Super sampling of 3D scans using deep learning

Martin Melicherčík Supervisor: doc. RNDr. Martin Madaras, PhD.

3D scanning

- Virtual representation of 3D objects
- Usage: product validation, analysis of archeological findings...

Representation of scanned scene

- Point cloud set of points in 3D space
- Structured point cloud 2D matrix where every element represents information about position in 3D space

Data from MotionCam-3D

- Depth map (Structured point cloud)
- Intensity texture (Grayscale photo)

Photoneo MotionCam-3D

MotionCam-3D data example

Linear scale **blue** to green

Grayscale

Problem definition

- Depth map super resolution
- INPUT: LR depth map, HR Intensity texture (grayscale image)
- OUTPUT: HR depth map
- Intensity texture is used as guidance image (additional input information)

Problem definition

• Point clouds generated from LR and HR depth maps

Goals of thesis

- Create dataset using Photoneo MotionCam-3D
- Choose and implement CNN model for defined problem
- Propose metric for evaluation

Dataset

- Dataset sample is triplet: HR intensity texture, LR depth map, HR depth map
- Dataset size: 1200 samples
- Main focus on the 3D object fusion task
- Scene type: One object placed on the flat ground surface

Implemented Depth map SR models

• FDSR : Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline, Lingzhi He et al. 2021

• DKN : Deformable Kernel Networks for Joint Image Filtering: Beomjun Kim, Jean Ponce, Bumsub Ham 2019

DKN model architecture

FDSR model architecture

Undefined areas in depth maps

- Depth maps contain undefined pixels that form areas (Black pixels)
- Existing models work with filled depth maps
- Hole-Filling of RealSense Depth Images Using a Color Edge Map, Ji-Min Cho, Soon-Yong Park, Sung-II Chien 2020

Filling depth maps

- We propose filling method that:
 - Separates object from background
 - Fills background
 - Fills small near object holes
- We have to care about undefined pixels while training otherwise they create large error

0 0		0	0	0	0	0	0	0	0	ſ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0 0	1	10	9	9	10	9	8	8	0		1	1	0	0	0	0	0	0	0	1		1	1	0	0	0	0	0	0	0	1
0 1	2	0	0	0	0	10	9	8	0		1	0	1	1	1	1	0	0	0	1		1	0	2	2	2	2	0	0	0	1
0 1	1	0	0	0	10	9	7	7	0	3	1	0	1	1	1	0	0	0	0	1		1	0	2	2	2	0	0	0	0	1
0 1	1	0	0	13	12	10	9	8	0	č	1	0	1	1	0	0	0	0	0	1		1	0	2	2	0	0	0	0	0	1
0 1	0	0	10	9	0	0	6	6	0		1	0	1	0	0	1	1	0	0	1		1	0	2	0	0	3	3	0	0	1
0 1	0	0	0	9	8	0	7	6	0		1	0	1	1	0	0	1	0	0	1		1	0	2	2	0	0	3	0	0	1
0 0		8	8	7	7	0	7	6	0		1	1	0	0	0	0	1	0	0	1		1	1	0	0	0	0	3	0	0	1
0 0		0	7	6	6	6	7	6	0		1	1	1	0	0	0	0	0	0	1		1	1	1	0	0	0	0	0	0	1
0 0	1	0	0	0	0	0	0	0	0		1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1
0. 08	-0.0			(9	1										0											6	•)				
h h		*		10	•)	h	in .		h.		٥	0	0	0	6	2)	0	0	0	٨		0	0	0	0	0	-) 0	6	6	1.	0
b b		0	0	0	0	0	0	0	h		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	a	0	0	0	0
b 0		0	0	0	0	0	0	0	b		0	12	2	2	2	2	10	0	0	0		0	0	12	12	12	12	0	0	0	0
b 0		0	0	0	0	0	0	0	b		0	11	2	2	2	10	0	0	0	0		0	0	11	11	11	0	0	0	0	0
b 0		0	0	0	0	0	0	0	b		0	11	2	2	13	0	0	0	0	0		0	0	13	13	0	0	0	0	0	0
b 0	1	0	0	0	0	0	0	0	b		0	10	2	10	0	ò	0	0	0	0		0	0	10	0	0	0	0	0	0	0
b 0	1	0	0	0	0	0	0	0	b		0	10	2	2	9	0	0	Ó	0	0		0	0	10	10	0	0	0	0	0	0
b b		0	0	0	0	0	0	0	b		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
b b		ь	0	0	0	0	0	0	b		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
b b		ь	b	b	b	b	b	b	b		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
				(6	1)					0.	_				6	•)										(6)				
0 0		0	ō	0	0	0	ò	0	0		0	0	0	0	0	0	0	0	0	0		b	b	b	b	b	b	b	b	b	b
0 0	+	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		b	b	10	9	9	10	9	8	8	b
0 0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		b	12	12	12	12	12	10	9	8	b
0 0	T	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		b	11	11	11	11	10	9	2	7	b
0 0	T	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		b	11	13	13	13	12	10	9	8	b
0 0	Ť	0	0	9	3	3	6	0	0	8	0	0	0	0	0	9	9	0	0	0		b	10	10	10	9	9	9	6	6	b
0 0		0	0	0	8	3	7	0	0	<u>.</u>	0	0	0	0	0	0	8	0	0	0		b	10	10	10	9	8	8	7	6	b
0 0		0	0	0		3	7	0	0		0	0	0	0	0	0	7	0	0	0		b	ь			7	7	7	7	6	ь
0 0	T	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		b	ь	b	7	6	6	6	7	6	b
0 0		0	0	0	0	0	0	0	0	Ľ –	0	0	0	0	0	0	0	0	0	0		b	b	b	b	b	b	b	b	b	b
				(g	s)										(1	1)										(i)				

Depth map filling

- Small holes filled row-wise
- Hole row filled with maximum value of the row's hole border pixels
- Approximate reasonable values for stable training

Depth map filling - background plane

Texture augmentation

- Improve correlation between depth map and intensity texture
- Apply same filling procedure as for depth map undefined areas
- Removes surface structures from undefined areas

Modifying CNN models

- Halving DKN filters on each layer to fit our hardware limitations
- FDSR and DKN use L2 loss
- We propose loss function that gives attention to scanned object
- Object loss function:
 - Fitting plane to scene ground
 - Extracting set of pixels representing scanned object
 - Assign 100-times higher weight to the object's pixels
 - Compute weighted mean squared error

Object loss function

Evaluation

- Metrics
 - Depth map RMSE (quantitative)
 - Point cloud
 - Analysis in Meshlab (qualitative)
 - Hausdorff's distance of point clouds (quantitative)
 - \circ Mesh future work

Depth map metric -RMSE

- RMSE Root mean squared error
- Object RMSE RMSE computed only from object's pixels
- Object loss Our proposed loss function

Method	RMSE	Object RMSE	Object loss
FDSR	1.9537	4.4297	1.0427
DKN	2.2696	6.9191	2.3058
Nearest	3.0778	10.8156	7.0692

Point cloud metrics - Meshlab analysis

Point cloud metrics - Hausdorff's distance

- Linear mapping of Hausdorff's distance to RGB spectre
- Mapping is from **blue** (small distance) through **green** to **red** (large distance) scale 0 2 mm

Point cloud metrics - Hausdorff's distance

Method	min	max	mean	RMSE
FDSR	0.0000	9.8178	0.4650	0.7755
DKN	0.0000	10.3815	0.4449	0.7978
Nearest	0.0000	29.5586	0.4144	0.7455

Time measurements

• Pipeline computing time

Resolution [px]	140x200	560x800	1120x800	1680x1200
Time [s]	0.054	0.068	0.091	0.184

• Models computing time

Model	FDSR	DKN
Time [s]	0.007	0.634

Thank you for your attention

Martin Melicherčík

Downsampling vs. Upsampling time

Operation	FDSR Upsampling	DKN Upsampling	Downsampling
Time [s]	0.007	0.634	1.68

LR - NEAREST NEIGHBOR

ImageMagic resize

Sources

- <u>https://www.photoneo.com/products/phoxi-scan-m/</u>
- <u>https://www.photoneo.com/3d-model-creation/</u>
- <u>https://www.bricsys.com/blog/point-clouds-whats-the-point</u>
- <u>https://github.com/jun0kim/DKN</u>
- <u>https://www.meshlab.net/</u>
- <u>https://arxiv.org/pdf/2104.06174v1.pdf</u>