Descriptional complexity of push down automata

Bc. Lukas Kiss

Supervisor: prof. RNDr. Branislav Rovan, PhD.

17 June 2020
Dept. of Computer Science

FMFI

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.
- Tight lower bounds and acceptance mode influence on complexity.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.
- Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $\mathrm{D}(1, \mathrm{p})$ and $\mathrm{D}(\mathrm{n}, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.
- Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
- Lower bound for $\mathrm{D}(1, \mathrm{p})$ subclass.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.
- Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
- Lower bound for $\mathrm{D}(1, \mathrm{p})$ subclass.
- Upper bound for $\mathrm{D}(\mathrm{n}, 2)$ subclass.

Contents

- How to define a good descriptional complexity on PDA.
- Number of states? (one state is enough)
- Number of stack symbols? (two stack symbols is enough)
- Combination? (not possible)
- Two subclasses $D(1, p)$ and $D(n, 2)$.
- PDA on Regular Languages.
- Upper bounds for a given number of stack symbols.
- Tight lower bounds and acceptance mode influence on complexity.
- PDA on Context Free Languages.
- Lower bound for $\mathrm{D}(1, \mathrm{p})$ subclass.
- Upper bound for $\mathrm{D}(\mathrm{n}, 2)$ subclass.
- Upper bounds on operations $\cup, *$, in $D(1, p)$ and $D(n, 2)$.

Combining Measures

- Similar approach as Labath and Rovan did on deterministic PDA.

Combining Measures

- Similar approach as Labath and Rovan did on deterministic PDA.

Theorem

There is no function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ meeting the following conditions:
(1) For every two PDA A and \hat{A} recognizing the language L :

$$
\text { if }(n, p) \prec(\hat{n}, \hat{p}) \text { then } f(n, p)<f(\hat{n}, \hat{p}) .
$$

(2) If A and \hat{A} are two minimal PDA recognizing L then:

$$
f(n, p)=f(\hat{n}, \hat{p})
$$

Our Approach

Notation

$D(n, p)$ is the family of push down automata using at most n states and at most p stack symbols.

- $D(1, p)$. (one state)

Our Approach

Notation

$D(n, p)$ is the family of push down automata using at most n states and at most p stack symbols.

- $D(1, p)$. (one state)
- $\boldsymbol{\Gamma c}(\mathbf{L})=x$, one state PDA needs at least x stack symbols to accept L.

Our Approach

Notation

$D(n, p)$ is the family of push down automata using at most n states and at most p stack symbols.

- $D(1, p)$. (one state)
- $\boldsymbol{\Gamma c}(\mathbf{L})=x$, one state PDA needs at least x stack symbols to accept L.
- $D(n, 2)$. (two stack symbols)

Our Approach

Notation

$D(n, p)$ is the family of push down automata using at most n states and at most p stack symbols.

- $D(1, p)$. (one state)
- $\boldsymbol{\Gamma c}(\mathbf{L})=x$, one state PDA needs at least x stack symbols to accept L.
- $D(n, 2)$. (two stack symbols)
- $\mathbf{Q c}(\mathbf{L})=y$, two stack symbols PDA needs at least y states to accept L.

PDA on Regular Languages

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant p.

PDA on Regular Languages

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant p.

Theorem

For any n state FSA A_{1} there exists a PDA A_{2} with $\left\lceil\frac{n}{p}\right\rceil$ states and p stack symbols such that $N\left(A_{2}\right)=L\left(A_{1}\right)$.

PDA on Regular Languages

- How the state complexity can be effected by stack?
- Limit the number of stack symbols to some constant p.

Theorem

For any n state FSA A_{1} there exists a PDA A_{2} with $\left\lceil\frac{n}{p}\right\rceil$ states and p stack symbols such that $N\left(A_{2}\right)=L\left(A_{1}\right)$.

- Idea: The PDA uses combination of stack symbol and state as representation of FSA state.

PDA on Regular Languages

Notation

Let $a_{1}, \ldots a_{n}$ be distinct symbols for any $n \geq 1$. Let

PDA on Regular Languages

Notation

Let $a_{1}, \ldots a_{n}$ be distinct symbols for any $n \geq 1$. Let

- $L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$

PDA on Regular Languages

Notation

Let $a_{1}, \ldots a_{n}$ be distinct symbols for any $n \geq 1$. Let

- $L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$
- $L_{2}[n]=\left\{a_{1}^{k n} \mid k \geq 0\right\}$.

PDA on Regular Languages

Notation

Let $a_{1}, \ldots a_{n}$ be distinct symbols for any $n \geq 1$. Let

- $L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$
- $L_{2}[n]=\left\{a_{1}^{k n} \mid k \geq 0\right\}$.

Theorem
 $\Gamma c\left(L_{1}[p]\right)=p, \forall p \in N$.

PDA on Regular Languages

Notation

Let $a_{1}, \ldots a_{n}$ be distinct symbols for any $n \geq 1$. Let

- $L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$
- $L_{2}[n]=\left\{a_{1}^{k n} \mid k \geq 0\right\}$.

Theorem
 $\Gamma c\left(L_{1}[p]\right)=p, \forall p \in N$.

Theorem

$\Gamma c\left(L_{2}[n]\right)=2$, for any $n \geq 2$ and $Q c\left(L_{2}[n]\right)=1$, for any $n \geq 1$.

PDA on Regular Languages

- Allow one stack symbol.
- How does the descriptional complexity change for $L_{2}[n]$?

PDA on Regular Languages

- Allow one stack symbol.
- How does the descriptional complexity change for $L_{2}[n]$?
- Accepting by stack:

Theorem

The smallest number of states for any counter automaton accepting the language $L_{2}[n]$ by empty stack is two, for any $n \geq 2$.

PDA on Regular Languages

- Allow one stack symbol.
- How does the descriptional complexity change for $L_{2}[n]$?
- Accepting by stack:

Theorem

The smallest number of states for any counter automaton accepting the language $L_{2}[n]$ by empty stack is two, for any $n \geq 2$.

- Accepting by final state:

Theorem

The smallest number of states for any push down automaton using one stack symbol accepting language $L_{2}[n]$ by final state is \mathbf{n}, for any $n \geq 2$.

$\mathrm{D}(1, \mathrm{p})$ on Context Free Languages

- The one state PDA using final state acceptance mode do not define all context free languages.

$\mathrm{D}(1, \mathrm{p})$ on Context Free Languages

- The one state PDA using final state acceptance mode do not define all context free languages.

Notation

Let $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{p}$ be distinct symbols for any $p \geq 1$. Let $\Sigma_{p}=\left\{a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{p}\right\}$

$$
L_{p}=\left\{w(h(w))^{R} \mid w \in\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}^{*}\right\}
$$

where h is the homomorphism defined by $h\left(a_{i}\right)=b_{i}$, for each $a_{i} \in\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$.

$\mathrm{D}(1, \mathrm{p})$ on Context Free Languages

Theorem

$\Gamma c\left(L_{p}\right)=p+1, \forall p \in N$.

- We have proved that on each b_{i} the automaton has to pop a stack symbol.

$\mathrm{D}(1, \mathrm{p})$ on Context Free Languages

Theorem

$\Gamma c\left(L_{p}\right)=p+1, \forall p \in N$.

- We have proved that on each b_{i} the automaton has to pop a stack symbol.
- On each b_{i} the automaton has to pop different stack symbol.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

- We have proved that both acceptance modes define all context free languages.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
- Additional stack symbol $\Longrightarrow \mathrm{D}(\mathrm{n}, 3)$.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
- Additional stack symbol $\Longrightarrow D(n, 3)$.
- Reduction from three stack symbols to two.
- Encoding function h.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

- We have proved that both acceptance modes define all context free languages.
- We cannot use directly standard constructions.
- Additional stack symbol $\Longrightarrow \mathrm{D}(\mathrm{n}, 3)$.
- Reduction from three stack symbols to two.
- Encoding function h.

Lemma

Let A in $D(s, 3)$ be an automaton. Then there exists a push down automaton B using two stack symbols and $2 s$ states such that $L(B)=L(A)$.

Lemma

Let A in $D(s, 3)$ be an automaton. Then there exists a push down automaton B using two stack symbols and $2 s$ states such that $N(B)=N(A)$

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

Notation

Let a, b, c be distinct symbols. Let $\Sigma=\{a, b, c\}$. For each $r \geq 1$ let

- $L=\left\{w=a^{m} b^{m} \mid m \geq 1\right\}$
- $L_{1}[r]=\left\{c^{m} \mid 0 \leq m \leq r\right\}$
- $L_{2}[r]=\operatorname{Shuf}\left(L, L_{1}[r]\right)$.
- Both stack symbols are used for keeping track of symbols a and b.

$\mathrm{D}(\mathrm{n}, 2)$ on Context Free Languages

Notation

Let a, b, c be distinct symbols. Let $\Sigma=\{a, b, c\}$. For each $r \geq 1$ let

- $L=\left\{w=a^{m} b^{m} \mid m \geq 1\right\}$
- $L_{1}[r]=\left\{c^{m} \mid 0 \leq m \leq r\right\}$
- $L_{2}[r]=\operatorname{Shuf}\left(L, L_{1}[r]\right)$.
- Both stack symbols are used for keeping track of symbols a and b.
- We modify L in order to "force" the PDA to check some additional property.

$D(n, 2)$ on Context Free Languages

Notation

Let a, b, c be distinct symbols. Let $\Sigma=\{a, b, c\}$. For each $r \geq 1$ let

- $L=\left\{w=a^{m} b^{m} \mid m \geq 1\right\}$
- $L_{1}[r]=\left\{c^{m} \mid 0 \leq m \leq r\right\}$
- $L_{2}[r]=\operatorname{Shuf}\left(L, L_{1}[r]\right)$.
- Both stack symbols are used for keeping track of symbols a and b.
- We modify L in order to "force" the PDA to check some additional property.

Theorem

There exists a PDA A_{r} using two stack symbols and $r+1$ states such that $N\left(A_{r}\right)=L_{2}[r]$.

Complexity of Operations in $\mathrm{D}(1, \mathrm{p})$

operation	number of stack symbols
\cup	$p_{1}+p_{2}+1$
\cdot	$p_{1}+p_{2}+1$
$*$	$p_{1}+1$

Table: Sufficient number of stack symbols.

Complexity of Operations in $\mathrm{D}(\mathrm{n}, 2)$

operation	empty stack	final state
\cup	$r+s+1$	$r+s+1$
\cdot	$2(r+s)+2$	$2(r+s)+2$
$*$	$2 r+2$	$2 r+2$

Table: Sufficient number of states

- The descriptional complexity does not depend on acceptance mode.

Thank you for your attention

Lemma 2.2.1

Notation

$L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$

Lemma 2.2.1

Let A in $D(1, p)$ be an automaton accepting the language $L_{1}[n]$, where $p, n \in N$. Suppose $\delta\left(q_{0}, a_{i}, Z\right) \neq \emptyset$ and $\delta\left(q_{0}, a_{j}, \hat{Z}\right) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

Lemma 2.2.1

Notation

$L_{1}[n]=a_{1}^{*} a_{2}^{*} \ldots a_{n}^{*}$

Lemma 2.2.1

Let A in $D(1, p)$ be an automaton accepting the language $L_{1}[n]$, where $p, n \in N$. Suppose $\delta\left(q_{0}, a_{i}, Z\right) \neq \emptyset$ and $\delta\left(q_{0}, a_{j}, \hat{Z}\right) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

Lemma 2.2.1

Let A in $D(1, p)$ be an automaton accepting the language $L_{1}[n]$, where $p, n \in N$ and $p \leq n$. Suppose $\delta\left(q_{0}, a_{i}, Z\right) \neq \emptyset$ and $\delta\left(q_{0}, a_{j}, \hat{Z}\right) \neq \emptyset$ for $i \neq j$. Then $Z \neq \hat{Z}$.

Lemma 2.2.1

- We wanted to show that there exists ϵ-cycle, on which the automaton removes γ_{i} from the stack.
- Corrected: There exists a input word w_{i}, on which the automaton removes γ_{i} from the stack.

Question 1.

Notation

$L_{2}[n]=\left\{a_{1}^{k n} \mid k \geq 0\right\}$.

$$
\left(\epsilon, Z_{2}\right), \underbrace{Z_{2} Z_{1} \ldots Z_{1}}_{n}
$$

$$
\text { start } q_{\left(a_{1}, z_{1}\right), \epsilon}\left(\epsilon, z_{2}\right), \epsilon
$$

Question 1.

Notation

$$
L_{Q 1}=\{\epsilon, \underbrace{a_{1} \ldots a_{1}}_{n}\}
$$

$$
\left(\epsilon, Z_{2}\right), \underbrace{Z_{1} \ldots Z_{1}}_{n}
$$

$$
\text { start } \rightarrow\left(\epsilon, Z_{2}\right), \epsilon
$$

Question 2.

- $L=\emptyset, L=\Sigma^{*}$
- $L_{\text {odd }}=\left\{a^{k} \mid k\right.$ is odd $\}=\left\{a^{2 m+1} \mid m \in N\right\}$

$$
\left(\epsilon, Z_{1}\right), Z_{1} Z_{1} Z_{1}
$$

$$
\left(a, Z_{1}\right), \epsilon
$$

- Generally: $L_{k}=\left\{a^{k m+1} \mid m \in N\right\}$

