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Kapitola 1

Systémové programovanie

Software pocitaca moZzeme rozdelit na dva druhy programov: systémové programy, ktoré riadia operacie
samotného poéitada a aplikacné programy, ktoré riesia uZivatel'ské tlohy.

Jednou z charakteristik, ktorou sa viésina systémovych programov odlisuje od aplika¢nych programov
je zdvislost na pocitaci (procesore).

Aplikaény program sa hlavne stustreduje na rieSenie nejakého problému, pricom pouziva poditacé ako
prostriedok. Systémové programy maja podporovat operédcie a pouZitie pocitaca samotného, nie jed-
notlivych aplikéacii. Preto sa zvycajne vztahuja k Struktire poditaca, na ktorom bezia. Napr. asemblery
prekladajti mnemonické instrukcie do strojového kodu, takze format instrukeii, adresné mody atd. priamo
ovplyviiuju design asemblera. Podobne kompilatory generujua strojovy kéd beriic do tvahy také hardwa-
rové charakteristiky ako pocet a pouzitie registrov a dostupné strojové instrukcie. Operac¢né systémy
riadia vSetky prostriedky pocitac¢ového systému.

Na druhej strane st isté aspekty systémového softwaru, ktoré priamo nesuvisia s typom systému, na
ktorom pracuji. Napr. vSeobecny design a logika asemblera je v zaklade rovnaka na vSetkych proceso-
roch. Niektoré techniky optimalizacie kodu pouzivané kompilatormi sii nezavislé od pocitaca. Podobne
linkovanie nezavisle asemblerom prekladanych podprogramov zvyc¢ajne nezavisi od pouzitého pocitaca.

Okrem opera¢ného systému, ktory je najzakladnejsi systémovy program, medzi systémové programy
dalej patria asemblery, kompilatory, makroprocesory, linkre, loadre, editory, debbugovacie systémy.

1.1 Struktura pocitaca

Zjednoduseny model typického pocitaca - ako ho zaviedol v polovici 40-tych rokov 20. stor. matematik
John von Neumann - sa sklada z nasledujicich casti:

e centrdlny procesor (central processing unit) — pozostava z riadiacej jednotky, aritmeticko-logickej
jednotky a internej pamiite (pracovnych registrov — na uchovanie informécie, ktora ma byt rychlo
dostupna)

e hlavnd pamdt — sluzi na uchovavanie informacii a instrukeif

o ustupno-vystupnd jednotka — spéja pocita¢ s periférnymi zariadeniami

Centralny procesor
(CPU)

Aritmeticko-logicka HlaVPa ) V/V
jednotka (ALU) pamit’ jednotka
Riadiaca
jednotka

Niektoré registre slizia na Specialne cely, napr. instruction register (IR) na uloZenie prave vykona-
vanej instrukcie, program counter (PC) na uloZenie adresy nasledujicej instrukcie, stack pointer (SP) na
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1.2. REPREZENTACIA DAT 7

pristup k zasobniku, stavové slovo procesora — processor status word (PSW), ktory obsahuje informacie
o stave sti¢asného procesu.

1.2 Reprezentacia dat

Pocitace slazia na spracovanie dat. Preto je dolezité vediet, s akymi typmi dat pracuji, aké operacie s
nimi moézu vykonévat a ako st data reprezentované v pocitaci.

Ddtovy typ je definovany svojou:

e mnozinou hodnét alebo prvkov
e mnozinou operacii na prvkoch

Na datovy typ sa mozno pozerat 3 sposobmi:

e ako na mnozinu abstraktnych entit a prislusnych operécii, ktoré nemaju vztah k pocitacu — abs-
traktny ddtovy typ

e ako na entity, ktoré definuje a pouziva nejaky programovaci jazyk — virtudlny ddtovy typ

e ako na entity, ktoré su fyzicky uloZzené a s ktorymi naraba hardware pocitaca — fyzicky ddtovy typ

My sa teraz zaujimame o fyzické datové typy. VSetky data si reprezentované ako skupiny bitov.
Vztah medzi mnozinou bitov a prvkami typu sa nazyva kdd (kddovanie). Pouzity kod uréuje fyzicka
reprezentaciu prvkov datového typu.

1.2.1 Numerické datové typy

Pocita¢ pracuje s dvomi hlavnymi typmi numerickych dat: s celymi ¢islami (integer data types) a ¢islami
v pohyblivej radovej ¢iarke (floating point data types).

Najprirodzenejsi sposob reprezentacie nezapornych celych ¢&isel je reprezentacia v dvojkovej stustave.
Pre reprezentéciu zapornych celych ¢isel st mozné tri pristupy:

e sign and magnitude: najlavejsi bit urcuje znamienko ¢isla (0=kladné, 1=zaporné), ostatné bity
déavaju absolitnu hodnotu ¢isla. Nevyhody: 1. dve reprezentéacie ¢isla 0, 2. obvody pre séitanie ¢isel
sa nedaju pouZit pre odcitanie.

e 1’s complement (doplnok do 1): zaporné ¢islo ziskame z kladného &sla (ktoré ma v najlavejSom bite
0) negaciou po bitoch. Nevyhoda: dve reprezentacie ¢isla 0. V tomto pripade sa séitaci obvod da
pouzit pre od¢&itanie (pripoc¢ita sa ¢islo opaéné a k vysledku sa pripo¢ita bit prenosu - énd around
carry").

e 2’s complement (doplnok do 2): zaporné &islo vznikne ako negécia kladného &isla po bitoch zvéiésena
o 1. U tejto reprezentécie uz nie si dve rozne reprezentacie nuly a séitaci obvod sa da pouZit na
odé&itanie (bit prenosu - carry bit - sa ignoruje).

Cisla v pohyblivej radovej ¢iarke treba previest do dvojkovej sustavy a zapisat v normalizovanom
tvare: (—1)#nemienko y mantisa x 26°P°"¢" | kde mantisa je jednoznacne uréend v zavislosti od pouzitého
formatu (napr. pre VAX: pred desatinnou &arkou je 0 a bezprostredne za fiou je ¢islica 1; IEEE standard
pozaduje, aby to bolo ¢islo v tvare "1,zlomok").

V zavislosti od poZadovaného rozsahu a presnosti ¢isel potom jednotlivé forméaty ukladaji mantisu
a exponent do istého po¢tu bitov. Exponent sa zvy¢ajne zvysi o nejakit hodnotu N, aby mal kladnua
hodnotu a ukladé sa ako bezznamienkové ¢islo. Napr. v standarde IEEE vo formate "single precision"sa
pouziva na ulozenie redlneho ¢isla 32 bitov, z toho 1 bit je na znamienko, 8 bitov na zvySeny exponent
(povodny exponent sa zvysi o 127, ¢ize pdvodny exponent mohol byt v rozsahu -127 az 128) a 23 bitov
na zlomkovt ¢ast mantisy. Cisla vo forméte "double precision"sa ukladaja do 64 bitov, z nich je na
zvySeny exponent vyhradenych 11 bitov (povodny exponent sa zvysi o 2047) a na zlomkovu ¢ast mantisy
sa pouziva 52 bitov.



8 KAPITOLA 1. SYSTEMOVE PROGRAMOVANIE
1.3 Jazyk asemblera

Jazyk asemblera (asembler) je mnemonicky jazyk, ktory nahradza instrukcie strojového jazyka mnemo-
nikami (symbolmi).

Na rozdiel od jazykov vy$Sej tirovne nie je asembler prenositelny, lebo je tizko spity so strojovym
jazykom daného pocitaca, s jeho architektirou.

Tym vsak programator moze plne vyuzit vSetky vyhody architektonickych ¢t pocitaca. Programy v
jazyku asemblera maji miniméalny ¢as vykonavania a efektivne vyuZivaji systémové prostriedky.

1.3.1 Typy a forméat instrukcii

Zakladné informécie o programovani v jazyku asemblera si uvedieme pre asembler pocitaca VAX.

VAX asembler pouziva 3 typy inStrukcii:

o strojové inStrukcie (vigkonné) - tie, ktoré st prekladané do strojového kédu a vykonavaja nejaké
operéacie

o direktivy (nevgkonné) - riadiace informacie pre preklada¢ (napr. na rezervovanie miesta pre pre-
menné), zac¢inaji bodkou

e makroinstrukcie - pseudoinstrukcie zavedené pouZivatelom

Strojové instrukcie mozeme dalej rozdelit na 4 zékladné skupiny:

prenos ddt

aritmetické a logické operdcie

e riadenie programu - rozhodovania a skoky

o vstupno-viystupné instrukcie

Format instrukcie:
[Névestie :] KodOperacie [Operand(y)] [;Komentar]

Zvycajne posledny operand je cielovy — teda ten, do ktorého sa ulozi vysledok operécie.

VAX asembler pouziva 16 registrov velkosti 32 bitov (= 4 bajty = dlhé slovo—longword):
RO - R11 st vSeobecné registre (pouzivané na ukladanie medzivysledkov)
R12 = AP — Argument Pointer
R13 = FP - Frame Pointer
R14 = SP - Stack Pointer
R15 = PC — Program Counter

1.3.2 Adresné sposoby

Adresny sposob (adresny mod) je sposob pecifikacie umiestnenia operandov. AZ na niekolko vynimiek
moZe byt lubovolny adresny mod pouzity s Tubovolnou instrukciou. Skoro vietky adresné spdsoby médzu
Specifikovat aj data aj cielovy operand.

Operand moze byt v registri, v paméti alebo v samotnej instrukcii.

Popiseme si niekol’ko zakladnych adresnych sposobov a sacasne uvedieme, ako sa tieto adresné sposoby
prekladaja do strojového kodu.
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1.

Registrovy méd: Rn

Urcuje, Ze operandom je vSeobecny register.

Napr. instrukcia presunu dlhého slova (MOVL): MOVL R3, R7

hovori, Ze sa m4a obsah registra R3 presunut (skopirovat) do registra R7.

Preklad do strojového kodu: instrukcia MOVL mé kod DO (v Sestnastkovej ststave) - ¢ize zabera

1 bajt. Operand v registrovom mode sa tiez preklada do 1 bajtu, priGom v pravom polbajte je ¢islo
registra (0-F) a v Tavom polbajte je 5 (urcuje, Ze ide o registrovy mod).

TakZe preklad uvedenej instrukcie je: 57 53 DO (adresy rastt smerom sprava dolava).
Nepriamy registrovy mod: (Rn)
V registri Rn je pamétova adresa operandu (obsah registra Rn je smernik do pamiite na operand).

Napr. MOVL (R3), R7

hovori, Ze sa ma obsah paméatového miesta vel'kosti 4 bajty, ktorého adresa je v registri R3, presunat
do registra R7.

Preklad do strojového kodu: instrukcia MOVL méa kéd DO, nepriama registrova adresiacia ma v

Tavom polbajte operandu &islo 6, pravy polbajt udava ¢islo registra: 57 63 DO.

Ak by sme pouzili operaciu presunu bajtu MOVB (R3), R7 — tak sa obsah pamétového miesta
velkosti 1 bajt, ktorého adresa je v registri R3, presunie do najpravejsieho bajtu (najnizsie rady)
registra R7.

Autoinkrementovy méd: (Rn)-+

V registri Rn je adresa operandu (obsah registra Rn je smernik do paméte na operand), po uréeni
adresy sa obsah registra automaticky zvysi.

Napr. MOVL (R3)+, R7

hovori, Ze sa mé obsah pamétového miesta velkosti 4 bajty, ktorého adresa je v registri R3, presunut
do registra R7. Po urceni adresy prvého operandu sa obsah registra R3 automaticky zvysi o 4
(pretoze sme pouzili instrukciu narabajiucu s dlhymi slovami = 4 bajty) - ¢ize bude obsahovat
adresu nasledujiceho dlhého slova.

Tento adresny spdsob je vyznamny pre pracu s polami.

Preklad do strojového kédu: v l'avom polbajte operandu je ¢islo 8, pravy polbajt udéava &islo regis-

tra: 57 83 DO.

Autodekrementovy mod: -(Rn)

Obsah registra Rn sa najprv automaticky znizi (o 1, 2 alebo 4 — podla pouzitej instrukcie) a az
potom sa pouzije ako adresa operandu.

Napr. MOVL -(R3), R7

hovori, Ze sa mé obsah registra R3 znizit o 4 a potom sa mé obsah paméitového miesta velkosti 4
bajty (longword), ktorého adresa je v registri R3, presunit do registra R7.

Tento adresny spdsob moZno pouZit pre pracu s polami v opa¢nom poradi.

Preklad do strojového kédu: v l'avom polbajte operandu je ¢islo 7, pravy polbajt udéva ¢islo regis-

tra: 57 73 DO.

Relativny mod: adresa

Pouziva sa pre operandy uloZené v pamiti, ktoré si uréené adresou (névestim).

Napr. MOVL A, R10

hovori, Ze sa mé& obsah paméatového miesta velkosti 4 bajty s adresou A presunit do registra R10.

Preklad do strojového kodu: pri preklade do strojového kodu sa neulozi priamo adresa A, ale rozdiel

medzi adresou A a obsahom PC registra (teda sa preklada relativne k PC registru). Na uloZenie
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vypoditaného rozdielu sa vezme najmensi mozny priestor (1, 2 alebo 4 bajty), do ktorého sa zmesti.
Preklad operandu v relativnom mode sa potom skladéa z 2, 3 alebo 5 bajtov. Prvy bajt (informaé¢ny)
obsahuje v pravom polbajte F (PC register) a v lavom polbajte A, C alebo E podla toho, ¢i rozdiel
vojde do 1, 2 alebo 4 bajtov. Nasledujtce 1, 2 alebo 4 bajty obsahuju rozdiel.

Vyhodou takéhoto prekladu je to, Ze je nezavisly od umiestnenia programu v paméti. Spominany
rozdiel je vlastne vzdialenost paméatového miesta, s ktorym instrukcia naraba, od tejto inStrukcie
a tato vzdialenost je rovnaka bez ohladu na to, kde je program umiestneny. Dalsou vyhodou je, Ze
rozdiel je mozné vypoditat v ¢ase prekladu z "logickych" (relativnych) adries — program adresujeme
od 0 — a netreba poznat adresu, na ktora bude program do pamite zavedeny.

Adresa operandu sa vypocita pri vykonévani instrukcie ako sucet obsahu PC registra (to uz bude
"fyzickdiidresa) a rozdielu.

Nech napr. (relativna) adresa A je 0002 (hexadecimalne) a nech vyssieuvedena instrukcia zacina
na adrese 0142. Na uloZenie rozdielu buda potrebné 2 bajty. PC register bude v ¢ase urcovania
rozdielu (a tiez v ase urfovania adresy operandu) ukazovat na bajt nasledujici za miestom na
uloZenie rozdielu, takZe v nasom priklade bude jeho hodnota 0146 (adresa 0142 = kod inStrukcie,
0143 = informad¢ny bajt CF — rozdiel je v 2 bajtoch, 0144 a 0145 = rozdiel). TakzZe rozdiel je: 0002
- 0146 = FEBC.

Preklad instrukcie do strojového kodu: 5A FE BC CF D0

. Literal a priamy mod: #c¢islo alebo #vyraz

Operandom je priamo hodnota uveden4 v instrukcii. M6ze to byt celo¢iselné konstanta alebo kon-
Stanta v pohyblivej radovej ¢iarke. Tato konstanta moZe byt opisané ¢islom alebo vyrazom (zvy-
¢ajne sa pouZiva len symbol).

Literal a priamy mod vyzeraju rovnako, lisia sa v8ak prekladom do strojového kédu (velkostou
miesta na ich uloZenie). Pod pojmom literal myslime celo¢iselnt konstantu od 0 po 63 (max. 6
bitov) — pri preklade do strojového kodu sa pouZiva len 1 bajt a don sa priamo zapiSe hodnota.

Priklad: MOVL #25, R11 (do registra R11 vloz ¢islo 25)
Preklad do strojového kodu: 5B 19 DO

Rovnako sme mohli definovat konstantu a potom ju pouzit v instrukcii — preklad do strojového
kédu je rovnaky:

MAX=25 MOVL #MAX, R11

Priamy mod zabera 2, 3 alebo 5 bajtov — podla velkosti dét, s ktorymi naraba instrukcia. Prvy
bajt obsahuje vzdy 8F a v nasledujucich 1, 2 alebo 4 bajtoch je uloZzena konstanta.

Priklad: MOVL #-2, R11 (do registra R11 vloz ¢islo -2)

Preklad do strojového kédu: 5B FF FF FF FE 8F DO (na konstantu sme pouzili 4 bajty, lebo
instrukcia MOVL naraba s longwordami)

Ak by sme mali ingtrukciu MOVB #-2, R11, preklad by bol 5B FE 8F 90 (kod instrukcie MOVB
je 90, konstanta je ulozena do 1 bajtu, pretoze instrukcia MOVB naréba s bajtami).

. Nepriama adresacia s doplnkom: d(Rn)

Adresa operandu sa vypocita tak, Ze sa k obsahu registra Rn pripocita ¢islo (doplnok) uvedené
pred zatvorkou (POZOR! Obsah registra Rn sa nezmeni.).

Doplnok moze byt vyraz z konstant alebo ¢isel, ale zvycajne sa pouZiva len ¢islo (mdze byt kladné
aj zaporneé).
Priklad: MOVL 28(R5), R9

Obsah pamétového miesta velkosti 4 bajty s adresou, ktoria vypocitame ako sidet obsahu registra
R5 a ¢isla 28, sa presunie do registra R9.
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Preklad do strojového kédu: preklad operandu s doplnkom zaberd 2, 3 alebo 5 bajtov, v zavislosti
od vel'kosti miesta potrebného na uloZenie doplnku (prekladaé sa snazi ulozit doplnok do najmen-
gieho miesta, do ktorého sa zmesti). Prvy bajt je informa¢ny — v pravom polbajte obsahuje ¢islo
registra, vzhladom na ktory sa adresuje, v lavom polbajte je A, C alebo E, podla toho, ¢ do-
plnok vojde do 1, 2 alebo 4 bajtov. Nasledujice 1, 2 alebo 4 bajty slizia na uloZenie doplnku v
reprezentacii doplnok do 2.

Preklad uvedenej instrukcie bude: 59 1C A5 DO (informaé¢ny bajt je A5 - adresuje sa vzhladom k
registru R5 a doplnok sa ulozi do 1 bajtu, doplnok 2819 = 1C4¢)

1.3.3 Struktara programu
Program v jazyku asemblera ma nasledovnii struktiru:

e deklaracia premennych a konstant
e definicie procedar a makier
e hlavny program

Deklaracia premennych a konstant
e premenné: pomocou direktivy .BLKx n sa vyhradi miesto pre 'n’ bajtov, slov, dlhych slov — podl'a
toho, ¢i sme namiesto 'x’ pouzili B, W alebo L.

Pre inicializaciu premennych (vyhradenie miesta spolu s priradenim podciato¢nej hodnoty) sa po-
uzivaju direktivy .BYTE zoznam, .WORD zoznam alebo .LONG zoznam, kde ’zoznam’ obsahuje
hodnoty priradené do vyhradenych pamétovych miest oddelené ¢iarkami.

Napr. A: .BLKL 10 — vyhradi 10 dlhych slov (40 bajtov) a oznadi ich adresou A.

B: .LONG 10,2 — na adrese B sa vyhradia dve dlhé slové, do prvého sa vlozi hodnota 10, do druhého
hodnota 2.

e konstanty: meno = vyraz

1.3.4 Niektoré prikazy jazyka asemblera

V néazve instrukcie budeme pouZivat pismena x, y na oznacenie rozmeru dat, s ktorymi narabame (moze
to byt B = bajt, W = word, L = longword).

1.3.4.1 Aritmetické operacie

CLRx ¢o ¢o:=0

INCx ¢o ¢o:=C¢o+1

DECx ¢o ¢o:=¢o-1

MNEGx  ¢o, kam aritmeticka negacia (kam:=-¢o)
ADDx2 ¢o , kam kam:= kam + ¢o
ADDx3 ¢ol, €02, kam  kam:= ¢o2 + ¢ol
SUBx2 ¢o, kam kam:= kam - ¢o
SUBx3 ¢ol, 02, kam  kam:= ¢o2 - ¢ol
MULx2 ¢o, kam kam:= kam * ¢o
MULx3 ¢ol, €02, kam  kam:= ¢o2 * ¢ol
DIVx2 ¢o, kam kam:= kam div ¢o

DIVx3 ¢ol, €02, kam  kam:= ¢o2 div ¢ol
1.3.4.2 Presuny a konverzie

MOVx ¢o,kam presun: kam:=c¢o
CVTxy ¢o,kam rozsirenie/skratenie reprezentécie dat s doplnenim znamienkového bitu
MOVZxy  ¢okam rozsirenie/skréatenie reprezentécie dat s doplnenim 0

MOVAx nav,kam  presun adresy dat rozmeru x (kam:=adresa nav)
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1.3.4.3 Skoky

Prikaz skoku moéze sposobit, ze do PC registra sa nacita nova adresa, teda sa nebude vykonavat nasledu-
jaca instrukcia. VA¢8ina prikazov skoku st podmienené skoky, ktoré menia PC v zavislosti od podmienky
na datach. VAX (a mnohé iné poditace) pouZziva jednobitové priznaky nazyvané podmienkové bity (con-
dition codes) na zaznamenanie vlastnosti operandov instrukcii — tieto priznaky st sufastou stavového
slova procesora (PSW). Podmienené skoky testuja tieto priznaky, aby zistili, ¢i treba menit PC.

Podmienkové bity:

e N — Negative: N=1, ak vysledok operacie bol zaporny

e 7 — Zero: Z=1, ak vysledok operécie bol nula

e V — Overflow: V=1, ak nastalo preteenie (vysledok presiahol vyhradeny priestor)
e C — Carry: ak operéacia mala prenos alebo zaporny prenos v najlavejSsom bite

Podmienkové bity st automaticky nastavované vzhladom na vysledok vicsiny operacii (napr. pri
operacii s¢itania sa nastavia podl'a vysledku operacie, pri operacii prenosu sa nastavia podl'a prenasaného
Cisla, pri operacii nulovania sa vZzdy nastavi N na 0, Z na 1, V na 0).

Niekedy je treba urobit takéto nastavenie pre nejakt premennu alebo register v inom case ako po
vykonani operécie alebo treba vyjadrit vztah medzi dvoma porovnavanymi hodnotami.

Na to sluzia dva prikazy:
TSTx ¢o test na nulu
CMPx  ¢ol, ¢o2  porovnanie operandov
Operacia TSTx nastavi Z a N bity podla obsahu operandu (bity V a C vynuluje).

Operacia CMPx porovna operandy ako celé ¢isla v doplnku do 2 aj ako bezznamienkové ¢isla a podla
vysledku porovnania nastavi Z, N a C bity (vlastne robi porovnanie rozdielu €ol-¢o2 s nulou — obsah
operandov ¢ol a €o2 sa pritom nezmenil!):

7Z=1, ak ol = 02

N=1, ak 0l < 02 v doplnku do 2

C=1, ak ol < 02 ako bezznamienkové ¢isla

Napr. ak A = 6A14, B = 9416, tak operdcia CMPB A,B nastavi Z na 0 (A# B), Nna 0 (A— B £0,

a teda A £ B, lebo A je kladné a B je zaporné - ako znamienkové ¢isla v doplnku do 2), Cna 1 (A< B
bezznamienkovo) a V na 0.

Podmienené skoky

Na zéaklade nastavenia podmienkovych bitov podmienené skoky bud naplnia PC novou adresou (ope-
rand nav) alebo bude program pokracovat nasledujicou instrukciou.

BEQL nav  ak rovné —ak Z=1
BNEQ nav  ak nerovné —ak Z=0
BGTR  nav  ak vdcsie — ak N=0 a zaroven Z=0
BGEQ nav  ak vidsie alebo rovné —ak N=0
BLSS nav  ak mensie —ak N=1

BLEQ nav  ak mensie alebo rovné  — ak N=1 alebo Z=1

Pri preklade do strojového kodu sa uklada (podobne ako u relativneho adresného modu) rozdiel medzi
navestim nav a PC registrom — tu sa v8ak tento rozdiel vzdy uklada do 1 bajtu (preklad celej instrukcie
podmieneného skoku tak zaberd 2 bajty) — takZe je moZné skakat len na navestia vzdialené 128 bajtov
pred alebo 127 bajtov za aktualnou poziciou.

Nepodmienené skoky
Nepodmienené skoky vzdy zmenia obsah PC registra.

V preklade do strojového kodu sa u instrukcii BRB a BRW uklada opét rozdiel medzi navestim a PC
registrom, pri BRB sa ulozi do 1 bajtu (cela inStrukcia zabera 2 bajty), pri BRW sa ulozi do 2 bajtov
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(cela instrukcia zabera 3 bajty). Pri inStrukcii JMP sa moéZe pouzit na urcenie ciela lubovolny adresny
modd (okrem priameho a literalu) — preklad potom zavisi od pouzitého adresného modu.

1.3.4.4 Praca so zasobnikom

Zasobnik je suvislé pole datovych miest pouzivané na uloZenie do¢asnych dat a informécie suvisiacej s
volanim procedur. Datové polozky si do zasobnika vkladané a zo zasobnika vyberané metodou LIFO
(last in first out). Na posledne vloZentu polozku zasobnika ukazuje premennd nazyvana stack pointer - SP
(na VAXe je to register R14). Po zavedeni programu do paméte operaény systém automaticky vyhradi
blok paméte v adresnom priestore pouzivatela a nastavi SP.

Na VAXe zasobnik rastie smerom k nizsim adresam.

nizsie adresy
A

vyssie adresy

Instrukcie pre pracu so zéasobnikom:

PUSHL o vloz do zésobnika dlhé slovo = MOVL ¢o, -(SP)
POPL kam vyber zo zasobnika dlhé slovo = MOVL (SP)-+, kam
PUSHR # "M<zoznam_registrov>  uloz do zasobnika registre
z masky od registra
POPR # "M<zoznam _registrov>  vyber zo zasobnika dlhé slova
a daj do registrov z masky
od registra s najnizsim ¢islom
po najvyssie
PUSHAx  adr uloz do zasobnika adresu adr (x=B,W,L)
Poznamka: pre vloZenie a vybratie dat iného rozmeru ako longword treba pouZit instrukcie MOVx o,
-(SP) a MOVx (SP)+, kam, kde x je rozmer dat, s ktorymi nardbame.

1.3.5 Procedtry

Procedury umoziuju rozdelit rieSenie tlohy na asti, ktoré sa I'ahsie modifikovatelné a odladitelné.
VAX asembler poskytuje 2 volania procedur:

e CALLG adresa_zoznamu_argumentov, meno

e CALLS pocet argumentov, meno

Oba spoOsoby pouzivaju zoznam argumentu, liSia sa v8ak v tom, kde je tento zoznam ulozeny: v pripade
CALLG (Call General) je to hocikde v paméti (napr. nai vyhradime miesto na zaciatku programu - v

Casti deklaraci), u CALLS (Call Stack) sa ulozi zoznam argumentov do zasobnika. V oboch pripadoch na
zoznam argumentov ukazuje register R12 = AP (Argument Pointer).

Formét zoznamu argumentov:
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AP 0
4(AP) argument 1
8(AP) argument 2

argument n-1
argument n

Formét procediry:

(datové definicie, ak si)
.ENTRY meno, maska registrov
prikazy

RET

V maske registrov st vymenované registre (R2 — R11), ktoré majia byt odlozené do zasobnika pri
vstupe do procediry a po jej dokonéeni obnovené. Maska registrov ma tvar: "M<zoznam registrov>.
Registre AP, FP a PC budt ulozené automaticky.

DalSou $tandardizovanou datovou struktirou pre volanie procediry je blok volania (call frame) —
slazi na uchovanie registrov a dalSej informéacie o stave procesu pri volani procediry. Je automaticky
ukadany do zasobnika pri oboch spdésoboch volania procediry.

Formét bloku volania:

FP

—®|adresa podprogramu spracovania Spec.situacii
ﬁgiﬁ:“’p 0| maskaregistrov<11:0> | PSW <16:5>|100000

Najvrchnejsie dlhé slovo obsahuje adresu podprogramu spracovania Specidlnych situécii (condition
handler address). Ak sa v procedire objavi chyba, sem sa ulozi adresa podprogramu, ktory ju spracuje.
Inak je tam ulozena 0.

Dalsie dlhé slovo obsahuje viaceré informacie:

e zarovnanie: 2 bity nadobtudajtice hodnotu 0 — 3, urcujtice potrebné zarovnanie v momente volania
procedury (pretoze blok volania musi byt vzdy uloZeny od adresy, ktora je nasobkom 4).

e typ volania: 1 bit obsahujuci 0, ak sa vykonalo volanie CALLG, 1, ak sa vykonalo CALLS.
e maska registrov: 12 bitov pre registre z masky (R0 — R11)

e stavové slovo procesora: 16 bitov. Bity 0 — 4 stavového slova procesora st vzdy pred ulozenim
vymazané. Procedira moze tieto bity nejako nastavovat a indikovat pomocou nich nastatie nejakej
podmienky. Po navrate do hlavného programu sa PSW obnovi a uvedené bity slizia ako priznaky
nejakych udalosti.

Na vrch bloku volania ukazuje register R13 = FP (Frame Pointer).

Volanie CALLG:

Ako priklad uvedieme procediru SORT, ktora mé 2 vstupné argumenty: adresu triedeného pola a
dlzku pola.
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Pri volani CALLG musime vyhradit mieto pre argumenty v ¢asti deklaraci.

POLE: .BLKL 100
ARG _LIST: .LONG 2 ;pocCet argumentov

.ADDRESS POLE :direktiva na vyhradenie 4 bajtov a vloZenie adresy
DLZ: BLKL 1 :miesto pre dlzku pola

Volanie procedury:

MOVL DLZKA, DLZ

CALLG ARG _LIST, SORT
(do AP registra sa da adresa uvedena vo volani ako 1. argument)

Nevyhodou tohto typu volania je to, Ze argumenty procediry sa uloZzené v programe na inom mieste,
nez je volanie, ¢o moZe sposobovat neprehladnost pri &tani programu a tieZ to, Ze tento typ nie je vhodny
pre rekurzivne procediry.

Volanie CALLS:

Argumenty sa pred volanim ukladaju do zasobnika a ich podet sa odovzda procedure ako argument
(hned po zavolani procediry sa toto ¢islo automaticky zapiSe do zasobnika — na vrch zoznamu argumentov
— a nafl sa nastavi AP register).

Volanie procediry:
PUSHL DLZKA
PUSHAL POLE
CALLS #2, SORT

Lokélne premenné:

V zasobniku je moZné uchovéavat pocas behu procedary lokalne premenné a adresovat ich cez FP
register.

Napr. chceme v procedire PROC pouzivat 2 lokdlne premenné — A, B.
.ENTRY PROC, "M<...>
A=-4
B=-8
SUBL2 #8, SP ;urobit miesto pre 2 dlhé slova na zasobniku

MOVL RO, A(FP)

MOVL R1, B(FP)

RET

Lokalne premenné adresujeme vzhladom na FP register, a nie vzhladom k SP, lebo SP sa moZze menit
— zésobnik sa moZe pouzivat aj na lokilne vypoéty.

SP —»
FP-8 = B(FP) B
FP-4 = A(FP) A
FP —
blok volania
AP —
zoznam argumentov

Navrat z procedury:

Navrat z procedury zabezpefuje instrukcia RET, ktora zo zasobnika vyberie blok volania (naplni
registre PC, AP, FP a registre z masky povodnymi hodnotami, naplni PSW uloZenymi udajmi), ak islo
o volanie CALLS vyberie aj zoznam argumentov a prislusne zmeni SP (tym automaticky zrusi alokiciu
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miesta pre lokdlne premenné).

Vréatenie hodnot a priznakov:

Na VAXe je konvencia, Ze ak ide o funkciu, hodnota funkcie sa vrati v registri RO (v pripade dat
vysSej presnosti v RO a R1).

Na uloZenie priznakov (napr. ¢i sa tloha uspeSne vykonala, ¢i nastali nejaké Specidlne situécie) st
dohodnuté dve miesta: register RO alebo podmienkové bity — tie boli pred ulozenim do zasobnika, do
bloku volania, vynulované. Procedira ich moze nastavit a po navrate do hlavného programu (po naplneni
PSW) je moZné ich otestovat.

Rekurzia:

Rekurzivne procediry nemdzu mat data ulozené staticky (.LONG, .BLKx, ...), ale vSetky lokalne
premenné musia byt uloZené v zasobniku tak, ze premenné z jedného volania nie st modifikované d'alsim
rekurzivnym volanim.

Ako priklad uvedieme vypocet faktoridlu: N! = N.(N — 1), ak N >0, Nl =1, ak N =0.

.ENTRY FAKT, "M<R2>

MOVL #1, RO ;vysledok bude v RO - je to funkcia
MOVL 4(AP), R2 ;N daj do R2
BEQL VON :kon&ime, ked N =0
SUBL3 #1, R2, -(SP) ;do zasobnika daj N-1
CALLS #1, FAKT ;rekurzivne volanie procediry
MULL2 R2, RO ;N.(N-1)!

VON: RET

Hlavny program:
.BEGIN FAKTORIAL

PUSHL N
CALLS #1, FAKT

RET
.END FAKTORIAL

Po niekol'’kondsobnom volani rekurzivnej funkcie bude zasobnik vyzerat takto:
SP=FP —»

blok volania
P

blok volania
pre N-2

zoznam argumentov
pre N-2

|
} .
} blok volania
}
|
}

pre N-1

zoznam argumentov
pre N-1

blok volania

blok volania
AP pre N

FP
AP—> 1

zoznam argumentov
pre N

1.4 Asembler - prekladac¢

Asembler je program, ktory preklada zdrojovy program v jazyku asemblera do strojového kodu. Okrem
strojového kodu vytvara d'alsie informacie, ktoré potom vyuzije linker a loader (vid. kap. Linker a loader).
Vysledkom prekladu je objektovy modul.

Pocas prekladania asembler priraduje symbolickym vyrazom ich numerické hodnoty a adresy. Na
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urcenie tychto hodnét pouziva premenni LC = Location counter, ktora funguje pocas prekladu tak, ako
PC za behu programu. Asembler vzdy zvySuje hodnotu LC o dlzku instrukcie, takze LC vzdy obsahuje
adresu nasledujticej instrukcie.

Podla poc¢tu prechodov cez zdrojovy text rozlisujeme asemblery:

e dvojprechodové
e jednoprechodové

Dvojprechodovy asembler

1. prechod: jeho tlohou je prejst vstupny text, priradit miesto kazdej instrukeii a tym definovat hodnoty
navesti. Vytvara tabulku symbolov, do ktorej zapiSe vSetky n4djdené symbolické mené spolu s ich hodnotami
alebo adresami a pripadne d'alSou informéciou (premenna lokilna, globélna, externa).

Postup pri vytvarani tabulky symbolov je nasledovny: na zaiatku prvého prechodu sa nastavi LC
na 0. Postupne asembler &ita riadky zdrojového textu, ak riadok obsahuje navestie, zapiSe ho do tabulky
symbolov spolu s aktualnou hodnotou LC. Ak v tabulke symbolov uz symbol s rovnakym nazvom existuje,
vypiSe chybu ,,Viacnasobne definovany symbol“. LC zvysi o dlzku instrukcie a opakuje uvedeny postup,
az kym nepride na koniec programu.

Na zistenie dlzky instrukcie a tieZ overenie platnosti indtrukcie je potrebné prehladat tabulku kddov
instrukcii — obsahuje meno instrukcie, jej ekvivalent v strojovom kéde, pripadne informéaciu o formate a
dlzke instrukcie.

Prvy aj druhy prechod asemblera mozu ako vstup pouZivat zdrojovy program, ale je vyhodnejsie, ak
prvy prechod vytvori upraveny zdrojovy program, ktory sa potom stane vstupom pre druhy prechod.
Upraveny program obsahuje zdrojové riadky spolu s ich adresou, indikatormi chyby, mozu tu byt ulozené
aj smerniky do tabulky kodov instrukcii (pre kod instrukcie) a tabulky symbolov (pre kazdy pouZity
symbol), aby nebolo nutné opdtovné prehladavanie tychto tabuliek v druhom prechode.

2. prechod: druhykrat sa prechadza vstupny (prip. upraveny) text a robi sa preklad do strojového kodu.
Ak sa v in§trukcii vyskytne symbol, dosadi sa jeho numericka hodnota alebo adresa z tabulky symbolov.

Jednoprechodovy asembler

Pri jednoprechodovom asembleri sa ¢ita zdrojovy text iba raz a v tomto jednom prechode sa vyraba
tabulka symbolov aj preklada do strojového kédu. K problémom dochéadza pri priradeni numerickych
hodnét symbolom (navestiam), ktoré sa v programe definuju neskor, ako sa pouziju. Tento problém
mozno riesit tak, Ze sa vytvori linkovany zoznam nedefinovanych navesti. Po ukonéeni ¢itania vstupného
textu sa len doplnia hodnoty névesti na miesta oznacené uvedenym zoznamom.

1.5 Makra, makroprocesory

Makro je pomenované skupina instrukeii, ktoré sa vlozia do kodu na mieste, kde sa makro pouzije (vol4).

Definicia makra modZe byt dand programétorom v programe, v ktorom sa pouZiva alebo moze byt v
kniznici makier, ktoré je pristupna jednému alebo viacerym pouzivatelom.

Proces nahradenia vyskytu mena makra — volania makra — prisluSnymi prikazmi, sa nazyva rozvoj
makra (macro expansion). Rozvoj makra nemusi byt pri kazdom volani rovnaky, lebo v makre je mozné
pouZit aj parametre.

V porovnani s procedtirami je pouZitie makier nevyhodnejsie z hladiska dlzky vysledného kodu (lebo
kazdé volanie makra vedie k vloZeniu jeho tela na miesto volania, kym procedury potrebuji v pamaéti len
jednu kopiu svojho kodu), ale je vyhodnejsie z ¢asového hladiska (pri volani procediry vznikaju ¢asové
straty na vytvorenie prepojenia medzi programovymi modulmi — napr. uloZenie bloku volania, ktoré pri
makréch nie sa).

Definicia makra:

.MACRO meno [zoznam _parametrov]
telo makra (inStrukcie, direktivy, volania alebo definicie makier)
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.ENDM [meno]

Parametre makra st oddelené ¢iarkami, medzerami alebo tabulatormi. Mézu mat zadana implicitni
hodnotu, ktora sa dosadi za parameter, ak pri volani makra nebude dan& hodnota tohto parametra.
Implicitna hodnota je zadana tak, Ze v definicii makra za menom parametra nasleduje rovnitko a hodnota
parametra.

Volanie makra:

meno [hodnoty parametrov]

Priklad: makro na vymenu obsahu dvoch premennych

.MACRO VYMEN P1,P2,P3=POM

MOVL P1,P3

MOVL P2,P1

MOVL P3,P2

.ENDM VYMEN

Volanie: VYMEN R2,R7 ma rozvoj:
MOVL R2,POM

MOVL R7,R2

MOVL POM,R7

Volanie: VYMEN R2,R7,R11 mé rozvoj:
MOVL R2,R11
MOVL R7,R2
MOVL R11,R7
Cize, ak bola zadana hodnota parametra, mé prednost pred implicitnou hodnotou danou v definicii makra.

Hodnoty parametrov makra moézu byt zadané dvoma sposobmi:

e pozicne: hodnoty pre parametre si uvedené v takom poradi, ako si parametre v definicii makra.
Ak niektory parameter (nie posledny) ma implicitnt hodnotu, ktora vo volani chceme ponechat,
musi vo volani makra byt zadané ,,prazdna hodnota“ — tj. idua za sebou 2 ¢iarky.

e nepoziéne: hodnoty nemusia byt zadané v presnom poradi podl'a definicie, ale st zadavané v tvare
parameter = hodnota _parametra

Priklad:
.MACRO XX MENO,DLZ=#20,DOL=#0,HOR=#19,TYP=L
ma 5 parametrov, z ktorych 4 maji implicitnd hodnotu. Ak chceme volat toto makro a zadat pa-

rameter MENO s hodnotou POLE a HOR s hodnotou #100, tak v pripade pozi¢ne syntaxe pouzijeme
volanie:

XX POLE,,,#100

a pri nepozicnej syntaxi:

XX MENO=POLE,HOR=+#100 alebo aj XX HOR=#100,MENO=POLE (nemusime dodrzat poradie
parametrov, ako bolo v definicii)

MoZné je aj kombinécia pozi¢ného a nepozi¢ného volania, ale vidy musi zacat pozi¢né a potom
nepoziéné (za nim uz pozi¢ni syntax nemozno pouZit):
XX POLE,HOR=+#100

Spéajanie parametrov:

Niekedy je uzito¢né spojit parameter s textom — pouZiva sa na to operator spojenia: apostrof.
Napr.
.MACRO SUM A,B,C, TYPE
ADD'TYPE'3 AB,C
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.ENDM
mé pri volani SUM R3,R4,R7,W rozvoj ADDW3 R3,R4,R7.
Ak treba spojit 2 parametre, medzi ne dame dva apostrofy:
.MACRO XXX A,B,C,OP, TYPE
OP"TYPE'3 A,B,C
.ENDM
mé pri volani XXX R3,R4,R7,MUL,B rozvoj MULB3 R3,R4,R7.

Néavestia v makrach:

Majme makro na vypocet absolutnej hodnoty premennej:

.MACRO ABS CO,KAM
MOVL CO,KAM
BGEQ KON
MNEGL KAM,KAM
KON: .ENDM ABS
Ak sa toto makro vola len raz, nevznikne problém, ale ak bude volané viackrat, v programe sa
vyskytne viacero navesti KON.
Jedno mozné rieSenie je pridat parameter makra NAV:

.MACRO ABS CO,KAM,NAV
MOVL CO,KAM
BGEQ NAV
MNEGL KAM,KAM
NAV: _ENDM ABS
takze ak pri roznych volaniach budeme zadévat rézne hodnoty parametra NAV, konflikt nevznikne —
je to ale pre pouzivatela velmi ,nepohodlné* riesenie.
Druhou moZnostou je $pecifikovat v zozname parametrov makra lokdine ndvestia (maja tvar n$ a
platia v tseku medzi dvoma uZivatel'sky definovanymi navestiami), ktoré buda automaticky pri rozvoji
makra nahradzované hodnotami, ktoré sa nebudt opakovat — vkladaji sa navestia od 300009.

.MACRO ABS CO,KAM,?NAV
MOVL CO,KAM
BGEQ NAV
MNEGL KAM,KAM
NAV: _ENDM ABS
Pri volani ABS A,B vznikne rozvoj:
MOVL A B
BGEQ 30000%
MNEGL B,B
30000%: .ENDM ABS

Pri dalSom volani sa na miesto parametra NAV vlozi 30001%, potom 30002% atd.

Makra definujice makra:

Ak sa v tele makra nachadza definicia d'alSieho makra, tak ,,vnutorné”“ makro nemozno pouzit, pokial
sa nezrealizovalo volanie ,,vonkajSieho* makra.
Priklad:

.MACRO DEF MENO

.MACRO MENO A
CLRL A
.ENDM MENO

.ENDM DEF
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Rozvoj volania DEF ZMAZ je:

.MACRO ZMAZ A
CLRL A
.ENDM ZMAZ

takZe po tomto uz mozeme pouzit ZMAZ R5 a rozvoj bude CLRL R5.
Ak volame DEF CISTI, zadefinuje sa makro CISTI a m6zeme pouzit volanie CISTI R5, ktoré ma takisto
rozvoj CLRL R5.

Makroprocesor:
Makroprocesor je program, ktory ma tieto funkcie:
1. najst a ulozit definicie makier
2. najst volania makier a rozvinut ich s dosadenim parametrov

Makroprocesor médZze byt program funkéne nezavisly od asemblera, vystup z makroprocesora (program
v jazyku asemblera, v ktorom sa nevyskytuji makré) je potom vstupom do asemblera.

Podla poctu prechodov zdrojovym textom rozliSujeme dva typy makroprocesorov:

e dvojprechodové

e jednoprechodové

Dvojprechodovy makroprocesor

1. prechod: jeho ulohou je prejst vstupny text a ulozit najdené definicie makier. Nazvy makier uklada
do tabulky mien makier spolu so smernikom na telo makra, ulozené v tabulke definici makier. V ta-
bul'ke definicii makier je uloZeny najprv tzv. prototyp makra, ¢ize zoznam parametrov aj s implicitnymi
hodnotami, aby bolo moZné pouzit aj nepozi¢né volanie makra. V tomto prechode sa tieZ robia rozvoje
systémovych makier.

2. prechod: ¢ita zdrojovy text a vytvara vystupny text nasledovne: ak ide o inStrukciu alebo direktivu,
riadok zdrojového textu sa skopiruje do vysledného textu. Ak sa najde volanie makra, do vysledného
textu sa budu kopirovat riadky z tabulky definicii makier (¢iZe telo makra). Podla smernika v tabulke
mien makier sa najde definicia makra v tabulke definicii, pripravi sa pole zoznamu parametrov makra,
ktoré sa naplni hodnotami parametrov z volania makra a mozu sa do vysledného textu kopirovat riadky
z tela makra, do ktorych sa dosddzaja parametre z uvedeného pola.

Ak je v tele makra volanie d'alsieho makra, pole zoznamu parametrov a aktualna pozicia v tabulke
definici makier sa ulozia do zasobnika, pripravi sa pole zoznamu parametrov pre vnorené makro, nijde
sa jeho definicia a vklad4 sa telo tohto makra. Ked je rozvoj vnoreného makra dokonceny, zo zasobnika
sa obnovi stav pred vnorenym rozvojom a pokrac¢uje sa v rozvoji vonkajsieho makra.

Dvojprechodovy makroprocesor nevie spracovat vnorené definicie. Problém je v tom, Ze definicia
vnitorného makra sa objavi az v druhom prechode makroprocesora — pri rozvoji definujiceho makra.
Teda tato nova definicia nie je zapisand v tabulke mien a definici makier a preto ked sa vyskytne
volanie nového makra, nebude mozné urobit jeho rozvoj. Bolo by v takomto pripade nutné zopakovat
oba prechody makroprocesora.

Jednoprechodovy makroprocesor

Jednoprechodovy makroprocesor v ramci jedného prechodu zdrojovym textom ukladé definicie makier
a robi aj rozvoje makier. Jedinou poziadavkou je, aby vZdy definicia makra predchadzala jeho volaniu.
Dokéze (podobne ako dvojprechodovy makroprocesor) spracovat vnorené volania makier a tieZ makra
definujice iné makré.

Makroasembler

Makroprocesor sa moZe pridat ako predprocesor pred asembler, ale je tieZ moZné implementovat jedno-
prechodovy makroprocesor do prvého prechodu asemblera — vysledok sa nazyva makroasembler.



1.6. LINKER A LOADER 21

Toto spojenie vylucuje néklady na vytvaranie prechodnych stiborov a tiez mnohé ¢innosti nie je
potrebné implementovat dvakrat (¢itanie zdrojového riadku, testovanie typu prikazu, ...).

DRUHY PRECHOD

PRVY PRECHOD

spracuj direktivu

spracuj definiciu makra
(uloz meno makra,
uloz definiciu makra)

Je to direktiva?

4no urob rozvoj makra
> (nastav zoznam argumentov,
vloz kod z tabul’ky definicii makier)

makroinStrukcia?

Je to
strojova
inStrukcia?

nie
—| chyba

Spracuj
strojovil
instrukciu

¢ y A y

1.6 Linker a loader

Vagsina programov pozostava z viacerych procedur. Kompilatory a asemblery zvycéajne prekladaju vzdy
len jednu procediru a prelozeny vystup uloZia na disk. Pred tym, ako je moZné spustit program, musia
byt najdené vSetky potrebné preloZené procedury a musia byt spravne spojené. Vysledny modul je potom
zavedeny do paméte.

Zdrojovy Objektovy

program 1 \ stbor 1

Zdrojovy PREKLADAC Objektovy > Load
program 2 [ (assembler) subor 2 LINKER modul
Zdrojovy / Objektovy

program 3 stibor 3

Ulohou linkera je spojit separatne prelozené procedury do jedného modulu, zvy¢ajne nazyvaného load
module. Loader potom nahra load modul do paméte. Tieto funkcie st ¢asto kombinované.

Prelozenie kazdej procediry ako separatnej entity ma vyhodu v tom, Ze pri zmene v niektorej proce-
dure staci prekompilovat len zmenent procediru (aj ked treba vykonat nanovo linkovanie), a nie v3etky,
ako by to bolo nutné, ak by kompilator ¢ital sériu procedur a priamo vyrabal spustatelny program.

Linker
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Pri starte prvého prechodu asemblera sa nastavi location counter (LC) na 0. Tento krok je ekviva-
lentny predpokladu, Ze objektovy modul bude umiestneny na (virtualnej) adrese 0.

Linker, ktory spaja uréené moduly do jedného celku, tiez zvycajne predpoklada, ze program zacina na
adrese 0 (v takomto pripade vytvéara ,relative load modul“). KedZe na tato adresu mozno umiestnit len
jeden modul, ostatné musi linker zaradit zai. V tychto moduloch musi linker upravit adresy podla toho,
kde za¢inaju. K adresdm v tychto moduloch sa pripoéitava tzv. relokacny faktor. Toto je vSak potrebné
len u adries, ktoré nie st prekladané relativne, ¢ize vzhladom k PC registru.

Pri spajani modulov musi linker vediet, ktoré adresy st v poriadku a ktoré treba relokovat. Tuto
informéciu mu zapiSe asembler do objektového modulu. Ak vSetky paméatové odkazy v module st vzhla-
dom k PC registru, nemusi linker robit Ziadne tpravy adries. Takéto moduly nazyvame nezdvislé od
umiestnenia (position independent code).

balej musi linker vyriesit odkazy medzi modulmi (napr. volanie procedury definovanej v inom mo-
dule). Poc¢as prekladu asembler nemdze na miesta tychto odkazov vlozit adresy odkazovanych procedir
(ani relativne). Navestia (symboly) definované v inych moduloch, nez je prave prekladany modul, st pre
tento modul externé (na rozdiel od tych, ¢o st definované v sti¢asnom module, ktoré nazyvame interné
alebo lokdlne). Asembler ulozi informéciu o externych navestiach v objektovom stibore.

Ak k nejakému externému navestiu nenajde linker v ostatnych moduloch jeho definiciu, ¢ize nebude
v niektorom module toto navestie definované ako globdlne, tak vyhlasi chybu.

Linker spaja separdtne adresové priestory objektovych modulov do jedného linearneho adresného
priestoru v nasledovnych krokoch:

1. Vytvori tabulku objektovych modulov a ich dizok.
2. Na zaklade tejto tabulky priradi zadiato¢né adresy jednotlivym objektovym modulom.

3. Najde vsetky inStrukcie obsahujice pamétové adresy a pripoc¢ita k tymto adresam reloka¢ny faktor,
rovny zaciato¢nej adrese modulu, v ktorom sa vyskytuje.

4. Najde v8etky instrukcie obsahujuce odkazy do inych modulov a naplni tieto odkazy adresami refe-
rencovanych objektov.

Struktara objektového modulu
Objektovy modul (sibor) pozostéva zo Siestich ¢asti:

e Identifikicia: meno modulu, ¢as prekladu, niektoré informéacie potrebné pre linker, ako napr. dlzky
jednotlivych ¢asti objektového modulu.

e Tabul'ka globalnych symbolov (Entry point table): zoznam symbolov definovanych v module,
na ktoré sa mozu odkazovat iné moduly, spolu s ich hodnotami (adresami).

e Tabulka externych symbolov (External reference table): zoznam symbolov pouZitych v
module, ktoré v iom nie su definované, spolu so zoznamom instrukcii, ktoré ich pouzivaja.

e Prelozeny k6d (Machine instructions and constants): to je jedina ¢ast objektového modulu,
ktoré bude nahrata do paméte na vykonavanie.

e Tabul'ka relokacii (Relocation dictionary): zoznam adries, ktoré musia byt relokované pripo-
¢itanim reloka¢ného faktora.

e End-of-module: adresa zaciatku programu — Startovacia adresa (ak ide o hlavny program), pri-
padne ,,checksum® na kontrolu chyb pri ¢itani modulu.

Vagsina linkerov pracuje v dvoch prechodoch. V prvom prechode linker ¢&ita vSetky objektové moduly
a vyrobi tabulku nazvov objektov a ich dlzok a tiez globdlnu tabulku symbolov (global symbol table)
pozostavajicu zo vSetkych globalnych a externych symbolov. V druhom prechode st objektové moduly
¢itané, relokované a spojené do jedného modulu.

Loader
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Loader umiestiiuje load modul do opera¢nej paméte a pripravi ho na spustenie. KedZe zaciatocna
adresa modulu, ktoru predpokladal linker, je zvycajne rozna od adresy, na ktord je program zavedeny,
loader musi tiez upravit adresy. Preto musi byt sucastou load modulu zoznam adries, ktoré treba takto
modifikovat. Loader pouzije uvedent informaciu na tupravu adries, ale z vyslednej podoby strojového
kodu ju vymaze. Vykonavanie zacina, ked sa urobi skok na Startovaciu adresu programu.

,,Cas viazania“ (Binding time) a dynamicka relokacia

V systémoch so zdielanim ¢asu mozu byt programy umiestnené do paméite, potom na nejaky cas
presunuté na disk a potom opét nahraté do pamite. Zvycajne sa nedd zabezpecit, aby sa program
nahral spit do paméte na tu isti adresu, ako bol predtym. Ak bol program relokovany, po opdtovnom
nahrati do paméte si vSetky pamétové odkazy nespravne. Ak by aj bola eSte dostupné informécia o
relokaciach, zaberalo by to mnoho ¢asu kazdy raz po presune programu relokovat vSetky adresy.

Problém prestuvania zlinkovanych a relokovanych programov suvisi s ¢asom, kedy sa robi ,viazanie“
(mapovanie) symbolickych mien na fyzické adresy. Existuje aspoi 6 moZnosti na ,,¢as viazania® (binding
time):

e Ked sa program pise.
e Ked sa program preklada.

e Ked sa program linkuje, ale pred loadovanim (v tomto a predoslom pripade vznika ,,absolute load
modul®.

e Ked sa program loaduje (nahrava do paméte).
e Ked sa loaduje bazovy register pouzivany na adresovanie.
e Ked sa vykonava instrukcia obsahujtca adresu.

Ak napr. preklada¢ vytvara priamo ,absolute load modul“, ,viazanie“ prebehlo v ¢ase prekladu a
program musi byt spusteny na adrese, ktoru predpokladal prekladac.

Tu sa vlastne stretavame s dvoma stuvisiacimi problémami: prvy — kedy sa symbolické mena mapuji na
virtualne adresy, druhy — kedy sa virtualne adresy mapuju na fyzické adresy. Az ked prebehnu obe tieto
operacie, ukond sa ,viazanie“. Ked linker spaja separatne adresové priestory do jedného, v skutoénosti
vlastne vytvara virtualny adresny priestor. Relokécia a linkovanie sliizia na namapovanie symbolickych
mien na uréité virtualne adresy. Toto plati bez ohladu na to, ¢ systém pouZiva virtudlnu pamét (kap.
10).

Ak napr. systém pouZiva mechanizmus ,run-time“ reloka¢ného registra, tak tento register vzdy uka-
zuje na zafiatok siasného programu. K vsetkym pamétovym adresdm sa hardwarovo pripocita obsah
reloka¢ného registra, skor nez sa posli do paméte. Ked sa program presunie v paméti, operacny systém
musi zmenit obsah reloka¢ného registra.

Dynamické linkovanie

Metoda linkovania, ako sme si ju vysvetlili, ma ta vlastnost, Ze v8etky procediry, ktoré by mohol
program volat, st zlinkované pred spustenim programu. Mnoho programov vSak ma procediry, ktoré su
volané len pri ,nezvyc¢ajnych“ okolnostiach.

Flexibilnejsia je metéda, pri ktorej buda procedury linkované az pri ich prvom pouziti. Tento proces
je znamy ako dynamické linkovanie. Umiestnenie prelozenych modulov na disku je niekde zapamétané
(napr. v adresari), takze linker ich moZe lahko najst, ked ich bude potrebovat. Ked sa v programe vola
procedira z iného modulu, linker najde prislusny modul, prideli mu virtualnu adresu a vyriesi odkaz na
proceduru. Instrukcia volania procediry sa opédtovne spusti a umozni pokra¢ovanie programu od miesta,
kde bol preruseny.
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Uvod do operac¢nych systémov, historia
operacnych systémov, histéria Unixu

Software poé¢ita¢a mozeme rozdelit na dva druhy programov: systémové programy, ktoré riadia operécie
samotného pocitaca a aplikacné programy, ktoré riesia uzivatel'ské tlohy.

Najzékladnejsim zo vSetkych systémovych programov je operacny systém, ktory riadi vSetky pros-
triedky pocitaca a poskytuje bazu, na ktorej mozu byt napisané aplikacné programy. Sluzi ako interface
medzi uzivatelom a hardwarom. Moderny pocitacovy systém pozostéva z 1 alebo viac procesorov, hlavnej
pamaéte, hodin, terminélov, diskov, V/V-zariadeni,. . .— je to komplexny systém. KaZdy programator ne-
moZe tvorit programy so znalostou vSetkych spomenutych komponentov a ich pouZitia. Bolo preto treba
najst spodsob, ako ochranit programatorov od spletitosti hardwaru, a to vytvorenim vrstvy softwaru na
vrchu ,holého* hardwaru, ktorad bude riadit vSetky casti systému a poskytuje pouzivatelovi interface
alebo virualny podcitacé, ktory je lahké programovat — operacny systém.

Clenenie pocita¢ového systému na vrstvy (zdola nahor):

e hardware

— fyzické zariadenia (integrované obvody, kéble,. . .)

— mikroprogram — primitivny software, ktory priamo riadi fyzické zariadenie, zvy¢ajne je umiest-
neny v read-only paméti. Je to vlastne interpreter interpretujici instrukcie strojového jazyka
(ako MOVE, ADD, JUMP) ako sériu malych krokov.

— strojovy jazyk — mnozina instrukcii, ktoré interpretuje mikroprogram. Na niektorych poci-
tacoch je implementovany v hardware. M4 okolo 50-300 instrukcii (presun dat, aritmetika,
porovnévanie). Na tejto Grovni st V/V-zariadenia riadené ukladanim hodnot do $pecidlnych
registrov zariadeni. Strojovy jazyk nie je priamo Gastou holého pocitacéa, ale vyrobcovia ho
vzdy popisuji vo svojich manudaloch.

e software

— operacny systém, ktorého hlavnou funkciou je skryt tuto spletitost a dat programéatorovi vhod-
nejsiu mnozinu instrukcif na pracu.

— systémové programy — doleZité je, aby tieto programy neboli ¢astou OS, hoci zvy€ajne si
dodavané vyrobcom pocitaca. OS je ¢ast softwaru, ktora bezi v kernel-mode alebo v supervisor-
mode. Je chraneny hardwarom pred zasahom pouZivatela. Kompilatory a editory bezia v
uzivatel'skom mode.

— aplikaéné programy — napisané pouZivatelom na rieSenie konkrétnych problémov

2.1 Histéria operac¢nych systémov
Vsimneme si generécie pocitacov, aby sme videli, ako vyzerali ich operacné systémy.

24
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Prvy skuto¢ne digitalny pocita¢ zostrojil anglicky matematik Charles Babbage (1792-1871). Nikdy
nepracoval spravne kvoli svojmu ¢isto mechanickému designu.

Prva generacia pocitacov (1949-1955)

do 2. svetovej vojny — maly pokrok v konstrukcii poéitacov

v polovici 40. rokov — niekolko tispesnych pokusov — pocitace s pouzitim elektroniek (Howard
Aiken v Harvarde, John von Neumann v Princetone, J. Presper Eckert a William Mauchley v
Pensylvanii, Konrad Zuse v Nemecku)

islo o velmi mohutné zariadenia: napr. ENIAC v4azil 30 ton, bol postaveny v byvalom leteckom
hangari, mal 18000 elektroniek v bloku rozmerov 30 x 3 metre a bol chladeny dvoma vyradenymi
leteckymi motormi

kazdy pocita¢ navrhla, vytvorila, programovala a udrzovala jedna skupina I'udi, programovalo sa
v strojovom jazyku, neexistovali programovacie jazyky (ani assembler), ani OS. Vi¢sina tloh boli
naro¢né matematické vypocty.

za¢iatkom 50. rokov sa zacali pouZivat dierne $titky

Druha generacia poéitacov (1955-1965)

zadina sa zavedenim tranzistorov. Pocitace zacinaji byt dostato¢ne spolahlivé, aby sa mohli zacat
vyrabat a predéavat.

po prvy raz sa za¢inaju oddelovat ndvrhéari, tvorcovia, operatori, programéatori a udrzovaci personal.
objavili sa programovacie jazyky (assembler, Fortran)

zo zadiatku boli pri spracovani vel'ké Gasové straty operatorov (ktori mali na starosti nadéitanie sady
diernych $titkov, prijp. prekladaca, vystupy,...). Snaha o ich redukciu viedla k zavedeniu batch
systémov: po nazhromazdeni tloh sa tieto nacitali na magnetickd pasku pouzitim malého, relativne
nie velmi drahého pocitaca (napr. IBM 1401), ktory bol dobry na ¢itanie Stitkov, kopirovanie pasok,
tla¢, ale nie na numerické vypocty. Na vypoéty bol pouZzity iny, drahsi pocita¢ (napr. IBM 7094).
Po zhromazdeni uloh bola paska previnutéa a prenesené do pocitacovej miestnosti. Operator nahral
$pecidlny program (predchodcu dne$nych opera¢nych systémov), ktory nacital tlohu a spustil ju.
Vystup sa ukladal na dalgiu pasku. Ked bol cely batch vykonany, operator vyiial obe pasky a
vystupnd preniesol do iného pocitaca (IBM 1401) na vypis off-line (t.j. bez spojenia s hlavnym
pocitac¢om).

pocitace sa pouzivali zvicSa na vedecké a inzinierske vypocty, zvy€ajne boli vo Fortrane a assem-
bleri. Typicky OS bol FMS (the Fortran Monitor System) a IBSYS (IBM OS pre 7094)

Tretia generacia poéitacov (1965-1980)

Na zaciatku 60. rokov uz mala vi¢Sina vyrobcov pocitac¢ov dve rozdielne linie produktov — na jednej
strane to boli vedecké pocitade (ako 7094) pouzivané na numerické vypocty vo vede a strojarstve,
na druhej strane to boli obchodné poéitace (ako 1401) Siroko pouZitelné na triedenia a tla¢ bankami
a poistoviiami. Vyvoj a urdZiavanie dvoch rozdielnych linif bolo pre vyrobcov drahé a okrem toho
viacero zékaznikov potrebovalo zo zaciatku maly poditaé, ale neskor vacsi, ktory by mohol spustat
vSetky ich staré programy, ale rychlejsie.

IBM sa poktsilo vyriesit oba tieto problémy zavedenim System/360 — série sotwarovo kompati-
bilnych poéitacov v rozsahu od poéitaca velkosti 1401 aZ po vykonnejsie ako 7094. Lisili sa len v
cene a vykone (maximéalnej paméte, rychlosti procesora, po¢tu povolenych V/V-zariadeni, atd.).
Boli vyvinuté na spracovanie vedeckych aj obchodnych vypoétov. 360 bola prva linia pocitacov s
pouzitim integrovanych obvodov.

Najvéacsia sila idey ,,jednej rodiny“ bola sucasne aj jej najvacsSou slabostou: bolo snahou, aby vSetok
software, vratane OS, pracoval na vSetkych modeloch a bol pre vSetky dost vykonny. OS bol preto
enormne velky a zloZity, s mnohymi chybami a nutnostou nepretrzitého toku novych verzii na
opravu tychto chyb.
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Napriek enormnej velkosti a problémom, OS/360 a podobné OS 3. generacie uspokojovali va¢sinu

0 .

zékaznikov. Tiez priniesli niektoré kltucové techniky:

— multiprogramovanie (rozdelenie paméte na niekol'ko ¢asti, pricom v kazdej je ind uloha. Kym
jedna uloha ¢aka na V/V, ind moze vyuzivat CPU. Implikuje to nutnost $pecialneho hardwaru
na ochranu uloh.)

— spooling (Simultaneous Peripheral Operation On Line) — znamenalo to schopnost ¢itat tlohy
zo Stitkov na disk hned ako boli prinesené do pocitacovej miestnosti. Hocikedy bola tloha
ukonéena, OS mohol nahrat novii tlohu z disku do uvolnenej ¢asti a spustit ju. Spooling sa
vyuzival aj na vystup. Eliminovala sa tym potreba malého V/V pocitaca (1401).

OS 3. generécie boli stale batch systémy — ¢as medzi zadanim tlohy a ziskanim vysledku bol ¢asto
niekol'ko hodin. Snaha zrychlit pracu priniesla

— time-sharing — kazdy pouZzivatel méa on-line terminal, poc¢ita¢ moze zabezpecovat rychlu
interaktivnu obsluhu pre mnoho pouZzivatelov a tiez pracovat na velkych batch tlohach v
pozadi.

Pocas 3. generécie nastal velky vyvoj minipocitacov, zacinajuci DEC PDP-1 (1961). Mal len 4K 18-
bitovych slov, ale cena (120000 USD) bola menej nez 5% ceny 7094, pri¢om pre niektoré typy nenumerickej
prace bol skoro taky rychly ako 7094. Bol nasledovany sériou PDP az po PDP-11.

V tomto obdobi vznika aj OS Unix, ktory bol vytvoreny pre malé PDP—-7, neskor preneseny na malé
PDP-11/20, neskor sa rozsiril na Interdata 7/32, VAX, Motorola 68000, atd.

2.1.0.1 Stvrta generacia poé&itacov (1980-1990)

2.2

prichddza s vyvojom LSI obvodov (Large Scale Integration — obvody velkej integracie), ktoré
maji tisicky tranzistorov na lem?. Vznikaju osobné pocitace. Ich architekttira sa neliSila od triedy
PDP-11, ale ligili sa cenou, teraz pristupnou jednotlivcom.

vasina softwaru je user-friendly — uréeny pre pouZivatelov, ktori nevedeli ni¢ o po&itacoch (hlavna
zmena oproti OS/360 a jeho zlozitému JCL — Job Control Language).

dominujice st 2 operané systémy: MS-DOS (napisany Microsoft, Inc. pre IBM PC a iné po-
¢itace pouzivajuce Intel 8088 procesor) a Unix (na vadsich osobnych pocitadoch pouZivajicich
Motorola 68000 rodinu procesorov). Unix dominuje najmé na ne-Intelovskych pocitacoch a pra-
covnych staniciach, a to najma na tych, ktoré st zalozené na RISC-¢ipoch.

v polovici 80. rokov zaznamenavame narast sieti osobnych poéitacov pomocou sietovgch OS (ne-
twork OS) a distribuovangch OS (distributed OS).

V sietovych OS sa pouZivatel moze prihlasit na vzdialené pocitace, kopirovat sibory z jedného
pocitaca na dalsi. Kazdy pocita¢ ma svoj lokdlny OS a vlastnych pouzivatelov. Siefové OS nie
st v zasade odlisné od jednoprocesorovych OS, zvycajne potrebuji kontroler sietového interface a
nejaky nizkodaroviiovy software na jeho prevadzku a programy na prevedenie vzdialeného prihlasenia
a vzdialeného pristupu k stiborom.

Distribuovany OS sa javi pouZivatelom ako tradiény uniprocesorovy systém, hoci je tvoreny via-
cerymi procesormi. Pouzivatel si nemusi uvedomovat, kde sa budd jeho programy spustat alebo
kde budi jeho stibory umiestnené — to v8etko je zabezpecené automaticky operaénym systémom.
Distribuované OS vyzaduju viac ako pridanie nejakého kodu k uniprocesorovému OS, pretoze distri-
buované systémy sa zasadne liSia od centralizovanych systémov. Napr., distribuované systémy casto
umozihuju programom beZat na niekolkych procesoroch v tom istom ¢ase, ¢o vyzaduje zloZiteSie
planovanie procesov.

Historia Unixu

1. verzia (1969) — Ken Thompson z Research Group v Bell Laboratories pre PDP-7. Neskor sa
pridal Dennis Ritchie.
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2. verzia (1971) na PDP-11/20 (ekvivalent SM3-20)

3. verzia (1973) — vysledok prepisania hlavnej ¢asti OS (asi 97%) do programovacieho jazyka C.
Unix bol preneseny na vyssie modely PDP-11 (11/45, 11/70).

6. verzia (1976) — prva verzia rozsirend mimo Bell Laboratories.

7. verzia (1978) — na PDP 11/70 a Interdata 8/32 — je predchodcom vi¢siny modernych systémov
Unix. Rychlo sa adaptoval na ostatnych modeloch PDP-11 a poé&itatoch VAX (verzia pre VAX
bola znama ako 32V). Po distribucii verzie 7 prevzala zodpovednost a administrativnu kontrolu v
distribucii Unixu od Research Groupu Uniz Support Group (USG) v AT&T, otcovskej organizacii
Bell Laboratories.

8. verzia (1985) bola vyvinuté len pre potreby Bell Labs.

System III. (1982) — 1. externa distribticia. Zahrhovala charakteristiky verzie 7, 32V a inych
systémov Unix vyvinutych inymi skupinami neZ Research Group (zahffia charakteristiky systému
Unix/RT — systém Unix v realnom ¢ase a mnohé ¢asti Programmer’s Work Bench (PWB).

System V. (1983), Unix System V. Release 2 (V.2) (1984)

3BSD Na vyvoji systémov na baze Unixu zacali pracovat aj d'aldie informatické organizacie —
najvacsi vplyv medzi nimi mala Kalifornskd Univerzita v Berkeley. Jej prva priaca na VAXe bolo
pridanie virtudlnej paméte, strankovania na ziadost a substittcie stranok k 32V. Vzniklo tak 3BSD.

4BSD Vyvoj standardnej verzie 4BSD Unixu pre oficidlne pouzitie sa rozhodla projektovat Defense
Advanced Research Projects Agency (DARPA). Jednym z cielov tohto projektu bolo udrziavat
sietové protokoly sieti DARPA Internet (TCP/IP).

V Berkeley sa vytvoril novy uzivatel'sky interface C-shell, novy textovy editor (ex/vi), kompilatory
pre Pascal a Lisp a mnohé nové systémové programy. Unixovsky software z Berkeley sa rozsiruje
pod nazvom Berkeley Software Distributions (BSD).

Nasledovnikmi 3BSD st 4BSD verzie 4.1BSD, 4.2BSD (1983), 4.3BSD. Verzie 2BSD st pre pocitace
PDP-11 (verzia 2.9BSD je ekvivalentom 4.2BSD).

V stcasnosti existuje mnozstvo OS Unix a podobnych: DEC pontka svoj Unix (ULTRIX) pre VAX,
Microsoft prepisal Unix pre Intel 8088 — XENIX, Unix pre PC — LINUX, dalej existuje Unix firiem
Amdahl, Sun, NBI, MassComp, Hewlett-Packard, atd. Vacsina je zalozena na V7, System III., 4.2BSD
alebo System V.

Uvadza sa niekolko doévodov vel'kej popularity Unixu:

je napisany v jazyku vysSej urovne, vdaka ¢omu sa da Tahko pochopit, zmenit a preniest na iny
pocitac

styk s pouZivatelom je jednoduchy, ale pritom umoZiiuje poskytovanie vSetkych sluzieb

umozinuje skladanie zlozitych programov z malych, jednoduchych programov

pouziva hierarchicky systém siiborov

vietky subory maju jednotny format (retazec bajtov)

poskytuje jednoduchy a jednotny interface k periférnym zariadeniam

je to multiuzivatel'sky a multiprocesovy systém, t.j. saasne v iom moZe pracovat viacero pouziva-
telov a kazdy z nich moze sudasne spustit viacero programov

zakryva pred pouZivatelom architektiru pocitaca, takze sa l'ahSie piSu programy, ktoré beZia na
roznych hardwarovych implementaciach.

hoci OS a mnohé riadice programy su pisané v jazyku C, Unix poskytuje aj iné jazyky — Fortran,
Basic, Pascal, Ada, Cobol, Lisp a Prolog.



Kapitola 3

Clenenie OS, sluzby OS

3.1 Co je opera¢ny systém?

OS plni dve v zaklade ,nestvisiace“ funkcie:

OS ako rozsireny pocitac

Architektira (mnozina inStrukcii, organizacia paméite, V/V, Struktira zbernice) vidSiny poéitacov na
urovni strojového jazyka je primitivna a ,nepohodlna® pre program, najmé pre V/V. Na upresnenie sa
pozrime ako je relizovany V/V z floppy disku pouZitim NEC PD765 controller ¢ipu, ktory sa pouZiva pre
IBM PC a mnohé d'alie osobné poéitace.

PD765 ma 16 prikazov, kazdy je Specifikovany nahratim 1-9 bytov do registrov zariadenia: pre ¢itanie,
zapis, pohyb hlavy, ... Najpouzivanejsie prikazy READ a WRITE vyzaduja po 13 parametrov spakovanych
do 9 bytov (ur¢uja adresu diskového bloku, pocet sektorov na stope, nahravaci mod,...) Ked je operacia
ukonéenad, ¢ip vrati 23 stavov a chybové polia spakované do 7 bytov. Programéator floppy disku musi byt
oboznameny, ¢i motor je zapnuty alebo vypnuty. Ak je vypnuty, musi byt zapnuty (s dlhym ¢asovym
oneskorenim) predtym, neZ je mozné presavat data. Aj bez toho, aby sme skuto¢ne 3li do detailov, vidime,
Ze bezny programéator nebude chciet presne ovladat programovanie floppy disku (alebo pevného disku, ¢o
je uplne odlisna, rovnako zlozita uloha), ale bude chciet jednoduchi abstrakciu vyssej drovne, ktorou sa
bude zaoberat. V pripade disku touto abstrakciou je, Ze disk obsahuje mnozinu pomenovanych suborov.
Kazdy stbor moze byt otvoreny, &ita sa, zapisuje, zatvori sa. Detaily sa v abstrakcii prezentovanej
pouzivatelovi neobjavia.

Program, ktory skryva detaily pred pouzivatelom, je opera¢ny systém. Z tohto pohladu je funkciou
OS predkladat pouzivatelovi ekvivalent rozsireného alebo wirtudlneho pocitaca, ktory je mozné lahSie
programovat ako hardware.

OS ako spravca prostriedkov

Pouzitie OS ako programu, ktory poskytuje pouzivatelom vhodny interface je pohlad zhora-dole. Ope-
raény pohlad (zdola-hore) je, ze OS riadi vSetky ¢asti komplexného systému, t.j. ma na starosti riadenie
pridelovania procesov, paméte, V/V-zariadeni réznym programom, ktoré o ne ziadaja. Ked ma systém
viacero pouZivatelov, je treba zabezpecit spravu a ochranu paméte, V/V-zariadeni. TieZ sa zabezpecuje
evidencia pouZzivania prostriedkov.

3.2 Koncepcia OS

Interface medzi OS a uZivatelskymi programami je definovany mnozinou ,rozsirenych instrukcii“, ktoré
OS vykonava — si zname ako ,systémové volania“. Systémové volania vytvaraja, ruSia a pouzivaja

28
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rozne softwarové objekty, ktoré si riadené operacnym systémom. Najdolezitejsimi st procesy a stbory.

Procesy

Klucovym pojmom v kazdom OS s procesy, t.j. programy vo vykonavani: spustitelny program, data
programu, zasobnik, program counter, stack pointer, ostatné registre a informécia potrebna na beh
programu.

Proces pozostéva zo svojho adresného priestoru (core image) a polozky v tabulke procesov (pole
alebo zoznam $truktir, jedna pre kazdy existujuaci proces). Informécia v tabulke procesov je potrebné
pri pozastaveni procesu (vyCerpanie ¢asu CPU, proces s vySSou prioritou a pod.) na restartovanie od toho
istého stavu, kde bol proces zastaveny (napr. pozicia v otvorenych suboroch, obsahy registrov, atd.).

Hlavné systémové volania pre spravu procesov st volania na vytvorenie a ukondenie procesu (napr.
Command Interpreter vytvori proces na vykonanie programu, t.j. proces — potomok). balej st to volania:
poziadavka na viac paméte, uvolnenie nepouzivanej paméte, éakanie na ukoncenie procesu (potomka),

Niekedy treba beziacemu procesu dorudit informaciu, na ktora nec¢aka. Vtedy OS vygle procesu signdl.
Ten sposobi, Ze je proces pozastaveny, ulozi svoje registre do zasobnika a odsStartuje beh Specialnej
procedtry na ofetrenie signdlu (signal handling procedure). Po jej dokonceni je proces reStartovany.

Signaly st softwarovou analégiou hardwarovych preruseni a moézu byt generované mnozstvom dévodov
(mnoho preruseni detekovanych hardwarom, napr. vykonanie ilegélnej instrukcie, pouZitie zlej adresy je
tiez konvertované do signéalov). Signaly sa pouZivaji aj na rychlu komunikaciu medzi procesmi.

V multiprogramovom systéme je nevyhnutné udrziavat informéciu o tom, ktory pouzivatel vlastni
proces. Kazdému pouZzivatelovi je prideleny wid (user identification), zvy¢ajne 16- alebo 32-bitové celé
¢islo. Kazdému procesu je priradeny uid jeho vlastnika. PouZivatelia sa delia do skupin (timy pracujice
na projekte, katedry,. .. ), z ktorych kazda ma prideleny gid (group identification). Uid a gid sa pouzivaji
aj pri ochrane informécii v pocitadi.

Sabory

Dalsia velka skupina systémovych volanf sa vztahuje na systém siborov (file system). Zvy¢ajne sa po-
uZzivaju na vytvorenie, zmazanie, ¢itanie a zapis do siborov. Pred ¢itanim musi byt sibor otvoreny, po
¢itani zatvoreny.

Vicsina OS pouziva na uchovéavanie siitborov koncept adresdra. Systémové volania sa potom pouzivaju
na vytvorenie a zruSenie adresarov, uloZenie siboru do adresara, vymazanie siboru z adresara.

Ak maju viaceri pouZivatelia pristup k tomu istému pocitacu, je dolezité zabezpecit prostriedky na
ochranu stiborov. Tie sa lisia pre rozne OS. V Unixe je napr. kazdému stiboru a adresaru priradeny 9-
bitovy binarny kod ochrany, zloZeny z troch 3-bitovych poli (owner, group, world), kazdé obsahujice
bity pre read(r), write(w) a execute, resp. search(x). Pri otvarani stiboru sa preveruju pristupové prdva.
Ak je pristup povoleny, systém vrati celé ¢islo — file descriptor, ktory sa pouZiva pre dalSie operacie.
Ak je pristup zakazany, vrati sa kod chyby. V Unixe a MS-DQOSe je deskriptor 0 priradeny Standardnému
vstupu (zvy¢ajne klavesnica), 1 standardnému vystupu (termindl), 2 standardnému chybovému vystupu
(terminal).

Unix a MS-DOS umoziuju pouZitie prostriedku, ktory sa tyka procesov aj siborov — pipe (rtra). Je
to druh pseudosiiboru, ktory sa pouZiva na prepojenie dvoch procesov. Ak proces A chce poslat data
procesu B, zapiSe ich do rary, ako by to bol vystupny stbor. Proces B ¢ita z riry ako by to bol vstupny
stbor. Teda komunikécia medzi procesmi vyzeré ako ¢itanie a zapis do oby¢ajnych suborov. Ako priklad
uvedme 1s -1|grep Jan (vypis siborov z januara) alebo cat f1 f2|sort.

Systémové volania

Uzivatel'ské programy komunikuji s OS a Ziadaja o sluzby OS prostrednictvom systémouvyjch volani.
Kazdému systémovému volaniu zodpoveda kniZzni¢na procedira (ktord moze uZivatelsky program volat)
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— ulozi si parametre z volania na urc¢ité miesto, napr. do registrov pocitaca a vykona TRA P-instrukciu
(druh chraneného volania procedury) na spustenie opera¢ného systému. Vyznam pouZitia kniZni¢nej
procedury je v tom, Ze ukryje detaily TRAP-instrukcie a spdsobi, Ze systémové volanie vyzera ako
oby¢ajné volanie procedury.

Ked OS dostane riadenie po TRAPe, preveri, ¢i sa parametre platné a ked ano, vykona vyzadovani
tlohu. Po ukonceni vlozi do registra stavovy kdd a vykona instrukciu ,navrat z TRAPu“, aby vratil ria-
denie knizni¢nej procedure. T4 vrati volajtcej procedire stavovy kod ako funkénd hodnotu (normélnym
sposobom sa knizni¢na funkcia ukondi).

Mnozstvo a typy systémovych volani zavisia od OS — zvycajne st to volania na vytvaranie procesov,
spravu paméte, ¢itanie a zapis do stuborov, V/V (z terminalu, na tlaciareni a pod.).

Interpreter prikazov (command interpreter)

OS je program, ktory obhospodaruje systémové volania. Editory, prekladace, assemblery, linkre a com-
mand interpretre nie st ¢astou OS, hoci s velmi dolezité a uZitocné.

Unixovsky command interpreter (interpreter prikazov) sa nazyva shell a hoci nie je ¢astou OS, umoz-
fiuje vyuzivanie mnohych &t OS a sluzi ako dobry priklad, ako mézu byt pouZité systémové volania. Je
to primérny interface medzi pouzivatelom a opera¢nym systémom.

Ked sa pouzivatel prihlasi, shell sa nastartuje. Terminidl méa nastaveny ako $tandardny vstup a
standardny vystup. Po spusteni vypiSe ohlasovaci prompt, ¢im oznamuje, Ze shell ¢aka na prikazy. Ked
pouzivatel napiSe prikaz, shell vytvori proces, ktory spusti program zodpovedajici prikazu. Pocas jeho
behu shell ¢akd na ukondenie. Po skonceni znova vypise prompt. Pouzivatel moze presmerovat standardny
vystup (napr. date >subor) alebo Standardny vstup (napr. sort<suborl >subor2). Vystup jedného
programu moze byt vstupom druhého (napr. rira). Ak za prikazom pouzivatel pouzije &, shell necaka na
dokonéenie prikazu, ale hned vypiSe prompt. Existuju dva hlavné spésoby na implementovanie interpretra
prikazov:

e samotny interpreter obsahuje kéd na vykonavanie prikazov: napr. prikaz na zmazanie
siboru — interpreter prikazov sko¢i na tsek kodu, ktory nastavuje parametre a vykona prislusné
systémové volanie. V tomto pripade pocet prikazov uréuje velkost interpretra prikazov, lebo kazdy
prikaz vyzaduje vlastny kod.

e kazdy prikaz je implementovany Specidlnym programom: Interpreter prikazov pouzije pri-
kaz na identifikovanie siboru, ktory méa byt nahraty do paméte a vykonany (tak je to napr. v Unixe).
V tomto pripade sa Tahko pridaji do systému nové prikazy, a to vytvorenim novych siborov s pri-
slusnym menom. Interpreter prikazov je vcelku maly a netreba ho pri pridavani prikazov menit.
Problémom pri tvorbe interpretra prikazov je, Ze OS musi poskytovat mechanizmus odovzdéavania
parametrov z interpretra prikazov systémovym programom.

3.3 Struktara OS

Pozrieme sa na OS ,zvnutra“. UkaZeme si 4 rézne Struktury, ktoré sa skimali, aby sme ziskali poznatky
o celom spektre moznosti:

Monolitické systémy

Islo 0 na pohlad najvSeobecnejsiu (najjednoduchsiu) organizaciu. Neexistuje tu Ziadna Strukttra, cely
OS je napisany ako sihrn procedtr, z ktorych kazda moze volat iné, kedykol'vek ich potrebuje. Kazda
procedura v systéme ma definované rozhranie, ¢o sa tyka parametrov a vysledkov. Na vytvorenie objek-
tového programu — opera¢ného systému — treba skompilovat vSetky individualne procedury a spojit
ich do jedného objektu linkerom. KaZzd4 procedira je viditelna pre kazda int.

Aj v monolitickom systéme je mozné mat aspoii mala Struktiru, ked sluzby (systémové volania)
st ziadané ulozenim parametrov na dohodnuté miesto, ako si registre alebo zasobnik a vykonanim
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Specialnej inStrukcie prerusSenia — kernel call (supervisor call). Tato inStrukcia prepne pocitac z user
mode do kernel mode a odovzdé riadenie opera¢nému systému. OS zisti parametre volania na urcenie,
ktoré systémové volanie sa ma vyvolat, a na zaklade toho identifikuje servisnii proceduru, ktora bude
zavolané (smernik na hu je v prislusnej polozke nejakej tabulky). Na zaver je systémové volanie ukon¢ené
a riadenie vratené uzivatelskému programu. Tato organizacia predpoklada zakladnia struktaru OS:

1. hlavny program, ktory vyvold pozadovanu servisni procedtru
2. mnozinu servisnych procedur, ktoré vybavuji systémové volania

3. mnoZinu utilit, ktoré pomahaji servisnym procediram.

Hlavna
procedura
Servisna Servisna Servisna
procedura procedura - procedira
‘ Utilita ‘ ‘ Utilita ‘ ‘ Utilita H Utilita ‘

Vrstvové systémy

Zovseobecnenim pristupu na predosSlom obrézku je organizovat OS ako hierarchiu vrstiev. Prvy takto
skonstruovany systém bol THE (vytvoreny v Technische Hogeschool Eindhoven, Holandsko — Dijkstra
so §tudentami 1968). Islo o jednoduchy batch systém pre pocitace Elektrologica X8. Systém mal 6 drovni
(vrstiev):

0. alokacia procesora, prepinanie medzi procesmi pri preruseni alebo vyprsani ¢asu. Poskytovala bazu
pre zékladné multiprogramovanie CPU (nad troviiou 0 systém pozostaval zo sekvenénych procesov,
z ktorych kazdy mohol byt programovany bez toho, aby sa vedelo, Ze na jednom procesore bezi
viac procesov).

1. sprava paméite a 512K slov bubna (na uchovéavanie stranok, pre ktoré nie je miesto v hlavnej
paméti) — nad touto troviiou sa procesy nemuseli starat o to, ¢i su v stvislej pamiti alebo na
bubne. Sofware z trovne 1 sa staral, aby potrebné casti boli v paméti.

2. komunikacia medzi kazdym procesom a konzolou operatora (nad droviiou 2 mal kazdy proces
vlastni operatorski konzolu)

3. sprava V/V-zariadeni a buffrovanie toku informéacie (nad touto vrstvou sa procesy zaoberali abs-
traktnymi V/V-zariadeniami).
4. uzivatel'ské programy (nemusia sa starat o procesy, pamét, konzolu V/V)

5. proces systémového operatora

Dalsie zoveobecnenie vrstvovej koncepcie bolo v OS MULTICS — bol organizovany do mnoziny st-
strednych kruznic, z ktorych vnttorna bola viac privilegovana ako vonkajsia. Ked procedara vo von-
kajSej kruznici chcela volat procedturu vo vnutornej kruznici, musela urobit prislusné systémové volanie
(TRAP-instrukciu, ktorej parametre boli pred vykonanim volania starostlivo preverené, ¢i su platné).

Virtualne pocitace

Prvé verzie OS/360 boli striktne batch systémy a na Zziadost pouzivatelov zacali viaceré skupiny (v
IBM aj mimo) vyvijat time-sharing systémy. Oficidlny IBM time-sharing systém T'SS/360 bol uvedeny
neskoro a bol velmi velky a pomaly (bolo moZné zapojit len zopar terminélov). Pozastaveny bol po tom,
¢o jeho vyvoj stal 50 milionov USD. Ale skupina v IBM Scientific Centre v Cambridge vyvinula systém,
ktory je teraz Siroko pouzivany. Povodne sa tento systém volal CP/CMS, neskor VM /370. Bol zaloZzeny
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na poznatkoch, Ze timesharing systém poskytuje jednak multiprogramovanie, jednak rozsireny pocitac s
omnoho viac vyhovujicim interfacom ako holy hardware. Zakladom VM /370 je aplne oddelit tieto dve
funkcie.

Jadro systému (monitor virudlneho pocitaca) bezi na holom hardware a vykonava multiprogramova-
nie, pri¢om poskytuje nie jeden, ale niekol'ko virtualnych poéitacov na dalgej irovni. AvSak tieto virtualne
pocitace nie st rozdirené pocitace (so sibormi a inymi ,,peknymi“ ¢rtami), ale su to presné kopie har-
dwaru, vratane kernel/user modu,V/V, preruSeni atd. Pretoze kazdy virtudlny pocitaé je identicky s
hardwarom, na kazdom moéze bezat lubovolny OS, ktory bude bezat priamo na hardwari: napr. na jed-
nom OS/360 pre batch procesy, na inom jendouzivatelsky interaktivny systém CMS (Conversational
Monitor System).

Ked CMS program vykon4 systémové volanie, to je odovzdané opera¢nému systému v jeho vlastnom
virtudlnom poéitaci, nie VM/370. CMS potom vykona normélne hardwarové V/V operécie na &itanie
svojho virtualneho disku alebo ¢o uz vyzadovalo volanie. Tieto V/V instrukcie st vykonané systémom
VM/370, ktory ich vykoné ako ¢ast svojej simulacie redlneho hardwaru.

Vykonanim kompletnej separacie funkcie multiprogramovania a poskytovania rozsireného pocitaca
moze kazda ast byt jednoduchsia, flexibilnejsia a lahSie spravovatelna a udrziavatelna.

Klient-server model

VM /370 posunul velku ¢ast kodu tradiéného operacného systému do vyssej urovne, CMS. Avsak je to
stale rozsiahly program, lebo simulovanie mnozstva virtualnych 370-ok nie je tak jednoduché. Trendom
modernych OS je vziat ideu prestavania kodu do vyssich arovni eSte viac a ,zmazat” (presunit) ¢o najviac
z opera¢ného systému, a teda ponechat len minimélny kernel. Zvycajny pristup je implementovat va¢sinu
funkcii OS v uZivatel'skych procesoch. Na poziadanie o sluzbu, napr. ¢itanie bloku stiboru, uzivatel'sky
proces (klient-proces) posiela poziadavku server-procesu, ktory vykona tlohu a posle spiat odpoved. V
tomto modeli vSetko, ¢o robi kernel, je udrziavanie komunikécie medzi klientami a serverom.

Memory User
server mode

‘ Kernel

Klient
proces

Klient
proces

Klient
proces

Print
server

Terminal
server

Rozdelenim opera¢ného systému na cCasti, z ktorych kazd4d ma na starosti len nejaki cast systému
— spréava suborov, procesov, terminalu, paméte — sa kazda cast stdva mensSou a l'ahSie spravovatelnou.
Naviac, kedze v8etky servre bezia ako user-mode procesy (nie v kernel-mode), nemajua priamy pristup
k hardwaru. Teda, ak sa napr. vyskytne chyba vo file-serveri, moZe spadnit sluzba, ale zvycajne to
nesposobi ,,spadnutie” celého pocitaca.

Dalsou vyhodou tohto modelu je jeho prisposobitelnost pre distribuované systémy. Ak klient komuni-
kuje so serverom vysielanim sprav, nepotrebuje vediet, ¢i sprava je spracovana lokalne, v jeho vlastnom
pocitac¢i alebo je posielana cez siet serveru na vzdialenom poéitaci.

Predosly obrazok, ktory ukazoval, Ze kernel mé na starosti len posun sprav z klientov do serverov a
spét nie je tplne realisticky. Niektoré funkcie OS (napr. nahratie instrukcie do registrov fyzickych V/V-
zariadeni) je tazké (prip. nemozné) robit z uzivatelskych programov. Su dva moZné spdsoby ako riesit
tento problém:

e mat nejaké rozhodujice server-procesy (napr. I/O device drivery) beZiace v kernel mode s kom-
pletnym pristupom k hardwaru, ale ktoré komunikuju s ostatnymi procesmi prostrednictvom nor-
maélnych mechanizmov sprav.

e zabudovat minimalne mnoZstvo mechanizmu do kernelu, ale ponechat principy a pravidla rozhod-
nutia na serveri v pouzivatelskom priestore. Napriklad kernel moze rozpoznat, Ze sprava poslané
na nejaka Specialnu adresu znamena vziat obsah spravy a ulozit ho do registrov V/V-zariadeni pre
nejaky disk a zacat diskové ¢itanie. Kernel nepreveruje byty spréavy, ¢i su platné a ¢i maju zmysel,
len ich kopiruje do registrov zariadenia (zvycajne sa ale preveruje, ¢ je proces ,autorizovany“ na
vyslanie takej spravy.
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3.4 Clenenie OS

Operacny systém delime na 4 zédkladné spravy:

® Sprava procesov a procesora
e sprava operacnej pamate
e sprava suborov

e spréava periférii
KaZzda sprava ma nasledujuce zakladné funkcie:

e sledovat stav Casti systému, ktort mé na starosti
e rozhodovat alebo planovat pridelovanie spravovaného prostriedku
e pridelovat prostriedok

e uvolnovat prostriedok
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Procesy

Vsetok spustatelny software na pocitadi je organizovany do mnoZstva sekvenéngch procesov (alebo skra-
tene procesov). Proces je vlastne vykonavany program vratane aktuélnych hodnot registrov, premennych
a C¢itaca inStrukcii. CPU sa prepina medzi procesmi, ale pre zjednodusenie si mozeme zo zaciatku predsta-
vit mnozinu procesov beziacich pseudoparalelne a az neskor sa zaoberat tym, ako sa CPU medzi procesmi
prepina. Toto rychle prepinanie sa nazyva multiprogramovanie. Vykonavanie procesu musi prebiehat sek-
ven¢nym sposobom (z toho nazov ,sekvenény“), t.j. v kazdom momente sa vykonéva maximalne jedna
inStrukcia na ucet procesu. Tak, hoci mozu byt dva procesy spojené s tym istym programom, uvazuju sa
dve nezavislé sekvencie vypoctu.

4.1 Hierarchia procesov

OS musi poskytovat nejaky sposob na vytvorenie potrebnych procesov. Vo velmi jednoduchych systémoch
alebo systémoch urc¢enych len na jednoduché aplikacie, je moZzné mat vSetky procesy, ktoré buda potrebné,
pritomné, ked systém nabieha. AvSak vo vacSine systémov je potrebny nejaky spdsob na vytvaranie a
ruSenie procesov podla potreby pocas ¢innosti systému. V Unixe je proces vytvoreny volanim systému
fork, ktoré vytvori identicktl kopiu volajiceho procesu. Po volani fork rodi¢ovsky proces pokracuje vo
vykonévani paralelne s potomkom. Proces méze vytvorit viacero potomkov. Proces-potomok moze tiez
vykonat fork, takze je mozné mat cely strom procesov. Tato metoda vytvarania procesu sa ¢asto nazyva
spawning. Proces ukoncuje sam seba vykonanim volania exit alebo moZe byt ukonceny ako vysledok
signalu kill od iného procesu. Ako ¢ast bootu je vytvoreny proces s identifika¢nym ¢islom 0 — swapper,
ktory je vzdy priradeny planovacu procesov a CPU a ktory riadi operécie planovania procesov. Proces
0 vytvori proces 1 — init. V8etky uZivatelské procesy st potomkami procesu init. Tento proces najprv
nacita subor, z ktorého zisti pocet terminélov a pre kazdy terminal vytvori jeden novy proces getty. Proces
getty ¢aka, kym sa niekto neprihlasi, t.j. caka pouzivatelove meno a heslo, ktoré sa stani argumentami
procesu login. Ten hlad4 toto meno a heslo v siibore /etc/passwd. Ak ich najde, login spusti shell —
interpreter prikazov. PouZivatel uz dalej komunikuje len so shellom.

V systéme MS-DOS existuje systémové volanie na nahratie uréeného binarneho siboru do paméte a
jeho vykonania ako potomka. Na rozdiel od Unixu, v MS-DOSe toto volanie pozastavi rodi¢ovsky proces,
az kym potomok neskonéi, takZze proces-rodi¢ a potomok nebezia paralelne.

4.2 Stavy procesov

Pocas svojej existencie sa proces moze nachadzat v roznych stavoch. Zmenu stavu procesu spodsobuju
rozne udalosti alebo aktivity.
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5-stavovy model

Proces sa nachadza v jednom z piatich stavov:

e Beziaci (Running): prave vykonavany proces. Ak uvazujeme jednoprocesorovy systém, v tomto
stave sa moze nachadzat v lubovolnom okamihu najviac jeden proces.

e Pripraveny (Ready): proces, ktory je pripraveny na vykonavanie hned’, ako sa mu to umozni.

e Blokovany alebo Spiaci (Blocked, Sleeping): proces, ktory nemdze bezat kym nenastane
nejakéa udalost, napr. ukonéenie V/V operacie.

e Novy alebo Vytvoreny (New, Created): proces, ktory bol prave vytvoreny, ale eSte nebol
zaradeny opera¢nym systémom medzi spustatelné procesy.

e Ukonéeny (Exit, Zombie): proces, ktory bol operanym systémom vyradeny spomedzi spus-
tatelnych procesov, pretoze bol z nejakého dovodu ukonceny alebo zruSeny. V tomto $tadiu uz
proces nie je mozné spustit, ale tabulky a informacie spojené s procesom sii este k dispozicii napr.
pre podporné programy (napr. ,G¢tovaci* program moze potrebovat tidaje o spotrebovanom ¢ase
procesora a ostatnych pouZitych prostriedkov za ucelom ,vyacétovania®).

Obrazok ilustruje typy udalosti, ktoré veda k zmenam stavov procesov.

Ukoncenie
Beziaci (Exit) Ukonceny
. (Running) (Zombie)
Spustenie > . s
(Dispatch) Cakanie na udalost

"Vyprsanie" ¢asu (Event Wait)

(Timeout)

Vytvoreny
(Created)

Pripraveny
(Ready to run)

Spiaci
(Sleeping)

Zavedenie
(Admit)

Vyskyt udalosti
(Event Occurs)

Mozné prechody medzi stavmi si:

e Null — Vytvoreny: Je vytvoreny novy proces na vykonanie programu.

e Vytvoreny — Pripraveny: Operaény systém presunie proces zo stavu Vytvoreny do stavu Pri-
praveny, ked moze prijat d'alsi proces. Vac8ina systémov mé nastavent nejaka hranicu zaloZent
na pocte existujacich procesov alebo mnozstve virtualnej paméte pridelenej existujicim procesom.
Ué&elom pouZitia takejto hranice je zabranit tomu, aby bolo aktivnych prili§ mnoho procesov, Ze by
mohli zniZit vykonnost systému.

e Pripraveny — BeZiaci: Ked sa vybera dalsi proces na spracovanie, opera¢ny systém voli jeden
z procesov, ktoré si v stave Pripraveny.

e Beziaci — Ukoncéeny: Beziaci proces je ukonceny operaénym systémom, ak bol dokoncéeny alebo
zruseny.

e BeZiaci — Pripraveny: VidSina multiprogramovych opera¢nych systémov prideluje procesom
isty ¢as na vykonédvanie a dévodom na prechod zo stavu BeZiaci do stavu Pripraveny potom je
vycGerpanie prideleného casu. Moézu byt v8ak aj iné ddvody na pozastavienie beZiaceho procesu
— v zéavislosti od stratégie pldnovania procesov na spustenie — napr. ak sa procesy na spracovanie
vyberaju podla priority, ddvodom pozastavenia procesu je, Ze sa stane pripravenym proces s vyssou
prioritou.

e Beziaci — Blokovany: Proces prechadza do stavu Blokovany, ak poziadal o nie¢o, na ¢o musi
¢akat (V/V, sprava od iného procesu, dokonéenie iného procesu a pod.)

e Blokovany — Pripraveny: Ked nastala udalost, na ktort proces ¢akal, prechadza zo stavu
Blokovany do Pripraveny.

e Pripraveny — Ukonceny: Tento prechod nie je v diagrame vyznaceny. V niektorych systémoch
moze roditovsky proces ukoncit potomka kedykolvek. Alebo ked skonéi rodicovsky proces, moze
byt ukonceny aj potomok.

e Blokovany — Ukonceny: detto ako v predoslom bode.
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Nasledujici obrazok ukazuje, ako moze byt realizované zarad ovanie procesov.

Ukonéenie
Zavedenie Spustenie (Exit)
(Admit) (Dispatch) —>

_ » Procesor

"Vyprsanie" ¢asu (Timeout)

Cakanie na udalost
(Event Wait)

Vyskyt udalosti P
(Event Occurs) «

Ked je proces vpusteny do systému, zaradi sa do Zoznamu pripravengch procesov (Ready queue).
Proces na spracovanie sa vyberd z tohto zoznamu (moZe to byt napr. FIFO zoznam). Proces opusti
procesor bud ked je ukonceny alebo sa zaradi do Zoznamu pripravenych procesov (bol pozastaveny
napr. z dovodu vycerpania prideleného ¢asu) alebo do Zoznamu blokovangch procesov (Blocked queue)
(Zaka na nejaki udalost). Zo Zoznamu blokovanych procesov sa proces presiva do Zoznamu pripravenych
procesov, ked nastala udalost, na ktora cakal.

Ak by bol len jeden Zoznam blokovanych procesov, tak ked nastane nejaka udalost, operacny sys-
tém musi prehladat cely zoznam, aby nasiel proces ¢akajtci na tato udalost. Vo velkych operacnych
systémoch v tomto zozname moze byt stovky az tisice procesov. Preto je efektivnejsie mat viacero ta-
kychto zoznamov, jeden pre kazda udalost. Potom ked tato udalost nastane, vSetky procesy zaradené v
prislusnom zozname mozu byt presunuté do zoznamu pripravenych procesov.

Ukoncenie

Zavedenie Spustenie (Exit)
(Admit) (Dispatch) >
—a > Procesor

"Vyprianie" ¢asu (Timeout)

A

Cakanie na udalost’ /
(Event / Wait)

Vyskyt udalosti / P
(Event 7 Occurs) ¢ -

Cakanie na udalost’ 2
Vyskyt udalosti 2 (Event 2 Wait)
(Event 2 Occurs)

A
A

Cakanie na udalost n
(Event n Wait)

Vyskyt udalosti n
(Event n Occurs)

A

Swapovanie procesov

Mnohé operané systémy umoziuji presunutie procesov (alebo ich ¢asti) z hlavnej paméte na disk —
swapovanie procesov — za ucelom zlepSenia vykonnosti systému. Napriklad, moZe nastat situécia, kedy
vBetky procesy, ktoré sa nachadzaju v paméti, su blokované (¢akaju na V/V) a procesor ,zahala“. Do
paméte vSak uz nemozno zaviest dalsie procesy (Vytvoreny — Pripraveny), lebo v nej nie je miesto.
RiesSenim moZe byt odsunutie nejakého blokovaného procesu na (swap) disk a tym sa uvolni pamét.

Avgak aj swapovanie je vstupno-vystupna operacia a preto je mozné, Ze sa situécia eSte zhorsi, a nie
zlepsi. Ale pretoze diskové V/V operécie s najrychlejsie v systéme (v porovnani s paskovymi V/V ¢i
vystupmi na tlaciareil), swapovanie zvy¢ajne zvysi vykonnost.

Do modelu stavov procesov musi pribudnit novy stav — Odswapovany (Swapped, Suspended). Ked
st vSetky procesy v hlavnej paméti blokované, operaény systém moze niektory proces previest do stavu
Odswapovany a presunit ho na disk.

Pri presuvani procesov z disku spat do paméte je nevyhodné presuvat blokované procesy, pretoze tie
stale nie st pripravené na vykonavanie. Ak v8ak nastala udalost, na ktora ¢akal niektory z odsunutych
procesov, proces prestava byt blokovany a je potencidlne pripraveny na vykonévanie. Na presun spét do
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paméte sa teda vyberie pripraveny proces.
Takze do modelu stavov procesov pribudniu vlastne dva stavy:

e Blokovany, odswapovany: proces na swap disku ¢akajici na nejaka udalost.

e Pripraveny, odswapovany: proces na swap disku pripraveny na vykonavanie hned, ako bude
nahraty do hlavnej paméte.

Ukoncenie
(Exit)

Beziaci
(Running)

Ukonceny
. (Zombie)
Spustenie

(Dispatch) Cakanie na udalost

(Event Wait)

"Vyprsanie" ¢asu
(Timeout)

Vytvoreny
(Created)

Pripraveny
(Ready to run)

Spiaci
(Sleeping)

Zavedenie

Vyskyt udalosti
(Admit) Yy

(Event Occurs)

Odswapovanie Nahratie do pamite

(Activate)

Odswapovanie
(Suspend)

Pripraveny,
odswapovany
(Ready to run,

Spiaci,
odswapovany
(Sleeping
swapped

Vyskyt udalosti
(Event Occurs)

Pribudli aj nové prechody medzi stavmi:

e Blokovany — Blokovany, odswapovany: Ak nie st Ziadne pripravené procesy, aspoi jeden
blokovany proces je odswapovany, aby uvolnil miesto v paméti. Toto odstvanie je mozné robit aj
ked su pripravené procesy, ale je zla vykonnost systému.

e Blokovany, odswapovany — Pripraveny, odswapovany: ak nastala udalost, na ktora pro-
ces Cakal. V8imnime si, Ze to vyzaduje, aby mal opera¢ny systém pristup k informécii o stave
odswapovanych procesov.

e Pripraveny, odswapovany — Pripraveny: Ked v pamiti nie je ziadny pripraveny proces, ope-
raény systém nahra nejaky proces do paméte, aby vykonavanie pokracovalo. MoZe sa tieZ stat,
7e proces v stave Pripraveny, odswapovany mé vysSiu prioritu ako pripravené procesy v paméti.
Operacny systém moze rozhodnut, Ze je doleZitejsie nahrat procesy s vySSou prioritou, nez mini-
malizovat swapovanie.

e Pripraveny — Pripraveny, odswapovany: ZvycCajne opera¢ny systém preferuje odswapovanie
blokovanych procesov. Niekedy moZe byt potrebné odsunut aj pripraveny proces, napr. ak je to je-
diny sposob, ako uvolnit dostato¢ne vel'ky tsek paméte. Alebo opera¢ny systém sa moze rozhodnut
odswapovat pripraveny proces s nizSou prioritou radsej ako blokovany proces s vysSou prioritou,
ak predpoklada, Ze blokovany proces sa skoro stane pripravenym.

e Vytvoreny — Pripraveny, odswapovany: Ked je vytvoreny novy proces, moze byt zaradeny
do Zoznamu pripravenych procesov alebo do Zoznamu pripravenych odswapovanych procesov (ked
nie je v paméti dost miesta pre novy proces).

Samotny proces mé kontrolu nad niektorymi stavovymi prechodmi na uzivatel'skej tirovni:

1. Proces médze vytvorit novy proces, ktory zaéina v stave Vytvoreny. Na d'al3i prechod novovytvore-
ného procesu (zo stavu Vytvoreny do stavu Pripraveny) ma uZ vplyv len opera¢ny systém.

2. Proces moze vykonat systémové volanie, ¢im prejde zo stavu BeZziaci do stavu Blokovany. Nema
v8ak uz vyplyv na to, kedy (a & vdbec) sa vrati zo systémového volania. Rozne udalosti mozu
sposobit, ze proces prejde do stavu Ukondeny (predcasné ukoncenie procesu).

3. Proces mo6ze dobrovolne skonéit systémovym volanim exit.

Vsetky ostatné prechody st riadené operaénym systémom podla ur¢itych pevnych pravidiel.
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4.3 Popis procesu

Operaény systém riadi procesy a spravuje pre ne systémové prostriedky. Preto musi mat k dispozicii
informaécie o aktudlnom stave kazdého procesu a jeho prostriedkoch.
Opera¢ny systém si vytvara a udrzuje tabulky informacii o kazdej entite, ktort spravuje:

e Pamiitové tabul'ky: udrziavaju informaciu o pamiti — o jej prideleni procesom, o ochrane a pod.

e V/V tabul'ky: sa pouzivaji na spravu V/V zariadeni. V kazdom okamihu moze byt V/V zaria-
denie voIné alebo pridelené nejakému procesu. Ak sa vykonava V/V opericia, operaény systém
mus{ vediet o stave operacie, o mieste v hlavnej pamiti, ktoré sa pouZiva ako zdroj alebo ciel V/V
prenosu.

e Tabul'ky stiborov: poskytuju informéaciu o stboroch, ich umiestneni na disku, ich aktualnom
stave a inych atribatoch.

e Tabul'ky procesov: obsahujt informécie potrebné pre spravu procesov: kde st procesy umiestnené
a atributy procesov.

Umiestnenie procesov

Proces pozostava z vykonavaného programu, mnoziny datovych miest pre lokalne a globalne premenné
a konStanty, zasobnika a mnozstva atribtitov potrebnych pre riadenie procesu operaénym systémom —
mnoZina tychto atribttov sa nazyva riadiaci blok procesu (process control block). Sthrn programu, dat,
zasobnika a atribatov sa nazyva ,,obraz procesu® (process image). Jeho umiestnenie zavisi od pouZitého
typu spravy paméte. V najjednoduchSsom pripade je udrziavany ako suvisly blok paméte, umiestneny
na disku. Aby mohol byt proces spusteny, ,,obraz procesu* musi byt nahraty do hlavnej paméte. V mo-
dernych opera¢nych systémoch ,,obraz procesu“ pozostava z mnoziny blokov, ktoré nemusia byt uloZené
suvisle (za sebou). Do hlavnej paméte je mozné zaviest len niektoré Gasti procesu, kym ostatné casti
ostani na disku (virtuélna pamaét).

Tabulka procesov musi obsahovat informéciu o umiestneni ,,obrazov procesov*.

Atributy procesu

Operacny systém musi udrziavat mnoZstvo informécii o kazdom procese. Tieto informacie st zapisané
v riadiacom bloku procesu. Rozne systémy si organizuju informécie v riadiacich blokoch procesov rézne.
Mozeme vSak najst typické kategorie informacii pozadovanych operaénym systémom pre kazdy proces:

e Identifikacia procesu: identifika¢né ¢islo procesu (PID), PID rodi¢a procesu, identifika¢né ¢islo
(UID) vlastnika procesu

e Informéacia o stave procesora: obsah registrov — v8eobecnych, riadiach, stavovych registrov
(PSW), stack pointer

e Informacia o riadeni procesu: pridavna informécia potrebné pre opera¢ny systém pre riadenie a
koordinovanie roéznych aktivnych procesov. Sem patri informdcia o pldinovant a stave procesu (stav,
priorita procesu, identifikacia udalosti, na ktort proces ¢aka, informéacie pre planovanie procesov),
informdcie o stave V/V (pridelené V/V prostriedky, zoznam otvorenych stuborov), informdcie pre
administratiou® (¢as CPU, limity na ¢as), informdcie o vyuZivanej pamdti (smernik na tabulku
stranok alebo segmentov), informdcie o komunikdcii medzi procesmi (,,flagy, signaly, spravy po-
uzivané pre komunikéciu procesov).



Kapitola 5

Synchronizicia a komunikacia procesov

5.1

Synchronizacia procesov

Vyznamnym pojmom v OS je subeznost (concurrency) procesov. Tento pojem zahffia mnoZstvo prob-
lémov, ako st komunikicia medzi procesmi, zdielanie a sutaZenie o prostriedky, synchronizicia aktivit
procesov a pridelovanie procesorového ¢asu procesom.

Existencia subeznosti vedie k nasledujicim poziadavkam pri ndvrhu opera¢ného systému:

Operacny systém musi byt schopny spravovat rozne aktivne procesy.

Operacny systém musi pridelovat a uvolfiovat rozne prostriedky (procesorovy ¢as, paméit, stubory,
V/V zariadenia) kazdému aktivnemu procesu.

Operacny systém musi chranit data a fyzické prostriedky kazdého procesu pred netmyselnym za-
sahom od iného procesu.

Vysledky procesu musia byt nezavislé od rychlosti vykonévania relativne k rychlosti ostatnych
subeznych procesov.

Interakcia procesov

Sposoby interakcie procesov mozeme klasifikovat podla stupiia uvedomenia si existencie ostatnych
procesov:

Procesy si neuvedomuji ostatné procesy. Su to nezavislé procesy, ktoré nezamyslaju pracovat
spolo¢ne. MoZe ale medzi nimi dochddzat k sttaZeniu o prostriedky (napr. pristupuji k tomu
istému disku, siboru, tlaciarni), ktoré musi riesit operaény systém.

Procesy si nepriamo uvedomuju iné procesy. Tieto procesy nemusia nutne poznat iné procesy
podla mena, ale napriklad zdielaja pristup k niektorym objektom (napr. V/V buffer). U takychto
procesov sa prejavuje kooperacia pri zdiel'ani spolo¢nych objektov.

Procesy si priamo uvedomujia iné procesy. Su to procesy schopné komunikovat navzajom
podla mena a su vytvorené, aby spolu vykonavali nejaki ¢innost. Dochadza ku kooperacii pro-
cesov.

Ako priklad problému so stibeznostou si uvedme print spooler: Ked chee proces tlacit stubor, ulozi jeho
meno do $pecidlneho adreséra — spool directory. Dalsi proces — printer daemon — pravidelne kontroluje
tento adresar a ked je tam stbor na vytladenie, vytlaéi ho a vymaze jeho meno z adreséra.

Predstavme si, Zze adresar ma velky (potencialne nekoneény) pocet poloziek, o¢islovanych 0,1,2;.. .,
pri¢om v kazdej moze byt uloZené jedno meno suboru. Predstavme si, Ze existuji dve zdielané premenné
out — ukazuje na dalsi tlaceny stubor a in — ukazuje na d'algiu volna polozku v adresari.

Pri out = 4 a in = 7 plati, Ze polozky 0-3 st prazdne (sibory boli vytlacdené), 4-6 st naplnené.
Predpokladajme, Ze prakticky simultanne sa procesy A a B rozhodnu zaradit subor do tlade. Podla
»zékona schvéilnosti* sa moze stat toto:

39
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e Proces A ¢ita premennt in a ulozi hodnotu 7 do svojej lokdlnej premennej next free slot.
e Nastane preruSenie od ¢asovaca a procesor sa prepne na proces B.

e Proces B ¢ita premenni in, ziska hodnotu 7, ulozi meno tla¢eného stboru do polozky 7 a zvysi
hodnotu premennej in na 8.

e Znova bezi proces A, prezrie premennt next free slot, najde hodnotu 7, teda zapiSe meno tla¢eného
stiboru do polozky 7 (premaZe meno od procesu B) a zvysi in na 8. Teda subor, ktory ziadal vytlacit
proces B nebude nikdy vytlaceny.

Podobné situacie, kde dva alebo viac procesov ¢ita alebo zapisuje zdielané data a vysledok zavisi
od toho, v akom poradi procesy prebiehajd, sa nazyvaju race conditions (Casova zavislost procesov).
Moznost, ako predist problémom v situdcidch so zdielanim prostriedkov, je najst sposob, ako zakazat
viac ako jednému procesu ¢itanie a zépis zdielanych dat v tom istom ¢ase. Inak povedané, potrebujeme
vzdjomné vylicenie (mutual exclusion). Je to sposob, ako zabezpedit, Ze ked jeden proces pouziva zdiel ané
premenné, ostatné procesy toto nebudi mat dovolené. Problém predidenia ,race conditions moze byt
formulovany abstraktne: ¢ast ¢asu proces vykonava interné vypocty a iné Cinnosti, ktoré nevedu ku
konfliktom. Niekedy v8ak proces moZe pristupovat k zdielanej paméti alebo stuborom, ¢o moze viest ku
konfliktom — této ¢ast programu sa nazyva kriticky dsek (critical section). Ak nebuda nikdy dva procesy
naraz vo svojich kritickych tsekoch, zabrani sa vzniku race conditions.

Kritérid, ktoré musia platit, aby bol vyrieSeny problém vylacenia (podmienka na vyludenie race
conditions nepostacuje na zabezpecenie toho, aby stibezné procesy kooperovali spravne a vhodne pouzivali
zdielané data):

1. Ziadne dva procesy nemoézu byt sucasne vo svojich kritickych tsekoch spojenych s tym istym
zdielanym prostriedkom.

Pokial proces do kritického taseku vstupi, v koneénom ¢ase z neho vystipi.

Ak nie je proces v kritickom tiseku, nebrani inym procesom do neho vstupit.

Kazdy z procesov ziadajuci vstup do kritického tseku bude uspokojeny v koneénom case.

AN B o o

Nie st ziadne predpoklady o relativnej rychlosti procesov alebo pocte procesorov.

5.2 Navrhy na dosiahnutie vzajomného vylicenia

Hardwarové rieSenia
ZnemoZnenie prerusenia

Ide o najjednoduchsie rieSenie — po vstupe do kritického tiseku znemoznit vSetky prerusSenia a umoznit ich
aZz po odchode z kritického tseku, vratane preruSeni od hardwaru. Nie je vSak vhodné dat takuto mozZznost
uzivatel'skym procesom. Naviac, ak mé pocita¢ 2 alebo viac CPU, tak toto znemoZnenie prerusenia sa
tyka len jedného CPU, ostatné z nich budu pokracovat normélne a pristupovat do zdielanej paméte. Je
to vhodné riesenie pre samotny kernel (jadro systému), kym updatuje premenné alebo zoznamy.

Specialna instrukcia - TSL

Mnohé poéitace maju instrukciu Test and Set Lock (TSL). T4 &ita obsah daného pamétového slova do
registra a uloZi na jeho adresu hodnotu réznu od 0 (napr. 1). Operacie ¢itania slova a ukladania don s
nedelitelné (vykonané v jednom instrukénom cykle).

Na to, aby sme pomocou TSL instrukcie koordinovali pristup do zdielanej paméte, pouzijeme zdielant
premennu flag. Ked mé flag nulovi hodnotu, l'ubovolny proces ju méZe nastavit na 1 pouZitim instrukcie
TSL a potom ¢itat alebo zapisovat do zdielanej paméte. Ked takuto ¢innost ukonéi, nastavi flag na 0
pouZzitim instrukcie MOVE.



5.2. NAVRHY NA DOSIAHNUTIE VZAJOMNEHO VYLUCENIA 41

enter region:

tsl register, flag ! skopiruj flag do register, nastav flag = 1
cmp register,#0 ljeflag=07

jnz enter region I ak je flag <> 0, je uzamknuté — cakaj

ret ! ndvrat do volajucej funkcie — vstup do

! kritického tiseku
leave region:
mov flag,#0 !'vloz 0 do flag
ret ! navrat

Obr. 5.1: Instrukcia TSL

Py: while (TRUE) {
while (turn ! = 0); /* wait */
critical _section();
turn = 1;
noncritical _section();

}

Py: while (TRUE) {
while (turn ! = 1); /* wait */
critical _section();
turn = 0;
noncritical _section();

}

Obr. 5.2: Striktné striedanie procesov Py a P;

Softwarové rieSenia

Tieto rieSenia zvycajne predpokladaji elementarne vzajomné vylacenie na trovni pristupu do paméte
(simultanny pristup na to isté pamétové miesto je sériovany spravou paméte), inak nie je potrebné Ziadna
podpora na trovni hardwaru, opera¢ného systému alebo programovacieho jazyka.

Uzamykacie premenné

Maéame jednu zdielant wzamykaciu premenni, inicializovani na hodnotu 0. Ked chce proces vstupit do
kritického tseku, najprv testuje zamok. Ak ma tento hodnotu 0, nastavi ho na 1 a vojde do kritického
aseku. Ak je hodnota zamku 1, proces caka. MoZe vSak nastat rovnakd chyba ako v pripade spooler
adresara.

Striktné striedanie

Algoritmy procesov pozri na obrazku 5.2. Celo¢iselnd premennd turn je inicializovana na 0. Proces P;
moZe vstipit do kritického tseku len vtedy, ked je premenné turn nastavené na ¢, v opaénom pripade ¢aka
(while cyklus). Pri opustani kritického tseku proces prepne premennt turn na hodnotu, ktord umozni
vstup druhému procesu. Takymto spésobom sa procesy striedaju vo vyuZivani kritického tseku. Ak je
jeden proces rychly a druhy pomaly, moZze sa stat, Ze pomaly proces, pracujici momentalne vo svojej
nekritickej ¢asti, brani vstupu do kritického tseku rychlemu procesu (premenné turn je nastavena tak,
Ze vstupit moze len pomaly proces). Porusuje sa tym 3. podmienka pre problém vylucenia.
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#define FALSE 0
#define TRUE 1

#define N 2 /* pocet procesov */
int turn;
int interested|[N]; /* v8etky hodnoty st na zadiatku 0 */
void enter _region(int process) /x Cislo procesu: 0 alebo 1 */
{ int other; /* Cislo dalsieho procesu */
other = 1 — process;
interested|process| = TRUE; /* ukazat, Ze proces ma zaujem x/
turn = process; /* nastavit flag x/
while (turn == process && interested[other] == TRUE); /* nié x/

}

void leave _region(int process)
{ interested[process| = FALSE; /% odchod z kritického tseku */

}

Obr. 5.3: Petersonovo rieSenie

Petersonovo riesenie

Kombinaciou myslienky prepinania s myslienkou uzamykacich premennych a ,varovacich“ premennych
nasiel holandsky matematik Dekker rieSenie problému vzajomného vyliac¢enia, ktoré nevyzaduje striktné
striedanie. Jeho rieSenie je v8ak dost komplikované, takze sa v praxi nepouzivalo.

V roku 1981 nasiel Peterson jednoduchsi sposob na rieSenie problému vzajomného vylucenia (pozri
obrazok 5.3). Pred vstupom do kritického tiseku proces vola funkciu enter region() so svojim &islom.
Toto volanie spdsobi ¢akanie, pokial nebude vstup bezpeény.

Predpokladajme, Ze oba procesy volaju funkciu enter region() takmer stucasne. Oba ukladaji svoje
¢islo do premennej turn. Ten, ¢o ho uloZi neskor, bude na prikaze while ¢akat.

Vsetky uvedené softwarové rieSenia vyzadovali ¢inné ¢akanie. To nielen mina ¢as CPU, ale moze mat
nezelané efekty. Napr., nech si v pocitaci 2 procesy: H s vysSou prioritou, L s niZSou prioritou. Proces s
vy$Sou prioritou sa stéava beZiaci hned, ked je v stave pripraveny. V istom momente, ked L je v kritickom
aseku a H je v stave pripraveny, za¢ina ¢inné ¢akanie, ale kedze L nemoze ziskat CPU, kym H bezi, L
nedostane nikdy Sancu opustit kriticky tsek a H ¢aka do nekone¢na. Tento problém sa nazyva priority
inversion problem.

RieSenia s podporou operac¢ného systému alebo programovacieho jazyka

Uvedieme si prostriedky, ktoré spésobia zablokovanie, namiesto mihania ¢asu CPU, ked nie je moZné
vojst do kritického tiseku. Jeden z najjednoduchsich je par systémovych volani sleep, wakeup.

Sleep a WakeUp

Sleep sposobi, Ze volajuci proces bude zablokovany, kym ho iny proces ,nezobudi“. Parametrom volania
wakeup je proces, ktory ma byt zobudeny. Sleep a wakeup nie su stcastou Standardnej C-kniZnice, ale
pravdepodobne st pristupné v Iubovolnom systéme, ktory mé tieto systémové volania.

Ako priklad si uvedieme problém producenta a konzumenta (tieZ znamy ako Problém ohrani¢eného
buffera): Dva procesy zdielajt ohrani¢entt pamét (buffer). Prvy je producent a vklada don informacie.
Druhy je konzument a vyberé ich. Problém nastane, ked je buffer plny a producent nemoéze vkladat,
alebo ked konzument nemé ¢o vyberat.
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#define N 100 /x velkost buffra =/
int count = 0;

void producer()
{ while (TRUE) {

produce _item)() /x generuj polozku */
if (count == N) sleep(); /* buffer plny =/
enter _item(); /* ulozit do buffra */
count = count + 1; /% zvy§ pocet poloziek v buffri */
if (count == 1) wakeup(consumer); /* bol buffer prazdny? */

}

void consumer()
{ while (TRUE) {

if (count == 0) sleep(); /* buffer prazdny */
remove _item(); /x vybrat z buffra */
count = count — 1;

if (count == N — 1) wakeup(producer); /* bol buffer plny? */
consume _item(); /* spracuj polozku */

}

Obr. 5.4: Sleep a WakeUp

Oznacme velkost buffra N a po&et poloziek v buffri count. Producent musi testovat, & count = N,
konzument, ¢ count = 0 (vid. obr. 5.4)

Vratme sa k ,race conditions*: MoZe sa stat, Ze buffer je prazdny a konzument ¢ita premennt count,
aby ju testoval. Vtedy sa prepne procesor pre producenta, ktory vlozi do buffra polozku a zvysi count
na 1. Potom producent vola wakeup(consumer). Ale konzument este neuskutocnil volanie sleep, preto sa
signal wakeup strati. Ked zase bezi konzument, testuje count, ktoré ma nastavené na 0 a zavola sleep.
Casom potom producent zaplni buffer a tiez zavola sleep, takZze oba procesy budi spiace.

Problém teraz spocival v tom, Ze sa stratil signal wakeup. RieSenim je pridat wakeup waiting bit. Ked
je poslany wakeup signél nespiacemu procesu, nastavi sa tento bit. Ked potom proces vol4 sleep, len sa
vynuluje tento bit a proces zostava nespiaci.

Avsak je mozné najst priklady s tromi alebo viacerymi procesmi, kde ani wakeup waiting bit nie je
postacujuci. Moézeme potom pridat d'alsi takyto bit (alebo aj viac).

Semafory

V roku 1965 Dijkstra navrhol pouZivanie celoéiselnych premennych na podcitanie poctu wakeup-ov na
buduce pouzitie. Bol tak zavedeny novy typ premennej — semafér (nadobudajici celo¢iselné hodnoty
vicsie alebo rovneé 0).

So semaformi je mozné vykonat dve operacie:

e P (down): Najprv sa vykona test, ¢ je hodnota kladna. Ak &no, znizi sa o 1 (¢im sa minie jeden
rezervny wakeup) a pokracuje sa. Ak nie je kladna (t.j. jej hodnota je nulova), vola sa systémové
volanie sleep.

e V (up): Najprv zvysi hodnotu semaforu o 1. Ak boli na tomto semafore nejaké spiace procesy, jeden
z nich je systémom vybraty a moze dokondit operaciu down (po dokonceni operacie up na semafore
so spiacim procesom teda bude jeho hodnota opét 0, ale budeme mat o 1 spiaci proces menej).

Operéacie down a up st vykonané ako jednoduché nedelitelné atomické akcie. Pocas ich vykonévania
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#define N 100
typedef int semaphore
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

/* velkost buffra */

/x semafory sa Specializdciou typu int */
/* riadi pristup do kritického aseku */
/* po¢ita prazdne polozky v buffri */

/* poCita plné polozky v buffri */

void producer()
{ while (TRUE) {

}

produce _item();
down(&empty);
down(&mutex);
enter _item();
up(&mutex);
up(&full);

}

void consumer()
{ while (TRUE) {

down(&full);
down(&mutex);
remove _item();
up(&mutex);
up(&empty);
consume _item();

/* produkuj polozku

/* zniz pocitadlo empty

/* vstup do kritického tseku
/* vloz polozku do buffra

/x von z kritického tseku

/* zvy$ pocitadlo full

/* zniz pocitadlo full

/* vstup do kritického tseku
/* vezmi polozku z buffra
/* von z kritického tuseku

/* zvy§ pocitadlo empty

/* spracuj polozku

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

}

Obr. 5.5: Semafory

nemé Ziaden iny proces pristup k semaforu.

Aj tento pristup je demonstrovany na probléme producenta a konzumenta (obr. 5.5). Semafory su v
fom pouZité dvoma spdsobmi: jednak na oSetrenie problému plného alebo prazdneho buffera a d'alej na
zabezpefenie vzajomného vylaenia pri pristupe do buffera (ktory je zdielany).

Semafory rieSia problém strateného wakeup-u. Zvycéajny sposob ich realizacie je implementovat ope-
racie down a up ako systémové volania, pri¢om si znemoznené preruSenia pocas ich vykonavania.

V algoritme sa pouziva semafér muter (inicializovany na hodnotu 1), ktory zabezpecuje, aby do
kritického tiseku (skladu - buffera) mohol vstupit vzdy len jeden proces. Tento semafér nadobuda len
hodnoty 1 alebo 0, preto sa nazyva bindrny semafor.

Monitory

Semafory st velmi primitivne prostriedky na riadenie koordinécie procesov (je dost zloZité pisat spravne
algoritmy). Prostriedkami vy$ej trovne st monitory (navrhnuté v roku 1974 — Hoare a 1975 — Brinch
Hansen). Monitor je mnoZina procedtr, premennych a datovych struktar zjednotenych do $pecialneho
druhu modulu alebo balika.

Procesy mozu volat procedury monitora kedy ched, ale nemozu priamo pristupovat k vnutornym
datovym Strukttram monitora z procedir deklarovanych mimo monitora. Dolezita vlastnost, ktora robi
monitor uzitoénym na dosiahnutie vzajomného vylicenia, je, Ze len jeden proces moze byt aktivny v
monitore v l'ubovolnom momente (kompilator moze obsluhovat volania procedur odlisne od inych volani
procedtr — zvyc¢ajne sa na to vyuZiva binarny semafor).



5.3. KOMUNIKACIA MEDZI PROCESMI 45

Hoci monitory poskytuji lahky spdsob na dosiahnutie vzajomného vyludenia, nie je to este dostacu-
jlice — potrebujeme spdsob na zablokovanie procesov, ked nemozu byt vykonavané. Na to st tu zavedené
premenné typu podmienka (condition variables) spolu s dvoma operaciami na nich wait a signal. Ked
procedira monitora zisti, Ze nemoze pokracovat, vykona wait na nejakej premennej typu podmienka —
tym bude volajuci proces zablokovany. To sti¢asne umozni inému procesu, ktory predtym nemohol vsti-
pit do monitora, aby don vstupil. Tento druhy proces moze zobudit spiaci proces vykonanim signal na
premennej typu podmienka, na ktorej spiaci proces ¢aka. Aby sme zabréanili tomu, Ze by boli v monitore
dva aktivne procesy v tom istom ¢ase, potrebujeme pravidlo, ktoré urcuje, ¢o sa vlastne stane po signal-e:

e Hoare navrhoval nechat zobudeny proces bezat a druhy proces pozastavit.

e Brinch Hansen poZzadoval, aby proces vykonavajuci signal opustil ihned monitor, t.j. signal sa smie
vyskytnat len ako posledny prikaz procedury monitora (budeme pouZivat tento navrh — je kon-
ceptuélne jednoduchsi a Tahsi na implementéaciu).

Ak sa signal vykona na premennej, na ktort ¢aka viac procesov, len jeden z nich bude oZiveny (uréeny
systémovym planovacom).
Aj pouzitie monitora si demonstrujeme na probléme producenta a konzumenta (obr. 5.6).

Wait a signal st podobné sleep a wakeup, ale je tu jeden rozdiel: sleep a wakeup mézu zlyhat, pretoze
jeden proces sa pokusa ,zaspat” a druhy zase ,,zobudit“. S monitormi sa to nemdéze stat — automatické
vzajomné vylucenie zabezpecuje, Ze ked je napr. producent v monitore a zisti, Ze buffer je plny, je schopny
dokonéit wait operédciu bez obavy, Ze planova¢ moze prepnut na konzumenta pred jej ukonéenim.

Na realizovanie monitorov potrebujeme programovaci jazyk, ktory ich mé zabudované (napr. Con-
current Euclid, 1983), kym na realiziciu semaforov staci pridat dve assembler-rutiny do kniZznice —
uzivatel'ské programy potom mézeme pisat v Pascale alebo v jazyku C.

Dalsi problém s monitormi a semaférmi je, ze boli vyvinuté na rieSenie problému vzajomného vy-
lacenia na 1 alebo viac CPU, ktoré maju v8etky pristup k spolo¢nej pamiti. AvSak v distribuovanom
systéme pozostavajicom z viacerych CPU (kazdy so svojou vlastnou pamiétou), spojenych lokalnou sie-
tou, su tieto prostriedky nepouZzitelné. Je navySe potrebné nie¢o na vymenu informécii medzi poditac¢mi
(vymena sprav).

5.3 Komunikacia medzi procesmi

Posielanie sprav

Tento spodsob komunikacie pouZziva primitivy (operacie) send a receive, ktoré si systémovymi volaniami
a mozu byt Tahko pridané do knizni¢nych procedir (podobne ako semafory):

e send(ciel, &sprava)

e receive(zdroj, &spréava)

Pri navrhu systému posielania sprav je treba vyrieSit mnoZstvo otézok, ktorymi sa budeme zaoberat
v dalsom vyklade:

e Synchronizdcia

— Send: blokovany, neblokovany
— Receive: blokovany, neblokovany, test na pritomnost spravy

o Adresovanie

— Priame: symetrické, nesymetrické
— Nepriame: statické, dynamické, vlastnictvo

o Formadt

— Obsah
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monitor ProducerConsumer;
var full, empty: condition;
count: integer;

procedure enter;
begin
if count = N then wait(full);
enter item;
count := count + 1;
if count = 1 then signal(empty);
end;

procedure remove;
begin

if count = 0 then wait(empty);

remove _item,;

count := count — 1;

if count = N — 1 then signal(full);
end;
count := 0;
end monitor;

procedure producer;
begin
while true do
begin
produce _item;
ProducerConsumer.enter;
end;

end;

procedure consumer;
begin
while true do
begin
ProducerConsumer.remove;
consume_item
end;
end;

7

Obr. 5.6: Monitory
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— Dlzka: fixna, variabilna
e Sposob zaradovania do fronty

— FIFO
— Priorita

Synchronizacia

Komunikacia medzi procesmi vyzaduje isty stupen synchronizacie tychto procesov: prijimajici proces
nemoze prijat spravu, kym nebola inym procesom posland. Musime tiez Specifikovat, ¢o sa stane po
vykonani operacie send alebo receive: v oboch pripadoch méze byt proces blokovany (v pripade operacie
send kym nebude sprava prijata, pri receive kym nejaka sprava nepride) alebo neblokovany. BeZne sa
pouzivaja tri kombinacie, hoci kazdy systém ma zvyc€ajne implementovant len jednu alebo dve z tychto
kombinacii:

e Blokovany send a blokovanjy receive: nazyva sa tiez rendezvous

e Neblokovany send a blokovany receive: pravdepodobne je to najuzito¢nejsia kombinécia.

e Neblokovany send a neblokovany receive

Pri multiprogramovani sa ¢asto pouziva neblokovany send. Napr. pri poziadavke na vykonanie vy-
stupnej operécie ako napr. tlacenie ziadajuci proces vysle poziadavku vo forme spravy a pokracuje. Pre
receive je prirodzenejSia blokovana verzia. ZvycCajne proces oCakéavajici spravu potrebuje informéaciu z
tejto spravy, aby mohol pokracovat. Av8ak, ak sa spréava stratila alebo vysielajuci proces zlyh4 este pred
vyslanim spravy, prijimajuci proces bude zablokovany navzdy. Mozny je tieZz pristup, Ze pred vykonanim
receive proces testuje, ¢i ¢aka nejaka sprava.

Adresovanie

St dva sposoby adresovania:

e Priame adresovanie

Operécia send explicitne pomenuje adresata. Operacia receive moze byt rieSend dvoma sposobmi:

— prijimajuci proces explicitne pomenuje odosielatela spravy — hovorime o symetrickej komuni-
kdcii.
Format operacii send a receive je:

* send(P, &s)
* receive(Q, &s)

— prijimajaci proces pouziva implicitnta adresaciu, ¢ize parameter 'zdroj’ v receive bude naplneny
identifika¢nym ¢islom posielajuceho procesu, ked sa operéacia receive vykona — hovorime o
nesymetrickej komunikdcii.

Format operacii send a receive je:

* send(P, &s)
* receive(id, &s), kde id sa naplni ¢islom procesu, ktory spravu vyslal.

e Nepriame adresovanie

Spravy sa posielaju a prijimajua zo ,schranok® (mailbox). Kazda schranka ma jednozna¢ni identi-
fikaciu. Dva procesy mozu komunikovat, len ak zdielaji schranku — miesto na buffrovanie istého
po¢tu sprav (tento pocet je zvyGajne uréeny pri vytvoreni schranky).

— send(A4, &s)
— receive(A, &s)
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Vztah medzi posielajicimi a prijimajtcimi procesmi moze byt: one-to-one ("sukromny"komunikaény
kanal medzi dvoma procesmi), one-to-many (uZito¢né pre aplikicie, kde jedna sprava ma byt ro-
zoslana — broadcast — viacerym procesom), many-to-one (uzitoéné pre vztah klient/server, kedy
jeden proces poskytuje sluzbu mnohym d’alsim procesom. Schranka sa v tomto pripade nazyva tiez
port.), many-to-many.

Priradenie procesov ku schrankam moéze byt statické alebo dynamické. Porty sa Casto staticky
spojené s prislusnym procesom, ¢ize port je vytvoreny a priradeny procesu permanentne. Podobne
vztah one-to-one je zvycajne definovany staticky a permanentne. Ked je mnoho odosielatelov,
pripojenie odosielatela ku schranke moze byt dynamické (na tento ucel sluzia napr. primitivy
connect a disconnect).

Tiez je dolezita otazka vlastnictva schranky. V pripade portu je schranka zvycajne vytvorena a
vlastnena prijimajicim procesom. TakZze, ked tento proces skonéi, schranka je zruSena. Vo vse-
obecnosti mdze operacny systém poskytovat sluzbu na vytvaranie schranok. Schranka moze byt
chapana ako vlastnictvo procesu, ktory ju vytvoril, a teda zanika pri ukonceni procesu, alebo je
schranka vlastnictvom opera¢ného systému a na jej zruSenie treba pouzit explicitny prikaz.

Format sprav

Spravy mozu byt pevnej (fixnej) alebo premenlivej (variabilnej) dlzky.

Typicky format sprav variabilnej dlzky je: "header", obsahujuci informéciu o sprave — typ spravy,
identifikaciu ciela, identifikiciu odosielatel'a, dlzku spravy, riadiacu informéaciu, napr. priorita, poradové
¢islo spravy a pod. — a "body", vlastny obsah spravy.

Zarad ovanie sprav

Najjednoduchsi sposob zaradovania sprav je FIFO — first-in-first-out, ¢o v8ak nemusi byt postacujuce,
ak st niektoré spravy dolezitejsie ako ostatné. V takom pripade je mozné zaviest priority sprav na za-
klade typu spravy alebo uréenia odosielatela. Dalsia moznost je umoznit prijimajicemu procesu prezriet
zoznam Cakajucich sprav a vybrat, ktora sprava bude prijata ako nasledujtuca.

Problémy designu pre posielanie sprav

Posielanie sprav mé niektoré problémy, ktoré sa neobjavuji u semaférov alebo monitorov, hlavne ak ko-
munikujice procesy s na réznych pocitacoch prepojenych sietou. Napr., spravy sa mozu v sieti stratit: je
moZné, aby sa odosielatel a adresat dohodli, Ze hned po prijati spravy sa posiela Specidlna ,,potvrdzovacia
sprava“ — acknowledgement message (ak ju odosielatel nedostane do istého ¢asu — posle spravu znova).

Systém sprav musi tiez rieSit otazku, ako st procesy pomenované, aby ich urcenie bolo jednozna¢né
— zvycajne proces@pocitac alebo pocitac:proces.

Riesenie problému producenta a konzumenta pomocou posielania sprav je uvedené na obr 5.7.

Predpokladajme, Ze vSetky spravy maju rovnaki velkost a Ze odoslané, ale zatial neprijaté spravy sa
bufrované automaticky opera¢nym systémom. Konzument za¢ne tym, ze posle producentovi N prazdnych
sprav. Kedykol'vek m4 producent polozku k dispozicii pre konzumenta, vezme 1 prazdnu spravu a posle
spat plna. Tymto sposobom celkovy pocet sprav v systéme zostava konstantny, teda moézu byt ulozené v
danom pamétovom priestore. Ak producent pracuje rychlejsie ako konzument, vSetky spravy sa naplnia
a producent bude blokovany a ¢akéa na prazdnu spravu od konzumenta. Ak pracuje rychlejsie konzument,
situécia je opacné.

5.3.1 Pipe (ruara)

V Unixe sa komunikéicia medzi uzivatel'skymi procesmi realizuje aj prostrednictvom pipe, ¢o su vlastne
mailboxy s tym rozdielom, Ze pipe neudrZuje hranice sprav. Ak teda odosielatel posle 10 sprav po 100
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#include “prototypes.h"

#define N 100 /* pocet poloZiek v buffri x/
#define MSIZE 4 /* velkost spravy =/
typedef int message[MSIZE]|;

void producer(void)
{ int item;
message m;
while (TRUE) {
produce _item(&item);
receive(consumer, &m); /* Cakanie na prazdnu spravu */
build message(&m, item);
send(consumer, &m);
}
}

void consumer(void)
{ int item, ;
message m;
for (i = 0;¢ < N;i+ +) send(producer, &m); /* N prazdnych */
while (TRUE) {
receive(producer, &m);
extract item(&m, &item);
send (producer, &m); /* spit prazdnu */
consume_ item(item);

Obr. 5.7: Problém producenta/konzumenta s posielanim sprav
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bytoch, prijimatel pre¢ita 1000 bytov, t.j. dostane vSetkych 10 sprav naraz. Problém nevzniki, ak sa
procesy dohodni, Ze zapisuji a ¢itaju spravy fixnej velkosti alebo ukonéia spravu Specidlnym znakom
(napr. LF).



Kapitola 6

Klasické problémy koordinacie procesov

6.1 Problém obedujucich filozofov

V r. 1965 ho nastolil a vyriesil Dijkstra — na modelovanie procesov, ktoré sa snazia o vyluény pristup k
obmedzenému mnozstvu prostriedkov:

Pét filozofov sedi okolo okruhleho stola, kazdy méa svoj tanier Spagiet, na ich zjedenie potrebuje filozof
2 vidlicky. Medzi kazdymi dvoma taniermi je vidlicka.

Zivot filozofa pozostéva z fazy myslenia a fazy jedenia (ostatné aktivity su tu irelevantné). Ked je
filozof hladny, pokusi sa zobrat lava a prava vidlicku (nie naraz) v I'ubovolnom poradi. Ak sa mu to
podari, naje sa, potom polozi vidlicky a opéit mysli - vid. algoritmy na obr.6.1 a 6.2.

Avgak ak predpokladame, Ze naraz vSetkych 5 filozofov uchopi Tava vidlicku, tak Ziaden nemoze
uchopit prava vidlicku a nastane uviaznutie.

6.1.0.0.1 MoZnosti rieSenia:

#define N 5

void filozof(int %)
{ while (TRUE) {

mysli();

vezmi_ vidlicku(4); /* vezmi lava vidlicku */
vezmi_ vidlicku((i + 1)%N); /x vezmi pravu vidlicku =/
jedz();

poloz_ vidlicku(z); /* poloz lava vidlicku */
poloz_ vidlicku((i + 1)%N); /* poloz pravu vidlicku =/

Obr. 6.1: Algoritmus pre filozofa (obvyklé rieSenie)

51
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#define N 5
semaphore vidlicka[N]

void filozof(int 7)
{ while (TRUE) {

mysli();

down(&vidlickali]); /* vezmi Tava vidlicku */
down(&vidlicka[(: + 1)%N]); /* vezmi prava vidlicku =/
jedz();

up(&vidlickali]); /* poloz lavi vidlicku */
up(&vidlicka[(i + 1)%N]); /* poloz pravu vidlicku =/

Obr. 6.2: Algoritmus pre filozofa (obvyklé rieSenie) - s pouZzitim semaférov

MoZeme dovolit maximélne 4 filozofom, aby si sadli k stolu.

)

b) Dovolime, aby filozof uchopil vidli¢ky, len ak st obe volné.
) Asymetrické rieSenie: 1 filozof uchopi najprv lava vidlicku a potom pravi, iny zase naopak.
)

Mozeme modifikovat program tak, Ze po chyteni lavej vidlicky program preveri, ¢i je prava k
dispozicii. Ak nie, filozof polozi Tavu vidlicku a chvilu pockd — potom proces opakuje. Moze sa
vak stat, Ze vSetci filozofovia naraz uchopia l'ava vidlicku, naraz ju poloZia, po¢kaji, opat naraz
uchopia, atd. Stav, ked program pokracuje do nekoneéna, ale zlyha bez akéhokolvek postupu sa
nazyva vyhladovanie (starvation).

(e) Mohli by sme nechat filozofov ¢akat nahodny ¢as (nie ten isty) — pravdepodobnost, Ze by nastala
opisana situécia, je velmi mala. Niekedy v8ak potrebujeme algoritmus, ktory funguje vzdy a nezlyha
kvoli nepravdepodobnej postupnosti ndhodnych ¢isel.

(f) Zaviest binarny semafor — ked niektory filozof ide jest, musi vykonat operédciu down, po poloZeni
vidli¢iek vykon4a up. Teda len 1 filozof moze jest v Tubovolnom ¢ase (kym teoreticky mozu jest 2).

(g) RieSenie umozhujice maximélny paralelizmus pre Iubovolny pocet filozofov: PouZijeme pole state
na udrZiavanie informaécie, ¢i filozof je, mysli alebo je hladny (pokasa sa chytit vidlicky). Filozof
moze prejst do stavu jediaci, len ked Ziaden z jeho susedov neje. Susedia filozofa i st definovani
makrami LEFT a RIGHT (vid. obr.6.3).

Poznamka: Uvedené riefenie zabrani uviaznutiu, ale moZze viest k vyhladovaniu jedného filozofa
(UKAZTE).

6.2 Problém citatelov a zapisovatelov

Problém 5 filozofov je uzitoény na modelovanie procesov, ktoré st konkurujiace vo vyluénom pristupe k
obmedzenému mnoZstvu prostriedkov, ako paskové jednotky alebo iné V/V zariadenia. Problém ¢itatel ov
a zapisovatelov (r. 1971, Courtois) modeluje pristup do bazy dat. Predstavme si velkt bazu dat (napr.
rezervany systém v aerolinidch) s mnoZstvom procesov, ktoré do nej mozu zapisovat a ¢itat z nej. V
istom ¢ase moze databéazu ¢itat viac procesov, ale ak 1 proces zapisuje do databazy, Ziaden iny proces
do nej nema pristup. RieSenie problému pomocou semaférov vidime na obr.6.4.

Prvy citatel, ktory ziska pristup do databazy, vykona down na semafére databazy. Az ked posledny
Citatel docita, vykona up a uvolni blokovanému zapisovatelovi (ak nejaky je), vstup do databazy. V
tomto rieSeni Citatelia maja vac¢siu prioritu ako zapisovatelia.
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F#define N 5
#define LEFT (i — 1)%N

#define RIGHT (i + 1)%N

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];

semaphore mutex = 1;
semaphore s[N];

void philosopher(int )

{ while (TRUE) {
think();
take forks(i);
eat();
put_ forks(s);

}
}

void take forks(int )

{ down(&mutex);
state[i]| = HUNGRY;
test(4);
up(&mutex);
down(&si]);

}

void put_ forks(int ¢)

{ down(&mutex);
state[i] = THINKING;
test(LEFT);
test(RIGHT);
up(&mutex);

}

void test(int 7)

/x vzajomné vyladenie pri praci s polom state */
/* inicializované na 0, pre filozofov, nie pre vidlicky */

/* uchop obe vidli¢ky alebo prejdi do stavu blokovany */

/* poloZ obe vidlicky */

/* vojdi do kritického aseku */

/* zaznaé fakt, Ze filozof ¢ je hladny =/

/* skus chytit vidlicky */

/x vystup z kritického aseku */

/* zablokuj sa, ak vidlicky neboli volné */

/x vojdi do kritického tseku */

/x filozof i dojedol x/

/x pozri, ¢i Tavy sused moze jest x/
/* pozri, &1 pravy sused moZe jest */
/* vystup z kritického tseku */

{ if (state[i] == HUNGRY && state[LEFT| != EATING

state[i] = EATING;
up(&sfi));

&& state[RIGHT] | = EATING {

Obr. 6.3: Problém obedujucich filozofov
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typedef int semphore;
semaphore mutex = 1;
semaphore db = 1;

/* riadi pristup do rc */
/* riadi pristup do databazy */

int rc = 1;

void reader()
{ while (TRUE) {

}
}

down(&mutex);

rc =rc+ 1;

if (rc == 1) down(&db);
up(&mutex);

read data_base();
down(&mutex);

rc =rc — 1;

if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer()
{ while (TRUE) {

think up data();
down(&db);

write data_base();
up(&db);

/* pocet procesov, ktoré ¢itaju alebo cheu &itat /

/* vyluény pristup k rcx/

/% o 1 Citatela viac x/

/% ak je 1. citatelx/

/x ukonéi vylu¢ny pristup k rc =/
/x pristup k datam x/

/% o 1 citatela menej */
/* ak to bol posledny &itatel x/

/* nekriticka sekcia */

/* nekriticka sekcia */

/* vyluény pristup do databazy */
/* zmen data */

/* ukonéi vyluény pristup */

Obr. 6.4: RieSenie problému ¢itatelov a zapisovatelov (Courtois 1971) — semafory
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Kriticky region

Dalst prostriedok pre zabezpeéenie vzajomného vylucenia, ktory patri do skupiny rieSeni s podporou
OS alebo programovacieho jazyka, je jazykovy konstrukt kriticky region (zavedeny Brinch Hansenom
a Hoareom, 1972). Umoziuje kontrolu synchronizacie uz pri kompilacii: Premenna v typu T zdielana
viacerymi procesmi bude deklarovana:

var v: shared T';
Premenna v moze byt dostupna len vnutri inStrukcie region nasledujiceho tvaru:
region v do S

¢o znamenad, Ze pokial je vykonavana inStrukcia S, Ziaden iny proces nemoéze pristupovat k premennej
v. Preklada¢ kaZzdej zdielanej premennej implicitne prideli bindrny semafor a kriticky region chréaniaci
pristup k tejto premennej, uzavrie prikazmi down a up nad tymto semaférom, t.j.

region v do S;
je ekvivalentné

down(P);
S
up(P);

Kriticky region sa da efektivne pouZzit na rieSenie problému kritického tseku, ale neda sa pouZit na
rieSenie niektorych vSeobecnych problémov synchronizacie. Na toto zaviedol Hoare (1972) podmieneny
kriticky region:

region v when B do S;

kde B je logicky vyraz. Ked proces vstupi do regionu kritického tiseku, vyhodnoti sa vyraz B: ak je
pravdivy, vykon4 sa S. Ak je nepravdivy, proces ,uvolni vziajomné vyludenie a ¢aki, kym sa B stane
pravdivym a neexistuje iny proces v kritickom tiseku spojenom s v. Ako priklad na pouzitie podmieneného
kritického regionu mozeme uviest problém producenta a konzumenta (obr.6.5).

Za niektorych okolnosti treba umiestnit synchronizaéné podmienky na Iubovolnom mieste vnutri
kritického regionu (nielen na zaciatku). Brinch Hansen navrhol nasledovnia konstrukciu regionu:

region v do
begin
St; /* vykona sa po vstupe do krit. regiénu; nemusi tam byt ni¢ */
await(B);
Sa;
end;

)

pri¢om prikaz await(B) vyhodnoti B. Ak je B nepravdivé, ¢aka sa, kym je B pravdivé a nie je Ziaden
proces v kritickom tseku spojenom s v.

V pripade citatelov a zapisovatelov problém vyZaduje, aby ked je zapisovatel pripraveny, mohol
zapisovat hned, ako je to mozné. Teda Citatel moze vojst do svojho kritického tseku, len ked v kritickom
useku nie je Ziadny zapisovatel a ani nie st pripraveni Ziadni zapisovatelia (obr.6.6).
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var buffer: shared record pool: array[0..n — 1] of item;
count, in, out: integer;
end;

Producent: vklada nova polozku nextp do buffra vykonanim:
region buffer when count < n do
begin
pool[in] := nextp;
in:=in + 1 mod n;
count := count + 1;
end;

Konzument: vybera polozku z buffra a uklada ju do nextc:
region buffer when count > 0 do
begin
nextc := pool[in];
out:= out + 1 mod n;
count := count — 1;
end;

Obr. 6.5: Problém obmedzeného buffera (producent/konzument)
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var v: shared record
nreaders, nwriters: integer;
busy: boolean,;
end;

procedure open_read;
begin
region v do
begin
await(nwriters = 0);
nreaders := nreaders + 1;
end;
end;

procedure close read;
begin
region v do
begin
nreaders:= nreaders — 1;
end;
end;
procedure open_ write;
begin
region v do
begin
nwriters := nwriters + 1;
await((not busy) and (nreaders = 0));
busy := true;
end;
end;
procedure close write;
begin
region v do
begin
nwriters := nwriters — 1;
busy := false;
end;
end;

begin
busy := false;
nreaders:= 0;
nwriters := 0;
end.

Obr. 6.6: Problém ¢itatelov/zapisovatelov

o7



Kapitola 7

Uviaznutie

Uviaznutie je situacia, ked dva alebo viac procesov ¢akéa na splnenie podmienky, ktora nikdy nenastane.
Skoro kazdé inStrukcia, v ktorej je procesom povoleny vylu¢ny pristup k zariadeniu, siborom a inym
objektom je potencidlny zdroj pre deadlock (uviaznutie).

MnoZina procesov je v stave uviaznutia, ked kazdy proces z mnoZiny ¢aki na udalost, ktora moze
vyvolat len iny proces tejto mnoziny.

Podmienky uviaznutia:

1.

vzajomné vylicenie — mutual exclusion (aspoii jeden prostriedok moéze byt v istom Gase vyuzivany
len jednym procesom)

. postupné ziskavanie prostriedkov s ¢akanim — hold and wait (existuje proces, ktory ziskava pros-

triedky postupne, v Tubovolnom poradi a ¢aki, kym mu sprava prostriedkov neprideli ziadany
prostriedok, pritom neuvolni ziskané prostriedky)

nemoZznost prerozdelenia prostriedkov — no preemption (ak proces ziska prostriedok, Ziaden iny
proces nemé pravo mu ho odobrat, uvolnit prostriedok moze len ten proces, ktory ho ziskal)

Pri platnosti tychto 3 podmienok méze, ale nemusi vzniknat uviaznutie. Aby uviaznutie skutocne
nastalo, musi byt splnené stvrta podmienka:

cyklické ¢akanie — circular wait (existuje mnoZina procesov, v ktorej 1. proces ¢akd na udalost
generovani 2. procesom,. .. n-ty proces na udalost generovand 1. procesom)

Prvé 3 podmienky st nutné, ale nie postacujice pre vznik uviaznutia. Stvrté podmienka je vlastne
potencialnym désledkom prvych troch podmienok. Cize za predpokladu, ze platia prvé 3 podmienky,
moZe nastat postupnost udalosti, ktora vedie k vzniku neodstrdnitelného cyklického Eakania. Cyklické
¢akanie v podmienke 4 je neodstranitelné, lebo platia prvé 3 podmienky. Cize uvedené 4 podmienky
spolu tvoria nutné a postacujice podmienky pre vznik uviaznutia.

Vo vSeobecnosti existuji 4 stratégie na zaobchadzanie s uviaznutim:

e ignorovanie problému (the Ostrich algorithm)

o detekcia a vyvedenie z uviaznutia (deadlock detection and recovery)

e prevencia — neumoZnenim jednej zo 4 podmienok (deadlock prevention)

e dynamické vyhybanie sa — starostlivym pridelovanim prostriedkov (deadlock avoidance)

7.1 Ignorovanie (,pStrosi pristup*)

Rozny pristup k tejto metode:

58



7.2. DETEKCIA A VYVEDENIE 59

e matematici to povazuju za uplne neakceptovatelny pristup
e inzinieri sa pytaju, ako asto takyto problém nastava a ako vazne uviaznutie je

V Unixe vlastne kazda tabulka v OS (tabulka procesov, tabulka i-uzlov — uréuje pocet otvorenych
stiborov, atd.) reprezentuje kone¢ny (obmedzeny) prostriedok a je potencidlnym zdrojom uviaznutia.
Unixovsky pristup je ignorovat problém uviaznutia s predpokladom, Ze vicsina uzivatelov by prefero-
vala mozné uviaznutie pred pravidlami obmedzujicimi kazdého uZivatela na pouzivanie 1 procesu, 1
otvoreného stboru atd.

7.2 Detekcia a vyvedenie

Systém sleduje poZziadavky na prostriedky a ich uvolnenie. Periodicky vykonava algoritmus, ktory umoz-
nuje zistit, ¢i nastala podmienka cyklického ¢akania. Kontrola na vznik uviaznutia sa moze uskuto¢nit pri
kazdej poziadavke na prostriedok (vyhody: skoréa detekcia uviaznutia, algoritmus je relativne jednoduchy,
lebo je zaloZeny na béaze inkrementalnych zmien stavu systému, nevyhoda: frekventovana kontrola mina
vela Gasu procesora) alebo menej ¢asto, v zavislosti od toho, ako pravdepodobny je vznik uviaznutia.

Jednou z moZnosti, ako mdZe systém sledovat poziadavky na prostriedky a preverovat vznik uviaz-
nutia, je udrZiavat graf procesov a prostriedkov.

T
X|——B)

proces A ma proces B ziada proces A ma prostriedok X a ziada Y,
prostriedok X prostriedok Y proces B mé prostriedok Y a ziada X

Na zaklade poziadaviek procesov na prostriedky a ich uvolfiovania modifikuje graf a sleduje, ¢ sa v
nom nevyskytuje nejaky cyklus.

Ina moznost je pravidelne preverovat, ¢i existuju procesy, ktoré si sistavne blokované viac ako isty
¢as (napr. 1 hod.) — takéto procesy st potom ukoncené.

Vseobecny algoritmus pre detekovanie uviaznutia:
UvaZzujme systém s n procesmi a m roznymi typmi prostriedkov. Definujme nasledujiice matice a
vektory:

ail  aiz - Qim
a1 a2 - Q9m . . .
A= . ] . ) aktualne pridelenie prostriedkov procesom
an1 an2 e Anm
P11 P12 - Pim
Pb21 P22 - Pom .
P = ] ] ) ) pozadované prostriedky
Pn1  DPn2 t DPnm
V = (vi,v9, -, Um) nepridelené prostriedky

Algoritmus postupuje tak, Ze oznaCuje neuviaznuté procesy. Na zaciatku su vSetky procesy neozna-
¢ené. Potom sa vykonéavaju tieto kroky:
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1. Ozna¢ kazdy proces, ktory méa v matici A nulovy riadok.

2. Inicializuj pomocny vektor W rovny vektoru V.

3. Najdi index i taky, Ze proces i je neoznafeny a i-ty riadok v P je mensi alebo rovny W. Cize
pik < wg, pre 1 < k < m. Ak taky riadok neexistuje, ukonéi algoritmus.

4. Ak bol taky riadok néajdeny, ozna¢ proces i a pripocitaj prislusny riadok matice A k W. Teda
wy = Wi + a;,. Vrat sa na krok 3.

Uviaznutie nastava vtedy a len vtedy, ak po ukonceni algoritmu existuji neoznacené procesy. Kazdy neoz-
naceny proces je uviaznuty. Stratégiou tohto algoritmu je néjst proces, ktorého poziadavky na prostriedky
mozu byt uspokojené dostupnymi prostriedkami. Dalej algoritmus predpokladé, Ze tomuto procesu budua
prostriedky pridelené a Ze proces skondi a vrati vSetky prostriedky. Potom algoritmus hlad4 d'alsi proces,
ktory moze byt uspokojeny.

Priklad:
Matica pridelenych prostriedkov Matica poZiadaviek (eSte potrebnych prostriedkov)
Rl R2 R3 R4 RS R1 R2 R3 R4 R5
P1| 1 0 1 1 0 P1] 0 1 0 0 1
P2 | 1 1 0 0 0 P2 0 0 1 0 1
P3| 0 0 0 1 0 P3| 0 0 0 0 1
P4| O 0 0 0 0 P4 1 0 1 0 1

Rl R2 R3 R4 R5
0 0 0 0 1

Vektor nepridelenych (este volnych) prostriedkov

Algoritmus pracuje takto:

1. Oznadi P4, lebo P4 nem4 pridelené ziadne prostriedky.
2. Nastavi W= (0000 1).

3. Poziadavka procesu P3 je mensia alebo rovnéa ako W, preto ozna¢i P3 a nastavi W =W +(00010) =
(0001 1).

4. Skondi.

Procesy P1 a P2 st neoznacené, ¢ize su uviaznuté.

Ked operacny systém detekuje uviaznutie, treba ho nejako rieit. Mozné s viaceré pristupy:

e ZruSit v8etky uviaznuté procesy.

e Vratit vSetky uviaznuté procesy do nejakého definovaného kontrolného bodu (checkpoint) (v ktorom
je stav procesu zapisany do suboru) a restartovat vSetky procesy. Cize systém musi poskytovat
mechanizmus navratu programu (rollback) a re§tartovania. Problémom tohto pristupu je, Ze sa
opétovne moze objavit povodné uviaznutie.

e Vybrat proces spomedzi uviaznutych procesov (obet), ktory bude ukon¢eny. Ak sa uviaznutie od-
stranilo, moZno pokrac¢ovat. Ak nie, je nutné vybrat dalsiu obet. Pri vybere obete hra tlohu viacero
faktorov: priorita, rozpracovanost, po¢ty a druhy pridelenych prostriedkov, savislost procesu s os-
tatnymi procesmi, atd.

e Postupne prerozdelovat prostriedky, kym sa neodstrani uviaznutie. Proces, ktorému boli odhaté
prostriedky, sa musi vratit do bodu pred pridelenim odhatych prostriedkov.
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Metoda detekcie a vyvedenia z uviaznutia sa pouziva Casto v batch systémoch, kde je ukoncenie a
reStartovanie procesu zvycajne akceptovatelné.

7.3 Prevencia
Prevencia je neumozZnenie jednej zo 4 podmienok uviaznutia:

1. Vzajomné vylicenie — prostriedok nie je vyluéne prideleny jednému procesu. To modze sposobit
chaos, napr. pri tladi. RieSenim je spooling — viaceré procesy mozu generovat vystup v tom istom
case. Jediny proces, ktory ziada o tlaciareii je tlacovy daemon, ktory nikdy nepozaduje iné pros-
triedky. Tym eliminujeme uviaznutie pre tlaciarefi. AvSak nie v8etky zdielané prostriedky moZzu
pouZivat spooling (napr. tabulka procesov). Dalej uviaznutie moze vzniknat pri zapliiani priestoru
disku urceného na spooling v pripade, Zze tlacovy daemon je naprogramovany tak, ze zacina tlag,
az ked je k dispozicii cely vystup.

2. Postupné ziskavanie prostriedkov — mohli by sme Ziadat, aby proces pred zacatim vykonéa-
vania ziskal v8etky prostriedky, ktoré bude potrebovat. Problémom je, Ze mnohé procesy nevedia,
koIko prostriedkov budi potrebovat pocéas behu. Dalej, prostriedky nie st vyuzivané optimalne. Ina
moznost je pozadovat od procesu ziadajiceho prostriedok, aby uvolnil vSetky prostriedky, ktoré
prave drzi. Az ked je poziadavka tspesna, moze dostat spat povodné prostriedky.

3. Nemoznost prerozdelenia prostriedkov — dat moznost odiiat prostriedok procesu. Tato me-
toda moze byt pouzivana hlavne pre prostriedky, ktorych stav moéZe byt Tahko uloZeny (CPU
registre, pamétovy priestor). Mozné pristupy:

e Ak proces drZiaci nejaké prostriedky Ziada iné prostriedky, ktoré nie st volné, tak musi uvolnit
prostriedky, ktoré ma a ak to bude potrebné, vyziadat si ich znova spolu s poZadovanymi
novymi prostriedkami.

e Ak proces ziada prostriedky, ktoré nie st volné, hlad4 sa, ¢i ich nedrzi iny proces, ktory
dakd na dalgie prostriedky. Ak ano, prostriedky sa cakajucemu procesu odoberd a pridelia
ziadajucemu. Ak nie, Zziadajaci proces ¢aki a zatial mu moéZzu byt odobrané prostriedky.

4. Cyklické ¢akanie — moze byt eliminované viacerymi sposobmi.

e Pravidlo, ktoré hovori, Ze proces moze mat v danom momente len jeden prostriedok. Ak
potrebuje dalsi, musi prvy uvolnit (nie je moZné napr. pre proces, ktory potrebuje kopirovat
velky subor z pasky na tlaciarei)

e Ocislovat vietky prostriedky, potom mozu procesy Zziadat prostriedok kedykol'vek, ale v nu-
merickom poradi. Preto nemoéZe nastat uviaznutie. (V Tubovolnom momente mé jeden z pri-
radenych prostriedkov najvicsie ¢islo. Proces, ktory méa tento prostriedok, nikdy neziada o uz
prideleny prostriedok. Bud skonéi alebo Ziada o prostriedky s vys$im ¢islom — vSetky s vtedy
dostupné. Ked skon¢i, uvolni svoje prostriedky — vtedy nejaky iny proces drzi prostriedok s
najvyssim &islom atd'.)

e Obmena: nepozadujeme striktne, Ze prostriedky mozu byt Ziadané len v rastticom poradi, ale
to, Ze proces nesmie ziadat prostriedok s nizsim ¢islom, nez tie, ¢o drzi. Ak napr. proces Ziadal
prostriedok s ¢. 9 a 10, potom oba uvolnil, vlastne méze ziadat od zaciatku — nie je dovod,
aby nemohol Ziadat prostriedok s ¢. 1.

Aj ked usporiadanie prostriedkov riesi problém uviaznutia, nie je prakticky mozné najst usporia-
danie, ktoré by tplne vyhovovalo vSetkym procesom.

Ak vylu¢ime jednu z prvych troch podmienok uviaznutia, hovorime o nepriamej metéde prevencie
uviaznutia, kym priama metdda prevencie uviaznutia znamend zabréanenie vyskytu cyklického ¢akania.



62 KAPITOLA 7. UVIAZNUTIE
7.4 Vyhybanie sa

Pripusta platnost vSetkych 4 podmienok, zamedzi sa v8ak ich stic¢asnéa platnost. Takdto metdda menej
obmedzuje procesy aj spravu prostriedkov nez preventivne metody, je v8ak algoritmicky a aj z hl'adiska
potrebnych datovych struktir zlozitejsia.

PopiSeme si 2 pristupy k vyhybaniu sa uviaznutiu:

e nespustit proces, ak jeho poziadavky na prostriedky moézu viest k uviaznutiu

e nepridelit procesu dalsie prostriedky, ak toto pridelenie moéZe viest k uviaznutiu

Odmietnutie spustenia procesu

Uvazujme systém s n procesmi a m roznymi typmi prostriedkov. Definujme nasledujice matice a
vektory:

ailp a2 - Gim
G21 G2 -t Q2m ) ) )
A= _ ] _ ) aktuélne pridelenie prostriedkov procesom
an1  ap2 ot OGpm
mpi1r mpi2 - MPim
mpe1 Mmp2 - MP2am )
MP = . . ) _ pozadované prostriedky
mpnp1  Mpn2 - MPpm
C = (c1,¢c2, " ,¢m) celkové mnozZstvo prostriedkov v systéme
V = (v1,v2,*,Um) nepridelené (volné) prostriedky

Matica MP udava maximalne poziadavky kazdého procesu na kazdy prostriedok (mp;; je maximalne
mnoZstvo prostriedku j, ktoré bude pozadovat proces P;). Tato informécia musi byt procesmi uvedenéa
vopred.

Platia nasledujuce vztahy:

1. ¢;j =v; + > p_y akj, pre kazdeé j.

Vsetky prostriedky st bud volné (nepridelené) alebo pridelené.
2. mpy; < c¢j pre vietky k, j.

Ziaden proces nemoze pozadovat viac prostriedkov, nez je celkovo v systéme.
3. arj < mpy; pre vetky k, j.

Ziadnemu procesu nemoze byt pridelené viac prostriedkov 'ubovolného typu, nez na zaciatku po-
zadoval.

Stratégiu predchadzania uviaznutiu, ktora zabrani spusteniu nového procesu, ak jeho poziadavky na
prostriedky mozu viest k uviaznutiu, definujeme takto: Novy proces P, 1 sa spusti len ak plati

n
Cj 2 MP(ny1)j + Zmpkj pre kazdé j.
k=1

Cize proces bude spusteny len ak maximalne poziadavky na prostriedky stucasnych procesov plus
nového procesu nepresiahnu celkové mnozstvo prostriedkov v systéme. Tato stratégia nie je optimalna,
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pretoZe predpoklada to najhorSie — teda Ze vSetky procesy budi poZzadovat prostriedky v maximalne
ohlasovanej vyske naraz.

Odmietnutie pridelenia prostriedkov procesu

Stratégia odmietnutia pridelenia prostriedkov je znama ako bankdrov algoritmus a bola prvykrat
zavedend u Dijkstru (1965):

Bankar (spravca prostriedkov) ma k dispozicii isté mnozstvo penazi v roznych menéch (isté mnoz-
stvo prostriedkov roznych druhov). Do banky prichadzaju zakaznici (procesy), ktori Ziadaji o pozicku
v jednotlivych menéch (procesy pred prvou Ziadostou o pridelenie prostriedkov oznamia, kolko ktorych
prostriedkov buda nanajvys pozadovat). Potom si zékaznici mozu T'ubovolne aZ do vysky svojho kre-
ditu pozi¢iavat peniaze s tym, ze kazda podzicku v koneénom ¢ase splatia, ak bankar splni svoj zavazok
a zakaznikovi v kone¢nom case pozifia az do vysky jeho kreditu. Ak by bankar poziadavku zékaznika
neuspokojil, vyhlasuje apadok (systém procesov uviazol). Aby sa bankar nedostal do upadku, musi si
stale udrziavat bezpeény stav zvysku kapitalu, t.j. stav, ktory mu umozni aspon v jednom poradi uspo-
kojit poziadavky zakaznikov na pozicky (je aspoil jedna postupnost, v ktorej mozu byt vSetky procesy
dokonéené). Pozicku, ktora by mu tento stav porusila, nerealizuje, a odsunie ju na neskor, az sa mu zvysi
kapital. Po kazdej poziadavke na prostriedok musi sprava prostriedkov rozhodnut, ¢i aj novy stav bude
bezpecny. Ak ano, poZiadavka sa uspokoji, v opatnom pripade splnenie odloZi.

Priklad:

vvvvv

klientom:

Max Ma Max Ma
A 5 1 A 5 1
B 6 1 B 6 2
C 3 2 C 3 2
D 8 4 D 8 4
Volné: 2 Volné: 1
Bezpecny stav Nebezpecény stav

Ak v situécii, ktora je naznacend v 1. tabul'ke, bankar splni poziadavku klienta B na 1 jednotku danej
meny, dostane sa do nebezpeéného stavu (sice 1 jednotka, ktora mu ostala, je dost pre klienta C a ten
po skonéeni vrati 3 jednotky uvedenej meny, ale tie 3 jednotky nie st dost ani pre jedného z klientov
A,B,D, takZe nie je zarucené, ze bankar moze splnit ich poZziadavky az do vysky ich kreditov a teda nie je
zaruené, Ze tito klienti vratia pozi¢ané prostriedky). Aj ked nebezpetny stav nemusi viest k uviaznutiu,
lebo je mozné, Ze klienti nebudia potrebovat prostriedky v plnej vyske svojho kreditu, bankar sa nemoze
na toto spoliehat.

PopiSme si forméalne algoritmus zistovania, ¢i je stav bezpecny. Majme matice A, MP a vektory C,
V definované tak, ako bolo uvedené v predoslom bode — A — aktudlne pridelenie jednotlivych typov
prostriedkov jednotlivym procesom, MP — maximalne poziadavky procesov na jednotlivé typy prostried-
kov, C — celkové mnozstvo jednotlivych prostriedkov v systéme, V — mnozstvo momentalne volnych
prostriedkov jednotlivého typu. Algoritmus pracuje takto:

1. Inicializuje pomocny vektor W rovny vektoru V.

2. Najde takeé i, ze vSetky nevybavené poziadavky procesu P; na prostriedky st mensie alebo rovné
ako mnozZstvo volnych prostriedkov. Teda mp;r —a;r < wy pre kazdé k. Ak také i neexistuje, systém
moZe uviaznut, pretoZe nie je zarucené pre Ziadny proces, Ze skondi.
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3. Ak také i existuje, predpokladajme, ze proces P; poZziada o vetky potrebné prostriedky a skonéi.
Algoritmus oznaéi proces P; ako ukonéeny a pripoc¢ita vSetky jeho prostriedky k vektoru W. Cize
wy = Wi + a;; pre kazdé k.

4. Opakuje kroky 1 a 2, kym nenastane jedna zo situdcii: v8etky procesy si oznacené ako ukoncené —
¢o znamend, ze zaCiatoény stav bol bezpeény — alebo kym nenastane uviaznutie — teda zacéiatoény
stav nebol bezpecny.

V praxi je bankarov algoritmus takmer nepouzitelny, pretoze je tazké ofakavat od procesov, Ze budu
vopred poznat mnoZstvo potrebnych prostriedkov. Dalsie obmedzenie tohto algoritmu je v tom, Ze uvazuje
fixny podet pridelovanych prostriedkov, a tiez ziadny proces nesmie skonéit bez uvolnenia prostriedkov.
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Sprava procesov a procesora

Jednym z najdolezitejSich principov modernych OS je multiprogramovanie, teda rozne programy, ktoré
sa nachddzaja v paméti v tom istom case, mozu zdielat CPU. Toto zvySuje vyuZitie CPU a priepustnost
(throughput) systému, t.j. mnoZzstvo tloh realizovanych v danom ¢asovom intervale.

Cielom multiprogramovania je mat v Tubovolnom okamihu nejaky proces beZiaci (vykonavany), aby
sa maximalizovalo vyuzitie CPU. V monoprocesorovom systéme moze byt beziaci maximalne jeden pro-
ces, ostatné musia ¢akat na CPU. Pripravené procesy, ktoré cakaja na spracovanie, sa udrziavaju v
zozname nazyvanom zoznam pripravengch procesov (Ready queue). Tento zoznam nemusi byt nutne rad
FIFO, ale vzhladom na rézne planovacie algoritmy to moze byt rad s prioritami, strom alebo aj neu-
sporiadany zoznam. V systéme st aj dalsie zoznamy — zoznamy prostriedkov, t.j. zoznamy procesov
¢akajucich na dany prostriedok. Kazdy prostriedok ma svoj vlastny zoznam.

Proces vstupuje do systému zvonku a umiestni sa do zoznamu pripravenych procesov. V fiom ¢aka,
pokial nie je vybraty na spracovanie. Ked musi ¢akat na V/V — zaradi sa do prisluného zoznamu
prostriedku. Ked je obsluZeny, opét sa zaradi do zoznamu pripravenych procesov. Proces pokracuje v
tomto cykle CPU-V/V, az kym neskonéi a neopusti systém.

Ukoncenie

Zavedenie Spustenie (Exit)
(Admit) (Dispatch) >
—a > Procesor

"Vyprianie" ¢asu (Timeout)

A

Cakanie na udalost’ /
(Event / Wait)

Vyskyt udalosti /
(Event 7 Occurs) ¢

A

Cakanie na udalost’ 2

Vyskyt udalosti 2 (Event 2 Wait)
(Event 2 Occurs)

A
A

Cakanie na udalost n
(Event n Wait)

Vyskyt udalosti n
(Event n Occurs)

A

8.1 Planovace

OS ma mnozstvo planovacov. Pre planovanie CPU st 2 hlavné planovade:
e Plinovac uloh (planovac¢ vysSej urovne, job scheduler, long-term scheduler), tj planova¢ na trovni
spravy uloh
e Pldnovac procesov (planovaé nizgej urovne, CPU scheduler, process scheduler, short-time schedu-
ler), t.j. planova¢ na trovni pridelovania procesora

65
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PLANOVAC ULOH PLANOVAC PROCESOV
l Ukoncenie
Zavedenie Spustenie (Exit)
(Admit) (Dispatch) >
Y 5 > Procesor

"Vyprianie" ¢asu (Timeout)

Cakanie na udalost
(Event Wait)

Vyskyt udalosti
(Event Occurs)

A

Planovaé iloh — vybera zo zadanych tloh nejaki podmnozinu a zavadza ich do systému na spracovanie
(vytvara pre ne procesy + PCB a prideluje procesom prostriedky).
Funkcie:

e Sleduje stav vSetkych tloh (ktoré si v stave ,prijatd” a aj tie, ktoré sa spracovavaji)

e Voli stratégiu, podla ktorej ulohy vstupuju do systému (,,prijatd — pripravena®)

e Prideluje tlohe vybratej na spracovanie potrebné prostriedky (pomocou d'alsich modulov)
e Po dokonceni tulohy prostriedky uvoliuje

Planovaé procesov — rozhoduje, ktorym z podmnoziny procesov bude prideleny procesor
Funkcie:

e Sleduje stav procesov — tuto funkciu realizuje tzv. dispeder (dispatcher) (sleduje stav procesov,
prevadza zmeny stavov procesu, realizuje synchronizaciu a komunikaciu procesov)

e Rozhoduje, ktorému procesu bude prideleny procesor a na aky dlhy ¢asovy interval. Ttto funkciu
realizuje planovaé procesov.

e Prideluje procesor — tuto funkciu plni dispeder

e Uvolnuje procesor — tuto funkciu plni dispeder

Zakladny rozdiel medzi tymito planova¢mi je frekvencia ich pouZivania:

e Planovac¢ procesov sa pouZiva s velkou frekvenciou (ms), teda musi byt velmi rychly, aby nevznikali
velké rezijné straty. Preto sa nachadza trvale v operafnej pamati (je sticastou supervizora)

e Planovaé¢ uloh sa vykonéva s omnoho mensou frekvenciou: vyvolava sa, ked vstipi nova tloha do
systému, ked je nejaké tloha ukonéend, prip. ked ¢as, po¢as ktorého procesor nepracuje (je idle"),
presiahne stanovenu hranicu. Planova¢ tloh riadi stupeit multiprogramovania (pocet procesov v
paméti). Cim viac procesov je vytvorenych, tym mensSie percento ¢asu moze byt kazdy proces
vykonavany (t.j. viac procesov "sttazio to isté mnoZzstvo ¢asu procesora).

Vo v8eobecnosti va¢sinu tloh moZno klasifikovat ako orientované na V/V alebo orientované na CPU. Je
dolezité, aby planova¢ uloh vybral dobry mix tloh medzi orientovanymi na V/V a na CPU. Ak vSetky
ulohy ¢asto vyuzivaja V/V, zoznam pripravenych procesov by bol takmer préazdny a planovaé procesov
by mal mélo roboty. Ak vSetky tlohy st orientované na CPU, bude zoznam ¢akatelov na V/V takmer
prazdny a systém bude znovu nevyvazeny.

V niektorych systémoch moze byt planovaé tloh minimalny alebo vobec neexistuje. Stabilita tychto
systémov potom zavisi bud od fyzickych obmedzeni (napr. pocet moznych terminéalov) alebo od vlastnej
umiernenosti uZivatelov (ak sluzby za¢na byt velmi zlé, niektori uzivatelia sa jednoducho vzdaju a buda
sa venovat inej veci).

Niektoré systémy, najméi tie, ktoré maju virtualnu pamét, pridéavaji stredny stupen planovania —
pldnovad strednej drovne (medium-term scheduler). Zékladna idea je, Ze v niektorych pripadoch moze byt
vyhodné eliminovat procesy v pamaéti, a tak redukovat stupen multiprogramovania. Neskor proces moze
znovu vstipit do paméte a pokradovat od bodu, kde skonéil. Toto sa Casto nazyva swapping. Planovaé
strednej trovne vymiefia proces — vybera ho z paméti a neskor ho do nej vrati. Vymena moze byt
nevyhnutné na zlepSenie mixu tloh.
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8.2 Planovacie algoritmy

Hlavnym cielom planovania procesov je pridelovat ¢as procesora tak, aby sa optimalizovalo jedno alebo
viac kritérif spravania systému. Vo vSeobecnosti je stanovend mnozina kritérii, podla ktorych mozu byt
jednotlivé planovacie algoritmy ohodnotené.

Kritéria mozu byt rozdelené do 2 hlavnych skupin: uZivatelsky orientované (tykaju sa spravania
systému z pohladu uzivatela alebo procesu) a systémovo orientované (doraz je na efektivnom vyuziti
procesora).

Dalej mozu byt kritéria klasifikované na vztahujice sa na vykondvanie (st to kvantitativne kritéria a
zvyCajne mozu byt Tahko meratelné) a nevztahujice sa na vykondvanie (sa bud kvalitativne alebo nie
st lahko meratelné a analyzovatelné).

Uvedieme si niektoré kritéria na porovnanie pldnovacich algoritmov.

Uzivatelsky orientované, vztahujice sa na vykondvanie:

e doba odozvy (response time), t.j. ¢as od zadania poziadavky po obdrzanie odpovede. Cielom je
dosiahnut nizku dobu odozvy a maximalizovat pocet interaktivnych uzivatelov, ktori dostant ak-
ceptovatelnt dobu odozvy.

e doba prechodu procesu systémom (turnaround time), t.j. doba od zaciatku zadania procesu aZ po
ukoncenie vystupu vysledku. Zahffia sa sem doba ¢innosti procesora aj doba ¢akania na prostriedky.
Je to vhodna miera pre batch tlohy.

e terminy (deadlines): ak s urfené teminy na dokoné¢enie procesov, planovaci algoritmus sa moze
snazit maximalizovat percento dodrzanych terminov.

Uzivatelsky orientované, ostatné:

e predpovedatelnost (predictability): dan& uloha moZe bezat takmer rovnaky Gas a za rovnakd
"cenu"bez ohladu na zataZenie systému. Velké odchylky doby odozvy alebo doby prechodu su
pre uzivatelov matice. MoZe to signalizovat velké kolisanie v pracovnej zatazi systému alebo po-
trebu optimalizacie systému, aby sa odstranila nestabilita. Kritérium predpovedatelnosti je do istej
miery meratelné pocitanim odchyliek ako funkcie pracovnej zétaze, ale toto nie je tak jednoduché
ako meranie priepustnosti alebo doby odozvy.

Systémovo orientované, vztahujice sa na vykondvanie:

e priepustnost (throughput), t.j. podet procesov spracovanych za jednotku ¢asu. Planovaci algoritmus
sa snazi maximalizovat tento podet.

e vyuZitie procesora (processor utilization) t.j. percento ¢asu, pocas ktorého procesor pracuje. Toto
vyuzitie je dokonalé, ak v prestoji je procesor po dobu, ktora nepresiahne 10% z celkovej doby
¢innosti, vieobecne by tato doba nemala presiahnut 40%)

Systémovo orientované, ostatné:

e vyvazenie prostriedkov (balancing resources): planovacia stratégia moze udrziavat systémové pros-
triedky vyuzité. Uprednostnené su procesy, ktoré znizia zatazenie pretazenych prostriedkov. Toto
kritérium zahfha aj pldnovanie na vyssej a strednej trovni.

Ked je kritérium porovnania vybraté, vo vSeobecnosti je snaha optimalizovat ho. Je Ziadtice ma-
ximalizovat vyuzitie CPU a priepustnost alebo minimalizovat ¢as prechodu alebo odozvy. Vo vicsine
pripadov to, ¢o sa optimalizuje je priemer. V interaktivnych systémoch je dolezitejSie minimalizovat
odchylky (vykyvy) ¢asu odozvy ako minimalizovat priemerny ¢as odozvy.

V prikladoch na planovacie algoritmy budeme pre jednoduchost pre kazdy proces predpokladat, Ze
len 1 raz vyuziva CPU (a ziadne V/V).
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8.2.1 Nepreemptivne (nonpreemptive) planovacie algoritmy

Ked proces prejde do stavu "beziaci", vykonava sa aZ kym neskonéi alebo sa sam zablokuje (napr. ¢aka
na V/V alebo pozaduje sluzbu operaéného systému).

Stratégia FCFS (First Come First Served)
Vhodné aj pre planova¢ tloh, aj pre planova¢ procesov.

e Poradie obsluhy poziadaviek je dané poradim ich prichodu.
e Implementécia sa realizuje pomocou radu FIFO (jednoduché).
e Zvycajne dost malé vykonnost.

Proces Cas Cas Cas Cas Doba %
zadania | spracovania (Ts) | spustenia | ukonéenia | prechodu (Ty)
1 0 4 0 4 4 1.00
2 2 8 4 12 10 1.25
3 3 3 12 15 12 4.00
4 6 5 15 20 14 2.80
) 8 2 20 22 14 7.00
Priemer 10.8 3.21
P1 P2 P3 P4 P5
(i) F—t— i L A s 152 — 155 L 250 % 252

Okrem doby prechodu procesu systémom v tabulke vidime aj normalizovani dobu prechodu (nor-
malized turnaround time) — podiel doby prechodu k dobe spracovania. Tato hodnota udava relativne
opozdenie procesu. Zvycajne ¢im je dlhsi ¢as spracovania procesu, tym vacsie opozdenie je mozné tole-
rovat. Minimalna moZné hodnota tohto podielu je 1 (proces bol spusteny hned ako bol zadany), rastice
hodnoty zodpovedaja klesajticej tirovni obsluhy procesu.

Priemerna doba prechodu vo FCFS vo vSeobecnosti nie je miniméalna a moéZe dost variovat.

FCFS lepsie pracuje pre dlhsie procesy ako pre kratsie. Majme takyto priklad:

Proces Cas Cas Cas Cas Doba %
zadania | spracovania (Ts) | spustenia | ukonéenia | prechodu (Tj)
1 0 1 0 1 1 1
2 1 100 1 101 100 1
3 2 1 101 102 100 100
4 3 100 102 202 199 1.99
Priemer 100 26

Normalizovana doba prechodu pre proces 3 je netolerovatelna: celkovy ¢as, ktory proces stravi v
systéme, je 100 krat vacsi ako pozadovany ¢as vykonévania. Toto nastane vzdy, ked maly proces pride
tesne za velkym procesom. Na druhej strane vidime aj na tomto extrémnom priklade, Ze dlhé procesy
"dopadli"celkom dobre. Proces 4 ma sice dobu prechodu takmer dvojnasobnu oproti procesu 3, ale jeho
normalizovana doba prechodu (vyjadrujaca dobu ¢akania) je mensia ako 2.
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Stratégia SJF (Shortest Job First)

Uprednostiiuje rieSenie kratsich poziadaviek (s krat$im predpokladanym ¢asom spracovania) pred dlh-
§imi, ¢im minimalizuje doby Cakania.

Proces Cas Cas Cas Cas Doba %
zadania | spracovania (Ts) | spustenia | ukonéenia | prechodu (Ty)
1 0 4 0 4 4 1.00
2 2 8 14 22 20 2.50
3 3 3 4 7 4 1.33
4 6 ) 7 12 6 1.20
) 8 2 12 14 6 3.00
Priemer 8.00 1.81
P1 P3 P4 P5 P2
"ttt
0 4 7 12 14 22

Tato stratégia je optimélna v zmysle, Ze dava minimalny priemerny ¢as ¢akania pre dany subor tloh.
Skuasenost ukazuje, ze ak sa preferuje kratka tloha pred dlhSou, redukuje sa ¢as ¢akania kratkej ulohy
viac nez rastie ¢as Cakania dlhSej dlohy. Preto priemerny ¢as ¢akania (a teda aj doba prechodu) klesa.
Problém viak je poznat dizku nasledujiicej poziadavky na CPU.

Tato stratégia sa da pouzit na planovanie tloh, kedy odhad dizky spracovania zadava zadavatel tlohy.
V tomto pripade je potrebné rozhodniit, ako penalizovat tlohy, ak odhadovana doba spracovania bude
prekrocend (cenou strojového ¢asu, ukoncenie tlohy, odsunutie tlohy na koniec zoznamu pripravenych
aloh a pod.)

Alebo je mozné robit odhad ¢asu d'alsieho pouZzitia CPU na zéklade predoslych pouziti. To je vhodné
pre planovanie procesov.

Priorita
e SJF stratégia je Specialny pripad vSeobecného algoritmu planovania podla priority (p = 1/r, p =
priorita, r = dlzka pouzitia CPU).
e Kazda dloha mé priradent prioritu a CPU sa prideluje tlohe s najvysSou prioritou.
e Ulohy s tou istou prioritou sa planuji podla FCFS.

e Priority sa moZzu definovat interne alebo externe. Priority definované interne pouZivaji isté mera-
telné veli¢iny na vypodet priority procesu (napr. obmedzenia ¢asu, poziadavky na pamét, pocet
otvorenych suborov atd.). Priority definované externe sa uréuji na zaklade kritérif vzdialenych od
OS, napr. kolko sa plati za pouZitie pocitaca, katedra, ktora zadéva tlohu a iné externé faktory.

e Dolezitym problémom planovania podla priority je nebezpecenstvo trvalého zablokovania tloh s
niz8imi prioritami v pripade, Ze sa systém zahlti poziadavkami na spracovanie s vyssimi prioritami.
Jednym moZnym spdsobom rieSenia tohto problému je starnutie (aging). To je technika, ktora
zvySuje prioritu tloh, ktoré dlho ¢akaji v systéme.

Strategia Highest response-ratio next (HRN)

(ratio zna¢i pomer, podiel odpovedi)

e Priorita tilohy nie je len funkciou ¢asu pouzitia CPU, ale aj ¢asu ¢akania.



70 KAPITOLA 8. SPRAVA PROCESOV A PROCESORA
e Dynamické priority v HRN st uréené vztahom:

. . . Cas Cakania + Cas spracovania
priorita (t.j. response-ratio) =

Cas spracovania

e Odstranuje zo SJF velké uprednostiiovanie kratsich uloh pred dlh§imi.

Proces Cas Cas Cas Cas Doba %
zadania | spracovania (Ts) | spustenia | ukonéenia | prechodu (Tj)
1 0 4 0 4 4 1.00
2 2 8 4 12 10 1.25
3 3 3 12 15 12 4.00
4 6 5 17 22 16 3.20
5 8 2 15 17 9 4.50
Priemer 10.2 2.79
Pl P2 P3 P5 P4
(i) F—— i " 152 — IHS ———— 252

8.2.2 Preeemptivne (preemptive) planovacie algoritmy

Beziaci proces moze byt preruseny a uvedeny do stavu "pripravenyoperacnym systémom. K pozastaveniu
procesu moze dojst ked pride novy proces alebo periodicky na zaklade preruSenia od hodin.

FCFS, SJF a prioritné algoritmy tak, ako boli opisané, st planovacie algoritmy non-preemptive (bez
pozastavenia). Ked je raz prideleny procesor procesu, moze ho proces pouZit az pokial si ho nezela
uvolnit (ked konéi alebo spracovava V/V). Algoritmus SJF a prioritné algoritmy sa mozu modifikovat
na algoritmy s pozastavenim — preemptive.

Stratégia SJF s pozastavenim — SRT

Ked vstipi nova tloha, ktora méa kratsiu dobu pouzitia CPU ako vykonévané tloha, algoritmus zrusi pri-
radenie CPU vykonéavanej ulohe, zatial ¢o SJF bez pozastavenia dovoli, aby vykonavana tloha dokon¢ila

svoju pracu s CPU. SJF s pozastavenim je znamy ako SRT (Shortest Remaining Time).

Proces Cas Cas Cas Doba %
zadania | spracovania (Ts) | ukonenia | prechodu (T7)
1 0 4 4 4 1.00
2 2 8 22 20 2.50
3 3 3 7 4 1.33
4 6 ) 14 8 1.60
5 8 2 10 2 1.00
Priemer 7.60 1.49
Pl PIPl P3 P3P4 P5 P4 P2
——————
0 2 3 4 6 7 8 10 14 22
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Prioritna stratégia s pozastavenim

Ked vojde uloha do zoznamu pripravenych, jej priorita sa porovnd s prioritou vykonavaného procesu —
ak je vySSia, algoritmus zrusi priradenie CPU vykonavaného procesu, kym algoritmus bez pozastavenia
len umiestni novy proces na ¢elo zoznamu.

Stratégia Round-Robin (RR) alebo cyklické planovanie

e Vhodn4 pre systémy so zdielanim ¢asu — dosahuje sa rozumna doba odozvy.

e Vytvara sa dojem funkcie viacerych samostatnych procesorov, ktoré kontinuélne realizuju jednotlivé

procesy, teda dochadza k virtualizacii procesora.

e Definuje sa mala jednotka ¢asu — ¢asové kvantum (medzi 10-100 ms). Na implementaciu planovania

RR sa udrzuje zoznam pripravenych procesov ako FIFO zoznam, teda nové procesy sa zaradia na
koniec a planovaé berie 1. proces zo zoznamu a prideluje mu procesor. Ak do vyprsania ¢asového
kvanta proces neuvolni procesor, nastava prerusenie OS, registre preruSeného procesu sa ulozia v
jeho PCB a proces sa zaradi na koniec zoznamu. Tomuto javu sa hovori process switch, resp. context
switch.

e Velky vplyv na vonkajsie chovanie cyklicky planovaného systému mé velkost ¢asového kvanta:

— ak je velmi velké (nekoneéno), je to FCFS

— ak je velmi malé (bliZi sa k nule), tak virtualizaciou procesora sa dosiahne teoreticky idealny
procesor s 1/n rychlosti originalneho procesora, kde n je pocet planovanych procesov. Tento
idealny stav mozno dosiahnut len za predpokladu nulovych reZijnych strat pri odovzdavani
procesora medzi procesmi (pri zmene kontextu), inak sa context switch stane dominantnym
faktorom. Casové kvantum je preto zvycajne 10-100 ms.

MoZné obmeny algorimu Round-Robin

1.

Zarad ovanie podla vyuZitia Casového kvanta: ak proces vyuzil celé pridelené kvantum, zaradi sa na
koniec zoznamu pripravenych procesov. Ak len na 1/2 (napr. ¢aka na V/V), je zaradeny do stredu
zoznamu a pod. Tato stratégia je obzvlast vhodna pre ulohy s velkymi narokmi na V/V.

Proces, ktory nedocerpal ¢asové kvantum, lebo uskuto¢nil V/V operaciu, sa po dokonéeni tejto
operacie nezaradi na koniec zoznamu pripravenych procesov, ale do pomocného zoznamu (auxiliary
queue), ktory ma pri planovani procesov prednost pred zoznamom pripravenych procesov. Proces z
pomocného zoznamu dostane procesor len na zostavajici (nevyerpany) usek posledne prideleného
¢asového kvanta.

Algoritmus cyklickej obsluhy so spdtnou vizbou: ak mé byt zahajeny novy proces, dostane najprv
tolko Gasovych kvéant, kolTko uZ obdrzala kazda z ostatnych tloh v systéme a potom pokracuje
norméalny Round-Robin.

. Limitovany algoritmus cyklickej obsluhy: tllohy prebiehaju podla Round-Robin, pokial nevyéerpaju

vopred stanoveny ¢asovy limit. Potom mézu prebiehat, len ak nie si v systéme iné tlohy.

Selfish Round-Robin (SRR): kombinuje planovanie na vysSej a nizsej urovni do jednej rutiny. Pre
ulohy, ktoré préave vstupili do systému je vytvoreny ,delay queue” (opozdovaci rad), organizovany
ako FCFS. Tam ¢akajt, kym im nestupne priorita a prejda do aktivnej fronty RR.

Stratégia niekol’kych zoznamov (multiple queues alebo multilevel queues)

e Tato stratégia je vhodna pre situécie, kedy st ulohy Tahko klasifikovatelné do roznych skupin (napr.

ulohy interaktivne a batch — maju rozdielne poziadavky na ¢as prechodu).

e Rozdeluje zoznam pripravenych procesov do oddelenych zoznamov, kazdy méa vlastny algoritmus

planovania.

e Musi v8ak existovat planovanie medzi zoznamami, to je prioritné planovanie s pozastavenim.

Priklad:
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A

systémové programy RR

e

=.

9

=.

s aplika¢né programy RR

—» batch ulohy FCFS+—

Ziadna tloha zoznamu Batch sa nemoze vykonavat pokial nie st ostatné zoznamy prazdne. Ak sa do
zoznamu Akplikacné programy zaradi tloha pokial sa vykovava Batch, vykonavanej tlohe sa odoberie
procesor. Ina moznost je rozdelenie ¢asu medzi zoznamami: kazdy zoznam dostane jednu ¢ast ¢asu CPU,
ktort moze planovat medzi procesmi v zozname.

Stratégia niekol'kych zoznamov s premiestnenim (multilevel feedback queues)

Normalne v planovacom algoritme s niekol’kymi zoznamami tlohy zostavaja priradené jednému zoznamu.

Zoznamy s premiestnenim umoznuji, aby tloha prechadzala z jedného zoznamu do druhého na zaklade
stanovenych kritérii.

Vo vSeobecnosti sa takyto planova¢ definuje na zaklade nasledovnych parametrov:

e pocet zoznamov
e planovaci algoritmus pre kazdy zoznam
e metdda, ktora urcuje, kedy sa tuloha presunie do zoznamu s nizSou prioritou

e metoda, ktora urcuje, kedy sa tloha presunie do zoznamu s vysSou prioritou (ked je tloha prilis
dlho v zozname s nizkou prioritou, moZe sa premiestnit do zoznamu s vysSou prioritou)

e metoda, ktora urcuje, do ktorého zoznamu sa zaradi tloha, ked vstupuje do zoznamu pripravenych
procesov

Priklad:

V tomto priklade je zdkladna idea v oddeleni tiloh, ktoré maji rozne charakteristiky vzhladom k
intervalom pouzitia CPU.

A
q=4 RR
=
5
5 q=38 RRf
q=16 RR

Nova tloha sa zarad'uje do prvého zoznamu. Tento pouziva stratégiu RR s uréitym ¢asovym kvantom.
Ak uloha plne vy¢erpa pridelené kvantum (teda neopusti procesor dobrovolne napr. kvoli V/V operacii),
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je zaradend do zoznamu s nizSou prioritou, ale dlh8im kvantom. Takymto spdsobom moéze postupne
klesat dole. Naopak, ulohy v zoznamoch s niZSou prioritou, ktoré nedocerpaju pridelené kvantum, buda
zaradené do zoznamu s vysSou prioritou. Teda ak tiloha poZzaduje vela ¢asu CPU, prechadza do zoznamu
s nizSou prioritou, ale interaktivne tlohy alebo tlohy intenzivne vo vyuZivani V/V prostriedkov zostavajtu
v zoznamoch s vysokou prioritou.

8.3 Policy versus mechanism (principy a pravidla rozhodovania
versus mechanizmus)

Doteraz sme predpokladali, Ze vSetky procesy v systéme patria roznym uzivatelom, a teda ,sutazia® o
CPU. Niekedy sa v8ak moze stat, Ze jeden proces ma mnoho procesov-potomkov, ktoré bezia pod jeho
riadenim (napr. proces pre spravu databdzového systému mé vela potomkov, kazdy pracuje na roznej
poZiadavke alebo vykonava nejaku Specifickt funkciu: zaradenie do fronty, pristup na disk a pod.) a je
mozné, ze hlavny proces vie, ktory z potomkov je najdolezitejsi a ako by mali byt potomkovia zaradeni.
Avgak ziadny zo spomenutych planovacov neakceptuje vstup z uzivatelskych procesov, ktory sa tyka
rozhodovania planovania. Preto planova¢ nemoze urobit najlepsi vyber.

Riegenim tohto problému je oddelit planovaci mechanizmus od planovacej ,policy* (pravidiel), t.j.
planovaci mechanizmus je nejako parametrizovany a parametre mozu byt nastavené uzivatel'skymi pro-
cesmi (napr. systémové volanie, ktorym moze proces nastavit a zmenit priority svojich potomkov, t.j.
rodi¢ moze riadit planovanie potomkov, aj ked sam nerobi planovanie). Teda mechanizmus je v kerneli,
ale ,,policy” je na zaklade nastaveni z uzivatel'ského procesu.
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Sprava pamate — modely realnej
pamate

Operacénd pamdt je ¢ast paméte, ktora sluzi na uchovanie programov a dat, nad ktorymi operuje procesor.
Patri medzi zdielatel né prostriedky: o pristup do operacnej paméte ziadaju procesy riadené uzivatel skymi
programami, aj procesy riadené systémovymi programami. Poziadavky na vyuzitie opera¢nej paméte
vybavuje sprdva operafnej pamite (dalej len sprava paméte).

Funkcie spravy paméte:

1. udrziavanie prehladu o pouZitych a nepouzitych miestach v opera¢nej paméti

2. rozhodovanie o poradi obsluhovania poziadaviek na pridelenie priestoru v operacnej paméti a o
umiestnen{ takych priestorov

3. realizacia pridelenia (zapis do zaznamov o procese, do tabuliek,. .. )
4. realizacia uvolnenia paméte

Skor, nez sa budeme zaoberat rdoznymi typmi spravy paméte, uvedieme si poZziadavky, ktoré musi
sprava paméte podporovat:

e relokacia
ochrana

zdiel anie

logicka organizacia

fyzicka organizacia

Relokacia

V multiprogramovom systéme je pamit zdieland viacerymi procesmi. Preto zvy€ajne nie je mozné
dopredu vediet, kde bude proces v paméti umiestneny. TieZ ¢asto dochadza k prestvaniu procesov v
pamaéti kvoli swapovaniu. Hardware procesora a opera¢ny systém musia byt preto schopni transformovat
odkazy na pamétové miesta pouZité v programe na skuto¢né fyzické adresy v zavislosti od aktuéalneho
umiestnenia procesu v operacnej paméti.

Ochrana

_ Kazdy proces musi byt chraneny pred zdsahmi inych procesov — & uZ ndhodnymi alebo timyselnymi.
Cize do adresného priestoru procesu nesmie pristupovat iny proces bez povolenia.

74
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Ochranu paméte zabezpecuje procesor (hardware), pretoZze opera¢ny systém nemoze predvidat vSetky
odkazy do paméte, ktoré program urobi. Keby to aj bolo mozné, bolo by prili§ ¢asovo narocné ochranit
kazdy program dopredu pred moznymi naruseniami ochrany. Cize preverit platnost odkazu do pamiite
je moZné az ked sa vykonava instrukcia.

Zdiel anie

KaZdy mechanizmus ochrany musi poskytovat mozZnost, aby viaceré procesy pristupovali k tej istej
Gasti operacnej paméte. Sprava paméite teda musi umoziiovat kontrolovany pristup k zdielanym oblastiam
pamaéte.

Logicka organizacia

Hlavna pamét pocitaca je organizovani ako linearny alebo jednodimenzionédlny adresny priestor,
pozostavajuaci z postupnosti bytov alebo slov. Tato organizéicia v8ak nezodpoveda spdsobu, akym st
zvyc€ajne konstruované programy. Vacsina programov je organizovand do modulov, z ktorych st niektoré
nemodifikovatelné (read only, execute only) a niektoré obsahuju data, ktoré mozno modifikovat. Ak
operany systém a hardware umoziiuju efektivne narabat s programami a datami vo forme modulov,
ziska sa mnozstvo vyhod:

e Moduly méZu byt pisané a kompilované nezévisle, pricom referencie medzi modulmi budi vyrieSené
pocas behu programu.

e Roznym modulom méze byt priradeny roézny stupen ochrany.

e Je moZné zaviest mechanizmy umoziujuce zdielat moduly viacerymi procesmi.

Prostriedok, ktory najviac zodpovedé tymto poziadavkam, je segmentécia — je to jeden z typov sprav
pamaéte, ktoré uvedieme v tejto kapitole.

Fyzicka organizacia

Pamét pocitada je organizovand minimalne do dvoch drovni: hlavna pamét (main memory) a pri-
davna pamét (secondary memory) - disk. Hlavna pamét poskytuje rychly pristup pri relativne vysokych
néakladoch. Naviac, neposkytuje moznost trvalého uloZenia. Disk je pomalSia a lacnejsia pamét a umoz-
nuje trvalé uloZenie tudajov. TakZe hlavna pamét sa pouZiva na ulozenie programov a dat, ktoré sa préave
pouzivaji, kym disk slazi na dlhodobé ukladanie programov a dat.

V tejto dvojaroviovej schéme je hlavnym predmetom zaujmu organizicia toku informécii medzi
hlavnou pamétou a diskom. Toto je hlavné dloha spravy paméte.

9.1 Typy spravy paméte (historicky prehl'ad)

9.1.1 Jeden suvisly tsek (monoprogramovanie)

Najjednoduchsia schéma spravy pamiéte je mat v paméti jeden proces a poskytnit mu celi pamét.
Fyzicky adresny priestor (FAP) moZno rozdelit na mnozinu po sebe idicich adries — v kazdej takejto
mnozine je minimalna a maximalna adresa. Ak je procesu pridelen4 jedina takdto mnozina, nazveme ju
dsek. Operacnému systému je prideleny samostatny usek (napr. na zaciatku operaénej pamaéte).

Pri tejto organizacii paméte moze byt v T'ubovolnom &ase v pamati len jeden proces. Ked uzivatel
zada prikaz, opera¢ny systém nahra pozadovany program do paméte a vykoné ho. Po skonéeni programu
vypiSe opera¢ny systém "Cakaci znak" (prompt character) na terminal a ¢aka na d’alsi prikaz, aby nahral
do paméte dalsi proces, ktory prepiSe predogly.
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OS

Proces

Takato technika spravy pamiti je typicka pre jednoduché monoprogramové OS (FMS (Fortran Monitoring
System pre 7094), mikropodcitac¢ové systémy, napr. CP/M).

9.1.2 Statické suvislé useky (Fixed partitions)

Operacné pamét sa pri generovani alebo zavadzani systému rozdeli na pevny pocet tsekov, ktoré sa
pocas behu OS nemenia. Do kazdého tseku moéze byt zavedeny jeden proces.

Useky mozu byt bud rovnakej velkosti alebo réznej velkosti. V pripade pouzitia tisekov rovnakej
velkosti, kazdy proces, ktorého velkost je menSia alebo rovna velkosti tseku moze byt zavedeny do
Tubovolného volného tiseku. VyuZitie pamiéte je vSak v tomto pripade velmi neefektivne.

Ak su velkosti asekov rozne, s dve moznosti, ako pridelit procesu usek paméte: trividlna spréava
paméte prideluje procesu prvy volny tsek s dostatocnou kapacitou, t.j. pouZiva algoritmus ,,prvy vyho-
vujaci (first-fit). Ind moznost je, Ze sa procesu prideli ten volny usek, ktory svojou kapacitou najmenej
prevySuje kapacitu paméti poZzadovana procesom, t.j. pouZitim algoritmu ,najlepsie vyhovujuci® (best-
fit).

Pri pouziti stratégie best-fit modZze mat kazdy tsek v paméti vlastny zoznam, do ktorého sa zaraduji
prichadzajice procesy ¢akajice na tento tusek (velkostou je to najmensi usek, do ktorého sa vojdi).
Nevyhodou tohto pristupu je, Ze sa moze stat, Ze zoznam pre velky tsek je prazdny, ale zoznam pre
mensi dsek je plny, a tak procesy zaradené v tomto zozname musia cakat, aj ked st v paméti volné
aseky. Preto je zrejme vhodnejsie zaradovat procesy do jedného zoznamu a pridelovat im dseky podla
stratégie best-fit z momentalne neobsadenych tsekov.

OS
Proces 1 Usek 1

Usek 2
Proces 2 Usek 3

Proces 3 Usek 4
Usek 5

Pre transformaciu logickej adresy na fyzicka (zobrazenie LAP — FAP, LAP = logicky adresny pries-
tor, FAP = fyzicky adresny priestor) sa najcastejie pouZiva mapovaci register. Obsah mapovacieho
registra (ten zodpoveda adrese 0 LAP) sa definuje az pri sptstani procesu.

Aby sa zabezpecila ochrana obsahu pamiiti aj za tsekom s beZiacim procesom (pamét pred tymto
usekom je chranend mapovacim registrom), je treba pre kazdy proces eSte druhy mapovaci register
(hranicéng register). Ten obsahuje adresu za poslednym pamétovym miestom aseku.

Kladovym problémom navrhu prevadzkovej verzie operacného systému je volba poctu a kapacity
asekov. Na niu méa vplyv predovsetkym charakter tloh rieSenych na danom poéitaci. Musi umoznit spra-
covanie aj prace s maximéalnymi poziadavkami.



9.1. TYPY SPRAVY PAMATE (HISTORICKY PREHLAD) 77
Nevyhody: fragmentéacia

e vnitornd fragmentécia: ak proces potrebuje pre svoj beh paméit s kapacitou K; a obdrzi dsek s
kapacitou Ky (Ko > K), tak Ky — K; paméitovych miest je nevyuZitych.

e vonkajsia fragmentécia: sprava paméte nemoze Ziadnemu z pripravenych procesov pridelit volny
usek, lebo Ziadny tsek nemé dostato¢nu kapacitu (aj ked spojenie volnych tsekov by pozadovana
kapacitu malo).

Vnutorna fragmentéiciu je moZné minimalizovat pouZitim stratégie best-fit, vonkajsiu fragmentaciu
moZno minimalizovat na tdrovni planovaca tloh: ten vybera zmes tloh tak, aby ich poziadavky najlepSie
pokryli existujice useky. Touto metédou sa vSak nedaji dosiahnut zaru¢ené tspechy.

Systém s usekmi pevnej dlzky je postacujici pre systémy s davkovym spracovanim. Aviak pre sys-
témy so zdielanim ¢asu je typické, Ze v nich je zvycajne viac pouZivatelov neZ paméte pre ich procesy.
Procesy, ktoré sa nezmestia do paméte, musia byt odlozené na disk a odtial opéat presunuté do paméte
(swapovanie). Pre systémy so swapovanim sa pouZivaji tseky s premennou dlzkou.

9.1.3 Dynamické suvislé useky (Variable partitions)

Sprava paméte vytvara tseky operacnej paméte podla poziadaviek procesov podla toho, ako prichadzaja.

OS OS
300 Proces 1 300 Proces 1
500 Proces 2 500 Proces 2
600 600
Proces 3
1000 Proces 4 1000 Proces 4
1200 1200
Proces 5
1500 1500
Proces 6 Proces 6
1900 1900
2100 2100

Ak méa 7. proces poziadavku na tsek s kapacitou 200K, tak sprava pamite pouZivajuca stratégiu
best-fit mu prideli Gsek s adresami 1900-2100, so stratégiou first-fit prideli tisek od adresy 600 po adresu
800 (800-1000 bude volné).

Algoritmus first-fit mdze mat z hladiska celkového vyuzitia pamate lepSie vlastnosti ako best-fit,
ktory zanechava mensie volné nepridelené useky, a tym zvySuje pravdepodobnost vonkajsej fragmentacie.
Pridelenie tisekov operaénej paméte podla poziadaviek procesov odstrafiuje vnitorni fragmentéaciu, ale
vedie ku zvySovaniu vonkajsej fragmentécie.

Pri tomto type spravy paméte sa moézu pouzit na pridelenie volného tseku procesu aj algoritmy next
fit (funguje ako first fit, ale volny tsek nezac¢ina vzdy vyhladavat od zadiatku paméte, ale od posledne
prideleného tseku) alebo worst fit (prideli procesu najvacsi volny asek, takZze sa da predpokladat, Ze zvy-
8ok, ktory z neho zostane, bude dostatoéne velky na umiestnenie nejakého d'alsieho procesu - nenechéva
malé volné useky).

Sprava paméte Gasto vytvara tseky o kapacite rovnej nasobku zakladnej pamétovej pridelovacej
jednotky (IBM/360, ADT 4500 to st 2K slabik, PDP11, SM-4: 32 slov po 16 bitoch). To sice zvySuje
vnitorni fragmentaciu, ponechava viak volné Gasti pamiti zmysluplnych dizok (lebo evidencia malych
volnych tsekov je velmi zlozita).

Ak sa ako 7. uloha objavi uloha s poziadavkou na pridelenie tseku so 450K pamaéte, tak ju planovac
nezah4ji, aj ked je v paméti 900K volnych, lebo nie je volny tsek dostatocénej kapacity (nastala vonkajsia
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fragmentacia). Je mozné posunit tseky v operacnej paméti tak, aby vznikol stvisly volny priestor.
Tomu sa hovori kompaktovanie (defragmentdcia). Je to Gasovo naro¢na operacia a vykonava sa, az ked
sa detekuje vznik vonkajSej fragmentéacie. Ak ocakavame, Ze vic8ina procesov bude pocas behu rast,
moZeme procesu pri naéitani do paméti pridelit trochu viac paméte ako momentélne potrebuje.

Sprava paméte si musi viest prehlad o volnych tsekoch. Casto sa pouZziva forma viazaného zoznamu
(na zadiatku volného tseku je informécia o jeho dlzke a smernik na daldi volny tsek) alebo bitové mapy.

9.1.4 Buddy systém

Statické aj dynamické suvislé useky maju isté nevyhody. Statické useky limituju pocet aktivnych procesov
a mozu vyuzivat pamat dost neefektivne, ak je mal4 zhoda medzi velkostami volnych tisekov a velkostami
procesov. Dynamické tiseky majua zlozitejsiu obsluhu a vyzaduja réziu na kompaktaciu. Zaujimavym
kompromisom je buddy systém (buddy - kamarat, druh).

V tomto systéme sa prideluje pamiit v blokoch velkosti 2¥. Na zacdiatku je celkova kapacita pamite
(2%) uvaZovana ako jeden volny tsek. Ked proces pozaduje pamétovy priestor velkosti s, pricom plati
2u—l « s < 2%, tak sa procesu prideli cely tsek velkosti 2%. Inak sa tisek rozdeli na dve rovnaké casti
velkosti 2471, Ak 2472 < s < 2971, tak sa procesu prideli jedna z dvoch vzniknutych ¢asti. Inak sa jedna
z Casti opit rozdeli na dve. Tento proces pokrac¢uje az pokial sa nenajde najmensi tsek velkosti 27, do
ktorého sa proces zmesti.

Systém si udrzuje zoznamy volnych tsekov podla velkosti. Usek je vymazany zo zoznamu (i + 1)
ak sa rozdeli na dve ¢asti velkosti 27, ktoré sa zaradia do zoznamu i. Ked sa v zozname i objavia dva
susedné volné tseky velkosti 27, tak sa spoja, vymazi sa zo zonamu i a zaradia ako volny tsek velkosti
2¢+1 do zoznamu (i + 1).

Buddy systém sa pouziva v niektorych paralelnych systémoch ako u¢inny prostriedok na alokaciu a
uvolfiovanie pre paralelné programy.

9.1.5 Strankovanie

Existuja dve triedy algoritmov pre pridelovanie paméte procesu:

1. algoritmy pridelia procesu vo FAP jediny suvisly priestor — tsek (predoslé metody)

2. algoritmy pridelia procesu vo FAP priestor, ktory je z hladiska postupnosti adries vo FAP suvisly
po castiach: ich cielom je minimalizovat vonkajsiu fragmentaciu.

K 2. skupine patri aj strankovanie: pamit sa rozdeli na tseky pevnej dlzky — rdmce (dizka je vymedzena
na urovni hardware), LAP sa rozdeli na rovnako vel'ké useky — strdnky. Strankovanie je potom pridelo-
vanie rAmcov pamate strankam. KItc¢ovym problémom strankovania je vyrieSenie spdsobu transformacie
adresy z LAP do FAP. Potrebné zobrazenie sa realizuje tabulkou strdnok (page table, PT). Zobrazenie
LAP — FAP prevadza procesor pri interpretacii programu pri kazdom vstupe do paméte. Adresa od-
kazujuca sa na miesto LAP sa rozklada na dve zlozky: vysSie rady adresy definuju stranku, nizsie rady
adresu pamétového miesta v stranke (ofset).
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Logicky adresny priestor Fyzicky adresny priestor

Tabulka ramec

Stranka 0 \ stranok 0

Stranka 1 0 1

\ 1
Stranka 2 a— ) \ 2
Stranka 3 73 W 3
41 X\

Stranka 4 / 5 \ 4
/ 6 \\

Stranka 5 / 5

Stranka 6 6

7

8

9

10

11

12

Adresa vo FAP sa rozkladé na ¢islo ramca a adresu v ramci. Adresa v stranke sa zhoduje s adresou
v ramci. Pri zobrazeni sa zamienia ¢islo stranky ¢islom ramca, v ktorom je stranka umiestnena. Cisla
stranok sa pouzivaju pri pristupe do PT ako index, prislusna polozka obsahuje ¢islo ramca pre tito
stranku.

logické adresa fyzické adresa
stc;icisrlﬁv ofset rgi;lga ofset
=
YIRS m—

Dizka ramca sa voli ako mocnina 2 (IBM/360, ADT 4500: 2K slabik, IBM 370: 2048 alebo 4096B,
DEC-10: 512 slov). Ak je to k = 2™, tak dolnych n bitov adresy udava adresu (offset) v ramci, resp.
stranke. Obsah PT je trvale zobrazeny v zazname o procese (PCB), fyzickd PT sa plni pri spastani
procesu. Z tohto hladiska vyuZiva strankovanie vlastne formu dynamickej relokécie.

Sprava procesov moze vytvorit novy proces vtedy, ak jej da sprava paméte pre jeho vytvorenie do-
statoény priestor (rdmece) v paméti. K tomu si sprava paméti udrzuje tabulku rdmeov (frame table, FT).
Jednému ramcu zodpoveda jedna polozka vo FT, ktoré obsahuje dve zlozky: stavovi a definic¢ni. Stavova
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zlozka uréuje, ¢ je ramec volny alebo ¢i obsahuje stranku niektorého procesu (tam je zakédovana identi-
fikdcia tohto procesu). Defini¢na zlozka obsahuje ¢islo stranky, ktora je umiestnena v ramci. Niekedy sa
zobrazenia LAP procesov vo FAP mozu ¢iastoc¢ne prekryvat. Vznika tym zdielanie podprogramov, dat
atd. Strankovanie umoziiuje zobrazit viac logickych adresovych priestorov do jedného, spoloéného FAP,
tym sa ulahcuje multiprogramovanie a prijatelnym spdsobom riesi problém fragmentacie (pripustenim
vnttornej fragmentacie sa minimalizuje vonkajsia fragmentécia). Strankovanie odstraiiuje nutnost kom-
paktovania. Vyzaduje si vSak nakladnejsie technické vybavenie a predlzuje priemerntt dobu pristupu k
informéciam uloZenym v operacnej paméti poc¢itaca.

Speciﬁckym problémom je ochrana stranky: pouZzivaju sa bity ochrany spojené so strankami (R/W,
RO), uchovévané v PT.

9.1.5.1 Implementacia tabul'ky stranok

1. mnozina vyhradenych registrov: Planova¢ procesov nahrava ich obsah tak, ako sa nahrava obsah
ostatnych registrov. Instrukcie na modifikdciu tychto registrov su privilegované, takze ich moze
menit len OS. Toto sa pouzivalo napr. v XDS-940: 8 stranok po 2048 slov, NOVA BID: 32 stranok
po 1024 slov, Sigma 7: 256 stranok, teda bolo treba 8-256 registrov. Tato technika sa d& pouzit,
len ked je PT pomerne mala, ale DEC-10 méa 512 stranok, IBM 370 az 4096 stranok, takZe nie je
moZné pouzivat registre.

2. PT je uchovavana v hlavnej pamiti a ukazuje do nej Page Table Base Register (PTBR):

e Vymena tabulkovych stranok vyZzaduje len zmenu tohto registra.

e Problémom je ¢as na pristup k uzivatel'skej pamati: Ak chceme dosiahnut poziciu i, najprv
pristipime do PT, tam najdeme &islo ramca a uréime fyzicka adresu. Potom pristapime na
tuto adresu. Ide teda o 2 pristupy do pamaéte, takZze nastava isté spomalenie.

) Standardnym rieSenim je pouzitie Specifickej, malej HW paméte, nazyvanej associative regis-
ters alebo cache. Tieto registre obsahuji len niektoré polozky z PT. Cislo stranky sa najprv
hlada v cache. Ak sa najde, mame priamo &slo ramca. Ak sa nendjde, treba pristupit do
paméte — do PT a vyhladat ¢islo rAmca. Potom sa tento par prida do cache, takze dalsikrat
sa vyhlad4 velmi rychlo. Pri pouZiti 8-16 asociativnych registrov asi 80-90% percent ¢asu
najdeme ziadané ¢islo stranky v asociativnych registroch.

9.1.5.2 Zdielatel'né stranky

Dalsou vyhodou strankovania je moZnost zdielania spolo¢ného kodu medzi viacerymi procesmi (napr.
editory, kompilatory, DB-systémy atd.) Podmienkou je, aby tento kod bol reentrantng, t.j. nemodifikoval
sam seba pocas vypoctu. Potom ho viac procesov moze vykonavat v tom istom Case, pricom kazdy proces
maé vlastnu képiu registrov a datovej oblasti.

9.1.6 Segmentacia

V uvedenych technikach boli v8etky ¢innosti s operacnou pamétou pre pouzivatel'sky program ,neviditelné*.
Vzdy sme predpokladali linedrny a stvisly adresny priestor. Teraz sa zaoberdme otazkou, ¢i je mozny
iny sposob pristupu k adresnému priestoru, ktory vedie k efektivnejsiemu vyuZitiu paméte a ulahcuje
programovanie. Program je rozdeleny na segmenty — logické zoskupenie informaécii (napr. podprogramy
alebo datové oblasti), t.j. logické ¢asti adresného priestoru. Segmenty nemusia mat rovnaku velkost, ale je
dana maximalna velkost segmentu. Pamdtovy blok je dieléi priestor FAP, lubovolne dlhy. Segmentovanie
je pridelovanie paméatovych blokov segmentom.

Clenenie programu na segmenty moze previest programéator manuélne alebo kompilator automaticky
(prvy pre globalne premenné, druhy pre stack, treti pre funkcie, $tvrty pre lokalne premenné). Kazdy
odkaz na adresu v paméti musi obsahovat uréenie segmentu a adresu v segmente.
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Logicky adresny priestor Fyzicky adresny priestor

Tabulka
Segment 0 segmentov
\ adresa__dizka
Segment 1 0
20 N \
Segment2  |—" Pamitovy blok 0
Pamétovy blok 2

Pamétovy blok 1

Pri transformécii logickej adresy na fyzickia sa ¢islo segmentu pouzije ako index do tabulky adries
segmentov (Segment Map Table) - obsahuje zafiatoéné adresy vSetkych segmentov v pamiiti a ich velkosti.
Potom sa porovna ofset s velkostou segmentu - ak je vicsi, tak je adresa neplatna. Fyzickd adresa sa
ziska ako stcet zaciato¢nej adresy segmentu v paméti (adresa prideleného pamétového bloku) a ofsetu.

Transformacia adresy sa robi automaticky (procesorom) pocas behu programu. Tabulka segmentov
je trvale sucastou zédznamu o procese. Rovnako ako stranky, aj segmenty je mozné zdielat viacerymi
procesmi, ¢o v8ak moZe prindsat problémy pri adresovani.

Nevyhody: Stuvislé ukladanie segmentov do FAP a premenna dlzka segmentov vedie k rovnakym
problémom s transforméciou paméte do dynamicky tvorenych suvislych usekov. Sprava paméte musi
segmentom pridelovat bloky premennej dlzky, ¢m vznikd nebezpecenstvo vonkajsej fragmentacie. Is-
tou prednostou segmentécie je, Ze segmenty obvykle pozaduju kratsie bloky pamiite, nez by pozadoval
nesegmentovany program.

Hlavny rozdiel medzi strankovanim a segmentaciou je v tom, ze segment je ,logickd“ jednotka, ma
Tubovolny rozsah a je ,viditelny“ v pouzivatelskom programe, zatial¢o stranka je ,fyzickd"“jednotka
informacie pevného daného rozsahu, pouziva sa iba v module pridelovania paméte a v pouzivatel'skom
programe ju nie je ,vidiet“.

9.1.7 Kombinované systémy

Aj strankovanie aj segmentovanie maju svoje vyhody aj nevyhody. Je ich mozné kombinovat na vylep-
Senie:

e segmented paging (PT je segmentovand)

e paged segmentation (segmenty st strankované)
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9.1.7.1 Segmentované strankovanie (IBM 360/67)
24-bitova adresa:

e 12 bitov — ¢&islo stranky: umoziuje 4096 stranok (8KB pre vietky PT, 1 riadok v PT = 2B)
e 12 bitov — offset

Zvy¢ajne bola vacsina PT prazdna, lebo vécSina programov pouZiva len ¢ast mozného adresného pries-
toru, preto bola PT segmentovana: horné 4 bity ¢isla stranky sa povazovali za ¢islo segmentu (16 poloziek
pre segmenty v tabulke segmentov), pri¢om z tabulky segmentov bol smernik do PT pre tento segment (a
tiez dizka PT). Tymto sposobom mohli byt velké asti tabulky stranok, ktoré boli nulové ,,odstranené”
nastavenim adresy tabulky stranok na 0. V najhorsom pripade treba 3 pristupy do paméti na pristup k
adresovanému miestu.

logicka adresa

o
st‘;:isnl(zy ofset (d)
®
‘L| Cast’ tabul’ky stranok
s [p]
- -
adresa fabstr. y Pislo ramea (1) Sislo 4 HlaVl’lé
» e
g raaq)ca ofset (d) > paméit’
Tabul'ka segmentov fYZICké. adresa

9.1.7.2 Strankovana segmentacia (Multics)
Logické adresa:

e 18 bitové ¢islo segmentu
e 16 bitovy offset

Moze byt velkd vonkajsia fragmentacia alebo ¢as na hladanie volného pamétového bloku (metédou
first-fit alebo best-fit) Preto treba strankovat segmenty (odstrani to vnatorna fragmentaciu).

logicka adresa

¢islo
segmentu ofset (d)
(s) A
'_ b
Lp|d
+ e Hlavna
Sy Y ) Gierimead gislo ] R .
dlzka segmentu|adresa tabstr. p{Cislo ramca ra{rfl)ca d » p amat
fyzicka adresa
Tabul’ka segmentov Tabulka stranok

pre segment

Offset v segmente je rozdeleny na 6-bitové ¢islo stranky a 10-bitovy offset v stranke.



Kapitola 10

Sprava pamate — modely virtualnej
pamate

Predoglé algoritmy vyzadovali, aby cely LAP bol v paméti, ¢o ¢asto nie je nutné. Ak je LAP vACSi nez
FAP, program sa nezmesti do paméte. Zo zaciatku bol tento problém rieSeny tak, Ze program sa rozdelil
na Casti, nazyvané overlays (prekryvné segmenty). Prvy bol spusteny overlay 0. Ked bol ukonéeny,
volal d'alsi. Niektoré systémy umoziiovali umiestnit do paméte naraz niekol'ko segmentov. Segmenty boli
uloZené na disku a nahréavané do paméte a z paméte opera¢nym systémom. AvSak rozdelenie programu na
¢asti bolo tlohou programatora, ¢o zaberalo mnoho ¢asu. Vznikla snaha celd tito préacu zverit pocitacu.
Metoda riesiaca tento problém zacala byt znama ako wvirtudina pamdt. Jej zakladna idea je: Velkost
programu moze presahovat velkost fyzickej paméte, ktora je k dispozicii programu. OS drzi v paméti len
Casti programu, ktoré sa prave pouzivaja, ostatné ¢asti si na disku.

Vidsina systémov s virtualnou pamétou pouZiva metodu strankovania. Adresy generované programom
sa nazyvaju virtudlne adresy a formuju virtudlny adresovy priestor. Virtudlna adresa ide do memory ma-
nagement unit (MMU), ktory mapuje virtudlnu adresu na fyzickt adresu. Virtualny adresny priestor je
rozdeleny do stranok, opera¢na pamat sa deli na ramce rovnakej velkosti. Na transforméciu adresy sa
pouziva tabulka stranok. T4 uréuje adresu ramcov zodpovedajucich strankam paméite. Kazda polozka
v tabulke stranok obsahuje naviac present/absent-bit, ktory indikuje, ¢ sa prislusna stranka nachadza
v operanej paméti. Ak sa nenachédza, generuje sa prerusenie, ktoré sa nazyva vypadok stranky (page
fault), ktoré musi OS vyriesit zavedenim poZzadovanej stranky do opera¢nej paméti a aktualizaciou zod-
povedajicej polozky v PT. Ak v opera¢nej paméti nie je volny ramec na zavedenie stranky, treba vybrat
obet — stranku, ktora sa skopiruje na disk a na jej miesto sa zapiSe pozadovana stranka. Ak obet bola od
¢asu, ¢o je v opera¢nej paméti, modifikované, je nutné jej obsah zapisat na disk. Ak nebola modifikované,
zapis na disk nie je nutny, nova stranka len prepiSe jej obsah.

Strateny Cas pri obhospodarovani vypadku stranky zévisi:

e od toho, s akou pravdepodobnostou sa Ziadaju stranky

e od dlzky stranky (Ak chceme redukovat rozsah tabulky stranok, pouZijeme viicSie stranky. Ak
chceme redukovat vnutornu fragmentéaciu, pouzijeme malé stranky.)

e od vyberu obete

Optimalne je, ked o stranke vieme, ako dlho nebude pouzita. Ako obet potom zvolime stranku, ktora
najdlhsie nebude potrebna. Tento pristup je v8ak nerealizovatelny.
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10.1 Nahradzovacie algoritmy

FIFO (First-In-First-Out Page Replacement)

Pomerne nenéro¢ny na implementaciu: OS si udrziava zoznam v8etkych stranok, ktoré st prave v paméti.
Na zaciatku zoznamu je ,najstarsia“ stranka, nové stranky sa pridavaja na koniec zoznamu. Pri vybere
obete sa vybera stranka, ktora je na ¢ele zoznamu a nové stranka je zaradené na koniec zoznamu. Vyhody:

e Stranka nie je odstranena hned po svojom zavedeni do paméte.
Nevyhody:

e Stranka, ktora je v operaénej paméiti sistavne pouZivana bude vybrana ako obet, lebo je ,,najstarsia“
(aj ked bude hned potrebna).

Mozu sa vyskytnat pozoruhodné vedlajsie javy, napr. FIFO anomalia (Beladyho): za istych podmienok
sa moZe stat, Ze pri zvifSeni operacnej pamite (zvaCSi sa pocet ramcov) dostaneme horsiu efektivitu
(zvagsi sa polet vypadkov stranok). Napr. ak ma operana paméit 3 ramce a program 5 stranok, ktoré
st pozadované v nasledovnom poradi: 012301401234

PAMAT: 3 rimce 012301401234

najmladsia stranka Ol 1/213/0/11414/41/2|313

0/1]213|/0]1]1|1]4]2]|2

najstarsia stranka 0/1/2/3(0|01(0]|1 |4 |4
VS VS VS VS VS VS VS VS VS 9 vypadkov stranky

PAMAT: 4 rimce 012301401234

najmladsia stranka 0| 1/21313[3/4/0/11213 14

0/1/2/2/2|3]4/0|1]2]3

O/1/1/1/2]3/4|/0|1|2

najstarSia stranka 0/l010111213141011
VS VS VS VS VS VS VS VS vs vS 10 vypadkov stranky

NRU (Not-Recently-Used Page Replacement)

Vicsina poditacov s virtuadlnou pamétou mé ku kazdej stranke pridelené dva bity: R — referenced a M —
modified. Bit R sa nastavi vzdy, ked sa stranka ¢ita alebo sa do nej zapisuje. Bit M sa nastavi vtedy, ked
sa do stranky zapisuje (Ak je M bit 6bete"0, nemusi sa tato stranka nahravat na disk - lebo sa nezmenila
a teda na disku existuje jej kopia - len sa prepiSe novou strankou). KedZe sa tieto bity modifikuja pri
kazdom pouZiti paméte, je doleZité, aby sa to robilo rychlo, teda hardwarovo. Ked je bit hardwarom
nastaveny na 1, uz sa hardwarovo nemeni, az kym ho OS nezmeni softwarovo. Bity R a M moZno vyuZzit
nasledovne: Pri odStartovani procesu sa vSetky bity vynuluja OS. Periodicky (napr. pri preruseni od
hodin) sa bit R vynuluje, aby sme odlisili stranky, ktoré sa nedavno pouzili od pouzitych davnejsie. Ked
sa vyskytne vypadok stranky, OS rozdeli vSetky stranky do 4 kategorii na zaklade si¢asnej hodnoty R a
M bitov:

Trieda 1 — neodkazované, nezmenené (R=0, M=0)
Trieda 2 — neodkazované, zmenené (R=0, M=1)
Trieda 3 — odkazované, nezmenené (R=1, M=0)

Trieda 4 — odkazované, zmenené (R=1, M=1)

s
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VylepSenia FIFO

Aby sme sa vyhli obetovaniu sice starej, ale intenzivne pouZzivanej stranky, mozno tiez pouzit R a M bity.
Postupujeme tak, Ze najprv obetujeme najstarsiu stranku z triedy 0. Ak taka nie je, hladdame stranky zo
triedy 1, 2, 3.

Z algoritmu FIFO je odvodeny aj algoritmus druhej nddeje — opéat preverime najstarsiu stranku ako
potencialnu obet: ak méa bit R = 0, odstranime ju hned. Ak ma R = 1, t.j. bola nedévno pouZita, tak bit
R vynulujeme a stranku zaradime na koniec zoznamu, ako keby prave prisla do paméte. Ak udrzujeme
zoznam kruhovy, tak namiesto zaradovania na koniec zoznamu, sa len o jednu stranku posunie pointer
v zozname. Toto sa Casto nazyva hodiny. Ak sa intenzivne pracuje so strankami, degraduje sa tento
algoritmus na FIFO.

LRU (Least-Recently-Used Page Replacement)

Je zalozeny na predpoklade, Ze stranky, ktoré sa pocas niekolko poslednych inStrukcii intenzivne po-
uzivali, sa pravdepodobne budu intenzivne pouZivat aj nadalej. A naopak, stranky, ktoré sa uz dlho
nepouZzivaji, sa eSte dlho nebudu pouZivat. Teda ked vznikne vypadok stranky, obetujeme stranku,
ktora sa najdlhsie nepouzivala. To je v8ak velmi ,,drahé“. Ak by sme to chceli plne implementovat, po-
trebovali by sme zoznam stranok v paméti, zoradeny podla toho, ako davno boli stranky pouzité a tento
zoznam by sme museli upravovat pri kazdom odkaze do paméti. Prestivanie prvkov v zozname je ¢asovo
naro¢né operacia a bud by sme museli pouzit $pecialny hardware alebo najst nejaki lacnejsiu softwarova
aproximaciu. Budeme sa zaoberat 2. moZnostou, konkrétne algoritmom nazyvanym

NFU (Not Frequently Used Page Replacement)

Ku kazdej stranke méame priradené softwarové pocitadlo, ktoré je na zaciatku vynulované. Pri kazdom
preruSeni od hodin OS prechadza vsetky stranky v paméti a k pocitadlu pripoé¢ita obsah R bitu (az
potom ho vynuluje). Teda pocitadlo udrziava informéaciu o tom, ako Gasto sa stranka pouziva. Ked
nastane vypadok stranky, tak obetujeme stranku s najmensim pocitadlom. Pri tejto realizacii vznika
problém, Ze sa ,nikdy na ni¢ nezabuda‘®. MoZe sa napr. stat, Ze na zaciatku intenzivne pouzivame nejaké
stranky, a teda maju vysoké pocitadlo. Ked sa potom zafnt pouZivat iné stranky (Casti) programu,
buda mat nizke pocitadlo, takZe padnia za obet aj napriek tomu, Ze sa momentélne intenzivne pouzivaju.
Tento nedostatok moZno odstranit malou tpravou a dostaneme algoritmus nazyvany starnutie (Aging).
Nastant tieto zmeny:

e Pred pripoéitanim bitu R sa pocitadlo posunie o 1 bit doprava.

e Bit R sa pripocita k najlavejSiemu, nie k najpravejSiemu bitu. Ked sa potom vyskytne vypadok
stranky, obetujeme stranku s najmensim pocitadlom (ak nejakd stranka nebola odkazovana, napr.
pocas poslednych 4 tikov, bude mat zlava 4 vedice 0, teda nizSiu hodnotu ako poé¢itadlo stranky,
na ktoru sa neodkazovalo posledné 3 tiky).

10.2 Strankovanie na ziadost (demand paging) versus model s
pracovnou mnozinou (working set model)

Pri strankovani na ziadost nemé4 proces pri spusteni ziadnu stranku v paméti. Hned, ako sa CPU pokdsi
vykonat (naéitat) prva instrukciu, vznikne vypadok stranky a OS nacita stranku s prvou instrukciou.
Zvyajne hned nasleduju dalsie vypadky stranok kvoli zasobniku, globalnym tdajom a po chvili ma
proces nacitané vsetky stranky, ktoré prave potrebuje a bezi s relativne malym poc¢tom vypadkov stranok.
Samozrejme, je moZné napisat testovaci (trashing) program, ktory by systematicky nacitaval vSetky
stranky vo velmi velkom adresnom priestore, ¢im by pouzival také mnoZstvo stranok, Ze by pre ne
nestacila pamét a dochadzalo by k ¢astému vymiehaniu stranok. V praxi v8ak vadéSina procesov pouZiva
relativne malia ¢ast svojich stranok. Tejto mnoZine stranok, ktort proces momentélne pouZiva hovorime
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pracovnd mnoZina (working set). Ak ma proces pocas danej fazy vykonavania v paméti celtt pracovni
mnozinu, pobeZi viac-menej bez vypadkov stranok az kym sa nepresunie do inej fazy vykonavania.

V systémoch so zdielanim ¢asu sa procesy ¢asto odstvaji na disk. Vzniké otazka, o robit, ked proces
nac¢itame spéat. Po technickej stranke to nie je Ziadny problém: proces generuje vypadky stranok az kym
nenadita svoju pracovni mnozinu. Problémom vSak je, Ze mat 20, 50 alebo 100 vypadkov stranok pri
kazdom nagitani procesu do pamiti je vel'mi pomalé a navySe dochadza k mrhaniu ¢asu CPU (spracovanie
vypadku stranky trva niekol'ko ms). Preto sa niektoré systémy so zdielanim Casu snaZia sledovat pracovnii
mnozinu kazdého procesu a zabezpecit, aby bola na¢itana vzdy pred vykonanim procesu. Tomuto pristupu
sa hovori model s pracovnou mnoZinou (working set model). Nacitanie stranok pred spustenim procesu
sa tiez nazyva prepaging.

Na implementéciu tohto modelu treba nejako sledovat pracovni mnozinu procesu. Jednou moznostou
je pouzit algoritmus starnutia: kazda stranka, ktora mé v hornych N bitoch podcitadla nejaky bit 1, sa
zaradi do pracovnej mnoziny. Ak nejaka stranka nebola odkazovana N tiknuti, tak je vyradené z pracovne;j
mnoziny. Parameter N sa musi ur¢it experimentélne pre kazdy systém, ale vykon systému zvycajne nie
je prili§ citlivy na presntt hodnotu N (N sa nazyva aj okno pracovnej mnoziny — working set window).

10.3 Lokalne versus globalne pridelovacie stratégie

Pri nahradzovacich algoritmoch je tiez doleZita otazka, ¢i sa obet vybera spomedzi stranok pridelenych
procesu alebo spomedzi vSetkych stranok v paméti (lokdlne vs. globalne nahradzovanie). Lokalne na-
hradzovanie zodpoveda prideleniu pevného miesta v paméati procesu, globdlne nahradzovanie dynamicky
prideluje ramce medzi spustatelné procesy. V pripade lokdlneho nahradzovania treba urcit pocet ramcov
pre kazdy proces:

e rovnomerne rozdelit

e pomerne (podla velkosti procesov)

Vo v8eobecnosti globalne pridelovanie pracuje lepsie, hlavne v pripadoch, ked sa velkost pracovnej
mnoziny pocas zivota procesu meni.

10.4 Problémy pri implementacii

Pri implementécii virtualnej paméte sa musime rozhodnat pre niektory z algoritmov na vyber obete,
lokalne alebo globélne nahradzovanie, resp. & implementovat strankovanie na Ziadost alebo prepaging.
Treba v8ak brat do avahy aj mnozstvo praktickych otazok, z ktorych niektoré uvedieme:

Zalohovanie inStrukcii

Ked sa program pokisi o odkaz do stranky, ktora nie je v paméti, tak je (strojovd) inStrukcia prerusena
niekde uprostred a nastane odskok do OS. Po nacitani stranky do paméte je potrebné instrukciu vykonat
odznova. To niekedy nie je mozné. Va&8ina instrukcii pozostava z viacerych bajtov. Aby OS mohol vyko-
nat inStrukciu znova, musi zistit, kde sa zac¢ina. To moZno zabezpecit napr. tak, Ze existuje register, do
ktorého sa skopiruje PC pred vykonanim instrukcie, teda rieSenie poskytuji tvorcovia CPU. Tiez musi
existovat d'alsi register, ktory udrZiava informacie o tom, & bol niektory register autoinkrementovany
alebo autodekrementovany (takto pracuje napr. PDP 11/45). Iné pristupy sa: Motorola 68010 — mik-
rokod uloZi internu stavovi informéciu do zasobnika, VAX — mikrokod vrati stav pociatku do bodu,
nez sa zacala instrukcia, RISC — nechéava pocitac v stave, v akom bol (t.j. vietko musi vyriesit OS).

Zamykanie stranok v pamiti

Uvazujme nasledovnu situaciu: proces zavola systémovi procediru na nacitanie ¢asti siboru do buffera
vo svojom adresnom priestore. Kym ¢aka na dokoncenie operacie, spusti sa iny proces, ktory spdsobi
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vypadok stranky. Existuje mal4, ale nenulova pravdepodobnost, Ze sa obetuje stranka so V/V bufferom.
Ak V/V zariadenie prave prestuva data do buffera, ¢ast udajov sa zapiSe do buffera a druhé ¢ast prepise
novonagitani stranku. Jedno rieSenie je uzamknut stranku, ktora je pouzivana pre V/V, a tym zabranit
jej odstraneniu z pamite. Druhé rieSenie je, Ze kernel robi V/V do vlastnych bufferov a z nich neskor
adaje skopiruje uzivatelovi.

Zdiel'anie stranok

Vo velkych systémoch so zdielanim ¢asu je bezné, ze viacero pouzivatelov siiasne spusta ten isty program
(napr. editor). Bolo by vyhodné, keby v paméti bola len jedna kopia programu, ktora by vSetci zdie-
lTali. Samozrejme, zdielat moZno iba tie stranky, do ktorych sa nesmie zapisovat (read-only), napr. text
programu. Data alebo zésobnik sa zdielat nedaji. So zdielanymi strankami mozu vzniknat nasledovné
problémy:

Nech procesy A a B vykonédvaju ten isty program a zdielaju jeho stranky. Ak sa proces A odlozi
na disk, jeho stranky sa nahradia inym programom, ¢o sposobi, Ze proces B bude generovat mnozstvo
vypadkov stranok, aby vratil potrebné stranky do paméte. Podobne, ked A skoné¢i, OS musi vediet zistit,
ze jeho stranky sa nadalej pouzivaju, a teda sa eSte nesmil uvolnit. Na to potrebujeme nejaké datové
struktiry, ktoré budu udrziavat informaciu o zdielanych strankach.

10.5 Virtualizacia paméite segmentaciou na Ziadost

e Adresny priestor programu je rozdeleny na segmenty — logické Casti (procedury, data, zasobnik
atd.).

e Ked nie je pozadovany segment v paméti, generuje sa preruSenie nazyvané vypadok segmentu, t.j.
OS musi pre segment najst priestor v paméti (zhustovanim, odsunom iného segmentu) a zaviest
ho do pamaéte.

e Nevyhodou tejto metody je Gasto zlozité pridelovanie paméti.

10.6 Sprava paméite v Unixe

Pred verziou 3BSD bola vécsina OS Unix zaloZena na swapovani, t.j. ak existuje viac procesov, ako je
mozné mat v pamiti, niektoré z nich st odswapované na disk. Proces je odswapovany cely (aZ na zdielany
text), ¢ize proces je bud v paméti alebo na disku.

10.6.1 Swapovanie

(Unix pre PDP-11, Interdata, za¢iato¢né VAX implementacie)

Presun medzi pamétou a diskom je riadeny planovacom — swapperom. Odswapovanie procesu z paméte
na disk sa uskutoc¢iuje, ked nastalo preplnenie paméte z dévodu:

e fork potrebuje pamét pre proces-potomok
e systémové volanie brk pozaduje zvacsit datovy segment
e stack narastol a presiahol vyhradeny priestor

Navyge, ak treba z disku do paméte presunut proces, ktory bol na disku prili§ dlho, ¢asto treba odswa-
povat na disk iny proces.

Vyber obete

e najprv blokované procesy — ak je takych viac, vyberie sa ten, ktory ma najvyssi stcet priority a
Casu v paméti

e ak nie je Ziaden blokovany proces, vyberd sa pripraveny proces podla spomenutého siétového
kritéria
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Swapovanie do paméite

Kazdych niekol'ko sekiind swapper prezera zoznam odswapovanych procesov, aby zistil, ¢i nie je nejaky
pripraveny. Ak ano, vyberie sa taky, ¢o je najdlhsie na disku. Swapper preveri, ¢i je nain v paméti miesto.
Ak nie, treba odswapovat jeden alebo viac procesov z paméte na disk. Tento algoritmus sa opakuje, az
kym nenastane jedna z udalosti:

1. ziaden proces na disku nie je pripraveny

2. pamét je plna procesov, ktoré boli prave do nej nahraté, takZe nie je mozné uvolnit miesto. (Proces
nemdZze byt odswapovany z paméte, ak v nej nie je aspon dve sekundy).

Evidencia voI'ného miesta

na disku a v paméti — linkovany zoznam volnych asekov

10.6.2 Strankovanie

(od verzie 3BSD, 4BSD aj System V implementuji demand paging — strankovanie na ziadost)

Stadi, aby ,user structure* a tabulka stranok boli v paméti a proces moze byt naplanovany na spracova-
nie. PoZzadované stranky st nahravané do paméte dynamicky. Ak ,user structure” a PT nie st v paméti,
proces nemoze bezat, kym ich swapper nenahra do pamaéte.

Berkeley Unix nepouZiva model s pracovnou mnozinou alebo int1 formu predstrankovania, lebo kedze
VAX nema ,reference® bity, je tazké sledovat pouzivané stranky.

Strankovanie je implementované scasti hlavnym kernelom a sé¢asti novym procesom — page daemon
(proces ¢.2). Ten je periodicky Startovany a kontroluje, ¢i je nejaka robota, ktort ma urobit. Ak je pocet
volnych stranok v paméti prili§ nizky, nastartuje akcie na uvolnenie viac ramcov.

Hlavna pamét v 4BSD pozostéva z 3 ¢asti:

e kernel
e core map (kernel a core map nie st nikdy odstrankované)

e zvy$na pamét — deli sa na ramce

Core map obsahuje informéacie o obsahu ramcov (pre kazdy ramec jednu polozku). Ak napr. ramce
maju 1K a polozky v core map 16B, tak core map zabera menej ako 2% paméte. Prvé dve polozky sa
pouZzivaju, ak je rdmec volny: obsahuju smerniky do zoznamu volnych ramcov. Dalsie tri polozky sa
pouzivaji na urcenie miesta na disku, kde je stranka uloZené. Dalsie tri polozky dévaju ¢islo polozky
v tabulke procesov pre proces, ktorému stranka patri. Posledna polozka obsahuje flagy, potrebné pre
strankovaci algoritmus.

Ak nastane page fault, OS berie prvi stranku zo zoznamu volnych stranok a poZzadovani stranku
nahra do nej. Ak vSak nie je volny ramec, proces je pozastaveny, kym page daemon neuvolni ramec.

Nahradzovaci algoritmus

je vykonévany page daemonom. Kazdych 250 ms je daemon zobudeny, aby zistil, ¢ pocet voInych ramcov
je aspon lotsfree (systémovy parameter, zvycajne aspoi 1/4 paméte). Ak je poCet stranok mensi, za¢ne
presuvat stranky z paméte na disk. Ak je vacsi, zaspi.

Page daemon pouziva modifikovant verziu ,hodinového* algoritmu. Zakladny ,,hodinovy* algoritmus
prejde vSetky stranky a vynuluje ,,usage bit“. V 2. prechode kazda stranka, ktora nebola od 1. prechodu
referencované, je po zapisani zaradena do zoznamu volnych stranok.

PretoZze prechody trvali prilis dlho, bol algoritmus modifikovany na two-handed clock algorithm.
Predna rucicka nuluje ,usage bit“, zadné preveruje jeho nastavenie. Ak su rudicky prili§ blizko, iba
velmi ¢asto pouzivané stranky maja Sancu byt pouZité medzi prechodom prvej a druhej rudicky. Ak su
pridaleko (napr. 359°), dostaneme povodny hodinovy algoritmus.
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Ked page daemon bezi, rucicky rotuja, kym nevznikne aspon lotsfree volnych poloziek.
Ak sa casto strankuje a pocet volnych ramcov je stale nizsi ako lotsfree, swapper odsunie nejaké
procesy na swap-disk.

Swapovaci algorimus pre 4BSD

Swapper zisti, ¢i existuje proces, ktory je ,idle* viac nez 20 sektind. Ak ano, tak ten, ¢o je idle najdlhsie, je
odswapovany. Ak nie, preveria sa 4 najvacsie procesy a odswapovany je ten, ktory je v paméti najdlhsie.
Toto sa pripadne opakuje, aZ kym nie je dost miesta.

Kazdych par sekiind swapper preveruje, ¢i existuje nejaky pripraveny proces na disku. Kazdy proces
na disku mé priradentt hodnotu, ktoré je funkciou toho, ako dlho je odswapovany, jeho velkosti, nice a
toho, ako dlho spal pred odswapovanim. Tato funkcia je vihované, aby sa zvy¢ajne nahral do paméte
proces, ktory je najdlhsie odswapovany, avSak iba ak nie je privelky (presun velkého procesu je drahy, a
teda sa nesmie robit ¢asto). Swapper nahra do pamiite len ,user structure“ a tabulku stranok. Ostatné
Gasti st strankované podla potreby.

Strankovanie pre System V

je velmi podobné 4BSD. Su tu v8ak dva zaujimavé rozdiely:

1. Pouziva originalny ,,one-handed clock algorithm®. Stranka sa zaraduje do zoznamu volnych ramcov,
ak sa nepouziva v n nasledujicich prechodoch.

2. Namiesto jednoduchej premennej lotsfree System V pouZiva dve premenné min a max. Ak podet
volnych ramcov klesne pod min, uvoliiuje sa paméit dovtedy, kym nie je volnych aspoii max ramcov.



Kapitola 11

Sprava stuborov

Vsetky pocitacové aplikacie potrebuju uchovavat a znovu vyberat informéacie. Kym proces bezi, isté
obmedzené mnoZzstvo informécie moze uchovavat vo vlastnom adresnom priestore. Kapacita tlozného
priestoru je tym obmedzen4 na velkost virtualnej paméte , ¢o v niektorych aplikicidch nie je postacujice
(rezervacie leteniek, banky, ...). Druhym problémom je, Ze ked proces skon¢i, takto uloZena informécia
sa strati. Treti problém je, Ze Casto viaceré procesy pristupuju k tej istej informacii (alebo jej Casti) v
tom istom Case, takZze nie je vhodné mat tito informéciu uloZenu v adresnom priestore procesu. Sposob,
akym rieSit tieto problémy, je urobit tuto informéaciu nezavisli od procesu: bude uloZené na disku alebo
inom externom zariadeni v jednotkach nazyvanych sibory.

Stubory sa spravované opera¢nym systémom. To, ako si Struktirované, pomenované, ako sa k nim
pristupuje, ako sa pouzivaja, ako st chranené a implementované — to st hlavné otazky designu ope-
ra¢ného systému. Cast opera¢ného systému, ktora sa zaobera subormi je zndma ako file system (systém
stborov).

Najprv sa budeme zaoberat sibormi z hladiska pouzivatel'ského, potom problémami implementacie.

11.1 Pouzivatel'ské hl'adisko

Stubory poskytuji moznost ukladat informaciu na disk a znovu ju ¢itat. Je treba, aby detaily (ako a kde
je informaécia uloZena a ako disky pracuji) boli pred pouZivatelom skryté.

Ked proces vytvara siubor, pomenuje ho. Stbor existuje aj po skonceni procesu a iné procesy k nemu
mozu pristupovat prostrednictvom jeho mena. Mnohé operatné systémy umoziiuju dvojdielne meno, v
ktorom druh4 c¢ast (oddelena bodkou) sa nazyva pripona (file extension). Uréuje zvycajne typ suboru.
V Unixe je moZné aj viac pripon, napr. prog.c.Z

11.1.1 Typy stborov

Vacsina opera¢nych systémov mé rozliéné typy suborov — podla druhu pamétanej informéacie. Napr.
Unix:

e Obycajné (regular) subory: obsahuju informéciu vlozent pouzivatelom, aplika¢né programy, systé-
mové programy. Mozu obsahovat textovii alebo bindrnu informéciu.

e Adresare: obsahuju informéciu potrebnu na to, aby bolo mozné dat siborom symbolické mené. St
to vlastne oby¢ajné subory so Specidlnymi zapisovacimi ochrannymi privilégiami: len systém moze
do nich zapisovat, ¢itat mozu normalne pouzivatelia.

° Speciélne stibory: pouZivaji sa na pristup k V/V zariadeniam. St dva typy tychto siborov: blokové a
znakové. Kazdé V/V zariadenie méa priradeny Specidlny sibor. V/V operécie so §pecialnym siborom
inicializuju prenos na zariadenie spojené s tymto stiborom.

e FIFO subory pre pipes: pseudosiibory, ktoré moézu byt otvorené dvomi procesmi na vytvorenie
komunika¢ného kanalu medzi nimi.

90
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Vo vidsine systémov st obycajné stubory dalej delené do rozliénych typov v zavislosti od ich pouzitia.
Rozne skupiny st potom rozliSené réoznymi priponami, napr. .pas, .c, .asm, .dat, .exe, atd. V niektorych
systémoch je to len nepisana dohoda (Unix), v inych sa pripony bert do tvahy (napr. v MS-DOSe sa dajt
spustit len .com, .exe, .bat sibory. OS TOPS-20 ide tak daleko, Ze pri spustani binarneho siboru sa skon-
troluje aj jeho zdrojovy text. Ak bol modifikovany po vytvoreni binarneho siboru, tak sa automaticky
prekompiluje.)

11.1.2 Atribity stboru

Kazdy opera¢ny systém pripaja k stboru aj dalsiu informaciu (okrem mena a dat), napr. datum a cas
vytvorenia, velkost stboru, t.j. atributy. Atribatmi mozu byt: informécia o ochrane, vlastnik stuboru, ¢as
posledneného pristupu, ¢as poslednej modifikacie, ...

11.1.3 Nezavislost na zariadeni

Vsetky opera¢né systémy sa snazia o nezavislost na zariadeni, t.j. aby pristup k siborom bol rovnaky
bez ohladu na to, na ktorom zariadeni sa stubor nachiddza. Programy pracujice so subormi by mali byt
schopné zapisovat stubory na disketu, na pevny disk, tladiareni, terminal bez toho, aby samotny program
musel byt pre rézne pripady rozne naprogramovany. Napr. v Unixe je moZné ,,namontovat” (mount) file
system (napr. disk) hocikde v systéme suborov, ¢o umoziuje pristupovat k siborom cez meno (s cestou)
bez toho, aby sme sa museli starat, na ktorom disku sa nachddza. Naopak, v MS-DOSe pouzivatel musi
explicitne Specifikovat, na ktorom zariadeni sa stibor nachadza (s vynimkou default zariadenia).

11.1.4 Struktiara (organizacia) stiboru
Tri hlavné sposoby:

1. neStruktirovana postupnost bytov: opera¢ny systém nevie alebo sa nestara, ¢o je v sibore. Vyznam
musi byt dany pouZzivatelskymi programami. PouZiva sa napr. v Unixe, MS-DOSe.

2. postupnost zaznamov (records) pevnej dlzky: Kazdy zaznam mé nejaku interni strukttru. Opera-
cia read ¢ita jeden zaznam, write zapisuje jeden zaznam. PouZiva sa napr. v.CP/M (128 znakové
zéznamy).

3. stibor pozostava zo stromu zéznamov (nie nutne pevnej dizky): Kazdy zaznam obsahuje kIué (na
pevnej pozicii v zdzname). Strom je utriedeny podla kIti¢a na urychlenie vyhladavania. Zaznamy
mozu byt spracovavané podla kluca, aj ked je moZzné aj operacia ziskania "dalSicho zaznamu".
Pri vkladani nového zaznamu opera¢ny systém rozhodne, kam bude zdznam umiestneny. Tato
organizacia sa pouZiva napr. v systéme VAX/VMS a v mnohych velkych salovych poécitac¢och.
Metoda sa nazyva Indexed Sequential Access Method (ISAM).

11.1.5 Pristup k stboru

Rané operaéné systémy poskytovali len jeden druh pristupu k siboru — sekvencény. Je to pristup pouzi-
vany pre magnetické pasky. Ked sa zacali pouzivat disky, pribudli moznosti &itat bajty alebo zaznamy
stuboru mimo poradia a pristupovat k zdznamom podla klaca. Pristup v Tubovolnom poradi (random
access) je zakladny pristup pre mnohé aplikacie, napr. databazové systémy.

Na Specifikovanie, kde zacat ¢itat, sa pouzivaju 2 metody:

e pomocou pozicie: zmenou aktualnej pozicie — potom nasledujiice operacie read a write operuja na
novej pozicii

e pomocou &isla alebo kltuca zdznamu
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11.1.6 Operéacie so stibormi

st rozne pre rozne operacné systémy. VSeobecne: create, delete, open, close, read, write, append (pridat
na koniec suboru), seek (pre ndhodny pristup: zmena ukazovatela pozicie) get attributes, set attributes,
rename.

11.1.7 Adresare

Sluzia na udrziavanie prehladu o uloZeni siborov. V mnohych operaénych systémoch aj adresare sa
subory.

11.1.7.1 Hierarchické systémy adresarov

1. Jeden adresér pre vSetkych pouzivatelov — jednoturovriovd organizdcia: Ide o najjednoduchsi spo-
sob, st mozné konflikty pri pomenovani siborov. Pouzitie: primitivne mikropoéitatové operaéné
systémy.

2. Po jednom adresari pre kazdého pouzivatela — dvojiiroviiovd organizdcia

3. stromovd Struktira

4. orientovany acyklicky graf: Jeden sibbor moZze mat niekolko mien a pristupovych ciest. Umoziiuje
to zdielanie siiborov.

O LI

R Zan

jednotroviiova dvojiroviova stromova orientovany acyklicky graf

11.1.7.2 Mena ciest (path names)

e absolatne: od koreiia, napr. /usr/users/jano. Jeden znak je oddelovac: v Unixe ,,/“, v MS-DOSe ,,\*
alebo ,,/“, v Multicse ,,>“.

e relativne: vzhladom na working directory (current directory). Prvy znak je iny ako oddelovaé. Tiez

je moznost pouzit ..., ...

11.1.7.3 Operacie s adresarmi

V Unixe: create, delete, opendir, closedir, readdir, rename, link, unlink.

11.2 Sprava priestoru na disku

VoI'né bloky

Operacny systém si musi udrziavat prehlad o volngch blokoch na disku. Na to je mozné pouzit viaceré
metody:
e Spdjany zoznam volngjch blokov:

Nevyhoda: na vyhradenie n blokov treba n pristupov na disk. Alternativou je preto zoznam skupin
blokov.
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e Index blocks, t.j. spadjany zoznam diskovych blokov: Kazdy blok obsahuje tolko adries (t.j. smer-
nikov) k voInym blokom, kolko sa doii zmesti a smernik na dalsi takyto blok. Ak mame bloky
velkosti 1K a 16-bitové adresy blokov, tak v kazdom bloku méze byt 511 adries volnych blokov
((1024 : 2) — 1 = 511). Disk velkosti 20M (t.j. 20K blokov velkosti 1K) potom bude potrebovat cca
40 blokov na uchovanie v8etkych 20K diskovych adries blokov ((20 - 1024) : 511 = 20 - 2 = 40).

Nevyhody:

— zly prehlad o savislych voInych oblastiach
— problémom je, ako znadit, v ktorych polozkach sit smerniky na volné bloky a ktoré polozky v
poslednom indexovom bloku st prazdne

e Bitovd mapa: Disk s N blokmi potrebuje mapu s N bitmi, kde 1 = obsadeny a 0 = volny (alebo
naopak). Potom 20M disk (s blokmi velkosti 1K) potrebuje 20K bitov na mapovanie adries blokov,
t.j. 3 bloky ((20 - 210) : (8 .210) = 3). Pokles oproti metéde ,jindex blocks* nastava preto, lebo
metoéda bitovej mapy pouziva 1 bit na 1 blok, kym metéda ,index blocks* na to potrebuje 16
bitov. Jedine ak je disk takmer plny, tak schéma spajaného zoznamu bude pozadovat menej blokov
ako bitova mapa.

Ak méame v opera¢nej paméti dost miesta na udrzanie celej bitovej mapy naraz, je metoda bitovej
mapy vyhodnejsia. Ak vSak len jeden blok paméti moéze byt rezervovany na uchovéavanie informécie
o volnych blokoch na disku a disk je takmer plny, tak spajany zoznam bude lepsi. Ked je v operacne;j
pamiéti len jeden blok bitovej mapy, moZze sa stat, Ze v fiom nendjdeme Ziadne volné bloky, takze
treba pristupovat na disk a &itat zvySok bitovej mapy, kym pri spajanom zozname pri nacitani
jedného bloku do paméte je moZné alokovat 511 diskovych blokov (ziskame 511 volnych blokov)
pred dalsim nutnym pristupom na disk na &tanie d'alsieho bloku zo zoznamu.

Diskové kvéty (quotas)

V multiuZivatelskom opera¢nom systéme je ¢asto mechanizmus na zavedenie diskovych kvot, t.j. stano-
venie maximéalneho mnoZstva priestoru na disku pre pouZivatela a maximéalneho poc¢tu siborov.

11.3 Implementacia systému stiborov

Implementéacia siiborov riesi problém, ktoré bloky disku st pridelené stiboru.

11.3.1 Suvisla alokacia

Najjednoduchsim sposobom je pridelit suboru savisly blok dat na disku (postupnost za sebou iducich
blokov).

Vyhody:

e Tahka implementacia (v adresari je uloZzena zaciatofna adresa a velkost savislého bloku prisliucha-
jaceho stboru)

e cely sibor moZe byt z disku ¢itany naraz v 1 operacii
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Nevyhody:

e treba vopred poznat maximalnu vel'kost siboru

e fragmentécia disku (kompaktacia je zvy¢ajne velmi ,draha®)
11.3.2 Spajany zoznam blokov na disku

Prvé slovo v kazdom bloku je smernik na d'alsi blok (v adresari je uloZené ¢islo prvého bloku). Velmi
pomaly je ndhodny pristup, napr. pri posune na bajt 32768 = 32K treba prejst cez 32768 : 1022 = 33
blokov (1 blok ma 1K = 1024B, pri¢om 2B zabera smernik). TieZ moze byt problémom, Ze pocet dat v
bloku nie je mocnina 2 (mnohé programy ¢itaji a zapisuju v blokoch velkosti mocniny 2).

11.3.3 Spajany zoznam s indexom

Obe nevyhody predoglej metody st tu eliminované: smernik bude uloZeny v $pecialnej tabulke v pamati
(nie v bloku dat), napr. FAT v MS-DOSe.

0
1
2
3
A 102] . 100
bloky 102, 103, 110,325 .. 101 )
A 102 103 |
103 110 <
104 "
B 326] . 105
bloky 326, 498, 108,109“\ %8? ;
108 109 iy
: 109 EOF | 4
v 110 325 |7
H 111 |
324 .
. 325 EOF [¥ |
& 326 498 |\
498 08 »/
499

Je tiez l'ahsi nahodny pristup: netreba pri prechddzani ,retaze blokov* pristupy na disk, lebo tabulka je
v paméti. V adresari sa udrzuje len ¢islo prvého bloku stiboru. Toto ¢islo slaZi ako smernik do tabulky,
kde v prislugnej polozke najdeme &islo dalgieho bloku stboru. To opét ur¢uje dalgiu polozku tabulky s
&islom d'alsicho bloku stboru, atd'.

Nevyhoda:

e Tabulka musi byt cela v paméiti. Ak je disk velky, je aj tabulka prili§ velka. (Napr., ak méa disk
500000 1K blokov, t.j. ~ 500M, tak ma 500000 poloziek minimélne 3-bajtovych (na rychlejsie
vyhl'adavanie st vhodnejsie 4 bajty). Tabulka teda zabera 1.5-2M.) Ak pritom tabulka nie je cela
v paméti, ale len jej ¢ast, bude opdt nahodny pristup drahy (kvoli ¢itaniu ¢asti tabulky do paméti).

11.3.4 i-node

Podstatou problému so smernikmi vo FAT je, Ze st ndhodne porozhadzované v jednej tabulke. Poten-
cidlne teda treba celd tabulku FAT, aj ked je otvoreny len jeden sibor. Lep$ia metoda je udrziavat
smerniky pre jeden sibor spolu. Tak je to napr. v i-node (index node) v Unixe. i-node obsahuje aj dalsie
informécie o stibore:
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vlastnik

skupina

typ suboru

pristupové prava

cas pristupu k stiiboru
¢as modifikacie stiboru
¢as modifikacie i-nodu
velkost’

pocet linkov

prvych 10
blokov suboru

single indirect block

iy

NpE }256b10k0v

single indirect block T
single indirect block

double indirect block

2562 blokov

»

double indirect block . ——

|
i

»
»

s o | 2567 blokov

triple indirect block E: == pC

Koncept nepriamych blokovych adries bol vyuZity na zabezpecenie rychleho pristupu pre velké aj
malé stubory. Subory, ktoré maji dizku do 10 blokov, maju vietky diskové adresy uchované priamo
v i-node, ¢m je Tahké ich najst. Ak je sibor vicsi, tak vezmeme volny blok a don ulozime adresy
datovych blokov. Ak uvazujeme vel'kost bloku 1K a adresy 32-bitové, tak jednoduchy nepriamy blok moze
uchovavat 256 diskovych adries. Toto teda sta¢i na 10 + 256 = 266 blokov. Pre sibory nad 266 blokov
pouZijeme dvojity nepriamy smernik, ¢im mozno adresovat 266 + 2562 = 65802 blokov. Na eSte viicsie
sibory pouzijeme trojnasobné smernikovanie, takze celkovo médZze mat stibor maximélne 16 gigabajtov.
Pri zvéiésni diskového bloku na 2K bude kazdy smernikovy blok obsahovat 512 pointrov, takZe maximalna
vel'kost siiboru narastie az na 128G.

Silou tejto metody je, Ze nepriame smerniky sa pouziju az vtedy, ked je to naozaj potrebné. TieZ je
zaujimavé, 7e aj pre stubor maximalnej dizky potrebujeme nanajvys 3 pomocné pristupy na disk, aby
sme mohli urobit posun na l'ubovolny byte v siibore. Neberieme pritom do tivahy nac¢itanie i-node, ktoré
sa urobi pri otvoreni siboru a potom sa udrziava v paméti, az kym stbor nie je zasa zatvoreny.

11.4 Implementacia adresarov

Skor ako moZeme pracovat so siborom, musime ho otvorit. Pri otvarani siboru operaény systém pouzije
nazov stboru a pomocou neho uréi bloky, ktoré subor tvoria. Mapovanie mien siborov do i-node (alebo
ekvivalentu) nas vedie k otazke, ako je organizovany systém adresarov.

MozZnosti je viacero. Zatneme od najjednoduchsej, ktora pouZiva opera¢ny systém CP/M. V fiom
existuje len jeden adresar pre vSetky sibory, t.j. na to, aby sme nasli sibor, sta¢i prehladat jeden
adreséar. Polozky v adreséri obsahuju aj &isla (adresy) blokov (16), ktoré tvoria sibor.

I bait 8 bajtov 3 bajty Ibajt Ibajt Iba 16 bajtov
E
kod . | x o )
gy| meno suboru  [priponal e 2l Cisla blokov suboru
n =
(typ) t =7

32 bajtov

Ak stbor pouZiva viac blokov, ako sa zmesti do jednej polozky adresara, siboru sa vyhradia dalsie
polozky v adresari. Cast extent sa pouZiva prave v tejto situécii. Hovori, ktora polozka ide prvé, druh4,
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atd. Cast block count hovori, kol'ko z potencialnych 16 diskovych blokov je pouzitych. Posledny blok
stboru nemusi byt plny, takZe operaény systém nemé spodsob, ako urcit presnu vel'kost suboru v bytoch,
uchovéava informaciu o vel'kosti stiboru v blokoch.

Teraz si preberieme priklady systémov s hierarchickymi stromovymi Struktarami adresarov.

V MS-DOSe ma polozka v adreséri 32 bytov rozdelenych nasledovne:

8 bajtov 3 bajty 10 bajtov 2 bajty 2 bajty 2 bajty 4 bajty
t &islo
meno suboru |priponajt| rie/zer v o v an é|dum|¢as|pcho velkost
M bloku
32 bajtov

Okrem hlavného adresara, ktory ma pevna dlzku, ostatné adreséare st subory, a teda mozu obsahovat
Tubovolny poéet poloziek.

Struktara adresérov Unixu je velmi jednoducha. V System V ma kazda polozka 16 bytov (maximéalna
dlzka mena stiboru je 14 znakov):

i-node number file name

2B 14B

Od BSD 4.2 maja BSD systémy polozky premenlivej dizky a umoziuji nazov stboru az po 255 znakov:

i-node | dizka polozky | dizka nazvu | nazov stiboru (max 255 znakov)

2B 2B 1B max. 2558

Ked otvarame stibor, musime podla nazvu stiboru najst bloky, ktoré ho tvoria. Uvazujme napr. sibor
/Jusr/students/fero a opera¢ny systém Unix (algoritmus je v podstate ten isty pre v8etky hierarchické
systémy adresarov):

Najprv musime najst hlavng adresdr (root directory), ktorého adresa (i-node) je na pevnom mieste
disku. V hlavnom adresari najdeme polozku usr, ¢im uré¢ime i-node pre /usr. Z tohto i-node systém
najde adresar /usr a v fiom hlada polozku students. Ked ju najde, m4 i-node pre adresar /usr/students.
Z tohto i-node mozno najst adresar /usr/students a v fiom hladana polozku fero. i-node pre tento stbor
je nacitany do paméiti a uloZeny v nej az dovtedy, kym stubor nie je zatvoreny.

blok 132 blok 406
Root directory i-node 6 - adresar /usr i-node26 - adresar /usr/students

1. 6/ . 26
1] .. 1] . 6| ..
4| bin 19| stuff 64| jano
7| dev 30| users 92| ivan

14 | lib 132 51| others 406 60 | fero
9| etc 26 | students 81| peter
6| usr 45| sysadmin 17| eva
8| tmp

Relativne nazvy suborov hladame analogicky, avSak neza¢iname z hlavného, ale z aktuéalneho adre-
sara.

Kazdy adresar obsahuje polozky s nazvom ,.“ a ,..“ (aktudlny a rodicovsky adresar). Tieto nazvy
spolu s adresami zodpovedajucich i-nodes sa vytvoria pri vytvoreni adresara. Preto je moZné pouzit aj
nazvy ../others/prog.c: procedira najde v pracovnom adresari i-node pre rodicovsky adresar a hlada v
nom others. Na uchovanie tychto nazvov nie je treba Ziaden $peciadlny mechanizmus, st to jednoducho
ASCII retazce.
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11.5 Zdielané subory

Casto je potrebné, aby viacero pouzivatelov zdielalo ten isty sibor. Preto je vhodné, aby sa zdielany
subor akoby vyskytoval sucasne v rozli¢nych adresaroch (resp. aby jeden subor mohol mat viacero mien).
Strom stiborov potom vyzera nasledovne:

5

O

Spojenie medzi adresarom B a zdielanym siborom nazyvame link. Zdielanie suborov je uzitotné, aj
ked s implementéciou st problémy.

Blizsie si vysvetlime implementaciu linkov v OS UNIX. Link moZno implementovat dvoma spdsobmi:

e priamy link (hard link): v adresari sa vytvori polozka pre link obsahujaca meno (linku) a ¢islo
i-node zdielaného suboru (¢iZze "nové’ meno suboru sa odkazuje na ten isty i-node, ktory ma "po-
vodny"stbor).

e Link v adresari B bude realizovany ako §pecialny stbor (typu link), ktory obsahuje nézov zdielaného
suboru. To je symbolicky link (symbolic link).

Obe tieto metdédy maja svoje ,,vedlajsie ucinky“. V prvom pripade, ked sa B pripoji k zdielanému
stuboru, v i-node ostéva ako vlastnik uvedeny C. Vytvorenie linku nemeni vlastnika, iba sa v i-node zvysi
pocitadlo linkov, takZe systém vie, kolko poloZiek v adresaroch na subor ukazuje. Ak C vymaze stubor (len
on ako vlastnik to moze urobit), tak stojime pred problémom: Ak pri vymazani stiboru zarovei uvolnime
i-node, tak B bude ukazovat na nedefinovany i-node. Ked sa neskor tento i-node prideli nejakému stboru,
bude B ukazovat na zly subor. Systém totiZ vie z poéitadla linkov len to, Ze i-node (a teda stibor) sa
eSte pouziva. Ale nema moZnost najst vSetky subory, ktoré sa na tento i-node odkazuji, aby ich mohol
tiez vymazat. Smerniky spét z i-node do adresara sa nemo6zu uchovavat v i-node, lebo tychto smernikov
moze byt Tubovolne vela. Jediné, ¢o modze systém urobit je, Ze pri vymazani siboru v C nech4 i-node
nedotknuty s pocitadlom 1 (B ho pouZiva).

Teda sme v situacii, ze B je jediny pouZzivatel, ktory mé polozku adresara pre subor vlastneny C-

¢kom. Ak systém robi G¢tovanie diskového priestoru, tak stibor sa nadalej uctuje pouzivatelovi C, a to
az dovtedy, kym aj B nevymaZe subor. Tym sa zniZi poé&itadlo na 0 a stibor aj i-node uvolnime.

U symbolickych linkov tento problém nie je, pretoze iba skutoény vlastnik suboru mé aj smernik na
i-node. Ostatni maji iba nazov stuboru. Ked vlastnik vymaZe stbor, tento sa skuto¢ne zrusi. Ak v zapati
pouzijeme symbolicky link, tak déjde k chybe, lebo stbor uz neexistuje. Vymazanie symbolického linku
pritom nijako nevplyva na stubor.

Problém, ktory méame pri symbolickom linku, je réZia navyse. Najprv musime najst a nacitat stubor
obsahujtci meno stboru, z neho musime nacitat nézov zdielaného stiboru a znova analyzovat a prechadzat
po jednotlivych zlozkich, az kym nendjdeme i-node. To v8etko vyZzaduje nové a nové pristupy na disk.
Navyse, na symbolicky link potrebujeme i-node a dalsi diskovy blok na uloZenie nazvu stboru.

Dalsi problém s linkami je, Ze sibor ma dva alebo viac nézvov. Programy, ktoré Startujia v danom
adresari a hladaju v8etky stbory v tomto adresari a vSetkych jeho podadresaroch, najdu zdielané sibory
viackrat. To moze byt problém napr. pri archivovani siborov, lebo dostaneme viacnasobné kopie.

11.6 Vykonnost file systému

Pristup na disk je omnoho pomalsi ako do paméte. Vacgina systémov sa snaZi redukovat pocet potrebnych
pristupov na disk. NajcastejSie na to pouzivana technika je block cache alebo buffer cache. Je to sihrn
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blokov, ktoré logicky patria na disk, ale udrziavaji sa v paméti.

Na spravovanie cache moZzno pouzit rozne algoritmy, ale najvSeobecnejsi je: Prezriet pri poziadavke
na ¢itanie, ¢ pozadovany blok nie je v cache. Ak &no, poZiadavka na ¢itanie moze byt uspokojené bez
pristupu na disk. Ak blok nie je v cache, najprv sa nacita do cache a potom je skopirovany tam, kam
treba. Dalgie poziadavky na tento blok st uspokojené z cache.

Ak je cache pamét plna, treba nejaké bloky vymazat a zapisat na disk, ak boli modifikované. Tato
situédcia je podobna strankovaniu a je moZné pouzit vSetky spominané nahradzovacie algoritmy. KedZze
pocet odkazov do cache je relativne maly, je mozné udrzivat bloky v presnom LRU poradi v linkovanom
zozname. AvSak v tomto pripade je problém s moZznou havariou systému: ak je nejaky kriticky blok (napr.
blok i-nodu) ¢itany do cache a modifikovany, ale nie znovu zapisany na disk, havéaria by mohla nechat
systém v nekonzistentnom stave. Ak sa takyto blok zaradi na koniec zoznamu, bude trvat isty ¢as, kym
sa opit dostane dopredu a bude zapisany na disk. Naviac, niektoré bloky (napr. double indirect) sa
maélokedy pouzivaja dvakrat v kratkom ¢asovom intervale. Pouziva sa preto modifikovany LRU, ktory
berie do tvahy

e ¢i bude blok pravdepodobne potrebny ¢oskoro znovu

e (i je blok délezity pre konzistentnost systému

Také bloky, ktoré budi pravdepodobne znovu potrebné, idi do LRU radu na koniec a také, ktoré prav-
depodobne nebudu ¢oskoro potrebné, ida dopredu. Bloky dolezité pre konzistentnost file systému musia
byt zapisané na disk hned, ako boli modifikované, bez ohladu na to, na ktory koniec LRU listu boli
zaradené.

Aj napriek tejto aprave je nezelatelné, aby nejaké datové bloky boli v cache prili§ dlho pred zapisanim
(je mozné stratit data pri havarii systému, a to aj vtedy, ked pouZivatel dal prikaz na uloZenie). Na
rieSenie je mozné pouzit dva pristupy:

e Unix pouziva systémové volanie sync, ktoré sposobi zapis modifikovanych blokov na disk. Toto
volanie sa vykonéava kazdych 30 sekind (robi to v nekone¢nom cykle program update, ktory bezi
na pozadi od Startu systému).

e MS-DOS zapige modifikovany blok na disk hned po jeho zapisani do cache. Také cache sa nazyvaji
write-through cache. VyZaduje to viac V/V operacii.



Kapitola 12

Sprava periférii

Cast operacného systému zabezpecujica ovladanie periférnych zariadeni, sa nazyva sprdva periférii. Jej
zakladné funkcie su:

e sledovanie stavu vSetkych zariadeni - pomocou datovej struktary riadiaci blok jednotky (Unit Con-
trol Block, UCB)

e rozhodovanie o pridelovani periférnych zariadeni
e pridelenie periférneho zariadenia procesu

e uvolhovanie pridelenych periférnych zariadeni

Modul, ktory realizuje funkciu sledovania stavu periférnych zariadeni sa nazyva V/V dispecer. Rozhodo-
vanie, kedy bude V/V zariadenie pridelené 7iadajacemu procesu realizuje V/V plinovaé. Uréuje, ktora
poZiadavka bude spracovana najskor, v pripade, Ze na V/V zariadenie ¢aka viac V/V poZiadaviek. Po-
uZiva na to rozne stratégie, napr. moze pridelit V/V poziadavkam zariadenia podla priorit prislusnych
procesov.

12.1 Klasifikacia periférnych zariadeni
Periférne zariadenia moézeme rozdelit na dve hlavné skupiny:
e V/V zariadenia: Zabezpecuju styk poditaca s okolitym prostredim.

— Vstupné zariadenia: Zvycajne st to snimace diernych stitkov, pasky, terminaly, skenery, mézu
to byt aj pristroje (radary, teplomery).
— Vystupné zariadenia: Zvyc¢ajne tlaciareni, terminél, dierova¢ diernych Stitkov.

e Vonkajsia pamét: Zariadenie na uchovavanie informacii.
Existuju dva typy:

— Pamite so sekvenénym pristupom (sequential access): Informéacie st ukladané aj ¢itané v
sekven¢nom poradi. Pristup k polozke vyzaduje ,linearne* hladanie. Prikladom je magneticka
paska.

— Paméte s priamym pristupom (direct access): Napr. magnetické bubny a magnetické disky.

Periférie mozeme delit aj podl'a prenesenej informécie na zdklade jedného prikazu na
e blokové zariadenia: Uchovavaju informaciu v blokoch, z ktorych kazdy ma svoju vlastnu adresu. Je

mozné &itat a zapisovat informécie po blokoch, napr. disk. M6zu byt blokovo adresovatelné (disk)
alebo neadresovatelné (magnetické pasky).

99
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e znakové zariadenia: Prenos informécie sa realizuje na zéklade toku znakov (bez umoZziiovania ne-
jakej blokovej struktury), napr. termindly, riadkové tlaciarne, snima¢ a dierova¢ diernej pasky,
network interface, my8 a pod. Tieto zariadenia nie st adresovatelné a neumoziuji operaciu vyhla-
dania (seek).

Niekedy moZe periférne zariadenie pracovat podla zadaného prikazu v blokovom alebo znakovom
rezime.

Tato klasifikicia nie je dokonala, niektoré zariadenia jej nevyhovujd, napr. hodiny nemaju adresova-
telné bloky ani negeneruju ¢i neakceptuju tok znakov, len vyvolavaji prerusenia v definovanych ¢asovych
intervaloch.

Podla techniky pridelovania rozdelujeme periférne zariadenia na:

e Pevne pridelované periférne zariadenia (dedicated): zariadenie je pridelené alohe po cela dobu jej
trvania. Je to vhodné pre ur¢ité typy V/V zariadeni, ako napr. snimace §titkov, tla¢iarne, ...

e Zdielané periférne zariadenia (shared): Ide o zariadenia pouZivané viacerymi procesmi (ako napr.
vagsina paméti s priamym pristupom). Treba riesit otazky riadenia: Ak dva procesy ziadaju ¢itanie
z toho istého disku, treba rozhodnit, ktorej poziadavke bude vyhovené ako prvej. Stratégie rozho-
dovania mozu byt zaloZené na stanoveni priorit alebo na snahe po ¢o najlepsej efektivite systému
a pod.

e Virtualne periférne zariadenia (virtual): Niektoré periférne zariadenia, ktoré treba pevne pridelit

(napr. tla¢iareil) moZno previest napr. pomocou techniky ,spooling® na zdielané periférne zaria-
denia.

12.2 Technické charakteristiky periférnych zariadeni

Periférie zvycajne pozostavaji z mechanickej a elektronickej Casti. Casto je ich mozné oddelit a umoznit
tak modularnejsi a v8eobecnejsi design. Elektronicky komponent sa nazyva riadiaca jednotka alebo radi¢
(device controller, adapter). Na mini- a mikropo¢ita¢och méa ¢asto podobu karty s plosnymi spojmi, ktora
sa vklad4 do pocitaca. Mechanicky komponent je zariadenie samotné.

Karta radica ma zvycajne konektor, do ktorého sa zapaja kabel vedici k prislusnému zariadeniu.
Mnoho radi¢ov moéze ovladat niekolko identickych periférnych zariadeni.

Na rozdiel medzi radiGom a zariadenim upozorhujeme preto, Ze operaény systém skoro vzdy mé
do ¢inenia s radiCom, nie so zariadenim. Takmer v8etky mikro a minipoé¢itace pouzivaju model jednej
zbernice na komunikaciu medzi CPU a radi¢mi.

% ;) Tladiareit

CPU Pamat’ Diskovy radi¢ Radi¢ tla¢iarne

‘ ‘ systémova
zbernica

Velké pocitace pouZivaju iny model, s viacerymi zbernicami a Specializovanymi V/V procesormi, na-
zyvanymi V/V-kandly. Tie vykonavaja ,kanélové“ programy, ktoré sluzia na prenos dat medzi V/V
zariadenim a operafnou pamétou a sa Specializované vyhradne na V/V-operacie.

Interface medzi radi¢om a zariadenim je ¢asto velmi nizkodroviiovy interface. Napr. disk moze byt
formatovany do 8 sektorov po 512 bajtov na stopu, avSak to, ¢o skuto¢ne prichadza z disku, je sériovy
tok bitov, za¢inajuci preambulou (preamble), potom 4096 bitov sektoru a napokon checksum alebo error-
correcting code (ECC). Preambula je vytvorena pri formatovani disku (obsahuje cylinder, ¢islo sektoru,
jeho vel'kost a podobné data). Ulohou radi¢a je premenit tok bitov na blok bajtov a vykonat opravu
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chyb, ak treba. Blok bajtov sa zvycajne uklad4 do buffera v radi¢i a aZ po prevereni checksum je blok
kopirovany do pamaéte.

Kazdy radi¢ ma niekol'ko registrov, ktoré sa pouzivaji na komunikaciu s CPU. U niektorych pocitadov
tieto registre st ¢astou normélneho adresového priestoru paméite (memory-mapped I/0), napr. PDP-11
mé rezervované adresy od 0160000 po 0177777. Iné pocitade (vratane IBM PC) pouZivaju Specialny
adresny priestor pre V/V, pricom kazdy radi¢ méa urc¢eni nejaku jeho cast.

Operalny systém vykonava V/V pomocou zapisania prikazov do registrov radicov, napr. radi¢ floppy
diskov IBM PC akceptuje 15 prikazov (ako read, write, seek, format, ...). Parametre prikazov sa tieZ
zapisuju do registrov radi¢ov. Ked bol prikaz prijaty, CPU opusti radi¢ a robi svoju pracu. Ked je prikaz
vykonany, radi¢ spdsobi prerusenie, aby CPU mohol prijat vysledok operacie a stav zariadenia ¢itanim
informécii z registrov radic¢ov.

Mnohé radi¢e, najmé pre blokové zariadenia, umoziuja priamy pristup do pamdte (Direct Memory
Access, DMA). Najprv si vysvetlime, ako prebieha ¢itanie bez pouZitia DMA: Najprv radi¢ ¢ita blok zo
zariadenia sériovo, bit po bite, az kym nie je cely blok vo vnitornom bufferi radica. Dalej vykon4 vypocet
checksumu, aby zistil, & sa pri ¢itani nevyskytli nejaké chyby. Potom sposobi prerusenie. Ked operacny
systém zacne bezat, moze ¢itat blok z buffera radi¢a po bajtoch alebo slovach v cykle.

Cyklus CPU na ¢itanie bajtov z radi¢a mifia vela ¢asu CPU. DMA bol zavedeny na to, aby oslobodil
CPU od tejto prace nizkej urovne. V tomto pripade CPU dava radi¢u okrem diskovej adresy bloku
aj pamétova adresu, kam ma byt blok uloZeny a pocet bajtov, ktory méa byt preneseny. Po tom, ako
radi¢ precita blok do svojho buffera a preveri checksum, kopiruje prvy bajt do hlavnej paméte na urcéent
adresu, inkremetuje DMA adresu a dekrementuje DMA pocitadlo bajtov. Tento proces sa opakuje, pokial
DMA pocitadlo nebude 0. Vtedy radi¢ sposobi preruSenie. Opera¢ny systém uz nemusi kopirovat blok
do pamaite.

Vznika otézka, preco radi¢ pouziva svoj buffer a nekopiruje bajty priamo do hlavnej paméte po tom,
ako ich ziska z disku. Dévodom je, Ze ked je zacaty diskovy prenos, bity prichadzaju z disku konStantnou
rychlostou bez ohladu na to, ¢i je radi¢ pripraveny alebo nie. Ak by sa radi¢ pokuasal priamo zapisat
data do paméte, musia ist cez systémovu zbernicu, ktord moze byt zamestnana inym prenosom a radic¢
bude musiet ¢akat. Ak pride z disku dalsie slovo pred tym, nez bolo predoslé ulozené do paméte, radic
ho bude musiet niekam uchovat. Ak je zbernica prili§ zatazené, moze radi¢ potrebovat mnozstvo slov na
uloZenie a na to bude treba mnozstvo administracie. Ak sa blok ulozi do vnitorného buffera, zbernica
nie je potrebna, az kym nezacne DMA.

Dvojkrokovy proces bufferingu vyznamne vplyva na ¢as vykonavania V/V. Kym st data prenasané
z radia do pamite, pod hlavu disku sa dostane dalsi sektor a do radi¢a prichadza novy tok bitov.
Jednoduché radi¢e nedokézu naraz vykonévat vstup aj vystup, a teda pocas prenosu dat do pamite by
sa stratila informacia z dalsiecho sektoru. Toto mozno riesit tak, Ze radi¢ bude schopny &itat len kazdy
druhy blok, takZe ¢itanie celej stopy bude pozadovat dve otacky.

Preskocenie bloku (prjp. viacerych) na to, aby mal radi¢ ¢as na prenos dat do pamite, sa nazyva
interleaving (prekladanie). Ked sa disk formatuje, bloky sa ¢isluja na zaklade ,,prekladacieho® faktora. To
umoziuje opera¢nému systému CGitat bloky iduce ¢islovanim za sebou s maximélnou moZnou rychlostou.

7
6

0

1

5
4

bez prekladania

2

7
3

0

4

6
2

s jednoduchym

1

prekladanim

5
2

0
3

7
4

6

s dvojitym
prekladanim



102 KAPITOLA 12. SPRAVA PERIFERII
12.2.1 Vyvoj V/V funkcii

S vyvojom poéitatovych systémov sa vyvijali ich jednotlivé komponenty. Toto je moZné pozorovat aj na
vyvoji V/V funkeii:

e Procesor priamo riadi periférne zariadenia.

e Je pridany radi¢, ale procesor pouziva programované V/V operécie bez preruseni (procesor zada
prikaz radi¢u a proces, ktory V/V operaciu ziadal, ¢inne ¢akd na jej dokoncenie). Procesor je
odtaZeny od znalosti $pecifickych detailov komunikécie so zariadenim.

e K predoslej konfigurécii st pridané prerusenia (procesor po zadani V/V prikazu radi¢u pokracuje
vo vykonavani a je preruSeny radifom, ked je operacia dokonéena). Nestraca sa Cas Cakanim na
dokonéenie V/V operécie a zvysi sa tym vykonnost procesora.

e Radicu je pridany priamy pristup do paméate (DMA).

e Radi¢ je rozsireny a stava sa samostatnym procesorom so Specializovanou mnozinou instrukcii pre
V/V. Takyto radi¢ sa ¢asto nazyva V/V kandl. CPU d4 prikaz V/V kanalu, aby vykonal V/V
program v hlavnej paméti. V/V kandl ¢ita a vykonava inStrukcie bez zasahu CPU. Cize procesor
moze zadat sekvenciu V/V aktivit a byt preruSeny az po jej dokonceni.

e V/V kanal mé aj vlastnu lokdlnu pamit a vlastne sa stava samostatnym podcitacom. Oznacuje
sa ako V/V procesor. Pomocou takejto architektiry je mozné riadit velké mnoZzstvo periférnych
zariadeni s minimalnym zasahom procesora. Zvycajne sa toto pouziva na riadenie komunikacie s
interaktivnymi terminalmi.

12.3 V/V sofware

12.3.1 Ciele V/V softwaru

Pri navrhu V/V softwaru su najdolezitejsie dva ciele: vgkonnost (produktivita) a vSeobecnost.

Viagsina V/V zariadeni je v porovnani s hlavnou paméitou a procesorom extrémne pomala. Jeden
spOsob na odstranenie tohto problému je multiprogramovanie, ¢ize kym nejaké procesy ¢akaja na do-
kon¢enie V/V operaci, vykonava sa iny proces. AvSak aj pri velkych operaénych pamitiach dnesnych
pocitacov sa moze Casto stat, ze V/V nestadi aktivitdm procesora. Na nahratie d'algich pripravenych pro-
cesov do paméte, aby sa vyuZil ¢as procesora, je mozné pouZit swapovanie, ale to je tiez V/V operéacia.
TakZe hlavné tsilie pri navrhu V/V je néjst sposoby na zvySenie vykonnosti V/V. V d'alsom sa budeme
zaoberat zvySenim vykonnosti diskovych V/V operacii, lebo je to velmi dolezita otazka.

Dalsi dolezity ciel je vieobecnost. V zaujme jednoduchosti a zamedzenia chyb je Ziaduce, aby sa so
vetkymi zariadeniami narabalo jednotnym sposobom. To sa tyka aj sposobu, akym procesy vidia V/V
zariadenia aj sposobu, akym operany systém riadi V/V zariadenia a operacie. Vzhladom na rozli¢nost
zariadent, je v praxi tazké dosiahnut skuto¢ni vieobecnost. Co sa vsak da urobit, je pouzit hierarchicky,
modularny pristup k navrhu V/V funkcii. Tento pristup skryje vacSinu detailov V/V zariadeni v niz-
koarovihovych rutinach, takze procesy a vyssie vrstvy opera¢ného systému vidia zariadenie v terminoch
vSeobecnych funkcii, ako read, write, open, close, lock, unlock.

Dolezitym problémom je oSetrenie chyb. Vo vSobecnosti, chyby maju byt ¢o najviac oSetrené hardwa-
rom. Ak radi¢ objavi chybu pri ¢itani, mal by sa ju snaZit opravit sam. Ak to nedokéze, tak sa o fu stara
device driver (napr. snazi sa preéitat blok znova).

Tieto principy (ciele) mozu byt dosiahnuté efektivnym spdsobom, ked strukturujeme V/V software
do 4 vrstiev:

1. interrupt handlers (spracovanie preruseni)

2. device drivers (ovladace zariadeni)

3. device independent I/0 software (V/V software nezavisly od zariadeni)
4. user level software (software na uzivatel'skej arovni)
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12.3.2 Interrupt handlers

Ked sa vyskytne preruSenie, prerusovacia procedura zabezpedi odblokovanie procesu ¢akajiceho na V/V
(up na semafore, signal na nejakej podmienke monitora, resp. vyslanie spravy blokovanému procesu).
Tym bude proces, ktory bol blokovany, pripraveny na vykonévanie.

12.3.3 Device drivers

Vsetok kod zévisly od zariadenia ide do ovlddacov zariadeni. Kazdy ovladac¢ riadi jeden typ zariadenia
alebo nanajvys triedu tzko suvisiacich zariadeni.

Ovladacee maju za tlohu prijimat poZiadavky od softwaru nezavislého od zariadenia a postarat sa o
ich vykonanie, t.j. prelozit poziadavku z abstraktnej formy do konkrétnych terminov (napr. pre ovladac
disku to znamené: na ktorom disku je pozadovany blok, preverit, ¢i motor zariadenia bezi, zistit, ¢i
rameno je na spravnom cylindri, ...) a rozhodnut, ktoré operacie radi¢a sa maja vykonat a v akom
poradi. Tieto operacie ovladac¢ zapiSe do registrov radi¢a. Potom moZe nastat jedna z dvoch situacii:

e Ovlada¢ musi ¢akat na to, kym radi¢ prent urobi nejaka pracu, t.j. zablokuje sa az do prichodu
preruSenia.
e Ovlada¢ sa nemusi zablokovat (napr. scrollovanie obrazovky)

Po ukondeni operacie ovlada¢ (zobudeny prerusenim alebo vobec nespiaci) musi zistit, ¢ nenastali chyby.
Ak nie, moze poslat data do device-independent softwaru a vratit stavovii informéciu o stave volajacemu
procesu. Ak su dalsie poziadavky cakajace na V/V, vyberie sa nejakd a vykona sa. Ak necaka Ziadna,
ovladac sa zablokuje a ¢aka na poziadavku.

12.3.4 Device-independent I/0 software

Vel'ka ¢ast V/V sofwaru je nezavisla na zariadeni. Zakladna funkcia tejto vrstvy je vykonavat V/V funkcie
spolo¢né pre v8etky zariadenia a poskytovat jednotny interface pre pouzivatelsky software. M4 na starosti
mapovanie symbolickych mien zariadeni do vlastnych zariadeni. (Napr. v Unixe meno zariadenia (ako
/dev/tty0) Specifikuje i-node pre Specialny stbor. Tento i-node obsahuje major device number, ktoré sa
pouziva na lokalizovanie prislusného ovladaca. Obsahuje tiez minor device number, ktoré sa odovzdéava
ako parameter ovladaca na Specifikovanie jednotky, ktora ma byt ¢itana alebo zapisovana.) Dalej sa stara
o ochranu zariadenia pred neopravnenym pristupom, poskytuje jednotni velkost blokov vyS§im vrstvam
(disky mozu mat roznu velkost sektorov) napr. tak, %e zaobchadza s niekolkymi sektormi ako s jednym
logickym blokom. Zabezpetuje tieZ buffering, stard sa o pridelovanie pevne pridelitelnych zariadeni a
oSetrovanie chyb, ktoré nevie oSetrit ovlada¢. Do tejto vrstvy patri aj algoritmus na zistenie volnych
blokov na disku pre pridelenie stiboru.

12.3.5 User level software

Hoci vécsina V/V software je vnutri operaného systému, malé ast je v kniZzniciach spojenych s pouZi-
vatel'skymi programami alebo st to celé programy beZiace mimo kernelu (napr. formatovanie vstupu a
vystupu printf sa robi knizniénymi funkciami).

Nie v8etok V/V software pouzivatelskej drovne st knizni¢né procediry. Dalsou dolezitou kategoériou
je spooling system. (Napr. pre tla¢: V systéme je Specidlny proces — daemon a $peciilny adresar —
spooling directory. Ak proces chce tlac¢it, najprv generuje cely vystup a uloZi tento stibor do spooling
adresara. Daemon je jediny proces, ktory moZe pouZivat §pecidlny sibor tlaciarne, aby vytlacil sibory z
adresara.) Spooling sa pouZiva napr. aj pri presune suborov cez siet vyuzitim network daemona a network
spooling directory.

12.4 Disky

Cas na ¢ftanie alebo zapis bloku na disk je uréeny tromi faktormi:
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e scek time (Cas presunu hlavy na prislusny cylinder)
e rotational delay (Cas posunu sektoru pod hlavu)
e transfer time (Cas prenosu)

Pre vac¢sinu diskov je dominantny seek time, takZe jeho redukovanie moze vyznamne zlepsit vykonnost
systému.

Poziadavky na pracu s diskom sa zaraduju do radu poZiadaviek. Ak sa spracovavaja v poradi, v akom
prisli, t.j. stratégiou FCFS (First Come First Served), hladanie na disku je ndhodné, a tak dostavame
dlhé casy. Aby sa ¢as hladania minimalizoval, treba planovat pracu s diskom. Treba teda urobit analyzu a
preorganizovanie poziadaviek tak, aby bolo mozné najst najefektivnejsie poradie ich vykonavania. MoZzné
stratégie su:

e SSTF (Shortest Seek Time First): Prva sa bude vykonéavat poziadavka, pre ktort treba minimalny
pohyb ramena s ¢itaco-zapisovacimi hlavami. Problémom je, Ze pre ¢asto pouzivany disk sa moze
stat, Ze rameno bude v strede disku viéSinu ¢asu (malé presuny) a poziadavky na okrajoch buda
dlho cakat. Tym je zhorSeny ¢as odozvy.

e SCAN alebo tiez elevator (prehladévanie): Pohyb hlavy najprv v jednom smere, pri¢om sa vykonaja
vietky poziadavky, ktoré cestou ,stretne“. Potom sa hlava pohybuje v opa¢nom smere. Zmena
smeru teda nastane, ak v danom smere nie je viac poziadaviek alebo ak hlava narazi na okraj
disku. Na zistenie sti¢asného smeru pohybu hlavy sta¢i jeden bit.

e C-SCAN (cyklické prehladavanie): hlava sa hybe len jednym smerom. Ak uz v tomto smere nie st
ziadne poziadavky alebo narazi na okraj, ,,skokom‘ sa vrati na zaciatok.

e N-step SCAN: Hlava sa hybe dopredu a dozadu ako v metéde SCAN, ale obsluhuje len poziadavky,
ktoré cakali, ked zacal pohyb danym smerom. PoZiadavky, ktoré pridu potom, sa zaraduja, aby
boli optimélne vybavené pri ceste spét.

Vykonéavaciu dobu mozno podstatne zredukovat, ak je na periférnom zariadenim zaznamenanych niekol'ko
kopii kazdej vety, t.j. vo viacerych blokoch. Teda pri ¢itani je veta urcend niekolkymi alternativnymi
adresami a operéacie sa realizuji s ,najblizsim“ dostupnym blokom. Tomuto pristupu sa hovori folding.
Kolkokrat sa zvacsi pocet kopii, tolkokrat sa skrati efektivna vybavovacia doba tejto vety, ale préave
tol’kokrat sa zmensi kapacita pamate.

12.5 Hodiny (clocks)

Hodiny st zakladom pre ¢innost Tubovolného systému so zdielanim ¢asu z roznych dovodov: uréuju cas,
zabrafiuji procesu, aby si monopolizoval ¢as CPU a pod. Software hodin mé zvyc¢ajne formu ovladaca
zariadenia, hoci hodiny nie st blokové ani znakové zariadenie.

Software hodin
Hardware hodin len generuje v danych intervaloch prerusenia. Driver hodin méa zvycajne tieto funkcie:

e Udrzovat ¢as: Pri kazdom tiku sa zvAacsi pocitadlo, ktoré uréuje pocet tikov od 12 a.m. 1. 1. 1970.
St tu tri pristupy:

— Pocitadlo mé 64 bitov — to znacéi ndro¢né pripocitavanie.
— Tik je kazda sekundu, takze 32 bitov stac¢i na 136 rokov.
— Tiky moZno poéitat relativne od ¢asu bootovania — pocitadlo bude mat 32 bitov.

e Zabrafiuje procesu dlho bezat: vzdy pri naStartovani procesu sa inicializuje pocitadlo na Casové
kvantum v tikoch od hodin. Pri kazdom preruseni od hodin ovlada¢ hodin zniZi pocitadlo o 1. Ked
pocitadlo dosiahne nulu, ovladaé hodin vyvola planovaéd, aby spustil dalsi proces.

e Administrativa CPU: Treba procesom sledovat ¢as pouzivania CPU:

— pocitadlom sektund, ktoré je pri preruseni niekde odloZené a opét nahraté
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— udrziavanim smernika do tabulky procesov a zvySovanim priamo pocitadla v polozke pre
proces
e Ogetrovanie systémového volania alarm vyvolavaného pouzivatel'skymi procesmi.
e Poskytovanie timerov pre asti systému (watchdog timer), napr. ak sa 3 sekundy ni¢ nedeje s floppy
diskom, vypne sa motor.
e Monitorovanie a Statistiky.
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