Operacné systemy / Procesy

Dusan Bernat
bernat@fmph.uniba.sk

Prehlad

* Program a proces.

 Pouzivatelsky kod, vztah k okoliu (sibeh, komunikacia, V/V).
« Stavy procesu a planovac uloh.

* Preempcia, Casovac, prerusenia, prepinanie kontextu.

« Implementacia procesu.

* Prostriedky a ich limity.

« Cas systémovy/pouzivatelsky, procesorovy/realny.
 Signaly (ukoncenie, pozastavenie a iné).

* Vznik procesu.

e Vlakna.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Co je proces?

Co je proces?

* Program - staticky, napriklad vo vykonatelnom sibore na disku.

* Proces - program, ktory sa prave vykonava. Ma stav.

e Zjedného programu moze byt spustenych (bezat) viacero procesov.

* Proces je sekvencny, ma jeden tok riadenia.

« 0OS umoznuje vykonavanie viacerych (mnohych) procesov sii¢asne.
- Spravidla ich moze byt viac nez pocet procesorov.

* Procesy su nezavislé
- Vykonavaju sa subezne, bez ohladu na ostatné.

- Neovplyvnuji sa. Su izolované. Kazdy ma vlastny pamatovy priestor.

Mozu komunikovat, ale musia o to poziadat operacny system.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

ROl
77

Multitasking

« Operacny systém vytvara pre kazdy proces dojem, ze ma procesor
(rozSireny stroj) len pre seba. Ide o formu virtualizacie.

* Procesy sa o dostupné fyzické procesory (jadra) delia.
- Striedanie pri vykonavani (time sharing) riadi OS.

- Napr. Ked proces spotrebuje pridelené casové kvantum, odlozi sa a
zacne sa vykonavat iny. Neskor mu moze byt procesor opat prideleny.

- Toto prepinanie je pre proces transparentné.
« Ako sa urobi prepnutie na iny proces (task switch)?
» Ako sa odoberie procesor beziacemu procesu?
« Ako OS rozhodne, ktory proces ma byt dalsi?

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Reprezentacia procesu

Reprezentacia procesu

« Aby bolo mozné proces odlozit a neskor pokracovat od preruseneho miesta, je
potrebneé Uplny stav procesu pri preruseni odlozit.

« PCB (Process Control Block) kazdého procesu obsahuje:

Stav CPU (kontext): registre, vSeobecné aj Specialne (napr. Intel AX, BX, CX, DX, ale aj
IP, SP, BP, FLAGS, ...).

Stav pamati

* InStrukcie (text), statické data (data), zasobnik (stack), halda (heap), ...

« Kazdy proces ma svoj logicky adresovy priestor mapovany do inej Casti fyzickej pamate
- uchovat treba (len) tabulky stranok.

Ostatné prostriedky: otvorene subory, zamky, sietove spojenia, signaly, ...
Informacie o alokovanych a spotrebovanych prostriedkoch, ich limity pre proces, ...
Planovacie informacie: stav (beZzi, pripraveny, blokovany, ...), priorita, na co caka, ...

Identifikacia procesu: PID, rodic, UID (vlastnik), CMD (program), ...

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

NERSIT4
w“g""" ”s @

\)e‘\

Tabulka procesov

VsSetky potrebné informacie o procese uchovava jadro v jeho PCB.

PCB vsetkych procesov spolu tvoria tabulku procesov.

Napriklad, OS Linux:
- PCB je implementovany Struktlrou task_struct.

- Ta obsahuje odkazy (pointre) na niektoré dalSie tabulky.
« Tabulka otvorenych suborov, rad ¢akajlcich signalov, tabulka namapovanych oblasti v

adresovom priestore (mm_struct), ...
- Tabulka procesov je dvojity spajany zoznam jednotlivych task_struct.
* Pristupné aj cez struct task_struct *pid_hash[pid]. Prehladavaju sa len polozky s

rovnakym hash-om.
~ Pointer current ukazuje na task_struct prave vykonavaného procesu.

- Tabulka procesov je v user-space dostupna cez (pseudo) siborovy systém /proc, alebo

prikazy ps, top.
« Kazdy proces mav /proc podadresar so svojim PID.

Operacné systémy / Procesy

DB, KI FMFI UK BA, 2021

Prepinanie procesov a preempcia

WERSITq
SN S
\iﬁwf ,' ”¢ch

Prepnutie procesu (zjednodusene)

Zmena aktualne beZiaceho procesu na iny (= context switch).

Zmena je potrebna ak proces nemoze bezat dalej
- napr. z dovodu cakania na dokoncenie V/V operacie pri systémovom volani, alebo

- spotrebuje pridelené casove kvantum.
MoZe nastat pri systémovom volani (v podstate dobrovolne), alebo pri preruseni. Sicastou
obsluhy prerusenia je odlozenie aktualenho stavu CPU do prislusnej casti PCB.

Jadro (konkrétne planovac procesov) zvoli novy proces na vykonavanie.

Nastavi do CPU stav z PCB novéeho procesu.

- VSetky registre ktoré moze proces pouzivat.
- Nastavi aj register ukazujici na zaciatok tabulky stranok (CR3), ¢im sa “prepne pamat”.

Po navrate z prerusenia bezi uz druhy proces.
- Napr. Intel, instrukcia IRET obnovi zo zasobnika EIP, ESP, EFLAGS a zmeni CPL.

S prepnutim procesu je spojena ista rézia. Mali by trvat o najkratSie a byt zriedkave.
. IRET

\ 4

®‘ ; kernel
h i save context | syscall i restore context i

. scheduler i from PCBofB A& process B ;
e

3§ 10 PCB of A

(

process A

Operacné systémy / Procesy

DB, KI FMFI UK BA, 2021

ROl
77

Prerusenie vykonavajuceho procesu

« Aby OS poskytol zdanie sibezného behu procesov (pseudoparale-
lizmus), musi po uplynuti istej doby zabezpecit prepnutie procesu.

* Doba pocas ktorej moze proces bezat sa nazyva casove kvantum.

* Na zabezpecenie nedobrovolného odobratia CPU (preempcia) sa
vyuziva hardverove prerusenie od obvodu casovaca.

- Ten ma zvycajne frekvenciu 100Hz (da sa nastavit).
* Obsluha prerusenia od casovaca vyvolava planovac uloh OS.

- Ak prave beziaci proces uz spotreboval svoje kvantum, planovac urobi
prepnutie procesu (context switch).

) 100Hz I LILILI
Timer - | INT
Interrupt CPU
Disk » controller
Keyboard -
Network _

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Systémy bez casovaca (tickless)

» Periodicke prerusenia sa vyuzivaju aj na obsluhu ¢asovacov nastavenych procesmi.
Napriklad proces urobi volanie sleep ().

- Obsluha prerusenia je vSak vyvolana aj ak to nie je potrebnég, teda ak doba Ziadneho casovaca
neuplynula.
- To zvysuje réziu a teda aj spotrebu.
* V novych systemoch je mozné naprogramovat prerusenie flexibilne podla toho, kedy
najblizSie ma nastat takato udalost (on-demand interrupt).

- Periodické prerusenie teda nie je potrebné, pokial v systéme nie sl beziace procesy (respektive
ak je ich pocet 0 alebo 1).

- Ak nie je Ziaden, procesor nebude zbytocne budeny a moZe zostat v stave s nizSou spotrebou, ¢o
je vwhodné pri mobilnych zariadeniach, ale aj virtualizovanych OS (obsluha je v kazdom).

- Ak je jeden, nie je potrebné sledovat jeho casové kvantum, procesor ma stale prideleny, bez rézie
obsluhy zbytocnych preruseni. Vyhodné pre HPC aj RT.

« Kvoli aktualizovaniu Statistik pre planovac s prerusenia potrebné aspon raz za sekundu, ¢o
vSak aj tak predstavuje znacna Gsporu (oproti beznym 100Hz).

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Stavy procesu

« New - novovytvoreny proces, po
inicializacii bude pripraveny.

Exit

Scheduled « Terminated - ukonceny proces.

* Ready - proces je pripraveny sa
vykonavat, ale €aka kym mu OS
prideli CPU.

* Blocked - proces sa nemoze
vykonavat, kym nenastane udalost
na ktor(caka (pridu data z disku).

1/0
Started

Descheduled
1/0

Completed

Blocked

* Running - planovac pridelil procesu
CPU, vykonava sa.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Zmeny stavu

Scheduled

Descheduled
1/0

Completed
Blocked

Exit

1/0
Started

Scheduled - pripraveny proces bol
planovacom vybrany na vykonavanie. Bude
mu prideleny CPU.

Descheduled - proces spotreboval svoje
casové kvantum. Procesor mu bude
nedobrovolne odobrany, hoci by sa mohol
vykonavat dalej.

I/0 Started - proces sa nemoze dalej
vykonavat. Potrebuje nieco, co nema.
Nepotrebuje CPU kym to nenastane.

I/0 Completed - nastala udalost na ktora
proces musel cakat.

Blokovany proces ¢aka na externu udalost,
nezavisll od OS (nemusi to byt vzdy 1/0).

DB, KI FMFI UK BA, 2021

Operacné systémy / Procesy

Stavy procesu - prakticky

« Vystup prikazu ps, respektive top
- R, pripraveny (Ready/Runnable)
- S, prerusitelné cakanie (Sleep); 1, ako S, ak trva dlho (Idle)
- D, neprerusitelné cakanie, neprerusitelné signalmi,
« typicky cakanie v jadre na dokoncenie V/V operacie (Disk)
« moze vSak zahrnat aj mnozstvo inych stavov, napriklad cakanie na zamky.
- T, zastaveny (sTopped, suspended)
« Uumyselne, nedobrovolne, pouzivatelom, cez signal SIGSTOP,
« po zaslani signalu SIGCONT mo6ze pokracovat.
- Z,zombie, ukonceny
* nezabera ziadne prostriedky len polozku v tabulke stranok,
* rodic eSte neprecital navratovy kod (exit status).

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Politika planovaca

ROl
77

Planovanie procesov

« Ulohou planovaca (scheduler) je vybrat z radu pripravenych
procesov ten, ktory sa bude vykonavat.

« Moze tiez urcit velkost prideleného casového kvanta (time slice).
« Planovanie je transparentné.
* Proces nikdy “nevie” kedy a na ako dlho mu OS prideli CPU.
* Proces nemoze robit ziadne predpoklady o svojom casovani.
- Moze vsak vyuzivat explicitni synchronizaciu
* sinymi procesmi alebo externymi udalostami,
« prostrednictvom prostriedkov OS.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Ciele planovania

« Spravodlivost medzi procesmi.
 Efektivne vyuZitie prostriedkov, minimalizovat cas cakania (ready).
* Nizky cas odozvy pre interaktivne Glohy.
« Co najkratsi celkovy ¢as vykonavania tlohy.
« Zvysit priepustnost, teda celkovy pocet Gloh ukoncenych za nejaky cas.
« Napriklad:
- Proces by chcel aby vSetok ¢as potrebny na dokoncenie dostal naraz.

 Bolo by to efektivne, zmizla by rézia prepinania, znizila by sa (jeho) doba vykonania.
* Nebolo by to vSak spravodlive, iné procesy by mali vysoky ¢as odozvy.
« Ak by to bola dlha Gloha, celkova priepustnost by bola nizka.

« Ciele si vzajomne odporuji. NavySe aj samotné planovanie vnasa réziu.

* Ciele sa mozu menit podla urcenia systému: interaktivne, davkove, RT, ...

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Politiky planovaca — bez preempcie

* First Come First Serve (FCFS)
- Procesy dostanu prideleny procesor v poradi v akom prisli.
- Procesor maju az kym ho neuvolnia (neskoncia, alebo sa nezablokuja).
- Rad pripravenych je FIFO.
- Moze sposobovat dlhé cakanie, ak sa objavuju dlhe Glohy.
« Shortest Job First (SJF)
- Planovac musi vediet, na ako dlho proces potrebuje CPU.
- Da sa odhadnut napriklad podla poslednej doby behu.

- Dlhe tulohy mozu dlho cakat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Politiky planovaca

« Round Robin (RR)

- Kazdému prideli rovnaké ¢asové kvantum (10-100 ms) a striedaji sa v tom
istom poradi. Vyuziva preempciu. Po uplynuti kvanta je procesor odobrany.

- Ak je kvantum malé, dobra odozva, ale je to neefektivne (velka rézia).
- Ak je velke, zvysuje sa vyuzitie, ale doba odozvy procesov je tiez velka.
* Podoba sa na FCFS.
* Podla priority
- Vyberie sa proces s najvyssou prioritou.
- Procesy s nizkou prioritou by sa vsak nemuseli dostat na rad - starvacia.

— Priority sa preto mozu dynamicky menit. Napriklad nepriamo Umerne
spotrebovanému CPU casu (CPU usage v PCB).

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Prostriedky a zatazenie

Zdroje pouzité procesom

« Operacny systém pre kazdy proces zaznamenava objem prostriedkov ktoré pouziva.

« Napriklad, Linux getrusage ()

Celkovy cas kedy mal prideleny procesor a vykonaval svoj program (user CPU time).
Celkovy cas kedy vykonaval systémoveé volania, teda kod jadra (system CPU time).
Velkost obsadenej fyzickej pamate (RSS - Resident Set Size).

Velkost pamate zdielanej s inymi procesmi (shared).

Velkost alokovanej datovej casti pamate (data).

Velkost alokovanej zasobnikovej ¢asti pamate (stack).

Pocet zachytenych signalov.

Pocet dobrovolnych a nedobrovolnych prepnuti kontextu.

Pocet vypadkov stranok.

* Pre niektoré z tychto prostriedkov tiez existuju limity, ktoré proces nemoze prekrocit.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Limity pre proces (Linux)

* Proces si moze nastavit tzv. soft limit a to maximalne po tzv. hard limit.
» Hard limit si moze len znizovat.

« Administrator (root) moéze procesom nastavovat limity lubovolne.

« Limity sa dedia, respektive zachovavaju, pri volani fork () aj exec ().

* Pre limity je mozné pouzit systémove volania getrlimit (),
setrlimit (), alebovlinuxe prlimit ().

* Napriklad:
- Maximalna velkost data, stack, RSS, ale aj celeho adresoveho priestoru.
- Maximalna velkost prideleného CPU casu (v sekundach).
- Limity pre prioritu planovania (nice).

- Maximalny pocet otvorenych siborov, maximalna velkost suboru.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Zatazenie procesorov

« ZataZenie procesorov (CPU load averages)
- Priemerna dlZka radu pripravenych a vykonavanych procesov.

- Sleduje sa za poslednych 1, 5 a 15 minit. Indikuje trendy.

 Hoci pocet procesov bezne niekolkonasobne (aj radovo) prevysuje pocet CPU,
zataz nemusi byt vysoka.

- Vacsina procesov Casto caka, nepotrebuje CPU.

- Napriklad interaktivny shell ¢aka na vstup z terminalu. Systémové procesy (démony,
servery) cakaji na podnety alebo vstupy, ktoré maji spracovat.

« Ak je zataz L vysSia nez pocet CPU n, systém je pretazeny.
- V priemere (L — n) procesov ¢aka, hoci st pripravené sa vykonavat (nie si blokovaneé).
« Prikazy na sledovanie zataze

- uptime, top, vimstat, /proc/loadavg

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Zatazenie systému

« Zatazenie procesorov

- Priemerna dizka radu pripravenych a vykonavanych procesov.
* OS Linux vyuziva na urcenie vytazenia systéemu aj dalSie Gdaje.
 Zatazenie systému (system load averages)

- Zapocitavajl sa aj procesy v stave neprerusitelného cakania (D).

- Tieto cakaju na dokoncenie V/V operacie, na data z disku, alebo na
uvolnenie zamku a pod.

Takato metrika odzrkadluje aj poziadavky procesov na iné prostriedky,
nie len CPU.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Spotrebovany cas

Operacny system pre kazdy proces uchovava tiez informacie o case.

Kedy bol process spusteny (kolko bolo hodin).
- Umoznuje urcit kolko ¢asu ubehlo od spustenia = realny cas.

- Vtom je vSak zapocitany aj ¢as kedy sa proces nevykonaval (bol blokovany, alebo nemal
prideleny procesor).

Ako dlho sa vykonaval, ako dlho mu bol prideleny procesor pri vykonavani jeho kodu
- CPU user time.

- Na jednoprocesorovom systéme je vzdy mensi nez realny cas.

- Pokial ma proces viacero vlakien, ich ¢asy sa spocitaju.

e v

pocas jeho vykonavania.

Ako dlho tento proces vykonaval kod jadra = CPU system time.

- V podstate ide o réziu a chceme, aby bol ¢o najmensi.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Vytvorenie noveho procesu

Vytvorenie procesu

* Novy proces moze byt vytvoreny

po zavedeni nového programu zo siboru do pamate,

alebo len pre program, ktory uz v pamati je.

* Prvy pristup vyuzivaju napriklad systemy Windows

CreateProcess(...), moze mat aZ 10 parametrov, medzi nimi sa zadava aj nazov vykonatelného
suboru a jeho argumenty.

posix_spawn(), implementacia tohto mechanizmu v systémoch podla Standardu POSIX.

« Druhy pristup tradi¢ne vyuZivali unixové systémy

systémove volanie fork() vytvori kopiu volajiceho procesu,

Jednoduché na pouzitie, ziadne parametre. Vyhodné ak sa maju prichadzajice poziadavky
spracovavat sibezne (napr. rozne servery).

Jednoducha implementacia v jadre. Alokovat PCB, skopirovat mapovanie pamate, nastavit copy-
on-write bit pre stranky nového procesu. VyZaduje vSak podporu od hardvéru (MMU).

fork() nasledovany exec() plni funkciu CrreateProcess(). Opacne je to zlozitejSie.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Mechanizmus fork() + exec() + wait()

[2)
A
g
e
3
Y

C
:

« Systéemove volanie fork () vytvori kopiu volajuceho procesu, az na par
vinimiek, najma PID.

« Volanie ma v novovytvorenom procese navratovu hodnotu O.
« Rodicovskemu procesu vrati PID noveho procesu, alebo -1 v pripade chyby.
« Byva bezné, ze novy proces chce vykonavat iny program.

e Obraz (nového) procesu v pamati mozZe byt nahradeny obsahom
vykonatelneho suboru z disku volanim exec ().

« Proces (potomok) sa moze ukon it volanim exit (), ktoré ma ako
argument Ciselny navratovy kod.

« Rodicovsky proces typicky ¢aka na ukoncenie potomka volanim wait (),
respektive waitpid (), ktoré vrati navratovy kod ukoncenéeho procesu.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Mechanizmus fork() + exec() + wait()

while (1) {
write_prompt () ;
read_command (command, argv);
child pid = fork();
switch (child_pid) {
case -1: perror(“fork”); break;
case 0: /* child process */
execve (command, argv);
perror (“execve”); break;
default: /* parent process */

waitpid(child pid, &status, 0);

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Hierarchia procesov (UNIX)

e Prvy proces v systéme (tradicne init, PID 1) vytvori jadro pri Starte systému.

« VsSetky dalSie procesy vznikaja volanim fork () ktoré rodicovi vrati PID
vytvoreneho potomka.

 Proces sa ukonci (dobrovolne) volanim exit (), ktorého argument je jeho
navratovy kod (typicky 0 OK, inak kod chyby).

« Kazdy proces ma svojho rodica

- Rodic¢ by mal ¢akat na ukoncenie potomkov a precitat navratovy kod volanim
walt ().

- Ak rodic skonci skor ako potomok, jeho novym rodiCom sa stane init.
* Proces moze byt ukonceny inym procesom zaslanim signalu volanim kil1 ().

« Systémy Windows neuchovavajl pre procesy informacie o rodicoch a
potomkoch.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Zavedenie nového programu

int execve (const char *filename, char *const argv]],
char *const envpl])

« Systémoveé volanie:
- Nahradi obraz volajiceho procesu v pamati obsahom siboru filename.

- Proces bude mat pristup k retazcom argumentov argv a premennych
prostredia envp.

« Volanie moze vratit chybovy kod ak nieco zlyha.
« V pripade uspechu sa nevrati.

- Tok riadenia sa nevrati do povodnéeho programu, lebo vykonavanie
pokracuje v novozavedenom programe, v jeho main ().

« Text, statické data, zasobnik aj ostatné casti budu prepisaneé.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Mapa pamati

Mapa pamati procesu

OXFFFFFFFF
1GB < KERNEL
Random gap
Stack
RLIMIT_STACK < Local variables, procedure arguments
Random gap
Memory Mappings
Mapped files, dynamic libraries, mmap()
(/lib/libc.so)
brk
Heap
Dynamic memory allocations
Random gap
BSS segment
Uninitialised static variables, set to zero
Data segment
Initialised static variables (/bin/sh)
Text segment
0x08048000 Program binary image (/bin/sh)
0x0

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Mapa pamati procesu

OXFFFFFFFF
1GB < KERNEL
Random gap
Stack

RLIMIT_STACK <

N

Local variables, procedure arguments

{

Not accessible from user-space.
No load, store, jmp, call. Syscall only.

Arguments and environment placed by execve().
int main(int argc, char *argv[], char *envpl[])

Free for stack. setrlimit() }

Random gap

Memory Mappings
Mapped files, dynamic libraries, mmap()
(/lib/libc.so)

Random gap

0x08048000
0x0

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

'

Mapped files and anonymous regions
via mmap() syscall, malloc() > 128kB,
Dynamic linker, ...

Free for heap and mmap. brk(), sbrk()

Managed e.g. via library calls malloc()/free().

Initialised to zero by execve().

Mapped by execve().

Never used, catch invalid pointer dereference.

DB, KI FMFI UK BA, 2021

Operacné systémy / Procesy

Mapa pamati procesu

$ cat /proc/self/maps

00110000-00111000 r—xp 00110000 00:00 O [vdso]
00b62000-00b7d000 r-xp 00000000 £d:01 457870 /1lib/1d-2.7.so
00b7d000-00b7e000 r——p 0001a000 £d:01 457870 /1ib/1d-2.7.so
00b7e000-00b7£000 rw—p 0001b000 £d:01 457870 /1lib/1d-2.7.so
00b81000-00cd4000 r—xp 00000000 £d:01 457871 /1ib/1libec-2.7.s0
00cd4000-00cd6000 r——p 00153000 £d:01 457871 /1lib/libec-2.7.s0
00cd6000-00cd7000 rw—p 00155000 £d:01 457871 /1ib/1libec-2.7.so0
00cd7000-00cda000 rw-p 00cd7000 00:00 O

08048000-0804d000 r—xp 00000000 £d:01 981130 /bin/cat
0804d000-0804e000 rw—p 00004000 £d:01 981130 /bin/cat
08629000-0864a000 rw—p 08629000 00:00 O [heap]

b7cc9000-b7ccal00 r—-p 02a6d000 £d:01 1874928 /usr/lib/locale/locale—archive
b7cca000-b7cd0000 r—-p 02a5a000 £d:01 1874928 /usr/lib/locale/locale—archive
b7cd0000-b7d07000 r—-p 02ale000 £d:01 1874928 /usr/lib/locale/locale-archive
b7d07000-b7d08000 r——p 021a8000 £d:01 1874928 /usr/lib/locale/locale—archive
b7d08000-b7d44000 r—-p 0214£f000 £d:01 1874928 /usr/lib/locale/locale—archive
b7d44000-b7£44000 r——p 00000000 £d:01 1874928 /usr/lib/locale/locale—archive
b7£44000-b7£46000 rw-p b7£44000 00:00 O

bfe4a000-b£fe5£000 rw-p bffeb000 00:00 O [stack]

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Mapa pamati procesu

$ cat /proc/self/maps

00400000-0040b000 r—xp 00000000 103:03 1610303
0060b000-0060c000 r——p 0000bLOOO 103:03 1610303
0060c000-0060d000 rw—p 0000c000 103:03 1610303
014db000-014£c000 rw—p 00000000 00:00 O

7£adc7432000-7£fadcd975000 r——p
7£adcd975000-7£fadcdb39000 r—xp
7£fadcdb39000-7fadcdd38000 ——-p
7fadcdd38000-7fadcdd3c000 r—-p
7fadecdd3c000-7fadcdd3e000 rw-p
7fadcdd3e000-7fadcdd43000 rw-p
7£fadcdd43000-7£fadecdd65000 r—-xp
7fadcd£3a000-7fadcd£3d000 rw-p
7£fadcdf£63000-7fadcdf£64000 rw-p
7fadcdf64000-7fadcd£65000 r——p
7fadcdf65000-7£fadcd£66000 rw-p
7fadcdf66000-7£fadcd£67000 rw-p
7££d£288d000-7££df28ae000 rw-p
T££d4£2923000-7££d£2926000 r—-p
T7££d£2926000-7££d£2927000 r-xp

fEfffEfFFF600000-£E££££FFFFF601000 r—xp 00000000 00:00 O

00000000
00000000
001c4000
001c3000
001c7000
00000000
00000000
00000000
00000000
00021000
00022000
00000000
00000000
00000000
00000000

103:03
103:03
103:03
103:03
103:03
00:00 O
103:03
00:00 O
00:00 O
103:03
103:03
00:00 O
00:00 O
00:00 O
00:00 O

1641793
1578207
1578207
1578207
1578207

1608723

1608723
1608723

/usr/bin/cat

/usr/bin/cat

/usr/bin/cat

[heap]
/usr/lib/locale/locale—archive
/usr/1ib64/libc-2.17.s0
/usr/1ib64/1libc-2.17.s0
/usr/1ib64/1ibc-2.17.s0
/usr/1ib64/1ibc-2.17.s0

/usr/1ib64/1d-2.17.so

/usr/1ib64/1d-2.17.so
/usr/1ib64/1d-2.17.so

[stack]
[vvar]
[vdso]
[vsyscall]

DB, KI FMFI UK BA, 2021

Operacné systémy / Procesy

Vlakna

Podpora vlakien

« Vlakno (thread) predstavuje samostatny tok riadenia vramci procesu.
» Vlakna sa mozu vykonavat sibezne v jednom pamatovom priestore.

 Vlakna mozu byt implementované roznym sposobom, napriklad aj bez podpory OS (user-
level threads).

- Vtomto pripade OS planuje len procesy a proces prepina medzi viacerymi funkciami
(podobne ako jadro prepina vykonavanie procesov na jednom CPU).

- Toto prepinanie je omnoho rychlejSie (rézia volania procediry), nez keby preplanovanie robilo
jadro (réZia systémového volania, vratane prepnutia kontextu).

- Zablokovanie jedného vlakna vsak zablokuje vsetky. Nedokaze vyuzit viac fyzickych CPU.
 Vlakna s podporou OS planuje jadro (kernel-level threads).
* Iné modely:

- JAVA threads, mapuju sa na vlakna OS.

- PERL (interpreter-based threads), kazdé vlakno ma vlastny interpreter, ¢ize samostatny
proces. Nic€ sa automaticky nezdiela.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

ROl
77

Vlakna a prostriedky procesu

« Vsetky vlakna procesu zdielaju vacsinu jeho prostriedkov, vratane
pamatového priestoru.

- Na rozdiel od procesov vlakna (patriace jednému procesu) moézu priamo
vyuzivat spolocné premenné (treba vsak oSetrit synchronizaciu).

- Vidia tiez napriklad vsetky otvoreneé sibory a podobne.
« Co potrebuje 0S na implementovanie vlakna?

« Co by bolo treba pridat, aby OS mohol siibeZne zacat vykonavat dalsiu
funkciu (toho istého procesu)?

- Registre (IP, SP, BP, ...)
- Novy zasobnik v adresovom priestore procesu.

- Planovacie informacie (stav: ready, running, blocked)

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Stav procesu

OXFFFFFFFF
1GB < KERNEL
Random gap
P
Stack

Local variables, procedure arguments

RLIMIT_STACK <

\N
Random gap

Memory Mappings
Mapped files, dynamic libraries, mmap()
(/lib/libc.so)

brk

Random gap

0x08048000

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

0x0

DB, KI FMFI UK BA, 2021

Operacné systémy / Procesy

task_struct (PCB)

cpu_context
BP
SP
- |IP
AX, BX, CX, DX, ...

pid, p_pptr, ...

mm_struct

Stav a prostriedky vlakna

OXFFFFFFFF
1GB < KERNEL
Random gap
Stack (thread #1)
RLIMIT_STACK <
Stack (thread #2)

\N
Random gap

brk

Random gap

0x08048000

Memory Mappings
Mapped files, dynamic libraries, mmap()
(/lib/libc.so)

Heap
Dynamic memory allocations

BSS segment
Uninitialised static variables, set to zero

Data segment
Initialised static variables (/bin/sh)

Text segment
Program binary image (/bin/sh)

0x0

DB, KI FMFI UK BA, 2021

Operacné systémy / Procesy

task_struct (PCB)

BP thread_struct ->
Sp cpu_context
A IP
AX, BX, CX, DX, ...
BP thread_struct ->
Sp cpu_context
AX, BX, CX, DX, ...
pid, p_pptr, ...
mm_struct

NERSIT4
w“g""" ”s @

\)e‘\

Implementacia vlakien v OS

* Linux implementuje vlakna ako procesy.
- Kazdy proces ma v PCB zoznam vlakien (task_struct -> thread_struct,..)
- Kazdé vlakno ma aj vlastnl task_struct, pricom Struktlry task_struct predstavujice

vlakna jedného procesu viaceré polozky zdielajd (mm, files, signal,...).
* Privolani clone () je mozné Specifikovat Co vSetko sa ma kopirovat a ¢o sa bude

zdielat.
- Pri vytvarani procesu fork () skopiruje vSetky prostriedky rodica (task_struct).
- Pri vyt\{érani vlakna volanim clone () sa prostriedky ktoré bude vlakno zdielat kopirovat
nemusia.
* Vytvorenie vlakna, je teda menej narocne, nez vytvorenie procesu.
e Podobne prepinanie kontextu (vlakien jedného procesu) je efektivnejsie.
- Stale je vSak omnoho pomalsSie nez user-level threads, kde to ide bez prepinania kontextu.

« Standardna implementacia: POSIX threads, (pthreads.h, pthread_create(), ...).

Operacné systémy / Procesy

DB, KI FMFI UK BA, 2021

Problemy pri implementacii vlakien

 Proces zdruzuje prostriedky (pamat, subory, ...), ktoré si pre vlakna spolocné.
« Vlakno predstavuje tok riadenia - planovac prideluje procesor vlaknam.
« Ztoho vyplyva viacero problémov.

- Ktoré vlakno ma obslizit signal doruceny pre proces?

* Len jedno? Ktoré? Vsetky?
Ktoré vlakno urobi alokaciu (spolo¢nej) pamate?

- Moze niektore vlakno zatvorit sibor ak ho iné este cita/zapisuje?
- Globalne premenné (napr. chybovy kod po systéemovom volani, errno).
« Kniznic¢ne volania musia byt prisposobené pre sibezné vykonavanie.

e Programy pre prostredie s vlaknami musia byt pisané s ohladom na siibezneé
vykonavanie v spolocnej pamati - thread safety.

« Vacsina uloh sa da vyriesit bez pouzitia vlakien.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

POSIX threads

Vytvorenie a ukoncenie vlakna

* man pthread.h
e #include <pthread.h>

* Vytvorenie vlakna:

- 1int pthread_create (pthread_t *restrict thread, const pthread_attr_t
*restrict attr, void * (*start_routine) (void*), void *restrict arqg);

- vytvori noveé vlakno, jeho identifikator uloZi do thread, zacne vykonavat funkciu start_routine s
argumentom arg,

- vlastnosti vlakna pri vytvoreni je mozné ovplyviovat cez attr, méze byt NULL (pouziji sa “default”
hodnoty).

* Ukoncenie vlakna:
- void pthread_exit (void *value_ptr) - ukoncivolajuce vlakno,

- vlakno ¢akajice na jeho ukoncenie moze ziskat ukazovatel value_ptr (navratova hodnota),

- implicitne sa zavola po ukonceni start_routine, riadenie sa nevrati volajucemu vlaknu.

- int pthread_cancel (pthread_t thread) - ukoncenie (iného) beziaceho vlakna,

- volajice vlakno necaka na ukoncenie (to je asynchronne).

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Synchronizacia pri ukonceni

« Cakanie na ukoncenie iného vlakna:
— 1nt pthread_join(pthread_t thread, void **value_ptr);

- volajuce vlakno sa zablokuje, az kym zadané vlakno thread neskonci
(nezavola pthread_exit ()),

- ak hodnota ukazovatela value_ptr nie je NULL, nastavi sa na prislusnu
hodnotu konciaceho vlakna (navratova hodnota).

« Uvolnenie vlakna:
- 1nt pthread_detach (pthread_t thread);

— sposobi, ze prostriedky pre uchovanie daného vlakna thread sa uvolnia hned
po jeho ukonceni a nie az po volani pthread_join (),

- na kazdé vlakno by sa malo zavolat pthread_join alebo pthread_detach,

- vlakno je mozneé vytvorit s atribitom detachstate.

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

Synchronizacia vlakien

Zamok (binarny semafor):
— pthread_mutex_1init (), pthread_mutex_destroy(),

— pthread_mutex_lock (), pthread_mutex_unlock (),
pthread_mutex_trylock ()

argument: pthread_mutex_t *mutex
Podmienené premenneé:

- pthread_cond_init (), pthread_cond_destroy ()

— pthread_cond_wait (pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex),

pthread_cond_signal (),
pthread_cond_broadcast ()

DB, KI FMFI UK BA, 2021 Operacné systémy / Procesy

To je zatial vSetko

