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Combining Measures

Similar approach as Labath and Rovan did on deterministic PDA.

Theorem

There is no function f : N× N→ N meeting the following conditions:

1 For every two PDA A and Â recognizing the language L:

if (n, p) ≺ (n̂, p̂) then f (n, p) < f (n̂, p̂).

2 If A and Â are two minimal PDA recognizing L then:

f (n, p) = f (n̂, p̂).
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Our Approach

Notation

D(n, p) is the family of push down automata using at most n states and at
most p stack symbols.

D(1, p). (one state)

Γc(L) = x , one state PDA needs at least x stack symbols to accept L.

D(n, 2). (two stack symbols)

Qc(L) = y , two stack symbols PDA needs at least y states to accept L.
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PDA on Regular Languages

How the state complexity can be effected by stack?

Limit the number of stack symbols to some constant p.

Theorem

For any n state FSA A1 there exists a PDA A2 with dnp e states and p stack
symbols such that N(A2) = L(A1).

Idea: The PDA uses combination of stack symbol and state as
representation of FSA state.
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PDA on Regular Languages

Notation

Let a1, . . . an be distinct symbols for any n ≥ 1. Let

L1[n] = a∗1a
∗
2 . . . a

∗
n

L2[n] = {akn1 |k ≥ 0}.

Theorem

Γc(L1[p]) = p, ∀p ∈ N.

Theorem

Γc(L2[n]) = 2, for any n ≥ 2 and Qc(L2[n]) = 1, for any n ≥ 1.
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PDA on Regular Languages

Allow one stack symbol.

How does the descriptional complexity change for L2[n]?

Accepting by stack:

Theorem

The smallest number of states for any counter automaton accepting the
language L2[n] by empty stack is two, for any n ≥ 2.

Accepting by final state:

Theorem

The smallest number of states for any push down automaton using one
stack symbol accepting language L2[n] by final state is n, for any n ≥ 2.
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D(1,p) on Context Free Languages

The one state PDA using final state acceptance mode do not define
all context free languages.

Notation

Let a1, . . . , ap, b1, . . . , bp be distinct symbols for any p ≥ 1. Let
Σp = {a1, . . . , ap, b1, . . . , bp}

Lp = {w(h(w))R |w ∈ {a1, a2, . . . , ap}∗}

where h is the homomorphism defined by h(ai ) = bi , for each
ai ∈ {a1, a2, . . . , ap}.
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D(1,p) on Context Free Languages

Theorem

Γc(Lp) = p + 1, ∀p ∈ N.

We have proved that on each bi the automaton has to pop a stack
symbol.

On each bi the automaton has to pop different stack symbol.
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D(n,2) on Context Free Languages

We have proved that both acceptance modes define all context free
languages.

We cannot use directly standard constructions.

Additional stack symbol =⇒ D(n,3).

Reduction from three stack symbols to two.

Encoding function h.

Lemma

Let A in D(s, 3) be an automaton. Then there exists a push down
automaton B using two stack symbols and 2s states such that
L(B) = L(A).

Lemma

Let A in D(s, 3) be an automaton. Then there exists a push down
automaton B using two stack symbols and 2s states such that
N(B) = N(A)
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D(n,2) on Context Free Languages

Notation

Let a, b, c be distinct symbols. Let Σ = {a, b, c}. For each r ≥ 1 let

L = {w = ambm|m ≥ 1}
L1[r ] = {cm|0 ≤ m ≤ r}
L2[r ] = Shuf (L, L1[r ]).

Both stack symbols are used for keeping track of symbols a and b.

We modify L in order to ”force” the PDA to check some additional
property.

Theorem

There exists a PDA Ar using two stack symbols and r + 1 states such that
N(Ar ) = L2[r ].
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Complexity of Operations in D(1,p)

operation number of stack symbols

∪ p1 + p2 + 1
. p1 + p2 + 1
∗ p1 + 1

Table: Sufficient number of stack symbols.

Bc. Lukas Kiss Complexity of PDA 17 June 2020 12 / 19



Complexity of Operations in D(n,2)

operation empty stack final state

∪ r + s + 1 r + s + 1
. 2(r + s) + 2 2(r + s) + 2
∗ 2r + 2 2r + 2

Table: Sufficient number of states

The descriptional complexity does not depend on acceptance mode.
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Thank you for your attention

Bc. Lukas Kiss Complexity of PDA 17 June 2020 14 / 19



Lemma 2.2.1

Notation

L1[n] = a∗1a
∗
2 . . . a

∗
n

Lemma 2.2.1

Let A in D(1, p) be an automaton accepting the language L1[n], where
p, n ∈ N. Suppose δ(q0, ai ,Z ) 6= ∅ and δ(q0, aj , Ẑ ) 6= ∅ for i 6= j . Then

Z 6= Ẑ .

Lemma 2.2.1

Let A in D(1, p) be an automaton accepting the language L1[n], where
p, n ∈ N and p ≤ n. Suppose δ(q0, ai ,Z ) 6= ∅ and δ(q0, aj , Ẑ ) 6= ∅ for

i 6= j . Then Z 6= Ẑ .
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Lemma 2.2.1

We wanted to show that there exists ε− cycle, on which the
automaton removes γi from the stack.

Corrected: There exists a input word wi , on which the automaton
removes γi from the stack.
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Question 1.

Notation

L2[n] = {akn1 |k ≥ 0}.

q0start

(ε,Z2), Z2Z1 . . .Z1︸ ︷︷ ︸
n

(a1,Z1), ε

(ε,Z2), ε
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Question 1.

Notation

LQ1 = {ε, a1 . . . a1︸ ︷︷ ︸
n

}.

q0start

(ε,Z2), Z1 . . .Z1︸ ︷︷ ︸
n

(a1,Z1), ε

(ε,Z2), ε
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Question 2.

L = ∅, L = Σ∗

Lodd = {ak | k is odd } = {a2m+1|m ∈ N}

q0start

(ε,Z1), Z1Z1Z1

(a,Z1), ε

Generally: Lk = {akm+1|m ∈ N}
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