
Dušan Bernát
bernat@fmph.uniba.sk

Operačné systémy / Procesy

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 2/49

Prehľad

● Program a proces.
● Používateľský kód, vzťah k okoliu (súbeh, komunikácia, V/V).
● Stavy procesu a plánovač úloh.
● Preempcia, časovač, prerušenia, prepínanie kontextu.
● Implementácia procesu.
● Prostriedky a ich limity.
● Čas systémový/používateľský, procesorový/reálny.
● Signály (ukončenie, pozastavenie a iné).
● Vznik procesu.
● Vlákna.

Čo je proces?

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 4/49

Čo je proces?

● Program – statický, napríklad vo vykonateľnom súbore na disku.
● Proces – program, ktorý sa práve vykonáva. Má stav.
● Z jedného programu môže byť spustených (bežať) viacero procesov.
● Proces je sekvenčný, má jeden tok riadenia.
● OS umožňuje vykonávanie viacerých (mnohých) procesov súčasne.

– Spravidla ich môže byť viac než počet procesorov.

● Procesy sú nezávislé
– Vykonávajú sa súbežne, bez ohľadu na ostatné.

– Neovplyvňujú sa. Sú izolované. Každý má vlastný pamäťový priestor.

● Môžu komunikovať, ale musia o to požiadať operačný systém.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 5/49

Multitasking

● Operačný systém vytvára pre každý proces dojem, že má procesor
(rozšírený stroj) len pre seba. Ide o formu virtualizácie.

● Procesy sa o dostupné fyzické procesory (jadrá) delia.
– Striedanie pri vykonávaní (time sharing) riadi OS.

– Napr. Keď proces spotrebuje pridelené časové kvantum, odloží sa a
začne sa vykonávať iný. Neskôr mu môže byť procesor opäť pridelený.

– Toto prepínanie je pre proces transparentné.

● Ako sa urobí prepnutie na iný proces (task switch)?
● Ako sa odoberie procesor bežiacemu procesu?
● Ako OS rozhodne, ktorý proces má byť ďalší?

Reprezentácia procesu

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 7/49

Reprezentácia procesu

● Aby bolo možné proces odložiť a neskôr pokračovať od prerušeného miesta, je
potrebné úplný stav procesu pri prerušení odložiť.

● PCB (Process Control Block) každého procesu obsahuje:
– Stav CPU (kontext): registre, všeobecné aj špeciálne (napr. Intel AX, BX, CX, DX, ale aj

IP, SP, BP, FLAGS, ...).

– Stav pamäti
● Inštrukcie (text), statické dáta (data), zásobník (stack), halda (heap), ...
● Každý proces má svoj logický adresový priestor mapovaný do inej časti fyzickej pamäte

→ uchovať treba (len) tabuľky stránok.

– Ostatné prostriedky: otvorené súbory, zámky, sieťové spojenia, signály, …

– Informácie o alokovaných a spotrebovaných prostriedkoch, ich limity pre proces, ...

– Plánovacie informácie: stav (beží, pripravený, blokovaný, ...), priorita, na čo čaká, …

– Identifikácia procesu: PID, rodič, UID (vlastník), CMD (program), ...

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 8/49

Tabuľka procesov

● Všetky potrebné informácie o procese uchováva jadro v jeho PCB.
● PCB všetkých procesov spolu tvoria tabuľku procesov.
● Napríklad, OS Linux:

– PCB je implementovaný štruktúrou task_struct.

– Tá obsahuje odkazy (pointre) na niektoré ďalšie tabuľky.
● Tabuľka otvorených súborov, rad čakajúcich signálov, tabuľka namapovaných oblastí v

adresovom priestore (mm_struct), ...

– Tabuľka procesov je dvojitý spájaný zoznam jednotlivých task_struct.
● Prístupné aj cez struct task_struct *pid_hash[pid]. Prehľadávajú sa len položky s

rovnakým hash-om.

– Pointer current ukazuje na task_struct práve vykonávaného procesu.

– Tabuľka procesov je v user-space dostupná cez (pseudo) súborový systém /proc, alebo
príkazy ps, top.

● Každý proces má v /proc podadresár so svojim PID.

Prepínanie procesov a preempcia

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 10/49

Prepnutie procesu (zjednodušene)

● Zmena aktuálne bežiaceho procesu na iný (= context switch).
● Zmena je potrebná ak proces nemôže bežať ďalej

– napr. z dôvodu čakania na dokončenie V/V operácie pri systémovom volaní, alebo

– spotrebuje pridelené časové kvantum.

● Môže nastať pri systémovom volaní (v podstate dobrovoľne), alebo pri prerušení. Súčasťou
obsluhy prerušenia je odloženie aktuálenho stavu CPU do príslušnej časti PCB.

● Jadro (konkrétne plánovač procesov) zvolí nový proces na vykonávanie.
● Nastaví do CPU stav z PCB nového procesu.

– Všetky registre ktoré môže proces používať.

– Nastaví aj register ukazujúci na začiatok tabuľky stránok (CR3), čím sa “prepne pamäť”.

● Po návrate z prerušenia beží už druhý proces.
– Napr. Intel, inštrukcia IRET obnoví zo zásobníka EIP, ESP, EFLAGS a zmení CPL.

● S prepnutím procesu je spojená istá réžia. Mali by trvať čo najkratšie a byť zriedkavé.

save context syscall restore context
 process A to PCB of A scheduler from PCB of B process B

INT

t

kernel IRET

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 11/49

Prerušenie vykonávajúceho procesu

● Aby OS poskytol zdanie súbežného behu procesov (pseudoparale-
lizmus), musí po uplynutí istej doby zabezpečiť prepnutie procesu.

● Doba počas ktorej môže proces bežať sa nazýva časové kvantum.
● Na zabezpečenie nedobrovoľného odobratia CPU (preempcia) sa

využíva hardvérové prerušenie od obvodu časovača.
– Ten má zvyčajne frekvenciu 100Hz (dá sa nastaviť).

● Obsluha prerušenia od časovača vyvoláva plánovač úloh OS.
– Ak práve bežiaci proces už spotreboval svoje kvantum, plánovač urobí

prepnutie procesu (context switch).

CPUInterrupt
controller

Timer INT

Disk
Keyboard
Network

100Hz

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 12/49

Systémy bez časovača (tickless)

● Periodické prerušenia sa využívajú aj na obsluhu časovačov nastavených procesmi.
Napríklad proces urobí volanie sleep().
– Obsluha prerušenia je však vyvolaná aj ak to nie je potrebné, teda ak doba žiadneho časovača

neuplynula.

– To zvyšuje réžiu a teda aj spotrebu.

● V nových systémoch je možné naprogramovať prerušenie flexibilne podľa toho, kedy
najbližšie má nastať takáto udalosť (on-demand interrupt).
– Periodické prerušenie teda nie je potrebné, pokiaľ v systéme nie sú bežiace procesy (respektíve

ak je ich počet 0 alebo 1).

– Ak nie je žiaden, procesor nebude zbytočne budený a môže zostať v stave s nižšou spotrebou, čo
je výhodné pri mobilných zariadeniach, ale aj virtualizovaných OS (obsluha je v každom).

– Ak je jeden, nie je potrebné sledovať jeho časové kvantum, procesor má stále pridelený, bez réžie
obsluhy zbytočných prerušení. Výhodné pre HPC aj RT.

● Kvôli aktualizovaniu štatistík pre plánovač sú prerušenia potrebné aspoň raz za sekundu, čo
však aj tak predstavuje značnú úsporu (oproti bežným 100Hz).

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 13/49

Stavy procesu

● New – novovytvorený proces, po
inicializácii bude pripravený.

● Terminated – ukončený proces.
● Ready – proces je pripravený sa

vykonávať, ale čaká kým mu OS
pridelí CPU.

● Blocked – proces sa nemôže
vykonávať, kým nenastane udalosť
na ktorú čaká (prídu dáta z disku).

● Running – plánovač pridelil procesu
CPU, vykonáva sa.

Ready Running

Blocked

New
Terminated

Scheduled

Descheduled

Exit

 I/O
Started I/O

Completed

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 14/49

Zmeny stavu

● Scheduled – pripravený proces bol
plánovačom vybraný na vykonávanie. Bude
mu pridelený CPU.

● Descheduled – proces spotreboval svoje
časové kvantum. Procesor mu bude
nedobrovoľne odobraný, hoci by sa mohol
vykonávať ďalej.

● I/O Started – proces sa nemôže ďalej
vykonávať. Potrebuje niečo, čo nemá.
Nepotrebuje CPU kým to nenastane.

● I/O Completed – nastala udalosť na ktorú
proces musel čakať.

● Blokovaný proces čaká na externú udalosť,
nezávislú od OS (nemusí to byť vždy I/O).

Ready Running

Blocked

New
Terminated

Scheduled

Descheduled

Exit

 I/O
Started I/O

Completed

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 15/49

Stavy procesu – prakticky

● Výstup príkazu ps, respektíve top
– R, pripravený (Ready/Runnable)

– S, prerušitelné čakanie (Sleep); I, ako S, ak trvá dlho (Idle)

– D, neprerušiteľné čakanie, neprerušiteľné signálmi,
● typicky čakanie v jadre na dokončenie V/V operácie (Disk)
● môže však zahŕňať aj množstvo iných stavov, napríklad čakanie na zámky.

– T, zastavený (sTopped, suspended)
● úmyselne, nedobrovoľne, používateľom, cez signál SIGSTOP,
● po zaslaní signálu SIGCONT môže pokračovať.

– Z, zombie, ukončený
● nezaberá žiadne prostriedky len položku v tabuľke stránok,
● rodič ešte neprečítal návratový kód (exit status).

Politika plánovača

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 17/49

Plánovanie procesov

● Úlohou plánovača (scheduler) je vybrať z radu pripravených
procesov ten, ktorý sa bude vykonávať.

● Môže tiež určiť veľkosť prideleného časového kvanta (time slice).
● Plánovanie je transparentné.
● Proces nikdy “nevie” kedy a na ako dlho mu OS pridelí CPU.
● Proces nemôže robiť žiadne predpoklady o svojom časovaní.

– Môže však využívať explicitnú synchronizáciu
● s inými procesmi alebo externými udalosťami,
● prostredníctvom prostriedkov OS.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 18/49

Ciele plánovania

● Spravodlivosť medzi procesmi.
● Efektívne využitie prostriedkov, minimalizovať čas čakania (ready).
● Nízky čas odozvy pre interaktívne úlohy.
● Čo najkratší celkový čas vykonávania úlohy.
● Zvýšiť priepustnosť, teda celkový počet úloh ukončených za nejaký čas.
● Napríklad:

– Proces by chcel aby všetok čas potrebný na dokončenie dostal naraz.
● Bolo by to efektívne, zmizla by réžia prepínania, znížila by sa (jeho) doba vykonania.
● Nebolo by to však spravodlivé, iné procesy by mali vysoký čas odozvy.
● Ak by to bola dlhá úloha, celková priepustnosť by bola nízka.

● Ciele si vzájomne odporujú. Navyše aj samotné plánovanie vnáša réžiu.
● Ciele sa môžu meniť podľa určenia systému: interaktívne, dávkové, RT, ...

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 19/49

Politiky plánovača – bez preempcie

● First Come First Serve (FCFS)
– Procesy dostanú pridelený procesor v poradí v akom prišli.

– Procesor majú až kým ho neuvolnia (neskončia, alebo sa nezablokujú).

– Rad pripravených je FIFO.

– Môže spôsobovať dlhé čakanie, ak sa objavujú dlhé úlohy.

● Shortest Job First (SJF)
– Plánovač musí vedieť, na ako dlho proces potrebuje CPU.

– Dá sa odhadnúť napríklad podľa poslednej doby behu.

– Dlhé úlohy môžu dlho čakať.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 20/49

Politiky plánovača

● Round Robin (RR)
– Každému pridelí rovnaké časové kvantum (10-100 ms) a striedajú sa v tom

istom poradí. Využíva preempciu. Po uplynutí kvanta je procesor odobraný.

– Ak je kvantum malé, dobrá odozva, ale je to neefektívne (veľká réžia).

– Ak je veľké, zvyšuje sa využitie, ale doba odozvy procesov je tiež veľká.
● Podobá sa na FCFS.

● Podľa priority
– Vyberie sa proces s najvyššou prioritou.

– Procesy s nízkou prioritou by sa však nemuseli dostať na rad → starvácia.

– Priority sa preto môžu dynamicky meniť. Napríklad nepriamo úmerne
spotrebovanému CPU času (CPU usage v PCB).

Prostriedky a zaťaženie

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 22/49

Zdroje použité procesom

● Operačný systém pre každý proces zaznamenáva objem prostriedkov ktoré používa.
● Napríklad, Linux getrusage()

– Celkový čas kedy mal pridelený procesor a vykonával svoj program (user CPU time).

– Celkový čas kedy vykonával systémové volania, teda kód jadra (system CPU time).

– Veľkosť obsadenej fyzickej pamäte (RSS – Resident Set Size).

– Veľkosť pamäte zdieľanej s inými procesmi (shared).

– Veľkosť alokovanej dátovej časti pamäte (data).

– Veľkosť alokovanej zásobníkovej časti pamäte (stack).

– Počet zachytených signálov.

– Počet dobrovoľných a nedobrovoľných prepnutí kontextu.

– Počet výpadkov stránok.

● Pre niektoré z týchto prostriedkov tiež existujú limity, ktoré proces nemôže prekročiť.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 23/49

Limity pre proces (Linux)

● Proces si môže nastaviť tzv. soft limit a to maximálne po tzv. hard limit.
● Hard limit si môže len znižovať.
● Administrátor (root) môže procesom nastavovať limity ľubovoľne.
● Limity sa dedia, respektíve zachovávajú, pri volaní fork() aj exec().
● Pre limity je možné použiť systémové volania getrlimit(),
setrlimit(), alebo v linuxe prlimit().

● Napríklad:
– Maximálna veľkosť data, stack, RSS, ale aj celého adresového priestoru.

– Maximálna veľkosť prideleného CPU času (v sekundách).

– Limity pre prioritu plánovania (nice).

– Maximálny počet otvorených súborov, maximálna veľkosť súboru.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 24/49

Zaťaženie procesorov

● Zaťaženie procesorov (CPU load averages)
– Priemerná dĺžka radu pripravených a vykonávaných procesov.

– Sleduje sa za posledných 1, 5 a 15 minút. Indikuje trendy.

● Hoci počet procesov bežne niekoľkonásobne (aj rádovo) prevyšuje počet CPU,
záťaž nemusí byť vysoká.
– Väčšina procesov často čaká, nepotrebuje CPU.

– Napríklad interaktívny shell čaká na vstup z terminálu. Systémové procesy (démony,
servery) čakajú na podnety alebo vstupy, ktoré majú spracovať.

● Ak je záťaž L vyššia než počet CPU n, systém je preťažený.
– V priemere (L – n) procesov čaká, hoci sú pripravené sa vykonávať (nie sú blokované).

● Príkazy na sledovanie záťaže
– uptime, top, vmstat, /proc/loadavg

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 25/49

Zaťaženie systému

● Zaťaženie procesorov
– Priemerná dĺžka radu pripravených a vykonávaných procesov.

● OS Linux využíva na určenie vyťaženia systému aj ďalšie údaje.
● Zaťaženie systému (system load averages)

– Započítavajú sa aj procesy v stave neprerušiteľného čakania (D).

– Tieto čakajú na dokončenie V/V operácie, na dáta z disku, alebo na
uvoľnenie zámku a pod.

– Takáto metrika odzrkadľuje aj požiadavky procesov na iné prostriedky,
nie len CPU.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 26/49

Spotrebovaný čas

● Operačný systém pre každý proces uchováva tiež informácie o čase.
● Kedy bol process spustený (koľko bolo hodín).

– Umožňuje určiť koľko času ubehlo od spustenia → reálny čas.

– V tom je však započítaný aj čas kedy sa proces nevykonával (bol blokovaný, alebo nemal
pridelený procesor).

● Ako dlho sa vykonával, ako dlho mu bol pridelený procesor pri vykonávaní jeho kódu
→ CPU user time.
– Na jednoprocesorovom systéme je vždy menší než reálny čas.

– Pokiaľ má proces viacero vlákien, ich časy sa spočítajú.

– Na viacprocesorovom systéme teda môže byť CPU čas väčší, než reálny čas ktorý ubehol
počas jeho vykonávania.

● Ako dlho tento proces vykonával kód jadra → CPU system time.
– V podstate ide o réžiu a chceme, aby bol čo najmenší.

Vytvorenie nového procesu

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 28/49

Vytvorenie procesu

● Nový proces môže byť vytvorený
– po zavedení nového programu zo súboru do pamäte,

– alebo len pre program, ktorý už v pamäti je.

● Prvý prístup využívajú napríklad systémy Windows
– CreateProcess(...), môže mať až 10 parametrov, medzi nimi sa zadáva aj názov vykonateľného

súboru a jeho argumenty.

– posix_spawn(), implementácia tohto mechanizmu v systémoch podľa štandardu POSIX.

● Druhý prístup tradične využívali unixové systémy
– systémové volanie fork() vytvorí kópiu volajúceho procesu,

– Jednoduché na použitie, žiadne parametre. Výhodné ak sa majú prichádzajúce požiadavky
spracovávať súbežne (napr. rôzne servery).

– Jednoduchá implementácia v jadre. Alokovať PCB, skopírovať mapovanie pamäte, nastaviť copy-
on-write bit pre stránky nového procesu. Vyžaduje však podporu od hardvéru (MMU).

– fork() nasledovaný exec() plní funkciu CrreateProcess(). Opačne je to zložitejšie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 29/49

Mechanizmus fork() + exec() + wait()

● Systémové volanie fork() vytvorí kópiu volajúceho procesu, až na pár
vínimiek, najmä PID.

● Volanie má v novovytvorenom procese návratovú hodnotu 0.
● Rodičovskému procesu vráti PID nového procesu, alebo -1 v prípade chyby.
● Býva bežné, že nový proces chce vykonávať iný program.
● Obraz (nového) procesu v pamäti môže byť nahradený obsahom

vykonateľného súboru z disku volaním exec().
● Proces (potomok) sa môže ukončiť volaním exit(), ktoré má ako

argument číselný návratový kód.
● Rodičovský proces typicky čaká na ukončenie potomka volaním wait(),

respektíve waitpid(), ktoré vráti návratový kód ukončeného procesu.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 30/49

Mechanizmus fork() + exec() + wait()

while (1) {

 write_prompt();

 read_command(command, argv);

 child_pid = fork();

 switch (child_pid) {

 case -1: perror(“fork”); break;

 case 0: /* child process */

 execve(command, argv);

 perror(“execve”); break;

 default: /* parent process */

 waitpid(child_pid, &status, 0);

 }

}

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 31/49

Hierarchia procesov (UNIX)

● Prvý proces v systéme (tradične init, PID 1) vytvorí jadro pri štarte systému.
● Všetky ďalšie procesy vznikajú volaním fork() ktoré rodičovi vráti PID

vytvoreného potomka.
● Proces sa ukončí (dobrovoľne) volaním exit(), ktorého argument je jeho

návratový kód (typicky 0 OK, inak kód chyby).
● Každý proces má svojho rodiča

– Rodič by mal čakať na ukončenie potomkov a prečítať návratový kód volaním
wait().

– Ak rodič skončí skôr ako potomok, jeho novým rodičom sa stane init.

● Proces môže byť ukončený iným procesom zaslaním signálu volaním kill().
● Systémy Windows neuchovávajú pre procesy informácie o rodičoch a

potomkoch.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 32/49

Zavedenie nového programu

int execve(const char *filename, char *const argv[],
char *const envp[])

● Systémové volanie:
– Nahradí obraz volajúceho procesu v pamäti obsahom súboru filename.

– Proces bude mať prístup k reťazcom argumentov argv a premenných
prostredia envp.

● Volanie môže vrátiť chybový kód ak niečo zlyhá.
● V prípade úspechu sa nevráti.

– Tok riadenia sa nevráti do pôvodného programu, lebo vykonávanie
pokračuje v novozavedenom programe, v jeho main().

● Text, statické dáta, zásobník aj ostatné časti budú prepísané.

Mapa pamäti

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 34/49

Mapa pamäti procesu

KERNEL

Stack
Local variables, procedure arguments

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

Memory Mappings
Mapped files, dynamic libraries, mmap()

(/lib/libc.so)

0x0

0x08048000

0xFFFFFFFF

1GB

brk

RLIMIT_STACK

Random gap

Random gap

Random gap

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 35/49

Mapa pamäti procesu

KERNEL

Stack
Local variables, procedure arguments

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

Memory Mappings
Mapped files, dynamic libraries, mmap()

(/lib/libc.so)

0x0

0x08048000

0xFFFFFFFF

1GB

Mapped by execve().

Initialised to zero by execve().

Never used, catch invalid pointer dereference.

Managed e.g. via library calls malloc()/free().

brk

RLIMIT_STACK

Mapped files and anonymous regions
via mmap() syscall, malloc() > 128kB,
Dynamic linker, ...

Random gap

Random gap

Random gap

Not accessible from user-space.
No load, store, jmp, call. Syscall only.

Free for heap and mmap.

Free for stack.

Arguments and environment placed by execve().
int main(int argc, char *argv[], char *envp[])

brk(), sbrk()

setrlimit()

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 36/49

Mapa pamäti procesu

$ cat /proc/self/maps

00110000-00111000 r-xp 00110000 00:00 0 [vdso]

00b62000-00b7d000 r-xp 00000000 fd:01 457870 /lib/ld-2.7.so

00b7d000-00b7e000 r--p 0001a000 fd:01 457870 /lib/ld-2.7.so

00b7e000-00b7f000 rw-p 0001b000 fd:01 457870 /lib/ld-2.7.so

00b81000-00cd4000 r-xp 00000000 fd:01 457871 /lib/libc-2.7.so

00cd4000-00cd6000 r--p 00153000 fd:01 457871 /lib/libc-2.7.so

00cd6000-00cd7000 rw-p 00155000 fd:01 457871 /lib/libc-2.7.so

00cd7000-00cda000 rw-p 00cd7000 00:00 0

08048000-0804d000 r-xp 00000000 fd:01 981130 /bin/cat

0804d000-0804e000 rw-p 00004000 fd:01 981130 /bin/cat

08629000-0864a000 rw-p 08629000 00:00 0 [heap]

b7cc9000-b7cca000 r--p 02a6d000 fd:01 1874928 /usr/lib/locale/locale-archive

b7cca000-b7cd0000 r--p 02a5a000 fd:01 1874928 /usr/lib/locale/locale-archive

b7cd0000-b7d07000 r--p 02a1e000 fd:01 1874928 /usr/lib/locale/locale-archive

b7d07000-b7d08000 r--p 021a8000 fd:01 1874928 /usr/lib/locale/locale-archive

b7d08000-b7d44000 r--p 0214f000 fd:01 1874928 /usr/lib/locale/locale-archive

b7d44000-b7f44000 r--p 00000000 fd:01 1874928 /usr/lib/locale/locale-archive

b7f44000-b7f46000 rw-p b7f44000 00:00 0

bfe4a000-bfe5f000 rw-p bffeb000 00:00 0 [stack]

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 37/49

Mapa pamäti procesu

$ cat /proc/self/maps

00400000-0040b000 r-xp 00000000 103:03 1610303 /usr/bin/cat

0060b000-0060c000 r--p 0000b000 103:03 1610303 /usr/bin/cat

0060c000-0060d000 rw-p 0000c000 103:03 1610303 /usr/bin/cat

014db000-014fc000 rw-p 00000000 00:00 0 [heap]

7fadc7432000-7fadcd975000 r--p 00000000 103:03 1641793 /usr/lib/locale/locale-archive

7fadcd975000-7fadcdb39000 r-xp 00000000 103:03 1578207 /usr/lib64/libc-2.17.so

7fadcdb39000-7fadcdd38000 ---p 001c4000 103:03 1578207 /usr/lib64/libc-2.17.so

7fadcdd38000-7fadcdd3c000 r--p 001c3000 103:03 1578207 /usr/lib64/libc-2.17.so

7fadcdd3c000-7fadcdd3e000 rw-p 001c7000 103:03 1578207 /usr/lib64/libc-2.17.so

7fadcdd3e000-7fadcdd43000 rw-p 00000000 00:00 0

7fadcdd43000-7fadcdd65000 r-xp 00000000 103:03 1608723 /usr/lib64/ld-2.17.so

7fadcdf3a000-7fadcdf3d000 rw-p 00000000 00:00 0

7fadcdf63000-7fadcdf64000 rw-p 00000000 00:00 0

7fadcdf64000-7fadcdf65000 r--p 00021000 103:03 1608723 /usr/lib64/ld-2.17.so

7fadcdf65000-7fadcdf66000 rw-p 00022000 103:03 1608723 /usr/lib64/ld-2.17.so

7fadcdf66000-7fadcdf67000 rw-p 00000000 00:00 0

7ffdf288d000-7ffdf28ae000 rw-p 00000000 00:00 0 [stack]

7ffdf2923000-7ffdf2926000 r--p 00000000 00:00 0 [vvar]

7ffdf2926000-7ffdf2927000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

Vlákna

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 39/49

Podpora vlákien

● Vlákno (thread) predstavuje samostatný tok riadenia vrámci procesu.
● Vlákna sa môžu vykonávať súbežne v jednom pamäťovom priestore.
● Vlákna môžu byť implementované rôznym spôsobom, napríklad aj bez podpory OS (user-

level threads).
– V tomto prípade OS plánuje len procesy a proces prepína medzi viacerými funkciami

(podobne ako jadro prepína vykonávanie procesov na jednom CPU).

– Toto prepínanie je omnoho rýchlejšie (réžia volania procedúry), než keby preplánovanie robilo
jadro (réžia systémového volania, vrátane prepnutia kontextu).

– Zablokovanie jedného vlákna však zablokuje všetky. Nedokáže využiť viac fyzických CPU.

● Vlákna s podporou OS plánuje jadro (kernel-level threads).
● Iné modely:

– JAVA threads, mapujú sa na vlákna OS.

– PERL (interpreter-based threads), každé vlákno má vlastný interpreter, čiže samostatný
proces. Nič sa automaticky nezdieľa.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 40/49

Vlákna a prostriedky procesu

● Všetky vlákna procesu zdieľajú väčšinu jeho prostriedkov, vrátane
pamäťového priestoru.
– Na rozdiel od procesov vlákna (patriace jednému procesu) môžu priamo

využívať spoločné premenné (treba však ošetriť synchronizáciu).

– Vidia tiež napríklad všetky otvorené súbory a podobne.

● Čo potrebuje OS na implementovanie vlákna?
● Čo by bolo treba pridať, aby OS mohol súbežne začať vykonávať ďalšiu

funkciu (toho istého procesu)?
– Registre (IP, SP, BP, …)

– Nový zásobník v adresovom priestore procesu.

– Plánovacie informácie (stav: ready, running, blocked)

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 41/49

Stav procesu

KERNEL

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

Memory Mappings
Mapped files, dynamic libraries, mmap()

(/lib/libc.so)

0x0

0x08048000

0xFFFFFFFF

1GB

brk

RLIMIT_STACK

Random gap

Random gap

Random gap
BP
SP
IP

mm_struct

cpu_context

pid, p_pptr, ...

task_struct (PCB)

AX, BX, CX, DX, ...

Stack
Local variables, procedure arguments

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 42/49

Stav a prostriedky vlákna

KERNEL

Stack (thread #1)

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

Memory Mappings
Mapped files, dynamic libraries, mmap()

(/lib/libc.so)

0x0

0x08048000

0xFFFFFFFF

1GB

brk

RLIMIT_STACK

Random gap

Random gap

Random gap
BP
SP
IP

mm_struct

thread_struct ->
cpu_context

pid, p_pptr, ...

task_struct (PCB)

AX, BX, CX, DX, ...

BP
SP
IP

thread_struct ->
cpu_context

AX, BX, CX, DX, ...

Stack (thread #2)

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 43/49

Implementácia vlákien v OS

● Linux implementuje vlákna ako procesy.
– Každý proces má v PCB zoznam vlákien (task_struct -> thread_struct, …)

– Každé vlákno má aj vlastnú task_struct, pričom štruktúry task_struct predstavujúce
vlákna jedného procesu viaceré položky zdieľajú (mm, files, signal, ...).

● Pri volaní clone() je možné špecifikovať čo všetko sa má kopírovať a čo sa bude
zdieľať.
– Pri vytváraní procesu fork() skopíruje všetky prostriedky rodiča (task_struct).

– Pri vytváraní vlákna volaním clone() sa prostriedky ktoré bude vlákno zdieľať kopírovať
nemusia.

● Vytvorenie vlákna, je teda menej náročné, než vytvorenie procesu.
● Podobne prepínanie kontextu (vlákien jedného procesu) je efektívnejšie.

– Stále je však omnoho pomalšie než user-level threads, kde to ide bez prepínania kontextu.

● Štandardná implementácia: POSIX threads, (pthreads.h, pthread_create(), ...).

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 44/49

Problémy pri implementácii vlákien

● Proces združuje prostriedky (pamäť, súbory, …), ktoré sú pre vlákna spoločné.
● Vlákno predstavuje tok riadenia – plánovač prideľuje procesor vláknam.
● Z toho vyplýva viacero problémov.

– Ktoré vlákno má obslúžiť signál doručený pre proces?
● Len jedno? Ktoré? Všetky?

– Ktoré vlákno urobí alokáciu (spoločnej) pamäte?

– Môže niektoré vlákno zatvoriť súbor ak ho iné ešte číta/zapisuje?

– Globálne premenné (napr. chybový kód po systémovom volaní, errno).

● Knižničné volania musia byť prispôsobené pre súbežné vykonávanie.
● Programy pre prostredie s vláknami musia byť písané s ohľadom na súbežné

vykonávanie v spoločnej pamäti – thread safety.
● Väčšina úloh sa dá vyriešiť bez použitia vlákien.

POSIX threads

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 46/49

Vytvorenie a ukončenie vlákna

● man pthread.h

● #include <pthread.h>

● Vytvorenie vlákna:
– int pthread_create(pthread_t *restrict thread, const pthread_attr_t

*restrict attr, void *(*start_routine)(void*), void *restrict arg);

– vytvorí nové vlákno, jeho identifikátor uloží do thread, začne vykonávať funkciu start_routine s
argumentom arg,

– vlastnosti vlákna pri vytvorení je možné ovplyvňovať cez attr, môže byť NULL (použijú sa “default”
hodnoty).

● Ukončenie vlákna:
– void pthread_exit(void *value_ptr) - ukončí volajúce vlákno,

– vlákno čakajúce na jeho ukončenie môže získať ukazovateľ value_ptr (návratová hodnota),

– implicitne sa zavolá po ukončení start_routine, riadenie sa nevráti volajúcemu vláknu.

– int pthread_cancel(pthread_t thread) - ukončenie (iného) bežiaceho vlákna,

– volajúce vlákno nečaká na ukončenie (to je asynchrónne).

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 47/49

Synchronizácia pri ukončení

● Čakanie na ukončenie iného vlákna:
– int pthread_join(pthread_t thread, void **value_ptr);

– volajúce vlákno sa zablokuje, až kým zadané vlákno thread neskončí
(nezavolá pthread_exit()),

– ak hodnota ukazovateľa value_ptr nie je NULL, nastaví sa na príslušnú
hodnotu končiaceho vlákna (návratová hodnota).

● Uvolnenie vlákna:
– int pthread_detach(pthread_t thread);

– spôsobí, že prostriedky pre uchovanie daného vlákna thread sa uvolnia hneď
po jeho ukončení a nie až po volaní pthread_join(),

– na každé vlákno by sa malo zavolať pthread_join alebo pthread_detach,

– vlákno je možné vytvoriť s atribútom detachstate.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 48/49

Synchronizácia vlákien

● Zámok (binárny semafor):
– pthread_mutex_init(), pthread_mutex_destroy(),

– pthread_mutex_lock(), pthread_mutex_unlock(),
pthread_mutex_trylock()

● argument: pthread_mutex_t *mutex
● Podmienené premenné:

– pthread_cond_init(), pthread_cond_destroy()

– pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex),

● pthread_cond_signal(),
● pthread_cond_broadcast()

To je zatiaľ všetko

