
Dušan Bernát
bernat@fmph.uniba.sk

Operačné systémy / Medziprocesová komunikácia

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 2/109

Prehľad

● Súbeh, vzájomné vylučovanie, podmienky korektného riešenia.
● Programové riešenia.
● Riešenia pre viac procesov (Peterson, ticket, bakery).
● Podpora hardvéru (cmpxchg), transkačná pamäť.
● Obsadzujúce čakanie.
● Vyššie synchronizačné prostriedky, semafory, ich realizácia a použitie.
● Futex.
● Kruhový buffer, dátovody.
● Zasielanie správ.
● Problém obedujúcich filozofov, producent/konzument.

Súbeh

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 4/109

Interakcia procesov

● Procesy na seba vzájomne pôsobia z rôznych dôvodov:

1) Neúmyselne. Procesy si neuvedomujú iné procesy.
– Procesy vykonávajú operácie bez ohľadu na iné procesy.

– Súťažia o spoločné prostriedky (nevedia však s kým).

– Prístup riadi operačný systém.

2) Nepriamo. Uvedomujú si iné procesy len sprostredkovane.
– Vedia o existencii nejakých iných procesov, ale nevedia ich priamo pomenovať (adresovať).

– Napríklad použivajú spoločný prostriedok. Čítajú zo súboru, do ktorého musel nejaký iný
proces zapisovať.

3) Úmyselne. Uvedomujú si existenciu iných procesov.
– Vedia sa vzájomne rozlíšiť (adresovať.)

– Spolupracujú, komunikujú na zabezpečenie spoločnej úlohy.

– Komunikácia je explicitne vyjadrená v programe.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 5/109

Komunikácia a spoločná pamäť

● Komunikácia – výmena dát.
● Požiadavka na komunikáciu procesov pri riešení úloh je častá.

– Napríklad výstup jedného procesu môže byť vstupom druhého.

● Procesy majú spravidla izolované adresové priestory, ale pre účely
vzájomnej komunikácie OS poskytuje možnosť vytvoriť spoločné
úložisko.
– Napríklad oblasť zdieľanej pamäte (možno aj v jadre).

– Vlákna zdieľajú celý spoločný adresový priestor procesu. Problémy
medziprocesovej komunikácie sa tak týkajú aj vlákien.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 6/109

Synchronizácia vykonávania procesov

● Pri niektorých úlohách je potrebné dodržať predpísané poradie
vykonávania procesov.
– Je to podobné ako pri komunikácii. Dáta je možné prečítať až potom, čo sú

zapísané.

– V tomto prípade sa však dáta neprenášajú.

● Synchronizácia môže byť považovaná za špeciálny prípad komunikácie,
keď sa neprenášajú žiadne dáta.
– Veľkosť prenášaných dát je nulová.

– Podstatné je, že sa komunikuje, respektíve kedy sa komunikuje, nie či sa
pritom niečo prenáša.

● Zabezpečenie synchronizácie väčšinou znamená, že niektorý z procesov
musí čakať.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 7/109

Súbeh

● Procesy pristupujúce do spoločnej pamäti sa môžu vykonávať
súbežne, respektíve v ľubovoľnom poradí.

● Proces môže byť operačným systémom preplánovaný v ľubovoľnom
okamihu.
– Prechod zo stavu running do ready, iniciovaný prerušením od

časovača.

● Z pohľadu procesora môže nastať prerušenie len medzi dvoma
inštrukciami. Vykonanie inštrukcie je atomické.

● Príklad: inkrementácia spoločnej premennej, a++

#CISC #RISC

inc a load r1, a
inc r1
store a, r1

✔ ?

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 8/109

Súbeh

● Pôvodná hodnota premennej je a=7.
● Ak dva procesy vykonajú inkrementáciu, očakávaný výsledok je a=9.
● Poradie vykonania:

– Zápis: Px – proces P vykonáva riadok x; (a, b) - sekvenčné vykonanie b po a.

– (P1, P2, P3, Q1, Q2, Q3) ∼ (Q1, Q2, Q3, P1, P2, P3) → a=9

– (P1, Q1, P2, Q2, P3, Q3) ∼ (P1, P2, Q1, P3, Q2, Q3) ∼ ... → a=8 

● Pri súbežnom vykonaní viacerých procesov sú možné všetky kombinácie prekrytí
(sekvenčných) vykonaní jednotlivých procesov.

● Situáciu keď viacero procesov pristupuje k spoločnej premennej a výsledok závisí
od poradia vykonávania nazývame súbeh (race condition).
– Procesy súťažia (pretekajú) o prístup a výsledok závisí od toho, kto bude prvý.

– Môže spôsobovať náhodné správanie, alebo rôzne výsledky.

1: load r1, a
2: inc r1
3: store a, r1

!
✔

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 9/109

Podmienka vzájomného vylučovania

● Aby sme dosiahli očakávaný výsledok, je potrebné zabezpečiť aby k spoločnému
prostriedku (tu premennej) pristupoval v každom čase najviac jeden z procesov.

● Takejto podmienke hovoríme vzájomné vylučovanie (mutual exclusion).
– Prístup jedného vylučuje prístup ostatných.

– Vzájomné vylučovanie je typom synchronizácie.

● Úsek programu kde sa vykonáva prístup k spoločnému prostriedku sa nazýva
kritická oblasť (critical section).
– Kritická oblasť sa môže rozkladať na viacerých miestach programu.

– Program môže obsahovať viacero (rôznych) kritických oblastí.

● Podmienka vzájomného vylučovania hovorí, že vykonávanie procesov sa nesmie
prekrývať v kritickej oblasti.

● Program v kritickej oblasti smie byť v každom čase vykonávaný najviac jedným
procesom.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 10/109

Implementácia vzájomného vylučovania

● Možné riešenia vzájomného vylučovania môžme rozdeliť na:
– Čisto programové

● Vieme ich napísať len s prostriedkami jazyka, napríklad C.
● Cykly, podmienky, prístup do (spoločnej) pamäte.
● Bez zvláštnych systémových volaní.

– S podporou hardvéru
● Zakázanie prerušení.
● Špeciálne inštrukcie.
● Transakčná pamäť.

● Okrem implementačnej stránky sú však dôležité aj ďalšie vlastnosti
riešenia, najmä spôsob čakania a jeho vplyv na zaťaženie systému.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 11/109

Zakázanie prerušení

● Procesor umožňuje pomocou riadiacich inštrukcií zakázať (aj povoliť)
spracovanie prichádzajúcich prerušení.

● Ak by sme zakázali prerušenia na začiatku kritickej oblasti a na konci povolili,
vykonávanie by nemohlo byť prerušené.
– Žiaden iný proces by sa do kritickej oblasti nedostal.

● Výhody
– Jednoduchá implementácia.

● Nevýhody
– Neobsluhujú sa prerušenia od periférnych zariadení.

– V prípade chyby pri zakázaných prerušeniach sa “zasekne” celý systém.

– V chránenom režime je dostupné len pre jadro (privilegované inštrukcie).

● Používa sa v jadre, na krátke časy, pri implementácii vyšších mechanizmov.

 cli
 load r1, a
 inc r1
 store a, r1
 sti

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 12/109

Multiprocesorové systémy

● Pokiaľ systém obsahuje viac fyzických CPU, zakázanie prerušení na jednom
z nich nestačí.
– Nie je to riešenie. Nezaručí vzájomné vylučovanie.

● Podobne problém súbehu nevyrieši ani atomická operácia typu inc
(dostupná na CISC).
– Síce nemôže nastať preplánovanie na tomto procesore, ale súbežne môže

k spoločnej premennej v pamäti pristupovať proces vykonávaný na inom
procesore.

● Riešenie: uzamknutie zbernice signálom lock (architektúra Intel).
– lock inc a; lock je tzv. prefix inštrukcie

– Počas aktívneho signálu lock nemôžu iné procesory pristupovať do pamäti.

– Do žiadnej, teda ani mimo kritickú oblasť, čím sa celková výkonnosť znižuje.

Programové riešenia

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 14/109

Vstupno-výstupný protokol

● Uvažujme dva procesy (bez ujmy na všeobecnosti), ktoré sa
pokúšajú súbežne vstúpiť do kritickej oblasti UseResource().

● Operácie zabezpečujúcie vyriešenie vzájomného vylučovania pri
prístupe vložíme do funkcií EnterCS() a LeaveCS().
– EnterCS() bude zrejme obsahovať čakanie.

– Funkcie vstupu a výstupu nemusia byť pre jednotlivé procesy
identické. Spravidla však budú analogické (respektíve symetrické).

● Ilustračná situácia:

ProcessP() { ProcessQ() {
while(1) { while(1) {

EnterCS_P(); EnterCS_Q();
UseResource(); UseResource();
LeaveCS_P(); LeaveCS_Q();

} }
} }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 15/109

Riešenie 1: Spoločný zámok

● Spoločná premenná so sémantikou zámku. Hodnota 1 indikuje, že
kritická oblasť je obsadená, 0 voľná.

● Pred vstupom sa počká, kým bude kritická oblasť voľná. Potom sa
nastaví zámok na 1 a proces smie vojsť do kritickej oblasti.

● Pri výstupe sa premenná nastaví na 0, teda kritická oblasť je voľná.
● Vstupno-výstupný protokol:

int lock = FALSE;

EnterCS() { while(lock); lock = TRUE; }
LeaveCS() { lock = FALSE; }

čakanie

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 16/109

Spoločný zámok nefunguje

● Problém nastane, ak bude proces preplánovaný [2] bezprostredne
potom ako vyhodnotí premennú lock ako 0 a ukončí čakanie,
a zároveň predtým, ako nastaví lock na 1.

● Následne aj druhý proces môže vyhodnotiť lock ako 0 a vojsť do
kritickej oblasti [3], kde môže byť tiež preplánovaný [4].

● Prvý proces bude pokračovať od miesta kde bol prerušený [5] a teda
tiež môže vojsť do kritickej oblasti a budú tam súčasne oba procesy!

● Nie je splnená ani základná podmienka pre vzájomné vylučovanie.
ProcessP() { ProcessQ() {

while(1) { while(1) {
while(lock); while(lock);
lock = TRUE; lock = TRUE;
UseResource(); UseResource();
lock = FALSE; lock = FALSE;

} }
} }

1 2
3

45

interrupt

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 17/109

Riešenie 2: Striedanie

● Spoločná premenná so sémantikou určujúcou kto smie vojsť.
● Proces pred vstupom do kritickej oblasti počká, kým bude na rade.
● Pri výstupe nastaví, že na rade je druhý proces.
● Procesy sa striedajú a teda nikdy nebudú v kritickej oblasti súčasne.

– Podmienka vzájomného vylučovanie je splnená; bez ohľadu na to, kedy
nastane preplánovanie.

● Vstupno-výstupný protokol:

enum {P, Q} turn = P;

EnterCS_P() { while(turn != P); }
LeaveCS_P() { turn = Q; }

EnterCS_Q() { while(turn != Q); }
LeaveCS_Q() { turn = P; }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 18/109

Striedanie je obmedzujúce

● Čo v prípade ak hodnota spoločnej premennej indikuje, že na rade je proces P, hoci OS
naplánoval na vykonávanie proces Q?
– Proces Q musí čakať, hoci kritická oblasť je voľná.

● Čo ak chce jeden z procesov pristupovať do kritickej oblasti dvakrát po sebe, respektíve
častejšie, než druhý proces?
– Proces bude zbytočne blokovaný, hoci je kritická oblasť voľná.

● Čo ak jeden z procesov nebude chcieť (dlho, alebo vôbec) pristupovať do kritickej oblasti?
● Toto riešenie je nevyhovujúce.

– Spĺňa základnú podmienku, ale je obmedzujúce a neefektívne.

– Vstup do kritickej oblasti nesmie byť blokovaný, ak je voľná.

● Pre korektné riešenie problému vzájomného vylučovania budeme preto vyžadovať aj
splnenie ďalších podmienok (okrem základnej).

● Proces ktorý sa vykonáva mimo kritickej oblasti nesmie brániť iným vstúpiť do nej.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 19/109

Riešenie 3: Zámok pre každý proces

● Každý proces bude mať svoju spoločnú premennú, ktorou bude
vopred indikovať potrebu vstúpiť do kritickej oblasti.

● Proces pred vstupom do kritickej oblasti nastaví svoju premennú
a počká, ak aj druhý proces chce vojsť.

● Obe podmienky kladené na riešenie budú splnené.
– Nie je možné, aby do kritickej oblasti vstúpili oba procesy.

– Proces mimo kritickej oblasti nebráni inému vstúpiť.

● Vstupno-výstupný protokol:
int inP = FALSE, inQ = FALSE;

EnterCS_P() { inP = TRUE; while(inQ); }
LeaveCS_P() { inP = FALSE; }

EnterCS_Q() { inQ = TRUE; while(inP); }
LeaveCS_Q() { inQ = FALSE; }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 20/109

Nekonečné čakanie

● Problém nastane, ak budú oba procesy preplánované [2, 4] po
nastavení svojej premennej na 1 [1, 3] (budú nastavené súčasne).

● Následne budú oba procesy čakať, pričom už nie je žiadna možnosť
aby ktorýkoľvek z procesov zrušil podmienku čakania druhému.

● Táto situácia [5] sa nazýva uviaznutie (deadlock).
● Rozhodnutie o vstupe musí prísť v konečnom čase.

– Korektné riešenie nesmie umožňovať uviaznutie.

ProcessP() { ProcessQ() {
while(1) { while(1) {

inP = TRUE; inQ = TRUE;
while(inQ); while(inP);
UseResource(); UseResource();
inP = FALSE; inQ = FALSE;

} }
} }

1 2
4interrupt

3
interrupt

5

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 21/109

Riešenie 4: Prerušenie čakania

● Každý proces bude mať svoju spoločnú premennú, ktorou bude
vopred indikovať potrebu vstúpiť do kritickej oblasti.

● Pred vstupom proces nastaví svoju premennú na 1. Ak má však
premennú nastavenú aj druhý proces, nastaví svoju naspäť na 0
a pokus o vstup zopakuje.

● Vstupno-výstupný protokol:

int inP = FALSE, inQ = FALSE;

EnterCS_P() { EnterCS_Q() {
while(1) { while(1) {

inP = TRUE; inQ = TRUE;
if (inQ) inP = FALSE; if (inP) inQ = FALSE;

else break; else break;
} }

} }
LeaveCS_P() { inP = FALSE; } LeaveCS_Q() { inQ = FALSE; }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 22/109

Doba prístupu nie je ohraničená

● Ide o modifikáciu predchádzajúceho prístupu (3). Zaručuje splnenie troch podmienok.
– Nie je možné, aby do kritickej oblasti vstúpili oba procesy.

– Proces mimo kritickej oblasti nebráni inému vstúpiť.

– Nemôže nastať uviaznutie.

● Kým by boli oba procesy preplánované vždy po nastavení premennej, oba by čakali.
– Korektnosť tohoto riešenia je založené na predpoklade, že sa tak (dlhodobo) nestane.

– Nejde o uviaznutie, pretože toto čakanie v princípe môže skončiť.

– Situácia, keď sa dva procesy neustále uprednostňujú v dôsledku čoho ani jeden nevstúpi do
kritickej oblasti, sa nazýva livelock, alebo tiež starvácia.

● Doba prístupu nie je ohraničená. Závisí od plánovača a nie len od samotného riešenia.
– Teoreticky to môže byť aj nekonečne dlho. Prakticky je však pravdepodobnosť uviaznutia

malá. Toto riešenie sa prakticky využíva (napríklad CSMA-CD).

● Procesy nemôžu pri vstupe do kritickej oblasti predpokladať nič o vzájomnom časovaní.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 23/109

Podmienky korektného riešenia

● Na programové riešenie synchronizačného problému vzájomného
vylučovania procesov teda kladieme tieto 4 podmienky:

1) V kritickej oblasti sa smie vykonávať v každom čase najviac jeden
proces.

2) Proces ktorý sa vykonáva mimo kritickej oblasti nesmie brániť iným
vstúpiť do nej.

3) Rozhodnutie o vstupe musí prísť v konečnom čase.

4) Procesy nemôžu pri vstupe do kritickej oblasti predpokladať nič
o vzájomnom časovaní (plánovaní).

● Existuje také riešenie?

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 24/109

Petersonovo riešenie (1981)

● Kombinuje predchádzajúce prístupy (zámky, zapamätanie kto je na
rade, upozornenie na vstup).

● Spĺňa všetky kladené podmienky bez ohľadu na plánovanie.
● Dá sa rozšíriť aj pre viac (N>2) procesov.
● Vstupno-výstupný protokol:

int inP = FALSE, inQ = FALSE;
enum {P, Q} last = P;

EnterCS_P() { EnterCS_Q {
inP = TRUE; inQ = TRUE;
last = P; last = Q;
while(inQ && last == P); while(inP && last == Q);

} }

LeaveCS_P() { inP = FALSE; } LeaveCS_Q() { inQ = FALSE; }

Podpora procesora

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 26/109

Špeciálne inštrukcie

● Väčšina procesorov poskytuje inštrukciu ktorá umožňuje vykonať viacero operácií, vrátane
prístupu do pamäte, atomicky (symbolicky značíme << ... >>).

● Umožňujú jednoduchú implementáciu (nielen) vzájomného vylučovania pre N procesov.
● Inštrukcie typu:

– TSL (Test and Set Lock), TSL Rx, lock
● int TSL(int *lock) { << int tmp = *lock; lock = 1; return tmp; >> }

– XCHG (Exchange), Intel: XCHG lock, Rx – aj s prefixom lock
● void XCHG(int a, int *lock) { << int tmp=a; a=*lock; *lock=tmp; >> }

– CSW (Compare and Swap), Intel: CMPXCHG lock, Rx – aj s prefixom lock (a=EAX, b=Rx, c=lock)

 int CSW(int *a, int b, int *c) { <<

 if (*a==*c) { *c=b; return 0; }

 else { *a=*c; return 1; } >> }

– FA (Fetch and Add)
● int FA(int *var, int incr) { << int tmp=*var; *var+=incr; return tmp; >> }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 27/109

Špeciálne inštrukcie – vlastnosti

● Vstupno-výstupný protokol s použitím Test and Set:

● Riešenia založené na špeciálnych inštrukciách:
– majú jednoduchú implementáciu, vyžadujú podporu hardvéru (sú závislé od architektúry),
– nezaručujú spravodlivosť,
– čakanie je (veľmi) neefektívne.

● Zámok implementovaný pomocou čakania v tesnej slučke sa nazýva spinlock.
– Nízkoúrovňový synchronizačný mechanizmus využívajúci opakované čakanie na splnenie

podmienky.
● Využívajú sa v multiprocesorových systémoch.

int lock = FALSE;

EnterCS() { while (TS(&lock)); }

LeaveCS() { lock = FALSE; }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 28/109

Ticket algoritmus

● Algoritmus pre vzájomné vylučovanie N procesov inšpirovaný
systémom čakania na poradie.
– Jednoduchá a efektívna implementácia.

● Vstupno-výstupný protokol:

int number = 1, next = 1;

EnterCS() {
<< turn = number++; >>
while(next != turn);

}

LeaveCS() { next++; }

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 29/109

Ticket algoritmus – vlastnosti

● Ticket algoritmus
– Obsahuje tiež kritickú oblasť (inkrement – odtrhnutie lístka, aby mal každý

jedinečné číslo). Vyžaduje špeciálnu inštrukciu (podpora HW), napríklad FA.

– Zaručuje spravodlivosť, prístup dodržiava poradie žiadostí.

– Pretečenie dátového typu int nepredstavuje problém, pokiaľ počet čakajúcich
nepresiahne jeho rozsah.

– Problém môže nastať pri zlyhaní procesu. Ostatní čakajú navždy.

– Zložitosť O(1), nezávisí od počtu procesov.

● Bakery algoritmus (Lamport, 1973)
– Využíva princíp ticket algoritmu. Ale nepotrebuje špeciálnu inštrukciu.

– Ak dva procesy dostanú rovnaké číslo, rozhodne o poradí ich jedinečné
identifikačné číslo (napr. PID). Zložitosť O(N).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 30/109

Bakery algoritmus

● Algoritmus pre vzájomné vylučovanie N procesov inšpirovaný
systémom čakania na poradie.

● Vstupno-výstupný protokol:

int number[N] = {0}, in[N] = {0};

EnterCS(int i) {
in[i] = TRUE;
number[i] = 1 + max(number); // not atomic
in[i] = FALSE;
for (j=0; j<N; j++) {

while(in[j]);
while(number[j]!=0 && (number[j]<number[i] ||

(number[j]==number[i] && j<i)));
}

LeaveCS(int i) { number[i] = 0; }

Obsadzujúce čakanie

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 32/109

Obsadzujúce čakanie

● Všetky predchádzajúce riešenia (čisto programové, aj s použitím špeciálnych inštrukcií)
majú spoločný problém.

● Čakanie v tvare: while(lock);
● Čakanie v slučke, v ktorej sa neustále číta hodnota z pamäti a vyhodnocuje podmienka.

– Procesor je zaneprázdnený (aktívnym) čakaním, pričom nevykonáva žiadnu užitočnú prácu –
obsadzujúce čakanie (busy waiting).

– Procesorový čas je spotrebovaný len na čakanie, teda aby sa nič nerobilo.

– Pritom v systéme môžu čakať procesy pripravené na vykonanie (ready).

● Ak v systéme s prioritným plánovaním takto čaká proces s vyššou prioritou, proces
s nižšou prioritou nedostane pridelený procesor, aby mohol kritickú oblasť opustiť.

● Ide o veľmi neefektívny spôsob čakania.
– Ak je však doba čakania krátka, môže to byť rýchlejšie než riešenie s podporou OS zahrňujúce

prepínanie kontextu.

– Navyše v jadre nemusia byť dostupné iné mechanizmy čakania, využívajúce plánovač.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 33/109

Multiprocesorové systémy

● Neustále čítanie (spoločnej premennej) z pamäti navyše zahlcuje
zbernicu.
– Keďže pre synchronizáciu je potrebné atomické vykonanie čítania pôvodnej

hodnoty a jej aktualizácie, špeciálna inštrukcia sa vykonáva s prefixom lock.

● Ostatné procesory, ktoré môžu vykonávať inú, nesúvisiacu činnosť, majú
tiež obmedzený prístup do pamäti.

● Jeden proces vykonávajúci obsadzujúce čakanie tak má výrazne
degradujúci vplyv na výkonnosť celého systému.
– Ak je čakajúcich procesov viacero, situácia bude ešte horšia.

– Obsadzujúce čakanie nie je dobre škálovateľné.

● Na druhej strane, v niektorých prípadoch to môže byť jediný dostupný
spôsob synchronizácie v multiprocesorových systémoch.

Semafory

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 35/109

Semafor (Dijkstra, 1968)

● Semafor je všeobecný synchronizačný mechanizmus.
– Nie len kritická oblasť, dá sa použiť aj na iné synchronizačné úlohy.

– Rieši väčšinu problémov a nedostatkov, pomerne ľahko sa používa.

● Hlavná výhoda:
– Odstraňuje obsadzujúce čakanie.

– Čakajúci proces bude v blokovanom stave (sleep/blocked).

– Nespotrebováva pri čakaní procesorový čas, neobmedzuje ostatných.

● Semafor je v podstate celé nezáporné číslo.
● Jeho hodnotu je možné meniť len dvomi atomickými operáciami.

– Jeho hodnotu nie je možné priamo zistiť.

● Realizácia si vyžaduje podporu OS.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 36/109

Operácie so semaforom

● Z programátorského hľadiska ide o abstraktný dátový typ.
– Atribúty: celé nezáporné číslo, rad čakajúcich procesov.

– Metódy: Init, Wait, Signal

● Init nastaví hodnotu semaforu na dané číslo.
● Operácie Wait a Signal najskôr vyhodnotia podmienku a potom vykonajú akciu.
● Wait, alebo Down, pôvodne P (Passeren)

– Ak je hodnota semaforu väčšia než nula, dekrementuje ju.

– Ak je to nula, volajúci proces sa uspí a zaradí do radu čakajúcich.

● Signal, alebo Up, pôvodne V (Vrijgeven)
– Ak je rad čakajúcich neprázdny, vyberie sa jeden proces a zobudí sa.

– Inak hodnotu semaforu inkrementuje.

● Obe operácie sú atomické. Ak sa operácia začne vykonávať, žiadny iný proces nemá
prístup k semaforu kým operácia neskončí (alebo nezablokuje v prípade Wait).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 37/109

Operácie so semaforom

struct semaphore {
int s;
queue q; /* isEmpty, initQueue,

enqueue, dequeue */
}

Init(int i) { s = i; initQueue(q); }

Wait() {
if (s > 0) s--;
if (s == 0) { enqueue(q, self); sleep(); }

}

Signal() {
if (!isEmpty(q)) { P = dequeue(q); wakeup(P); }
else s++;

}

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 38/109

Implementácia semaforu

● Operácie semaforu môžu byť volané viacerými procesmi súčasne.
● Semafor obsahuje tiež kritickú oblasť.

– Manipulácia s hodnotou, manipulácia s radom.

● Pre jeho implementáciu teda potrebujeme nejaký synchronizačný mechanizmus
nižšej úrovne.
– Napríklad špeciálne inštrukcie (aj na multiprocesorových systémoch).

– Ak semafory implementuje OS, môže použiť zakázanie prerušení (na jednoprocesorovom
systéme).

● Procesy majú prístup cez príslušné systémové volania.

● Podstatné je, že kritická oblasť v semafore je malá (inkrementácia, dekrementácia,
operácie s pointrami) v porovnaní s tým, ako dlho môže čakať proces na semafor.

● Potrebný je tiež mechanizmus OS umožňujúci uspať a zobudiť proces.
– Napríklad signály, alebo systémové volania ak sú semafory implementované v jadre.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 39/109

Invariant semaforu

● Operácia Wait môže volajúci proces zablokovať (uspať). Operácia Signal
nikdy neblokuje.

● Hodnota semaforu musí zostať vždy nezáporná.
– Ak by operácia Wait mala spôsobiť, že klesne pod nulu, musí byť volajúci

proces zablokovaný, kým nebude iným procesom zavolaná operácia Signal.

● Invariant semaforu: pW – pS ≤ I alebo pW ≤ pS + I
– I, počiatočná hodnota semaforu, nastavená operáciou Init,

– pS, počet vykonaných operácií Signal,

– pW, počet dokončených operácií Wait.

● Hodnota semaforu teda určuje, koľko operácií Wait sa vykoná bez toho,
aby bol volajúci proces zablokovaný.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 40/109

Typy semaforov

● Všeobecný semafor
– Hodnota semaforu (teoreticky) nie je zhora obmedzená.

– Definícia semaforu nepredpisuje, ktorý proces má byť z radu vybraný.
● Ak sa použije rad s prístupom FIFO, semafor bude spravodlivý.

● Binárny semafor
– Môže nadobudnúť len hodnotu 0 alebo 1.

– V podstate rovnaký, ako tzv. mutex.
● Nemusí sa však využívať len na vzájomné vylučovanie.

– Ak má semafor hodnotu 1 a príde Signal:
● ignoruje sa, vráti sa chyba, ukončí sa program, …

● Niektoré implementácie poskytujú tiež operácie ako trywait, timedwait, ...

Použitie semaforov

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 42/109

Vzájomné vylučovanie

● Ak bude počiatočná hodnota semaforu 1, len jeden proces bude
môcť vykonať Wait bez blokovania, kým iný proces nezavolá Signal.

● Vstupno-výstupný protokol:
– EnterCS() = Wait(), LeaveCS() = Signal().

semaphore mutex;
Init(mutex, 1);

EnterCS() {
Wait(mutex);

}

LeaveCS() {
Signal(mutex);

}

ProcessP() {
while(1) {

Wait(mutex);
UseResource();
Signal(mutex);

}
}

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 43/109

Ďalšie možnosti využitia

● Prístup k viacnásobnému prostriedku
– Ak je k dispozícii viacero inštancií prostriedku (R), respektíve ak R

procesov môže prostriedok využívať súčasne, počiatočná hodnota
semaforu sa nastaví na R.

● Synchronizácia vykonávania procesov
– Proces čaká na nejakú udalosť alebo situáciu, ktorá závisí od iného

procesu.

– Počiatočná hodnota semaforu sa nastaví na nulu.

– Čakajúci proces zavolá Wait. Keď nastane potrebná situácia, druhý
proces zavolá Signal, čím umožní prvému procesu pokračovať.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 44/109

Precedenčný graf

● Precedenčný graf (process flow graph) vyjadruje poradie vykonania
procesov.
– Orientovaný acyklický (multi) graf, hrany vyjadrujú vykonanie procesu.

– Každá cesta v grafe vyjadruje možné vykonanie, pričom poradie hrán
vyjadruje vzájomné poradie vykonania procesov.

– Procesy zodpovedajúce hranám vystupujúcim z vrcholu sa môžu začať
vykonávať až keď sú všetky procesy zodpovedajúce vstupujúcim
hranám ukončené.

● Precedenčný graf reprezentuje reláciu čiastočného usporiadania.
● Ak niektorá dvojica procesov nie je v relácii znamená to, že sa môžu

vykonať v ľubovoľnom vzájomnom poradí, respektíve súbežne.

S F S F
P1 P2 P2

P3

P1

P3
Sekvenčné
(P1; P2; P3)

Paralelné
(P1|P2|P3)

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 45/109

Príklad: Synchronizácia

● Napísať kostry programov pre nasledujúce vykonanie procesov,
s použitím minimálneho počtu semaforov:

 a) všeobecných, b) binárnych.
S

P1

P3

P2 P4

F
P5

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 46/109

Príklad: Synchronizácia

● Napísať kostry programov pre nasledujúce vykonanie procesov,
s použitím minimálneho počtu semaforov:

 a) všeobecných, b) binárnych.
S s1

s2

s3
P1

P3

P2 P4

P1() {
Work1();
Signal(s1);
Signal(s1);

}

P2() {
Wait(s1);
Work2();
Signal(s2);

}

F
P5

P3() {
Wait(s1);
Work3();
Signal(s3);

}

P4() {
Wait(s2);
Work4();
Signal(s3);

}

s1=s2=s3=0;

P5() {
Wait(s3);
Wait(s3);
Work5();

}


DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 47/109

Buffer pevnej dĺžky

● Buffer – prostriedok pre asynchrónnu komunikáciu procesov. Vyrovnáva rôzne
rýchlosti zápisu a čítania.

● Môže byť implementovaný ako abstraktný dátový typ.
– Pamäť, rad pevnej dĺžky typu FIFO + operácie Send a Receive

● Rad je spoločný. Operácie môžu byť volané súbežne, rôznymi procesmi.
– Obsahujú kritickú oblasť.

● Čo sa stane, ak chce proces zapísať a nie je voľné miesto?
● Čo sa stane, ak chce proces čítať, ale rad je prázdny?
● Pri implementácii je potrebná synchronizácia.

– Operácia Send sa môže bez blokovania vykonať toľkokrát, koľko je voľného miesta.

– Operácia Receive sa môže bez blokovania vykonať toľkokrát, koľko je v rade
položiek.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 48/109

Implementácia buffera (semafory)

Send(message msg) {
Wait(empty);
Wait(mutex);
enqueue(q, msg);
Signal(mutex);
Signal(full);

}

Receive(message *msg) {
Wait(full);
Wait(mutex);
*msg = dequeue(q);
Signal(mutex);
Signal(empty);

}

struct buffer {
semaphore full, empty, mutex;
queue q;

}

CreateBuffer(int N) {
Init(full, 0);
Init(empty, N);
Init(mutex, 1);
initQueue(q, N);

}

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 49/109

Producent – konzument

● Implementácia komunikácie procesov pomocou radu pevnej dĺžky
rieši problém typu producent – konzument.

● Jeden proces dáta vytvára a zapisuje, druhý ich číta a spracováva.
– Producentov aj konzumentov môže byť aj viac.

● Efektívne znovupoužitie uvoľneného miesta → kruhový buffer.
● OS typu Unix implementujú kruhový buffer, pričom vloženie a

odobranie dát je realizované súborovými operáciami (read/write).
– Dátovod (pipe) slúži na komunikáciu dvoch procesov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 50/109

Problém obedujúcich filozofov (Dijkstra, 1965)

● Príklad: Na stole je v kruhu 5 tanierov a 5 vidličiek. Za stolom sedí 5
filozofov, ktorí striedavo premýšľajú a jedia.

● Filozof potrebuje na jedenie vždy dve vidličky. Po premýšľaní, keď
vyhladne, pokúsi sa vziať ľavú a pravú vidličku. Potom môže jesť.

● Keď doje, obe vidličky položí späť na stôl.
● Analógia: Máme 5 procesov ktoré súťažia o obmedzené zdroje.
● Návrh 1: Filozof počká na ľavú vidličku, potom na pravú vidličku.

– Problém: …

● Návrh 2: Filozof počká na ľavú vidličku, ak je pravá obsadená, ľavú
položí a skúsi znova.
– Problém: ...

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 51/109

Problém obedujúcich filozofov – riešenia

● Návrh 3: Jeden z filozofov môže brať vidličky v opačnom poradí.
● Návrh 4: Nechať súťažiť o vidličky vždy len 4.
● Návrh 5: Filozof môže jesť len ak ani jeden jeho sused práve neje.

– Test predstavuje kritickú oblasť → použijeme mutex.

– Spoločná premenná pre každého filozofa: stav (thinking, hungry, eating).

– Pred začatím jedenia sa počká na semafor ktorý indikuje, či sú obe
vidličky voľné (ani jeden sused neje).

● Ak nie, hladný filozof čaká.
● Každý kto skončí skontroluje, či jeho susedia sú hladní. A ak áno, či aj ich

druhý sused je.

– Ani toto riešenie (Tanenbaum) nie je bez problémov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 52/109

Riešenie 4

semaphore chair = N-1;
semaphore fork[N] = {1};

Philosopher (int i) {
think();
Wait(chair); /* take a seat */
Wait(fork[i]); /* take left */
Wait(fork[(i+1)%N]); /* take right */
eat();
Signal(chair);
Signal(fork[i]);
Signal(fork[(i+1)%N]);

}

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 53/109

Problém: Readers / Writers

● K spoločnému prostriedku (pamäti, alebo databáze) smie mať
prístup alebo jeden zapisujúci proces, alebo viacero čítajúcich.
– Prítomnosť zapisujúceho procesu vylučuje všetky ostatné procesy.

– Prítomnosť čítajúceho procesu vylučuje prítomnosť zapisujúceho, ale
nie ďalších čítajúcich.

● Výlučné je len zapisovanie.
● Je potrebné zabezpečiť vzájomné vylučovanie nie medzi všetkymi

procesmi, ale medzi dvomi skupinami procesov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 54/109

Riešenie (semafory)

Reader() {
Wait(mutex);
n_readers++;
if (n_readers==1)

Wait(wr);
Signal(mutex);
do_read();
Wait(mutex);
n_readers--;
if (n_readers==0)

Signal(wr);
Signal(mutex);

}

semaphore mutex = 1;
semaphore wr = 1;
int n_readers = 0;

Writer() {
Wait(wr);

do_write();

Signal(wr);
}

● mutex chráni počítadlo n_readers, počet čítajúcich (čaká sa krátko).
● wr (v podstate tiež mutex), zamkne a odomkne každý zapisujúci, ale len

prvý čítajúci proces (čakanie môže trvať dlho).
● Nezaručuje spravodlivosť, čítania sú uprednostňované.

Podmienené premenné

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 56/109

Podmienené premenné

● Vzájomné vylučovanie neumožňuje situáciu, kedy by mal proces čakať (v kritickej
oblasti) na splnenie nejakej podmienky.
– Zablokovanie v kritickej oblasti prakticky znamená uviaznutie.

● Podmienené premenné umožňujú procesu ktorý zamkol zámok čakať, pričom tento
zámok bude počas čakania uvoľnený a keď sa proces zobudí, zámok bude opäť
zamknutý.
– Operácia CondWait(condition, lock);

– Umožňuje (atomicky) uvoľniť zámok a zablokovať volajúci proces.

● Keď iný proces zmení podmienku, zobudí niektorý z procesov čakajúcich na túto
podmienku
– Ak nikto nečaká, nič sa nestane. Signál sa stratí.

– Volajúci musí mať vopred zamknutý ten istý zámok, ktorý predtým zamkol čakajúci proces.

– CondSignal(condition); CondBroadcast(condition);

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 57/109

Konečný rad (podmienené premenné)

semaphore mutex = 0; queue q;
condition cond; int count = 0;

Send(message msg) {
Wait(mutex);
while(count >= N)

CondWait(cond, mutex);
enqueue(q, msg);
count++;
CondBroadcast(cond);
Signal(mutex);

}

Receive(message *msg) {
Wait(mutex);
while(count == 0)

CondWait(cond, mutex);
msg* = dequeue(q);
count--;
CondBroadcast(cond);
Signal(mutex);

}

● Keď je proces zablokovaný v CondWait, mutex je uvoľnený.
● Po prebudení z CondWait nie je zaručené, že podmienka je splnená.
● Ak by bolo producentov a konzumentov viac, dochádzalo by k zbytočnému

prebudeniu
– Riešením by boli dve podmienené premenné, zvlášť pre obsadené a voľné miesto.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 58/109

Synchronizácia v knižnici pthread

● Knižnica poskytuje mutex:
– int pthread_mutex_lock(pthread_mutex_t *mutex);

– int pthread_mutex_trylock(pthread_mutex_t *mutex);

– int pthread_mutex_unlock(pthread_mutex_t *mutex);

● a podmienené premenné:
– int pthread_cond_wait(pthread_cond_t *restrict cond,

 pthread_mutex_t *restrict mutex);

– int pthread_cond_broadcast(pthread_cond_t *cond);

– int pthread_cond_signal(pthread_cond_t *cond);

Implementácia rýchlych zámkov

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 60/109

FUTEX (Fast Userspace Mutex)

● Systémové volanie umožňujúce procesu čakať na zmenu hodnoty na danej adrese.
– Využíva sa na implementáciu zámkov a semaforov (napríklad pthread_mutex).

● int futex(int *uaddr, int op, int val, const struct timespec
*timeout, int *uaddr2, int val3);

– FUTEX_WAIT, ak sa hodnota na adrese uaddr rovná val, volajúci proces sa uspí.

– FUTEX_WAKE, zobudí najviac val procesov čakajúcich na adresu uaddr.

● FUTEX je identifikovaný adresou v (spoločnej) pamäti.
– Pre toto volanie sú rovnaké adresy v rôznych procesoch zhodné.

● V prípade, že je zámok voľný, systémové volanie nie je potrebné. Podobne v prípade
uvoľnenia, ak ešte nikto nečaká. V týchto prípadoch je to rýchle.
– Na atomické prečítanie pôvodnej hodnoty a zamknutie alebo uvoľnenie sa môžu využiť

špeciálne inštrukcie, napríklad CMPXCHG, FA.

– Tento prípad je štatisticky pomerne častý, úspory môžu byť veľké (napr. semop syscall).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 61/109

Príklad: Zámok (FUTEX)

int lock = 0; /* 0 - free, 1 – locked by only 1,
2 - locked and waiting */

Lock() {
int old = 0; CSW(&old, 1, &lock);
if (old) { /* already locked */

do {
lock = 2; / atomic */
futex(&lock, FUTEX_WAIT, 2);
old = 0; CSW(&old, 2, &lock);

} while(old);
}

}

Unlock() {
if (FA(&lock, -1) != 1) {

*lock = 0;
futex(&lock, FUTEX_WAKE, 1);

}
}

int CSW(int *a, int b, int *c) { <<
if (*a==*c) { *c=b; return 0; }

else { *a=*c; return 1; } >> }

IPC v prostredí OS typu Unix

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 63/109

IPC štandardy

● Existujú odlišné štandardy – a aj implementácie – podobných
mechanizmov
– správy, semafory, zdieľaná pamäť.

● System V – staršia (pôvodná) špecifikácia, veľa rozšírených
implementácií, dostupné (takmer) na každom systéme.
– zložitejšie rozhranie.

● POSIX – novší štandard (nemá úplnú podporu všade)
– thread-safe,

– jednoduchšie rozhranie,

– nové možnosti (notifikácia).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 64/109

Semafory – System V

● #include <sys/sem.h>, príkazy: ipcs, ipcrm
● int semget(key_t key, int nsems, int semflg)

– vráti identifikátor na pole obsahujúce nsems semaforov pre daný kľúč (ftok())
● int semop(int semid, struct sembuf *sops, unsigned nsops)

– urobí danú operáciu na nsops semaforov naraz (alebo vôbec),
● struct sembuf

 { unsigned short sem_num; short sem_op; short sem_flg; }

– kladné: pripočíta sa k hodnote semaforu, nikdy neblokuje,

– nula: ak hodnota semaforu nie je 0, blokuje kým nebude 0,

– záporné: odpočíta ak sa dá, inak blokuje.

● Sú to systémové volania (semget, semop, semctl).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 65/109

Semafory – POSIX

● #include <semaphore.h>

● pomenované: sem_open(), sem_close(), sem_unlink(),
● nepomenované: sem_init(), sem_destroy(),

– musia byť umiestnené v spoločnej pamäti,

● sem_getvalue(), sem_wait(), sem_trywait(), sem_post()
● efektívnejšie, operácie s jedným semaforom,
● zvyčajne dostupné cez súborový systém /dev/shm

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 66/109

Zdieľaná pamäť

● System V
– int shmget(key_t key, size_t size, int shmflg)

● vráti ID nového alebo existujúceho segmentu zdieľanej pamäte
s daným kľúčom,

– void * shmat(int shmid, const void *shmaddr, int
shmflg)

● namapuje zdieľaný segment shmid na adresu shmaddr,

– ďalšie operácie: shmdt(), shmctl().

● POSIX
– shm_open(), shm_unlink(),

– implementácia založená na mmap().

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 67/109

Správy (message queues)

● System V
– msgget(), msgsnd(), msgrcv(), msgctl(), msgop()

– typ správy – struct msgbuf {long mtype; char mtext[1]; };

● POSIX
– mq_open(), mq_close(), mq_unlink(), mq_send(),

mq_receive(), mq_notify(), mq_setattr(), mq_getattr()

– notifikácia (NONE, SIGNAL, THREAD),

– priority; správy sú doručované v poradí priorít.

Zasielanie správ

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 69/109

Vlastnosti zasielania správ

● Komunikácia medzi procesmi prostredníctvom spoločnej pamäte môže byť zložitá.
● Korektné použitie semaforov pre synchronizáciu nie je priamočiare.

– Operácie so sémantikou wait a signal nie sú pre komunikáciu prirodzené.

● Monitory tieto nedostatky odstraňujú, používajú sa jednoduchšie. Nie sú však
podporované v mnohých jazykoch.

● Zasielanie správ predstavuje mechanizmus komunikácie pomocou funkcií
send(destination, &message) a receive(source, &message).
– Sémantika je jasná. Operácie explicitne vyjadrujú komunikáciu.

– Zdroj a cieľ predstavujú adresy pričom nemusia zodpovedať jedinému uzlu.

– Zdroj nemusí byť určený (ANY), cieľ môže zodpovedať viacerým (BROADCAST).

● Zasielanie správ môže byť na rozdiel od spoločnej pamäte implementované aj medzi
procesmi na rôznych uzloch (rôznych OS).
– Aj formou knižnice, napríklad MPI (Message Passing Interface), PVM (Parallel Virtual Machine).

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 70/109

Adresovanie

● Komunikácia môže byť priama, alebo nepriama.
● Priama – adresa špecifikuje konkrétny komunikujúci proces.
● Nepriama – adresa špecifikuje miesto (schránku) na ktoré budú správy

ukladané a z ktorého budú čítané.
– Komunikuje sa cez tzv. schránky (mailbox).

– Schránky môžu mať (konečnú) kapacitu pre viac správ (buffer).

– Príkladom môžu byť aj dátovody.

● Správy, ktoré boli odoslané ale neboli ešte prijaté uchováva operačný systém.
– Z praktického hľadiska môže byť implementácia správneho uvoľňovania správ

problematická. Vysielajúci proces nemusí mať istotu, že dáta už boli doručené.

– Kto a kedy má uvoľniť správu? Vysielajúci môže, ale nevie kedy. Prijímajúci vie
kedy, ale nemá priamo prístup k dátam vo vysielajúcom procese.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 71/109

Príklad: Producent – konzument (zasielanie správ)

● Producent – konzument, priama komunikácia:
– Konzument pošle producentovi toľko prázdnych správ, koľko správ

s dátami môže prijať .

– Keď má producent pripravenú správu pre konzumenta, prijme
(spracuje) prázdnu správu a pošle správu s dátami.

● Producent – konzument, komunikácia prostredníctvom schránok:
– Pri použití schránok je ukladanie správ priamočiare.

– Producent aj konzument si vytvoria schránky pre N správ.

– Producent posiela správy s dátami do schránky konzumenta. Ten
posiela prázdne správy do schránky producenta.

– Správy ktoré ešte neboli prijaté zostávajú v schránke.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 72/109

Synchronizácia prenosu

● Operácie vysielania a prijímania môžu byť blokujúce, alebo neblokujúce.
● Blokujúce prijímanie – ak operácia prijímania predchádza vyslanie správy

ktorá má byť prijatá, zostane zablokovaná (bude čakať).
● Blokujúce vysielanie – operácia vysielania správy zablokuje volajúci proces,

až kým prijímajúci proces nezavolá zodpovedajúcu operáciu receive.
● Neblokujúca operácia sa vráti hneď, bez ohľadu na druhú stranu.

– Návratová hodnota môže indikovať stav operácie.

● Typicky sa využíva najmä:
– Blokujúci receive a neblokujúci send.

– Blokujúci receive a blokujúci send → tzv. rendezvous (vzájomné čakanie).

– Neblokujúci receive a neblokujúci send.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 73/109

Ďalšie problémy zasielania správ

● Veľkosť správ.
– Pevná vs. premenlivá.

● Konverzia formátu prenášaných dát.
– Napr. little endian vs. big endian.

● Poradie doručovania a prioritizácia správ.
● Spoľahlivosť prenosu.

– Preusporiadanie správ pri prenose sieťou.

– Potvrdzovanie doručenia. Znovuposielanie.

● Autentifikácia.
– Kto smie prijímať správy.

Sokety

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 75/109

Soket

● Koncový bod komunikácie.
– soket = (adresa, port)

– spojenie = (protokol, soket_zdroj, soket_ciel)

● Doména soketu: Unix (IPC) AF_UNIX, Internet (network) AF_INET,
AF_INET6, ...

● Typ soketu: SOCK_DGRAM, SOCK_STREAM, SOCK_RAW.
● Protokol: IPPROTO_TCP, IPPROTO_UDP, väčšinou stačí 0.
● Soket je z programátorského hľadiska číslo (typ int), podobne ako

deskriptor súboru, alebo dátovod.
● Podobne sa aj používa: read(), write(), close(), ...

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 76/109

Operácie – spoločné

● Vytvorenie soketu, vráti deskriptor (číslo)
– int socket(int family, int type, int protocol);

● Zviazanie soketu s lokálnou adresou a portom
– int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

– Argumenty udávajú lokálnu (zdrojovú) adresu.

– Klientská aplikácia túto operáciu nemusí použiť.

– Zdrojový port v tom prípade nastaví systém.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 77/109

Operácie – server

● Nastaviť soket na čakanie na prichádzajúce spojenia (listening)
– int listen(int socket_file_descriptor, int backlog);

● Prijatie prichádzajúceho spojenia (connected)
– int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

– Čaká (zablokuje volajúci proces), kým nepríde spojenie. Soket môže
byť nastavený ako neblokujúci. Je možné použiť aj volanie select().

– Vráti deskriptor na nový soket v stave connected, z ktorého je možné
čítať a zapisovať doň.

– Pôvodný soket zostane nezmenený, v stave listening, a naďalej čaká na
nové spojenia. Bežne sa po accept() robí fork().

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 78/109

Operácie – klient

● Nadviazanie spojenia
– int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

● Argumenty udávajú cieľovú adresu (prípadne port), teda adresu
servera.

● Po tom, ako sa na strane servera ukončí operácia accept() a na
strane klienta connect(), môžu byť prenášané dáta.

● Soket je možné použiť na čítanie a zápis.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 79/109

Operácie – prenos dát a iné

● So soketom je možné použiť bežné operácie read() a write().
● Pre datagramy:

– send(), sendto(), sendmsg(), recv(), recvfrom(), recvmsg()

● Ukončenie spojenia
– shutdown() - čítanie, zápis, oboje; close() - zrušenie soketu.

● Čítanie a nastavenie vlastností soketu:
– getsockopt(), setsockopt().

● Pomocné funkcie: htonl(), ntohl(), ...

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 80/109

Príklad: Komunikácie cez sokety

int clnt_s = socket(…);
// bind(clnt_s,…);
connect(clnt_s,

srvr_addr, srvr_port);

send(clnt_s,…);
…

recv(clnt_s,…);

close(clnt_s);

int lstn_s = socket(…);
bind(lstn_s,

srvr_addr, srvr_port);
listen(lstn_s);

srvr_s = accept(lstn_s,…);
recv(srvr_s,…);

…
send(srvr_s,…);

close(srvr_s);
close(lstn_s);

● clnt_s a srvr_s tvoria spolu spojenie na prenos dát (connected).
● lstn_s – soket, na ktorom server čaká na nové spojenia (listening).
● srvr_addr, srvr_port – adresa servera na ktorú sa klient pripája.
● Operácia accept čaká na príchod spojenia, potom vráti nový soket.

ServerKlient

Signály

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 82/109

Signály

● Signál je asynchrónne doručená informácia o tom, že nastala nejaká udalosť.
● Podobajú sa prerušeniam. Generujú sa programovo.

– Po doručení signálu procesu sa jeho vykonávanie preruší, kým sa signál
neobslúži. Potom pokračuje tam, kde bol prerušený.

● Signál typicky posiela jeden proces inému.
– V niektorých prípadoch môže signál procesu zaslať aj OS.

● Signálov je viacero typov, rozlišujú sa číslom.
● Každý typ signálu má priradenú akciu, ktorá sa má vykonať po jeho doručení.

– Napríklad ukončenie procesu, alebo vykonanie zvolenej funkcie (handler).

● So signálom môže byť spojené aj malé množstvo prenášaných dát.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 83/109

Zaslanie signálu

● Systémové volanie pre zaslanie signálu (komu, aký):
– int kill(pid_t pid, int sig);

● Proces posielajúci signál na to musí mať práva
– len vlastník, alebo root.

● Proces alebo vlákno môže poslať signál sám sebe:
– int raise(int sig);

● Na signál je možné čakať (v zablokovanom/uspanom stave):
– pause(), sigsuspend(), sigtimedwait()

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 84/109

Blokovanie signálu

● Každý proces má definovanú masku (signal mask) a jednotlivé signály môžu byť
(dočasne) blokované.
– SIGKILL a SIGSTOP nemôžu byť blokované (ignorujú masku).

● Ak príde signál ktorý má byť blokovaný, nestratí sa. Je pridaný do radu signálov
čakajúcich na obslúženie (pending signal).

● Signál ktorý sa práve obsluhuje je automaticky blokovaný.
– Uľahčuje to písanie funkcií obsluhujúcich signály.

– Ak však jedna funkcia (handler) obsluhuje rôzne signály, môže sa stať že bude počas
svojho vykonávania zavolaná znova.

● Signál môže prísť aj keď proces vykonáva systémové volanie.
– Toto môže byť prerušené a skončí sa s kódom (chybou) EINTR,

– alebo môže byť reštartované po dokončení obsluhy signálu, ak bol handler nastavený
s príznakom SA_RESTART. Toto však nie je možné pre všetky systémové volania.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 85/109

Signály generované jadrom

● Signál môže v istých prípadoch vygenerovať aj jadro.
– Väčšinou je to reakcia OS na výnimku, čiže chybový stav HW, ktorý spôsobil proces svojím vykonávaním,

– alebo na situáciu keď proces nemôže pokračovať ďalej.

● SIGSEGV – segmentation violation
– väčšinou pri prístupe do pamäti na zlú (neplatnú, neexistujúcu, nealokovanú) adresu.

● SIGILL – illegal instruction
– z pamäte inštrukcií procesor prečítal hodnotu ktorá nezodpovedá žiadnej inštrukcii.

● SIGBUS – bus error,
● SIGFPE – floating point exception,
● SIGPIPE – proces zapisuje do zatvoreného dátovodu,
● SIGSTOP – pri zápise do plného buffer-a dátovodu,
● SIGCHLD – rodičovský proces dostane tento signál, ak jeho potomok zmení stav.

– Ak skončí alebo je zablokovaný; ak dostane SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 86/109

Akcie signálu

● Proces môže na jednotlivé signály reagovať rôzne.
● Bežné akcie sú:

– Term – terminate, ukončenie procesu,

– Ign – ignore, ignorovanie signálu, bude zahodený,
● Ignorovanie signálov SIGFPE, SIGILL, SIGSEGV, SIGBUS vedie

k nedefinovanému správaniu procesu.

– Core – ukončenie procesu a vytvorenie súboru s obrazom jeho pamäte
(core dump),

– Stop – zastavenie volajúceho procesu (prejde do stavu T),

– Cont – pokračovanie procesu, ak bol zastavený.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 87/109

Obsluha signálu

● Proces môže na jednotlivé signály nastaviť vlastnú obslužnú rutinu,
ktorá sa vykoná po príchode daného signálu.

● Systémové volanie:
– int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);

● Štruktúra sigaction obsahuje aj pointer na novú obslužnú funkciu.
● Obslužná funkcia (signal handler) musí byť reentrantná. Ak nie je

nastavené inak, vykonáva sa so zásobníkom procesu prijímajúceho
signál.

● Signály SIGKILL, SIGSTOP nemôžu byť procesom zachytené, blokované
alebo ignorované a nie je možné zmeniť ich štandardnú akciu.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 88/109

Sigaction

● Tretí argument pre sa_sigaction() je na linux-e typu ucontext_t.
● Umožňuje napríklad zistiť hodnoty registrov v čase príchodu signálov, ktoré sú

dôsledkom výnimiek.
– Napríklad, ak štruktúru nazveme context, register PC (resp. IP) je dostupný ako
– ((ucontext_t*)context)->uc_mcontext.gregs[REG_PC]

● Prečítať man 2 sigaction, man 7 signal.

int struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 89/109

Siginfo

siginfo_t {
int si_signo; /* Signal number */
int si_errno; /* An errno value */
int si_code; /* Signal code */
int si_trapno; /* Trap number that caused

hardware-generated signal
(unused on most architectures) */

pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
int si_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
sigval_t si_value; /* Signal value */
int si_int; /* POSIX.1b signal */
void *si_ptr; /* POSIX.1b signal */
int si_overrun; /* Timer overrun count; POSIX.1b timers */
int si_timerid; /* Timer ID; POSIX.1b timers */
void *si_addr; /* Memory location which caused fault */
long si_band; /* Band event (was int in

glibc 2.3.2 and earlier) */
int si_fd; /* File descriptor */
short si_addr_lsb; /* Least significant bit of address

(since Linux 2.6.32) */
}

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 90/109

Zoznam signálov

$kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 91/109

Použitie signálov

● Používajú sa hlavne na synchronizáciu procesov.
● Funkcia alarm() zabezpečí, že volajúci proces dostane signál

SIGALRM po uplynutí zadaného času.
– unsigned int alarm(unsigned int seconds);

– Funkcia sleep() môže byť takto implementovaná.

● Signál USR1 pre príkaz dd spôsobí, že vypíše štatistiky (na stderr)
a pokračuje.

● Signál HUP pre démon sshd spôsobí, že znovu načíta svoj
konfiguračný súbor.

Súbežné operácie

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 93/109

Blokujúce a neblokujúce operácie

● Blokujúca operácia sa po zavolaní nevráti, pokiaľ nie je ukončená.
– I/O operácie; čakanie na dáta z disku/na disk, zasielanie správ cez sieť; alokácia pamäte (), etc ...

● Ak požadované dáta nie sú pripravené, operácia (read/recv) blokuje vykonávanie procesu,
pokiaľ nebudú.

● Pri čakaní nespotrebováva čas, proces však stojí (nevie ako dlho) a nemôže vykonávať nič iné.
● Akonáhle sú dáta k dispozícii a operácia môže byť dokončená, OS opäť naplánuje vykonávanie

tohoto procesu, ktorý operáciu vyvolal.
● Neblokujúca operácia - ak požadovanú operáciu nie je možné vykonať, vráti chybový kód,

vykonávanie však pokračuje ďalej,
– operáciu je možné opakovať neskôr znova = polling,

– opakované vykonanie operácie keď dáta nie sú pripravené je zbytočné (neužitočná réžia),

– umožňuje však vykonávať počas čakania inú činnosť.

● Riešenie – viacvláknové procesy
– komunikujúce vlákno môže byť blokované pokiaľ neprídu dáta, ostatné môžu zatiaľ pracovať.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 94/109

Asynchrónne operácie

● Ich vykonanie nie je závislé (resp. odvodené) od vykonávania iných operácií,
– napríklad obslužné rutiny (handler, callback) prerušení, výnimiek, signálov.

● Operácia (vykonávaná v kontexte nejakého procesu) je asynchrónna (vzhľadom k
tomuto procesu) ak jej vykonanie (spustenie) od tohoto procesu nezávisí.

● Na asynchrónne operácie však môžu byť kladené zvláštne implementačné nároky –
reentrantnosť.

● To, či je operácia blokujúca alebo nie, závisí len od jej implementácie.
– Pohľadom na implementáciu vieme vždy rozhodnúť, či je operácia (potenciálne)

blokujúca, alebo nie.

– V praktických prípadoch je možné konkrétne správanie nastaviť príznakom.

● To, či je operácia asynchrónna je otázkou spôsobu jej použitia (nie jej vnútornej
implementácie)
– ide o to kedy, resp. ako, dochádza k spusteniu operácie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 95/109

Reentrantnosť vs. thread-safety

● Reentrantnosť (reentrancy, signal-safety)
– funkcia môže byť počas vykonávania zavolaná znova, bez ovplyvnenia korektnosti výsledkov,

– funkcia teda musí byť bez následkov spustiteľná viackrát, v rámci toho istého kontextu.

● Bezpečnosť vykonávania vláknami (thread-safety)
– funkcia môže byť vykonávaná súbežne viacerými vláknami, bez ovplyvnenia správnosti

výsledkov,

– musí byť spustiteľná viackrát súbežne, v rôznych kontextoch.

● Vlastnosť “thread-safety” sa dá zabezpečiť doplnením synchronizačných mechanizmov
pri prístupe k spoločným dátam (zmenou implementácie).
– Použitie synchronizačných funkcií v reentrantných funkciách môže viesť k uviaznutiu.

● Pre zabezpečenie reentrantnosti môže byť potrebné zmeniť nielen implementáciu, ale
aj rozhranie funkcie.

● Reentrantnosť je silnejšia požiadavka, implikuje thread-safety, nie naopak.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 96/109

Požiadavky reentrantnosti

● Nutné podmienky kladené na reentrantnú funkciu:

1) neobsahuje globálne (nekonštantné) dáta,

2) nevracia pointer na statické nekonštantné dáta,

3) pracuje len s dátami od volajúceho,

4) neblokuje prístup k jedinečnému zdroju (singleton),

5) nevolá iné nereentrantné funkcie.

● Reentrantné funkcie je možné používať v obsluhe signálov.
– Napríklad write() áno, printf() nie.

– Nie je možné použiť nič čo volá malloc()/free().

Dátovody (nepomenované)

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 98/109

Dátovody

● Dátovod (pipe) predstavuje jednosmerný kanál pre komunikáciu medzi dvoma
procesmi.

● Má dva konce reprezentované deskriptormi súborov.
● Volanie pipe() alokuje buffer v jadre a vráti dva deskriptory súborov, jeden

pre zápis, druhý pre čítanie.
– Oba však vráti tomu istému, hoci každý koniec by mal byť použitý iným procesom

(jeden zapisuje, druhý číta).

– Ako dostať deskriptor dátovodu do iného procesu?

● Dáta ktoré sa do dátovodu zapíšu zostanú uložené v jadre až kým nie sú
z druhého konca prečítané.

● Pre zápis a čítanie sa používajú volania write() a read(), ako na súbory.
● Dátovod má konečnú kapacitu. Operácie čítania a zápisu sa môžu zablokovať.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 99/109

Vytvorenie dátovodu

● Ak proces vytvorí dátovod, má otvorené oba jeho konce.
– Volanie pipe() vytvorí záznamy priamo v tabuľke otvorených súborov a vráti ich deskriptory

(indexy).

– Neexistujú však názvy týchto súborov, ktoré by bolo možné použiť na ich otvorenie (získanie
deskriptora) v inom procese.

● Dátovody vytvorené volaním pipe() sú nepomenované (anonymné) a preto je možné ich
použiť len medzi rodičom a potomkom.
– Poznámka: Existujú aj pomenované dátovody reprezentované špeciálnym súborom, mkfifo().

● Pri vytvorení nového procesu sa skopíruje tabuľka otvorených súborov a teda aj nový proces
bude mať otvorené oba tieto konce.

● Každý z dvojice procesov zavrie nepotrebný koniec.
– Proces, ktorý bude zapisovať zavrie čítací koniec a naopak.

– Bez toho by nebolo možné zistiť či už proces na druhej strane skončil a mohlo by dôjsť k čakaniu
na dáta, ktoré neprídu.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 100/109

Zatvorenie nepotrebného konca dátovodu

● Každý z dvojice procesov zavrie nepotrebný koniec.
– Proces, ktorý bude zapisovať zavrie čítací koniec a naopak.

● Ak proces zapíše do dátovodu ktorého čítací koniec nie je otvorený, napríklad
čítajúci proces sa už ukončil, zapisujúci proces dostane signál (SIGPIPE).

● Ak by zapisujúci proces nechal otvorený aj čítací koniec dátovodu, v prípade
ukončenia čítacieho procesu by OS nevedel, že má pri zápise poslať SIGPIPE.
– Po naplnení buffera by zostal zapisujúci proces zablokovaný. A keďže by nemohol

zároveň čítať a tak uvoľniť miesto, nastalo by uviaznutie.

● Operácia čítania z dátovodu so zatvoreným zapisovacím koncom vráti EOF.
– Čítajúci proces môže zistiť, že čítanie môže ukončiť.

● Ak by zapisovací koniec zostal naďalej otvorený v čítajúcom procese, čítanie by
zostalo zablokované, hoci žiadne dáta už nebudú dostupné.
– Keďže čítajúci proces je zablokovaný, nemôže zároveň zapísať → uviaznutie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 101/109

Príklad: Použitie dátovodu

int fd[2], child_pid, n;

pipe(fd);

child_pid = fork();
if (child_pid == 0)
{ /* child process */

char buf[SIZE];
close(fd[1]); /* close write end */
n = read(fd[0], &buf, SIZE); /* read from pipe */
printf(“%s”, buf);

}
else
{ /* parent process */

char msg[] = “Hello from parent!\n”;
close(fd[0]); /* close read end */
write(fd[1], &msg, sizeof(msg)); /* to pipe */
wait(); /* wait for child */

}

pipe(fd)
|

fork()

 close(fd[0]) close(fd[1])
 write(fd[1]) read(fd[0])

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 102/109

Príklad: Použitie dátovodu, tabuľka súborov (pipe)

refcount seek mode inode
0
1
2
3
4
5

 1 0 r

 1 0 w

System file table

/dev/tty 2 0 w

 1 0 r

Process A descriptor table

pipe(fd);
fd → {3, 4}

fork();
→ pid_B

close(3);
write(4, …);

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 103/109

Príklad: Použitie dátovodu, tabuľka súborov (fork)

refcount seek mode inode
0
1
2
3
4
5

 2 0 r

 2 0 w

pipe(fd);
fd → {3, 4}

fork();
→ pid_B

close(3);
write(4, …);

System file table

/dev/tty 4 0 w

 2 0 r

0
1
2
3
4
5

fork();
→ 0

close(4);
read(3, ...);

Process A descriptor table

Process B descriptor table

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 104/109

Príklad: Použitie dátovodu, tabuľka súborov (close)

refcount seek mode inode
0
1
2
3
4
5

 1 0 r

 1 0 w

pipe(fd);
fd → {3, 4}

fork();
→ pid_B

close(3);
write(4, …);

System file tableProcess A descriptor table

/dev/tty 4 0 w

 2 0 r

0
1
2
3
4
5

fork();
→ 0

close(4);
read(3, …);

Process B descriptor table

closed

closed

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 105/109

Štandardný vstup a výstup procesu

● Typické použitie dátovodu predstavuje napríklad spojenie štandardného
výstupu jedného procesu so štandardným vstupom iného.
– Ako sa toto presmerovanie vytvorí?

– Ako sa vytvorí dátovod medzi dvoma novými procesmi?

– Napríklad, čo sa stane, ak shell vykoná ls | head ?

● Štandardne má každý proces otvorené prvé tri deskriptory súborov pre
terminál (je tiež reprezentovaný súborom).
– 0, štandardný vstup, pre čítanie vstupných dát na spracovanie,

– 1, štandardný výstup, pre výpis výsledkov,

– 2, chybový výstup, pre výpis pomocných a chybových hlásení.

● Pri prihlásení používateľa ich otvorí proces inicializujúci terminál a všetky
nasledujúce procesy ich už zdedia. Je to dôsledok hierarchie procesov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 106/109

Duplikácia deskriptora

● Súčasťou PCB každého procesu je aj tabuľka otvorených súborov.
– Linux: položka files v task_struct.

● Deskriptor je indexom do tejto tabuľky.
● Každé úspešné volanie open() pridá jeden nový riadok (a vráti deskriptor).
● Volanie pipe() pridá dva nové riadky (a vráti dva deskriptory).
● Pri vytváraní nového záznamu operačný systém spravidla použije prvý voľný

deskriptor.
● Volanie dup(int old) skopíruje daný deskriptor na prvý voľný a vráti jeho číslo.

– Oba deskriptory zodpovedajú tomu istému otvorenému súboru.

● Operácia dup2(int old, int new) skopíruje deskriptor old na pozíciu new. Ak
new nebol voľný, najskôr ho zatvorí.

● Duplikácia sa využíva pri implementácii presmerovania.

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 107/109

Presmerovanie štandardného vstupu a výstupu

 // sh$ ls | head
 pipe(fd);

 child1 = fork();

 child2 = fork(); // child1 == 0
close(1); // stdout

// child2 == 0 dup(fd[1]);
 close(0); // stdin close(fd[0]);

dup(fd[0]); close(fd[1]);
 close(fd[0]); execve(“/bin/ls”, ...);

close(fd[1]);
execve(“/bin/head”, ...);
// executing head // executing ls
exit(); exit();

 wait(&status);

 wait(&status);

DB, KI FMFI UK BA, 2021 Operačné systémy / Medziprocesová komunikácia 108/109

Presmerovanie štandardného vstupu a výstupu

refcount seek mode inode
0
1
2
3
4

 1 0 r

 1 0 w

close(0);
dup(fd[0]);
close(fd[0]);
close(fd[1]);
execve(“head”,…);

System file tableProcess ‘head’ descriptor table

/dev/tty 3 0 w

 1 0 r

0
1
2
3
4
5

close(1);
dup(fd[1]);
close(fd[0]);
close(fd[1]);
execve(“ls”,…);

Process ‘ls’ descriptor table

closed

closed

stdin
stdout
stderr

closed
closed

stdin
stdout
stderr

closed
closed

To je zatiaľ všetko

