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Smely Zajko

delivery point.

Figure: Robot Smely Zajko at the competition in Deggendorf, heading to
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Robot's equipment

Sensors
@ Hokuyo Laser - for detecting obstacles
@ Rotational sensors - for adjusting robot's position in local map
@ Ultrasonic sensors - for detecting obstacles behind the robot

@ ZED Camera - constructs depth map and provides positional
tracking

Android Phone - captures images for predicting driveable path
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Robot's equipment

Other

@ Lenovo Thinkpad notebook - for combining all data and making
decisions

@ Arduino - for controlling motors

o 2x NVIDIA Jetson TX2 - one for making predictions and the
second one for working with ZED Camera
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Objective

Figure: Prediction of driveable path - image resolution 640x480 on NVIDIA
Jetson TX2.
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Previous approaches

M. Nadhajsky: RoboTour!
o Multi-layer perceptron
o Generates small random regions from input image

e Feature vector enriched by other handcrafted features

O. Jariabka, M. Suppa and O. Rudolf: Single Camera Path
Detection for Outdoor Navigation?

@ Convolutional neural network

@ Predicting only rectangles 5x5

M. Nadhajsky. “Robotour’. MA thesis. FMFI UK, 2011.
20. Jariabka et al. “Single Camera Path Detection for Outdoor Navigation”.
CESCG. 2017.
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Previous approaches

Statistical HSV model
@ Precompute which pixels contain driveable segment (from
dataset HSV images)
@ Problems with lighting conditions as well
@ Problems with pixels with similar color to the road
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Convolutional neural network
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ednice dataset

& 5

Figure: Images from the city park of Lednice (640x480).
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Deggendorf dataset

Figure: Images from the city park of Deggendorf (640x480).
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Metrics

@ Binary Accuracy

TP + TN

ACC(]) =
D= TN

@ Intersection over Union (loU)

ToU(/) 1 i': area of overlap of i-th image
0 =—
|I] <= area of union of i-th image
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HSV model results

dataset test accuracy | test loU
Lednice 0.9037 0.8504
Deggendorf 0.8006 0.7403

Table: Results of HSV model measured on both datasets.

Figure: Left: Lednice, right: Deggendorf.
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First attempts

Project for machine learning class
@ MultiNet CNN segmentation module?

@ Training on augmented data - slower training and almost no
improvement in predictions

@ Unable to fit the model to Jetson TX2
@ Overall quite good accuracy due to pretrained encoder

3M. Teichmann et al. “MultiNet: Real-time Joint Semantic Reasoning for
Autonomous Driving”. 2016.
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Models tested

o Unet*

o ResNet®

o SegNet®

e FCN VGG16 3257 (did not work)

40. Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image
Segmentation”. 2015.

5K. He et al. “Deep Residual Learning for Image Recognition”. 2016.

6V. Badrinarayanan et al. “SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation”. 2015.

7). Long et al. “Fully Convolutional Networks for Semantic Segmentation”.
2015.
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Setup of the environment

@ NVIDIA GeForce GTX 1080
Python 3
o Keras + Tensorflow backend

@ imgaug (for data augmentation - blur, transformations etc.)
OpenCV
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RoboTour 2019 - Training results

] model H clr \ loss \ time L \ time D \ test loU L \ test loU D ‘
ResNet || rgb | dcl | 81m 44m 0.9700 0.8878
SegNet || rgb | dcl | 191m | 122m 0.9484 0.8551

Unet rgb | dcl | 523m | 499m 0.9715 0.9017
ResNet || rgb | bce | 76m 42m 0.9711 0.8838
SegNet || rgb | bce | 114m 57m 0.9643 0.8795

Unet rgb | bce | 434m | 451m 0.9705 0.9031
ResNet || hsv | dcl | 45m 61m 0.9660 0.8868
SegNet || hsv | dcl | 144m | 192m 0.9562 0.8788
ResNet || hsv | bce | 54m 86m 0.9725 0.8861
SegNet || hsv | bce | 52m 97m 0.9554 0.8748

Table: Results - Early Stopping. L denotes Lednice and D Deggendorf. clr

- the colorspace of images, time - training time
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Evaluating models on unseen dataset

model clr | loss | test iou model clr | loss | test iou
ResNet || rgb | dcl | 0.8475 ResNet || rgb | dcl | 0.9289
SegNet || rgb | dcl | 0.8502 SegNet || rgb | dcl | 0.9149

Unet rgb | dcl | 0.8810 Unet rgb | dcl | 0.9324
ResNet || rgb | bce | 0.8278 ResNet || rgb | bce | 0.9271
SegNet || rgb | bce | 0.8439 SegNet || rgb | bce | 0.9206

Unet rgb | bce | 0.8812 Unet rgb | bce | 0.9382
ResNet || hsv | dcl | 0.8189 ResNet || hsv | dcl | 0.9300
SegNet || hsv | dcl | 0.8171 SegNet || hsv | dcl | 0.9108
ResNet || hsv | bce | 0.8110 ResNet || hsv | bce | 0.9242
SegNet || hsv | bce | 0.8003 SegNet || hsv | bce | 0.9074

(a) Lednice models on Deggendorf

dataset

(b) Deggendorf models on Lednice

dataset
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RoboTour 2019 - dataset extension

Figure: Preview of images added to dataset at the competition because of
small accuracy on images mostly covered by non-driveable segments.
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RoboTour 2019 - dataset extension - results

(a) Before (b) After

Figure: Same model, slightly different datasets.
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Predictions
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Figure: Comparison of test set predictions by ResNet and SegNet against

ground truths.
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Local Map

Figure: Predictions are incorporated into Local Map®. The robot is
deciding which exit to use.

8M. Fikar. “Local map for a robot for the Robotour contest”. MA thesis.
FMFI UK, 2019.
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RoboTour 2019 - Models

model || disk size | # params | prediction time on Jetson
ResNet || 33 MB | 2,753,729 0.24169 sec
SegNet || 60 MB | 7,818,117 0.36903 sec

Unet || 356 MB | 31,032,837 1.08655 sec

Table: Basic information about models
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Model complexity reduction

@ SegNet - removal of several layers
@ ResNet - removal of every second identity block
@ reduced number of filters

@ investigated usage of dilated convolutions (to improve accuracy)
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Reduced models

model # params | on Jetson test acc | test loU
ResNet-1 || 698,017 | 0.13288 sec | 0.9408 | 0.8836
ResNet-2 || 179,297 0.10143 sec | 0.9360 | 0.8796
ResNet-3 || 1,895,649 | 0.16817 sec | 0.9446 | 0.8919
ResNet-4 || 480,817 | 0.09807 sec | 0.9399 | 0.8850
SegNet-1 || 2,534,401 | 0.31107 sec | 0.9325 | 0.8770
SegNet-2 || 1,075,009 | 0.22216 sec | 0.9339 | 0.8741
SegNet-3 || 391,105 | 0.14389 sec | 0.9413 | 0.8833
SegNet-4 || 206,145 | 0.13818 sec | 0.9380 | 0.8843

Table: Results of modified ResNet and SegNet training
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Comparison of inference times

1.75 A

1.50 A

1.25 A

1.00 A

Time in sec

0.75 4

0.50 +

0.25 4

0.00 4

320x240 640x480 832x624  1024x768 1280x960 1440x1080
Image resolution
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Mobile models

o ShuffleSeg® (ShuffleNet + SkipNet)

o ShuffleNetV21? (ShuffleNetV2 + DeeplabV3+)
o MobileNetV2! (MobileNetV2 + DeeplLabV3+)
o MobileNetV3'? (MobileNetV3 + DeeplLabV3+)

9M. Gamal et al. “ShuffleSeg: Real-time Semantic Segmentation Network”.
(2018).

10S. Tiirkmen et al. “An efficient solution for semantic segmentation:
ShuffleNet V2 with atrous separable convolutions”. 20109.

M. Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2018.

12A Howard et al. “Searching for MobileNetV3". 2019.
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Results of mobile models

’ model H alpha ‘ on Jetson ‘ test acc ‘ test loU ‘
ShuffleSeg 0.25 | 0.05559 sec | 0.8862 | 0.8548
ShuffleNetV2 0.5 | 0.06318 sec | 0.9375 | 0.8799
MobileNetV?2 0.25 | 0.08698 sec | 0.9396 | 0.8770
MobileNetV3-Large || 0.25 | 0.07009 sec | 0.9485 | 0.8908
MobileNetV3-Small || 0.75 | 0.05534 sec | 0.9536 | 0.8977

’ ResNet-4

I

| 0.09807 sec | 0.9399 | 0.8850

Table: Presenting only the best results. Tested on Deggendorf RGB

dataset with binary crossentropy loss. alpha is the hyperparameter for

adjusting the width of the network (width multiplier).
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Active learning

@ Labeling is an expensive and time-consuming process

@ Can we train the model on a smaller portion of data and reach
comparable accuracy?
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Active learning

@ Train the model on a very small number of images

@ Sample another images for labeling based on some score function
© Train the model on extended dataset

@ Repeat steps 2 and 3 until the stopping condition is met
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Sampling methods - Entropy

© Compute entropy for each pixel

H; = —(pilog,(pi) + (1 — pi) logy (1 — pi))

where p; is the probability that pixel belongs to driveable
segment.
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Sampling methods - Entropy

© Compute entropy for each pixel

H; = —(pilog,(pi) + (1 — pi) logy (1 — pi))

where p; is the probability that pixel belongs to driveable
segment.

@ Compute prediction entropy - aggregate over pixels
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Sampling methods - Entropy

© Compute entropy for each pixel

H; = —(pilog,(pi) + (1 — pi) logy (1 — pi))

where p; is the probability that pixel belongs to driveable
segment.

@ Compute prediction entropy - aggregate over pixels

© Sample images with the highest prediction entropy
(uncertainty)
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Sampling methods - Diversity

© Take encoded features from last encoder’s layer
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Sampling methods - Diversity

© Take encoded features from last encoder’s layer

© Reduce the number of feature maps
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Sampling methods - Diversity

© Take encoded features from last encoder’s layer
© Reduce the number of feature maps

© Run K-means algorithm on obtained feature vectors
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Sampling methods - Diversity

© Take encoded features from last encoder’s layer

© Reduce the number of feature maps

© Run K-means algorithm on obtained feature vectors
@ Compute the entropy for each prediction
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Sampling methods - Diversity

© Take encoded features from last encoder’s layer

© Reduce the number of feature maps

© Run K-means algorithm on obtained feature vectors

@ Compute the entropy for each prediction

© Sample images with the highest entropy from each cluster
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init: number of initial images, pick: number of sampled images, reps:
epochs per round, stop: early stopping, imgs: number of images used

Active learning results

init | pick | reps stop imgs | test acc | test loU
30 | 10 3 |ewval 20| 230 9320 | 0.8755
30 5 3 |ewvall5| 111 | 0.9248 | 0.8363
60 | 20 6 |eval 10| 133 | 0.9305 | 0.8731
Table: Entropy sampling
init | pick | reps stop imgs | test acc | test loU
30 | 10 3 |eval20| 210 | 0.9320 | 0.8758
30 5 3 |ewvalls| 97 | 0.9228 | 0.8617
60 | 20 6 |eval 10| 153 | 0.9306 | 0.8770
Table: Diversity sampling
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Active learning results
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Figure: Comparison of entropy, diversity and random sampling methods
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Summary

© Integrated CNN model to robot's vision module

A. Matejov (FMFI UK BA) Efficient Convolutional Neural Networks Recognizing Driveable Trails 34 /36



Summary

© Integrated CNN model to robot's vision module

@ Released 2 datasets - Lednice (333 images) and Deggendorf
(344 images)

A. Matejov (FMFI UK BA) Efficient Convolutional Neural Networks Recognizing Driveable Trails 34 /36



Summary

© Integrated CNN model to robot's vision module

@ Released 2 datasets - Lednice (333 images) and Deggendorf
(344 images)
© Achieved 2nd place at RoboTour 2019 in Deggendorf, Germany

A. Matejov (FMFI UK BA) Efficient Convolutional Neural Networks Recognizing Driveable Trails 34 /36



Summary

© Integrated CNN model to robot's vision module

@ Released 2 datasets - Lednice (333 images) and Deggendorf
(344 images)

© Achieved 2nd place at RoboTour 2019 in Deggendorf, Germany

@ Successfully reduced model complexities for faster predictions

A. Matejov (FMFI UK BA) Efficient Convolutional Neural Networks Recognizing Driveable Trails 34 /36



Summary

© Integrated CNN model to robot's vision module

@ Released 2 datasets - Lednice (333 images) and Deggendorf
(344 images)

© Achieved 2nd place at RoboTour 2019 in Deggendorf, Germany

@ Successfully reduced model complexities for faster predictions

© Tested Mobile models resized with alpha hyper-parameter

A. Matejov (FMFI UK BA) Efficient Convolutional Neural Networks Recognizing Driveable Trails 34 /36



Summary

© Integrated CNN model to robot's vision module

@ Released 2 datasets - Lednice (333 images) and Deggendorf
(344 images)

© Achieved 2nd place at RoboTour 2019 in Deggendorf, Germany

@ Successfully reduced model complexities for faster predictions

© Tested Mobile models resized with alpha hyper-parameter

@ Reduced the number of images needed for training using Active
learning simulations
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Future work

@ Try to train the models in a fully unsupervised way - first works
proposed recently!314

@ Incorporate depth map information from ZED mini camera into
predictions

13M. Chen et al. “Unsupervised Object Segmentation by Redrawing”. 2019.
4T Nguyen et al. “DeepUSPS: Deep Robust Unsupervised Saliency Prediction
via Self-supervision”. 2019.
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Thank you for your attention!
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Otazky

"V aktivnom uceni agregujete entropiu pomocou sictu a priemeru.
Nie sii tieto dve agregacné funkcie vzhladom na pouzity algoritmus
ekvivalentné? Viete navrhnit nejaké iné agregacné funkcie, ktoré by
sa dali pouzit?”

@ Zaoberat sa iba entropiami nad urcitym thresholdom

e Vytvorit “superpixely” (regiény s najvyssou neistotou) na zaklade
thresholdu a vyberat obrazky na zaklade velkosti a pocetnosti
tychto regiénov
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Otazky

“Je spravna klasifikicia vsetkych pixelov rovnako délezita pre robota?
Dala by sa délezitost pixelu zakomponovat do cielovej funkcie,
pripadne prepojit segmentaciu priamo s tvorbou lokalnej mapy
robota?”

@ Lokalna mapa je "docasna" pamit robota
@ Mapa je skonstruovana z dat z réznych senzorov

@ 1 model, do ktorého vstupuje viacero dat a produkuje
mapu/predikciu jazdy (nemame dataset)
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Otazky

“Vedeli by ste si predstavit modifikaciu modelov tak, ze budu
obohatené o hlbkovii informaciu zo zariadenia stereovidenia ZED
Mini, ktoré je na robotovi instalované?”

@ Pridanie samostatného enkédera na hlbkovi mapu a
zakomponovanie tejto informacie do enkédera pre obrazok

@ Dodato¢na informacia pre predikciu prekazok - lepsie
predpovedanie bliziacej sa prekazky (moznost zbavenia sa
laserového senzora?)
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