from
the camera sensor. Depending on scanner configuration or manufacturer preset, this
value can be in different units. Depth maps can contain not defined pixels. There are
areas of the scenes that are not visible to camera or the laser projection does not reach.
For these, the device can not compute the depth values, so it marked them as unknown.
The most common value for not defined pixels is value 0.

Another data type from the scanner is scene texture. The texture is a photo of
the scanned scene. We can obtain a 3-channel RGB or intensity texture, which is a
1-channel grayscale image. Textures are mostly provided in higher resolution than
depth maps, and various reasons can cause that. Some datasets are generated using
two devices: a camera and a depth sensor. The majority of depth sensors provide
lower resolution compared to high-resolution cameras. That can be solved by aligning
a low-resolution depth map with a high-resolution texture and cropping the window.
Devices that obtain textures and depth maps using one camera sensor also often provide
depth maps with lower resolution. That may be solved simply by the downsampling of
high-resolution texture.

If we know the calibration parameters of a 3D scanning device, we can compute
a so-called structured or organized point cloud. The structured point cloud is a 2D
matrix whose elements are coordinates of points in 3D space. When we use this data
structure, we work with 3D coordinates of points in space. An advantage we have is
the relative placement of points in a 2D grid which can be helpful in many tasks.
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There are devices that, with their technology, can not provide structured point
clouds. They generate points in 3D space relative to their position. A set of points in
3D space is called a point cloud or an unorganized point cloud.

2.3 Available datasets

There are few available datasets that contain pairs of the depth map and RGB or
intensity texture. They differ in depth map creation methods. The most familiar
datasets mentioned in papers that we have studied are NYUv2 [14], Middlebury [21],
and RGB-D-D [7] datasets. The NYUv2 dataset [14] was created using Microsoft Kinect
[13], and its samples are scans from video sequences of interior spaces like kitchens,
offices, living rooms, and others. The Middlebury [21] dataset provides several sets
of data. Some are generated by stereo vision, others with a structured light scanner.
Dataset sample scenes contain various arranged objects with complex surfaces. The
last mentioned RGB-D-D [7] dataset was created using two devices: the ToF camera
and the classic RGB camera. Textures and depth maps are aligned and have the exact
resolution obtained by cropping the window from the texture. RGB-D-D dataset also
consists of various scenes from interior spaces like the previous ones.

All three mentioned datasets have one property in common: they are densely defined.
Depth maps in these datasets contain only small, not defined holes or areas that are
simple to fill in from their surrounding defined pixels. Objects in scenes of datasets
created by ToF camera or Kinect do not have very sharp edges, and their samples are
generally quite noisy.

Photoneo MotionCam-3D

In this thesis, we have chosen a 3D camera from Photoneo - MotionCam-3D [18] as
a device for generating our data. There are more reasons for this choice. Firstly, we
have access to this device, and it uses the latest technology for 3D image capture.
There are not many publications that work with this type of data. Thus, it is still an
unexplored area of research. Depth maps from Photoneo MotionCam-3D are less noisy
than previously mentioned familiar datasets and more precise on object edges. Solving
tasks on data like this will be an interesting challenge. Tasks that these devices are
used for often require high accuracy. For that reason, depth maps contain many more
undefined pixels. That is caused by scanners preferring to determine that it is not sure
about depth value over giving inaccurate information. One of the biggest challenges we
face in this thesis is handling large undefined areas of depth maps. Intensity texture
from the scanner camera can provide helpful information about undefined regions. For
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Figure 2.1: Samples from Photoneo MotionCam-3D. Depth map is visualized using
RGB spectre. Black pixels are undefined. The defined depth values are mapped linearly
to color scale from blue to green color (Left), Intensity texture (Right).

illustration, we present samples from scanner data in Fig. 2.1. We can observe that
the depth map contains a lot of undefined (black) pixels. In Fig. 2.2. we demonstrate
sharp edges in a 3D point cloud computed from a depth map from Fig. 2.1.

2.3.1 Our dataset

All datasets presented in previous sections contain scenes composed of various ob-
jects placed in indoor environments. Our dataset will be generated by the Photoneo
MotionCam-3D [18]. Thus we want to create the dataset scenes according to the known

Figure 2.2: 3D point cloud computed from depth map shown in Fig. 2.1.
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device’s use case. A good example of the Photoneo MotionCam-3D use case can be
3D object fusion. If we consider a 3D object fusion task, we have a set of scenes that
contain one object on a flat surface from different views. We try to align and merge
them into one 3D object to form its most precise virtual representation. Based on the
device we use and its object fusion use case, we generated a dataset comprising scenes
composed of one object placed on a flat surface. We used five objects with relatively
complex surfaces: A warrior figure, a 3D-printed bear figure, a David statue model, an
HDD disc, a rotor, and a cogwheel. We created a 1200 sample-sized dataset using a
Photoneo MotionCam-3D. The described type of dataset sample scene is shown in Fig.
2.1.



Chapter 3

Deep learning approach

In the previous chapter, we formally defined the problem we are trying to solve in this
thesis and stated that our chosen solution approach would be a deep-learning-based
model. In this chapter, we will state some basic definitions from the machine learning
area and describe the main concepts of deep learning techniques we have chosen. We
will also go through some related work that has been done on the depth map super
sampling task. Ultimately, we will present the chosen models and discuss how they
should be modified to suit our data and training hardware requirements.

3.1 Overview

In general, machine learning applications include algorithms that parse data, learn from
them and apply the acquired knowledge to make a decision or estimate values. The
goal of the machine learning problem-solving approach is to design a model (algorithm)
that gets large amounts of data and learns to solve defined tasks during the so-called
training process. After the training process model should be able to give satisfactorily
accurate output for previously unseen input data. The training process of some models
consists of giving the model the training dataset sample by sample and evaluating
its outputs by proper error function. The model modifies itself after evaluating every
output computed on a given sample. We can repeat the training process with the same
dataset multiple times in so-called training epochs to improve model output accuracy.
There are two main types of machine learning algorithms: supervised learning and
unsupervised learning. These two differ in the way that algorithm learns. Dataset
samples of the former learning approach contain the so-called ground truth, a known
wanted output of the training model. Ground truth can be interpreted as a supervisor’s
data that shows us what our ideal output should look like. The model computes the
error of its output by adequately defining the distance from the ground truth. The
latter learning approach does not have ground truth data. The training process can

13
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differ on the definition of the task. Examples of unsupervised learning tasks can be
clustering points in space and reinforcement learning, which is a method of learning
based on awarding models for reasonable steps and punishing for bad ones. In our
thesis, we will use supervised learning. The reason is apparent. The ground truth in our
task will be a high-resolution depth map. Several types of algorithms use supervised
learning. We will naturally use ones that are appropriate for image-processing tasks.
They will be described in the following sections.

Deep learning

Deep learning is a subarea of machine learning. Deep learning models try to learn
in a way that is inspired by the human brain. Their architecture is based on the
neural network concept. In the human brain, there are neurons that are connected by
synapses. They create network structures that use electric pulses to activate individual
neurons. By activating the right neurons, some muscles can be moved, the task can be
solved, and a decision can be made. Neural networks in computer science try to use
this concept to create a mathematical model that learns this way to provide correct
output. Neural networks in artificial intelligence are networks of nodes - neurons that
are variously interconnected. Neurons are arranged in layers. In general, the neural
network has an input, hidden, and output layer. The deep learning models have more
hidden layers. The "deeper" the network is, the more computationally demanding it is
to train the model. There is no neural network that is complex as a human brain. Deep
learning models are designed for specific tasks. The architecture of these models varies
on the types of layers, neuron activation functions, connections between layers, and
output evaluation while training. The training process of deep neural networks consists
of modifying weights and filters that neurons apply to given input data. Each training
data sample model evaluates its output precision using the so-called loss function. It
back-propagates the computed error through all network layers when determining how
far it is from the wanted output. The neurons modify themselves according to this
error and are ready to process the following training sample. The goal of training is to
reduce the error as much as possible. After the training model should be able to provide
satisfactorily accurate output for previously unseen input data. Several types of neural
networks depend on the data they work with. In our thesis, we will use convolutional
neural networks that are designed to work with image data. They are widely used for
image processing tasks we try to solve. In the next section, we will describe this concept
and try to fit it into our task.
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3.2 Image processing

Image processing tasks are defined on image input data which are 2D matrices of pixel
values. The model output type differs depending on the task. It can be a number, text,
or output image. When working with images, we need to use appropriate types of layers
in the deep network. The most common layer type for processing the image data is the
convolution layer. The convolution layer applies the operation of convolution on the
image matrix. The mentioned operation slides the kernel window (filter) along the input
2D matrix. These filters are modified during the training process. In one convolution
layer, we can apply several filters on the image. After convolution, we often apply
the activation function on every element of the layer output. The activation function
decides whether the neuron (element of 2D output) should be activated. Deep networks
that contain convolution layers are called convolutional neural networks (CNN). These
networks can also contain other layers that work with 2D input and produce 2D output.
For example, a pooling layer slides the window along the 2D input. According to the
defined condition, one pixel will be put into the layer output for every position. The
pooling layer down-samples the input data. Many other layers can be used in CNN
architecture for feature extraction, down-sampling, and data concatenation. Layers
in CNN models can be variously interconnected. We can fork or join some network
branches by combining their outputs using mathematical operations.

In our thesis, we will use a convolutional neural network that inputs low-resolution
depth maps and gives us up-sampled high-resolution depth maps as output. We can
use the high-resolution intensity texture of the scanned scene as an additional input
which our CNN will use for enhancing edges or surface structure precision. In the next
section, we will discuss concrete CNN model architecture design and the related work
on which we can build our solution.

3.3 CNN model architecture

The designing of CNN architecture includes determining which layers we will use and
how the layer’s inputs and outputs will be connected. The depth map super-resolution
task defined in the previous chapter is a common problem, and several CNN models are
available that try to solve it using different architectural approaches. For designing CNN
architecture, we need to know the input sample format. Most recent CNN-model-based
solutions for super sampling tasks assume that each depth map has its corresponding
intensity or RGB texture in a few cases. In general, we will assume that the training
input sample for our CNN model will be a triplet of the low-resolution depth map, HR
intensity texture, and the high-resolution depth map used as ground truth. The first
two mentioned images are inputs from which the model computes the output image
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that can be compared to ground truth and evaluated. When we know the input sample
format, we can build our architecture on it. We have studied several publications that
propose different CNN models [7] [11] [26] [27] for depth map super-resolution. All of
the studied architectures have a few concepts in common. We will introduce these
concepts in the following sections and discuss their properties.

High-level architecture

The high-level architecture of all published architectures we have studied has a similar
structure determined by the two input images. Models generally have two main branches
composed of convolutional and other layers: the depth map and texture branches. These
two branches interact with each other at specific network depths. It can be that image
from the texture branch is element-wisely added to an image in the depth branch, the
images are concatenated, or another merging method is used. The method of merging
the branches varies for different models. The idea of merging the texture branch with
the depth branch is based on the fact that essential image details like edges and surface
structure are present in the high-resolution texture image. We want to correct inexact
values of unknown depth values using known texture image pixel values.

Up-sampling layer

All models have a common property, the so-called up-sampling layer [24]. The up-
sampling layer is a network layer located in the depth branch responsible for the
concrete expanding procedure applied to the depth image. The up-sampling layer’s
output has a higher resolution than its input image. The CNN model architecture is,
in fact, strongly affected by the type of chosen up-sampling method. Some models do
simple deterministic up-sampling of depth images in the first layers of the network and
then solve super-resolution task by correcting inexact expanded depth values. Another
approach provides a model that does the opposite. That is the up-sampling layer as one
of the very last network layers. The whole deep network learns to prepare low-resolution
images for the following expanding procedure. Some models do so-called continuous
up-sampling, meaning they do up-sampling multiple times at different network depths.
This approach is often used when the training model is designed for multiple possible
factors of up-sampling. Models are usually trained for specific constant up-sampling
factors. An example of this can be just a super sampling of 2 times smaller resolution
to the high-resolution one. The position and frequency with which the up-sampling
layer is used in the deep network are strongly connected to the specific up-sampling
method. In general, two types of methods are used in recently published models: ML
(machine learning) based and algorithmic.



3.3. CNN MODEL ARCHITECTURE 17

Figure 3.1: Deconvoluton (left) and Pixel shuffle (right) up-sampling methods [24].

Models with ML-based up-sampling layers have trainable parameters. They use
parameters that modify themselves during the training process and try to up-sample
the depth map suitably for further values refinement in the concrete network. The most
familiar ML-based up-sampling methods are deconvolution (or transposed convolution)
and pixel shuffle [24]. The deconvolution is the inverse of the convolution operation.
It increases the image resolution by evenly expanding the image by inserting zeros
between pixels and performing convolution along the expanded image. The pixel shuffle
up-sampling method applies convolution with a proper number of filters that determines
the up-sampling factor. The number of filters is the block size that will replace one
pixel from low-resolution when up-sampling to high-resolution. To better understand
the concepts, deconvolution and pixel shuffle are visualized in Fig. 3.1.

The second type of up-sampling is an algorithmic method. These methods do regular
deterministic operations on images. We can mention bi-linear interpolation, bi-cubic
interpolation, and the nearest neighbor method. These are used the by the majority of
recent models. Bi-linear and bi-cubic interpolation are simply image-expanding methods
that use the distance-weighted average of the four nearest (for bi-linear) or nine nearest
(for bi-cubic) pixel values to estimate a new pixel value. The nearest neighbor method
takes the exact value of the nearest available pixel for every unknown pixel after the
expanding image procedure. These methods have no trainable parameters.

To conclude, when designing the CNN model for the depth map super-resolution
task, we have to answer the high-level questions. The first one is where in our network
will the up-sampling layer be placed: first layers, continuous or last layers. The second
question is what method will be used for expanding the depth image in the up-sampling
layer: bi-linear, bi-cubic, nearest or ML-based. The selection of the up-sampling method
depends on the nature of our data and the task-specific requirements on output depth
maps.

Evaluation

In the machine learning overview section, we have described the main concepts of the
supervised deep learning area. Evaluation of results is part of the CNN model design
process. The model modifies its weights and parameters during the training process to
provide more precise results. For proper training, the model needs to determine how
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good its actual result is compared to the known ground truth. For every deep learning
model, we need to define the evaluation metric that will be used for computing the
distance of some achieved result to the ideal one. It is often challenging to create such
a metric because of the data nature and its specific properties. The result of our task is
a high-resolution depth map image. We need to define a function that takes two depth
maps and returns a number that expresses their distance. In machine learning theory,
we call functions like this a loss function. The computed error value is for every sample
back-propagated through each network layer so it can modify its parameters during
training. Most of the models that we have studied in our research use L1 and L2 loss
function [7] [11] [26]. The former is an absolute mean error of all depth map pixels, and
the latter is the mean squared error of depth map pixels. These loss functions work
well for most applications but can cause problems when there are some more important
areas in the image. We will examine this problem and its possible solutions in further
sections.

3.4 Related work

We studied several publications that propose deep-learning-based models for depth
map super-resolution task [11] [7] [26]. These models work with the scene’s texture
as an additional input image. The training process and results evaluation is made on
publicly available datasets described in the first chapter. The authors of the most
recent publications attribute the most significant importance to the datasets created
using the Kinect device [13], as it probably is the most available and familiar product
on the market. Kinect is also usable for many robotic real-time tasks. We aim to solve
depth map super-resolution task on more precise data from Photoneo MotionCam-3D
[18]. These data have different nature, as discussed in the first chapter. We will try
to use the most recent and precise models for our data. We expect that the proposed
models have to be modified to fit our requirements.

We started our related work research with publications that have their implementa-
tion publicly available. At the time of our related work papers studies, we found three
publications that met this requirement: FDSR [7], DKN [11], and DCT [26]. The DCT
model publication was the most recent and provided survey of older models inference
on the most familiar datasets created using the Kinect. According to this survey and
the comparison of the results proposed in the article, the FDSR, DKN, and DCT were
the most precise models. The accuracy difference between these three architectures was
by order of magnitude greater than the older models. Based on these facts, we decided
to use the three architectures as the ones on that we will build our task solution. Later
as our work progressed, we decided to reduce the triplet of used models to just FDSR
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and DKN because we could not put the published DCT model implementation to work
and train the model with significant results.

In 2023 Zhong and Liu published a survey containing all depth map super-resolution
task solution approaches [27]. They probably contacted many researchers and asked
them to publish their implementations for making order in this research area. The new
implementations appeared on familiar portals and are now available. Analyzing these
newly added implementations and putting them to work goes beyond the scope of this
thesis.

In this thesis, we will build on FDSR and DKN architectures. These are based on
entirely different ideas. The DKN architecture is based on an image-filtering approach.
That means it up-samples the input depth map using some simple method and then
tries to create a filter that enhances its details. During the training process, DKN learns
how to create a custom filter that will be applied to an inexact expanded depth map.
The FDSR approach is different. It is based on continuous residual learning that uses
structure from intensity texture for enhancing depth image. At specific network layers,
the texture branch merged into the depth branch. The following sections will describe
the FDSR and DKN models and discuss their properties.

3.4.1 DKN model

The description of the DKN model in this section is based on its publication text [11].
DKN stands for Deformable Kernel Network. This approach to a depth map super-
resolution task comes from a joint image filtering idea. The main idea is to expand the
image by some simple up-sampling method and then apply a filter to enhance precision.
Apply filter means sliding along the image with the kernel window. The kernel window
determines the set of neighbors for each pixel. We can compute a more exact value from
kernel pixels. Each pixel from the neighborhood determined by the kernel window has
a weight contributing to the result pixel value (e.g., a weighted average of neighboring
pixels). All weights of kernel pixels should sum to 0. Each pixel’s kernel window weight
values can be determined by guidance image (in our case, intensity texture) or just
from the depth image structure. Familiar examples of filters that do not use machine
learning and use this concept are bilateral filter [22] or guided filter [6]. The DKN
approach uses deep learning techniques to determine the kernel pixels and their weights.
The main difference between DKN and the classic joint image filtering approach is that
the filter uses a constant kernel for each image pixel in the joint image. A kernel like
this picks the same relatively positioned neighbor pixels of each pixel to compute its
filtered value. The DKN model uses the CNN model for picking neighbor pixels of each
pixel and their weights. To describe this concept, we provide Fig. 3.2, where we can see
the DKN approach in the figure on the right. The kernel comprises pointers to pixels
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Figure 3.2: Classic joint image filtering kernel (left), learned offsets for neighborhood
pixels positions (middle), neighbor pixel locations with their offsets (right) [11].

Figure 3.3: DKN model architecture [11].

that the CNN model chose for computing filtered value. The CNN model also computes
kernel weights for the chosen pixels. We described the principal concept of the DKN
approach and its output which is a weighted kernel for each depth image pixel.

Now we will examine the CNN architecture. As we mentioned in the CNN archi-
tecture overview, the DKN model comprises two main branches: texture and depth.
The network can be divided into three consecutive parts: feature extraction, weight
& offset regression, and weighted average. The three network parts forming the DKN
model architecture are visualized in Fig. 3.3.

In the feature extraction part, seven convolutional layers with RELu activation
function and batch normalization are applied on both input images. Some of the
convolutions down-sample the image, so the result of this network part is 128× 1× 1

feature map for receptive field 51× 51 pixels. That means the model will pick neighbor
pixels from area 51× 51 for each pixel and their weights.

The second part of the DKN network is weight & offset regression. This network
part is responsible for computing the weights of pixels in the kernel and their offsets.
We apply one additional convolution layer for computing weights on outputs from
previous network parts. The output of the convolution layer will be k2 × 1× 1 feature
map, where k stands for kernel window side size in pixels. The weight values in the
kernel should sum to value 0. The default DKN setting is k = 3. That means the
filtered value of every pixel will be computed using nine pixel values picked from its
51 × 51 pixels neighborhood window. The offset is also computed by one additional
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convolution layer applied to data from the previous network part. The output of offset
computing convolution will be 2k2 × 1× 1 feature map. The feature map will contain x

and y offsets that point to pixel locations in the receptive field 51× 51. Both weight
and offset feature maps are computed from outputs of the texture branch and depth
branch of the network. Outputs of additional convolutions applied separately in the
branches are merged by element-wise multiplication of the feature maps providing a
final output of this network part.

The weighted average part uses the given kernel with weights and offsets from
previous network parts and applies it to the input sample pixels. The offsets are
computed fractionally, so the choice of the pixels that will be used in the kernel is
estimated by bi-linear interpolation. The result value for every pixel is the dot product
of the kernel weights matrix and picked pixels arranged in the kernel size matrix. By
default, a residual connection of the input depth image is also used. The input image is
element-wisely added to the weighted average image output.

DKN model was trained on NYUv2 dataset [14], which was created using a Kinect
device [13]. The depth maps from this dataset are in lower resolution and do not have
as sharp edges as our Photoneo data. The model works with a pre-expanded depth
image. The low-resolution depth map is firstly expanded by bi-cubic interpolation and
then put into the model for further processing. The authors also experimented with the
nearest neighbor expanding method, which generally had worse results, so they chose
the bi-cubic method as the expanding approach. DKN model uses L1 loss function
that provides evenly distributed attention to all pixels of depth maps when computing
sample error.

3.4.2 FDSR model

The description of the FDSR model in this section is based on its publication text [7].
FDSR stands for Fast Depth Super Resolution. This approach is based on continuous
learning considering high and low-frequency components of input images. High-frequency
components of the image are areas that are more important in the image structure
manner. Examples of a high-frequency component can be edges or some important object
surface structure. The low-frequency components are lesser important. Examples of low-
frequency components can be planes or smooth object surface parts. The FDSR model
learns to extract high-frequency components of a scanned scene from high-resolution
texture and uses this information while learning the depth map up-sampling procedure.
FDSR model architecture has two main branches. Authors call them High-Frequency
branch and Multi-scale Reconstruction branch. The high-resolution texture is input for
the former, and low-resolution depth map for the latter branch. The architecture is
visualized in Fig. 3.4.



22 CHAPTER 3. DEEP LEARNING APPROACH

Figure 3.4: FDSR model architecture [7].

The high-Frequency branch starts with feature extraction performed by one con-
volutional layer. The next part of the high-frequency branch is composed of three
consecutive high-frequency layers (HFL) that use the special operation of octave convo-
lution to determine the input image’s high-frequency components. HFL separates image
input into two channels: low-frequency and high-frequency components. The output
high and low-frequency components of one HFL are embedded into the following HFL,
so the following HFL generates its current high and low-frequency components using
previous ones.

Multi-scale Reconstruction branch starts with convolution for feature extraction.
Then four multi-scale dilated blocks (MSDB) follow. MSDB applies two dilated
convolutions on a depth image. Dilated convolution is one with a kernel with inflated
holes between its elements. During convolution, it skips image pixels according to the
constant parameter. For example, dilated convolution can skip every second pixel of the
image. MSDB uses two different skipping offsets for exploiting contextual at different
receptive fields. After dilated convolutions, one standard convolution is applied to
integrate concatenated features. After every MSDB block, the high-frequency features
from the corresponding HFL are concatenated to the output. The final fourth MSDB
output is up-sampled by the pixel shuffle method applied twice.

At the beginning of depth, the branch input image is split by convolution to multiple
channels. After the MSDB blocks are combined with HFL features, the pixel shuffle is
applied to merge multiple channels back to high resolution. There is also one residual
connection between the input depth map and the up-sampled final depth map. FDSR
model like DKN works with the pre-expanded low-resolution depth map. The authors
use the bi-cubic interpolation method to prepare the sample for the model. FDSR uses
L1 loss function for error computing. This model was trained on the NYUv2 dataset.
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Conclusion

The two models described above were the best-performing models at the time of our
related work research. FDSR [7] and DKN [11] are built on entirely different principles.
Therefore, it will be interesting to apply them to our data from Photoneo MotionCam-
3D [18]. Models were trained on the NYUv2 dataset [14], which is significantly different
from our data. The NYUv2 samples are data from a Kinect device [13] that provides
lower-resolution depth maps with inexact values compared to the Photoneo MotionCam-
3D. Kinect data also contain fewer holes in depth maps. The authors of NYUv2 provide
a method that fills the depth map holes using completely defined textures. We tried to
apply the implementation [14] of the method published with NYUv2, but we could not
put it to work on our data. DKN and FDSR models work with filled depth maps, so
we need to design a method for filling them. Another problem that we will be facing
is so called edge error that was introduced in the FDSR model article. The authors
used a metric that looked at depth values near edges in depth maps and found that it
is significantly greater than the error computed by the loss function. For the Kinect
data, this is not a big problem because one can not expect big precision of the samples.
The frame rate is more important. The depth maps are very noisy, so the edge error is
negligible in many applications. The Photoneo 3D scanning use cases often require big
precision, and high edge error can cause problems. We will try to solve the outlined and
other raised problems in our implementation by experiments and models modifications.
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Chapter 4

Implementation

This chapter will describe our solution implementation of a depth map super-resolution
task applied to Photoneo MotionCam-3D [18] data. The implementation is the fun-
damental part of our work on this thesis. As Fig. 1.1 suggests, our implementation
includes a few models through which the input data flow. During our research and
implementation progress, we ran into several problems based on the nature of the
Photoneo data. We will examine our research path, including its dead ends and obser-
vations. We will also describe our results evaluation approach, training process, and
fine-tuning of training parameters to fit our needs. The full implementation is in the
Python scripting language. We use Numpy citenumpy and PyTorch [17] frameworks.
Our implementation is available on GitHub [12].

4.1 Data preparation

The only data that is provided to us are intensity texture and depth map of the scanned
scene, both in high resolution. For the training depth map super-resolution CNN model,
we need a dataset whose samples contain HR intensity texture, LR depth map, and
HR depth map as ground truth. The data must also be in a proper format for the
model implemented in the PyTorch framework [17]. Dataset samples can also contain
additional data that can help us during training. In this section, we will describe the
preparation of the dataset and the structure of its samples. We will start with the task
requiring low-resolution depth maps that must be included in each sample.

4.1.1 Depth map down-sampling

In our problem’s formal definition, we defined the depth map down-sampling procedure
as our sub-task. We defined down-sampling determined by scale factor s ∈ N as
collapsing s× s square blocks to one pixel. Various deterministic algorithms can do
depth map down-sampling. Authors in the majority of publications use methods based
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Figure 4.1: Point cloud computed from input HR depth map (left) and Point cloud
computed from output LR depth map (right) when scaling factor s = 4 used.

on bi-cubic interpolation or the nearest neighbor approach. In the 2016 publication
[8], authors found that applying the nearest neighbor on data from structured light
scanner devices that provide higher precision is better. For depth maps from ToF
devices, they used a method based on bi-cubic interpolation. Inspired by this study,
we used a method based on the nearest-neighbor approach. The method [4] divides a
high-resolution depth map into s× s pixels-sized blocks. For every block, we compute
minimal value bmin, maximal value bmax, and (average) mean value bmean. With these
values, we do the following: We find out if the given block contains an edge. Whether
the block contains an edge depends on the edge threshold parameter ε. If the condition
(bmax − bmin) < ε is met, the block does not contain any edge. Its values, in some
approximation, form a flat surface. If the condition is not met, the block has an edge.
We mark pixels with values above the bmean value as foreground values and the others as
the background ones. If the given block contains an edge, the result value representing
the block in a low-resolution image will be the median of foreground pixels values. If
the given block does not contain any edge, the resulting value will be the median of all
pixels in the block. We empirically set the ε = 0.1 value by observing method behavior
on our input data.

We also tried other, more familiar methods of image down-sampling, but the one
described above works the best for our data. The bi-cubic-interpolation-based methods
blur sharp edges that our precise Photoneo MotionCam-3D [18] provides. The nearest
neighbor simple methods like picking a random pixel from the given block or taking
the maximum pixel value can work well when a scale factor is a small number. When
choosing the block-representing value of 4× 4 or more pixels sized block, it is better to
use a more sophisticated method.

We provide Fig. 4.1 to demonstrate the implemented down-sampling method. We
computed 3D point clouds from the method input high resolution and output low-
resolution depth map when scaling factor s = 4 was used. We can observe that the
depth map lost its density but not the sharpness of the object edges.
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4.1.2 Depth map filling

Both models that we want to use assume that depth maps do not contain any holes.
That means all pixels in depth maps should be defined and contain meaningful, valid
depth values. Depth maps from the Photoneo MotionCam-3D [18] contain a large
number of undefined pixels. The Preset of the Photoneo devices often ignore big
distance value because of potential inexact values. When using these data, we need to
treat the undefined areas of depth image somehow. The first idea that comes to mind
when solving a problem like this is to ignore the undefined regions during training. We
could compute the sample error by applying the loss function on pixels from defined
regions of the depth image. We tried this and found there was a problem with this
approach. When applying convolution operations on the depth image, the sliding kernel
treated values of undefined regions as normal. Undefined pixel located within kernel
diameter distance from the defined ones influenced their values. The undefined pixels
were not restricted or limited by the learning process, so their depth values randomly
oscillated during the training. Based on this observation, we included the undefined
pixels in the training process. The undefined pixels have all zero values. If we want
to incorporate them into the learning process, we need to fill them with meaningful
depth values that will goodly influence the estimation of defined pixel values. For
this, we propose a filling procedure that gets a depth map with undefined regions as
input and provides a filled depth map as the output. The dataset sample will then
comprise a filled low-resolution depth map, high-resolution intensity texture, and filled
high-resolution depth map as ground truth. The most important depth values of the
CNN model output depth map will be the defined regions.

During the training process, evaluation, or providing results of the CNN model,
we must preserve information about every sample’s defined and undefined pixels. We
introduce a new image data structure into all dataset samples for this, and we call it
a definition map. The definition map is a 2D binary matrix with the dimensions of a
high-resolution depth map. Its elements contain value 0 if the pixel at the same position
in the high-resolution depth map is not defined and value one if the corresponding
depth map pixel is defined. During the training process depth map will be variously
modified. The definition map provides us with stable information about defined regions
that will be the most important regions of the final model output. The definition map
is pre-computed during dataset creation for every sample before the filling procedure.

Filling method

Now we will introduce and describe our simple depth-map-filling method. This procedure
is inspired by a more sophisticated one for depth maps filling [2]. The implementation
of the method from the publication was not available, so we implemented its simpler
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Figure 4.2: Depth map with undefined pixels (black).

version that should fit our needs. In the figure Fig. 4.2, we see a typical input depth
map with undefined regions. We can observe that the whole defined scene depth image
is surrounded by a big undefined region. This phenomenon repeats in every sample
of our dataset. There are also small undefined areas near the warrior figure. These
undefined regions are often caused by shadows or glossy surfaces of the scanned object
in the scene. Usually, there are more than 50 holes in the depth map. Primarily we
divide the undefined regions into two types: undefined background holes and near
object holes. We determine the undefined region as a background hole if some of its
pixels are adjacent to the image border. Regions with no pixel adjacent to the image
border are near object holes. Our filling method treats the two types differently.

The first step of the filling procedure is generating a binary map of holes. We get
the input depth map and create a map of the same dimensions where the pixel has a
value of 1 when there is an undefined value of 0 in the input depth map. Pixels that
are in the input depth map defined will have zero value. On this hole map, we apply
the labeling function from scikit-image python library [23]. This method labels every
continuous region of 1-valued pixels with a unique number. Output from this step is
a map of holes where pixels of each continuous hole have the same value unique for
the hole. Then we go through all holes, and for each one, do the following: We look
if the border pixels of the image contains pixels with hole label value. If at least one
pixel is found, we treat the hole as the background hole and set all its pixels to one the
same value. We will comment on the value choice later. If the hole is classified as a
near-object hole, we find its defined border pixels. Then we will fill the hole row-wise
like this: for every hole row, we find pixels that intersect with the defined border pixels
found in the previous step. We take the maximum of these values and fill the whole
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hole row. To better understand the described filling procedure, we provide Fig. 4.3.

In the filling method described above, we use the outer border pixels of the hole for
its filling. For that, we need to find the pixels first. We propose the method for finding
the outer border pixels of a hole as follows: We take one concrete hole map. Pixels of
this map with value 1 represent where the uniquely labeled hole is and 0 where it is
not. We expand this hole region of ones in the two row-wise directions (right and left)
by one pixel. The border pixels of this expanded hole are the outer border pixels of the
hole in the depth map image (they all have their defined depth value). The hole region
expanding process is done by NumPy roll operation that shifts the input matrix by one
pixel in a concrete direction. We apply NumPy roll on the concrete hole map separately
in the right and left directions and merge the resulting maps into one that contains
a hole expanded by one pixel at the right and left hole borders. For extracting only
the border pixels of the expanded hole map, we do the following procedure: We apply
cumulative sum operation on the expanded hole map in the right and left directions
separately. The pixels of the cumulative sum result images with value 1 (first that are
not zero in that concrete direction) are the outer border pixels of the hole in the depth
map. The process of finding the outer border pixels of the hole is illustrated on an
example in the Fig. 4.4.

Filling results

We proposed the depth map filling method that provides us the whole defined depth
image for further processing. This method was designed to fit our requirements. We
require filling the holes with meaningful depth values that positively affect defined
pixels near the holes during training. The filling method described above is not designed
for filling the image with fine details preservation or the most realistic filled object
surface. The meaningful depth values mean that the values should be close to reality
with some approximation. We aim to keep the depth values of undefined areas stable
and close to reality. The values do not need to be precise because, in the end, we
set them back to an undefined state. The only values that are of our concern are the
defined ones.

In the filling method section, we mentioned that our method fills the background
hole with a single value. This value is the maximum depth value of all samples in the
dataset. This setting of background hole pixel values forms a plane behind the whole
scanned scene, and it gives some reference to the model during training. We simply
put a synthetic wall perpendicular to the camera angle behind the scanned scene. To
illustrate the filling method results, we propose Fig. 4.5 and Fig. 4.6. Our experiments
show that idea of approximate holes filling with the synthetic background keeps the
training process more stable, and the impact on the defined values is positive.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: From the input (a), we generate hole map (b). Then we label distinct holes
with unique labels and get labels map (c). Then we go through all holes, starting with
the background hole that is filled with one value (d). Then we go through holes 1 and
2. We determine the defined outer border pixels of the holes and find the maximum
value for every row (e), (g). When we have the maximal values for the rows, we fill
them row-wise (f), (h). In the end, we merge all filled holes into one whole-defined
depth image (i).
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(a) (b) (c)

(d) (e)

Figure 4.4: On the concrete hole map (a), we apply NumPy roll operation separately in
left and right directions and merge resulting maps into expanded hole map (b). Then
we separately apply the cumulative sum operation on (b) in the right (c) and left (d)
directions. In the end, we merge the 1-valued pixels from the cumulative sum results
into a hole row outer border map (e). This map is used in the filling process of depth
map illustrated in the Fig. 4.3.

(a) (b)

Figure 4.5: 3D point cloud computed from unfilled (a) and filled (b) depth map. We
can observe a synthetic plane behind the scene.
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Figure 4.6: 3D point cloud computed from the filled depth map. We can observe
row-wise filled near-object holes. Green points are filled, and red are the defined ones.

4.1.3 Texture augmentation

CNN models that we will implement use high-resolution intensity textures for extracting
details of the scanned scene, such as edges or surface structures. If we want to use
intensity texture as a guidance image, it has to fulfill the task’s requirements. There
has to be a correlation between the intensity texture and depth map that we are
up-sampling. For example, if some edge is not captured in the intensity texture, it
would not be preserved precisely in the up-sampled depth map. On the contrary, if
there is an edge in the intensity texture and the edge is missing in the depth map, it will
also break the correlation of the images. Based on the idea of preserving the correlation
between the depth map and intensity texture, we decided to modify the input intensity
textures to correlate with the filled depth maps. Our approach is the same as with
the depth maps. Firstly, we multiply the intensity texture with the definition map
element-wise to create the same undefined areas in the intensity texture as in the depth
maps. Then we apply the same filling method to the image. This provides us with the
intensity texture that has a bigger correlation in the filled depth values than the not
modified one. According to our experiments, this modification of intensity textures
improved the training process. The leading cause of this phenomenon is probably the
fact that we do not push the model to estimate useless depth values of the undefined
regions. It is some kind of simplification of the useless regions of the depth image to
avoid the computation of their complicated surface structure values. We modify the
intensity textures while creating the dataset so every sample contains only the modified
one.
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Depth map up-sampling

In the previous chapter, we analyzed the architecture of CNN models designed for
depth map super-resolution task. We found out there was an up-sampling layer in
all models responsible for simple depth map expansion to high-resolution ones. FDSR
and DKN models work with pre-upsampled depth maps. That means the input depth
maps provided to the model are high-resolution, and models modify inaccurate depth
values estimated by the simple expanding method. Both models we will work with
use bi-cubic interpolation for up-sampling input depth maps. FDSR and DKN were
trained on the NYUv2 dataset, which was created using a Kinect device [13]. According
to an older publication on depth map super-resolution task, it is better to use the
nearest neighbor for pre-upsampling input images generated by structured light scanners.
The nearest neighbor should be more precise on the blurred edges than when using
interpolation-based methods.

There is also possible to use an end-to-end trainable up-sampling layer based on
pixel shuffle or deconvolution operation [8]. The most recent publications work with
the nearest neighbor or bi-cubic interpolation as their pre-upsampling methods [27].
We tried to combine FDSR and DKN with the deconvolution layer applied before the
whole architecture. However, the training process was unstable, and we reached worse
results than with bi-cubic or nearest neighbor pre-upsampling methods. We achieved
the best results by using the nearest neighbor method, so we decided to use it in our
thesis as the pre-upsampling method. We use the nearest neighbor pre-upsampling
while creating a dataset for FDSR and DKN models.

4.1.4 Data normalization

In order to make the training process more stable and generalize the trained models for
various scanned scenes, we decided to normalize our data. The input sample consists of
a filled low-resolution depth map, augmented intensity texture, and filled ground truth
high-resolution depth map. Normalization of our intensity texture is done by scaling
all possible 16-bit grayscale values to interval [0, 1]. We assume that all samples are
filled with our proposed filling method. The normalization of depth maps is a little
bit different. The scanned scene used depth values interval can differ. We solved this
problem by finding the minimum and maximum depth value of all dataset samples.
We scale all depth maps by the difference between the found maximal and minimal
value, and then we subtract the minimal value. That means we put all depth values
of depth maps to interval [0, 1]. This normalization of intensity textures and depth
maps makes the model more general and stabilizes training. Normalization is applied
on samples when getting a concrete sample from the dataset so the samples are stored
in the original scale.
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4.2 CNN models

The project is written in Python with PyTorch [17] machine learning framework. We
also use the NumPy library for the data pre-processing. We train the models and process
all data on a device equipped with NVIDIA Quadro RTX 4000 [16]. Before the whole
thesis project work, we set up the environment that provides a PyTorch framework
together with GPU cores usage for effective processing of the image data. The CNN
models that we chose for this thesis are FDSR and DKN. The models were chosen thanks
to their topicality and the availability of their official implementation. The published
DKN model implementation [10] is in Python and PyTorch. We analyzed the published
code, found the crucial parts that include model architecture, and incorporated the
acquired architecture into our project pipeline. The first problem that we faced was
our training hardware limit. DKN model, by its design, needs a large amount of
GPU memory to work. The Photoneo depth maps with intensity textures have higher
resolution than the NYUv2 dataset Kinect device [13] samples. We had to somehow
reduce the model size because it could not fit into GPU RAM. Our solution for this
problem was halving the number of applied filters in all DKN model architecture
convolution layers. After a few experiments, we observed that the training process was
stable with the reduced model. Another minor adjustment of our data to the acquired
DKN implementation was making the intensity texture a three-channel image. We do
this by cloning the intensity texture three times to form three channels. This process is
based on recommendations of the DKN model author when only one channel intensity
texture is provided at the input. FDSR model implementation that is publicly available
[3] is not written in PyTorch. This was unsuitable for us because we wanted to examine
and modify the model for our data. We rewrote it using the PyTorch framework and
validated both model implementations on the part of the NYUv2 dataset. When we
observed that the models acted as expected, we started applying them to our Photoneo
fusion-typed dataset.

Loss function

We first tried FDSR and DKN models with their default parameter settings, resulting
in unpresentable results. The default loss function that both models used was L1 loss.
We used a small dataset whose samples were scenes composed of small warrior figure
placed on the flat ground surface. The depth map from Photoneo 3D scanner has sharp
edges and precise object surfaces. After training, we obtained a model with low L1

error values, which looked like a good result. After 3D point cloud computation, we
discovered that the warrior figure points were messed up, and the values were not as
we expected from the low L1 error. The reason for this was that the flat ground depth
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values from the scene were precise enough, and the model was not forced to modify itself
a lot during the training. The flat ground depth values had a small error. They pulled
the overall mean absolute error to the low value because the biggest percentage of the
depth image was covered by the flat ground. L1 loss function gives the same attention
to all image areas, which causes problems when working with our scenes designed for
the fusion task. Authors of the FDSR model proposed the concept of edge error in their
publication. The edge error is the overall error computed only from near-edged regions
of the depth image. We implemented this concept in our project using the Canny edge
detector from the sctikit-image python library [23]. We found the edges in the depth
map and considered the 5-pixel radius neighborhood near the edges as the area for the
error calculation. The edge error values were significantly higher than the overall L1

error, as we expected. We tried to incorporate our Canny loss function into the training
process by summing it to the L1 loss or using it with various weight values. However,
we did not achieve any presentable results. We had to develop a different approach.
The idea of giving more attention to important areas of the depth map when computing
the error inspired us to design our custom loss function, which we call Object loss.

Object loss function

The main idea behind our object loss function is to compute the sample error that gives
significantly higher attention to the depth map pixels belonging to the scanned object.
This loss function forces the model to modify itself more during training according to
scanned object precision. The pixels of flat ground surrounding the object in the scene
also contribute to the loss but with negligible weight. In the fusion task for which
our data is created, our concern is nothing but the pixels that are in the area of the
image containing the scanned object. The scene environment around the object will be
removed in post-processing of the computed depth maps so their values do not need to
be very precise.

For computing an object map, we must determine which pixels belong to the object
and which do not. In our implementation, we compute an object map which is a binary
matrix of the depth map dimensions that for every pixel contain the value one if the
pixel belongs to the object and 0 if not. Using an object map, we compute weighted L1

error that gives weight 1 to the object pixels and weight 0.01 to the non-object pixels.
The constant 0.01 was determined empirically to achieve a stable training process.

Obtaining object map

Obtaining the object map is derived from the composition of our scenes. As the previous
text states, our scenes comprise one object on the flat ground surface. If we find the
geometric parameters of the scene’s flat ground in its coordinate system, we can remove
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the flat ground and everything below it. If our scenes are correctly created, only the
scanned object should be left in the depth image after removing the flat ground. The
remained pixels, after this process, form an object map. Now the question is how to find
a plane that fits the scene ground. We solved this issue by finding three pixels belonging
to the scene’s flat ground. These form a triangle which determines the searched plane.
We choose the three ground points as follows: We assume that the biggest part of the
scene contains the ground. That means the ground pixel depth values should be closer
to the depth map mean value than the object depth values. Based on this assumption,
we compute for every depth map pixel its squared deviation from the whole image
mean. This image tells us how far from the mean every pixel is. Then we sort obtained
distances and take the maximum from the lowest 5% as a threshold for determining
whether the pixel belongs to the plane. If some pixel value has a squared deviation
from the image mean that belongs to the lowest 5% of all pixels deviations, we consider
it a flat ground pixel.

At first, we tried to select the three points randomly from the group of pixels
determined by the threshold. This approach turned out to be inappropriate because the
randomly selected pixels were often too close to each other. Therefore the computed
plane was not precise enough to fit the ground. When we visualized the group of 5%
mean-nearest pixels, we observed that they were all placed near the horizontal line of
the scene ground. The line was, in most samples, placed near the center of the scene
ground. The close neighborhood of the mentioned line is suitable for choosing 2 of three
searched pixels. We can choose the most left and the most right one. The two pixels
would create a long triangle base. To find a good plane, we must carefully choose the
triangle’s third vertex. The best would be a pixel near the scene’s ground top or bottom
border, far from the horizontal line from which we choose the triangle base vertices.
Based on this reflection, we introduced a new group of pixels that should meet the
described requirements. This group is formed of the most distant pixels of the depth
map. We empirically found that pixels with the depth value belonging to the highest
2% of all depth map values belong to the scene ground near-top-border area. To set
the threshold for determining if a pixel belongs in this group, we sort all image depth
values and take values that separate the highest 2%.

To conclude, we have two groups of pixels from which we choose three vertices of
the triangle. The two pixels that form the triangle base are chosen from ones with
value belonging to the mean-nearest 5% of sample values. The third remaining pixel is
chosen from pixels with values belonging to the highest 2% of sample values.

To maximize the triangle base length, we sort all possible near-mean group pixels by
their y coordinate and take the most left and the most right as the result vertices. For
maximizing the length of the other two triangle sides, we sort all possible maximal-depth
group pixels by their y-coordinate and take the middle pixel as the resulting vertex.
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(a) (b)

Figure 4.7: In figure (a), we show the input depth map where the yellow points represent
the maximal-depth group of pixels of the grid, pink points represent the near-mean
group of pixels of the grid, and the red points represent the chosen points to be vertices
of the triangle determining scene ground plane. Figure (b) shows the output object
map, which is the result of removing depth values that fit the plane determined by the
triangle from (a).

To speed up the whole process of finding the triangle vertices pixels and maximizing
their distance, we use just a subset of depth map pixels. We define a grid on the depth
map composed of 20× 20 pixel-sized blocks. We use only the grid line’s intersection
pixels. This reduces the whole working set of pixels to a few hundred.

After obtaining the three points, we have a triangle from which we can compute the
plane. The three points provide two vectors from which we compute a normal vector
of the wanted plane. Then we combine this vector with one of the three points and get
the equation of the plane that fits the scene ground. In the end, we generate the output
object map by removing every depth value that fits the plane and providing a binary
map of the remaining pixels. The object map is for every sample pre-computed while
creating the dataset. Every sample then contains a filled LR depth map, HR intensity
texture, HR definition map, HR object map, and the HR depth map as ground truth.
The object loss function then uses the object map for computing the weighted error.
For visualization of the triangle pixels choice and an example of this process on the
real data, we provide Fig. 4.7.

The object map obtaining method described above works well for our data because
we created the sample scenes on our own, and we complied with the necessary standards
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for the scenes. Some samples in the dataset also contain noise, like part of a mistakenly
captured scene environment or ground surface irregularities. These samples cause some
problems, but the triangle vertices are generally chosen correctly. The most common
behavior on the not standard samples is that its output object map contains few artifacts
alongside the scanned object, which is acceptable. The object map obtaining method
is designed for this concrete data type we use for the 3D object fusion use case. The
obtaining of ground-fitting plane can be obtained by other approaches too. A familiar
approach is to place a known marker on the ground surface and compute the scene
coordinate system from its deformation using the intensity texture of the scene.

Training

We train the models on the device equipped with NVIDIA Quadro RTX 4000 [16]. The
mentioned GPU card uses CUDA architecture. All procedures that we do on the data
are implemented in a way compatible with the GPU support. We set up the CUDA
version 11.6 environment to work with Python and the PyTorch framework. Our
dataset is composed of about 1200 samples generated by the Photoneo MotionCam-3D
[18]. Every sample contains a filled LR depth map, HR intensity texture, HR definition
map, HR object map, and the HR depth map as ground truth. We separate the 70%

of the dataset samples as the training set and 30% as the testing set for the model
validation. We train FDSR and DKN models, which both use Adam optimizer. The
FDSR has a learning rate parameter set to 0.0005, and the DKN model uses a 0.0001.
The FDSR model was trained in 1000 epochs, which took about 12 hours. The DKN
model was trained in 100 epochs, which also took about 12 hours. We save the model
checkpoint state after every 100 epochs. We use our custom object loss function for
both models instead of the original L1 loss. In Fig. 4.8, we show the learning curve of
both models. We can see that the DKN model training process is more stable than the
FDSR. Both models testing and training loss tends to decrease during the training.

Data post-processing

DKN and FDSR models trained on our dataset are imperfect, especially in areas near
the scanned object edges that often contain wrongly estimated outlier values. To
preserve the Photoneo image quality, we would remove the incorrect values. After
applying our model to the input data, we compute the 3D point cloud and run the
outlier removing procedure from Open3D python library [28] on it. This post-processing
causes the loss of some vertices, but we value precision over the quantity of output 3D
point cloud points. The amount of the lost points varies but often does not overcome
1% of the input point cloud size.
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(a)

(b)

Figure 4.8: In figure (a), we show the progress of training and testing loss of the FDSR
model. Figure (b) shows the same for the DKN model.
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Chapter 5

Evaluation and results

In the previous chapters, we described the CNN models used. We Analyzed their
behavior on our data generated by the Photoneo MotionCam-3D [18]. We reduced
the number of filters used in the DKN model architecture to fit into our hardware
conditions. We introduced the filling procedure that estimates undefined pixels of input
depth maps. Alongside the filled depth maps, we modified high-resolution textures to
preserve the correlation between the two input images. We also proposed the custom
loss function that gives attention to scanned objects during training. After applying
the trained model to the input data, we run post-processing on the computed 3D
point cloud to remove the outlier points created by the imperfection of the model. All
the data modifications and proposed procedures were used to improve the model’s
training process. After the training, we obtained models that can be applied to the
Photoneo MotionCam-3D data. This chapter will examine the evaluation options for
analyzing our results. We will review some possible applications of our trained models
and examine their precision. Qualitative and quantitative metrics will evaluate the
precision of achieved results.

Some metrics can be applied directly to the output depth map of our models, and
other metrics can be applied to the 3D point cloud computed from the depth map. In
the following sections, we will examine metrics suitable for these data types and use
them for our purpose.

5.1 Depth map metrics

Depth map metrics compare two 2D matrices. Authors of FDSR and DKN models use
root mean squared error (RMSE) to evaluate their output depth map compared to the
ground truth high-resolution one. This metric is unsuitable for us because our models
are modified to give low attention to the biggest part of the whole image. Using RMSE
on our data does not provide beneficial information about the output depth map quality

41
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Method RMSE Object RMSE Object loss
FDSR 1.9537 4.4297 1.0427
DKN 2.2696 6.9191 2.3058
Nearest 3.0778 10.8156 7.0692

Table 5.1: Mean depth map metrics values of whole validation dataset.

because we are not interested in the error of the background plane but in the scanned
object only. The more significant metric can be RMSE in combination with the object
map. We can compute RMSE only from a set of object pixels. We call this metric a
Object RMSE - RMSE applied to the object’s pixels. We computed mean error values
for the whole validation dataset to quantitatively analyze our results using these depth
map metrics. The validation dataset contains 327 samples. We also computed the mean
object loss of the whole validation dataset to link the Object metric described above
and standard RMSE with the training process. Mean values were computed for FDSR,
DKN, and simple nearest neighbor upscale. We examined the nearest neighbor method
to show that FDSR and DKN models that we trained outperform it. All mentioned
values stated in millimeters can be found in Tab. 5.1.

In Tab. 5.1, the Object RMSE metric has higher values than unmodified RMSE.
This follows from the fact that in the RMSE, we compute the error value from all pixels,
which means we also consider the scene environment. The error of the ground plane
pixels is generally deficient, and it pulls the overall mean value down despite the high
error object pixels. We can also notice that Object loss computed by weighted error
favoring the object pixels above the rest is low for the trained models and higher for the
nearest neighbor method. Object loss does not precisely highlight object error values
like the Object RMSE, but it counts with all depth map pixels. This loss function is
like an approximation of the Object RMSE, which makes the training process stable.
Hypothetically it would be better to use Object RMSE as a training loss function,
but it ignores the error of the non-object pixels. Ignoring pixel error values leads to
unrestricted image error areas and, therefore, unstable training with a large set of
outliers.

Object RMSE values from Tab. 5.1 tells us that the root mean squared error of the
scanned object pixel values is about 0.5cm when using FDSR and DKN models and
about 1cm for the nearest neighbor method. These values are too high to be usable.
High error values near the object’s edges probably cause these significant overall error
values. Rather than having no precise points in the point cloud computed from the
depth map, we remove the outliers in post-processing. The final error is then lower,
but a few points are missing in the resulting point cloud. The outliers cleaning is done
on an unstructured point cloud, so the RMSE metrics can not be applied afterward.
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Depth map metrics described above do not provide useful information about result
depth image quality because of the cleaning process of outliers present in depth maps.
However, these metrics can be helpful in quick proof of the up-sampling model correct-
ness. If the RMSE or Object RMSE is very high, we can assume that the resulting
depth map is not precise enough for further processing. If we want to analyze the output
depth map more accurately, we need a metric that is applied after the outliers cleaning
process. This leads to unstructured 3D point cloud metrics that will be introduced in
the following sections.

5.2 Point cloud metrics

After applying trained models on the input depth map, we can compute an unstructured
3D point cloud, which is a set of points in space. This point cloud allows us to analyze
our output using different metrics. The first and most straightforward method for point
cloud precision evaluation is analyzing the sample by hand. We can use proper software
that provides an option to examine the point cloud in 3D space. We use Meshlab
software [20] for the sample analysis. When we load the point clouds computed from
high-resolution ground truth depth maps, low-resolution input depth maps, and DKN
and FDSR output depth maps, we can compare them by applying filters and shading
parameters, which help us to recognize differences. These differences are not observable
in the raw depth map. 3D space with light and shading provides more options to
examine the scanned object surface. We show photos of rotor object point clouds from
the Meshlab software in Fig. 5.1 and Fig. 5.2. The whole scene in Fig. 5.1a is not
precise. The nearest neighbor method that was used for generating the depth map
implies the gridded structure of the scene surface. Every 4 × 4 pixel window of the
showed image is determined by one low-resolution depth map pixel value. This causes
the gridded surface structure. Fig. 5.2 shows the output of our trained models. It can
be seen that models, to some extent, eliminated gridded scene surfaces and estimated
more accurate pixel values. Examining up-sampled depth map quality by hand is a
familiar approach researchers often use. An example of an area where people often
evaluate results is the gaming industry. Game developers often get feedback on their
concrete samples from game users. The result sample analysis done by the user is a
meaningful metric for our task. As Fig. 5.1 and Fig. 5.2 show, we achieved relatively
good results. By the deeper point cloud analysis we conclude that the user-based metric
determines the DKN model as a better performing one.
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(a) (b)

Figure 5.1: Figure (a) shows a photo of the point cloud computed from the low-resolution
depth map. Figure (b) shows the high-resolution ground truth point cloud.

(a) (b)

Figure 5.2: Figure (a) shows the point cloud computed from the DKN model output
depth map. Figure (b) shows the FDSR output.
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Quantitative point cloud analysis

Alongside the people-feedback qualitative results analysis, it is also good to have some
quantitative metrics. It can bring us more precise estimations about the model’s output
accuracy. We aim to compare two point clouds: model output and ground truth. We
will use a standard point cloud comparison method called Hausdorff distance [9]. This
metric computes the distance between 2 sets of points. Hausdorff’s distance for one
point from the other set is simply the longest distance to the closest point in the other
set. We compute Hausdorff distance for every point of the model’s output point cloud.
We show the results of the Hausdorff distance metric applied on the output samples
in Tab. 5.2. The table states the minimal, maximal, mean, and root mean squared
error of Hausdorff distances. We can see that every up-sampling method contains
outlier points with a large Hausdorff distance. Mean, and RMSE values fit into 2
millimeters deviation, which we consider acceptable. We see that the nearest neighbor
up-sample has a low mean and RMSE. That means that values in the table should
not be the only data we rely on when evaluating precision of models. We will examine
all computed Hausdorff distances of the compared point clouds. This will be done by
coloring points by RGB color specter Hausdorff distance mapping. Our RGB mapping
will be from blue through green to red color. We will set the threshold for red points to
2 millimeters, meaning that red points in the colored point cloud will be considered
inaccurate. Values that fit into 2 millimeters deviation will be mapped into the RGB
specter. The most accurate points should be blue. As we mentioned before in the text,
it is the scanned object that we want to be precise. Therefore, we extracted only the
scanned object from the examined samples. The scene’s environment was erased using
our object map that identifies where the scanned object is. Visualization of Hausdorff
distance using the RGB specter described above is shown in Fig. 5.3. In Fig. 5.3, we
can observe that the simple nearest neighbor up-sample output point cloud contains the
fewest red - inaccurate points. FDSR and DKN outputs contain more inaccurate points,
especially near the sharp edges of the scanned object. The models have certain error
near object edges bigger than simple nearest up-sampling. FDSR and DKN outputs
obviously outperform the nearest method’s overall surface precision. We can see that
a significantly larger amount of scanned object’s surface points of FDSR and DKN
outputs are darker and purer blue than the nearest neighbor output ones. To conclude,
FDSR and DKN model outputs provide a more precise object surface but have a certain
error on the object edges. The nearest neighbor output also contains inaccurate points
near edges, and the whole object surface is significantly less accurate than FDSR and
DKN. The FDSR and DKN clearly outperform the simple nearest neighbor up-sampling
method, which should prove our models’ usability. By the deeper analysis using this
metric we can not say clearly which of the models performs better but the DKN result
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Method min max mean RMSE
FDSR 0.0000 9.8178 0.4650 0.7755
DKN 0.0000 10.3815 0.4449 0.7978
Nearest 0.0000 29.5586 0.4144 0.7455

Table 5.2: Results of Hausdorff distance metric applied on output point clouds of
up-sampling methods. All samples were compared with ground truth high-resolution
point cloud of the scene.

seems to be better.

5.3 Mesh metrics

We created our Photoneo dataset suitable for the 3D object fusion task. That means
the output from the task solution will be a 3D object which is computed from an
unstructured 3D point cloud of the object. The object’s point cloud is created from
multiple point clouds of scene scans taken from different views. The different view point
clouds are aligned to form one object. The output point cloud of the views alignment
is then cleansed from the outliers, noise, and the flat surface that is the object stated
on. From the cleansed aligned point cloud, we can generate an object mesh composed
not only of points but also of faces between them. The 3D object mesh can then be
compared to a synthetic 3D mesh of the object designed in some CAD software. An
example of suitable data for this validation metric is designing an appropriately complex
object in the CAD software and printing it using a precise 3D printer. Scanning such
an object and comparing the result with synthetic ground truth can give us a reference
for the scanning process precision expectations.

There are several methods of obtaining appropriate scans for object fusion. Some
kind of reference is often used for the aligning process while scanning, like stable camera
position, markers for computing the translation matrix of the scene space, and others.
The rotary table approach is the standard approach for taking a consistent sequence of
scans from different views. When using this method, we place the scanned object on
the flat base rotated by a motor controlled by scanning software. The software scans
the object and rotates the base at the proper angle. This procedure is repeated multiple
times, capturing all needed views for virtual object reconstruction.

In this thesis, we try to solve the depth map super sampling task. If we want to
use the mesh metric described above to evaluate our results, we could compare five
meshes computed from different data: low-resolution scene point clouds, ground truth
high-resolution point clouds, high-resolution point clouds computed from up-sampling
model output, low and high-resolution synthetic model of a scanned object designed in
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(a) (b)

(c) (d)

Figure 5.3: Figure (a) shows a photo of a point cloud computed from a high-resolution
ground truth depth map. Figure (b) shows the low-resolution sample point cloud.
Figures (c) and (d) are outputs of DKN and FDSR models. Figures (b), (c), and (d)
show Hausdorff’s distance for every point when comparing the point clouds to the
ground truth from the figure (a). Hausdorff distances of points are mapped to RGB
spectre. The most blue points are the most accurate, and the red ones are inaccurate
- not fitting into 2 millimeters maximal deviation. The Hausdorff distances in the
accurate interval of 0 - 2 millimeters are linearly mapped from blue through green to
red.
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CAD software. If we find out that the mesh computed from our up-sampled depth map
matches the synthetic model, it would prove the correctness of our models and allow
us to work with low resolution in general and up-sample it with our models afterward.
We were not able to get data for the 3D fusion task from the Photoneo MotionCam-3D
[18]. Generating data that would fit our requirements included non-trivial intervention
into technology and software available for us. Performing the 3D fusion experiment
described above is a good type for future work that can be done with the output of this
thesis.

Metrics conclusion

To conclude, we trained two models: FDSR [7] and DKN [11]. These CNN models
take down-sampled depth maps as input and provide up-sampled high-resolution depth
maps as output. We introduced the RMSE metric that showed these models outperform
the simple nearest neighbor up-sample method. For a more precise analysis of the
up-sampled depth maps, we computed unstructured 3D point clouds from them. We
examined them in Meshlab software [20] and found that CNN models outperformed the
nearest neighbor method. The surface of the scanned object was smoother and closer
to ground truth in general. From the user’s point of view, we consider the FDSR and
DKN output point clouds useful for further processing. We analyzed model output
point clouds with a quantitative approach too. We used Hausdorff distance [9] of
point clouds to compare our FDSR and DKN point clouds with the ground truth. The
Hausdorff distance was visualized by mapping the point’s color to an RGB specter.
Colored point clouds showed that FDSR and DKN models have a certain error on the
object edges but clearly outperform the nearest neighbor method, which we expected to
happen. There will always be some error present when using CNN models. There is,
of course, space for improving DKN and FDSR precision by using a bigger dataset or
fine-tuning training parameters. Using the mentioned metrics we can conclude that the
DKN model provides better results than the FDSR. After all, we trained models usable
for up-sampling depth maps from Photoneo MotionCam-3D [18]. The output depth
maps are appropriate for further processing.

5.4 Time measurements

One of the motivations for the depth map super-resolution task was speeding up its
processing pipeline. The main idea was to down-sample the input depth map, perform
filtering in low resolution, and up-sample it back using our CNN model. If we want
to evaluate the efficiency of our solution, we need a reference comprising of time
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Resolution [px] 140x200 560x800 1120x800 1680x1200
Time [s] 0.054 0.068 0.091 0.184

Table 5.3: Measured time of the depth map processing by the Photoneo pipeline on
different resolutions. The time value for the lowest resolution is estimated by fitting
the second-degree polynomial function to known high-resolution values.

Model FDSR DKN
Time [s] 0.007 0.634

Table 5.4: Measured time of the depth map processing by FDSR and DKN models on
depth maps with 140x200 resolution.

measurements of some real depth-map-filtering pipeline on concrete image resolutions.
Our reference will be the Photoneo filtering pipeline. We did not have access to the
setting parameters of the pipeline, but we were able to measure time for three different
resolution runs. From the obtained time values, we estimated the running time value
on our down-sampled depth map resolution. The estimated value was computed by
fitting the second-degree polynomial function to three known values. The measured
times of the pipeline with our low-resolution estimated value are stated in Tab. 5.3.
From the measured times, we see that processing time tends to grow exponentially
while increasing the depth map resolution. That means if we train models on higher
resolution depth maps, we can bring more significant processing time improvement. The
future work that would give us a more accurate image of the pipeline time improvement
is a modification of the pipeline parameters to work on our low-resolution samples.
Measuring the actual time values would be better than their estimation.

To analyze the possible processing time improvement by super-sampling depth map,
we measured the time of our FDSR [7] and DKN [11] models. The models were trained
on a dataset comprising depth maps with 560x800 resolution. We computed the average
time from ten runs. The results are stated in Tab. 5.4. We can observe that the
FDSR model is about 100 times faster than the DKN model. Compared to pipeline
processing time, it is clear that the DKN can not be used for run-time improvement.
The advantage of using DKN is the higher precision of results. The FDSR brings speed
and can be used for speeding up the pipeline. The DKN can be used for the depth map
quality improvement, which was our second motivation to super-sampling task. We
can use cheaper devices providing low-resolution depth maps and up-sample them by
the trained model.

The other procedures we must count when measuring the depth map processing time
are down-sampling and filling. Our implementation of these two currently needs to be
more effective for speeding up the filtering pipeline. Average time from five runs of our
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depth map down-sampling in 1,68s. Our down-sampling procedure is not optimized yet
for running entirely on the GPU. Improving this process is a suggestion for future work
that can be done to improve our current solution and make it capable of speeding up
the pipeline. The same for the down-sampling applies to the proposed filling procedure.
Currently, it takes 0,36s to fill the input low-resolution depth map. We proposed
and implemented the filling and down-sampling procedures to stabilize the training
process that brings usable models with acceptable accuracy. If the 3D-capture device
provided completely defined depth maps, our models could be used directly without
the pre-processing.

For now, our models can be used to improve the depth map quality by increasing its
resolution. If we optimize the depth map pre-processing procedures or the 3D-capture
device provides us with a sample that does not need to be filled, we can use models to
speed up the pipeline. We could also get more significant results by speeding up the
filtering process by training models for higher resolution as the pipeline processing time
grows exponentially with the increasing depth map resolution.



Conclusion

In this thesis, we were solving the depth map super-resolution task. We chose the
Photoneo MotionCam-3D device [18] for generating the dataset suitable for the fusion
task. This dataset is different from the available ones. We studied available publications
on the task and decided to use two deep learning CNN models: FDSR [7] and DKN
[11]. These models were originally trained on a dataset created using a Microsoft
Kinect device [13], whose output data are in lower resolution and less accurate than
the MotionCam-3Ds. We had to pre-process the MotionCam-3D data for the models to
work correctly. We proposed a filling method for estimating the undefined depth map
pixels. The depth map filling procedure ensured the stability of the training. We used
the same filling procedure to augment intensity textures to enhance their correlation to
depth maps. The input data were normalized before the training. To improve model
precision and stabilization of the training, we proposed a custom loss function that
gives attention to important areas of the depth maps. We trained modified models on
our dataset and evaluated the achieved results with several quantitative and qualitative
metrics. The achieved high-resolution depth maps clearly outperform the simple nearest
neighbor method. User analysis by Meshlab software [20] and the quantitative analysis
by Hausdorff’s distance showed that point clouds computed from the model’s output are
usable for further processing. The DKN model achieved better results when considering
the output depth map precision. We also measured the computing time of the models
and found that the FDSR model is significantly faster. From the measured times and
the outputs obtained by the models, we can say that the DKN model is better for the
depth map quality improvement and the FDSR model for the speeding up the filtering
pipeline. Based on the chosen evaluation metrics and the time measurements, our
results satisfy the aimed goals of the thesis.
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