Descriptional complexity of push down automata

Bc. Lukas Kiss

Supervisor: prof. RNDr. Branislav Rovan, PhD.

17 June 2020 Dept. of Computer Science FMFI

• Number of states? (one state is enough)

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.

- How to define a good descriptional complexity on PDA.
 - Number of states? (one state is enough)
 - Number of stack symbols? (two stack symbols is enough)
 - Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.
 - Tight lower bounds and acceptance mode influence on complexity.

- How to define a good descriptional complexity on PDA.
 - Number of states? (one state is enough)
 - Number of stack symbols? (two stack symbols is enough)
 - Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.
 - Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.

- How to define a good descriptional complexity on PDA.
 - Number of states? (one state is enough)
 - Number of stack symbols? (two stack symbols is enough)
 - Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.
 - Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
 - Lower bound for D(1,p) subclass.

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.
 - Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
 - Lower bound for D(1,p) subclass.
 - Upper bound for D(n,2) subclass.

- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses D(1,p) and D(n,2).
- PDA on Regular Languages.
 - Upper bounds for a given number of stack symbols.
 - Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
 - Lower bound for D(1,p) subclass.
 - Upper bound for D(n,2) subclass.

• Upper bounds on operations \cup , *, . in D(1,p) and D(n,2).

• Similar approach as Labath and Rovan did on deterministic PDA.

• Similar approach as Labath and Rovan did on deterministic PDA.

Theorem

There is no function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ meeting the following conditions:

• For every two PDA A and \hat{A} recognizing the language L:

if
$$(n, p) \prec (\hat{n}, \hat{p})$$
 then $f(n, p) < f(\hat{n}, \hat{p})$.

2 If A and \hat{A} are two minimal PDA recognizing L then:

 $f(n,p)=f(\hat{n},\hat{p}).$

D(n, p) is the family of push down automata using at most n states and at most p stack symbols.

• *D*(1, *p*). (one state)

D(n, p) is the family of push down automata using at most n states and at most p stack symbols.

• D(1, p). (one state)

• $\Gamma c(L) = x$, one state PDA needs at least x stack symbols to accept L.

D(n, p) is the family of push down automata using at most n states and at most p stack symbols.

- D(1, p). (one state)
 - $\Gamma c(L) = x$, one state PDA needs at least x stack symbols to accept L.
- D(n, 2). (two stack symbols)

D(n, p) is the family of push down automata using at most n states and at most p stack symbols.

- *D*(1, *p*). (one state)
 - $\Gamma c(L) = x$, one state PDA needs at least x stack symbols to accept L.
- D(n, 2). (two stack symbols)
 - Qc(L) = y, two stack symbols PDA needs at least y states to accept L.

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant *p*.

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant *p*.

Theorem

For any *n* state FSA A_1 there exists a PDA A_2 with $\lceil \frac{n}{p} \rceil$ states and *p* stack symbols such that $N(A_2) = L(A_1)$.

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant *p*.

Theorem

For any *n* state FSA A_1 there exists a PDA A_2 with $\lceil \frac{n}{p} \rceil$ states and *p* stack symbols such that $N(A_2) = L(A_1)$.

• Idea: The PDA uses combination of stack symbol and state as representation of FSA state.

Let $a_1, \ldots a_n$ be distinct symbols for any $n \ge 1$. Let

Let $a_1, \ldots a_n$ be distinct symbols for any $n \ge 1$. Let • $L_1[n] = a_1^* a_2^* \ldots a_n^*$

→ ∃ ▶

Let $a_1, \ldots a_n$ be distinct symbols for any $n \ge 1$. Let

- $L_1[n] = a_1^* a_2^* \dots a_n^*$
- $L_2[n] = \{a_1^{kn} | k \ge 0\}.$

→ ∃ ▶

Let $a_1, \ldots a_n$ be distinct symbols for any $n \ge 1$. Let

- $L_1[n] = a_1^* a_2^* \dots a_n^*$
- $L_2[n] = \{a_1^{kn} | k \ge 0\}.$

Theorem

 $\Gamma c(L_1[p]) = p, \forall p \in N.$

- **4 ∃ ≻ 4**

Let $a_1, \ldots a_n$ be distinct symbols for any $n \ge 1$. Let

- $L_1[n] = a_1^* a_2^* \dots a_n^*$
- $L_2[n] = \{a_1^{kn} | k \ge 0\}.$

Theorem

$$\Gamma c(L_1[p]) = p, \forall p \in N.$$

Theorem

$$\Gamma c(L_2[n]) = 2$$
, for any $n \ge 2$ and $Qc(L_2[n]) = 1$, for any $n \ge 1$.

• • = • • =

Image: Image:

PDA on Regular Languages

- Allow one stack symbol.
- How does the descriptional complexity change for $L_2[n]$?

- Allow one stack symbol.
- How does the descriptional complexity change for L₂[n]?
- Accepting by stack:

Theorem

The smallest number of states for any counter automaton accepting the language $L_2[n]$ by empty stack is **two**, for any $n \ge 2$.

- Allow one stack symbol.
- How does the descriptional complexity change for L₂[n]?
- Accepting by stack:

Theorem

The smallest number of states for any counter automaton accepting the language $L_2[n]$ by empty stack is **two**, for any $n \ge 2$.

• Accepting by final state:

Theorem

The smallest number of states for any push down automaton using one stack symbol accepting language $L_2[n]$ by final state is **n**, for any $n \ge 2$.

• The one state PDA using final state acceptance mode do not define all context free languages.

• The one state PDA using final state acceptance mode do not define all context free languages.

Notation

Let
$$a_1, \ldots, a_p, b_1, \ldots, b_p$$
 be distinct symbols for any $p \ge 1$. Let $\Sigma_p = \{a_1, \ldots, a_p, b_1, \ldots, b_p\}$

$$L_p = \{w(h(w))^R | w \in \{a_1, a_2, \dots, a_p\}^*\}$$

where *h* is the homomorphism defined by $h(a_i) = b_i$, for each $a_i \in \{a_1, a_2, \dots, a_p\}$.

Theorem

 $\Gamma c(L_p) = p + 1, \forall p \in N.$

• We have proved that on each b_i the automaton has to pop a stack symbol.

Theorem

 $\Gamma c(L_p) = p + 1, \forall p \in N.$

- We have proved that on each b_i the automaton has to pop a stack symbol.
- On each *b_i* the automaton has to pop different stack symbol.

• We have proved that both acceptance modes define all context free languages.

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
 - Additional stack symbol \implies D(n,3).

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
 - Additional stack symbol \implies D(n,3).
- Reduction from three stack symbols to two.
 - Encoding function *h*.

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
 - Additional stack symbol \implies D(n,3).
- Reduction from three stack symbols to two.
 - Encoding function h.

Lemma

Let A in D(s,3) be an automaton. Then there exists a push down automaton B using two stack symbols and 2s states such that L(B) = L(A).

Lemma

Let A in D(s,3) be an automaton. Then there exists a push down automaton B using two stack symbols and 2s states such that N(B) = N(A)

Notation

Let a, b, c be distinct symbols. Let $\Sigma = \{a, b, c\}$. For each $r \ge 1$ let

- $L = \{w = a^m b^m | m \ge 1\}$
- $L_1[r] = \{c^m | 0 \le m \le r\}$
- $L_2[r] = Shuf(L, L_1[r]).$
- Both stack symbols are used for keeping track of symbols a and b.

Let a, b, c be distinct symbols. Let $\Sigma = \{a, b, c\}$. For each $r \ge 1$ let

- $L = \{w = a^m b^m | m \ge 1\}$
- $L_1[r] = \{c^m | 0 \le m \le r\}$
- $L_2[r] = Shuf(L, L_1[r]).$
- Both stack symbols are used for keeping track of symbols *a* and *b*.
- We modify *L* in order to "force" the PDA to check some additional property.

Let a, b, c be distinct symbols. Let $\Sigma = \{a, b, c\}$. For each $r \ge 1$ let

- $L = \{w = a^m b^m | m \ge 1\}$
- $L_1[r] = \{c^m | 0 \le m \le r\}$
- $L_2[r] = Shuf(L, L_1[r]).$
- Both stack symbols are used for keeping track of symbols *a* and *b*.
- We modify *L* in order to "force" the PDA to check some additional property.

Theorem

There exists a PDA A_r using two stack symbols and r + 1 states such that $N(A_r) = L_2[r]$.

< □ > < □ > < □ > < □ >

operation	number of stack symbols
U	p_1+p_2+1
	$ ho_1+ ho_2+1$
*	$p_1 + 1$

Table: Sufficient number of stack symbols.

Image: Image:

operation	empty stack	final state
U	r+s+1	r+s+1
	2(r+s)+2	2(r+s) + 2
*	2r + 2	2r + 2

Table: Sufficient number of states

• The descriptional complexity does not depend on acceptance mode.

Thank you for your attention

$$L_1[n] = a_1^* a_2^* \dots a_n^*$$

Lemma 2.2.1

Let A in D(1, p) be an automaton accepting the language $L_1[n]$, where $p, n \in N$. Suppose $\delta(q_0, a_i, Z) \neq \emptyset$ and $\delta(q_0, a_j, \hat{Z}) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

$$L_1[n] = a_1^* a_2^* \dots a_n^*$$

Lemma 2.2.1

Let A in D(1, p) be an automaton accepting the language $L_1[n]$, where $p, n \in N$. Suppose $\delta(q_0, a_i, Z) \neq \emptyset$ and $\delta(q_0, a_j, \hat{Z}) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

Lemma 2.2.1

Let A in D(1, p) be an automaton accepting the language $L_1[n]$, where $p, n \in N$ and $p \leq n$. Suppose $\delta(q_0, a_i, Z) \neq \emptyset$ and $\delta(q_0, a_j, \hat{Z}) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

< ロト < 同ト < ヨト < ヨト

- We wanted to show that there exists $\epsilon cycle$, on which the automaton removes γ_i from the stack.
- Corrected: There exists a input word w_i, on which the automaton removes γ_i from the stack.

 $L_2[n] = \{a_1^{kn} | k \ge 0\}.$

イロト イヨト イヨト イヨト

$$L_{Q1} = \{\epsilon, \underbrace{a_1 \dots a_1}_n\}.$$

Bc. Lukas Kiss

-

Image: A match a ma

Question 2.

•
$$L = \emptyset, L = \Sigma^*$$

• $L_{odd} = \{a^k | k \text{ is odd }\} = \{a^{2m+1} | m \in N\}$
 $(\epsilon, Z_1), Z_1Z_1Z_1$
 $start \longrightarrow q_0$
 $(a, Z_1), \epsilon$

• Generally:
$$L_k = \{a^{km+1} | m \in N\}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト