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Selective Sequencing

* User has access to the raw signal produced in fixed period of time in real time

* User has option to intervene during the sequencing run and decide a DNA sequence
IS rejected
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Real Adaptive Sampling Setup

Sequencer
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Overview

We emulate selective sequencing runs to facilitate adaptive sampling method
research

We combine well-known adaptive sampling tool with the emulator to demonstrate
its capabilities

We develop our own adaptive sampling tool using the emulator
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Adaptive Sampling

* Adaptive sampling tool development is expensive

— Need for sequencing run using a physical sequencer to observe the adaptive
sampling performance

— Expertise in both the fields of biology and informatics is required

- Emulation options are limited
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Sequencing Emulators

MIinKNOW'’s playback feature

et —
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Selective Sequencing MinKNOW's playback feature
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Virtual Sequencer

* We introduce emulator capable of emulating selective sequencing

* Onread rejection

Emulates the ejection of DNA sequence and loading another one

Uses future read sequenced by the nanopore channel as a base for emulation
Preserves the DNA sequence distribution in the sample

Modifies the number of sequenced on-target/off-target bases

Allows to observe impacts on adaptive sampling performance through increased
target genome coverage, e.g. inspect coverage details
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Emulated Adaptive Sampling Setup
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Implementation Challenges

e Timing issues
- Virtual Sequencer is a multi-threaded python application
- Heavy load of rejection decisions can cause non-negligible latency
- Preferring low unblock latency over scheduled start of sequencing
- Emulation effectively slows down on slower platforms

e Lack of documentation
- Data structures received from physical sequencer
— Minimum obtainable chunk length

- Meaning of obtained signal annotation
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Readfish Integration

* We connect well-known adaptive sampling tool to the virtual sequencer
- We demonstrate minor changes required to Readfish
- We utilize the virtual sequencer to fine-tune Readfish configuration

- We replicate published experiments conducted with Readfish
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Payne et al. Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels.



Original Run

Adaptive
Sampling Run

On-target Read Count
Off-target Read Count
On-target Avg. Length
Off-target Avg. Length
On-target Bases
Off-target Bases

Absolute Enrichment

4310
189113
3562.47b
3725.40b
15.35M
704.52M
1.00x

14358
635277
3459.40b
663.10b
49.67M
421.26M
3.24x
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Mumber of reads

Off-target Read Length Distribution
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Future Work

* Achieved 3.24x absolute enrichment is not completely realistic

- Payne et al. report 1.6x absolute enrichment in a real experiment

 We do not model all aspects of selective sequencing run yet
- The ejection speed of nanopore channel remains unknown

- Failure rate of nanopore channels increases with the intensity of adaptive
sampling
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Machine Learning-Based
Adaptive Sampling (1)

We propose our own adaptive sampling method
- We sacrifice the ability to adaptively sample arbitrary genome
- We specifically sample SARS-CoV-2 from clinical sample

- We skip basecalling step to save time and operate directly with the raw signal
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Machine Learning-Based
Adaptive Sampling (2)

* We designed a CNN model to classify read chunks

* Attempted by other authors but never tested in realistic sequencing run

Only testing accuracy reported
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cnn = Sequential()

cnn.add(ConviD(filters=64, kernel_size=60, strides=7, activation=’relu’,
padding=’same’, input_shape=input_shape))

cnn.add (Dropout (rate=0.1, seed=SEED))

cnn.add(ConvliD(filters=128, kernel_size=60, strides=7, activation=’relu’,
padding=’same’))

cnn.add (MaxPoolingl1D(pool_size=2))

cnn.add (Dropout (rate=0.1, seed=SEED))

cnn.add(ConviD(filters=128, kernel_size=60, strides=7, activation=’relu’,
padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

learning_rate_schedule =
keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=0.0005,

decay_steps=10_000, decay_rate=0.96, staircase=True)




Model Training

* Training dataset properties
- Extracted from sequencing data of PCR amplified SARS-CoV-2 sample
— Approximately balanced with emphasis on covering the entire target genome
- ~800k SARS-CoV-2 examples, 1.6M examples overall, extracted in ~20 minutes
— Model trained for ~2 hours

— Testing accuracy of ~96%
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Selectify

We utilize the virtual sequencer to test Selectify in realistic scenario

We observe model deciding fast but being unable to classify regions not explicitly
covered by training dataset

Readfish

Selectify - 90%

Selectify - 75%

Sensitivity

Specificity

98.78%
37.90%

91.00%
8.13%

88.87%
10.23%

Readfish | Selectify - 90%

Time per data chunk || 4.45ms

Acceleration

1.00x

2.68ms
1.66x
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On-target Read Alignment Distribution

o
o

Fraction of reads

o
S

* Reads mapping to some SARS-CoV-2
regions were systematically rejected

* Method is unable to generalize
knowledge learnt from dataset

* Current version not suitable for
samples with unknown composition

Read alignment starting position 20/2 2



Conclusion

* We developed selective sequencing emulator that facilitates our adaptive sampling
experiments

— Future work can focus on improving its credibility

* We demonstrate use of the emulator when developing adaptive sampling tool
- We achieve superior classification speed

— Classification specificity needs to be improved by further research
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Thank you for your attention!

Time for your questions
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