Operacne systéemy / Medziprocesova komunikacia

Dusan Bernat
bernat@fmph.uniba.sk

Prehlad

Subeh, vzajomné vylucovanie, podmienky korektnéeho riesenia.

* Programove riesenia.

 RiesSenia pre viac procesov (Peterson, ticket, bakery).

e Podpora hardvéru (cmpxchg), transkacna pamat.

« Obsadzujuce cakanie.

« VysSie synchronizacné prostriedky, semafory, ich realizacia a pouzitie.
* Futex.

« Kruhovy buffer, datovody.

« Zasielanie sprav.

« Problém obedujucich filozofov, producent/konzument.

, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Subeh

NERSIT4
w“g""" ”s @

\)e‘\

Interakcia procesov

* Procesy na seba vzajomne posobia z roznych dovodov
1) Nedmyselne. Procesy si neuvedomujl iné procesy.
- Procesy vykonavaju operacie bez ohladu na iné procesy.
- Satazia o spolocné prostriedky (nevedia vsak s kym).

— Pristup riadi operacny systém.

2) Nepriamo. Uvedomuju si iné procesy len sprostredkovane.
- Vedia o existencii nejakych inych procesov, ale nevedia ich priamo pomenovat (adresovat).

- Napriklad pouzivaji spoloény prostriedok. Citaji zo siboru, do ktorého musel nejaky iny
proces zapisovat.
3) Umyselne. Uvedomuji si existenciu inych procesov.

- Vedia sa vzajomne rozlisit (adresovat.)
- Spolupracuji, komunikuji na zabezpecenie spolocnej Glohy.

- Komunikacia je explicitne vyjadrena v programe.

Operacné systémy / Medziprocesova komunikacia

DB, KI FMFI UK BA, 2021

ROl
77

Komunikacia a spolocna pamat

« Komunikacia - vymena dat.
* Poziadavka na komunikaciu procesov pri rieseni uloh je cCasta.
- Napriklad vystup jedného procesu moze byt vstupom druhého.

* Procesy maju spravidla izolované adresoveé priestory, ale pre ucely
vzajomnej komunikacie OS poskytuje moznost vytvorit spolocné
ulozisko.

- Napriklad oblast zdielanej pamate (mozno aj v jadre).

- Vlakna zdielaju cely spolocny adresovy priestor procesu. Problémy
medziprocesovej komunikacie sa tak tykaju aj vlakien.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Synchronizacia vykonavania procesov

* Pri niektorych ulohach je potrebné dodrzat predpisané poradie
vykonavania procesov.

- Je to podobne ako pri komunikacii. Data je mozné precitat az potom, €o s
zapisane.

-V tomto pripade sa vSak data neprenasaju.

« Synchronizacia moze byt povazovana za Specialny pripad komunikacie,
ked sa neprenasaju ziadne data.

- Velkost prenasanych dat je nulova.

- Podstatné je, ze sa komunikuje, respektive kedy sa komunikuje, nie Ci sa
pritom nieco prenasa.

« Zabezpecenie synchronizacie vacsinou znamena, ze niektory z procesov
musi Cakat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Q&

* Procesy pristupujuce do spolocnej pamati sa mozu vykonavat
subezne, respektive v lubovolnom poradi.

* Proces moze byt operacnym systemom preplanovany v lubovolnom
okamihu.

- Prechod zo stavu running do ready, iniciovany prerusenim od
casovaca.

« Z pohladu procesora moze nastat prerusenie len medzi dvoma
instrukciami. Vykonanie instrukcie je atomicke.

« Priklad: inkrementacia spoloCnej premennej, a++

#CISC #RISC
inc a load rl, a -
V inc rl °

store a, rl

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

DB, KI FMFI UK BA, 2021

WATHEMA,,

[2)
A
g
e

3

Y

l1: 1load rl, a
2: inc rl
3: store a, ril

« Povodna hodnota premennej je a=7.
Ak dva procesy vykonaju inkrementaciu, ocakavany vysledok je a=9.

« Poradie vykonania:

- Zapis: Px - proces P vykonava riadok x; (a, b) - sekvencné vykonanie b po a.
- (P1,P2, P3,Q1,Q2,Q3) ~(Q1,Q2,Q3, P1,P2,P3) > a=9 ¢/
- (P1,Q1, P2, Q2, P3, Q3) ~ (P1, P2, Q1, P3,Q2,Q3) ~ ... > a=8
Pri sibeznom vykonani viacerych procesov si mozné vsetky kombinacie prekryti
(sekvencnych) vykonani jednotlivych procesov.

Situaciu ked viacero procesov pristupuje k spolocnej premennej a vysledok zavisi
od poradia vykonavania nazyvame subeh (race condition).

- Procesy sutazia (pretekaji) o pristup a vysledok zavisi od toho, kto bude prvy.

- MOze sposobovat nahodné spravanie, alebo rozne vysledky.

Operacné systémy / Medziprocesova komunikacia

Podmienka vzajomnéeho vylucovania

« Aby sme dosiahli o¢akavany vysledok, je potrebné zabezpecit aby k spolocnému
prostriedku (tu premennej) pristupoval v kazdom case najviac jeden z procesov.

 Takejto podmienke hovorime vzajomné vylucovanie (mutual exclusion).
- Pristup jedného vylucuje pristup ostatnych.
- Vzajomné vyluCovanie je typom synchronizacie.

« Usek programu kde sa vykonava pristup k spolonému prostriedku sa nazyva
kriticka oblast (critical section).

- Kriticka oblast sa mozZe rozkladat na viacerych miestach programu.
- Program moze obsahovat viacero (roznych) kritickych oblasti.

* Podmienka vzajomného vylucovania hovori, ze vykonavanie procesov sa nesmie
prekryvat v kritickej oblasti.

« Program v kritickej oblasti smie byt v kazdom case vykonavany najviac jednym
procesom.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Implementacia vzajomneho vylucovania

* Mozne riesenia vzajomného vylucovania mozme rozdelit na:
- Cisto programové
« Vieme ich napisat len s prostriedkami jazyka, napriklad C.
« Cykly, podmienky, pristup do (spolocnej) pamate.
« Bez zvlastnych systémovych volani.
- S podporou hardvéru
« Zakazanie preruseni.
. Specialne instrukcie.
* Transakcna pamat.

« Okrem implementacnej stranky su vSak dolezite aj dalSie vlastnosti
rieSenia, najma sposob cakania a jeho vplyv na zatazenie systemu.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Zakazanie preruseni

 Procesor umoznuje pomocou riadiacich instrukcii zakazat (aj povolit)
spracovanie prichadzajucich preruseni.

« Ak by sme zakazali prerusenia na zaciatku kritickej oblasti a na konci povolili,
vykonavanie by nemohlo byt prerusene.

- Ziaden iny proces by sa do kritickej oblasti nedostal.

Y cli
* Vyhody load rl, a
- Jednoducha implementacia. inc rl
store a, rl
« Nevyhody sti

- Neobsluhuji sa prerusenia od perifernych zariadeni.
-V pripade chyby pri zakazanych preruseniach sa “zasekne” cely systém.
-V chranenom rezime je dostupné len pre jadro (privilegované instrukcie).

« Pouziva sa v jadre, na kratke casy, pri implementacii vyssich mechanizmov.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Multiprocesorové systemy

« Pokial systéem obsahuje viac fyzickych CPU, zakazanie preruseni na jednom
z nich nestaci.

- Nie je to rieSenie. Nezaruci vzajomné vylucovanie.

» Podobne problém siubehu nevyriesi ani atomicka operacia typu inc
(dostupna na CISC).

- Sice nemoze nastat preplanovanie na tomto procesore, ale subezne moze
k spoloCnej premennej v pamati pristupovat proces vykonavany na inom
procesore.

 RieSenie: uzamknutie zbernice signalom lock (architektira Intel).
- lock inc a; lock je tzv. prefix instrukcie
- Pocas aktivneho signalu lock nemozu iné procesory pristupovat do pamati.

- Do ziadnej, teda ani mimo kritick(oblast, ¢im sa celkova vykonnost znizuje.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Programove riesenia

Vstupno-vystupny protokol

e Uvazujme dva procesy (bez ujmy na vSeobecnosti), ktoré sa
pokusaju subezne vstupit do kritickej oblasti UseResource ().

« Operacie zabezpecujucie vyriesenie vzajomneho vylucovania pri
pristupe vlozime do funkcii EnterCS () a LeaveCS ().

- EnterCsS () bude zrejme obsahovat cakanie.

— Funkcie vstupu a vystupu nemusia byt pre jednotlivée procesy
identicke. Spravidla vSak bud(analogické (respektive symetricke).

e Jlustracna situacia:

ProcessP () { ProcessQ() {
while (1) { while (1) {
EnterCS _P(); EnterCS_Q() ;
UseResource () ; UseResource () ;
LeaveCS P (); LeaveCS_Q() ;
} }
} }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

RieSenie 1: Spolocny zamok

« Spolocna premenna so semantikou zamku. Hodnota 1 indikuje, ze
kriticka oblast je obsadena, 0 volna.

* Pred vstupom sa pocka, kym bude kriticka oblast volna. Potom sa
nastavi zamok na 1 a proces smie vojst do kritickej oblasti.

* Privystupe sa premenna nastavi na 0, teda kriticka oblast je volna.
« Vstupno-vystupny protokol:

int lock = FALSE;
cakanie
A
e N
EnterCS() { while(lock); lock = TRUE,; }

LeaveCS () { lock = FALSE; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Spolocny zamok nefunguje

* Problém nastane, ak bude proces preplanovany [2] bezprostredne
potom ako vyhodnoti premennl lock ako 0 a ukonci cakanie,
a zaroven predtym, ako nastavi lock na 1.

* Nasledne aj druhy proces moze vyhodnotit 1ock ako 0 a vojst do
kritickej oblasti [3], kde mozZe byt tiez preplanovany [4].

* Prvy proces bude pokracovat od miesta kde bol preruseny [5] a teda
tiez moze vojst do kritickej oblasti a budd tam sii€Casne oba procesy!

* Nie je splnena ani zakladna podmienka pre vzajomné vylucovanie.

ProcessP () { ProcessQ() {
while (1) { ‘1 2:..«""'while(1) {

Jnterrupt while (lock); ¥V .. while (lock); |3
lock = TRUE; |[5% . 4 lock = TRUE;
UseResource () ; e UseResource () ;
lock = FALSE,; lock = FALSE,;

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Riesenie 2: Striedanie

« Spolocna premenna so semantikou urcujucou kto smie vojst.

* Proces pred vstupom do kritickej oblasti pocka, kym bude na rade.
* Privystupe nastavi, ze na rade je druhy proces.

* Procesy sa striedaju a teda nikdy nebudu v kritickej oblasti sicasne.

- Podmienka vzajomného vylucovanie je splnena; bez ohladu na to, kedy
nastane preplanovanie.

« Vstupno-vystupny protokol:

enum {P, Q} turn = P;

EnterCS_P

() while (turn != P); }
LeaveCS_P ()

turn = Q; }

{
{
EnterCS _Q() { while(turn != Q); }
LeaveCS _QO() { turn = P; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Striedanie je obmedzujuce

« Cov pripade ak hodnota spolocnej premennej indikuje, Ze na rade je proces P, hoci 0S
naplanoval na vykonavanie proces Q?

- Proces @ musi cakat, hoci kriticka oblast je volna.

« Co ak chce jeden z procesov pristupovat do kritickej oblasti dvakrat po sebe, respektive
castejsie, nez druhy proces?

- Proces bude zbytocne blokovany, hoci je kriticka oblast volna.
« Co ak jeden z procesov nebude chciet (dlho, alebo vébec) pristupovat do kritickej oblasti?
 Toto rieSenie je nevyhovujice.

- Splna zakladnd podmienku, ale je obmedzujice a neefektivne.

- Vstup do kritickej oblasti nesmie byt blokovany, ak je volna.

* Pre korektné riesenie problému vzajomného vylucovania budeme preto vyzadovat aj
splnenie dalSich podmienok (okrem zakladnej).

* Proces ktory sa vykonava mimo kritickej oblasti nesmie branit inym vstipit do nej.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

RieSenie 3: Zamok pre kazdy proces

« Kazdy proces bude mat svoju spoloc¢nu premennu, ktorou bude
vopred indikovat potrebu vstupit do kritickej oblasti.

* Proces pred vstupom do kritickej oblasti nastavi svoju premennu
a pocka, ak aj druhy proces chce vojst.

* Obe podmienky kladené na rieSenie budu splnené.
- Nie je mozne, aby do kritickej oblasti vstupili oba procesy.
- Proces mimo kritickej oblasti nebrani inému vstapit.

* Vstupno-vystupny protokol:
int inP = FALSE, inQ = FALSE;

EnterCS P() { inP
LeaveCS P() { inP

TRUE; while(inQ); }
FALSE; }

EnterCS_Q(inQ

) { TRUE; while (inP); }
LeaveCS _QO() { inQ

FALSE,; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Nekonecné cakanie

* Problém nastane, ak budlu oba procesy preplanovane [2, 4] po
nastaveni svojej premennej na 1[1, 3] (budd nastavené sucasne).

* Nasledne budl oba procesy cakat, pricom uz nie je ziadna moznost
aby ktorykolvek z procesov zrusil podmienku cakania druhemu.

 Tato situacia [5] sa nazyva uviaznutie (deadlocR).
* Rozhodnutie o vstupe musi prist v konecnom case.

- Korektneé riesenie nesmie umoznovat uviaznutie.

ProcessP () { ProcessQ() {
while (1) { 1 > P while (1) { 3
gnterupt inP = TRUE; V . S .. inQ = TRUE;V interrupt_
while (inQ) ; <g-wmmmmmp While (inP) ;
UseResource () ; > UseResource () ;
inP = FALSE; inQ = FALSE;

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Riesenie 4: Prerusenie cakania

« Kazdy proces bude mat svoju spoloc¢nu premennu, ktorou bude
vopred indikovat potrebu vstupit do kritickej oblasti.

* Pred vstupom proces nastavi svoju premenni na 1. Ak ma vsak
premennu nastavenu aj druhy proces, nastavi svoju naspat na 0

a pokus o vstup zopakuje.
« Vstupno-vystupny protokol:

int inP = FALSE, inQ = FALSE;

EnterCS_P () { EnterCS_QO() {
while (1) { while (1) {
inP = TRUE; inQ = TRUE;
if (inQ) inP = FALSE; if (inP) inQ = FALSE;
else break; else break;
} }
} }
LeaveCS_P() { inP = FALSE; } LeaveCS_Q() { inQ = FALSE; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Doba pristupu nie je ohranicena

 Ide o modifikaciu predchadzajiceho pristupu (3). Zaruc€uje splnenie troch podmienok.
- Nie je mozné, aby do kritickej oblasti vstlpili oba procesy.
~ Proces mimo kritickej oblasti nebrani inému vstupit.
- Nemoze nastat uviaznutie.
« Kym by boli oba procesy preplanované vzdy po nastaveni premennej, oba by cakali.
- Korektnost tohoto rieSenia je zaloZzené na predpoklade, Ze sa tak (dlhodobo) nestane.
- Nejde o uviaznutie, pretoze toto ¢akanie v principe moze skoncit.

- Situacia, ked sa dva procesy neustale uprednostnuju v dosledku coho ani jeden nevstupi do
kritickej oblasti, sa nazyva livelock, alebo tiez starvacia.

« Doba pristupu nie je ohranicena. Zavisi od planovaca a nie len od samotného riesenia.

- Teoreticky to moze byt aj nekonecne dlho. Prakticky je vSak pravdepodobnost uviaznutia
mala. Toto rieSenie sa prakticky vyuziva (napriklad CSMA-CD).

* Procesy nemozu pri vstupe do kritickej oblasti predpokladat ni¢ o vzajomnom casovani.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

O

ERSIT4q
Mmr;: (%)

N
)
-
g

Podmienky korektneho riesenia

« Na programove riesenie synchronizacneho problému vzajomneho
vylucovania procesov teda kladieme tieto 4 podmienky:
1) V kritickej oblasti sa smie vykonavat v kaZzdom case najviac jeden

proces.
2) Proces ktory sa vykonava mimo kritickej oblasti nesmie branit inym

vstipit do nej.
3) Rozhodnutie o vstupe musi prist v konecnom case.
4) Procesy nemozu pri vstupe do kritickej oblasti predpokladat nic

o vzajomnom casovani (planovani).

* Existuje také riesenie?

Operacné systémy / Medziprocesova komunikacia

DB, KI FMFI UK BA, 2021

ROl
77

Petersonovo riesenie (1981)

« Kombinuje predchadzajice pristupy (zamky, zapamatanie kto je na
rade, upozornenie na vstup).

« Splia vietky kladené podmienky bez ohladu na planovanie.
« Da sa rozsirit aj pre viac (N>2) procesov.

« Vstupno-vystupny protokol:

int inP = FALSE, inQ = FALSE;
enum {P, Q} last = P;

EnterCS_P () { EnterCS_0Q {

inP = TRUE; inQ = TRUE;

last = P; last = Q;

while (inQ && last == P); while (inP && last == Q);
} }
LeaveCS_P() { inP = FALSE; } LeaveCS_0QO() { inQ = FALSE,; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Podpora procesora

Specialne instrukcie

 Vacsina procesorov poskytuje instrukciu ktora umoznuje vykonat viacero operacii, vratane
pristupu do pamate, atomicky (symbolicky znaCime <<.... >>).

e Umoznuji jednoduchi implementaciu (nielen) vzajomného vylucovania pre N procesov.
* InStrukcie typu:

TSL (Test and Set Lock), TSL Rx, lock

e int TSL(int *lock) { << int tmp = *lock; lock = 1; return tmp; >> }
XCHG (Exchange), Intel: XCHG lock, Rx - ajs prefixom lock

* void XCHG(int a, int *lock) { << int tmp=a; a=*lock; *lock=tmp; >> }
CSW (Compare and Swap), Intel: CMPXCHG lock, Rx - ajs prefixom lock (a=EAX, b=Rx, c=lock)
int CSW(int *a, int b, int *c) { <<

if (*a==*c) { *c=b; return 0; }

else { *a=*c; return 1; } >> }
FA (Fetch and Add)

e int FA(int *var, int incr) { << int tmp=*var; *var+=incr; return tmp; >> }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Specialne instrukcie - vlastnosti

 Vstupno-vystupny protokol s pouzitim Test and Set:
int lock = FALSE;

EnterCS () { while (TS (&lock)); }

LeaveCS () { lock = FALSE; }

 RieSenia zalozeneé na Specialnych instrukciach:
- majd jednoduchi implementaciu, vyzaduji podporu hardvéru (st zavislé od architektary),
- nezarucuju spravodlivost,
- Cakanie je (velmi) neefektivne.

« Zamok implementovany pomocou ¢akania v tesnej slucke sa nazyva spinlock.

- Nizkourovnovy synchronizacny mechanizmus vyuzivajici opakovane cakanie na splnenie
podmienky.

 Vyuzivaju sa v multiprocesorovych systémoch.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Ticket algoritmus

« Algoritmus pre vzajomné vylucovanie N procesov inspirovany
systemom cakania na poradie.

- Jednoducha a efektivna implementacia.

« Vstupno-vystupny protokol:

int number = 1, next = 1;

EnterCS () {
<< turn = number++; >>
while (next != turn);

}

LeaveCS () { next++; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Ticket algoritmus - vlastnosti

ROl
77

* Ticket algoritmus

Obsahuje tiezZ kritickd oblast (inkrement - odtrhnutie listka, aby mal kazdy
jedinecné ¢islo). Vyzaduje Specialnu instrukciu (podpora HW), napriklad FA.

Zarucuje spravodlivost, pristup dodrziava poradie Ziadosti.

PreteCenie datoveho typu int nepredstavuje problém, pokial pocet cakajucich
nepresiahne jeho rozsah.

Problém moze nastat pri zlyhani procesu. Ostatni ¢akaju navzdy.

ZlozZitost O(1), nezavisi od poctu procesov.

 Bakery algoritmus (Lamport, 1973)

Vyuziva princip ticket algoritmu. Ale nepotrebuje Specialnu inStrukciu.

Ak dva procesy dostanu rovnake Cislo, rozhodne o poradi ich jedinecneé
identifikacné Cislo (napr. PID). ZloZitost O(N).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Bakery algoritmus

« Algoritmus pre vzajomné vylucovanie N procesov inspirovany
systemom cakania na poradie.

« Vstupno-vystupny protokol:

int number[N] = {0}, in[N] = {0};

EnterCS (int 1) {
in[i] = TRUE;
number[i] = 1 + max(number); // not atomic
in[i] = FALSE;
for (j=0; Jj<N; j++) {
while (in[j]);
while (number[j] !'=0 && (number[j]<number[i] ||
(number[j]==number[i] && j<i)));
}

LeaveCS (int i) { number|[i] = 0; }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Obsadzujuce cakanie

RSIT4
A s
T g“""« X

Obsadzujuce cakanie

\)@\15 R

 Vsetky predchadzajice rieSenia (Cisto programoveé, aj s pouzitim Specialnych instrukcii)
maju spolocny problem.

« Cakanie vtvare: while (lock) ;

« Cakanie v slucke, v ktorej sa neustale ¢ita hodnota z pamati a vyhodnocuje podmienka.

- Procesor je zaneprazdneny (aktivnym) cakanim, pricom nevykonava Ziadnu uzito€n(pracu -
obsadzujice cakanie (busy waiting).

- Procesorovy Cas je spotrebovany len na cakanie, teda aby sa nic¢ nerobilo.
- Pritom v systéme mozZu Cakat procesy pripravené na vykonanie (ready).

* Ak v systéme s prioritnym planovanim takto ¢aka proces s vysSou prioritou, proces
s nizsou prioritou nedostane prideleny procesor, aby mohol kriticku oblast opustit.

* |de o velmi neefektivny sposob cakania.

- Ak je vSak doba cakania kratka, moze to byt rychlejSie nez rieSenie s podporou OS zahriujuce
prepinanie kontextu.

- Navyse v jadre nemusia byt dostupné iné mechanizmy cakania, vyuzivajluce planovac.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

C
:

[2)
A
g
e

3

Y

Multiprocesorové systemy

« Neustale ¢itanie (spolocnej premennej) z pamati navyse zahlcuje
zbernicu.

- KedZe pre synchronizaciu je potrebné atomickeé vykonanie citania povodne;j
hodnoty a jej aktualizacie, Specialna instrukcia sa vykonava s prefixom lock.

« Ostatné procesory, ktore mozu vykonavat inQ, nesivisiacu ¢innost, maju
tiez obmedzeny pristup do pamati.

« Jeden proces vykonavajuci obsadzujuce ¢akanie tak ma vyrazne
degradujuci vplyv na vykonnost celého systemu.

- Ak je cakajucich procesov viacero, situacia bude este horsia.

- Obsadzujuce cakanie nie je dobre sSkalovatelné.

« Na druhej strane, v niektorych pripadoch to moze byt jediny dostupny
sposob synchronizacie v multiprocesorovych systémoch.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Semafory

Semafor (Dijkstra, 1968)

Semafor je vSeobecny synchronizacny mechanizmus.
- Nie len kriticka oblast, da sa pouzit aj na iné synchronizacne ulohy.

- Riesi vacsinu problémov a nedostatkov, pomerne [ahko sa pouziva.

Hlavna vyhoda:
- Odstranuje obsadzujice cakanie.
- Cakajuci proces bude v blokovanom stave (sleep/blocked).

- Nespotrebovava pri ¢akani procesorovy cas, neobmedzuje ostatnych.

Semafor je v podstate celé nezaporne cislo.

Jeho hodnotu je mozné menit len dvomi atomickymi operaciami.

- Jeho hodnotu nie je mozneé priamo zistit.

Realizacia si vyzaduje podporu OS.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Operacie so semaforom

Z programatorskeho hladiska ide o abstraktny datovy typ.
- Atribaty: celé nezaporné cislo, rad cakajlcich procesov.
- Metody: Init, Wait, Signal
* Init nastavi hodnotu semaforu na dané cislo.
« Operacie Wait a Signal najskor vyvhodnotia podmienku a potom vykonaju akciu.
« Wait, alebo Down, povodne P (Passeren)
- Ak je hodnota semaforu vacsia nez nula, dekrementuje ju.
- Ak je to nula, volajuci proces sa uspi a zaradi do radu ¢akajicich.
« Signal, alebo Up, povodne V (Vrijgeven)
- Ak je rad cakajucich neprazdny, vyberie sa jeden proces a zobudi sa.
- Inak hodnotu semaforu inkrementuje.

« Obe operacie st atomickeé. Ak sa operacia zacne vykonavat, Ziadny iny proces nema
pristup k semaforu kym operacia neskonci (alebo nezablokuje v pripade Wait).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Operacie so semaforom

struct semaphore {

int s;
queue q;
}
Init(int i) { s = i; initQueue(q); }
Wait () {
if (s > 0) s—;
if (s == 0) { enqueue(q, self); sleep(); }
}
Signal () {
if (!'isEmpty(q)) { P = dequeue(q); wakeup(P); }
else s++;
}

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Implementacia semaforu

« Operacie semaforu mozu byt volané viacerymi procesmi sucasne.
« Semafor obsahuje tiez kritick(l oblast.
- Manipulacia s hodnotou, manipulacia s radom.

* Pre jeho implementaciu teda potrebujeme nejaky synchronizacny mechanizmus
nizSej urovne.
- Napriklad Specialne inStrukcie (aj na multiprocesorovych systémoch).

- Ak semafory implementuje OS, m6ze pouzit zakazanie preruseni (na jednoprocesorovom
systéme).

* Procesy maju pristup cez prislusné systémové volania.

« Podstatné je, Ze kriticka oblast v semafore je mala (inkrementacia, dekrementacia,
operacie s pointrami) v porovnani s tym, ako dlho moze ¢akat proces na semafor.

« Potrebny je tiez mechanizmus OS umoznujuci uspat a zobudit proces.

- Napriklad signaly, alebo systémové volania ak st semafory implementované v jadre.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Invariant semaforu

« Operacia Wait moze volajici proces zablokovat (uspat). Operacia Signal
nikdy neblokuje.

« Hodnota semaforu musi zostat vzdy nezaporna.

- Ak by operacia Wait mala sposobit, ze klesne pod nulu, musi byt volajici
proces zablokovany, kym nebude inym procesom zavolana operacia Signal.

* Invariant semaforu: pWw — pS < I alebo pW < pS + I
- [, pocCiatocna hodnota semaforu, nastavena operaciou Init,
- pS, pocet vykonanych operacii Signal,
- pW, pocet dokoncenych operacii Wait.

* Hodnota semaforu teda urcuje, kolko operacii Wait sa vykona bez toho,
aby bol volajuci proces zablokovany.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

WATHEMA,,

[2)
A
g
e

3

Y

Typy semaforov

« VSeobecny semafor
- Hodnota semaforu (teoreticky) nie je zhora obmedzena.

- Definicia semaforu nepredpisuje, ktory proces ma byt z radu vybrany.
« Ak sa pouzije rad s pristupom FIFO, semafor bude spravodlivy.

« Binarny semafor
Moze nadobudnut len hodnotu 0 alebo 1.

-V podstate rovnaky, ako tzv. mutex.
* Nemusi sa vsak vyuzivat len na vzajomneé vylucovanie.
- Ak ma semafor hodnotu 1 a pride Signal:
« ignoruje sa, vrati sa chyba, ukonci sa program, ...
« Niektore implementacie poskytuju tiez operacie ako trywait, timedwait, ...

Operacné systémy / Medziprocesova komunikacia

DB, KI FMFI UK BA, 2021

Pouzitie semaforov

Vzajomne vylucovanie

« Ak bude pociatocna hodnota semaforu 1, len jeden proces bude
moct vykonat Wait bez blokovania, kym iny proces nezavola Signal.

« Vstupno-vystupny protokol:
- EnterCS() = Wait(), LeaveCS() = Signal().

semaphore mutex;
Init (mutex, 1);

EnterCS () { ProcessP () {
Wait (mutex) ; while (1) {
} Wait (mutex) ;
UseResource () ;
LeaveCS () { Signal (mutex);
Signal (mutex) ; }
} }

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

DalSie moZnosti vyuZitia

* Pristup k viacnasobnému prostriedku

- Ak je k dispozicii viacero instancii prostriedku (R), respektive ak R
procesov moze prostriedok vyuzivat sucasne, pociatocna hodnota
semaforu sa nastavi na R.

« Synchronizacia vykonavania procesov

- Proces caka na nejakd udalost alebo situaciu, ktora zavisi od iného
procesu.

- Pociatoc¢na hodnota semaforu sa nastavi na nulu.

- Cakajuci proces zavola Wait. Ked nastane potrebna situacia, druhy
proces zavola Signal, ¢im umozni prvému procesu pokracovat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Precedencny graf

* Precedencny graf (process flow graph) vyjadruje poradie vykonania
procesov.

- Orientovany acyklicky (multi) graf, hrany vyjadruji vykonanie procesu.

- Kazda cesta v grafe vyjadruje mozné vykonanie, pricom poradie hran
vyjadruje vzajomné poradie vykonania procesov.

- Procesy zodpovedajuce hranam vystupujicim z vrcholu sa mozu zacat
vykonavat az ked su vSetky procesy zodpovedajuce vstupujucim
hranam ukoncené.

* Precedencny graf reprezentuje relaciu ciastocneho usporiadania.

« Ak niektora dvojica procesov nie je v relacii znamena to, ze sa mozu

vykonat v lubovolnom vzajomnom poradi, respektive subezne.

. . p P1
Sekvencne Paralelne

REls Se S Sep P 3

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Priklad: Synchronizacia

* Napisat kostry programov pre nasledujice vykonanie procesov,
s pouzitim minimalneho poctu semaforov:

a) vSeobecnych, b) binarnych. ~ ‘

P4
s e

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Priklad: Synchronizacia

* Napisat kostry programov pre nasledujice vykonanie procesov,
s pouzitim minimalneho poctu semaforov:

a) vSeobecnych, b) binarnych.

P1() |
Workl () ;

Signal (sl);
Signal (sl);
}

P2 () {
Wait (sl);
Work2 () ;
Signal (s2);
}

5O

P3() {
Worka(; si=s2=s3=0;
Signal(s3); P5() {

} Wait (s3);

01 () ¢ Wait (s3);
Wait (s2) ; Work5 () ;
Work4 () ; }

Signal (s3);
}

DB, KI FMFI UK BA, 2021

Operacné systémy / Medziprocesova komunikacia

Buffer pevnej dlzky

« Buffer — prostriedok pre asynchronnu komunikaciu procesov. Vyrovnava rozne
rychlosti zapisu a Citania.

« MOze byt implementovany ako abstraktny datovy typ.
- Pamat, rad pevnej dizky typu FIFO + operacie Send a Receive
« Rad je spolocny. Operacie mozu byt volané subezne, roznymi procesmi.
- Obsahuju kritickd oblast.
- Co sa stane, ak chce proces zapisat a nie je volné miesto?
- Co sa stane, ak chce proces ¢itat, ale rad je prazdny?
* Pri implementacii je potrebna synchronizacia.
- Operacia Send sa moze bez blokovania vykonat tolkokrat, kolko je volného miesta.

- Operacia Receive sa moze bez blokovania vykonat tolkokrat, kolko je v rade
poloziek.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Implementacia buffera (semafory)

struct buffer {

semaphore full, empty, mutex;
queue q;

}

CreateBuffer (int N) {
Init (£full, O0);
Init (empty, N);
Init (mutex, 1);
initQueue (q, N);

}

Send (message msqg) { Receive (message *msg) {
Wait (empty) ; Wait (full);
Wait (mutex) ; Wait (mutex) ;
enqueue (q, msqg); *msg = dequeue (q) ;
Signal (mutex); Signal (mutex) ;
Signal (full); Signal (empty) ;

DB, KI FMFI UK BA, 2021

Operacné systémy / Medziprocesova komunikacia

ROl
77

Producent - konzument

« Implementacia komunikacie procesov pomocou radu pevnej diZky
riesi problém typu producent - konzument.

« Jeden proces data vytvara a zapisuje, druhy ich cita a spracovava.
- Producentov aj konzumentov moze byt aj viac.
« Efektivne znovupouzitie uvolneneho miesta - kruhovy buffer.

* OS typu Unix implementuju kruhovy buffer, pricom vlozenie a
odobranie dat je realizované siiborovymi operaciami (read/write).

- Datovod (pipe) slizi na komunikaciu dvoch procesov.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

« Priklad: Na stole je v kruhu 5 tanierov a 5 vidliciek. Za stolom sedi 5
filozofov, ktori striedavo premyslaju a jedia.

* Filozof potrebuje na jedenie vzdy dve vidlicky. Po premyslani, ked
vyhladne, pokusi sa vziat lavu a pravu vidlicku. Potom moze jest.

« Ked doje, obe vidlicky polozi spat na stol.

« Analogia: Mame 5 procesov ktore sutazia o obmedzené zdroje.

« Navrh 1: Filozof pocka na lavu vidlicku, potom na prava vidlicku.
- Problem: ...

« Navrh 2: Filozof pocka na lavi vidlicku, ak je prava obsadena, lavu
polozi a skusi znova.

- Problem: ...

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Problém obedujucich filozofov - riesenia

« Navrh 3: Jeden z filozofov moze brat vidlicky v opacnom poradi.

« Navrh 4: Nechat sitazit o vidlicky vzdy len 4.

* Navrh 5: Filozof moze jest len ak ani jeden jeho sused prave neje.

Test predstavuje kritickl oblast - pouzijeme mutex.
Spolocna premenna pre kazdého filozofa: stav (thinking, hungry, eating).

Pred zaCatim jedenia sa pocka na semafor ktory indikuje, ¢i si obe
vidlicky volné (ani jeden sused neje).

« Ak nie, hladny filozof caka.

« Kazdy kto skonci skontroluje, €i jeho susedia su hladni. A ak ano, €i aj ich
druhy sused je.

Ani toto rieSenie (Tanenbaum) nie je bez problémov.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Riesenie 4

semaphore chair = N-1;
semaphore fork[N] = {1};

Philosopher (int i) {

Wait (chair) ;
Wait (fork[i]);
Wait (fork[(i+1) $N]);

Signal (chair);
Signal (fork[i]);
Signal (fork[(i+1) %N]) ;

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Problem: Readers / Writers

« Kspoloénému prostriedku (pamati, alebo databaze) smie mat
pristup alebo jeden zapisujuci proces, alebo viacero citajucich.

- Pritomnost zapisujuceho procesu vylucuje vsetky ostatné procesy.

- Pritomnost Citajuceho procesu vylucuje pritomnost zapisujuceho, ale
nie dalsich citajucich.

* Vylucné je len zapisovanie.

* Je potrebné zabezpecit vzajomne vylucovanie nie medzi vSetkymi
procesmi, ale medzi dvomi skupinami procesov.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Riesenie (semafory)

Reader () {
Wait (mutex) ;
n_readers++;
if (n_readers==1)
Wait (wrx) ;
Signal (mutex) ;

Wait (mutex) ;

n_readers-—-;

if (n_readers==0)
Signal (wr) ;

Signal (mutex) ;

}

semaphore mutex = 1;
semaphore wr = 1;
int n_readers = 0

Writer () {
Wait (wr) ;

Signal (wr) ;

« mutex chrani pocitadlo n_readers, pocet cCitajicich (¢aka sa kratko).

« wr (v podstate tiez mutex), zamkne a odomkne kazdy zapisujici, ale len
prvy Citajici proces (Cakanie moze trvat dlho).

« Nezarucuje spravodlivost, Citania su uprednostnovane.

DB, KI FMFI UK BA, 2021

Operacné systémy / Medziprocesova komunikacia

Podmienené premenné

WERSIT4 o
S ¢

Podmienené premenné

 Vzajomneé vylucovanie neumoznuje situaciu, kedy by mal proces cakat (v kritickej

oblasti) na splnenie nejakej podmienky.
- Zablokovanie v kritickej oblasti prakticky znamena uviaznutie.
* Podmienené premenné umoznuju procesu ktory zamkol zamok cakat, pricom tento
zamok bude pocas Cakania uvolneny a ked sa proces zobudi, zamok bude opat

zamknuty.
- Operacia CondWait (condition, lock);

- Umoznuje (atomicky) uvolnit zamok a zablokovat volajlci proces.
« Ked'iny proces zmeni podmienku, zobudi niektory z procesov Cakajucich na tlto

podmienku
- Ak nikto necaka, nic¢ sa nestane. Signal sa strati.
— Volajuci musi mat vopred zamknuty ten isty zamok, ktory predtym zamkol ¢akajuci proces.

CondSignal (condition) ; CondBroadcast (condition);

Operacné systémy / Medziprocesova komunikacia

DB, KI FMFI UK BA, 2021

Konecny rad (podmienené premenné)

semaphore mutex = 0; queue q;

condition cond; int count = 0;

Send (message msg) { Receive (message *msg) {
Wait (mutex) ; Wait (mutex) ;
while (count >= N) while (count == 0)

CondWait (cond, mutex); .» CondWait (cond, mutex);

enqueue (g, msg) ; ¥ " msg* = dequeue(q);
count++; L count==—;
CondBroadcast (cond) ; ™~ CondBroadcast (cond) ;
Signal (mutex) ; Signal (mutex) ;

} }

« Ked je proces zablokovany v Condwait, mutex je uvolneny.
« Po prebudeni z Condwait nie je zarucene, Ze podmienka je splnena.

« Ak by bolo producentov a konzumentov viac, dochadzalo by k zbytocnemu
prebudeniu

- Riesenim by boli dve podmienené premenneg, zvlast pre obsadené a volné miesto.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Synchronizacia v kniznici pthread

* Kniznica poskytuje mutex:
- int pthread mutex_lock (pthread mutex_t *mutex);
— int pthread mutex_trylock (pthread_mutex_t *mutex);

- int pthread_mutex_unlock (pthread_mutex_t *mutex);

* a podmienené premenneé:

— int pthread_cond_wait (pthread cond t *restrict cond,
pthread mutex t *restrict mutex);

— int pthread_ cond_broadcast (pthread cond_t *cond);

- int pthread _cond_signal (pthread cond_t *cond);

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Implementacia rychlych zamkov

FUTEX (Fast Userspace Mutex)

« Systemové volanie umoznujuce procesu cakat na zmenu hodnoty na danej adrese.
- Vyuziva sa na implementaciu zamkov a semaforov (napriklad pthread_mutex).
* int futex(int *uaddr, int op, i?t val
- FUTEX_WAIT, ak sa hodnota na adrese uaddr rovna val, volajuci proces sa uspl.
- FUTEX_WAKE, zobudi najviac val procesov ¢akajucich na adresu uaddr.
e FUTEX je identifikovany adresou v (spolo¢nej) pamati.
- Pre toto volanie su rovnake adresy v roznych procesoch zhodné.

« V pripade, Ze je zamok volny, systémove volanie nie je potrebné. Podobne v pripade
uvolnenia, ak eSte nikto necaka. V tychto pripadoch je to rychle.

- Na atomickeé precitanie povodnej hodnoty a zamknutie alebo uvolnenie sa mozu vyuzit
Specialne instrukcie, napriklad CMPXCHG, FA.

- Tento pripad je Statisticky pomerne casty, Gspory mozu byt velké (napr. semop syscall).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Priklad: Zamok (FUTEX)

int lock = 0;

Lock () {
int old = 0; CSW(&old, 1, &lock);
if (old) ¢
do {
*lock = 2;

futex(&lock, FUTEX WAIT, 2);
old = 0; CSwW(&old, 2, &lock);
} while(old);

}
}
Unlock () {
if (FA(&lock, -1) !'= 1) {
*lock = 0;
futex (&lock, FUTEX WAKE, 1);
}
}

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

IPC v prostredi OS typu Unix

ROl
77

IPC standardy

« Existuju odlisne standardy - a aj implementacie - podobnych
mechanizmov

- spravy, semafory, zdielana pamat.

« System V - starSia (povodna) Specifikacia, vela rozsirenych
implementacii, dostupné (takmer) na kazdom systéme.

- zlozitejSie rozhranie.

e POSIX - novsi standard (nema Gplna podporu vsade)
- thread-safe,
- jednoduchsie rozhranie,

- nové moznosti (notifikacia).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Semafory — System V

#include <sys/sem.h>, prikazy: ipcs, ipcrm
int semget (key_t key, int nsems, int semflg)

- vrati identifikator na pole obsahujlice nsems semaforov pre dany klic (ftok ())
int semop(int semid, struct sembuf *sops, unsigned nsops)
- urobidani operaciu na nsops semaforov naraz (alebo vobec),
struct sembuf

{ unsigned short sem_num; short sem op; short sem_ flg; }
- kladné: pripocita sa k hodnote semaforu, nikdy neblokuje,
- nula: ak hodnota semaforu nie je 0, blokuje kym nebude 0,

- zaporné: odpocita ak sa da, inak blokuje.

S{ to systémové volania (semget, semop, semctl).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Semafory — POSIX

e #include <semaphore.h>
 pomenované: sem_open (), sem _close(), sem_unlink (),
* nepomenované: sem_init (), sem_destroy (),
- musia byt umiestnené v spoloCnej pamati,
* sem_getvalue(), sem _wait (), sem_trywait (), sem_post ()
« efektivnejsie, operacie s jednym semaforom,

e zvyCajne dostupné cez suborovy system /dev/shm

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Zdielana pamat

 SystemV
— int shmget (key_t key, size_t size, int shmflgqg)

 vrati ID nového alebo existujiuceho segmentu zdielanej pamate
s danym klucom,

— void * shmat (int shmid, const void *shmaddr, int
shmflg)

« namapuje zdielany segment shmid na adresu shmaddr,
- dalSie operacie: shmdt (), shmectl ().

 POSIX
— shm _open(), shm_unlink(),

- implementacia zalozena na mmap ().

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Spravy (message queues)

 SystemV

- msgget (), msgsnd (), msgrcv (), msgctl (), msgop ()

- typ Sprévy—struct msgbuf {long mtype; char mtext[1l]; };
* POSIX

- mgq open(),mgqg close(),mqg unlink (), mg _send(),
mqgq_receive (), mg notify (), mg_setattr (), mg getattr ()

~ notifikacia (NONE, SIGNAL, THREAD),

- priority; spravy st dorucované v poradi priorit.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Zasielanie sprav

Vlastnosti zasielania sprav

« Komunikacia medzi procesmi prostrednictvom spolocnej pamate moze byt zlozita.
« Korektné pouzitie semaforov pre synchronizaciu nie je priamociare.
- Operacie so sémantikou wait a signal nie st pre komunikaciu prirodzene.

* Monitory tieto nedostatky odstranuju, pouzivaju sa jednoduchsie. Nie su vsak
podporované v mnohych jazykoch.

« Zasielanie sprav predstavuje mechanizmus komunikacie pomocou funkcii
send (destination, &message) a receive (source, &message).

- Semantika je jasna. Operacie explicitne vyjadruja komunikaciu.
— Zdroj a ciel predstavuji adresy pricom nemusia zodpovedat jedinému uzlu.
- Zdroj nemusi byt urc¢eny (ANY), ciel méze zodpovedat viacerym (BROADCAST).

« Zasielanie sprav moze byt na rozdiel od spolocnej pamate implementované aj medzi
procesmi na roznych uzloch (réznych 0S).

- Aj formou kniznice, napriklad MPI (Message Passing Interface), PVM (Parallel Virtual Machine).

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Adresovanie

« Komunikacia moze byt priama, alebo nepriama.
* Priama - adresa Specifikuje konkrétny komunikujici proces.

« Nepriama - adresa Specifikuje miesto (schranku) na ktoré budi spravy
ukladané a z ktorého budu citane.

- Komunikuje sa cez tzv. schranky (mailbox).
- Schranky mozu mat (konecni) kapacitu pre viac sprav (buffer).
- Prikladom mozu byt aj datovody.
« Spravy, ktoré boli odoslané ale neboli eSte prijaté uchovava operacny systém.

- Z praktického hladiska moze byt implementacia spravneho uvolnovania sprav
problematicka. Vysielajuci proces nemusi mat istotu, ze data uz boli dorucene.

- Kto a kedy ma uvolnit spravu? Vysielajuci moze, ale nevie kedy. Prijimajuci vie
kedy, ale nema priamo pristup k datam vo vysielajicom procese.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Priklad: Producent - konzument (zasielanie sprav)

e Producent - konzument, priama komunikacia:

Konzument posle producentovi tolko prazdnych sprav, kolko sprav
s datami moze prijat .

Ked ma producent pripravenu spravu pre konzumenta, prijme
(spracuje) prazdnu spravu a posle spravu s datami.

* Producent - konzument, komunikacia prostrednictvom schranok:

Pri pouziti schranok je ukladanie sprav priamociare.
Producent aj konzument si vytvoria schranky pre N sprav.

Producent posiela spravy s datami do schranky konzumenta. Ten
posiela prazdne spravy do schranky producenta.

Spravy ktoré este neboli prijaté zostavaju v schranke.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Synchronizacia prenosu

« Operacie vysielania a prijimania mozu byt blokujlce, alebo neblokujuce.

 Blokujuce prijimanie — ak operacia prijimania predchadza vyslanie spravy
ktora ma byt prijata, zostane zablokovana (bude ¢akat).

 Blokujuce vysielanie - operacia vysielania spravy zablokuje volajci proces,
az kym prijimajuci proces nezavola zodpovedajlucu operaciu receive.

* Neblokujuca operacia sa vrati hned, bez ohladu na druhl stranu.
- Navratova hodnota moze indikovat stav operacie.
« Typicky sa vyuziva najma:
- Blokujuci receive a neblokujici send.
- Blokujci receive a blokujici send - tzv. rendezvous (vzajomné cakanie).

- Neblokujici receive a neblokujuci send.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

DalSie problémy zasielania sprav

« Velkost sprav.
- Pevna vs. premenliva.
« Konverzia formatu prenasanych dat.
- Napr. little endian vs. big endian.
« Poradie dorucovania a prioritizacia sprav.
» Spolahlivost prenosu.
- Preusporiadanie sprav pri prenose sietou.
- Potvrdzovanie dorucenia. Znovuposielanie.
« Autentifikacia.

- Kto smie prijimat spravy.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Sokety

Koncovy bod komunikacie.

- soket = (adresa, port)

- spojenie = (protokol, soket_zdroj, soket_ciel)

Doména soketu: Unix (IPC) AF_UNIX, Internet (network) AF_INET,
AF _INETS, ...

e Typ soketu: SOCK_DGRAM, SOCK_STREAM, SOCK_RAW.
* Protokol: IPPROTO_TCP, IPPROTO_UDP, vacsinou staci 0.

« Soket je z programatorského hladiska Cislo (typ int), podobne ako
deskriptor suboru, alebo datovod.

 Podobne sa aj pouziva: read (), write (), close(), ..

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Operacie - spolocneé

* \lytvorenie soketu, vrati deskriptor (cislo)

- int socket (int family, int type, int protocol);

e Zviazanie soketu s lokalnou adresou a portom

— int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

- Argumenty udavaja lokalnu (zdrojova) adresu.
- Klientska aplikacia tuto operaciu nemusi pouzit.

- Zdrojovy port vtom pripade nastavi system.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Operacie - server

« Nastavit soket na ¢akanie na prichadzajlce spojenia (listening)
- int listen(int socket_file_descriptor, int backlogqg);
* Prijatie prichadzajiceho spojenia (connected)

— int accept (int sockfd, struct sockaddr *addr,
socklen_t *addrlen);

- Caka (zablokuje volajici proces), kym nepride spojenie. Soket méze
byt nastaveny ako neblokujici. Je mozneé pouzit aj volanie select ().

- Vrati deskriptor na novy soket v stave connected, z ktorého je mozne
citat a zapisovat don.

- Povodny soket zostane nezmeneny, v stave listening, a nadalej caka na
nové spojenia. Bezne sa po accept () robi fork ().

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Operacie - klient

* Nadviazanie spojenia

— int connect (int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

« Argumenty udavajd cielovl adresu (pripadne port), teda adresu
servera.

* Po tom, ako sa na strane servera ukonci operacia accept () a na
strane klienta connect (), mozu byt prenasane data.

* Soket je mozne pouzit na Citanie a zapis.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Operacie — prenos dat a iné

* So soketom je mozne pouzit bezné operacie read () a write ().
e Pre datagramy:

- send(), sendto (), sendmsg (), recv (), recvfrom(), recvmsg ()
* Ukoncenie spojenia

- shutdown () - Citanie, zapis, oboje; close () - zrusenie soketu.
- (Citanie a nastavenie vlastnosti soketu:

- getsockopt (), setsockopt ().

« Pomocné funkcie: htonl (), ntohl (), ...

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

AT "‘fh;c C‘O

Priklad: Komunikacie cez sokety

$\\ﬁ_&‘Sl T4 s

e
S

int lstn_s = socket(..);
int clnt_s = socket(..); bind(lstn_s,
// bind(clnt_s,..); srvr_addr, srvr port);

connect (clnt_s, listen(lstn_s);
srvr_addr, srvr;;;;E77\\\\“‘\--s>

srvr_s = accept (lstn_s,..); <

~» send (clnt_s,..); > recv(srvr_s,..); <
... recv (clnt_s,..); = send (srvr_s,..); -
close (clnt_s); close (srvr_s); —

close(1lstn_s);

e clnt_s a srvr_s tvoria spolu spojenie na prenos dat (connected).
e 1lstn_s - soket, na ktorom server ¢aka na noveé spojenia (listening).
 srvr_addr, srvr_port - adresa servera na ktoru sa klient pripaja.

« Operacia accept Caka na prichod spojenia, potom vrati novy soket.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Signaly

« Signal je asynchronne dorucena informacia o tom, Ze nastala nejaka udalost.

« Podobaju sa preruseniam. Generuji sa programovo.

- Po doruceni signalu procesu sa jeho vykonavanie prerusi, kym sa signal
neobsluzi. Potom pokracuje tam, kde bol preruseny.

« Signal typicky posiela jeden proces inému.
-V niektorych pripadoch moze signal procesu zaslat aj OS.

« Signalov je viacero typov, rozlisuju sa cislom.

« Kazdy typ signalu ma priradenu akciu, ktora sa ma vykonat po jeho doruceni.
- Napriklad ukoncenie procesu, alebo vykonanie zvolenej funkcie (handler).

« So signalom moze byt spojené aj malé mnozstvo prenasanych dat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Zaslanie signalu

« Systémové volanie pre zaslanie signalu (komu, aky):
- int kill (pid_t pid, int sig);

* Proces posielajuci signal na to musi mat prava
- len vlastnik, alebo root.

* Proces alebo vlakno moze poslat signal sam sebe:
— int raise(int sig);

« Na signal je mozné cakat (v zablokovanom/uspanom stave):

- pause (), sigsuspend(), sigtimedwait ()

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Blokovanie signalu

« Kazdy proces ma definovand masku (signal masr) a jednotlivé signaly mozu byt
(docasne) blokovane.

- SIGKILL a SIGSTOP nemo6zu byt blokované (ignoruja masku).

« Ak pride signal ktory ma byt blokovany, nestrati sa. Je pridany do radu signalov
cakajlcich na obslizenie (pending signal).

« Signal ktory sa prave obsluhuje je automaticky blokovany.
- Ulahcuje to pisanie funkcii obsluhujlcich signaly.

- Ak vSak jedna funkcia (handler) obsluhuje rozne signaly, moze sa stat Ze bude pocas
svojho vykonavania zavolana znova.

« Signal moze prist aj ked proces vykonava systemoveé volanie.
- Toto mozZe byt prerusené a skonci sa s kodom (chybou) EINTR,

- alebo moze byt restartované po dokonceni obsluhy signalu, ak bol handler nastaveny
s priznakom SA_RESTART. Toto vSak nie je mozneé pre vSetky systémové volania.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Signaly generovane jadrom

« Signal moze v istych pripadoch vygenerovat aj jadro.
- Vacsinou je to reakcia OS na vynimku, Cize chybovy stav HW, ktory spdsobil proces svojim vykonavanim,
- alebo na situaciu ked proces nemoze pokracovat dale;.
« SIGSEGV - segmentation violation
* SIGILL - illegal instruction
-z pamate inStrukcii procesor precital hodnotu ktora nezodpoveda Ziadnej inStrukcii.
* SIGBUS - bus error,
» SIGFPE - floating point exception,
 SIGPIPE - proces zapisuje do zatvoreného datovodu,
« SIGSTOP - pri zapise do plného buffer-a datovodu,
* SIGCHLD - rodicovsky proces dostane tento signal, ak jeho potomok zmeni stav.
- Ak skonci alebo je zablokovany; ak dostane SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Akcie signalu

« Proces moze na jednotlive signaly reagovat rozne.
* Bezné akcie su:

- Term - terminate, ukoncenie procesu,

- Ign - ignore, ignorovanie signalu, bude zahodeny,

* lIgnorovanie signalov SIGFPE, SIGILL, SIGSEGV, SIGBUS vedie
k nedefinovanému spravaniu procesu.

- Core - ukoncenie procesu a vytvorenie suboru s obrazom jeho pamate
(core dump),

- Stop - zastavenie volajaceho procesu (prejde do stavu T),

- Cont - pokraCovanie procesu, ak bol zastaveny.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Obsluha signalu

* Proces moze na jednotlive signaly nastavit vlastni obsluznu rutinu,
ktora sa vykona po prichode daného signalu.
« Systemove volanie:

— int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

e Struktira sigaction obsahuje aj pointer na novi obsluzni funkciu.

« Obsluzna funkcia (signal handler) musi byt reentrantna. Ak nie je
nastaveneé inak, vykonava sa so zasobnikom procesu prijimajuceho
signal.

« Signaly SIGKILL, SIGSTOP nemo6zu byt procesom zachytené, blokovane
alebo ignorovane a nie je mozné zmenit ich Standardnu akciu.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Sigaction

int struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, wvoid ¥*);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer) (void);

|

* Treti argument pre sa_sigaction () je na linux-e typu ucontext_t.

« Umoznuje napriklad zistit hodnoty registrov v case prichodu signalov, ktoré s
dosledkom vynimiek.

- Napriklad, ak Struktiru nazveme context, register PC (resp. IP) je dostupny ako

((ucontext_t*)context)->uc_mcontext.gregs[REG_PC]

» Precitat man 2 sigaction, man 7 signal.

DB, KI FMFI UK BA, 2021

Operacné systémy / Medziprocesova komunikacia

siginfo_t {

int si_signo; /* Signal number */

int si_errno; /* An errno value */

int si_code; /* Signal code */

int si_trapno; /* Trap number that caused

hardware—generated signal
(unused on most architectures) */

pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
int si_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
sigval_t si_value; /* Signal value */
int si_int; /* POSIX.1lb signal */
void *si_ptr; /* POSIX.1lb signal */
int si_overrun; /* Timer overrun count; POSIX.lb timers */
int si_timerid; /* Timer ID; POSIX.lb timers */
void *si_addr; /* Memory location which caused fault */
long si_band; /* Band event (was int in
glibc 2.3.2 and earlier) */
int si_fd; /* File descriptor */

short si_addr_1sb; /* Least significant bit of address
(since Linux 2.6.32) */

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Zoznam signalov

$kill -1

1)

6)
11)
16)
21)
26)
31)
38)
43)
48)
53)
58)
63)

SIGHUP
SIGABRT
SIGSEGV
SIGSTKFLT
SIGTTIN
SIGVTALRM
SIGSYS
SIGRTMIN+4
SIGRTMIN+9
SIGRTMIN+14
SIGRTMAX-11
SIGRTMAX-6
SIGRTMAX-1

2)

12)
17)
22)
27)
34)
39)
44)
49)
54)
59)
64)

SIGINT
SIGBUS
SIGUSR2
SIGCHLD
SIGTTOU
SIGPROF
SIGRTMIN

3)

8)
13)
18)
23)
28)
35)

SIGRTMIN+5 40)
SIGRTMIN+10 45)
SIGRTMIN+15 50)
SIGRTMAX-10 55)
SIGRTMAX-5 60)

SIGRTMAX

SIGQUIT
SIGFPE
SIGPIPE
SIGCONT
SIGURG
SIGWINCH
SIGRTMIN+1
SIGRTMIN+6
SIGRTMIN+11
SIGRTMAX-14
SIGRTMAX-9
SIGRTMAX-4

4)

14)
19)
24)
29)
36)
41)
46)
51)
56)
61)

SIGILL
SIGKILL
SIGALRM
SIGSTOP
SIGXCPU
SIGIO
SIGRTMIN+2
SIGRTMIN+7
SIGRTMIN+12
SIGRTMAX-13
SIGRTMAX-8
SIGRTMAX-3

5)
10)
15)
20)
25)
30)
37)
42)
47)
52)
57)
62)

SIGTRAP
SIGUSR1
SIGTERM
SIGTSTP
SIGXFSZ
SIGPWR
SIGRTMIN+3
SIGRTMIN+8
SIGRTMIN+13
SIGRTMAX-12
SIGRTMAX-7
SIGRTMAX-2

DB, KI FMFI UK BA, 2021

Operacné systémy / Medziprocesova komunikacia

ROl
77

Pouzitie signalov

* Pouzivaju sa hlavne na synchronizaciu procesov.

* Funkcia alarm() zabezpeci, ze volajuci proces dostane signal
SIGALRM po uplynuti zadanéeho casu.

- unsigned int alarm(unsigned int seconds);

- Funkcia sleep () moze byt takto implementovana.

 Signal USR1 pre prikaz dd sposobi, Ze vypise sStatistiky (na stderr)
a pokracuje.

* Signal HUP pre démon sshd sposobl, ze znovu nacita svoj
konfiguracny subor.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Subezne operacie

Blokujuce a neblokujuce operacie

* Blokujiica operacia sa po zavolani nevrati, pokial nie je ukoncena.
- 1/0 operacie; cakanie na data z disku/na disk, zasielanie sprav cez siet; alokacia pamate (), etc ...

« Ak pozadované data nie st pripravené, operacia (read/recv) blokuje vykonavanie procesu,
pokial nebudu.

* Pri ¢akani nespotrebovava cas, proces vsak stoji (nevie ako dlho) a nemo6ze vykonavat nic iné.

« Akonahle su data k dispozicii a operacia moze byt dokoncena, OS opat naplanuje vykonavanie
tohoto procesu, ktory operaciu vyvolal.

 Neblokujica operacia - ak poZzadovani operaciu nie je mozné vykonat, vrati chybovy kod,
vykonavanie vSak pokracuje dalej,

- operaciu je mozné opakovat neskor znova = polling,
- opakované vykonanie operacie ked data nie su pripraveneé je zbytocné (neuzito€na rézia),
- umoznuje vSak vykonavat pocas cakania in0 ¢innost.

* RieSenie - viacvlaknové procesy

- komunikujuce vlakno moze byt blokované pokial nepridu data, ostatné mozu zatial pracovat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Asynchronne operacie

 Ich vykonanie nie je zavislé (resp. odvodené) od vykonavania inych operacii,
- napriklad obsluzné rutiny (handler, callbacR) preruseni, vynimiek, signalov.

« Operacia (vykonavana v kontexte nejakého procesu) je asynchronna (vzhladom k
tomuto procesu) ak jej vykonanie (spustenie) od tohoto procesu nezavisi.

* Na asynchronne operacie vSak mozu byt kladené zvlastne implementacné naroky -
reentrantnost.

* To, Ci je operacia blokujluca alebo nie, zavisi len od jej implementacie.

- Pohladom na implementaciu vieme vzdy rozhodnat, Ci je operacia (potencialne)
blokujlca, alebo nie.

-V praktickych pripadoch je mozné konkrétne spravanie nastavit priznakom.

 To, Ci je operacia asynchronna je otazkou sposobu jej pouzitia (nie jej vnitornej
implementacie)

- ide o to kedy, resp. ako, dochadza k spusteniu operacie.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Reentrantnost vs. thread-safety

« Reentrantnost (reentrancy, signal-safety)
- funkcia moze byt pocas vykonavania zavolana znova, bez ovplyvnenia korektnosti vysledkov,
- funkcia teda musi byt bez nasledkov spustitelna viackrat, v ramci toho istéeho kontextu.

« Bezpecnost vykonavania vlaknami (thread-safety)

- funkcia moze byt vykonavana subezne viacerymi vlaknami, bez ovplyvnenia spravnosti
vysledkov,

- musi byt spustitelna viackrat sibezne, v roznych kontextoch.

« Vlastnost “thread-safety” sa da zabezpecit doplnenim synchronizacnych mechanizmov
pri pristupe k spolocnym datam (zmenou implementacie).

- Pouzitie synchronizacnych funkcii v reentrantnych funkciach moze viest k uviaznutiu.

* Pre zabezpecenie reentrantnosti moze byt potrebné zmenit nielen implementaciu, ale
aj rozhranie funkcie.

» Reentrantnost je silnejSia poziadavka, implikuje thread-safety, nie naopak.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

ROl
77

Poziadavky reentrantnosti

e Nutne podmienky kladené na reentrantnu funkciu:
1) neobsahuje globalne (nekonstantné) data,
2) nevracia pointer na statické nekonstantneé data,
3) pracuje len s datami od volajiceho,
4) neblokuje pristup k jedinecnému zdroju (singleton),
5) nevola iné nereentrantné funkcie.
* Reentrantneé funkcie je mozné pouzivat v obsluhe signalov.
- Napriklad write() ano, printf() nie.

- Nie je mozné pouzit nic ¢o vola malloc()/free().

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Datovody (nepomenované)

Datovody

Datovod (pipe) predstavuje jednosmerny kanal pre komunikaciu medzi dvoma
procesmi.

* Ma dva konce reprezentované deskriptormi suborov.

« Volanie pipe () alokuje buffer v jadre a vrati dva deskriptory suborov, jeden
pre zapis, druhy pre Citanie.

- Oba vsak vrati tomu istemu, hoci kazdy koniec by mal byt pouzity inym procesom
(jeden zapisuje, druhy cita).

- Ako dostat deskriptor datovodu do ineho procesu?

» Data ktoré sa do datovodu zapisu zostanu ulozeneé v jadre az kym nie su
z druhého konca precitane.

* Pre zapis a Citanie sa pouzivaju volania write () a read (), ako na subory.

» Datovod ma konecnu kapacitu. Operacie Citania a zapisu sa mozu zablokovat.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

>[4 ¢

RSIT;
&S g“""« e

Vytvorenie datovodu

WER

\)e‘\

« Ak proces vytvori datovod, ma otvorené oba jeho konce.

- Volanie pipe () vytvori zaznamy priamo v tabulke otvorenych suborov a vrati ich deskriptory
(indexy).

- Neexistuji vSak nazvy tychto siborov, ktoré by bolo mozné pouzit na ich otvorenie (ziskanie
deskriptora) vinom procese.

 Datovody vytvorené volanim pipe () si nepomenované (anonymné) a preto je mozné ich
pouzit len medzi rodicom a potomkom.

- Poznamka: Existuji aj pomenované datovody reprezentované Specialnym siborom, mkfifo ().

* Pri vytvoreni noveho procesu sa skopiruje tabulka otvorenych suborov a teda aj novy proces
bude mat otvorené oba tieto konce.

« Kazdy z dvojice procesov zavrie nepotrebny koniec.
- Proces, ktory bude zapisovat zavrie Citaci koniec a naopak.

- Bez toho by nebolo mozné zistit Ci uz proces na druhej strane skoncil a mohlo by dojst k ¢akaniu
na data, ktoré nepridu.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

Zatvorenie nepotrebného konca datovodu

» Kazdy z dvojice procesov zavrie nepotrebny koniec.

- Proces, ktory bude zapisovat zavrie citaci koniec a naopak.

« Ak proces zapiSe do datovodu ktorého citaci koniec nie je otvoreny, napriklad
Citajlci proces sa uz ukoncil, zapisujici proces dostane signal (SIGPIPE).

« Ak by zapisujuci proces nechal otvoreny aj itaci koniec datovodu, v pripade
ukoncenia Citacieho procesu by OS nevedel, ze ma pri zapise poslat SIGPIPE.

- Po naplneni buffera by zostal zapisujlci proces zablokovany. A kedZe by nemohol
zaroven Citat a tak uvolnit miesto, nastalo by uviaznutie.

« Operacia Citania z datovodu so zatvorenym zapisovacim koncom vrati EOF.
- Citajlci proces moze zistit, Ze ¢itanie moze ukonéit.

« Ak by zapisovaci koniec zostal nadalej otvoreny v Citajucom procese, Citanie by
zostalo zablokované, hoci ziadne data uz nebudu dostupné.

- KedZe citajuci proces je zablokovany, nemoze zaroven zapisat < uviaznutie.

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 100/109

Priklad: Pouzitie datovodu

pipe (£d)
int £d[2], child_pid, nj; £ L()
o ° ‘ \A
pipe (£d) ; close (£4[0]) close (£d[1])

Chlld_pld = fork(); write (£d[1]) —» read (£d4d[0])

if (child _pid == 0)

{
char buf[SIZE];
close (£fd[1l]);
n = read(£fd[0], &buf, SIZE);
printf (“%$s”, buf);

}

else

{
char msg[] = “Hello from parent!\n”;
close (£d4[0]);
write (fd[1l], &msg, sizeof (msqg));
wait () ;

}

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 101/109

Priklad: Pouzitie datovodu, tabulka siborov (pipe)

Process A descriptor table

~ System file table
. . 0
%Pﬁ(?fg),l}} 1 (X refcount| seek |[mode| inode ./Ej
’ 2 W
3 LN
4 ! ' % :'
5 2 w [dev/tty

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 102/109

Priklad: Pouzitie datovodu, tabulka suborov (fork)

Process A descriptor table

| ~ System file table
?dlpi(g,);ﬂ E : refcount| seek |[mode| inode ./ Ej
fork(); 2 o r
- pid_B 5 4 w b /dev/tty

Process B descriptor table 2 r o -
fork(); ; ¢’
>0 3 e
4 o
5

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 103/109

Priklad: Pouzitie datovodu, tabulka siiborov (close)

Process A descriptor table

System file table
pipe(fd), 0 |—=
fd > 3 '4} 1 . refcount| seek |mode| inode Ej
! 2 @ .I/V

3 | closed
fork(); 4 2 0 r %bg
- pid_B 5 W dev/tty
close(3);
write(4, ...);

Process B descriptor table L 0 r o> - ’

fork(); ;
>0 3 pe

4 | closed
close(4); 5
read(3, ..);

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 104/109

Standardny vstup a vystup procesu

« Typické pouzitie datovodu predstavuje napriklad spojenie Standardného
vystupu jedného procesu so standardnym vstupom ineho.

- Ako sa toto presmerovanie vytvori?
- Ako sa vytvori datovod medzi dvoma novymi procesmi?

- Napriklad, ¢o sa stane, ak shell vykona 1s | head?

. Standardne ma kazdy proces otvorené prvé tri deskriptory siborov pre
terminal (je tiez reprezentovany siborom).

- 0, Sstandardny vstup, pre citanie vstupnych dat na spracovanie,
- 1, Standardny vystup, pre vypis vysledkov,
- 2, chybovy vystup, pre vypis pomocnych a chybovych hlaseni.

« Pri prihlaseni pouzivatela ich otvori proces inicializujuci terminal a vSetky
nasledujuce procesy ich uz zdedia. Je to dosledok hierarchie procesov.

DB, KI FMFI UK BA, 2021 Operacné systémy / Medziprocesova komunikacia

105/109

C
:

Duplikacia deskriptora

[2)
A
g
e
3
Y

« Slcastou PCB kazdého procesu je aj tabulka otvorenych suborov.
- Linux: polozka files v task_struct.
* Deskriptor je indexom do tejto tabulky.
« KaZzdeé Gspesné volanie open () prida jeden novy riadok (a vrati deskriptor).
 Volanie pipe () prida dva nové riadky (a vrati dva deskriptory).

 Pri vytvarani noveho zaznamu operacny systém spravidla pouzije prvy volny
deskriptor.

* Volanie dup (int old) skopiruje dany deskriptor na prvy volny a vrati jeho cislo.
- Oba deskriptory zodpovedaji tomu istému otvorenému suboru.

« Operacia dup2 (int old, int new) skopiruje deskriptor old na poziciu new. Ak
new nebol volny, najskor ho zatvori.

« Duplikacia sa vyuziva pri implementacii presmerovania.

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 106/109

Presmerovanie standardného vstupu a vystupu

// sh$ 1ls | head

pipe (£fd);
childl = fork(); |
;’ \j
child2 = fork(); —— // childl ==
\j close(l); // stdout
// child2 == dup (£d[1]);
close(0); // stdin close (£fd4d[0]) ;
dup (£4[01]) ; close (£d4d[1]);
close (£d4d[0]) ; execve (“/bin/1s”, ...);
close (£d[1l]);
execve (“/bin/head”, ...);
// executing head // executing 1ls
exit () ; exit () ;
\ . .
wait (&status),; <« ?mm"mmmummmmummmmummmummmi
e ((CEeaEEE)] 8 <

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 107/109

Presmerovanie standardného vstupu a vystupu

Process ‘head’ descriptor table

System file table

0 | _stdin Q
close(0); 1 | stdout @] refcount| seek |mode| inode Ej
dup(fd[0]); 2 | stderr @l ./V
close(fd[0]); 3 [closed » 0 -
close(fd[1]), %4 e b
execve(“head”....); 3 0 w [dev/tty
Process ‘ls’ descriptor table L 0 r o ‘ - ’
0 | stdin 3 1 0 W o—n ‘
close(1); 1 | stdout @]
dup(fd[1]); 2 | stderr @
close(fd[0]); 3 fclosed
close(fd[1]); 4 |closed
execve(“ls"...); >

DB, KI FMFI UK BA, 2021 Operacné systemy / Medziprocesova komunikacia 108/109

To je zatial vSetko

